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Abstract

In the Kane silicon-based electron-mediated nuclear spin quantum computer
architecture, phosphorous is doped at precise positions in a silicon lattice, and
the P donor nuclear spins act as qubits. Logical operations on the nuclear spins
are performed using externally applied magnetic and electric fields. There are
two important interactions: the hyperfine and exchange interactions, crucial
for logical qubit operations. Single qubit operations are performed by applying
radio frequency magnetic fields resonant with targeted nuclear spin transition
frequencies, tuned by the gate-controlled hyperfine interaction. Two qubit op-
erations are mediated through the exchange interaction between adjacent donor
electrons. It is important to examine how these two interactions vary as func-
tions of experimental parameters. Here we provide such an investigation. First,
we examine the effects of varying several experimental parameters: gate volt-
age, inter donor separation, donor depth below the silicon oxide interface and
back gate depth, to explore how these variables affect the donor electro den-
sity. Second, we calculate the hyperfine interaction and the exchange coupling
as a function of these parameters. These calculations were performed using
an anisotropic effective mass Hamiltonian. The electric field potential was ob-
tained using Technology Computer Aided Design software, and the interfaces
were modelled as a barrier using a step function. We aim to provide rele-
vant, information for the experimental design of these devices and highlight the
significance of environmental factors other than gate potential that affect the
donor electron.
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1 Introduction

Advances in quantum error correction codes and quantum algorithms which outper-
form their best known classical counterparts, have prompted a search for a scalable
quantum computer. Recently, several designs for silicon-based solid state quantum
computers have been proposed.[2, 3, 4, 5, 6, 7] The theoretical study presented here
is relevant to these silicon-based quantum computer architectures, as it provides in-
formation about both the electron wave function and nuclear spin of the 3P donors.

Donor nuclear and electronic spins are promising candidates for solid state spin
qubits because of their long coherence times. The solid-state nuclear spin quantum
computer proposed by Kane[l] uses a qubit array of nuclear spins of 3'P dopants
embedded within a silicon crystal matrix. This model is based on the use of 3P
nuclear spins as qubits as it has a nuclear spin of 1/2, implanted in isotopically pure
28Gi which has a nuclear spin of 0.

In this work we concentrate our efforts on the Kane model,[1] in which the P
nuclear spin acts as a qubit with the donor electron functioning to meditate control
of single qubit operations and interaction between individual qubits, and permit
read-out of nuclear spin states. Perturbing the electron density with externally
applied electric and magnetic fields is crucial in controlling logical operations at
individual qubits. Logical operations on the qubits are performed by varying the
electrostatic potential at surface electrodes above the qubits (A-gates), and between
qubits (J-gates).

The A-gate tunes the resonance frequency of individual spins, and single qubit
operations are performed using a globally applied RF magnetic field that rotates
targeted nuclear spins at resonance. The J-gate controls the electron-electron ex-
change interaction between adjacent qubits. In order to correctly specify fabrication
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parameters it is necessary to predict the strength of the hyperfine interaction be-
tween the nuclear spin and the electron spin, and also the exchange interaction
between two donor electrons as a function of donor separation, donor depth and
surface gate configuration and voltage.

Application of a potential to an A-gate perturbs the electron density of the donor
electron, thereby varying the hyperfine interaction between the nuclear qubit and
its donor electron. Similarly applying a potential at the J-gate perturbs the two
adjacent donor electron wave functions, inducing an electron-mediated nuclear spin
exchange coupling to occur which allows adjacent qubits to interact. Both these
interactions require us to know the P donor electron wave function in the Si lattice
in the presence of the externally applied electric field, and the interface regions.

Considerable developments in the theory have been made since Kohn and Lut-
tinger’s [11, 12] original work, where they calculated the P donor ground state in
bulk Si variationally, using a single trial wave function. Several authors [13, 14, 15]
have kept the Si Bloch states expansions in their calculations which reveals the
underlying oscillating behaviour of the donor electron in the Si lattice. Koiller et
al.[14, 15] studied the exchange coupling between a donor pair also in bulk Si, and
in the absence of an electric field. In their calculations they used an effective mass
theory in which the expansion of the ground state donor electron wave function
includes the Bloch states of the six conduction band minima. They approximated
the coefficients of the Bloch functions and used an anisotropic Kohn-Luttinger vari-
ational form for the envelope wave function. Wellard et al.[13] have extended these
calculations to remove some of their approximations. They obtained the donor elec-
tron wave function and exchange coupling with an applied J-gate bias, in order to
study the fast exchange oscillations with respect to fabrication strategies. Several
authors[14, 16, 17] have investigated the effects induced by strain and interface re-
gions on donor states. These external influences partially lift the valley degeneracy
in the bulk silicon.

Other authors (including this work) have concentrated their efforts into mod-
elling the donor electron “envelope” wave function, to gain more insight into the
overall behaviour of the donor electron influenced by an electric field and the bound-
ary effects of the Si/SiOq barrier.

The effect of an electric field potential at a gate above a P donor in a silicon
substrate on the hyperfine coupling between the P donor electron and nucleus, has
already been reported by several authors. Kane [18] and Larinov et al. [19] calculate
the effect of an electric field potential in the bulk silicon host using perturbative
theory, excluding the additional interface potentials. Wellard et al.[20] consider
both the influence of the electric field and interface barriers on the contact hyperfine
coupling, using an isotropic effective mass Hamiltonian.

Smit et al.[21] modelled the effect of a gate nearby the donor electron using
an isotropic effective mass approach, and expand the wave function as a linear
combination of Gaussians. Similarly to our work, they found that depending on
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the separation of the dopant and the gate, the electron transfer is either gradual or
abrupt.

The donor electron exchange coupling as a function of gate voltage has also been
investigated using a variety of methods. Fang et al.[22] calculated the donor electron
wave function using an isotropic effective mass approximation. They modeled the
J-gate potential qualitatively as a 1-D parabolic well with its minimum located in
the middle of the two donor sites, but did not consider the boundary effects of the
silicon host geometry in their calculation. In their work they used an unrestricted
Hartree-Fock method with a generalised valence bond wave function to study the
two-electron system and calculate the exchange coupling. Parisoli et al.[23] have
calculated the effect of the J-gate potential, interface regions and donor separation
using an isotropic effective mass Hamiltonian. We extended this work to include
the anisotropy of the effective masses in Si into the Hamiltonian.

In this work we provide a numerical study of hydrogenic effective mass theory
for a P impurity atom in Si in the presence of an electric field and interfaces. We
examine the effects of varying several experimental parameters in the Kane quan-
tum computer architecture: gate voltage, donor depth below the silicon oxide layer,
inter donor separation and back gate depth. We aim to provide relevant information
for the experimental design of these devices. Our approach allows us to calculate
the smooth donor-modulated envelope function relatively quickly, to achieve quan-
titatively reasonable results. This allows us to explore a greater range of device
parameters than methods which include the underlying Bloch structure, as the cal-
culations are not as computationally expensive.

We first calculated the single donor electron wave function variationally in zero
field, using an effective anisotropic mass Hamiltonian. The contribution of the
Si lattice is accounted for by considering it as a uniform dielectric medium and
using the anisotropic effective masses around a single conduction band minimum.
The P nucleus impurity potential was modelled as a screened Coulombic potential.
We expanded the donor electron wave function in a basis of deformed hydrogenic
functions, following Faulkner’s approach.[8] The Hamiltonian was then diagonalised
with the ground state energy minimised by varying the Bohr radii in the basis
functions.

This approach was then extended to include the effects of an electrostatic po-
tential at either the A or J-gate and the interface regions, and this new Hamil-
tonian was diagonalised. Once the donor electron wave function was obtained we
then calculated the contact hyperfine interaction and the electron-electron exchange
interaction, at the varying device parameters.[9, 10] The exchange coupling was cal-
culated using Heitler-London theory, which models the donor pair wave function
as the symmetrised and anti-symmetrised product of the two single donor electron
wave functions at each P atom.

Because we use a single valley anisotropic effective mass approach to calculate
the donor wave function in the Si wafer device, the effective Bohr radii are fixed in
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our co-ordinate system. We optimise the donor electron energy with respect to the
effective Bohr radii, by choosing the smaller effective Bohr radius in the direction
perpendicular to the interface regions, and the larger ones in the direction parallel
to the interfaces. This means that our calculations for the exchange coupling are
higher than other reported values, [13, 14, 15, 23] because we chose the larger Bohr
radius also to be along the inter donor axis. We are extending these calculations
using a more refined approach that includes the effects of all six conduction band
minima, to see how the electric field influences the multi-valley donor electron wave
function.

In section 2 and 3 we will discuss some background effective mass theory, and the
approximations inherent in the method we use to model the P donor wave function.
Section 4 discusses the approach we took to obtain the phosphorus donor ground
state in bulk silicon in zero field. We outline the method we used to model a voltage
at the A or J-gate, and the interface regions in section 5. In section 6 we discuss how
we calculated both the exchange and hyperfine interaction. The numerical results
using the methods outlined in the previous sections are presented in section 7 and 8,
for an applied A and J-gate voltage respectively. Finally we summarise our major
findings in section 9.

We found that all the device parameters modelled in this work become crucial
factors in determining the strength of both the hyperfine and exchange interactions.
The proximity of the qubit to the gate and the silicon oxide layer is very important
in determining the degree to which the donor electron density can be perturbed
by the gate. We have found that as the donor is displaced further from the gate,
the electron transfer proceeds from gradual transference to the gate, to an abrupt
process whereby the electron is ionised to the gate for large enough positive voltages.

2  Background

In the silicon valence bond network the P atom replaces a Si atom and forms four
covalent bonds tetrahedrally in the lattice. As P has an extra proton and electron
than Si, it is a donor. We expect the P atom to act effectively like a hydrogen atom
with its one donor electron, but with its nuclear charge screened by the crystal core
electrons. So a rough calculation in this framework is to treat the silicon substrate
as a uniform dielectric, with dielectric constant, e, and ignore crystal effects. The
Hamiltonian for the P donor electron is equivalent to the Hamiltonian for the the
hydrogen atom with scaled units:
_p2 , e

H= Yy &
2m, er’

where € = 11.4 is the static dielectric constant, and m, ~ m | = 0.1905my where my
is mass of free electron. In these scaled units, the Bohr radius becomes a = 31.7A
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and ground state energy, £ = —19.88meV. Experimentally the ground state energy
is —4bmeV.

A more rigorous derivation of effective mass theory is needed to improve on
these results and adequately describe the donor electron wave function, to include
the effects of the crystal.

3 Effective Mass Theory

The Hamiltonian for the donor electron wave function is:
(HO + U(r)) U(r) = BU(r), (1)

where H° is Hamiltonian for the perfect crystal Si, and U(r) is the impurity poten-
tial.

Now we expand ¥(r) as a sum of the perfect crystal Si Bloch functions, 4, (r),
(here the superscript 0 will always refer to the silicon Bloch wave functions, %2, and
energies, EO,):

> Fuptbpy(x)

n,k

Here the index k is summation over all wave vectors, in the first Brillouin zone
and the index n enumerates the energy bands at the same k. Here ¢2k satisfy:

So now (1) becomes:

FopEpy, + Z For (orlU (M) |hog) = FupE. (2)
n'k’

The Bloch functions 1,[121,c have a certain form given by Bloch’s theorem, which states
that solutions of Schrédinger’s equation for a periodic potential have the form:[24]

Por(r) = € Tun(r),

where u,;(r) has the same period as the translational period of the crystal R, ie.
Unk(r) = unk(r + R). To satisfy this periodicity condition we can let

iG.
U (T Z Ank(G)e™T,

where G is any reciprocal lattice vector which satisfies ¢/ R = 1.

We can now express the integral in (2) as:

(kU ()} = okk’ G) [ drv(r)e @,
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= Z CER(G)U (k — K — G),

where U(q) = /drU
and C**(G) = > AL(G = G) A (G,

and (2) becomes:

nkEk+ZFW CF(G)YU(k —K —G) = Fu,E. (3)

nn’
Ik/

Equation (3) is still exact and we need to solve (3) to find the eigenvector coefficients
F, and eigenvalues F.

To solve (3) we make several approximations. The first approximation is to
assume the extra electron on phosphorous will fill (or lie close to) the next available
energy level in the silicon lattice band structure. The next available energy level
in silicon is its conduction band minima. Silicon is a semiconductor so its valence
bands are completely filled and there is an indirect energy gap of approximately
1eV to the conduction band minima. The band structure of silicon has 6 equivalent
conduction band minima along the 6 crystallographic axes, at wave vectors k; =
(£0.85,0,0), (0,£0.85,0), (0,0,£0.85) in units of 27/a’, where a° is the Si lattice
primitive cell length. Experimentally the ground state energy of P is found to
be —45meV below the conduction band minima, so P is a shallow donor and this
approximation is quite good. This assumption means the index n summing over all
bands can be dropped, and (3) becomes:

FyER+  Fy Z Cew(G)U(k — K —G) = F,E. (4)
k/

In Kohn-Luttinger effective mass theory we drop the G # 0 terms and use Cyy (0) =
1 and get:

FyB+Y FuUk-X) = FE. (5)
kl
This approximation is only valid if:
Y G0 Cre (G)U (k- K — G)
Uk — k)

<< L.

If U(r) has no strong high Fourier components then this requirement is well-
satisfied. As we assume the impurity potential takes the form of a screened Coulom-
bic potential, it fulfills this requirement as it is a smooth potential, slowly varying
with . In the region of the core this assumption breaks down as the donor electron
is no longer screened by the crystal core electrons, and U(r) does not account for
the repulsion between the donor electron and the crystal core electrons.
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To solve (5) we anticipate solutions for which Fj, is localized about the 6 equiv-
alent conduction band minima:

6
Fp = > oiFy(k).
i=1

We expand the energy , EY, about the conduction band minima, k; = (0,0, 0.85)2—?,

(along the z-axis for example) as:

m - PP (AR (k- k)
ki 2 m, m,| ’
where m | = 0.1905mg and my = 0.9163m( are the transverse and longitudinal

effective masses respectively, and mg is the mass of a free electron.
Using these approximations we re-evaluate equation (5), and multiply (5) by

e™®T and sum over k. This gives:
6 .
> ;e T[T (—iV) + U(r) — E|Fy(r) = 0, (6)
i=1
where Fj(r) = ZFi(k)ei(k_ki)"',
k
h2 32 32 h2 32
Ti(—2 = | 4+ = v ‘
and T (—iV) . <8§ + 85 + o, ek etc

We solved (6) using two methods. In the first approach we followed the method
of Pantelides and Sah,[25, 26] and solved (6) variationally. Here we kept all 6 valley
terms in the equation, but used the spherical approximation for the energies, E,gi:

7:L2
0
B~

o (k2 + k7 + (k. — k;)?), in the spherical band approximation,
where m, = 0.29m¢ is the spherically averaged effective mass. We expanded the
donor “envelope” function, Fj(r), as a sum of the isotropic 1s and 2s hydrogenic
orbitals. We varied the Bohr radius a in these two functions to minimise the ground
state energy. Variationally solving (6) gave a = 9.28A and E(a) = —48.7meV using
both trial functions, and a = 11.27A and E(a) = —46.9meV using just the 1s trial
function.

When we want to introduce the electric field and Si host geometry potentials
into the Hamiltonian this method is limited, because the basis we are using is too
small to describe large perturbations in the donor electron wave function. For this
reason we concentrated our efforts on the next method: single valley effective mass
theory.

In this approach we consider only a single conduction band minima to reduce
the complexity of the calculations, but the expansion for E,(c) does include the full
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anisotropy of the effective masses. We follow Faulkner’s[8] method to obtain the
zero field donor electron ground state using a basis of deformed hydrogenic orbitals.
This method is advantageous because we expand the donor wave function in a large
basis which has the flexibility to deform with the applied field and Si host geometry.

In this work we model electrostatic gate operations in the Kane quantum com-
puter. We use a Hamiltonian for the donor electron which includes the anisotropy of
the effective masses in the silicon host, the electric field potential and the interface
regions in the Si wafer device. We calculate the contact hyperfine interaction and
exchange coupling as a function of the varying experimental parameters: qubit sep-
aration, qubit depth, gate voltage and back gate depth. We aim to provide relevant
information for experimental engineering of these devices and highlight the signifi-
cance of environmental factors other than the gate potential which may perturb the
donor electron wave function.

4  Faulkner’s Method

We neglect the inter valley coupling terms in equation (6), which results in the zero
field single valley effective mass equation for P in Si:

o[ 9* 0 R 0* €
N =+ ——+— |V = EV(r). 7
<2ml <6w2 + oy? + 2m| 022 + €r (x) (x) (™
Here U(r) is the donor electron envelope wave function. This equation is very
successful in reproducing the donor excited states, where the inter valley mixing

is negligible. Here we are expanding the energy, E,g around the conduction band
minima along the z-axis at k = (0,0, k;):

0 0 h2 2 2 h2 2 2
E) = E0+m(kx+ky)+%”(kz—ki).

If we use atomic units, where the unit of length ap = hZE/mLeZ = 31.667A and
unit of energy Ep = me*/2h%¢? = 19.9436meV, equation (7) becomes:

0* 0? 0?2
(L L L2 ew) = EU
<8x2 * oy? Tzt r> (x) (), (8)

where v =m  /m = 0.2079.

We expand ¥(r) using an orthonormal basis set consisting of deformed hydro-
genic orbitals, ¢nim(z,v,2,a, ), where a is the Bohr radius in the z,y directions,
and [ an adjustable parameter which gives Bohr radius b in z direction for the
deformed hydrogen orbitals.

q](x’y’z’a”ﬁ) = Z ¢Tllm(x’yﬂzﬂa”ﬁ)’

n,l,m
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Where fuim (2,9, 2,0, 6) = (5)1/4¢nlm(x,y, (g)wz,a).

Ynim (2, Y, z,a) are the normalized hydrogenic wave functions:

'I/Jnlm(a:ayazaa) = Rnl(avr)}/vlm(gaqb)a
n—[-1
where Ry(a,r) = A%rle™"/on Z bear®,
5=0

L2 (-2
and Anl:a3/2n2<((n+1)!)3> (an)

o (1) ((n+ )12 <2Y’

(mn—1l—s— 120+ s+1)s! \an

and for m > 0:

vi"(0,¢9) = (—l)mQZmPl'm|(cos 0)e™m?,
(_1)mYVlm* (07 QS)?
- lePl‘m‘(cos 9)e m?,

]
3

=

<
|

where:

(2413 = m)\ 2
@m_<@ru+mm>'

and P are associated Legendre functions of degree y and order v. (30, 8, 27]
Using the deformed hydrogenic basis, we write the Hamiltonian matrix elements
as:

<¢n’l’m’|H0|¢nlm>
/6 3, % /6 82 82 82 2 /6
= \/;/dﬂj ¢n’l’m’($7ya ;zaa){_w_a—yg_’yw—;]@bnlm(‘maya ;z,a).
(9)
Now we make a change of variable: z = \/(/vz and equation (9) becomes:

<¢n’l’m’ |H0 | ¢nlm>
0? 0? 02 2

— S (2,y,2,0)| — == — — — 9,2
_ /dac Vot (w,y,z,a)[ - P o Va2 +y? + (v/B)7?

L T ’ [t

2 2+ + (/P

[ uim (2. 2.0)

(10)
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Now using (—V? = 2/ar)nim = —(1/a*n?)tpim, the first term in equation (10)
becomes:

. —1 2
[ v (= bnin) = unsbivbmm s + G~ [ drRon(a,r) Ruala ) 7
—1 2
bt Sut St 5+ St Syt =TV (', 1,1, @),
where:
J(k)(n,n',l,l',a) = / dr Ry (a,7) Ry (a, ) x 7k
0

The third term in equation (10) was evaluated numerically after the following
simplifications were made:

—2/d 3 ’l’m’¢nlm
Va? +y?+ (v/B)2

YE Yim
—2g( )(n,n',l,l,a)/dQ m’ !

VI=(—/B)cos?0)

If we let the integral over the angular part be I(l,1',m,m') we have:

/ N Y Yim
J(l,l,m,m)_/dQ\/l_(l_v/ﬁ)coszo) (11)

2T . , T : |ml| |m|
= (=)™ Qurw Qim dpe'm=m )¢/ e OF, (cosO)F (cosb)
0 0 V1= (1—~/pB)cos?6)

We let u = cos ), then equation (11) becomes:

P B (w)
VT= (=P
Now Pl|m|(u) is an even function if [ 4+ 1" is even, and an odd function if [ + " is
l

odd, so I(l,1",m) is zero for [ + 1" odd. So for [ + I’ even, the integral for I(l,I’,m)
becomes:

, —1
00, m) = 4mﬂ—wﬁm@meﬁ du

1 p\m\( )P|m|( )
\/1— (1 —~/B)u?)’

The second term in equation (10) was given by Faulkner, [8] and the Hamiltonian
matrix, Hy, becomes:

I(l,l',m) = mm’Ql’lem

forl! =1, m' =m:
<¢n’lm|H0|¢nlm>
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= —2I(L,l,m)JYV (n,n,1,1,a) + (1 —(1- 5)% [1 N 20(1+1) — 6m2]>

(21 —1)(21 + 3)
X (—6 L 2J(l)(n,n',l,l,a)> ,

22 + a
forl'!=01-2,m' =m:
<¢n’(l—2)m|H0|¢nlm>

= —2I(l,1 — Q,m)J(l)(n,nl,l,l —92.4) + (1 - B) 1 ((12 _ m2)[(l — 1)2 _ mZ]

20— 1) (20 + 1)(20 — 3)

1 /1 1
X{T.ﬂ (ﬁ + W) T, n 1,1 —2,a) + (20 = 1)DD (n, 0/, 1,1 — 2, a)

2
—ZJW (0" 1,1 —2,a) + 121 — 1)JO(n, 01,1 — Q,Q)},
a
for ! =1+25,5#0,1, m' =m:
<¢n’(li2j)m|H0|¢nlm>
= —2I(l,1 £ 2§,m)JY (n,n', 1,1 £ 2j,a),
where:

oo 0
D(k)(n,n',l,l',a) = / dar/y(a,r)rkERnl(a,r)
0

The integrals for D*) and J*) were evaluated analytically and the integral for
I(I,I',m) was evaluated numerically. The matrix, Hj, was diagonalised and the
ground state energy converged using a basis of 91 deformed hydrogenic orbitals. We
minimised the ground state energy, F, by varying the Bohr radius ¢ and adjustable
parameter 8 to give a ground state energy of -31.23meV, and a = 23.81A, B =0.63
a.u. and b = \/(7/B)a = 13.684 (c.f. Kohn’s results of a = 254 and b = 14.24 [11],
[12] ). Table 1 gives a summary of our results in comparison with Faulkner’s results
and the experimental energies.

Experimentally the ground state splits up into a singlet with A; symmetry, a
triplet with 75 symmetry and a doublet with E symmetry. Table 1 shows that
Faulkner’s method is able to predict the higher donor excited states very well.

The ground state wave function is plotted in figure 1, to show the anisotropy
in the z direction, plotted also in figure 1 is the isotropic 1s hydrogen orbital for
comparison with the deformed hydrogenic orbitals used in basis.

5 Including the Electric Field and Interface Potentials

To accommodate the effect of the applied field and the boundaries on the donor
electron wave function it is necessary to use more than one simple bulk ground
state wave function to characterise the envelope function. The method we used is
favourable because we expand the envelope wave function in a basis of deformed

)1/2
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Table 1: Zero field energies and states for P donor electron.

r (nm)

E(meV) | State || Faulkner’s results | Experimental Results
-31.23 | 1S —31.27 A; —45.5
T, —33.9
E -32.6
—-11.12 | 2R —11.51 —11.46
—8.28 28 —8.83
—6.35 2Py —6.40 —6.40
—5.06 3P —5.48 —5.47
—4.46 3D, —4.75
—3.62 35 —3.75
| || ? in z direction |
X,y directions :
iscitropic basgig e 1
1r ]
6 b = P at origin 1
-10 10

Figure 1: Ground state electron density without electric field.

12
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hydrogenic orbitals which have the flexibility to distort with the applied fields.

Faulkner’s method was extended to include the effects of an electric field above
the qubit, and boundary conditions of the silicon host. The solution of Poisson’s
equation to extract the electric field potential for our device with the A and J-
gates at varying voltages was obtained by simulation using a Technology Computer
Aided Design (TCAD) modelling package.[28] We also added an additional potential
to model the SiO5 layer and back gate interfaces.

TCAD is used in the electronics industry as a tool for 2-D and 3-D modelling
and simulation of semiconductor devices. It employs a coupled Newton-like solver
at discrete nodes to obtain the self-consistent solution of the Poisson and electron-
hole continuity equations. Figure 2 shows the 2-D device scheme implemented in
TCAD to model the application of a voltage to either an A or J-gate above qubit,
Q1. The lateral edges of the silicon lattice were assumed to extend infinitely in
the y-direction, but the electrostatic potential was only obtained on a finite grid
210nm wide, with the potential set to zero outside this region. We checked that
this approximation is valid at the boundaries and found the TCAD potential had
fallen close to zero (10™* — 107%eV), at y = +105nm, for a voltage of 1.0V at the
A-gate. The potential in 2-D from TCAD is assumed to have a “thickness” in the
third dimension (z) of 1um, and the metallic gates were modelled as thin wires in
the z direction.

The application of a potential, and the silicon host geometry in the device shown
in figure 2 splits the degeneracy of the six conduction band minima, as the electric
field potential is not the same in any of the x,y or z directions. We can formulate
the problem using a co-ordinate system with the z-axis in the direction from @
to the interface. Using this convention we expand the donor wave function around
the conduction band minimum oriented along the z-axis. Because of the smaller
effective Bohr radius in the z direction towards the interface and back gate, the
ground state is lower in energy since there is less penetration of the wave function
into these barrier regions.

We fix the zero field effective Bohr radii in our basis functions, and add an
additional matrix, Hy, which contains the electric field and interface potential terms.
With the electric field the Hamiltonian is: H = Hy + Hq, where Hj is the zero field
Hamiltonian, and Hy = Vie.(y, 2) + Vi(2) is the electric field and interface potential
terms. Here Vgec(y, z) is the electric field potential generated from TCAD, and we
add an additional term, V;(z), to model the SiOg layer and the back gate. The
Si/SiO2 barrier was modelled as a step function with height 3.25eV, since most
insulators have a work function greater than 3eV.[29] The back gate serves as a
reference voltage point (ground) to the voltages applied to the top gates. Outside
the back gate the potential was set at 3.25eV also.

To calculate the perturbed donor electron wave function and energies we con-
structed the electric field Hamiltonian matrix, H;, with its elements given by:
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Figure 2: Schematic design parameters implemented in TCAD to model the Kane
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The integrals in equation (12) were calculated numerically for the varying gate
voltages and qubit position. Once H; was obtained the total Hamiltonian was then
diagonalised to find the donor electron ground state with the varying experimental
parameters.

6 Calculation of the hyperfine interaction coupling and
exchange splitting

For the Si:P quantum computer to be feasible, quantum operations have to be able to
be applied selectively to particular nuclear spins, and connectivity between nuclear
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spins via electron-mediated coupling must be established. To achieve both these
goals it is necessary to study the degree of selectivity and connectivity that can be
controlled by applying electric fields to metal gates above (A-gates) and adjacent
(J-gates) to spins. Furthermore, it is shown in this paper that the qubit location in
the device in relation to each other (inter donor separation) and to the gates (donor
depth below the silicon oxide barrier), also has a significant influence on the donor
electron wave function.

Once the perturbed donor electron ground state was obtained we calculated the
hyperfine and exchange coupling as a function of the varying experimental condi-
tions. We did this in order to compare and optimise the conditions necessary for
addressing the target qubits, Q1 and Q.

6.1 Calculation of the contact hyperfine interaction

The general formula for the contact hyperfine coupling A(V') with an applied voltage,
V', at the gate, is given below:

2
AWV) = FHBINHN [0 ¥ (V,0)%,

where ¥(V,0) is the donor electron ground state wave function evaluated at the
donor nucleus, jp is the Bohr magneton, gy is Lande’s factor for 3P, puy is the
nuclear magneton and pg is the permeability of free space.[19, 20]

Since we use effective mass theory, instead of calculating the donor wave function
with the full expansion of the Bloch functions, we calculate the envelope function,
which describes the smooth donor-related modulation of the electron wave-function.
So instead of calculating the contact hyperfine coupling, A(V'), directly we calculate
the relative shift in A(V') with the potential applied and assume this shift will be
similar to those of the true wave function.[20] Thus we need to calculate:

[T(V,0)
where A(0)/h = 28.76MHz is determined for 3'P in silicon from experimental
data,[19, 1] and ¥(V,r) are the donor envelope wave functions calculated by our
method.

6.2 Calculation of the exchange splitting for an impurity pair

In this section we employ a Heitler-London (H-L) treatment of the two electron
donor pair wave function, using the two single donor ground state wave functions
perturbed by the electric field as our basis. Since the donor ions are generally well
separated in the silicon wafer device we can justify using H-L theory to describe the
two electron system as the symmetrised and anti-symmetrised products of the single
donor orbitals at each qubit (¥®1(V,r) and ¥¥92(V,r)) calculated with the electric
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field applied. The singlet and triplet impurity donor pair wave functions are given
by:[31]

(V,r) = TLU(V,r)x ",
T T

where:

. 1
\I,orlnt V. \I]Ql V. \I;Q2 V. R) + 11;@1 V. 1|yQ2 1% R
%‘, ( ,I') 2(1 82)|: ( 7r1) ( y T2 ) ( ,I'z) ( 1 ) )

S = /\IIQI(V, r) U (V,r — R)dr?.

Here U@ (V,r) and ¥@(V,r — R) are the single wave functions calculated using
our basis of deformed hydrogenic orbitals, and diagonalising the Hamiltonian for
the varying voltages at the .J-gate and qubit position. We are using the the co-
ordinate system shown in figure 3 for our two-electron system.

We observe that ¥92(V, z,y,2) = ¥91(V,z, —y + R, z), as the donor wave func-
tions on adjacent nuclei have reflection symmetry about the y-axis when a voltage
is applied to the J-gate (see figure 2).

To calculate the exchange splitting between the ground singlet and triplet states
for an impurity pair of donors in silicon we use the H-L formula:[31]

J(R) = Er— Eg

= (Urp|Hoe|Vr) — (Vg|Hae| V)
2

_ 2
- = (5 KO—KI), (14)
where:
2 2 2 2
H. = V2. -V2 . - = -
2e ams(rl) ams(r2) |I'1| |I'2| |I‘1 — R| |I'2 _ R|
2
+ T *+ Vetee(r1) + Veree(r2) + Vi(r1) + Vi(ra),
r1 — 2

Ky — /|\1/Q1(V,r1)|2|\1/¢?2(v,r2—R)|2@dr{*drg,

el rs —r; €2
ri rs — R

rs I‘I—R

Q1 Y R Q2

Figure 3: Co-ordinate geometry of our two-electron problem.
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K, = /\1/*@1 (V,ra)T*?2(V,ry — R)U(V,ry)T9(V,ry — R)Odridrs,

2 2 2
lr2 —r1| |r1—R| [r2|

® =

Once the perturbed ground state under the applied field was obtained we cal-
culated the contact hyperfine interaction and the exchange splitting (using equa-
tions (13) and (14) respectively), for the impurity donor pair, to optimise and de-
termine the experimental conditions needed to control the nuclear spins coupling to
the donor electron spin, via the hyperfine interaction, and to other nuclei via the
electron-mediated exchange interaction.

So far we have only considered the effect of the A or J-gate independently. The
smaller inter donor distances (R < 14nm) are only possible if the gate dimensions
can be reduced to prevent overlapping gates. In this initial study, we aim to give
insight into, and identify the relevant factors that contribute to the hyperfine and
exchange coupling, which need to be studied more in depth.

7 Results with the A-gate voltage applied

7.1 Results obtained varying A-gate voltage and donor depth

In this section, we varied the voltage at the A-gate directly above the qubit and
the qubit depth below the SiOs layer. The proximity of the qubit to the gate plays
a vital role in determining the extent to which the gate voltage affects the donor
electron. We find that depending on the distance of the donor to the gate, and the
magnitude of the gate potential, the electron transfer to the gate is either gradual or
abrupt. The calculations in this section were all performed using a back gate depth
at 60nm.

For shallow donor depths the electron is only slightly perturbed by the positive
gate voltage, as the P nucleus and the gate are so strongly “coupled”[21] that the
effect of the gate voltage is only to further bind the donor electron to both the
nucleus and the gate. In contrast, at larger donor depths the electron is perturbed
or ionised almost completely away from the nucleus to the gate, for large enough
positive voltages. The location of the silicon oxide interface also restricts the donor
electron wave function at shallow donor depths from perturbing towards the positive
gate potential.

This phenomena is reflected in figures 4(a) and (b), where we observe the differ-
ence in the donor electron ground state obtained for a donor depth of 20 and 40nm
with a positive voltage of 1.0V at the A-gate. In both these plots the donor wave
function moves toward the applied A-gate voltage in the negative z direction. For
a close donor depth of 20nm we observe that even though the donor wave function
moves slightly toward the A-gate, it is significantly restricted in moving in this di-
rection because of the silicon oxide interface in this direction also. In contrast the
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Figure 4: Ground state electron density in z-direction, for a donor depth of 20nm
in (a) and 40nm in (b), with a voltage of 1.0V at the A-gate. Note the different
vertical scales of |¥|? in (a) and (b).

donor wave function for a depth of 40nm deforms unhindered toward the A-gate,
and most of the electron density has been transformed away from the nucleus.

Figure 5 shows the donor electron density obtained in the yz-plane for a negative
voltage of -1.0V at the A-gate and a donor depth of 20nm. A negative applied voltage
causes the electron to disperse in all directions away from the positive potential, this
plot demonstrates that because of the close back gate in the positive z-direction,
the electron density predominantly perturbs away from the applied voltage in either
direction laterally.

Figure 6 shows the magnitude of the contact hyperfine interaction calculated
for the varying donor depths and A-gate voltage. As the donor electron density
decreases at the nucleus, so does the contact hyperfine interaction. For the lower
voltages (< 0.8V) in figure 6, the results are consistent with the expectation that
the closer the donor depths are to the applied voltage, the greater the donor electron
wave function is perturbed by the applied voltage. But at voltages above a certain
threshold and donor depths further away from the silicon oxide barrier, there is a
huge difference in the donor wave function from the zero field ground state, as it is
perturbed almost completely away from the nucleus.

When the electron is perturbed or ionised completely away from the nucleus,
the contact hyperfine interaction decreases almost to zero. Because of the interface
regions it is either energetically favourable for the donor electron wave function at
shallow donor depths to distort completely away from the nucleus, when the gate
voltage is negative, or for the donor wave function to be restricted in distorting
towards the A-gate, with a positive voltage.

This contrast in the donor electron wave function at different donor depths oc-
curs because as the qubit moves further from the gate, the electron has to overcome
a “barrier” to distort towards the gate. At large enough positive voltages the po-
tential well at the A-gate is deep enough to trap the electron at the A-gate. The
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basis we are using for the donor electron consists only of bound states, which is a
good approximation for the smaller voltages when the electron is still bound to the
nucleus. To model the ionisation process at larger gate voltages more accurately, a
more rigorous approach would be to include the delocalised conduction band states
in the basis as well.

In Table 2 we present a comparison of the difference in the ground state energy
for the donor wave function without the electric field (Fjp), and with a positive
voltage of 1.0V applied to the A-gate (Eyv), for two different donor depths. Also
reported in this table is the TCAD potential at the P nucleus for the varying donor
depths. For the close donor depth at 20nm we observe that the energy difference
is approximately equal in magnitude to the TCAD potential at the nucleus. This
is because the donor wave function has perturbed only slightly from the zero field
ground state wave function. In contrast the energy difference for the donor depth
at 40nm is much higher as the wave function deforms significantly from the ground
state wave function towards the applied voltage.

Table 2: Fyy — Ey for a back gate depth of 60nm.

@1 Depth (nm) | TCAD Potential at @1 (meV) | Eyy — Ey (meV)
20 -90.02 -91.70
40 -37.06 -47.73

7.2 Results obtained varying back gate depth and donor depth

To observe the effect that the back gate depth has on the donor electron wave
function we repeated the calculations for a voltage of 1.0V at the A-gate, with a
back gate depth at 100nm. Figure 7 shows the comparison between contact hyperfine
interaction calculated for a voltage at the A-gate with a close and far back gate.
These calculations were performed with a close back gate at 60nm and a far back
gate at 100nm, with a bias of 1.0V at the A-gate and donor depths ranging from 30
to 7hnm.

With a closer back gate the electric field strength is higher within the Si wafer.
Because of this the donor electron wave function is perturbed greater by the applied
voltage with a closer back gate. Thus the contact hyperfine interaction is close to
zero for a back gate at 60nm and the donor depths studied in this section (30 <
d < 45nm). With the back gate at 100nm, the electric field strength is lower, and
there is no substantial overlap of the donor electron wave function with the back
gate barrier for donor depths of 30 and 40nm, so it is not as energetically favourable
for the donor electron to perturb away from the back gate toward the A-gate.
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Figure 7: Contact hyperfine interaction at varying donor depths with back gate
depth at 60 and 100nm, and 1.0V at A-gate.

Table 3: E1y — Ey for a back gate depth of 100nm.

@1 Depth (nm) | TCAD Potential at @1 (meV) | Eyy — Ey (meV)
40 -67.25 -68.33
75 -26.00 -36.57

Figure 8 shows the ground state electron density plotted in the yz-plane for a
donor depth of 75nm, and a back gate depth of 100nm, and a positive voltage of
1.0V at the A-gate. This plot demonstrates that even at a donor depth far from the
A-gate, the ground state wave function distorts freely toward the A-gate because
of the close proximity of the back gate, and the remoteness of the silicon oxide
interface.

In Table 3 we present a comparison of the difference in the ground state energy
for the donor wave function perturbed by a voltage of 1.0V applied to the A-gate
and a back gate at 100nm, for two different donor depths, d = 40 and 75nm. Also
reported in this table is the TCAD potential at the P nucleus for the varying donor
depths. This table reflects the trend noted in Table 2 that a significantly lower
ground state energy is obtained for the deeper donor depths, where the electron
density perturbs significantly away from the nucleus toward the applied voltage.

7.3 Conclusions with the A-gate voltage applied

We compared our results which included the effects of both the interface regions
and electric field potentials, to Kane’s[18] results wherein only the potential of a
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Figure 8: Ground state electron density in yz-plane for donor depth at 75nm with
back gate depth of 100nm, and 1.0V at A-gate. We have also included the location
of the qubit at the origin and the A-gate in the contour plot.

uniform electric field in the bulk was considered. We found that the SiOs layer
and the back gate exert a substantial influence on the donor electron wave function.
Instead of the contact hyperfine coupling, A(V'), being independent of whether a
positive or negative voltage is being applied at the A-gate as reported by Kane,
we found that the effect of whether a positive or negative voltage is applied at the
A-gate causes very different changes in the donor electron density. For a positive
voltage the electron is bound to both the nucleus and the A-gate. In contrast, when
a high enough negative voltage is applied so that the electron is no longer bound to
the P nucleus, the electric field profile causes the electron to disperse in all directions
away from the positive potential.

The donor wave function exhibits a fundamental change at crucial experimental
parameters, where the electron wave function transforms from being only slightly
perturbed from the zero field ground state, to being almost completely perturbed
away from the nucleus. These results highlight the significance of the influence of
the silicon host geometry on the donor electron wave function.

8 Results with the J-gate voltage applied

We performed similar calculations as the previous section, but instead we consider
a voltage applied to the J-gate. This means we have an additional experimental
variable which can be tuned, the inter donor separation. The function of the J-
gate is to draw the electrons on adjacent qubits closer together, to enhance the
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Figure 9: Ground state electron density in yz-plane for donor depth at 30nm with
1.0V at the A-gate in (a) and J-gate with R = 20nm for (b). In both plots @ is
located at the origin, and we have included the y = 0 symmetry line in the contour
plot, to highlight the difference in the electron density for an applied A or J-gate
voltage.

exchange interaction between them. In addition to calculating the variance of the
hyperfine coupling with the applied voltage and qubit position, we also calculated
the exchange coupling as a function of the experimental parameters: gate voltage,
donor depth, and inter donor separation.

The symmetry along the y = 0 line is destroyed when a .J-gate voltage is ap-
plied. Figures 9(a) and (b) shows the comparison between the electron ground state
probability density in the yz-plane, obtained for a voltage of 1.0V applied to the A
and J-gate respectively, for a donor depth of 30nm and inter donor separation of
R =20nm. For an A-gate voltage, the donor wave function is symmetric in y and
only perturbs toward the A-gate in the z direction. In comparison, when a J-gate
voltage is applied, the wave function can distort in both the y and z directions.
Unfortunately as the donor depth becomes greater, selectivity may be lost, and a
voltage applied at either the A or J-gate will cause the same change in the contact
hyperfine interaction.

Similarly with a negative voltage applied at the J-gate, the donor electron ground
state is deformed away from the applied voltage in the negative y-direction only.
This difference is demonstrated again in figure 10.

8.1 Results obtained varying gate voltage and inter donor separa-
tion
8.1.1 Results for the contact hyperfine interaction

To demonstrate the effect of J-gate voltage and inter donor separation on the donor
electron ground state, we calculated the perturbed single electron donor ground
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Figure 10: Ground state electron density in y-direction for a donor depth at 20nm
with -1.0V at the A-gate and J-gate, with R = 20nm. ; is located at the origin.

states as a function of these external factors. The calculations in this section were
obtained at a donor depth of 20nm.

Figure 11 shows the magnitude of the contact hyperfine interaction calculated
for varying qubit separation and gate voltage. These results reflect the trend that as
the qubit moves away from the J-gate, the donor electron wave function has more
freedom to move towards the J-gate and distort greater.

Figure 12 demonstrates this behaviour, it shows an example of the donor ground
state wave functions of (1 and Q)2 for an applied voltage of 1.0 V at the J-gate, for
two inter donor separations, R = 14 and 20nm. We can observe from the relative
magnitudes of the ground state electron densities of the two qubits that the ground
state wave functions for the larger inter donor separation, R = 20nm, have perturbed
more towards the J-gate voltage.

For certain negative gate voltages the contact hyperfine interaction A(V) =~ 0,
which indicates that the donor wave function has distorted completely away from
the nucleus. For R < 14nm, and V < —0.5V, the qubit is no longer bound to
the nucleus, and disperses completely away from the applied voltage. Similarly for
16 < R < 20nm, and V < —0.6V, the qubit is no longer bound to the nucleus.

This is illustrated in figure 13 where we see an abrupt change in the donor wave
functions going from R = 14 to 16nm for a voltage of -0.5 V at the J-gate. Here
the electron density for R = 14nm is 100 times smaller than that for R = 16nm.
For R=14nm the electron is no longer bound to the nucleus and has dispersed from
the negative applied voltage in all directions. In contrast the wave function for
R = 16nm is still bound to the nucleus and only perturbed slightly by the applied
negative voltage.

The effect of the gate voltage on the donor electron depends on the distance of
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Figure 11: Contact hyperfine interaction at varying gate voltage and inter donor
separation, for a donor depth of 20nm.
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Figure 12: Ground state electron densities of Q1 and @9, in y-direction at z = 0,z =
0 for an inter donor separation of R = 10 and 20nm, a donor depth of d = 20nm
and a voltage of 1.0 V at the J-gate.

the qubit from the gate.[9, 23, 21] At the experimental parameters considered in
this section (d = 20nm and R < 20nm), the qubits are situated at relatively short
distances from the J-gate. So for positive voltages the electron transfer to the gate
with increasing J-gate voltage is gradual.[21] However for negative .J-gate voltages,
there is an abrupt change in the electron density at the nucleus for critical negative
voltages where the electron is no longer bound to the nucleus.

8.1.2 Results for the exchange splitting

We evaluated the zero field exchange interaction in bulk Si for varying inter donor
separation, in order to compare our results with published work. We found that
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our results using the larger effective Bohr radius, along the inter donor axis, and
the smaller effective Bohr radius, toward the SiOs layer, gave results which are
consistently higher than other reported theoretical values using H-L theory.[14, 15,
13, 23] This is because we chose the larger effective Bohr radius, ¢ = 2.381nm, to
be along the inter donor axis, and hence the exchange splitting is larger using this
convention. The larger effective Bohr radius was chosen to be along the inter donor
axis so that it would also be towards the positive J-gate potential, and the smaller
Bohr radius in the direction towards the interfaces.

In this paper we are trying to model the effects of the electric field potential
and Si host geometry on the donor wave function, to investigate the variation of
the exchange splitting with the applied voltage, rather than the absolute values of
J(R). Koiller et al.[14] calculated the exchange coupling in uniaxially strained Si in
the presence of interfaces, and also found that these environmental influences could
affect the exchange coupling significantly. They found that the Fly(z) envelopes were
favoured energetically, because the smaller effective Bohr radius in the z-direction
guarantees less significant penetration of the wave function into the barrier regions.

Figure 14 shows the exchange coupling as a function of inter donor separation
and positive J-gate voltage. The exchange coupling increases as the J-gate voltage
increases as expected, since the applied field draws the electrons closer together. At
a voltage of 1.0V the donor electron wave function is perturbed the greatest, and
the exchange coupling is significantly higher at this voltage for every inter donor
separation.

We expect the exchange coupling to decrease with increasing inter donor sep-
aration, and this is the case for voltages less than 1.0V. However in figure 14(b),
we observe that for for a voltage of 1.0V and for R = 20nm, the exchange coupling
actually increases slightly. This is because at large inter donor separations the donor
is further from the J-gate, and thus is more attracted to the potential well at the
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Figure 14: Calculated exchange coupling as a function of inter donor distance and
positive J-gate voltage, (a) is the results for V' < 0.7V and (b) for V = 1.0V, for a
donor depth of 20nm.
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Figure 15: Calculated exchange coupling as a function of inter donor distance and
negative J-gate voltage, for a donor depth of 20nm.

J-gate as the gate voltage increases sufficiently. Hence the overlap between the ad-
jacent donor electron orbitals is slightly greater, even if the inter donor separation
is higher.

Figure 15 shows that if we apply a large enough negative voltage to the J-gate,
we can effectively turn off the coupling between the two qubits. As predicted the
exchange coupling decreases as the negative applied potential also decreases. When
the applied negative voltage is large enough, the electron densities at Q1 and Q-
are greatly perturbed from J-gate in opposite directions, and we have effectively
turned off the coupling between the adjacent qubits, as the overlap between the two
electron densities is almost zero. This has been demonstrated already in figure 13(a)
that for a voltage of -0.5V at the J-gate and R =14nm, the donor wave functions
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Figure 16: Contact hyperfine interaction at varying donor depths and J-gate voltage,
with inter donor separation R = 20nm.

for @1 and @2 have perturbed away from the applied voltage in opposite directions.

8.2 Results obtained varying the gate voltage and donor depth

We observed the effect that the donor depth, d, below the silicon oxide layer has on
the donor ground state perturbed by a gate voltage. Here we ran calculations for
5 <d<45nm.

8.2.1 Results for the contact hyperfine interaction

Figure 16 show our results for the contact hyperfine interaction at varying donor
depth and gate voltage. We observe similar trends in the variation of the hyperfine
interaction with a J-gate bias, as in the previous section with an A-gate bias. As d
increases, (and hence the distance from the J-gate also increases), we see a cross-over
behaviour where the donor wave function is perturbed greater for larger donor depths
at positive voltages above a critical value. In figure 16(b) for d > 25nm, there is an
abrupt decrease in the electron density for V' > 0.9V, defining an ionisation voltage

at these donor depths. This process of ionisation has been reported previously.[9,
10, 21]

8.2.2 Results for the exchange splitting

Figure 17 shows the variation of the exchange coupling with donor depth and voltage
for two inter donor separations, R = 14 and 20nm. It is evident that the depth of the
donor influences the degree to which the electron is perturbed by the gate voltage,
and hence will also affect the strength of the exchange coupling.

For small d, the electron is less affected by the positive gate voltage, as the P
nucleus and the gate voltage are so physically close together that the two wells can
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Figure 17: Calculated exchange coupling as a function of donor depth and J-gate
voltage, with R=14nm in (a), and R=20nm in (b).

be considered as a single well, the position of which is pulled towards the gate with
increasing gate voltage. [21] So we see for d = 5nm that although the exchange
coupling has increased significantly from the zero field coupling, it is still not as
strong as the coupling for d = 10 and 20nm.

The exchange coupling for d = 10 and 20nm are similar, and the effect of the
magnitude of d is not so pronounced. We observe that at a donor depth of 10nm the
exchange coupling is enhanced the most by the applied voltage. One of the reasons
for this may be that for d = 10nm, the donor wave functions predominantly move
toward the applied voltage at the J-gate in the y-direction along the inter donor axis
and thus the exchange coupling is enhanced further. Whereas for a deeper donor
depth at d = 20nm, the wave functions can perturb in both the y and z-directions
toward the J-gate.

We did not obtain the exchange coupling for donor depths > 20nm because at
donor depths further away from the silicon oxide layer, the donor electron wave
function for (); and @2 can deform unhindered toward the J-gate for V' > 0.9V.
At these depths and large enough voltages, the electron wave function transforms
almost completely away from the donor nucleus. Because of this the electron wave
functions at @)1 and @2 no longer resemble a close approximation to two separate
wave functions at each nucleus, and H-L theory is no longer a valid approximation.
Future developments in our laboratory are concentrating on deriving a more rigorous
evaluation of the donor exchange coupling, which extends the H-L basis.

8.3 Conclusions with the J-gate voltage applied

The results presented highlight the significance of not only the gate potential in
addressing the qubit, but also the position of the donors in the device. In the absence
of an electric field, only the inter donor separation is instrumental in determining
the strength of the exchange coupling, and as R increases the exchange coupling
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decreases. However, when a large positive voltage is applied at the J-gate, either
a gradual transference of the donor electron density occurs for dopants close to the
gate, and the exchange coupling is enhanced proportionally. Or if the electron is
ionised by the gate voltage the exchange coupling can be enhanced considerably even
for quite large inter donor separations and donor depths. So both of these competing
influences must be considered in modelling the strength of the exchange coupling.
We also demonstrated the ability to effectively turn off the exchange coupling with
an applied negative voltage at the J-gate.

9 Conclusions and prospects for achieving silicon-based
quantum computation

We have studied the P donor wave function perturbed by an electric field and
the Si host geometry, and the two interactions fundamental to the Kane quantum
computer: the hyperfine and exchange interactions. We have studied the effect of
varying several experimental parameters: the gate voltage, inter donor separation,
and donor depth in order to fine tune the hyperfine and exchange interaction.

The proximity of the qubit to the gate determines the degree to which the elec-
tron can be altered by the applied voltage. It is evident that the P donor electron
wave function is sensitive to all experimental parameters studied in this paper. One
of the critical discoveries was that the donor electron wave function exhibits a funda-
mental change at crucial experimental parameters, where the electron wave function
transforms from being only slightly perturbed from the zero field ground state, to
being almost completely perturbed away from the nucleus. At these experimental
parameters the hyperfine interaction and exchange coupling can be changed dra-
matically from the zero field values.

We believe the results presented here using effective mass theory and calculating
the smooth donor-modulated envelope function, provide a solid foundation for future
device modelling. We highlight the significance of experimental variables other
than the gate potential which have considerable implications for fabrication of these
devices. We are currently focusing our efforts to extend these calculations to include
the expansion of the donor wave function at all six conduction band minima in the
Si crystal, into our approach.

However, including the Bloch wave structure, the inter valley terms and the
electric field and interface potentials is a challenging task. The results presented
here are quantitatively reasonable and provide a fast and reliable method which
gives insight into the behavior of the P donor electron wave function under several
different experimental conditions.
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