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Calculation of the incremental stress-strain relation of a polygonal packing
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The constitutive relation of the quasistatic deformation on two-dimensional packed samples of polygons is
calculated using molecular dynamics simulations. The stress values at which the system remains stable are
bounded by a failure surface, which shows a power law dependence on the pressure. Below the failure surface,
nonlinear elasticity and plastic deformation are obtained, which are evaluated in the framework of the incre-
mental linear theory. The results show that the stiffness tensor can be directly related to the microcontact
rearrangements. The plasticity obeys a nonassociated flow rule with a plastic limit surface that does not agree
with the failure surface.
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[. INTRODUCTION rion. The boundary condition is introduced in Sec. Il B by a
flexible membrane that surrounds the sample. The modeling
The nonlinear and irreversible behavior of soils has beemvith such a membrane is very advantageous since it allows
described by different constitutive theorig,2]. Here the  one to implement a stress-controlled loading without any re-
stress-strain relation is postulated using a certain number @triction in the deformation of the boundary. The strain re-
material parameters which are measured in experiment@POnse is calculated in Sec. Il for different stress increments
tests. These continuous theories have been used for ma@ppPlied on identically generated samples. The results are dis-
geotechnical applications. Excavations, foundations, angussed in Sec. IV in the framework of the theory of elasto-
landslides are some few examples of these applications. Plasticity.
Recently, the investigation of soils at the grain scale has
become possible using numerical simulatip8f They evi-
dence that the stress is transmitted through a heterogeneous
network of interparticle contac{gl]. The geometric change The polygons of this model are generated using a simple
of this network during deformation reveals a structural an-version of the Voronoi tessellation: First, we set a random
isotropy induced by sheariri]. Although these results pro- point in each cell of a regular square lattice, then each poly-
vide valuable insights into the behavior of soils, few issuegyon is constructed assigning to each point that part of the
are given to derive the continuous relations from the discretplane that is nearer to it than to any other point. Each poly-
models. gon is subjected to interparticle contact forces and boundary
In this paper the stress-strain relation of a two-forces. They are inserted in Newton's equation of motion as
dimensional discrete model is calculated explicitly using nuwe explain below.
merical simulations. An internal variable is included in this
continuous relation, which is related to the anisotropy of the
contact network. The results show that it is possible to char-
acterize the mechanical behavior of soils at the macroscopic Usually, the interaction between two solid bodies in con-
scale using particle models. In effect, we demonstrate thatct is described by a force applied on the flattened contact
simple mechanical laws at the grain level are able to reprosurface between them. Given two polygons in contact, such
duce the complex behavior of the deformation of soils. surface is obtained from the geometrical construction shown
Usually, disks or spheres are used in the modeling ofn Fig. 1. The pointsC; andC, result from the intersection
granular materials. The simplicity of their geometry allows between the edges of the polygons. The contact surface is
one to reduce the computer time of calculations, but they deaken as the segment that lies between those points. The

not take into account the diversity of the shapes of the graingectorS=C;C, defines an intrinsic coordinate system at the
in the realistic matgrlals. A more detailed description is Pre+ontact £.1), wherei=$/|§/ andn is perpendicular to it.
sented here by using randomly generated convex polygons. , T - ,
As presented by Tillemans and Herrmdil the interaction | e deformation length is given byfa/|S|, wherea is the
between the polygons could be handled by letting the polyoverlap area between the polygorsis the branch vector,
gons interpenetrate each other and calculating the force asvehich connects the center of mass of the polygon to the point
function of their overlap. This approach has been succes®f application of the contact force, which is supposed to be
fully applied to model different processes, such as fragmenthe center of mass of the overlap area.
tation[7,8], damagd9], strain localization, and earthquakes  The normal elastic force is taken proportional to the de-
[6]. formation length asf;=k,d; the tangential force is calcu-
This paper is organized as follows. A suitable contactiated from the simplified Coulomb friction law with a single
force law is introduced in Sec. Il A, which attempts to com- friction coefficientus= uq=u. Here ug is the static angkgy
bine the Hertz contact law with the Coulomb friction crite- the dynamic friction coefficient. This tangential force is

1. MODEL

A. Contact force
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FIG. 1. Contact surface as defined from the geometry of over-
lap.

implemented by an elastic spririg= —k.&, where¢ grows FIG. 2. Algorithm used to find the boundary.
linearly with the tangential displacement of the contact,
whenever|ff|<ufs. We used the straightforward calcula- |ated to obtain the contact force.

tion of £ proposed by BrendglL0], The set of points that are in contact with the membrane
. are selected using a recursive algorithm. It is initialized with
t) = YO (Fe(t)| = wfe(t))dt’, 1 the vertices of the smallest convex polygon that encloses the
¢ fovt( VO] = wti(t)) @) boundary(see Fig. 3. The lowest point of the boundary is

selected as the first vertex of the polygan=b,. The sec-
where® is the Heaviside function and is the relative ve- Ond onem, is the boundary poirty; that minimizes the angle
locity at the contact, which depends on the linear velogjty < (P1bi) with respect to the horizontal. The third ong is
and angular velocitys; of the particles in contact according the boundary poinb; such that the angle (m,b;,m;m) is
to minimal. The algorithm is recursively applied until the low-
est vertexm; is reached again.
- > > The points of the boundary are iteratively included in the
= X . ; . i
vTUiT w ><€ +w1 € @ list m; using the bending criterion proposed by Astret al.
[11]: For each pair of consecutive vertices of the membrane
B. Boundary forces =b; andm; . ;=b; we choose that point from the subset

Let us now discuss how to apply the stress on the samplébk}l<k<1 that maximizes the bending anglef,
One way to do that would be to apply a perpendicular force= £ (byb;,byb;). This point is included into the list, when-
on each edge of the polygons belonging to the external corgver6,= 6, . Hereath is a threshold angle for bending. This
tour of the sample. Actually, this does not work because thiglgorithm is repeatedly applied until there are no more points
force will act on all the fjords of the boundary. It produces ansatisfying the bending condition.
uncontrollable growth of cracks that with time ends up de- The final result gives a set of segmefitgm;. ;} lying on
stroying the sample. Thus, it is necessary to introduce a flexhe boundary of the sample. In order to apply the boundary
ible membrane in order to restrict the boundary points thaforces, those segments are divided into two groudpspe
are subjected to the external stress. segments are those that coincide with an edge of a boundary
The algorithm to identify the boundary is rather simple. polygon;B-type segments connect the vertices of two differ-
The lowest vertexp from all the polygons of the sample is ent boundary polygons.

chosen as the first point of the boundary bist In Fig. 2P is On each segment of the membramem; ., a force f;
the polygo.n that containg, andge PNQ i_s the first inter- =o.N; is applied, wherer, is the local stress ani; is the
section point between the polygoRsandQ in counterclock- 90° counterclockwise rotation tuTi?nHl. This force is trans-

wise ?gteiztzgﬂr;t\é\/rlgllofceksvegg g?iesr:gttilgr? ;rrc;:r?ﬁl:ltﬂge\éeirg-the mitted to the polygons in contact with it: if the segment is of
ces o A type, this force is applied in its midpoint; if the segment is

boundary list untilg is reached. Nextq is included in the . :
) . of B type, half of the force is applied at each one of the
boundary list. Then, the vertices Qfbetweerg and the next vertices connected by this segment.

intersection point e QNR in the counterclockwise orienta-
tion are included into the list. The same procedure is applied
until one reaches the lowest vertpxagain. This is a very
fast algorithm, because it only makes use of the contact Before we implement the numerical solution of Newton’s
points between the polygons, which are previously calcuequations it is convenient to make a dimensional analysis of

C. Molecular dynamics simulation
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(d)

FIG. 3. Membrane obtained with threshold bending amgle= 7, 37/4, /2, andw/4. The first one corresponds to the minimum convex
polygon that encloses the sample.

the parameters. In such way we can keep the scale invariance f?z(5p+)\ymvc)ﬁp+ L(ES— N ymo o)e
of the model and reduce the parameters to a minimum of ! ! e ! te
dimensionless constants. All the polygons are supposed to
have the same density. The magsof each polygon is mea-
sured in units of the mean masg, of the Voronoi tessella-
tion. The time is measured in fractions of the total loading

time ty. The evolution of the positioﬁi and the orientation
¢; of theiy, polygon is governed by the equations of motion,

o= NP— X ymyo;. @

Here &7 and & denote the deformation length and the
tangential displacement of the contact, which were defined in
Sec. Il A; aib is the stress applied on the boundary segment
TP, defined in Sec. Il B. Artificial viscous terms must be

. ob included in Eq.(4) to keep the stability of the numerical
2 > e izh R . . .
Aemy; xi+2 fi +Z PRl =0, solution and reduce the acoustic waves generated during the
¢ G o loading processJC denotes the relative velocity at the con-
oP tact[Eq. (2)] and m=(1/m;+ 1/mj)*l the effective mass of
A2 g+ > 13% f‘F+Z k_'EibxFib:d (3)  the two polygons in contact.
c b n There are four microscopic parameters in the model: the

viscosity v, the ration =t./t, between the characteristic pe-

The sums go over all thpse 'partlcles and bogndary S€%o0d of oscillationts= vk, /my and the loading time, the
ments that are in contact with thg, polygo_p. The interpar- friction coefficient u, and the ratiol=k;/k, between the

ticle contact forceé_F and boundary forcefslb are given by  tangentiak, and normak, stiffness of the interparticle con-
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TABLE |. Dimensionless variables. TABLE II. Principal modes of loading according to the orienta-
tion of .
Variable Ratio Default value
Viscosity y 01 0 Isotroplc compressmn dp>0 dg=0
- - 45° Axial loading do;>0 do;=0
Friction coefficient s 0.25
) . B - 90° Pure shear dp=0 dg>0
Time ratio N=tg/t, 8.0x 10 .
. . 135° Lateral loading do,=0 do3>0
Stiffness ratio L=k /K, 0.33 . .
. 180° Isotropic expansion dp<O0 dg=0
Granularity €olHyp 0.1 . .
X 225° Axial stretching do<0 do3=0
Shape ratio Wy /Hy 1.0
Bending anale 0 0.257 270° Pure shear dp=0 dg<o0
gang th ' 315° Lateral stretching do;=0  dos<0

tacts. The viscosity factoy is related to the normal restitu-
tion coefficienf12]. It was taken large enough to have a high  Before failure, the constitutive behavior can be obtained
dissipation, but not too large to keep the numerical stabilityperforming small changes in the stress and evaluating the
of the method. The ratia was chosen small enough in order resultant deformation. An infinitesimal change of the stress
to avoid rate dependence in the strain response, correspongector do produces an infinitesimal deformation of the
ing to the quasistatic approximation. Technically, it is donesample, which is given by a change of heiglit and width
by looking for the value o such that a reduction of it by dW. This defines the axial straide;=dH/H and lateral
half makes a change of the strain response less than 5%. strain de;=dW/W increments. The volumetric straide,

The two parameter§ and u determine the constitutive and the shear straide, increments define the incremental
response of the system. For example, the micromechanicstrain vector,
analysis of the strain response shows that the Young’s modu-

lus and Poisson’s ratio depend 6M13]. On the other hand, _ [de, de;+deg
u can be directly related to the friction angle of the material de= de || de—deal” (6)
[14]. Although the study of the dependence of the constitu- € €1 Ues

tive response on those parameters is an important point, such
guantities have been kept fixed in this work.

The boundary conditions yield more dimensional param
eters. The initial heighid, and widthW, of the sample, and
the characteristic length, of the polygons define two geo-
metrical parameters, which are the shape riltig/H, and
the granularity¢,/H, of the samplgsee Table)l

In order to keep overlaps much smaller than the charac- ~ o
teristic area of the polygons, the ratig/k, between the de=F(do,0). (7)
stress applied on the membrane and the stiffness of the con-
tacts is restricted to small values. This was implemented by If there is no rate dependence in the constitutive equation,
fixing the contact stiffness to a value close to the experimenj:(d}) is an homogeneous function of degree 1. In this case,

tal granular stiffnesk,=160 MPa. Then the stress is cho- the application of the Euler identifyl5] shows that Eq(7)
sen in such a way that it does not exceed 1% of this valuecan be reduced to

Each state of the sample is related to a single point in the
stress space, and the quasistatic evolution of the system is
represented by the movement of this point in the stress space.
The constitutive relation is formulated taking the incremental
strain as a function of the incremental stress and the stress
state

IIl. STRESS-STRAIN CALCULATION de= M(?),E’)d}. (8)

A. Theoretical background

The macroscopic state of the system is characterized b here# is the unitary vector defining a specific direction in
the stress tensor and the void raéioThe area fraction of the Stress space,
voids in the sample defines the void ratio. Initiadly=0 due ~
to the Voronoi tessellation used. The stress controlled test . do
was restricted to stress states without off-diagonal compo- = |d_5|5
nents. The diagonal components, the ax¥ialand laterals
stress, define the stress vector,

cosé

. |do|=\dp?+dd?. 9

sing@

The constitutive relation results from the calculation of

p de(6), where each value of is related to a particular mode
q ' ©) of loading. Some special modes are listed in Table II.

The relation(8) has been proposed by Dar{/&5] and it
where p and q are the pressure and the shear stress. Theontains all the possible constitutive equations. In order to
domain of admissible stresses is bounded by the failure suiaterpret our particular results, it is convenient to make some
face. When the system reaches this surface it becomes uapproximations: First, if the load increments are taken small
stable and fails. enough, the tensoM (#) can be supposed to be linear in

1

2

61+ 03
61~ 53

o=
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FIG. 4. Procedure to obtain the constitutive behavidj: The FIG. 5. Axial stressr,=p+q and lateral stress;=p—q in a
. . ~ . S 1~ 3™
sample is driven to the stress state with pressurep and shear  gyess controlled test. They are applied on the boundary of the tes-
stressg. (2) It is loaded fromo to o+ do. (3) It is unloaded to the  sellated sample of polygons.
original stress state-.

each stress direction. Then, we assume that the strain can fffencede®=de—de” represents the elastic component of

separated in an elasticecoverable and a plastiqunrecov-  the strain.
erablé component, One could be concerned about the dependence of the

strain response on the way how the stress state is reached.
de=de+deP, (100 We found that there is not remarkable dependence of the
strain response on the stress path, whenever the stress com-
de*=D(7)da, (12) ponents are quasistatic and monotonically increased. Other-
wise, a strong reduction in the plastic component of the
~p_ ~ strain is observed. In fact, when the plastic response is cal-
de?=J(6,0)do (12 culated after the sample is unloaded, the plasticity is smaller
Here, D! defines the stiffness tensor, ade M —D the than that one calculated after a monotonic load. Furthermore,
flow rule of plasticity, which results from the calculation of there is no plastic component in the strain response when
de®(6) anddeP(0) elastic waves are previously generated_m the sample. Those
' memory effects suggest that the plastic component of the
strain depends on the history of the deformation, and is kept
unchanged only if the sample is subjected to quasistatic and
The numerical method presented here was proposed byonotonic loading.
Bardet[16]. It allows one to find the elastide® and plastic Figure 6 shows the load-unload paths and the correspond-

deP components of the strain as functions of the stress stat8dy strain response. They were taken from a stress state with

= . , g=0.5p. The end of the load paths in the stress space map
o and the stress directiof. Figure 4 shows the three steps into a strain envelope respongia(6) in the strain space
of the procedure. ; ' Vvelop P : In space.

L ~ Likewise, the end of the unload paths map into a plastic
(1) The sample is driven to the stress stateFirst, it is envelope responsde®(6). The yield directiond can be
isotropically compressed until it reaches the stress vajue found f?om thil?s res onse. as thg direction in the stress space
= 03=p 0. Next, it is subjected to axial loading, in order to where the plastic rgs onée is maximal. The flow rule car|1O be
increase the axial stres to p+q (see Fig. 5 When the P b )

~ T T obtained taking the directiogy of the maximal plastic re-
stress state=[pq] is reached, A" being the transpose of gponse in the strain space. These angles do not agree, which
A) the sample is allowed to relax.

slar. reveals the necessity to analyze this behavior in the frame-
(2) Loading the sample fromr to o+ do the strain incre-  work of the nonassociated theory of plasticityee Sec.

mentde is obtained. This procedure is implemented choosV C).

ing different stress directions according to E@). Here the

stress modulus is fixed t|(015'| = 10*4p_ IV. CONSTITUTIVE RELATION

(3) The sample is unloaded until the original stress state  Figure 7 summarizes the global elastoplastic behavior.
is reached. Then one finds a remaining st that corre-  The elastic response, calculated from BEd), has a centered
sponds to the plastic component of the incremental strairellipse as envelope response. This can be related to the mi-
Since the stress increments are taken small enough, the ucrocontact structure using a local linear relation in each point
loaded stress-strain path is practically elastic. Thus, the difef the stress spadsee Sec. IV B The solid line represents

B. The method
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FIG. 7. Elastic responsgée® and plastic responsge® resulting

from the application of different loading modes W|tl|t~r| =10 “p.
The solid line represents the failure surface.
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Po

Herepp,=1.0 MPa is the reference pressure, auit=0.78
+0.03 is the Mohr-Coulomb friction coefficiertl]. The
power law dependence on the pressure, with expoggent
=0.92+0.02, implies a significant deviation from the Mohr-
Coulomb theory. Moreover, the empirical criteria of failure
for most rocks[17] shows a power law dependence of the
form of Eq.(13). It seems that additional features beyond the
Mohr-Coulomb analysis are taking place when the sample

FIG. 6. Stress-strain relation resulting from the load-unload test.

Dotted lines represent the paths in the stress and strain spaces. TheHooke’s law of elasticity states that the stiffness tensor of
dash-dotted line gives the strain envelope response and the soligotropic materials can be written in terms of two material

line is the plastic envelope response.

the failure surface that separates the stable states from th
unstable onetsee Sec. IV A The plastic envelope response

is almost on a straight line. The modulus and the orientation
of this envelope depend on the stress state through a certai
number of material parameters, which are given in Sec.

IV C. All the quantities obtained in this section have been
calculated from the average over five different samples o%

10X 10 particles each one.

A. Failure surface

The failure line was calculated looking for the values of
stress for which the system becomes unstable: for each pre:
surep, there is a critical shear stregs(p), below which the
sample reaches a stable state with an exponential decay of it
kinetic energy. For shear stress values above the critical one
the sample develops an instability and fails. Figure 8 shows

~

fails, which will be discussed in Sec. IV C.

B. Stiffness

10° [

o

p (MPa)

the interface between these two stress states, which can be FIG. 8. Failure

accurately fitted by the power law

surface. The continuous line represents the
power law fit.
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FIG. 10. Young’s modulus. The solid line is the linear approxi-
FIG. 9. Reduction of the mean coordination number of contactsnation of E(d). See Eq(24).
(dotted ling. The data have been fitted to a truncated power law
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parameters, i.e., Young’s modulisand Poisson’s ratio. dosg

However, the isotropy is not fulfilled when the stress state isl'hen these three parameters are supposed to be dependent
far from the hydrostatic axis. Indeed, numerical simulationsOn th;a internal damage parameter
[5,18] and photoelastic experimerits9] on granular materi-
als show that the loading induces a significant deviation from No—N
isotropy in the contact network. d= N

The anisotropy of the granular sample can be character- 0
ized by the distribution of the microcontact normal vectors The tensorD defined in Eq.(11) is calculated from Eq.

ni (see Fig. 1 Our numerical simulations show that the (15) using the definition of the stress and strain vectors given
structural changes of microcontacts are principally due to the, Egs.(5) and(6). One obtains

opening of contacts whose normal vectors are nearly aligned

around the direction perpendicular to the load. Let us call 2
N(¢)A¢ the number of contacts per particle oriented be- DIE
tween the angleg and¢+ A ¢, measured with respect to the

direction along which the sample is loaded. The lowest ordefne giagonal components of this tensor are the inverse of the

(16)

1-v —«a

—a 1+v| (17)

of anisotropy can be described by the expression bulk modulus and of the shear modulus, respectively. The
1 nondiagonal component results from the anisotropy of the
N(¢)= 2—[N+ (No—N)cog2¢)]. (14) sample, and it couples the compression mode with the shear-

a

ing deformation. These three variables are calculated from
the elastic responge®( ) by the introduction of the follow-

Here N is the average coordination number of the poly-"9Y function:
gons, whose initial valu®y=6.0 reduces as the load is in- doTqze
creased. Figure 9 shows this reduction. A critical line is R(6) = ‘T~ € . (19)
found aroundy=0.12p, below which there are no structural |do|?

changes in the contact network. Above this limit an induced
anisotropy arises due to opened contacts whose amount fol- Substituting Egs(11) and(9) into Eq.(18), one sees that
lows a power law dependence. Ris the quadratic form oD,

In order to describe the effect of the anisotropy in the )
elastic response we proceed as follows: first, an additional S ST o
parameter is included in Hooke’s law R(6)=6'Do E[1 vCog26)—asin26)]. (19

021301-7
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FIG. 11. Poisson’s ratio. The dashed line is the quadratic ap;;1 Frl(s('ini;}oﬁrgfso(tg;pég:rén}(;e)r' The dashed line is the linear
proximation ofrv(d). See Eq(24). P A=) q '

approximation, implying that it has a nonlinear dependence

Using this equation, the components®fcan be evaluated on the damage paramei@ig. 1.

as the Fourier coefficients &,

1 1 (2« C. Plastic flow
—=—/| R(6)d6, 20 . . -
E 4m)o (9) 20 The formulation of the nonassociated theory of plasticity
requires the evaluation of three material functions, i.e., the
E (2n yield direction¢, the flow directiony, and the plastic modu-
V:_EJO R(#)cog26)d6, (21 Jus h. These quantities can be calculated from the plastic
responseaie®(6), as follows.
E (o= _ The vyield direction is given by the incremental stress di-
a=— Efo R(6)sin(26)d 6. (22)  rection ¢ with maximal plastic response

|deP(¢)|=maxde’(0)|. (24)
7

Figures 10, 11, and 12 show the results of the calculation
of Young’s modulusE, Poisson’s ratiav, and the anisotropy
factor @, respectively. Below the limit of isotropy, Hooke’s The flow direction is defined from the orientation of the plas-
law can be appliedE~E,, v~v, anda~0. On the other tjc response at its maximum value
hand, above the limit of isotropy a reduction of Young’s

’< de’,i)
y=arctal acp

modulus is found, along with an increase of Poisson’s ratio
and the anisotropy factor. The functional dependence of

The plastic modulus is obtained from the modulus of the
maximal plastic response

(29

those parameters on the internal damage paranetisr

=9
evaluated developing their Taylor's series arow¥O0,

E(d)=E(0)+E'(0)d+0O(d?),

a(d)=a(0)+a’(0)d+0O(d?), (23 1 |deP(¢)]
—= (26)
h |da|

v(d)=p(0)+ v’ (0)d+ »"(0)d*>+ O(d?).

- . . Reciprocally, the plastic response can be expressed in
The coefficients of this expansion are calculated from the . . . -
best fitting of those expansions. Figures 10 and 12 show thé?rmf' of these quantities. Let us define the unitary veafors
the linear approximation is good enough to reprodUC@ndlﬂl. The first one is oriented in]\the direction ¢fand the
Young’s modulus and the anisotropy factor. The fit of Pois-second one is the 90° rotation @f. The plastic strain is

son’s ratio, however, requires the inclusion of a quadrationritten in this basis as

021301-8



CALCULATION OF THE INCREMENTAL STRESS. .. PHYSICAL REVIEW E 66, 021301 (2002

1.2 : : . : : 140 , : :
1301
yield direction ¢
1201
110r 1
"5 1007 1
(0]
2 90 o
8 80 flow direction y |
70 + p=1.28MPa 1
& o p=0.64MPa
v p=0.32MPa
50 . p=0.16MPa 1
40O 0‘.2 014 016 018 1
q/p
FIG. 14. The flow direction and the yield direction of the plastic
response. Solid lines represent a linear fit.

el . . ‘ ‘ . .
=0 0 b 000200 - S0 many experimental results on soil deformatif2il] have

o-0¢ confirmed that these angles are completely different. Thus
FIG. 13. Plastic profile$(8) (solid line) andg(¢) (dashed ling Drucker’s postulate is not fulfilled in the deformation of

The results for different stress values have been superposed. ~ granular materials, and the main reason for that is the rear-
rangement of contacts on small deformations, which are not
taken into account in this theory. On the other hand, all the
sliding, opening, and other micromechanical rearrangements

can be well handled in the discrete element formulation,

[f(6)+g(6) ] (27)  Wwhich is more adequate to describe the soil deformation.

The material constants are evaluated from the dependence

of the plastic quantities on the stress: the yield direction and

The plastic profiles'(6) andg(¢) are shown in Fig. 13.  yhe fiow direction can be roughly approximated by straight
The first one is approximately the same for all the stresg,

states, and can be well fitted to a cosine function, centered on
the yield direction¢ and truncated to zero for the negative q
values. The last profile depends on the stress value, and is b= o+ Py,
difficult to evaluate, because it is of the same order as the P
statistical fluctuations. However, the contributiongofo the

deP(0)=[(de”) Ty ]+ (deP) Tyt gt

=l i )

total strain response is negligible. In order to simplify the . , 4
description of the plastic response, the following approxima- V=yot "/’05' (3D
tion is made:
o The four material parameterspo=46°+0.75°, ¢
g(0)<f(6)~[[cog 6—¢)]1=[[" 1], (28)  =88.3°+0.6°, ¢=78.9°+0.2°, andy,=59.1°+0.4° are
) ) obtained from the linear fit of the data. On the other hand,
where[[ - ]] defines the function Fig. 15 shows that the plastic modulus depends on the stress
0 through a power law relation,
[1=1, oo (29 4 (Dol 917
Now, the flow rule results from the substitution of Egs. h=ho 1 Qo p (32

(27) and (28) into Eq.(12),
There are four additional material parameters: The plastic

%8 d~_[[<}5TdTT]]A 30 modulus hy=14.5+0.05 at q=0, the constantg,=0.85
(6)do= h ¥ (30 +0.05, and the exponenty=2.7£0.04 and 9¥=0.99
+0.02.

The yield direction and the flow direction have been cal- The plastic limit surface is given by the stress states
culated for different stress states. The results are shown where the plastic deformation becomes infinite. According to
Fig. 14. Both angles are quite different, which is a clearthe flow rule[Eq. (30)], it is found, looking for the stress
deviation from Drucker’s normality postulaf®Q]. Indeed, values, where Eq.32) vanishes,
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10° FIG. 16. Elastoplastic regimes: isotrol¢, anisotropidll), and
X unstable(lll).
FIG. 15. Plastic modulus. The solid line is a power law fit with
respect to the variablg=1—(p/p,) *a/do. The elastoplastic response leads to the identification of

three different regimes which are shown in Fig. 16. Zone |

dp p corresponds to the isotropic regime, characterized by small
do | po (33 plastic deformations and a linear elastic regime. In zone |l
open contacts are detected, which must be taken into account

It is important to point out that the failure surface—given in the calculation of the nonlinear elasticity. Zone Il corre-
in Eg. (13—does not correspond to the plastic limit surface.sponds to unstable states so that the stress-strain relation can-
Actually, this matter has already been discussed in the framgrot be calculated here. The extrapolation of the strain re-
work of Hill's condition of instability [22] the bifurcation sponse in this region shows that the plastic strain must have
analysis[23], which predicts that the instability should be g finite value just before the instability is reached.

9

reached strictly inside the plastic limit surface. The above observation leads to the open question of the
nature of the failurd22]. Numerical simulations on strain
V. CONCLUDING REMARKS controlled tests show that strain localization is the most typi-

The elastoplastic response of a Voronoi tessellated sampf@! mode of failure. The fact that it appears before the sample
of polygons has been calculated in the case of monotonic ari@aches the plastic limit surface suggests that the appearance
quasistatic loading. It can be written in a simple form as ~ Of the instability is not completely determined by the macro-

scopic state.
_ ~ [[¢"do]]. The role of the microstructure on the strain localization
de=D(d)do+ —h 7 (34 has been intensely studied in the last y§@®@,24. Future
work is the creation of samples with different granular

The plastic response reflects the nonassociated featuresteitures—for example, changing the void ratio distributions
realistic soils. Here the yield direction and flow direction areand the polydispersity of the grains. Then we can deal with
linearly related to the rati@/p, and the plastic modulus the question that how does a change in the microstructure
obeys a power law relation with a weak pressure depenaffect the elastoplastic response and the strain localization.
dence. The classical parameters of elasticity—Young’s
modulus and Poisson’s ratio—are not material constants, be-
cause they d(_apend on the internalidgmage parameter. There- ACKNOWLEDGMENTS
fore, Eq.(34) is not complete, and it is necessary to include
the relation between the internal damage and the external We thank F. Darve, P. Vermeer, F. Kun, J. Astroand S.
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