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Quantum doubles of finite group algebras form a class of quasitriangular Hopf
algebras that algebraically solve the Yang–Baxter equation. Each representation of
the quantum double then gives a matrix solution of the Yang–Baxter equation. Such
solutions do not depend on a spectral parameter, and to date there has been little
investigation into extending these solutions such that they do depend on a spectral
parameter. Here we first explicitly construct the matrix elements of the generators
for all irreducible representations of quantum doubles of the dihedral groups Dn.
These results may be used to determine constant solutions of the Yang–Baxter
equation. We then discuss Baxterization ansätze to obtain solutions of the Yang–
Baxter equation with a spectral parameter and give several examples, including a
new 21-vertex model. We also describe this approach in terms of minimal-
dimensional representations of the quantum doubles of the alternating group A4 and
the symmetric group S4. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2359575�

I. INTRODUCTION

Solutions of the Yang–Baxter equation �see �1�� provide a systematic way to construct exactly
solvable models of two-dimensional statistical mechanics,1 integrable quantum systems,2–5 as well
as having applications in other areas such as knot theory.6 A great impetus to this field was given
by Drinfeld,7 who proposed the quantum double construction. This allows for any Hopf algebra A
to be embedded in a larger Hopf algebra D�A� in such a way that D�A� is quasitriangular. A
consequence of the quasitriangular property is that there exists a canonical element R�D�A�
� D�A�, called the universal R-matrix, which solves the Yang–Baxter equation algebraically. Thus,
for any representation of D�A� a matrix solution of the Yang–Baxter equation is obtained. �Below
we will abuse the notation and use R to denote both the universal R-matrix and its matrix repre-
sentatives.� The seminal examples of quasitriangular Hopf algebras were given by both Drinfeld7

and Jimbo,8,9 who independently introduced the notion of quantum algebras, which are deforma-
tions of universal enveloping algebras of Lie algebras.

For applications to the areas mentioned above one is generally interested in solutions of the
Yang–Baxter equation with a spectral parameter; i.e., for a vector space V one looks for R�u ,v�
� End�V � V� where u,v are complex variables such that
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b�Electronic mail: psi@maths.uq.edu.au
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R12�u,v�R13�u,w�R23�v,w� = R23�v,w�R13�u,w�R12�u,v� , �1�

holds on the threefold tensor product space V � V � V. The subscripts above refer to the way in
which the action of R�u ,v� is embedded into the space of endomorphisms on V � V � V.

In the context of quantum algebras, the spectral parameter arises naturally when one considers
the loop representations of affine algebras.8,9 In such instances the solutions always satisfy the
difference property R�u ,v�=R�u−v�. However, it is worth mentioning that there are solutions that
do not have the difference property, including the well-known cases of the solutions giving rise to
the Hubbard model,10 the Bariev model,11 and the chiral Potts model.12 Moreover, the spectral
parameter need not necessarily be a scalar, but can be a complex vector variable.13–17 Later we will
only concern ourselves with cases of scalar spectral parameters where the difference property does
hold.

For later use, we introduce the permutation operator P such that P�x � y�=y � x and set

Ř�u�= PR�u�. Then �1� can equivalently be expressed as

Ř12�u�Ř23�u + v�Ř12�v� = Ř23�v�Ř12�u + v�Ř23�u� , �2�

which we will refer to as the braiding Yang–Baxter equation. It is in this form that the Yang–
Baxter equation is relevant to knot theory.6 Indeed, setting

Ř = lim
u→−�

Ř�u�

gives us

Ř12Ř23Ř12 = Ř23Ř12Ř23, �3�

which can be recognized as a defining relation in the braid group.6 In terms of

R = lim
u→−�

R�u� ,

we have

R12R13R23 = R23R13R12, �4�

which we will refer to as the constant Yang–Baxter equation. Finally, we mention that if

Ř�u�Ř�− u� � I � I ,

then the R-matrix is said to satisfy the unitarity condition, while if

Ř�0� � I � I , �5�

then it is said to satisfy the regularity condition. When the regularity condition holds, there is a
standard procedure1–4 for constructing an integrable quantum system on a one-dimensional lattice
with periodic boundary conditions. The Hamiltonian is given by

H = �
j=1

L−1

hj,j+1 + hL,1, �6�

where the two-site Hamiltonians are given by

h = � d

du
Ř�u��

u=0
.

Models constructed in this manner, and other approaches, can be solved exactly using Bethe
ansatz methods.1–6
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One class of quasitriangular Hopf algebras is the set of quantum doubles of the group algebras
of finite groups.18,19 �Throughout we will refer to these as finite group doubles�. Applications of
finite group double representations to knot theory have been addressed in Ref. 20. These algebraic
structures also underlie systems of anyons in two spatial dimensions. In cases where the global
symmetry of the system is spontaneously broken to a discrete gauge group, the finite group double
is the appropriate structure to describe the fusion properties and statistics. The fusion properties
are essentially determined by the Clebsch-Gordan decomposition of tensor products into irreduc-
ible representations. The statistics associated with the interchange of two anyons is described by
braiding. The consistency condition for the two ways in which three anyons may be interchanged

by a sequence of three two-anyon exchanges is precisely �3�, where Řjk is the operation that
interchanges the jth and kth anyons. For a comprehensive review of the salient features we refer
to Refs. 21 and 22.

Such systems may exhibit topological order,23 where quantum numbers are conserved for
topological reasons, as opposed to the manifest symmetry. Due to the topological nature, excita-
tions are resistant to decoherence. This property forms the basis of topological quantum compu-
tation that was first put forth by Kitaev24 �see also, e.g., Refs. 25–28�. When the symmetry is

described by a finite group double, the braiding Řjk is a unitary operator that can be employed as
a quantum gate.

In view of the previous literature, it is surprising that there has been very little study on the
role of finite group doubles in obtaining solutions for the spectral parameter dependent Yang–
Baxter equation �1�. Integrable systems constructed from such solutions via �6� realize models for
interacting anyons with internal symmetries described by the finite group double. Even though the
models are one-dimensional, there is a precedent, the Hubbard model, which leads us to believe
that such models may have applications for understanding two-dimensional systems. One property
that is evident from the analysis of the Bethe ansatz solution of the one-dimensional Hubbard
model is spin-charge separation. The Hubbard model has an so�4��so�3� � so�3� symmetry,
where the two quantum numbers associated with the two copies of so�3� can be assigned to spin
and charge degrees of freedom. From this symmetry and the Bethe ansatz solution, it can be
concluded that in one-dimension there exist excitations that carry spin but not charge, and vice
versa, so spin-charge separation occurs.29 It has been proposed that spin-charge separation is the
mechanism responsible for high temperature superconductivity in two-dimensions.30 Likewise,
there may be insights gained into the properties of interacting anyons by studying one-dimensional
models that can be solved exactly.

Our aim is to investigate the extent to which solutions of the spectral parameter dependent
Yang–Baxter equation can be obtained using the Hopf algebra structure of finite group doubles.
This is not straightforward, as there appears to be no obvious manner in which to consider the
affine extension of a finite group double that affords loop representations. Using a different
approach, some preliminary results in this regard have been obtained by Yang et al.31 We believe
these represent the tip of an iceberg, and there is ample scope for further work. Our aim here is to
continue the advances in this direction.

Our starting point is to consider the quantum doubles of the dihedral groups Dn. Of all
non-Abelian finite groups, the series of dihedral groups has the simplest representation theory. We
will show that the representation theory for the quantum doubles is also readily tractable. Using
the general results on the representation theory of finite group doubles given in Refs. 18 and 19,
we begin by explicitly constructing all irreducible representations for the doubles D�Dn�1 From
these results it is straightforward to explicitly construct solutions R for the constant Yang–Baxter
equation �4� that do not depend on the spectral parameter.

Our next goal is to determine if these constant solutions of the Yang–Baxter equation can be
extended to spectral parameter dependent solutions. This is a procedure colloquially known as

1After completing this work, we learned that for odd n these representations have been constructed in the thesis by de Wild
Propitius.22 Results for even n have independently been obtained by Slingerland.32
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Baxterization, as coined by Jones,33 and there is sizable literature on this topic.34–41 We begin by
studying the case of the two-dimensional irreducible representations of D�Dn� and find that Bax-
terization can be performed successfully. Our approach is based on an ansatz taken from Ref. 35,
which is chosen by symmetry considerations. In all these cases we find that the resulting solution
of the Yang–Baxter equation is a particular case of the well-known trigonometric six-vertex model
in the symmetric gauge at a specific root of unity. We mention that this result is not obvious in the
sense that the Baxterization is not underpinned by a Hecke algebra representation.

We then turn our attention to the three-dimensional irreducible representations of D�Dn�. We
find that the only cases for which an irreducible three-dimensional representation exists are D�D3�
and D�D6�. All instances give unitarily equivalent constant solutions of the Yang–Baxter equation.
Our Baxterization ansatz leads to a 21-vertex solution of the spectral parameter dependent Yang–
Baxter equation, which as far as we can ascertain is new.

Rather than continuing on to investigate higher dimensional representations of the D�Dn�
series, we finish by considering minimal-dimensional representations of the double of the alter-
nating group A4 and the symmetric group S4. Neither of these cases admit irreducible two-
dimensional representations, but they both admit three-dimensional ones. Our ansatz for Baxter-
izing the constant solutions does lead us to spectral parameter dependent solutions. Remarkably
though, we find in these latter examples that the infinite spectral parameter limit of the Baxterized
solutions do not necessarily reproduce the original solutions of the constant Yang–Baxter equation.

II. THE DIHEDRAL GROUP Dn

Consider the dihedral group Dn. This has two generators � ,� satisfying

�n = e, �2 = e, �� = �n−1� .

The properties of Dn vary according to whether n is odd or even, with the odd case being slightly
simpler.

A. Dn where n is odd

When n is odd, there are �n+3� /2 conjugacy classes divided into three families, given by

�e	 ,

��k,�−k	, for 1 � k �
n − 1

2
,

��i�,0 � i � n − 1	 .

There are �n+3� /2 irreducible representations �irreps�, two of which are one-dimensional and the
remaining �n−1� /2 which are two-dimensional. They are given by

�±��� = 1, �±��� = ± 1

and

�k��� = 
�k 0

0 �−k�, �k��� = 
0 1

1 0
�, � = exp�2�i

n
, 1 � k �

n − 1

2
.

As required, the sum of the squares of the dimensions of the irreps is 2�12+ �n−1� /2�22=2n
= �Dn�.42

103511-4 Dancer, Isaac, and Links J. Math. Phys. 47, 103511 �2006�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Thu, 22 Sep 2016

03:59:36



B. Dn where n is even

When n is even, there are �n+6� /2 conjugacy classes divided into five families, given by

�e	 ,

��n/2	 ,

��k,�−k	, for 1 � k � �n − 2�/2,

��2j�,0 � j � �n − 2�/2	 ,

���2j+1��,0 � j � �n − 2�/2	 .

The �n+6� /2 irreps consist of 4 one-dimensional irreps and �n−2� /2 two-dimensional irreps.
They are given by

���� = �− 1�a, ���� = �− 1�b, for a,b � �0,1	

and

�k��� = 
�k 0

0 �−k�, �k��� = 
0 1

1 0
�, � = exp�2�i

n
, 1 � k �

n − 2

2
.

Again, the sum of the squares of the dimensions of the irreps is 2n.

III. THE QUANTUM DOUBLE ALGEBRA D„G…

Here we give a brief survey of finite group doubles D�G�. Throughout, our approach follows
that of Ref. 19. Let A be the group algebra of a finite group G over the complex field C. Then A
becomes a co-commutative Hopf algebra with coproduct, antipode, and counit, respectively, de-
fined by

	�g� = g � g, S�g� = g−1, 
�g� = e, ∀ g � G .

Let A* be the dual space of A, so A*= �f � f :A→C	. Then A* becomes an algebra on the dual
elements g* defined by

g*�h� = ��g,h�, ∀ g,h � G ,

which have the property

g*h* = ��g,h�h*.

The resultant dual algebra is commutative and does not have an interesting representation theory.
Now we follow the quantum double construction to obtain D�G�, which is a �G�2-dimensional
algebra spanned by the free products,

gh*, g,h � G .

The elements h*g are calculated using

h*g = g�g−1hg�*.

Then D�G� becomes a quasitriangular Hopf algebra with coproduct 	̄, antipode S̄, and counit 
̄
given by

103511-5 Quantum doubles of finite group algebras J. Math. Phys. 47, 103511 �2006�
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	̄�gh*� = �
k�G

g�k−1h�*
� gk* = �

k�G

gk*
� g�kh−1�*,

S̄�gh*� = g−1�gh−1g−1�*,


̄�gh*� = ��h,e� .

Note that we identify g
 with g and eg* with g* for all g�G. The universal R-matrix is given by

R = �
g�G

g � g*,

which can easily be shown to satisfy the defining relations for a quasitriangular Hopf algebra:

R	̄�a� = 	̄T�a�R, ∀ a � D�G� , �7�

�	̄ � id�R = R13R23, �8�

�id � 	̄�R = R13R12, �9�

where 	̄T is the opposite coproduct,

	̄T�gh*� = �
k�G

gk*
� g�k−1h�* = �

k�G

g�kh−1�*
� gk*.

It follows from the relations �7�–�9� that R is a solution of the constant Yang–Baxter equation. We

note that in any tensor product representation � � � we have that Ř= PR commutes with the action
of the finite group double; i.e.,

�Ř,�� � ��	̄�a�� = 0, ∀ a � D�G� .

IV. REPRESENTATION THEORY OF D„G…

Several properties of group algebras extend to the quantum double. For example, the set

Q = �gh*�g,h � G with gh = hg	 ,

is stable under the adjoint action of G, i.e., gQg−1=Q. Hence, Q can be partitioned into
G-conjugacy classes, which implies19 the following.

Theorem 4.1: The number of nonisomorphic D�G�-modules equals the number of
G-equivalence classes of Q.

Moreover, a construction for these modules is known.19 The general form is included in this
section, with the explicit results for the odd and even dihedral groups given in the following two
sections, respectively.

First, partition G into conjugacy classes,

G = �
k

Ck.

Recall that the centralizer subgroup of an element h is defined by

103511-6 Dancer, Isaac, and Links J. Math. Phys. 47, 103511 �2006�
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Z�h� = �g � G�gh = hg	 .

Then, for each conjugacy class Ck choose a representative gk�Ck and set Zk=Z�gk� to be the
centralizer subgroup of gk, noting that �Zk � �Ck � = �G�. Denote the group algebra of Zk by Ak. Also,
for each s�Ck choose a fixed element �s�G satisfying

s = �sgk�s
−1.

For simplicity, choose �gk
=e , ∀gk.

Lemma 4.1: We have the following properties of �s:

1. G=�s�Ck
�sZk

2. Given g�G ,s�Ck , ∃ t�Ck unique with the property �t
−1g�s�Zk; explicitly t=gsg−1.

Again, a proof can be found in Ref. 19.
The irreducible modules of D�G� can be constructed from modules of the group algebras Ak.

Let V
k denote an irreducible Ak-module. Then there is a corresponding induced A-module,42

Vk, � A�Ak
V

k ,

spanned by vectors

v�s� = �s � v, v � V
k , s � Ck,

where the action of G is given by

g��s � v� = �gsg−1 � ��gsg−1
−1 g�s�v ,

or, equivalently,

gv�s� = ��gsg−1
−1 g�sv��gsg−1� .

Note dim Vk,= �Ck �dim V
k . It follows from Lemma 4.1 that Vk, is an A-module under this defi-

nition.
The module Vk, can be decomposed according to

Vk, = �
s�Ck

Vk,�s� ,

where

Vk,�s� = �v�s��v � V
k 	 .

The latter becomes an irreducible module over the group algebra of Z�s�=�sZk�s
−1. When s=gk,

the module is isomorphic to V�
k . Then Vk, becomes an irreducible D�G�-module with the action

h*v�s� = ��h,s�v�s�, ∀ h � G .

Moreover, two D�G�-modules of this form, Vk, ,Vl,�, are isomorphic iff k= l and V
k ,V�

k are
isomorphic. Then using counting arguments the following can be shown.

Theorem 4.2: Every irreducible D�G�-module is isomorphic to one of the Vk,.

V. REPRESENTATIONS OF D„G…, WHERE G=Dn, n EVEN

The conjugacy classes Ck of G=Dn, chosen representatives gk, corresponding centralizer
subgroups and the elements �s , ∀s�Ck, are given in Table I.

Throughout the remainder of this paper, Ej
i denotes an elementary matrix with a 1 in the �i , j�

position and zeros elsewhere. We also abuse notation by using g to denote both an element of the
algebra D�G� and its matrix representative in a given irrep, which should be clear from the
context.

103511-7 Quantum doubles of finite group algebras J. Math. Phys. 47, 103511 �2006�
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Representations induced by Ck= �e	. The module elements are of the form e � v where v
�V, V a Dn-module. In representation terms, there are 4 one-dimensional irreps and �n /2−1�
two-dimensional irreps. They are

� = �− 1�a, � = �− 1�b, g* = ��g,e�

where a ,b� �0,1	, and

� = 
�k 0

0 �−k�, � = 
0 1

1 0
�, g* = ��g,e�I2,

where 1�k�n /2.
Representations induced by Ck= ��n/2	. The module elements are of the form e � v, where v

�V, V a Dn-module. Again, there are 4 one-dimensional irreps and �n−2� /2 two-dimensional
irreps. They are

� = �− 1�a, � = �− 1�b, g* = ��g,�n/2� ,

where a ,b� �0,1	, and

� = 
�k 0

0 �−k�, � = 
0 1

1 0
�, g* = ��g,�n/2�I2,

where 1�k�n /2.
Representations induced by Ck= ��k ,�−k	, 1�k�n /2. The module elements are of the form

e � v ,� � v, where v�V, V a module of the group algebra of Zk= �� j �0� j�n	. There are n such
Ak-modules, with the corresponding representations given by ����=� j, 0� j�n, where �
=exp�2�i /n�. Thus, we have n�n−2� /2 different irreducible representations of D�Dn� induced by
these conjugacy classes, given by

� = 
� j 0

0 �−j �, � = 
0 1

1 0
�, ��k�* = 
1 0

0 0
�, ��−k�* = 
0 0

0 1
�, g* = 0, otherwise,

where 0� j�n, 1�k�n /2.
Representations induced by Ck= ��2j� �0� j�n /2	. The module elements are of the form � j

� v, 0� j�n /2, where v�V, V a module of the group algebra of Zk= �e ,� ,�n/2 ,�n/2�	. Hence,
there are 4 �n /2�-dimensional irreps of this form. They are

� = A � Mn/2�n/2, where �A�ij = �− 1�a��i,1���i, j + 1�, addition mod n/2,

� = �− 1�a+bB � Mn/2�n/2, where �B�ij = �− 1�a��i,1���i + j,2�, addition mod n/2,

��i�* = 0, ��2j��* = Ej+1
j+1, ���2j+1���* = 0, 0 � i � n, 0 � j � n/2,

where a ,b� �0,1	.
Example 5.1: In D�D6�, � and � are as follows:

TABLE I. Ck ,gk, Zk, and �s for G=Dn, n even.

Ck gk Zk=Z�gk� �s , ∀s�Ck

�e	 e Dn �e=e
��n � 2	 �n � 2 Dn ��n/2 =e
��k ,�−k	 ,1�k� n � 2 �k ��i �0� i�n	 ��k =e ,��−k =�

��2i� �0� i� n � 2	 � �e ,� ,�n � 2 ,�n � 2�	 ���2i��=�i

��2i+1� �0� i� n � 2	 �� �e ,�� ,�n � 2 ,�n � 2 +1�	 ���2i+1��=�i
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� = �0 0 �− 1�a

1 0 0

0 1 0
�, � = �− 1�b�1 0 0

0 0 �− 1�a

0 �− 1�a 0
� ,

where a ,b� �0,1	, giving 4 three-dimensional irreps.
Representations induced by Ck= ��2j+1� �0� j�n /2	. The module elements are of the form

� j � v, 0� j�n /2, where v�V, V a module of the group algebra of Zk= �e ,�� ,�n/2 ,��n+2�/2�	.
Hence, there are 4 �n /2�-dimensional irreps of this form. They are as follows:

� = A � Mn/2�n/2 where �A�ij = �− 1�a��i,1���i, j + 1�, addition mod n/2,

� = �− 1�a+bB � Mn/2�n/2 where �B�ij = ��i + j,n/2 + 1�, addition mod n/2,

��i�* = 0, ��2j��* = 0, ���2j+1���* = Ej+1
j+1, 0 � i � n, 0 � j � n/2,

where a ,b� �0,1	.
Example 5.2: In D�D6�, � and � are as follows:

� = �0 0 �− 1�a

1 0 0

0 1 0
�, � = �− 1�a+b�0 0 1

0 1 0

1 0 0
� ,

where a ,b� �0,1	, giving 4 three-dimensional irreps.
Thus when n is even D�Dn� has 8 one-dimensional irreps, 8 �n /2�-dimensional irreps, and

�n+2��n /2−1� two-dimensional irreps. The sum of the squares of the dimension of the irreps is
�Dn�2= �D�Dn��, as required.19

Analogous results for odd n are given in the Appendix .

VI. SOLUTIONS OF THE YANG–BAXTER EQUATION ASSOCIATED WITH THE
TWO-DIMENSIONAL IRREPS OF D„Dn…

As stated earlier, a solution to the constant Yang–Baxter equation in D�G� is given by

R = �
g�G

g � g*.

In this section we will only consider the two-dimensional irreps of D�G�. Then, by inspection, the
R-matrix will always be of the form

R = diag�� j,�−j,�−j,� j� ,

where �=exp�2�i /n� and 0� j�n, with the cases j=0 and j=n /2 being trivial. Thus Ř= PR is
given by

Ř = �
� j 0 0 0

0 0 �−j 0

0 �−j 0 0

0 0 0 � j
� . �10�

As remarked earlier, Ř commutes with the action of D�Dn�. We seek a solution Ř�x� of the
braiding Yang–Baxter equation that has this symmetry. Now the matrix �10� has 3 different

eigenvalues, namely wj , ±w−j. Hence, for any k, Řk can be written as a linear combination of I

� I , Ř and Ř−1. Making a change of variables x=exp�u�, z=exp�v� in Eq. �2�, we look for Ř�x� in
the following form:
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Ř�x� = f�x�I � I + g�x�Ř + h�x�Ř−1.

Then

Ř�x� = �
A�x� 0 0 0

0 f�x� B�x� 0

0 B�x� f�x� 0

0 0 0 A�x�
� ,

where

A�x� = f�x� + � jg�x� + �−jh�x� ,

B�x� = �−jg�x� + � jh�x� .

We directly apply the braiding Yang–Baxter equation in the form

Ř12�x�Ř23�xz�Ř12�z� = Ř23�z�Ř12�xz�Ř23�x� . �11�

Although there are 20 nonzero entries on each side of the equation, there are only two independent
nontrivial relations that must be satisfied. These are

A�z�f�xz�A�x� = f�x�A�xz�f�z� + B�x�f�xz�B�z� , �12�

A�z�B�xz�f�x� = f�x�A�xz�B�z� + B�x�f�xz�f�z� . �13�

Note that f�x�=0, ∀x trivially satisfies the Yang–Baxter equation.

A proposal for constructing Ř�x� when Ř has three distinct eigenvalues �1 ,�2, and �3 has been
discussed in Refs. 31 and 35, but it has not been proven to always be true. The conjecture is

Ř�x� = ��1 + �2 + �3 + �1�3�2
−1�xI � I − �x − 1�Ř + �1�3x�x − 1�Ř−1.

Three distinct solutions are obtained by changing the ordering of the eigenvalues. We note that
when the ansatz holds we have

Ř = lim
x→0

R�x� = R .

Applying this ansatz to �10�, we find that if �2= ±�−j, then f�x�=0, which we have already shown
gives a trivial result. Hence we consider the case when �2=� j. This gives

f�x� = �� j − �−3j�x, g�x� = − �x − 1�, h�x� = − w−2jx�x − 1� ,

⇒A�x� = � j − �−3jx2, B�x� = − �−j�x2 − 1� .

It can be easily shown that f�x� , A�x�, and B�x� satisfy relations �12� and �13�. Hence, we
have solutions to the braiding Yang–Baxter equation, which are

Ř�x� = �
� j − �−3jx2 0 0 0

0 �� j − �−3j�x − �−j�x2 − 1� 0

0 − �−j�x2 − 1� �� j − �−3j�x 0

0 0 0 � j − �−3jx2
� ,

where �=exp�2�i /n� and 0� j�n. Rescaling by a factor of � jx−1, we can write
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Ř�x� = �
�2jx−1 − �−2jx 0 0 0

0 �2j − �−2j x−1 − x 0

0 x−1 − x �2j − �−2j 0

0 0 0 �2jx−1 − �−2jx
� . �14�

Note that the unitarity condition Ř�x�Ř�x−1�= ��4j +�−4j − �x2+x−2��I � I is satisfied. We can rec-
ognize �14� as specific cases of the six-vertex solution in the symmetric gauge, where the param-
eter q in the general solution is constrained to be a root of unity. We remark that the choice of
gauge is related to the gradation chosen for the affine algebra �e.g., see Ref. 43�. It is interesting

to note that in the nonsymmetric gauge the constant solution Ř=limx→0 R�x� can be used to give
rise to a representation of the Temperley-Lieb algebra. In this case there is a well known procedure

for Baxterizing Ř to recover Ř�x�.33,34 This is not the case for the symmetric gauge case described
previously.

VII. SOLUTIONS OF THE YANG–BAXTER EQUATION ASSOCIATED WITH THE
THREE-DIMENSIONAL IRREPS OF D„D3… AND D„D6…

From the construction of the irreps of D�Dn� given explicitly in Sec. V and the Appendix, we
find that three-dimensional irreps only occur for D�D3� and D�D6�. Moreover, the 2 three-
dimensional irreps of D�D3� are also representations for the D�D3� subalgebra of D�D6�, so these

cases give identical R matrices. For any three-dimensional irrep of D�D6�, we find Ř= PR
= P�gg � g* is of the following form:

Ř = �− 1�b�
1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 �− 1�a 0

0 0 �− 1�a 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 �− 1�a 0 0

0 �− 1�a 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1

� ,

where a ,b� �0,1	. Without loss of generality we take b=0, and find the eigenvalues of Ř are
1 , �, and �2 with multiplicities 5 , 2, and 2, respectively, where �=exp�2�i /3�. As the two
values of a give unitarily equivalent R matrices, we choose to take a=0. We can then write

Ř�x� = f�x�I � I + g�x�Ř + h�x�Ř−1.

Again we follow the procedure outlined in Refs. 31 and 35 to find possible solutions, which gives
the following:

Using MATHEMATICA, we find only the first of these possible solutions satisfies the braiding
Yang–Baxter equation �11� �see Table II�:

TABLE II. Possible solutions for f�x� , g�x�, and h�x�.

f�x� g�x� h�x�

x 1−x x�x−1�
�x 1−x �2x�x−1�
�2x 1−x �x�x−1�
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Ř�x� = �
x2 − x + 1 0 0 0 0 0 0 0 0

0 x 0 0 0 1 − x x�x − 1� 0 0

0 0 x x�x − 1� 0 0 0 1 − x 0

0 0 1 − x x 0 0 0 x�x − 1� 0

0 0 0 0 x2 − x + 1 0 0 0 0

0 x�x − 1� 0 0 0 x 1 − x 0 0

0 1 − x 0 0 0 x�x − 1� x 0 0

0 0 x�x − 1� 1 − x 0 0 0 x 0

0 0 0 0 0 0 0 0 x2 − x + 1

� .

The corresponding R-matrix R�x�= PŘ�x� is given by

R�x� = �
x2 − x + 1 0 0 0 0 0 0 0 0

0 0 1 − x x 0 0 0 x�x − 1� 0

0 1 − x 0 0 0 x�x − 1� x 0 0

0 x 0 0 0 1 − x x�x − 1� 0 0

0 0 0 0 x2 − x + 1 0 0 0 0

0 0 x�x − 1� 1 − x 0 0 0 x 0

0 0 x x�x − 1� 0 0 0 1 − x 0

0 x�x − 1� 0 0 0 x 1 − x 0 0

0 0 0 0 0 0 0 0 x2 − x + 1

� . �15�

Note Ř�x�Ř�x−1�= �x−1+1/x�2I � I, so the unitarity property holds.
The previous solution gives rise to a 21-vertex model, which appears to be new. It does not

belong to the class of 21-vertex models discussed in Ref. 44. Viewed as a two-dimensional lattice
statistical mechanics model though, it does not have real, non-negative Boltzmann weights. Since
the regularity property �5� holds, we can, however, construct an integrable one-dimensional model.

Even though Ř�x� is not Hermitian, we obtain a Hermitian Hamiltonian in the following manner.

We rescale Ř�x� by a factor of i /x and define the two-site Hamiltonian h as

h =
d

dx
� iŘ�x�

x
�

x=1
= i�

0 0 0 0 0 0 0 0 0

0 0 0 0 0 − 1 1 0 0

0 0 0 1 0 0 0 − 1 0

0 0 − 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 − 1 0 0

0 − 1 0 0 0 1 0 0 0

0 0 1 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

� ,

which can also be written as

h = �
��D3

i�E��2�
��1�

� E��3�
��2� − E��3�

��2�
� E��2�

��1�� , �16�

where the elements � of D3 are written as permutations of �1,2 ,3	. The above integrable system
describes a one-dimensional lattice of anyons with D�D3� or D�D6� symmetry and local interac-
tions given by �16�. The two-site Hamiltonian may also be expressed in terms of spin-1 operators:

− ih = − S+
2

� �SzS− + S−Sz� + �SzS− + S−Sz� � S+
2

+ S−
2

� �SzS+ + S+Sz� − �SzS+ + S+Sz� � S−
2
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+ S+Sz � SzS+ − SzS+ � S+Sz

+ S−Sz � SzS− − SzS− � S−Sz,

where S±= 1 � 2 �Sx± iSy�. This Hamiltonian is not the same as other known integrable spin-1
Hamiltonians.45–49

In principle, the integrability of the previous model implies that algebraic Bethe ansatz meth-
ods may be used to obtain the exact solution. In the present case, however, there is no simple
choice of reference state needed for the Bethe ansatz calculation, and a generalized algebraic
Bethe ansatz similar to that employed for the XYZ model50 is required. Because of the technical
nature of such a calculation we defer it to a future publication.

VIII. SOLUTIONS OF THE YANG–BAXTER EQUATION ASSOCIATED WITH D„A4…

The same procedure can be applied to the symmetric and alternating groups. The symmetic
group Sn is the group of permutations of �1,2 , . . . ,n	 where the operation is composition. The
subgroup of Sn consisting of permutations that can be written as the product of an even number of
transpositions is known as the alternating group and denoted An. Now S3�D3 and A3�Z3, so we
only consider n�4. In An the only conjugacy class with only one element is �e	, which always
gives rise to the trivial R-matrix R= I � I. Moreover, there are no conjugacy classes with two
elements and only A4 has a conjugacy class with three elements. Therefore only A4 can give rise
to a three-dimensional irrep, and we can never obtain a two-dimensional irrep.

Consider A4, using the convention �12� � �13�= �132�. The relevent conjugacy class Ck and the
details required to construct the representations are

Ck = ��12��34�,�13��24�,�14��23�	, gk = �12��34� ,

Zk = �e,�12��34�,�13��24�,�14��23�	 ,

��12��34� = e, ��13��24� = �132�, ��14��23� = �123� .

This time Zk�Z2�Z2, with the 4 one-dimensional irreps given by �12��34�= �−1�a,
�13��24�= �−1�b, a ,b� �0,1	. We obtain

R = diag„�− 1�a,�− 1�a+b,�− 1�b,�− 1�b,�− 1�a,�− 1�a+b,�− 1�a+b,�− 1�b,�− 1�a
… .

Applying the permutation operator, we find

Ř = �
�− 1�a 0 0 0 0 0 0 0 0

0 0 0 �− 1�b 0 0 0 0 0

0 0 0 0 0 0 �− 1�a+b 0 0

0 �− 1�a+b 0 0 0 0 0 0 0

0 0 0 0 �− 1�a 0 0 0 0

0 0 0 0 0 0 0 �− 1�b 0

0 0 �− 1�b 0 0 0 0 0 0

0 0 0 0 0 �− 1�a+b 0 0 0

0 0 0 0 0 0 0 0 �− 1�a

� ,

which has eigenvalues 1 ,−1 with multiplicities 6 ,3, respectively, when a=0, and eigenvalues
−1, i ,−i, each with multiplicity 3 when a=1. When a=b=0 this is the permutation matrix and
gives rise to a representation of the Hecke algebra. Baxterization then leads to the known su�3�
invariant solution. In the case a=0,b=1, Ř is again a Hecke algebra representation, which can be

Baxterized as Ř�u�= I � I+uŘ. This solution corresponds to the rational 15-vertex solution with a
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Reshetikhin twist.51 The last case is when b=1, in which case we can write without loss of
generality:

Ř = �
1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 − 1 0 0

0 − 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 − 1 0 0 0

0 0 0 0 0 0 0 0 1

� .

We recognize this solution as belonging to the class of nonstandard solutions of the Yang–Baxter
equation. However, it is curious that the origin of the nonstandard structure cannot be explained in
terms of an underlying Lie superalgebra or colour Lie algebra structure,52,53 nor is it due to a
Reshetikhin twist.51

As Ř has three eigenvalues, we try the ansatz Ř�x�= f�x�I � I+g�x�Ř+h�x�Ř−1. Applying the
conjecture given in Refs. 31 and 35, we obtain three possible solutions. Two of these, however,
have f�x�=0, which is undesirable if we want the regularity property to hold. The third possible
case can be shown to not satisfy the braiding Yang–Baxter equation �11�. Hence, we attempt to
find another way to introduce a spectral parameter.

First we return to the original variables u ,v instead of x ,z. Writing a�u�= f�u�+g�u�+h�u� and

b�u�=g�u�−h�u�, we note Ř�u� is

Ř�u� = �
a�u� 0 0 0 0 0 0 0 0

0 f�u� 0 b�u� 0 0 0 0 0

0 0 f�u� 0 0 0 − b�u� 0 0

0 − b�u� 0 f�u� 0 0 0 0 0

0 0 0 0 a�u� 0 0 0 0

0 0 0 0 0 f�u� 0 b�u� 0

0 0 b�u� 0 0 0 f�u� 0 0

0 0 0 0 0 − b�u� 0 f�u� 0

0 0 0 0 0 0 0 0 a�u�

� .

Substituting Ř�u� into the braiding Yang–Baxter equation �2�, we find Ř�u� satisfies the Yang–
Baxter equation if and only if the following conditions are met:

b�u + v�f�u�f�v� = f�u + v��b�u�f�v� + b�v�f�u�� , �17�

a�u�b�u + v�f�v� = b�v�f�u�f�u + v� + a�u + v�b�u�f�v� , �18�

a�u + v�f�u�f�v� = f�u + v��a�u�a�v� + b�u�b�v�� . �19�

First, consider the case when b�u�=0. Then equations �17�, �18� are automatically satisfied,

and we need only consider Eq. �19�. The solution Ř�u�� I � I is uninteresting, so we instead
choose f�u�=1 and a�u�=eu, giving
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Ř�u� = diag�eu,1,1,1,eu,1,1,1,eu� .

Observe that this solution has the following peculiar property:

Ř � lim
u→−�

Ř�u� . �20�

Next consider b�u��0. We begin by choosing f�u�=1. Then we see that b�u�=b0u is the only
solution to �17�. We substitute these into Eq. �18� to obtain

�u + v�a�u� = v + ua�u + v� ,

�u + v�a�v� = u + va�u + v� .

Eliminating a�u+v�, we find

�u + v��a�u�
u

−
a�v�

v
 =

v
u

−
u

v
=

v2 − u2

uv

⇒�a�u�
u

−
a�v�

v
 =

v − u

uv
=

1

u
−

1

v

⇒
a�u� − 1

u
=

a�v� − 1

v
= c

⇒a�u� = 1 + cu .

We find that this satisfies �19�, provided c= ± ib0, so we have found a solution to the braiding
Yang–Baxter equation �2�. Note that b0 is just a scaling factor on u, so we can choose any nonzero
complex number. Choosing b0= i and c=1, we have

Ř�u� = �
1 + u 0 0 0 0 0 0 0 0

0 1 0 iu 0 0 0 0 0

0 0 1 0 0 0 − iu 0 0

0 − iu 0 1 0 0 0 0 0

0 0 0 0 1 + u 0 0 0 0

0 0 0 0 0 1 0 iu 0

0 0 iu 0 0 0 1 0 0

0 0 0 0 0 − iu 0 1 0

0 0 0 0 0 0 0 0 1 + u

� .

The previous solution again corresponds to the rational 15-vertex solution with a Reshetikhin
twist.51 We also note that the property �20� also holds for this solution.

IX. SOLUTIONS OF THE YANG–BAXTER EQUATION ASSOCIATED WITH D„S4…

As with D�An�, the algebra D�Sn� has no nontrivial two-dimensional irreps, and the only
nontrivial three-dimensional irrep occurs when n=4. Then Ck, gk, Zk, and �s, s�Ck are given by

Ck = ��12��34�,�13��24�,�14��23�	, gk = �12��34� ,

Zk = �e,�12�,�34�,�12��34�,�13��24�,�14��23�,�1324�,�1423�	 ,
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��12��34� = e, ��13��24� = �14�, ��14��23� = �13� .

Note that Zk�D4 with generators ��12� , �1324�	, so we know it has exactly 4 one-dimensional
reps given by �12�= �−1�a, �1324�= �−1�b, a ,b� �0,1	. Following the same procedure as earlier,
we obtain

R = �
g�S4

g � g* = diag„1,�− 1�a+b,�− 1�a+b,�− 1�a+b,1,�− 1�a+b,�− 1�a+b,�− 1�a+b,1… .

Both these solutions arose in D�A4� and were discussed in the previous section.

X. CONCLUSION

Our results show that for certain constant solutions of the Yang–Baxter equation obtained by
using representations of finite group doubles, it is possible to Baxterize them to yield solutions of
the spectral parameter Yang–Baxter equation. We have considered several examples where this is
true and, in particular, we have found a new 21-vertex solution �15� from which we obtained an
integrable model for a system of anyons with D�D3� or D�D6� symmetry. It is clearly of interest to
determine if all constant solutions may be Baxterized. In contrast to the case of affine quantum
algebras, where the spectral parameter has its origins in the loop representation, the origin of the
spectral parameter for the above instances is unknown.

In all our examples we have only looked for cases where the spectral parameter has the
difference property. For the case of the generalized chiral Potts model in Ref. 15, which does not
have the difference property, an underlying finite group structure appears. This suggests that a
Baxterization ansatz without the assumption of the difference property may also be fruitful. Cer-
tainly more work is needed to fully realize the potential of finite group doubles in solving the
Yang–Baxter equation with spectral parameter.
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APPENDIX: REPRESENTATIONS OF D„G…, WHERE G=Dn, n ODD

The conjugacy classes Ck of G=Dn, chosen representatives gk, corresponding centralizer
subgroups Zk and the elements �s, ∀s�Ck, are given in Table III.

1. Representations induced by Ck= ˆe‰

The module elements are of the form e � v, where v�V, V a Dn-module. In representation
terms, there are 2 one-dimensional irreps and �n−1� /2 two-dimensional irreps. They are as fol-
lows:

� = 1, � = ± 1, g* = ��g,e�

and

TABLE III. Ck , gk, Zk and �s for G=Dn, n odd.

Ck gk Zk=Z�gk� �s , ∀s�Ck

�e	 e Dn �e=e
��k ,�−k	 ,1�k� n−1 � 2 �k ��i � ,0� i�n	 ��k =e ,��−k =�

��i� �0� i�n	 � �e ,�	 ��i�=�� n+1 � 2 �i
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� = 
�k 0

0 �−k�, � = 
0 1

1 0
�, g* = ��g,e�I2,

where 1�k� �n−1� /2.

2. Representations induced by Ck= ˆ�k ,�−k
‰, 1�k� „n−1… /2

The module elements are of the form e � v ,� � v, where v�V, V a module of the group
algebra of Zk= ��i �0� i�n	. There are n such Ak-modules, with the corresponding representations
� j given by � j���=� j, 0� j�n, where �=exp�2�i /n�. Thus, there are n�n−1� /2 different irreps
of D�Dn� induced by these conjugacy classes, given by

� = 
� j 0

0 �−j �, � = 
0 1

1 0
�, ��k�* = 
1 0

0 0
�, ��−k�* = 
0 0

0 1
�, g* = 0 otherwise,

where 0� j�n, 1�k� �n−1/2�.

3. Representations induced by Ck= ˆ�i� �0� i<n‰

The module elements are of the form � j�n+1�/2 � v, 0� j�n, where v�V, V a module of the
group algebra of Zk= �e ,�	. Hence, there are two n-dimensional irreps of this form. They are as
follows:

� = A � Mn�n, where �A�ij = ��i, j + 2�, addition mod n ,

� = ± B � Mn�n, where �B�ij = ��i + j,2�, addition mod n ,

��i�* = 0, ��i��* = Ei+1
i+1, 0 � i � n .

Example 10.1: In D�D3�, � and � are as follows:

� = �0 1 0

0 0 1

1 0 0
�, � = ± �1 0 0

0 0 1

0 1 0
� .

Hence, when n is odd D�Dn� has 2 one-dimensional irreps, 2 n-dimensional irreps and
�n2−1� /2 two-dimensional irreps, all of which are given above. Note that the sum of the squares
of the dimensions is 4n2= �Dn�2= �D�Dn��, as we expect.19
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