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Abstract

A numerical study is reported to investigate thdragy generation due to forced
convection in a parallel plate channel filled byadurated porous medium. Two different
thermal boundary conditions are considered beioffuis and isothermal walls. Effects of
the Péclet number, the porous medium shape fatiter,dimensionless temperature
difference for isothermal walls, the dimensionlésat flux for isoflux walls, and the

Brinkman number on the Bejan number as well addbal and average dimensionless

entropy generation rate are examined.
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Nomenclature

A

a

Be

Br

Br'
Cr
Cp

FFI

HTI

Ns*

Ns

Nu

P*

area

channel aspect ratio H/L

Bejan number

2 2 2
Darcy-Brinkman number’UU—HforT and HH forH
k(T-T)K q'K

clear fluid Brinkman number BrfS
Forchheimer coefficient

specific heat at constant pressure
fluid friction irreversibility

half channel width

heat transfer irreversibility

porous medium thermal conductivity

permeability

channel length
Area-weighted average of Ns
Entropy generation number
Nusselt number

pressure

dimensionless pressure

i 20c UH
the Péclet numbe+

wall heat flux
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g* dimensionless heat flux

Re* 20UH [

Re  modified Reynolds numbeRe*/:?
S the shape factor/vK

Sgen Entropy generation rate per unit volume
T* dimensionless temperature difference
T temperature

Tin Fluid inlet temperature

Tw wall temperature

u* x-velocity

u u*/U

U inlet velocity

v* y-velocity

% v*/U

X* longitudinal coordinate

X x*/H

y*  transverse coordinate

y y*IH

Greek symbols

£ porosity

6 dimensionless temperature
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A dimensionless bulk temperature
7 fluid viscosity

fluid density

7] dimensionless stream function

¢ dimensionless viscous dissipation function
@*  viscous dissipation functiogt = @J*/ K
17 dimensionless vorticity

Q temperature ratio equal toi{1Tw)/ Tw ( g* = ' H/(KT,) for T (H) case
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1. Introduction

Analysis of forced convection in parallel plate ohals saturated with porous medium
has been a subject of fundamental importance forgbeslevant to a lot of industrial
applications including thermal insulation, solid tma heat exchangers, and
microelectronic heat transfer equipment as notedligyd and Bejan (2006) or Bejan et
al. (2004). However, a quick search of the literatahows that the Second Law (of
Thermodynamics) aspects of non-Darcy forced comwecthrough a parallel plate
channel has not been analyzed when the hydrodynanticermal boundary layers are
still to develop which is the subject of this studn the other hand, a great deal of
information is available dealing with the SecondvLanalysis of similar problems. Abu-
Hijleh (2002) has reported a numerical analysisrafopy generation for cross-flow heat
transfer from a cylinder covered with a porous tayj¢ahmud and Fraser (2003) have
analytically reported the Second Law analysis afdlamental convective heat transfer
problems. Later, Mahmud and Fraser (2004) extertdenl previous work to a steady
state conjugate problem. Baytas (2004) has repatethteresting analysis of entropy
generation for both natural and forced convectiom iporous medium. Hooman (2005-
a,b) has analytically investigated entropy genermafior slug flow forced convection
through ducts of circular and elliptical cross-gattffor the case when viscous dissipation
effects are significant. Another analysis of irnesikility has been reported by Hooman
and Gurgenci (2007-a) for fully developed slug fldwough a porous duct of rectangular
cross-section. Applying the Brinkman flow model,d#oan and Ejlali (2006) dealt with
entropy production for thermally developing forasmhvection in a porous tube with the

effects of viscous dissipation being included. Haon(2006) has presented a theoretical
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analysis of quasi-fully developed forced convectioh a fluid with temperature-
dependent viscosity through a circular porous-saétar tube. Available in that study was
an analysis of the local entropy generation rate twe Bejan number. The work was
different from that of Sahin (1998) where the authh@s analyzed cross-sectional
averaged entropy generation for a similar probleraugh a non-porous circular tube. In
an interesting study, Liu and Narusawa (2006) regpydied the Brinkman flow model to
examine the entropy generation for flow over théathelial cell.

For an engineering (real) system the generated@nis proportional to the destroyed
exergy (which is always destroyed as a result efSacond Law; see Bejan (1982)). The
destroyed exergy or the generated entropy is redpenfor the less than maximum
thermodynamic efficiency of a system which is agged with the reversible processes
hypothesis. According to Bejan (1997), one can dther map of exergy destruction
distribution in a system by exergy accounting in ader subsystems (total
system- components» elemental surfaces differential levels). Knowing the
components that destroy the most exergy, one inggrdkie efficiency by setting the
optimized layout of the system in such a way tih& minimum entropy be generated.
This method, called entropy generation minimizat{&sM), is a popular one among
those who are interested in optimal design of agpdystems for real life use.

In the view of the above, this study examines timropy generation for forced
convection through a porous medium bounded by tsathermal or isoflux parallel
plates. A numerical simulation is conducted using finite difference approximation.
The resulting entropy generation rate and the Bejanber variations are investigated as

a function of the effective system parameters.
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2. Analysis

2.1 Basic equations: primitive variables

The fluid enters the channel at a uniform velobtélylperature being/Ti,. The channel is
composed of two parallel platesizapart and each of them being held at either umifor
temperatureT,, or at uniform heat fluxg", where the channel aspect ratio (defined as
a=L/H) is fixed ata=8 which ensured us of the fully developed conditad the outlet.
Figure 1 shows the schematic view of the problestenrconsideration. It is assumed that
the magnitudes of the thermophysical properties camestant and that there is local
thermal equilibrium. A criterion (that is met in stocircumstances) for the validity of
this assumption for steady forced convection wagmgiby Nield (1998). Under these
assumptions and by treating the solid matrix armdflind as a continuum, the governing

equations for uniform porosity distribution are

OG* =0, (1)
} i*  ,C.p
G*. 00 = -e20p +e2u0%0 -2 28 2Py |1 | 2
P P +elu0] < JE' | (2)
pc, 0% 0T = K12 T+ g @3)

Applying H, U, and pU ’c™ as scales of length, velocity, and pressure, otisdy, the
dimensionless form of the governing equations atained as

0a =0, 4)

0.00 = -Op +-= (0% - S%a) - Aldlg, (5)

006 :Pie(mzm Brg), (6)
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Following Al-Hadhrami et al. (2003) the dimensiageviscous dissipation functian,

equal top=Kg*/U?, is defined as

o348 (3] &5

Nield (2002) argued that when non-Darcian effectsimportant, which is the case here;
the Darcy dissipation term should not be neglectednpared to the clear-fluid
compatible term in the thermal energy equation.geéganently, Hooman and Ejlali (2005)
and Hooman et al. (2007a-c) have retained bottbtrey dissipation term (the velocity
square term) and the clear-fluid compatible ternthi@ entropy generation expression.
However, there are some papers where the autheesrtegglected the Darcy term and, in
view of the above, this will lead to incorrect mbdg of viscous dissipation (and as a
result the fluid friction irreversibility term). lis worth noting that there are three
alternative models for viscous dissipation in agosr medium. Recently, Hooman and
Gurgenci (2007-b) have compared these modelsdar through a porous-saturated duct
and concluded that for small Darcy numbers theettakernatives are effectively the
same while for the high Darcy limits, i.e. the cléaid problem, the only appropriate
model is that of Al-Hadhrami et al. (2003). For matetails on the alternative viscous
dissipation models for flow through a porous mediae may consult Nield
(2000),(2002),(2004),(2006), Nield and Hooman (9006eld et al. (2003), (2004) and
Magyari et al. (2005). The dimensionless tempeeafmofile for T and H boundary

. T-T T-T . . .
conditions are 8 = _IZV and 8=k H'” , respectively. Other dimensionless
q

n

in w
parameters are defined in the nomenclature sdhbatefinitions are not repeated here.

According to Bejan (1982), one can find the volumeetntropy generation rate as
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Syen = HTI + FFI (8-a)

whereHTI is the heat transfer irreversibility due to heanhsfer in the direction of finite
temperature gradientslTl is common in all types of thermal engineering agaions.

The last termKFl) is the contribution of fluid friction irreversility to the total entropy
generation. Not only the wall and fluid layer shetiess (like the case of fluid clear of
solid materials) but also the momentum exchangtheatsolid boundaries (pore level)
contributes td-Fl.

In terms of the primitive variableBlTl andFFI become

gr.ar

T2

Fri =22

HTI =k
(8'b,C)

whereT is measured in degrees of Kelvin.
One can also define the Bejan numlizs, as

BGZL. (9)
HTI + FFI

The Bejan number shows the ratio of entropy geimratiue to heat transfer
irreversibility to the total entropy generationtbat aBe value more/less than 0.5 shows
that the contribution dfiTI to the total entropy generation is higher/less tteat ofFFI.
The limiting value ofBe=1 shows that the only active entropy generatioghaerism is
HTI while aBe=0 value represents Tl contribution to the total entropy production.

The dimensionless form of entropy generation fdtejs defined as

S 2
Ns= %(%j , (10)

one finds that
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2 2 2
OEOEe s{z((gu) (%) (52 }
X y X y
Ns= ox 9y + Br*

, (11
(1va0) 1+00) )
where the modified Darcy-Brinkman numbBr#, is defined as
Br
Brx=—. 12
o (12)

Moreover, the dimensionless heat flgg)(and the dimensionless temperature difference

(T*) are defined foH andT boundary condition as

_ q"H
T KT,
T (13-a,b)
T* — in w ]
T

In equations (10-12X2 will be replaced byT™* or g* for T or H boundary conditions,
respectively.

The area-weighted average f¢sis defined as

j NsdA
Ngr = A 14-a
A (14-a)

where, based on the dimensionless duct size (1xBdtmwn in figure 1, equation (14-a)

reads

108
J'O Nsdxdy

_l
Nst = 50— (14-b)

2.2 Methodology
The vorticity-stream function method is applied dolve the set of equations (4-7).

Taking the curl of the momentum equations endy direction, one finds that
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2 2
Ouw) , d(ve) _ 2. a_a2)+a 02)—820) , (15)
ox dy Rel ox*> oy
where
2 2
= — 0 lé/ + 9 lé/ ) (16)
ox®  dy

is the vorticity directed iz direction and the stream functiap,, is defined as

u=9%
ay
5 (17-a,b)
v=-9%
oX

One knows that in this way the continuity equaisatisfied identically.

The thermal energy equation now takes the folloviarg

oub) , 0(v6) _ 2(029 0%6

— + +Bry|. 18
X dy  Pelox® oy’ ¢] (19)

Note that the clear fluid Brinkman numbBr’ is related to our Darcy-Brinkman number
asBr'=BrS>.

The appropriate set of boundary conditions is shawifigure 1. More details of the
vorticity-stream function method may be found inde(1984).

Following Nield and Bejan (2006), the Nusselt numbedefined in terms of the channel

width rather than the hydraulic diameter, ToandH cases as

06
-2—| .-
y=0
NUT :a—y'
8, (19-a,b)
Nu, = 2 ,
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wherein the dimensionless bulk mean temperaturdependent of the boundary

condition, is defined as

1
6, = [ uady. (20)
Applying ¥ andw to equation (11), one finds loddsandBe as

(06) (Dw)2+8‘2((2 jyg’x)2+w2]
NS= (1+Q8)° i (1+Q8)

(06)° ,
(08)’ +Br* (1+Q6)((Dl/l)2 + 8_2((2 ;2;”)()2 HUZD

(21-a,b)

Be=

y

3. Numerical details

In this study the computational domain is chosehddarger than the physical one to
eliminate the entrance and exit effects. The coatmral domain is symmetric above the
horizontal mid-plane and therefore the lower hdlthe flow region is considered, as
shown in figure 1-b, to reduce the computationaieti Numerical solution for the
governing equations for vorticity, stream functiand dimensionless temperature are
obtained by finite difference methods, using thei€3aSeidel technique with SOR. The
governing equations are discretized by applying $seeond-order accurate central
difference schemes. For the numerical integratedgorithms based on the trapezoidal
rule, similar to Hooman (2007), are employed.

All runs were performed with a 30 x 200 grid. Giitlependence was verified by
running different combinations &, Re, BrandPeon a 60 x 400 grid for both boundary
conditions to observe that the results will notrde to four significant figures. The

convergence criterion (maximum relative error ie tralues of the dependent variables
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between two successive iterations) in all test rwmas set at I8 Accuracy of the
numerical procedure was verified by comparisonhef tesults given in the literature, as
shown in tables 1 and 2.

Table 1 verifies our numerical results by recowgrine exact solution presented fbr
boundary condition in Nield et al. (2003) and Halieikh et al. (2004) while table 2
compares our results with those of Nield et alO@Qeported foH boundary condition.

It is worth noting that for very higls values § - «), with a non-zerdr, for both
boundary conditions ouNu tends to 6. Foil boundary condition it is in complete
agreement with that of Hooman and Gorji-Bandpy &0@nd confirmsNu=5.953
reported by Nield et al. (2003). Also fbf boundary condition ouNu agrees well with

that of Nield and Bejan (2006) and Haji-Sheikhle{2006).

4. Reaults

In this problem there is a large number of pararsete vary and it would be a very
spacious task to show the First Law aspects ofptiedlem so that, for the sake of
brevity, just the Second Law results will be repdrin terms oBe Ns andNs*. Though
the contour maps could have been shown, for arteféeinvestigation of the problem,
Ns and Be are illustrated in figures (2-7) versus the tramse coordinate at some
streamwise locations. To complete the picture,régu8-9) are presented to show the
area-weighted results dfs versus effective system parameters. Figures @ad)figure

9, are presented fét boundary condition while figures (5-8) are for thease. In all of
the figures the following values are used unlekemtise notedRe=2, Pe=5, T*=0.1, and

g*=0.1.
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Moving from figure 2 to figure 4, the effects Bf* on the Second Law aspects of the
problem will be examined in such a way that eadurg represents limitindr*
compared to unity, i.e. 0.1, 1, and 10, respectivBeanwhile,S is changed within
eachfigure, in such a way that the first pair @& tharts is pertaining =1 while for the
second one it i$=10, to show the effects of a change in the poroadia shape factor
with a fixed Br*. It is worth noting that this selection is based the fact thatS=1
represents a hyperporous medium case (see NielBeajah (2006) for more details)
while, according to Hooman and Merrikh (2006) armbkhan and Gurgenci (2007-c), for
S>10 the flow is more or less a slug-like one.

Before moving to the results, one should note tpaberally speaking, high valuesi$
are expected in the near wall regions due to tresegmrce of severe velocity and
temperature gradients (which in turn lead to vaghtvalues ofFFl and HTI) compared
to the centerline, where due to symmetry, both argtaand temperature gradients will
vanish. Moving down the channel, the problem becorhgdrodynamically fully

developed so that viscous dissipation function wilbt change withx, i.e.

@Y= u2+(%)2/82. On the other hand, as fluid flows in the duct(lislk) temperature
y

gets closer to that of the wall and herid&l will decrease withx. This, in turn, will
decreas@&salong the channel.

Another feature of considerable interest is thagll figures pertaining t8e or Ns, two
different behaviors can be recognized. Plotx=.1 andx=0.5 behave similar to each
other and different from those of highevalues (which are qualitatively identical to one

another). This should be due to the fact that swallles ofx are associated with the
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hydrodynamically developing region, see for exanfgare 5 of Hooman and Gurgenci
(2007-Db).

Figures 2-a,b are presented to shbi& and Be for S=1 while S=10 is assumed in
obtaining figures 2-c,d. As shown by figure 2-ar, &l streamwise locationBls starts
from a maximum at the wall and then plunges taritsimum at the channel centerline
and moving down the channel, the difference betwbentwo extremes decreases, as
expected based on the general arguments presdated. &igure 2-b shows thBe starts
from a minimum at the wall, wherBls reaches its maximum value, increases to a
maximum and then decreases toward the channelrbeateMoving down the channel,
this maximum becomes smaller in value and shifthédhalf distance, say0.5, leading

to a more flattene@e curve.Beis the ratio oHTI to total entropy generation, so that, to
the first approximation, for uniform distributionf #1TIl, one can conclude th&e is
inversely proportional tdls. Note that thouglTI is not uniform iny, to a good estimate,
this argument explains wiBe decreases with an increaseNiea One should, however, be
warned thatHTI is not the only influential parameter @e but FFI/HTI ratio or the
irreversibility distribution ratio, in the terminadjy of Bejan (1982), which is a function
of not only the local temperature and velocity &lso of their gradients.

Examining figures 2-c,d, one observes tRatplots show more or less the same trend as
the previous case, however, e the situation completely differs in such a wayttha
starts from a relatively high value at the walGrieases to a maximum value near the wall
and then decreases toward the channel center walegrel, Be increases slightly. This
can be justified by noting that for such high valwéSthe clear fluid compatible part of

the viscous dissipation function becomes negligif@0.01)) compared to the Darcy
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dissipation term (velocity square term) leadin@tdecrease iRFI. This means that Tl

is the dominant part dfis as reflected ifBe plots which are qualitatively similar to those
of Ns. Moreover,Be puts on very high values (near unity which is tfeeximum possible
value forBe) that confirms the dominant effect BITI contribution toNs over that of
FFI.

Figure 3 is presented to show the effects of a ghamBr* on NsandBe This figure is
quite similar to figure 2 with the only different®ing a chagne iBr*=0.1 to Br*=1.
The trends observed iBe and Ns plots are qualitatively similar for botBr* values,
nevertheless, one observes a local minimumgaplots forBr*=1 in addition to the least
Ns value observed in the channel center. Berl this local minimum is vanished
downstream the channel while =10, excludingx=0.1, the local minimum happens at
just undery=0.1 whereBe reaches its maximum value. This is again in linghveur
approximation-based argument on inverse propottityref Be-Ns

Figure 4 shows the case Bf*=10 with the other parameters fixed at those usedhen t
previous two figures. Near the duct entBg acts more or less similar to those of smaller
Br* while for large values ok the trend changes in such a way tBatstarts from a
minimum at the wall and then increases to reachaaimum at half way to the duct
center where, after this point, tiBe value remains approximately constant toward the
axis of symmetry. Comparing the Bejan number pioith those of smalleBr*, one
observes that though qualitatively similar, Belevels are different in such a way that
higherBr* values are associated with smalB levels and one expects that increasing
Br* confine high values oBe to Be<0.5 which shows that the entropy generation

happens more due &FI thanHTI. For Nsthe plots are qualitatively similar to those of
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Br*=1 with the slight difference that near the exit erggctionNs plots fall well below
the local minimum of the near entrance cross-sectio

Figure 5 shows the results fBr*=1, S=1 when the boundary condition is an isothermal
one, i.e. th& boundary condition. Comparing with figure 5-a, trend observed iNsis
more or less similar to that &f boundary condition counterpart with the saBme andS.
The Bejan number increases from the wall to a marimand then plunges to its
minimum value aty=1. It is interesting that moving down the chantieg trend ofBe
changes in such a way th2¢ decreases uniformly from the wall to the chanmegiter so
that the curves become flattened compared to smadlees ofx. The reason is that far
away from the duct inlet the problem becomes théynfally developed. It means that
for the isothermal walls the longitudinal temperatgradient vanishes while for the
isoflux case it should take a constant value; se#dN2006) or Hooman et al. (2006).
One notes that vanishing the longitudinal tempeeatgradient will reduceHTI, and
consequentlyBe, for the thermally fully developed region compartedthe developing
counterpart.

Figure 6 is presented to show hois andBe will change a®Br* increases from 1 to 10.
As seen, forx=0.1 Ns experiences two minima while for>0.5 Ns starts from its
maximum at the wall, passes through a minimum &ed increases toward the channel
center. Moving down the channel, the minimum vaessilandNs decreases from its
maximum at the wall to its least value at the cdimie This can be attributed to the
interaction between hydrodynamic development aechtbar-wall effects.

For this case, the Bejan number decreases fromasimum at the wall to a local

minimum and then increases again at a short disttme second local maximum where
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after this value increases to the centerline ¥e0.1. It is interesting that the second
maximum in Be is associated with a transverse location whire experiences a
minimum. Forx=0.5, there exists just one minimum, excluding tb&ty=0, where
moving down the channel, this minimum vanishes thedplots show a uniform decrease
from the wall.

To show how a change @ and T* will alter the Second Law aspects of thelbem,
figure 7 is presented. Figure 7-a shows tsitlecreases form wall to the channel center.
For small values ok the value ofNs becomes constant after a short distance from the
wall (moving downstream the distance increasesfdruarge values of, i.e. in the fully
developed regiori\s values continue to decrease till the duct cemerity=1.

According to figure 7-b, th&e plots are showing two different behavior for smaaild
largex, i.e. for the developing and the fully developedion. For near entry regioBge
decreases from the wall, passes through somenaoaha toward the channel centerline
where the number of these minima decreases atothdécomes fully developed in such
a way that for very large valuesf uniform decrement is observeddafrom the wall

to the duct center. It is interesting that, §&0.25 in the fully developed regioBeg>0.5

or HTI>FFI and for 0.25%<1 the situation changes in such a way tBat<0.5, i.e.
HTI<FFI. This fact drives home the point that this is ooty Br* that shows the relative
importance of the contributing irreversibility scas but the heat transfer mechanism
also affects the balance betweld| and FFI. In the asymptotic region the energy
balance is a conduction-generation one as notegréyious investigators for similar
problems. Here, heat generation is due to viscasspation which contributes tBFI

while conduction leads tBITI and the First Law of thermodynamics proposes anua
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between generation-conduction while the Second Lean give clues of the
corresponding exergy destruction mechanismsi-Eé€andHTI.

For figures 7-c,d witt5=10, one observes thals patterns are almost unchanged while
the plots ofBe experience less ups and downs compared to thaSelobut the trend is
more or less similar.

Figure 8 shows averagés value Ns*) versus the clear fluid Brinkman number for some
S and T* values when the boundary conditions areTotype. One observes thals*
increases with an increase in either the clead fRiinkman or the shape factor for an
increase irFFI. On the contrary, increasingf decreaseslst through an increase in the
denominator of botMTI andFFI.

Figure 9 showsNs* versus the clear fluid Brinkman number. As sebke the T
boundary condition, increasing either the porouslimeshape factor or the clear flow
Brinkman number increas®&s*, however, increasing* and Pe decreasebls* as both of
them turn up in the denominator N No significant change iNs* plots is observed
when Re was changed (fronRe=1 to Re=10) for either of the two cases. It is worth
noting that, with the other parameters fixed, angeain S, will alter the Ns*-Br’ slope.
This fact is in line with the approximate soluticsfsNs*, reported by Hooman and Haji-
Sheikh (2007), where it was concluded that for tiingy (very small/high) values d$,

Ns* follows dissimilar functions oBr’.

5. Conclusion
The issue of entropy generation for forced coneecin a parallel-plate channel filled

with a porous medium has been studied both foroumiftemperature and uniform-flux
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boundary conditions. The effect of various systearameters on the Second Law aspects
of the problem has been investigated. It is obskemmat, regardless of the boundary
condition, increasing the porous media shape faatat the Brinkman number, and
decreasing the dimensionless heat flux or temperatlifference, increases the
dimensionless degree of irreversibility of the peoh, as reflected ilNs Moreover, one
concludes that different arrangement of the pararaewill lead to completely different

behavior for botiNs andBe as described.
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Table 1 The summary of the present and benchmatittsefor Nu (S=1).

)

Nur Nield et al. (2003)| Haji-Sheikh et al. (200
Br=0 Brz0 Br=0 Br#z0 Br=0 Brz0
3.803 6.647 3.802 6.641 3.801 6.649

Table 2 The summary of the present and benchmatittsefor Nu (S=1).

Parameter Nl Nield et al. (2004)
Br 0 1 0 1
Nu 3.803 6.647 3.802 6.641
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