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A perturbation solution for forced convection in a porous saturated duct  
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Abstract 

Fully developed forced convection through a porous medium bounded by two isoflux 

parallel plates is investigated analytically on the basis of a Brinkman-Forchheimer 

model. The matched asymptotic expansion method is applied for small values of the 

Darcy number. For the case of large Darcy number the solution for the Brinkman-

Forchheimer momentum equation is found in terms of an asymptotic expansion. With 

the velocity distribution determined, the energy equation is solved using the same 

asymptotic technique. The results for limiting cases are found to be in good 

agreement with those available in the literature and the numerical results obtained 

here.  
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Nomenclature 

C    constant defined in Eq. 25 

CF   inertial coefficient  

cP    specific heat at constant pressure 

Da    Darcy number, K/H2  

F    Forchheimer number 

G    negative of the applied pressure gradient 

H    half channel distance 

k    effective thermal conductivity 

K    permeability 

M    µµ /eff  

Nu    Nusselt number defined by Eq. (11)  

O    symbol for order of magnitude 

Pe    Péclet number defined by Eq. (3)  

q"    wall heat flux 

s  porous media shape parameter, ( ) 21Da /M −  

∗T     temperature 

mT     bulk mean temperature  

Tw    downstream wall temperature 

u    2/* GHuµ   

u*    filtration velocity 

û     Uu /*  

U    mean velocity  
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∗x     longitudinal coordinate 

x    x*/PeH 

y*    transverse coordinate 

y    y*/H 

 

Greek symbols 

η     stretched variable 

θ     ( ) ( )wmw TTTT −−∗ /  

µ     fluid viscosity 

effµ     effective viscosity in the Brinkman term 

ρ     fluid density 

 

Subscripts 

0, 1    term sequence in asymptotic expansion 

i    node number 

 

Superscripts 

in, out inner and outer expansion  

n iteration number 
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1. INTRODUCTION 

 

The problem of forced convection in a porous duct is a classical one (at least for the 

case of slug flow (Darcy model)). However, the incorporation of the boundary and 

inertial effects on the fully developed momentum transfer equation in porous media 

requires a major change in approach since the velocity filed is no more prescribed. 

This change results in an algebraic equation problem being replaced by a second order 

non-linear ordinary differential one, since the boundary effect can be included by 

adding the viscous shear stress term (due to Brinkman, cf. Nield [1]) and a nonlinear 

term should be added to account for the from drag effects, as noted by Nield and 

Bejan [2]. For flow through parallel plate porous channels Nield et al. [3] and Vafai 

and Kim [4] have reported theoretical analysis of the problem considering both 

boundary and inertial effects. Applying a boundary layer approach, some authors have 

reported analytical solution for the Brinkman-Forchheimer momentum equation [4,5]. 

Nield et al. [3] have revisited the problem and noted that the solution reported in [4] is 

not accurate for the case that the non-linear term is dropped and the momentum 

equation is a Brinkman one. Nield et al. [3] have added that for small values of the 

Darcy number the closed form solution by Vafai and Kim [4] is not predicting the 

answer to the physical problem. On the other hand, Nield et al. [3] have found the 

velocity gradient by direct integration and continued by numerical integration to 

determine the velocity profile in the duct cross section. Absent in their study was a 

closed form solution of the velocity profile, and consequently the temperature 

distribution, in terms of the Darcy number and the Forchheimer number at a given 

transverse location.  
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Finding analytical solution for the velocity distribution with negligible form drag 

effects is an easy task in the light of [6]. However, when it comes to consider the 

effects of form drag by adding a non-linear term, the problem becomes more 

complicated and one no more expects a uniformly valid exact solution without 

involving numerical integration. 

In order to by-pass the full analysis of this problem, an asymptotic solution is 

presented here that considers two limiting values of the porous media shape parameter 

(see Eq.7), namely very large ad very small values compared to unity. Based on 

previous investigations [3-5], one expects that for the former case the velocity profile 

be a slug-like one with a boundary layer near the wall (where the velocity changes can 

be felt in a thin near-wall region) while for the latter, one expects that the velocity be 

increased monotonically from the wall to the duct center. For this reason, one designs 

two different solutions for these two ranges of the porous media shape parameter 

which have significant physical importance. Basic asymptotic techniques used here to 

simplify solving the governing equations are mentioned and discussed in Nayfeh [7].  

Previous work on the forced convection in ducts, in the case of fluids clear of solid 

material, has been surveyed by Shah and London [8]. 

 

2. ANALYSIS 

2.1 Basic equations 

For the steady-state fully developed situation there exists a unidirectional flow in the 

x*-direction inside a channel with impermeable walls at y* = ± H, as illustrated in 

Fig. 1. For x* > 0, the heat flux at the tube wall is held constant at the value q".  
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Porous medium

 

Fig. 1. Definition sketch 

 
The Brinkman-Forchheimer momentum equation is  
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where effµ is an effective viscosity, µ is the fluid viscosity, K  is the permeability,ρ  

is the fluid density, CF is the inertial coefficient, and G  is the negative of the applied 

pressure gradient. 

The dimensionless variables are defined as 
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Here the Péclet number Pe is defined by 

k

HUcPρ=Pe .         (3) 

The dimensionless form of Eq. (1) is then 

.01
Da

2

2

2

=+−−
Da

MFuu

dy

ud
M        (4) 

The viscosity ratio M, the Darcy number Da, and the Forchheimer number F are 

defined by 
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Eq. (4) can be rewritten as 
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where the porous media shape parameter is defined as  

2/1

Da

1







=
M

s .         (7) 

Eq. (6) is to be solved subject to no slip boundary condition, i.e. 0=u  at 1=y , and 

the symmetry condition or 0=
dy

du
at 0=y . 

The mean velocity U and the bulk mean temperature Tm are defined by 

0 0

1 1
* *,    * * *

H H

mU u dy T u T dy
H HU

= =∫ ∫ .       (8) 

Further dimensionless variables are introduced as 

,
*

ˆ
U

u
u =                    (9) 

and  

.
*
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w

TT

TT

−
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=θ                            (10) 

The Nusselt number Nu is  

)(

2
Nu

mw TTk

qH

−
′′

= .                         (11) 

Local thermal equilibrium and homogeneity is assumed. The steady state thermal 

energy equation in the absence of heat source terms, axial conduction and thermal 

dispersion is then 

)
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∂ρ

∂
∂= .                           (12) 

It follows from the First Law of Thermodynamics that  
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As noted in [9], though the local temperature T* is a function of both axial and radial 

coordinates the dimensionless temperature profile in the fully developed region,θ , is 

a function of the radial coordinate (y*) only, while the bulk mean temperature is a 

function of the axial coordinate (x*) only.  

In non-dimensional form Eq. (12) becomes (when Eqns. (8-11) are used) 

,0Nuˆ2
2

2

=+ u
dy

d θ
                          (14) 

where the boundary conditions are as follows 

00 ==ydy

dθ
 and .01==yθ                                  (15) 

 

3. ASYMPTOTIC SOLUTIONS 

 

For some practical application of porous media one has F=O(1), see [5] and [10] for 

example. The same range for the value of F is assumed in the present work. Two 

limiting cases of very small and very large s values are considered, the former being 

applicable to hyperporous cases and the latter being relevant to a low permeability 

porous medium. For more details on the topic one can consult [11]. 

 

3.1 Large Darcy number case 

Considering the case of large Darcy number, one writes the following asymptotic 

expansion for the velocity distribution 

...,10 ++= suuu                   (16) 

with the assumption that  
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s<<1                    (17) 

Regular asymptotic expansions are written to solve Eq. (6) subject to the no-slip and 

symmetry boundary conditions, on the assumption that s is a small parameter as 

described in [7] and [12-14]. For the sake of brevity, the mathematical details of the 

problem are neglected and the results for the two first orders are presented as 

( ) ),(11515
1202

1 2642
2

2

sOyyy
M

Fs

M

y
u +−+−+−=                        (18) 

The zeroth-order solution is the familiar one that corresponds to the plane Poiseuille 

flow or a fluid clear of solid materials. Using Eq. (8), the mean velocity is found to be 

.
35

6
1

3

1







 −=
M

Fs

M
U                   (19) 

This implies that  

( ) ( )573533
280

1
2

3
ˆ 6422 −+−+−= yyy

M

Fs
yu                       (20) 

Referring back to Eq. (14), one proceeds to find the temperature distribution as 

...10 ++= θθθ s                   (21) 

Using this expansion and solving the two first order solutions leads to 

( )






 +−+−−+−= 196066283
840

56
16

Nu 246824 yyyy
M

Fs
yyθ .                    (22) 

Finally the Nusselt number can be found by substituting for û andθ  (and using Eqs. 

(20) and (22)) in the compatibility condition 

.1dy û 
1

0
=∫ θ                                 (23) 

The solution is readily completed, and one finds that  

)009854.01(
17

70

M

Fs
Nu +=                   (24) 
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Recovering the known analytical solution in the literature, one can check the new 

solution. For relatively large values of Da, i.e. ∞→Da  or 0s → , Eq. (18) gives 

2ˆ 3(1 ) / 2u y→ − , as expected for plane Poiseuille flow in a duct clear of solid material. 

Further, by Eq. (22), ( )56
16

Nu 24 +−= yyθ  and by (24), Nu=70/17 or approximately 

4.117. This agrees with the well-known value of Nu for the clear-fluid problem [8].  

 

3.2 Small Darcy number case 

When the Darcy number is sufficiently small ( 1>>s ) the highest order derivative is 

multiplied by an small parameter, which is s-2, as 

,0
1

2
12

2

2
2 =+−− −−

Ms
sFuu

dy

ud
s  (25-a) 

One notes that the boundary layer is located near the wall, i.e. at y=1. According to 

Bush [12], one can find the outer expansion in regions far away from the wall by 

regular expansion. In this problem the outer expansion is found to be  

,
1

2Ms
u out =  (25-b) 

and the inner solution can be found by applying the stretched variable as 

( )ys −= 1η  (25-c) 

which, after neglecting smaller terms to obtain a one term solution [7], leads to the 

following form for the momentum equation 

,0
2

2

=− in
in

u
d

ud

η
   (25-d) 

The solution to the above equation is  

))1(exp( −= ysCu in , (25-e) 
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where the constant C should be found by matching. Prandtl’s matching condition, as 

described in [12], is applied to find the composite expansion as 

2

))1(exp(1

Ms

ys
u

−−=  (26-a) 

Integration by parts (as described by Nayfeh [7]) of Eq. (8) leads to the following 

value for the mean velocity 

.
1
3Ms

s
U

−=                    (26-b)                                                                                    

It implies that  

( ).))1(exp(1)
1

1(ˆ ys
s

u −−−+=  (27) 

where the terms smaller than O(s-1) are neglected in the above equation. This velocity 

distribution is now used to find the temperature distribution using Eq. (14) subject to 

the aforementioned boundary conditions. It is found that 

( )Nu1)
4

1

4

1
( 2y

s
−+=θ  (28) 

Using the compatibility condition, the Nusselt number is found to be 

)
2

1(6
s

Nu −=  (29) 

As a check on this solution, one examines the limiting case of ∞→s , to see that the 

velocity distribution tends to a slug flow one. Explicitly, 1ˆ/* →→ uKGu   or   µ , and 

so by Eq. (28), 2/)1(3 2y−→θ  and 6Nu → . Clearly the results are in good 

agreement with those of the Darcy flow model, see for example [2]. To present the 

results in the forgoing discussion the value of M is fixed (M=1) to work in terms of s 

instead of Da, however, in table 1 other values of M are applied to compare the results 

with those of [3]. 
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4. NUMERICAL SOLUTION 

 

A CDS finite difference scheme has been employed to integrate the governing 

equations (Eqs. (6), (14), and (23)) similar to what reported by Hooman and Ranjbar-

Kani [13]. However, the present numerical scheme accounts for the form drag 

(nonlinear) term inclusion. To solve this nonlinear equation using the same SY 

subroutine (which solves a tri-diagonal system of equations), a linearization procedure 

is required. For this reason the nonlinear term is discretized as 

( ) 12 −= n
i

n
i

n
i uuu                (30) 

in which the superscripts show iteration number. A uniform velocity profile is 

assumed as the initial guess. Next the system of algebraic equations, which emerges 

as a result of discretization, is solved applying the subroutine SY [13]. This newly 

obtained solution is then compared with that of the previous iteration (initial guess for 

n=1) and this procedure is continued until the maximum relative error in the values of 

the local velocity between two successive iterations become less than 10-5. The other 

steps to achieve the numerical results are the same as those of [13] and, for this 

reason, are not repeated here. All runs were performed with 190 grid points while it 

was observed that a finer mesh (380 grid point) will not alter the results to three 

significant figures. Accuracy of the numerical results was verified as shown in table 1. 

 

5. RESULTS AND DISCUSSION 

 

5.1 Hydrodynamic aspects 

The velocity field is presented in Fig. 2. This figure shows the effect of the parameter 

s on the fully developed velocity profile, which contains a relatively flat portion 
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located around the centerline. This is similar to results of Hooman and Merrikh [15] 

for flow through a duct of rectangular cross section. When ∞→s , the velocity profile 

tends to that of the Darcy model, and when this parameter decreases to zero the 

velocity tends to the plane Poiseuille flow, as expected. For general values of the 

porosity, permeability, viscosity and the length-scale, the velocity profile is bounded 

by these two limiting curves. One observes that our theoretical predictions are in good 

agreement with numerical counterparts. Moreover, better agreement is observed for 

higher values of s.   
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Fig. 2: Dimensionless velocity profiles for some values of s (F=M=1)  

 

5.2 Heat transfer aspects 

The variation of the Nusselt number as a function of the parameter s is shown in Fig.  

3. As mentioned before, the value of Nu lies between its values for the cases of plane 

Poiseuille flow and slug flow, i.e. between 4.117 and 6. Fig. 3-b shows the Nusselt 
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number versus F for small values of s. One observes that Nu increases with F and this 

is in line with the results of previous investigations [3-5]. One notes that, similar to 

what Vafai and Kim [4] reported, for very large values of s, the problem is not very 

sensitive to the value of F. Finally the temperature distribution is shown in Fig. 4 for 

some values of s. The results show that the centerline temperature increases with 

increase in s. 

s

N
u

10-2 10-1 100 101 1024

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Asymptotic Expansion (Large Da)
Matched Asymptotic Expansion (Small Da)

 

Fig. 3-a.The Nusselt number versus small and large s values (F=M=1) 
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Fig. 3-b. The Nusselt number versus F for some small values of s. 

Dimensionless Temperature

y

0 0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Asymptotic
Numerical

s=100

s=1

 

Fig. 4. Dimensionless temperature distribution for some values of  s (F=1). 
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One can check the accuracy of the results versus those in the literature with Brinkman 

flow model, for example [16-20], or the Darcy model [21-24], but the most 

appropriate results for comparison purposes are those of [3-5] among which [3] has a 

similar dimensionless parameters that makes the comparison easier. Moreover, there 

is no limitation on the results of [3] for a wide range of permeability and porosity 

form natural porous medium to hyperporous cases as stated by the authors. 

 

Table 1 A comparison between present results with those of Nield et al. [3] 

Parameters M=s=F=1 M=10,s=0.316,F=1 M=s=10, F=1 M=F=1, s=100 

Present (asymptotic) 4.158 4.119 4.8 5.962 

Present (numerical) 4.181 4.1319 5.139 5.8935 

Ref. [3] 4.159 4.122 5.129 - 

 

6. SUMMARY 

 

Fully developed forced convection in a porous-saturated parallel plate channel, with 

the inclusion of boundary and inertial effects, were solved asymptotically and 

numerically. The most important observations are as follows. 

• The velocity profile depends strongly on the parameters F and s, when s is 

very small compared to unity. It is worth noting that, within the range of our 

approximations, these two parameters affect the velocity profile in a similar 

way. As s increases, the central region containing a relatively uniform velocity 

distribution spreads further toward the walls and the effects of form drag 
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becomes less significant. At large s, the velocity profile is confined to a very 

thin layer adjacent to the walls and as s ∞→ the limiting slug flow is observed. 

• The value of the Nusselt number increases with an increase in either s or F. 

For small values of s the Nusselt number tends to be higher for higher F 

values, however, for large values of s no change is inspected in Nu as the 

value of F varied.  

• The shape of the temperature profile does not change significantly with s or F 

but the centerline temperature enhances as s increases, as shown in Fig. 4. 
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