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A perturbation solution for forced convection in a porous saturated duct

K. Hooman
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Abstract

Fully developed forced convection through a ponmesiium bounded by two isoflux
parallel plates is investigated analytically on thasis of a Brinkman-Forchheimer
model. The matched asymptotic expansion methogpsiesl for small values of the

Darcy number. For the case of large Darcy numbersthlution for the Brinkman-

Forchheimer momentum equation is found in termamo&symptotic expansion. With
the velocity distribution determined, the energwatpn is solved using the same
asymptotic technique. The results for limiting casere found to be in good
agreement with those available in the literaturd #me numerical results obtained

here.

Keywords: Forced convection, porous media, pipe flow, BriakafForchheimer

model
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Nomenclature

C
Cr
Cp

Da

Nu

Pe

Q

Tw

u*

constant defined in Eq. 25

inertial coefficient

specific heat at constant pressure

Darcy number, K/H

Forchheimer number

negative of the applied pressure gradient
half channel distance

effective thermal conductivity

permeability

Her | 1

Nusselt number defined by Eq. (11)
symbol for order of magnitude

Péclet number defined by Eq. (3)

wall heat flux

porous media shape paramef{gt,Da)™*'?

temperature

bulk mean temperature
downstream wall temperature
mu* [GH?

filtration velocity

u /U

mean velocity
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X" longitudinal coordinate

X x*/PeH

y* transverse coordinate

y y*/H

Greek symbols

n stretched variable

o (TD_TW)/(Tm _Tw)

7 fluid viscosity

M effective viscosity in the Brinkman term
P fluid density

Subscripts

0,1 term sequence in asymptotic expansion

i node number

Superscripts

in, out inner and outer expansion

n iteration number
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1. INTRODUCTION

The problem of forced convection in a porous dac iclassical one (at least for the
case of slug flow (Darcy model)). However, the ipmvation of the boundary and
inertial effects on the fully developed momentum@nsfer equation in porous media
requires a major change in approach since the iglbled is no more prescribed.
This change results in an algebraic equation prolideing replaced by a second order
non-linear ordinary differential one, since the hdary effect can be included by
adding the viscous shear stress term (due to Bankrof. Nield [1]) and a nonlinear
term should be added to account for the from diffgcks, as noted by Nield and
Bejan [2]. For flow through parallel plate porousaonels Nield et al. [3] and Vafai
and Kim [4] have reported theoretical analysis loé foroblem considering both
boundary and inertial effects. Applying a boundamer approach, some authors have
reported analytical solution for the Brinkman-Fdrelmer momentum equation [4,5].
Nield et al. [3] have revisited the problem andeabthat the solution reported in [4] is
not accurate for the case that the non-linear terrdropped and the momentum
equation is a Brinkman one. Nield et al. [3] hadeled that for small values of the
Darcy number the closed form solution by Vafai afich [4] is not predicting the
answer to the physical problem. On the other haeld et al. [3] have found the
velocity gradient by direct integration and congduby numerical integration to
determine the velocity profile in the duct crosst&s. Absent in their study was a
closed form solution of the velocity profile, andnsequently the temperature
distribution, in terms of the Darcy number and Bwchheimer number at a given

transverse location.
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Finding analytical solution for the velocity didtution with negligible form drag
effects is an easy task in the light of [6]. Howewehen it comes to consider the
effects of form drag by adding a non-linear terme tproblem becomes more
complicated and one no more expects a uniformlydvakact solution without

involving numerical integration.

In order to by-pass the full analysis of this pesh| an asymptotic solution is
presented here that considers two limiting valdas® porous media shape parameter
(see EQ.7), namely very large ad very small valc@sipared to unity. Based on
previous investigations [3-5], one expects thattiier former case the velocity profile
be a slug-like one with a boundary layer near thé (where the velocity changes can
be felt in a thin near-wall region) while for thetter, one expects that the velocity be
increased monotonically from the wall to the dustter. For this reason, one designs
two different solutions for these two ranges of ff@ous media shape parameter
which have significant physical importance. Basigraptotic techniques used here to

simplify solving the governing equations are memtid and discussed in Nayfeh [7].

Previous work on the forced convection in ductsthi@ case of fluids clear of solid

material, has been surveyed by Shah and London [8].

2. ANALYSIS
2.1 Basic equations
For the steady-state fully developed situationdhexists a unidirectional flow in the
x*-direction inside a channel with impermeable waltsy* = +H, as illustrated in

Fig. 1. Forx* > 0, the heat flux at the tube wall is held camstat the valug".
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Impermeable and izsoflio
(symmetrical heating)

Porous medium

—-"._.._ __________________________ . 2H
Flow ditection

Fig. 1. Definition sketch

The Brinkman-Forchheimer momentum equation is

G=0, 1)

where u, is an effective viscosityy is the fluid viscosityK is the permeabilityp

is the fluid density, €is the inertial coefficient, an@ is the negative of the applied
pressure gradient.

The dimensionless variables are defined as

_ X¥ _yr _ Mu*
X= , y=—, u= 2
PeH' ’ H GH? @
Here the Péclet number Pe is defined by
Pe:'a:P—HU . (3)
k
The dimensionless form of Eq. (1) is then
d’u  u MFu?
M -——- +1=0. 4
dy> Da +Da @

The viscosity ratioM, the Darcy number Da, and the Forchheimer numbereF a

defined by
3
M:'ui, Da:iz,F :ﬂ_ (5)
M H Het H

Eqg. (4) can be rewritten as
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2
Cl—l:—szu—Fsuz+i:O, (6)
dy M

where the porous media shape parameter is defgied a

~ i 1/2
S_(MDaj . @

Eq. (6) is to be solved subject to no slip boundamgdition, i.e.u=0 at y=1, and
. du
the symmetry condition oa— =0Qaty =0.
y
The mean velocity and the bulk mean temperatigare defined by

1" 1" 8
U_WJ;U dy*, Tm—mj;quy*. (8)

Further dimensionless variables are introduced as

. u*

u=—, 9
U )

and

p=1""Tu (10)
T -T

The Nusselt numbeMu is

Nu :i. (11)
k(T = Trn)

Local thermal equilibrium and homogeneity is asstimehe steady state thermal
energy equation in the absence of heat source temi conduction and thermal

dispersion is then

or* I
u* =k . 12
pou* S T e () (12)

It follows from the First Law of Thermodynamics tha
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or__2a (13)
&*  po,HU

As noted in [9], though the local temperature Taifunction of both axial and radial
coordinates the dimensionless temperature prafikae fully developed regio8, is

a function of the radial coordinate (y*) only, wdithe bulk mean temperature is a
function of the axial coordinate (x*) only.

In non-dimensional form Eq. (12) becomes (when E(8¥41) are used)

2
2% +iNU=0, (14)
y

where the boundary conditions are as follows

dé

= 0 andé|,,=0. (15)

3. ASYMPTOTIC SOLUTIONS

For some practical application of porous media lbagF=0(1), see [5] and [10] for
example. The same range for the valug-as assumed in the present work. Two
limiting cases of very small and very larg@alues are considered, the former being
applicable to hyperporous cases and the lattergbelevant to a low permeability

porous medium. For more details on the topic omecoasult [11].

3.1 Large Darcy number case

Considering the case of large Darcy number, onéesviihe following asymptotic
expansion for the velocity distribution

u=u,+su, +..., (16)

with the assumption that
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s<<1 (17)

Regular asymptotic expansions are written to s&lge(6) subject to the no-slip and
symmetry boundary conditions, on the assumptiont $his a small parameter as
described in [7] and [12-14]. For the sake of bgewihe mathematical details of the

problem are neglected and the results for the insbdrders are presented as

_1-y? ,_Fs
2M  12C(M?

(15y? -5y* + y* -11)+ O(s%), (18)

The zeroth-order solution is the familiar one tbatresponds to the plane Poiseuille

flow or a fluid clear of solid materials. Using Hg), the mean velocity is found to be

U :i(l_ﬁ} (19)
3V~ 35M

This implies that

(= 2(1— y2)+ 28FCSM (33y? —35y* +7y°® -5) (20)

Referring back to Eq. (14), one proceeds to firdtédmperature distribution as
6=6,+s06, +... (21)
Using this expansion and solving the two first ersi@utions leads to

_ Nu

6=—
16

(y“ -6y’ + 5—% (Sy8 - 28y° +66y” —60y? +19)j . (22)
Finally the Nusselt number can be found by sultstigufor Gdandd (and using Egs.
(20) and (22)) in the compatibility condition

[ 0ody=1 (23)
The solution is readily completed, and one fings th

Nu =2 @+0.009854°5) (24)
17 M
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Recovering the known analytical solution in thergture, one can check the new
solution. For relatively large values of Da, iBa -~ » or s - 0, Eq. (18) gives

0 - 3(1-y?)/2, as expected for plane Poiseuille flow in a dueacof solid material.
Further, by Eq. (22)¢9=T—:(y4 -6y’ +5) and by (24), Nu=70/17 or approximately

4.117. This agrees with the well-known value offduthe clear-fluid problem [8].

3.2 Small Darcy number case
When the Darcy number is sufficiently smadlX>1) the highest order derivative is

multiplied by an small parameter, which i 8s

2
57 % ~u-Fu’s® +2—TVI =0, (25-a)
y S

One notes that the boundary layer is located remmgall, i.e. at y=1. According to
Bush [12], one can find the outer expansion inaregifar away from the wall by

regular expansion. In this problem the outer exjgenis found to be
u™ = —, (25-b)

and the inner solution can be found by applyingstinetched variable as
n=s1-y) (25-c)
which, after neglecting smaller terms to obtainn@ ¢erm solution [7], leads to the

following form for the momentum equation

2,.in
dd,‘;z —u" =0, (25-d)

The solution to the above equation is

u™ =Cexp@E(y-1), (25-e)
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where the constant C should be found by matchirand®l’s matching condition, as

described in [12], is applied to find the composixpansion as

U= 1-exp@E(y-1) (26-a)
Ms?

Integration by parts (as described by Nayfeh [T]Eq. (8) leads to the following

value for the mean velocity

_s-1 i
=2 (26-b)
It implies that
0=+ L-exp(-s-y) @)

where the terms smaller than O(sire neglected in the above equation. This velocit
distribution is now used to find the temperaturgrthution using Eq. (14) subject to
the aforementioned boundary conditions. It is fotirat

S SN A
9_(Z+E)(1 y?)Nu (28)

Using the compatibility condition, the Nusselt niamis found to be
2
Nu = 6(1—:) (29)

As a check on this solution, one examines the iligitase ofs - «, to see that the

velocity distribution tends to a slug flow one. Egply, u* - KG/u or U - 1, and

so by Eg. (28),8 - 31-y*)/2 and Nu - 6. Clearly the results are in good

agreement with those of the Darcy flow model, sereeikample [2]. To present the
results in the forgoing discussion the valuévbis fixed (M=1) to work in terms oé
instead of Da, however, in table 1 other valuell@fre applied to compare the results

with those of [3].
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4. NUMERICAL SOLUTION

A CDS finite difference scheme has been employedntegrate the governing
equations (Egs. (6), (14), and (23)) similar to tmegorted by Hooman and Ranjbar-
Kani [13]. However, the present numerical schemeoants for the form drag
(nonlinear) term inclusion. To solve this nonlinezguation using the same SY
subroutine (which solves a tri-diagonal systemafations), a linearization procedure
is required. For this reason the nonlinear terdigsretized as

(ui” )2 =u'u™ (30)

in which the superscripts show iteration number.udiform velocity profile is
assumed as the initial guess. Next the systemgelbahic equations, which emerges
as a result of discretization, is solved applyihg subroutine SY [13]. This newly
obtained solution is then compared with that ofghevious iteration (initial guess for
n=1) and this procedure is continued until the mmaxn relative error in the values of
the local velocity between two successive iteratibacome less than 10The other
steps to achieve the numerical results are the sesmihose of [13] and, for this
reason, are not repeated here. All runs were peddrwith 190 grid points while it
was observed that a finer mesh (380 grid point) wndlt alter the results to three

significant figures. Accuracy of the numerical iéswas verified as shown in table 1.
5. RESULTSAND DISCUSSION
5.1 Hydrodynamic aspects

The velocity field is presented in Fig. 2. Thisuig shows the effect of the parameter

s on the fully developed velocity profile, which ¢ams a relatively flat portion
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located around the centerline. This is similardsuits of Hooman and Merrikh [15]
for flow through a duct of rectangular cross setti/hers - «, the velocity profile
tends to that of the Darcy model, and when thisap&ter decreases to zero the
velocity tends to the plane Poiseuille flow, as aotpd. For general values of the
porosity, permeability, viscosity and the lengtlalsc the velocity profile is bounded
by these two limiting curves. One observes thattbeoretical predictions are in good
agreement with numerical counterparts. Moreovettebegreement is observed for

higher values o$.

Numerical
— — — = Asymptotic

o
3

o
o

o
~

s=100

o ©
Now

Dimensionless Velocity
o o
[ o
\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\

o
o

0.5 1

Fig. 2: Dimensionless velocity profiles for soméues ofs (F=M=1)

5.2 Heat transfer aspects
The variation of the Nusselt number as a functibthe parametes is shown in Fig.
3. As mentioned before, the value of Nu lies betwié® values for the cases of plane

Poiseuille flow and slug flow, i.e. between 4.1t &. Fig. 3-b shows the Nusselt
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number versug for small values o§. One observes that Nu increases Withnd this
is in line with the results of previous investigais [3-5]. One notes that, similar to
what Vafai and Kim [4] reported, for very large wat ofs, the problem is not very
sensitive to the value &. Finally the temperature distribution is showrFig. 4 for
some values o6. The results show that the centerline temperaituwceeases with

increase irs.

5.8
5.6
5.4
5.2

> 5
4.8

4.6 Asymptotic Expansion (Large Da)

— — — — Matched Asymptotic Expansion (Small Da)
4.4

4.2

[ L L1 \I L L Ll \I L L1 \I L ] \I
10'2 10" 10° 10 10°
S

Fig. 3-a.The Nusselt number versus small and laxgaues (F=M=1)
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One can check the accuracy of the results veraise tim the literature with Brinkman
flow model, for example [16-20], or the Darcy mod@l-24], but the most

appropriate results for comparison purposes argetbd [3-5] among which [3] has a
similar dimensionless parameters that makes thepadeon easier. Moreover, there
is no limitation on the results of [3] for a widange of permeability and porosity

form natural porous medium to hyperporous caseasaasd by the authors.

Table 1 A comparison between present results \Witke of Nield et al. [3]

Parameters M=s=F=] M=10,s=0.316,FF1 M=s=10, F=1 M=5E=100
Present (asymptotic 4.158 4.119 4.8 5.962
Present (numerical 4.181 4.1319 5.139 5.8935

Ref. [3] 4.159 4122 5.129 -
6. SUMMARY

Fully developed forced convection in a porous-satd parallel plate channel, with
the inclusion of boundary and inertial effects, avesolved asymptotically and
numerically. The most important observations arfolsws.

* The velocity profile depends strongly on the par@rss= ands, when s is
very small compared to unity. It is worth notingthwithin the range of our
approximations, these two parameters affect thecitgl profile in a similar
way. Assincreases, the central region containing a redgtiuniform velocity

distribution spreads further toward the walls ahd effects of form drag
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becomes less significant. At largethe velocity profile is confined to a very
thin layer adjacent to the walls andsas « the limiting slug flow is observed.
» The value of the Nusselt number increases withnarease in eithes or F.
For small values ot the Nusselt number tends to be higher for higher
values, however, for large values ®iho change is inspected Mu as the
value ofF varied.
» The shape of the temperature profile does not ehammificantly withs or F

but the centerline temperature enhancesiasreases, as shown in Fig. 4.
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