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Abstract 

A numerical study is reported to investigate the entropy generation due to forced 

convection in a parallel plate channel filled by a saturated porous medium. Two different 

thermal boundary conditions are considered being isoflux and isothermal walls. Effects of 

the Péclet number, the porous medium shape factor, the dimensionless temperature 

difference for isothermal walls, the dimensionless heat flux for isoflux walls, and the 

Brinkman number on the Bejan number as well as the local and average dimensionless 

entropy generation rate are examined.  
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Nomenclature 

A area 

a channel aspect ratio H/L   

Be Bejan number 

Br Darcy-Brinkman number
2 2
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U H

k T T K

µ
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U H

q K

µ
′′

 for H 

rB ′  clear fluid Brinkman number Br/S2 

CF Forchheimer coefficient 

cP specific heat at constant pressure 

FFI fluid friction irreversibility 

H half channel width 

HTI heat transfer irreversibility 

k porous medium thermal conductivity 

K permeability 

L channel length 

Ns*  Area-weighted average of Ns 

Ns Entropy generation number 

Nu Nusselt number 

P* pressure  

p dimensionless pressure  

Pe the Péclet number 
k

UHcpρ2
  

q" wall heat flux 
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q* dimensionless heat flux 

Re*  2 /UHρ µ  

Re modified Reynolds number, Re*/ε2 

S the shape factor H/ K  

genSɺ  Entropy generation rate per unit volume 

T* dimensionless temperature difference 

T temperature 

Tin Fluid inlet temperature 

Tw wall temperature 

u* x-velocity 

u u*/U 

U inlet velocity  

v* y-velocity 

v v*/U 

*x  longitudinal coordinate 

x x*/H 

*y  transverse coordinate 

y y*/H 

Greek symbols 

ε  porosity 

θ  dimensionless temperature 
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bθ  dimensionless bulk temperature 

µ  fluid viscosity 

ρ fluid density 

ψ  dimensionless stream function  

φ  dimensionless viscous dissipation function 

*φ  viscous dissipation function, 2* /U Kφ φ=  

ω  dimensionless vorticity  

Ω   temperature ratio equal to (Tin-Tw)/ Tw ( * /( )inq q H kT′′=  for T (H) case 
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1. Introduction 

Analysis of forced convection in parallel plate channels saturated with porous medium 

has been a subject of fundamental importance for being relevant to a lot of industrial 

applications including thermal insulation, solid matrix heat exchangers, and 

microelectronic heat transfer equipment as noted by Nield and Bejan (2006) or Bejan et 

al. (2004). However, a quick search of the literature shows that the Second Law (of 

Thermodynamics) aspects of non-Darcy forced convection through a parallel plate 

channel has not been analyzed when the hydrodynamic or thermal boundary layers are 

still to develop which is the subject of this study. On the other hand, a great deal of 

information is available dealing with the Second Law analysis of similar problems. Abu-

Hijleh (2002) has reported a numerical analysis of entropy generation for cross-flow heat 

transfer from a cylinder covered with a porous layer. Mahmud and Fraser (2003) have 

analytically reported the Second Law analysis of fundamental convective heat transfer 

problems. Later, Mahmud and Fraser (2004) extended their previous work to a steady 

state conjugate problem. Baytas (2004) has reported an interesting analysis of entropy 

generation for both natural and forced convection in a porous medium. Hooman (2005-

a,b) has analytically investigated entropy generation for slug flow forced convection 

through ducts of circular and elliptical cross-section for the case when viscous dissipation 

effects are significant. Another analysis of irreversibility has been reported by Hooman 

and Gurgenci (2007-a) for fully developed slug flow through a porous duct of rectangular 

cross-section. Applying the Brinkman flow model, Hooman and Ejlali (2006) dealt with 

entropy production for thermally developing forced convection in a porous tube with the 

effects of viscous dissipation being included. Hooman (2006) has presented a theoretical 
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analysis of quasi-fully developed forced convection of a fluid with temperature-

dependent viscosity through a circular porous-saturated tube. Available in that study was 

an analysis of the local entropy generation rate and the Bejan number. The work was 

different from that of Sahin (1998) where the author has analyzed cross-sectional 

averaged entropy generation for a similar problem through a non-porous circular tube. In 

an interesting study, Liu and Narusawa (2006) have applied the Brinkman flow model to 

examine the entropy generation for flow over the endothelial cell.   

For an engineering (real) system the generated entropy is proportional to the destroyed 

exergy (which is always destroyed as a result of the Second Law; see Bejan (1982)). The 

destroyed exergy or the generated entropy is responsible for the less than maximum 

thermodynamic efficiency of a system which is associated with the reversible processes 

hypothesis. According to Bejan (1997), one can draw the map of exergy destruction 

distribution in a system by exergy accounting in smaller subsystems (total 

system→components→elemental surfaces→differential levels). Knowing the 

components that destroy the most exergy, one improves the efficiency by setting the 

optimized layout of the system in such a way that the minimum entropy be generated. 

This method, called entropy generation minimization (EGM), is a popular one among 

those who are interested in optimal design of applied systems for real life use.  

In the view of the above, this study examines the entropy generation for forced 

convection through a porous medium bounded by two isothermal or isoflux parallel 

plates. A numerical simulation is conducted using the finite difference approximation. 

The resulting entropy generation rate and the Bejan number variations are investigated as 

a function of the effective system parameters.  



Kamel Hooman et al. (2008)  Int. J. Exergy, 5 (1) 78-96 
 

7 

2. Analysis 

2.1 Basic equations: primitive variables 

The fluid enters the channel at a uniform velocity/temperature being U/Tin. The channel is 

composed of two parallel plates 2H apart and each of them being held at either uniform 

temperature, Tw, or at uniform heat flux, q ′′ , where the channel aspect ratio (defined as 

a=L/H) is fixed at a=8 which ensured us of the fully developed condition at the outlet. 

Figure 1 shows the schematic view of the problem under consideration. It is assumed that 

the magnitudes of the thermophysical properties are constant and that there is local 

thermal equilibrium. A criterion (that is met in most circumstances) for the validity of 

this assumption for steady forced convection was given by Nield (1998). Under these 

assumptions and by treating the solid matrix and the fluid as a continuum, the governing 

equations for uniform porosity distribution are 

0* =∇u
�

,          (1) 

2 2 2 2 2*
*. * * * * . *FCu

u u p u u u
K K

ρµρ ε ε µ ε ε∇ = − ∇ + ∇ − −
�

� � � � �
,    (2) 

2*. *pc u T k Tρ µφ∇ = ∇ +�
.        (3) 

Applying H, U, and 22 −ερU  as scales of length, velocity, and pressure, respectively, the 

dimensionless form of the governing equations are obtained as 

0=∇u
�

,          (4) 

( ) uuuSupuu
������

.
Re

2
. 22 Λ−−∇+−∇=∇ ,      (5) 

( )φθθ Br
Pe

u +∇=∇ 22
.
�

,        (6) 
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Following Al-Hadhrami et al. (2003) the dimensionless viscous dissipation function,φ  

equal to 2* /K Uφ φ= , is defined as  
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Nield (2002) argued that when non-Darcian effects are important, which is the case here; 

the Darcy dissipation term should not be neglected compared to the clear-fluid 

compatible term in the thermal energy equation. Consequently, Hooman and Ejlali (2005) 

and Hooman et al. (2007a-c) have retained both the Darcy dissipation term (the velocity 

square term) and the clear-fluid compatible term in the entropy generation expression. 

However, there are some papers where the authors have neglected the Darcy term and, in 

view of the above, this will lead to incorrect modeling of viscous dissipation (and as a 

result the fluid friction irreversibility term). It is worth noting that there are three 

alternative models for viscous dissipation in a porous medium. Recently, Hooman and 

Gurgenci (2007-b) have compared these models for flow through a porous-saturated duct 

and concluded that for small Darcy numbers the three alternatives are effectively the 

same while for the high Darcy limits, i.e. the clear fluid problem, the only appropriate 

model is that of Al-Hadhrami et al. (2003). For more details on the alternative viscous 

dissipation models for flow through a porous media one may consult Nield 

(2000),(2002),(2004),(2006), Nield and Hooman (2006), Nield et al. (2003), (2004) and 

Magyari et al. (2005). The dimensionless temperature profile for T and H boundary 

conditions are 
win

w

TT

TT

−
−

=θ  and 
Hq

TT
k in

′′
−

=θ , respectively. Other dimensionless 

parameters are defined in the nomenclature so that the definitions are not repeated here.  

According to Bejan (1982), one can find the volumetric entropy generation rate as 
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FFIHTISgen +=ɺ ,         (8-a) 

where HTI is the heat transfer irreversibility due to heat transfer in the direction of finite 

temperature gradients. HTI is common in all types of thermal engineering applications. 

The last term (FFI) is the contribution of fluid friction irreversibility to the total entropy 

generation. Not only the wall and fluid layer shear stress (like the case of fluid clear of 

solid materials) but also the momentum exchange at the solid boundaries (pore level) 

contributes to FFI. 

In terms of the primitive variables, HTI and FFI become 

 
2

.
,

*
.

T T
HTI k

T

FFI
T

µφ

∇ ∇=

=
         (8-b,c) 

    
where T is measured in degrees of Kelvin.  

One can also define the Bejan number, Be, as  

FFIHTI

HTI
Be

+
= .            (9) 

The Bejan number shows the ratio of entropy generation due to heat transfer 

irreversibility to the total entropy generation so that a Be value more/less than 0.5 shows 

that the contribution of HTI to the total entropy generation is higher/less than that of FFI. 

The limiting value of Be=1 shows that the only active entropy generation mechanism is 

HTI while a Be=0 value represents no HTI contribution to the total entropy production. 

The dimensionless form of entropy generation rate, Ns, is defined as 

,
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one finds that 



Kamel Hooman et al. (2008)  Int. J. Exergy, 5 (1) 78-96 
 

10 

( ) ( )

2 2222
2 2 2

2

2

* ,
11

u v v u
u v S

x y x yx y
Ns Br

∂ ∂ ∂ ∂θ θ
∂ ∂ ∂ ∂

θθ

−
       ∂ ∂   + +  + + +     +           ∂ ∂      = +

+ Ω+ Ω
 (11) 

where the modified Darcy-Brinkman number, Br*, is defined as  

.*
Ω

= Br
Br           (12) 

Moreover, the dimensionless heat flux (q*) and the dimensionless temperature difference 

(T*) are defined for H and T boundary condition as 
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In equations (10-12) Ω  will be replaced by T* or q* for T or H boundary conditions, 

respectively. 

The area-weighted average for Ns is defined as 

* A

NsdA

Ns
A

=
∫

          (14-a) 

where, based on the dimensionless duct size (1x8 box) shown in figure 1, equation (14-a) 

reads 

8
*

1

0

8

0∫ ∫=
sdxdyN

Ns .         (14-b) 

 

2.2 Methodology  

The vorticity-stream function method is applied to solve the set of equations (4-7). 

Taking the curl of the momentum equations in x and y direction, one finds that  
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is the vorticity directed in z direction and the stream function, ψ , is defined as 
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One knows that in this way the continuity equation is satisfied identically. 

The thermal energy equation now takes the following form 
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Note that the clear fluid Brinkman number rB ′  is related to our Darcy-Brinkman number 

as 2−=′ BrSrB .  

The appropriate set of boundary conditions is shown in figure 1. More details of the 

vorticity-stream function method may be found in Bejan (1984). 

Following Nield and Bejan (2006), the Nusselt number is defined in terms of the channel 

width rather than the hydraulic diameter, for T and H cases as 
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wherein the dimensionless bulk mean temperature, independent of the boundary 

condition, is defined as 

∫=
1

0
dyub θθ .           (20) 

Applying Ψ and ω to equation (11), one finds local Ns and Be as 
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3. Numerical details  

In this study the computational domain is chosen to be larger than the physical one to 

eliminate the entrance and exit effects. The computational domain is symmetric above the 

horizontal mid-plane and therefore the lower half of the flow region is considered, as 

shown in figure 1-b, to reduce the computational time. Numerical solution for the 

governing equations for vorticity, stream function, and dimensionless temperature are 

obtained by finite difference methods, using the Gauss-Seidel technique with SOR. The 

governing equations are discretized by applying the second-order accurate central 

difference schemes. For the numerical integration, algorithms based on the trapezoidal 

rule, similar to Hooman (2007), are employed. 

All runs were performed with a 30 x 200 grid. Grid independence was verified by 

running different combinations of S, Re, Br, and Pe on a 60 x 400 grid for both boundary 

conditions to observe that the results will not change to four significant figures. The 

convergence criterion (maximum relative error in the values of the dependent variables 
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between two successive iterations) in all test runs was set at 10-6. Accuracy of the 

numerical procedure was verified by comparison of the results given in the literature, as 

shown in tables 1 and 2. 

Table 1 verifies our numerical results by recovering the exact solution presented for T 

boundary condition in Nield et al. (2003) and Haji-Sheikh et al. (2004) while table 2 

compares our results with those of Nield et al. (2004) reported for H boundary condition. 

It is worth noting that for very high S values ( ∞→S ), with a non-zero Br, for both 

boundary conditions our Nu tends to 6. For T boundary condition it is in complete 

agreement with that of Hooman and Gorji-Bandpy (2005) and confirms Nu=5.953 

reported by Nield et al. (2003). Also for H boundary condition our Nu agrees well with 

that of Nield and Bejan (2006) and Haji-Sheikh et al. (2006).  

 

4. Results  

In this problem there is a large number of parameters to vary and it would be a very 

spacious task to show the First Law aspects of the problem so that, for the sake of 

brevity, just the Second Law results will be reported in terms of Be, Ns, and Ns*. Though 

the contour maps could have been shown, for an effective investigation of the problem, 

Ns and Be are illustrated in figures (2-7) versus the transverse coordinate at some 

streamwise locations. To complete the picture, figures (8-9) are presented to show the 

area-weighted results of Ns versus effective system parameters. Figures (2-4) and figure 

9, are presented for H boundary condition while figures (5-8) are for the T case. In all of 

the figures the following values are used unless otherwise noted Re=2, Pe=5, T*=0.1, and 

q*=0.1. 
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Moving from figure 2 to figure 4, the effects of Br* on the Second Law aspects of the 

problem will be examined in such a way that each figure represents limiting Br* 

compared to unity, i.e. 0.1, 1, and 10, respectively. Meanwhile, S is changed within 

eachfigure, in such a way that the first pair of the charts is pertaining to S=1 while for the 

second one it is S=10, to show the effects of a change in the porous media shape factor 

with a fixed Br*. It is worth noting that this selection is based on the fact that S=1 

represents a hyperporous medium case (see Nield and Bejan (2006) for more details) 

while, according to Hooman and Merrikh (2006) and Hooman and Gurgenci (2007-c), for 

S>10 the flow is more or less a slug-like one.  

Before moving to the results, one should note that, generally speaking, high values of Ns 

are expected in the near wall regions due to the presence of severe velocity and 

temperature gradients (which in turn lead to very high values of FFI and HTI) compared 

to the centerline, where due to symmetry, both velocity and temperature gradients will 

vanish. Moving down the channel, the problem becomes hydrodynamically fully 

developed so that viscous dissipation function will not change with x, i.e. 

2 2 2( ) /
du

u S
dy

φ = + . On the other hand, as fluid flows in the duct its (bulk) temperature 

gets closer to that of the wall and hence HTI will decrease with x. This, in turn, will 

decrease Ns along the channel.  

Another feature of considerable interest is that, in all figures pertaining to Be or Ns, two 

different behaviors can be recognized. Plots of x=0.1 and x=0.5 behave similar to each 

other and different from those of higher x values (which are qualitatively identical to one 

another). This should be due to the fact that small values of x are associated with the 
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hydrodynamically developing region, see for example figure 5 of Hooman and Gurgenci 

(2007-b).  

Figures 2-a,b are presented to show Ns and Be for S=1 while S=10 is assumed in 

obtaining figures 2-c,d. As shown by figure 2-a, for all streamwise locations Ns starts 

from a maximum at the wall and then plunges to its minimum at the channel centerline 

and moving down the channel, the difference between the two extremes decreases, as 

expected based on the general arguments presented above. Figure 2-b shows that Be starts 

from a minimum at the wall, where Ns reaches its maximum value, increases to a 

maximum and then decreases toward the channel centerline. Moving down the channel, 

this maximum becomes smaller in value and shifts to the half distance, say y=0.5, leading 

to a more flattened Be curve. Be is the ratio of HTI to total entropy generation, so that, to 

the first approximation, for uniform distribution of HTI, one can conclude that Be is 

inversely proportional to Ns. Note that though HTI is not uniform in y, to a good estimate, 

this argument explains why Be decreases with an increase in Ns. One should, however, be 

warned that HTI is not the only influential parameter on Be but FFI/HTI ratio or the 

irreversibility distribution ratio, in the terminology of Bejan (1982), which is a function 

of not only the local temperature and velocity but also of their gradients. 

Examining figures 2-c,d, one observes that Ns plots show more or less the same trend as 

the previous case, however, for Be the situation completely differs in such a way that it 

starts from a relatively high value at the wall, increases to a maximum value near the wall 

and then decreases toward the channel center where at, y=1, Be increases slightly. This 

can be justified by noting that for such high values of S the clear fluid compatible part of 

the viscous dissipation function becomes negligible (O(0.01)) compared to the Darcy 
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dissipation term (velocity square term) leading to a decrease in FFI. This means that HTI 

is the dominant part of Ns as reflected in Be plots which are qualitatively similar to those 

of Ns. Moreover, Be puts on very high values (near unity which is the maximum possible 

value for Be) that confirms the dominant effect of HTI contribution to Ns over that of 

FFI. 

Figure 3 is presented to show the effects of a change in Br*  on Ns and Be. This figure is 

quite similar to figure 2 with the only difference being a chagne in Br*=0.1 to Br*=1 . 

The trends observed in Be and Ns plots are qualitatively similar for both Br*  values, 

nevertheless, one observes a local minimum in Ns plots for Br*=1  in addition to the least 

Ns value observed in the channel center. For S=1 this local minimum is vanished 

downstream the channel while for S=10, excluding x=0.1, the local minimum happens at 

just under y=0.1 where Be reaches its maximum value. This is again in line with our 

approximation-based argument on inverse proportionality of Be-Ns. 

Figure 4 shows the case of Br*=10  with the other parameters fixed at those used in the 

previous two figures. Near the duct entry, Be acts more or less similar to those of smaller 

Br*  while for large values of x the trend changes in such a way that Be starts from a 

minimum at the wall and then increases to reach a maximum at half way to the duct 

center where, after this point, the Be value remains approximately constant toward the 

axis of symmetry. Comparing the Bejan number plots with those of smaller Br* , one 

observes that though qualitatively similar, the Be levels are different in such a way that 

higher Br*  values are associated with smaller Be levels and one expects that increasing 

Br*  confine high values of Be to Be<0.5 which shows that the entropy generation 

happens more due to FFI than HTI. For Ns the plots are qualitatively similar to those of 
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Br*=1  with the slight difference that near the exit cross-section Ns plots fall well below 

the local minimum of the near entrance cross-section.   

Figure 5 shows the results for Br*=1, S=1 when the boundary condition is an isothermal 

one, i.e. the T boundary condition. Comparing with figure 5-a, the trend observed in Ns is 

more or less similar to that of H boundary condition counterpart with the same Br*  and S. 

The Bejan number increases from the wall to a maximum and then plunges to its 

minimum value at y=1. It is interesting that moving down the channel, the trend of Be 

changes in such a way that Be decreases uniformly from the wall to the channel center so 

that the curves become flattened compared to smaller values of x. The reason is that far 

away from the duct inlet the problem becomes thermally fully developed. It means that 

for the isothermal walls the longitudinal temperature gradient vanishes while for the 

isoflux case it should take a constant value; see Nield (2006) or Hooman et al. (2006). 

One notes that vanishing the longitudinal temperature gradient will reduce HTI, and 

consequently Be, for the thermally fully developed region compared to the developing 

counterpart.    

Figure 6 is presented to show how Ns and Be will change as Br* increases from 1 to 10. 

As seen, for x=0.1 Ns experiences two minima while for x>0.5 Ns starts from its 

maximum at the wall, passes through a minimum and then increases toward the channel 

center. Moving down the channel, the minimum vanishes and Ns decreases from its 

maximum at the wall to its least value at the centerline. This can be attributed to the 

interaction between hydrodynamic development and the near-wall effects. 

For this case, the Bejan number decreases from its maximum at the wall to a local 

minimum and then increases again at a short distance to a second local maximum where 
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after this value increases to the centerline for x=0.1. It is interesting that the second 

maximum in Be is associated with a transverse location where Ns experiences a 

minimum. For x=0.5, there exists just one minimum, excluding that of y=0, where 

moving down the channel, this minimum vanishes and the plots show a uniform decrease 

from the wall.  

To show how a change in S and T* will alter the Second Law aspects of the problem, 

figure 7 is presented. Figure 7-a shows that Ns decreases form wall to the channel center. 

For small values of x the value of Ns becomes constant after a short distance from the 

wall (moving downstream the distance increases) but for large values of x, i.e. in the fully 

developed region, Ns values continue to decrease till the duct centerline at y=1. 

According to figure 7-b, the Be plots are showing two different behavior for small and 

large x, i.e. for the developing and the fully developed region. For near entry region, Be 

decreases from the wall, passes through some local minima toward the channel centerline 

where the number of these minima decreases as the flow becomes fully developed in such 

a way that for very large values of x a uniform decrement is observed in Be from the wall 

to the duct center. It is interesting that, for y<0.25 in the fully developed region, Be>0.5 

or HTI>FFI  and for 0.25<y<1 the situation changes in such a way that Be <0.5, i.e. 

HTI<FFI . This fact drives home the point that this is not only Br* that shows the relative 

importance of the contributing irreversibility sources but the heat transfer mechanism 

also affects the balance between HTI and FFI. In the asymptotic region the energy 

balance is a conduction-generation one as noted by previous investigators for similar 

problems. Here, heat generation is due to viscous dissipation which contributes to FFI 

while conduction leads to HTI and the First Law of thermodynamics proposes a balance 
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between generation-conduction while the Second Law can give clues of the 

corresponding exergy destruction mechanisms, i.e. FFI and HTI. 

For figures 7-c,d with S=10, one observes that Ns patterns are almost unchanged while 

the plots of Be experience less ups and downs compared to those of S=1 but the trend is 

more or less similar.  

Figure 8 shows average Ns value (Ns*) versus the clear fluid Brinkman number for some 

S and T* values when the boundary conditions are of T type. One observes that Ns* 

increases with an increase in either the clear fluid Brinkman or the shape factor for an 

increase in FFI. On the contrary, increasing T* decreases Ns* through an increase in the 

denominator of both HTI and FFI. 

Figure 9 shows Ns* versus the clear fluid Brinkman number. As seen, like the T 

boundary condition, increasing either the porous media shape factor or the clear flow 

Brinkman number increases Ns*, however, increasing q* and Pe decreases Ns* as both of 

them turn up in the denominator of Ns. No significant change in Ns* plots is observed 

when Re was changed (from Re=1 to Re=10) for either of the two cases. It is worth 

noting that, with the other parameters fixed, a change in S, will alter the Ns*-Br’ slope. 

This fact is in line with the approximate solutions of Ns*, reported by Hooman and Haji-

Sheikh (2007), where it was concluded that for limiting (very small/high) values of S, 

Ns* follows dissimilar functions of Br’ . 

 

5. Conclusion 

The issue of entropy generation for forced convection in a parallel-plate channel filled 

with a porous medium has been studied both for uniform-temperature and uniform-flux 
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boundary conditions. The effect of various system parameters on the Second Law aspects 

of the problem has been investigated. It is observed that, regardless of the boundary 

condition, increasing the porous media shape factor and the Brinkman number, and 

decreasing the dimensionless heat flux or temperature difference, increases the 

dimensionless degree of irreversibility of the problem, as reflected in Ns. Moreover, one 

concludes that different arrangement of the parameters will lead to completely different 

behavior for both Ns and Be as described. 
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Table 1 The summary of the present and benchmark results for Nu (S=1). 

NuT Nield et al. (2003) Haji-Sheikh et al. (2004) 

Br=0 0≠Br  Br=0 0≠Br  Br=0 0≠Br  

3.803 6.647 3.802 6.641 3.801 6.649 

 
 

Table 2 The summary of the present and benchmark results for Nu (S=1). 

Parameter NuH Nield et al. (2004)  

Br 0 1 0 1 

Nu 3.803 6.647 3.802 6.641 
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Figure 1-a,b Definition sketch 
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Figure 2 Plots of Ns and Be versus y at some streamwise locations (Br*=0.1) 
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Figure 3 Plots of Ns and Be versus y at some streamwise locations (Br*=1) 
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Figure 4 Plots of Ns and Be versus y at some streamwise locations (Br*=10) 
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Figure 5 Plots of Ns and Be versus y at some streamwise locations (Br*=1, S=1) 
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Figure 6 Plots of Ns and Be versus y at some streamwise locations (Br*=10, S=1) 
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C   (S=10)   D 

Figure 7 Plots of Ns and Be versus y at some streamwise locations (Br*=10, T*=1) 
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Figure 8 Ns* versus the clear fluid Brinkman number for the T boundary condition 
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Figure 9 Ns* versus the clear fluid Brinkman number for the H boundary condition 

 

 

 

 


