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Abstract. Consider fMtg, a semi-stable family of compact, connected algebraic curves which
degenerate to a stable, noded curve M0. The uniformization theorem allows us to endow each
curve Mt in the family, as well as the limit curve M0 (after its nodes have been removed), with
its natural complete hyperbolic metric (i.e. constant negative curvature equal to ÿ1), so that we
are considering a degenerating family of compact hyperbolic Riemann surfaces. Assume that
M0 has k components and n nodes, so there are n families of geodesics whose lengths approach
zero under degeneration and k ÿ 1 families of eigenvalues of the Laplacian which approach
zero under degeneration. A problem which has received considerable attention is to compare
the rate at which the eigenvalues and the lengths of geodesics approach zero. In this paper, we
will use results from complex algebraic geometry and from heat kernel analysis to obtain a
precise relation involving the small eigenvalues, the short geodesics, and the period matrix of
the underlying complex curve Mt. Our method leads naturally to a general conjecture in the
setting of an arbitrary degenerating family of hyperbolic Riemann surfaces of ®nite volume.

2000 Mathematics Subject Classi®cation: 14H15, 32G15, 32G20, 35P15.

§1 Introduction

For a compact hyperbolic Riemann surface M, the spectrum Spec�DM� of the asso-
ciated Laplacian DM which acts on the space of smooth functions on M is discrete;
the sign of the Laplacian is chosen so that all eigenvalues are non-negative. If M is
a non-compact hyperbolic Riemann surface of ®nite volume, it is well-known (see,
for example, Chapter 6.9 of [He 83]) that the essential spectrum of the Laplacian
DM is contained in �1=4;y�, so the set Spec�DM�X �0; 1=4� consists only of discrete
eigenvalues. Further, for any ®nite volume surface M, the number of eigenvalues of
DM in �0; 1=4�, known as small eigenvalues, can be bounded by a constant depending
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only on the topological data of M (see Chapter X of [Ch 84]). Since one can con-
tinuously deform compact hyperbolic Riemann surfaces by pinching a ®nite number
of geodesics to zero so that the limiting surface is non-compact, it is natural to con-
sider the asymptotics of the spectrum of the associated family of Laplacians.

In [CC 89], it was shown that, in slightly imprecise terms, the family of small eigen-
values of a degenerating family fMtg of either compact or non-compact ®nite volume
surfaces varies continuously through degeneration (see also [He 90] and, for a proof
using heat kernels, see [HJL 97]). Since the dimension of the zero eigenspace of DM is
equal to the number of connected components of M, the dimension of this space can
increase through degeneration. Therefore, a particular problem is to consider the rate
at which the small eigenvalues approach zero under degeneration and, when possible,
compare the rate at which these small eigenvalues approach zero to other topological
data associated to the family of Riemann surfaces.

The purpose of this note is to study the rate at which the small eigenvalues approach
zero through degeneration. Our starting point is to utilize the ``double-pole'' conjec-
ture of the Polyakov string integrand, as proved in [BM 86]. From this, we shall
de®ne a function involving lengths of geodesics which are tending to zero under de-
generation, eigenvalues of the Laplacian which approach zero under degeneration,
and data from complex algebraic geometry, namely the determinant of the imaginary
part of the period matrix relative to a particular basis of holomorphic 1-forms and
the ®rst homology group. The main result of this paper is that our function has a
non-zero ®nite limit when considering a family of compact hyperbolic Riemann sur-
faces whose limit is a non-compact surface.

Since the problem in hand has received considerable attention, it is not possible, due
to space considerations, to give a complete discussion of other results which have
been obtained in this area. Instead, let us focus on related work yielding results most
similar to our main theorem. One of the ®rst results in the investigation of the ques-
tion under study is from [SWY 80], where the authors prove the following theorem.
Let M be a connected, compact hyperbolic Riemann surface of genus gV 2. For
1UmU 2gÿ 3, let Cm denote the class of all disjoint unions of simple closed curves
which divide a given compact surface M into m� 1 components. Let

Lm�M� � minfl�C� : C A Cmg;

where l�C� is the sum of the lengths of the component curves of C; let flj�M�g be
the sequence of eigenvalues of the Laplacian DM which acts on the space of smooth
functions on M, and order the eigenvalues so that

0 � l0�M� < l1�M�U l2�M�U � � � :

The main result of [SWY 80] asserts the existence of positive constants a1 and a2

depending solely on g such that

a1Lm�M�U lm�M�U a2Lm�M� for 1UmU 2gÿ 3;
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and

a1 U l2gÿ2�M�U a2;

see also Theorem 4.6, Chapter X, of [Ch 84]. Hence, the authors have stated upper
and lower bounds for small eigenvalues in terms of lengths of families of geodesics.

Di¨erent approaches to this problem of were employed in [DPRS 87] and [Bu 90],
where the authors related the problem in hand to eigenvalues on graphs. The reader
is referred to these articles for statements of results and discussion of techniques.

§2 Statement of the main result

We shall consider a family fMtg of compact, connected, hyperbolic Riemann sur-
faces of genus g which degenerates to a stable, noded Riemann surface M0 with n

nodes. Explicit constructions of a holomorphic family fMtg of compact Riemann
surfaces of genus g which degenerates to a given limit surface M0, which is a stable,
noded algebraic curve in the sense of Deligne-Mumford, are discussed throughout the
literature; see, for example, Chapter 3 of [Fa 73] or Section 2 of [Ma 76]. These
constructions yield holomorphic families parameterized over n copies of a slit punc-
tured disc Ds, which is obtained by taking the punctured disc D and removing a ray
connecting the removed origin to a boundary point, i.e.

Ds � fz A C j 0 < jzj < 1 and Arg�z�0 Qg
for a given, ®xed Q A �ÿp; p�. By `t! 0', we mean that no component tj of t is equal
to zero and that the vector t approaches zero along a ray in �Ds�n. (In particular, to
®x ideas, the reader could consider the case when all tj's are equal.)

Holomorphic families of Riemann surfaces can of course be de®ned over n copies of the
punctured disc fz A C j 0 < jzj < 1g. Indeed, they can be parametrized in a more general
way, described as follows. Let S be an open domain in Cn which admits an analytic
embedding into the stably compacti®ed moduli space having the following properties:

a) There is a point p A S such that the set Snfpg embeds into the interior of the
moduli space, that is, Snfpg embeds into the moduli space of non-singular Rie-
mann surfaces;

b) The domain S and the Deligne-Mumford boundary of the moduli space intersect
transversally at p.

One such explicit construction is given in Chapter 3 of [Fa 73] in the case when S is
the unit disc in C. This construction extends immediately to the setting where S is a
product of unit discs. A family of Riemann surfaces parameterized over the base S is
obtained by restricting the universal curve to S.

As a prerequisite to our arguments, we need to choose and ®x a basis of H1�Mt;Z�
for each t A S. In general, there is a well-de®ned basis of H1�Mt;Z� only if the num-
ber of components of the singular surface over p A S is one more than the dimension
of S. To avoid this complication, we restrict our attention to a sub-family of Rie-
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mann surfaces de®ned over an open, simply connected subset S 0 of Snfpg such that p

is in the closure (in S) of S 0. In particular, we restrict attention to the situation that S
is a product of unit discs Dn with p corresponding to the origin, and S 0 is a product
of slit punctured discs �Ds�n. We note here that a di¨erent choice of S 0 would, in
general, a¨ect the basis of H1�Mt;Z� under degeneration, and hence would alter the
constants C and C1 appearing in Lemma 5 and Lemma 8 respectively.

Given a holomorphic family fMtg parametrized over �Ds�n with a natural basis of
H1�Mt;Z� and corresponding dual basis of holomorphic 1-forms fzig let Wt be the
corresponding period matrix of Mt. We note that by a standard application of Rie-
mann's bilinear relations, the imaginary part of the period matrix Im�Wt� is sym-
metric and positive de®nite (see page 63 of [FK 92]).

If the limit surface M0 has k components, then the k ÿ 1 smallest non-zero eigenvalues
flj�t�g of the hyperbolic Laplacian DMt

on Mt approach zero. Let Psev�Mt� be the
product of the k ÿ 1 small eigenvalues which approach zero; if k � 1, then de®ne
Psev�Mt� to equal 1. Similarly, let Psge�Mt� be the product of the lengths of the n geodesics
whose lengths are approaching zero, which we call the pinching, or short, geodesics.

The main result of the paper is the following.

Theorem 1. Let fMtg be a family of compact, connected, hyperbolic Riemann surfaces

of genus g which degenerates to a stable, noded Riemann surface M0 with n nodes and
k components. Let Psev�Mt� be the product of the small eigenvalues on Mt, and let

Psge�Mt� be the product of the lengths of pinching geodesics on Mt. Let Wt be the

family of period matrices on Mt. Then the limit

lim
t!0

Psev�Mt�
Psge�Mt� �det Im�Wt��ÿ1

exists and is non-zero.

We remark here that our proof shows that the limiting value depends solely on the
limit surface M0 and the limit basis of H1�M0;Z�, and not on the particular degen-
eration t! 0 under consideration, cf. also the remarks after Corollary 2. In Conjec-
ture 9 we state precisely a conjecture as to the structure of the limiting value.

Note also that if n � k ÿ 1, then the results from Chapter 3 of [Fa 73], speci®cally
page 41, implies that det Im�Wt� has a non-zero ®nite limit. In this case, Theorem 1
immediately implies the following corollary (cf. Theorem 1.1 of [Bu 90] as well as the
main result of [SWY 80]):

Corollary 2. Under the conditions of Theorem 1, assume M0 has n nodes and n� 1
components. Then the limit

lim
t!0

Psev�Mt�
Psge�Mt�

exists and is non-zero.
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The factor det Im�Wt� is the only term in Theorem 1 which depends on the choice
of the slit disc Ds. However, the structure of the asymptotic behavior in t of
log�det Im�Wt�� is independent of the choice of the Ds. If one were to make a
di¨erent choice of slit discs, the change in the limit asserted in Theorem 1 would be
calculable in terms of the action of an associated element of the symplectic group
Spg�Z� which acts on the ®rst homology group of (possibly disconnected) the limit
surface M0 (see page 60 of [FK 92]).

Although we have de®ned all the terms used in the statements of the various results
necessary for our proof of Theorem 1, it is not possible to give a brief, thorough
discussion of all the necessary background material. We refer the reader to the works
cited in the bibliography for further details.

§3 Proof of main theorem

Theorem 1 will be proved by combining various results in the literature involv-
ing asymptotic behavior of determinants of Laplacians, determinants of bases of
holomorphic forms, the holomorphicity of the Polyakov string integrand, and the
``double-pole'' conjecture ®rst stated in [BK 86a] and [BK 86b], as proved in detail
in [BM 86]. For the convenience of the reader, we shall isolate the necessary results
and asymptotic formulae into separate lemmas. To begin, we need to establish nec-
essary notation.

Let M be a compact Riemann surface of genus gV 2 endowed with the unique Rie-
mannian metric of constant curvature equal to ÿ1 which is compatible with the
underlying complex structure. Let us consider a local variation in Mg. Let fzig be
a holomorphically varying family of holomorphic 1-forms, and let fjig be a hol-
omorphically varying family of holomorphic 2-forms on Mg in a neighborhood of M.
Let DM;k be the Laplacian which acts on the space of smooth k-forms on M, relative
to the hyperbolic metric, and let det�DM;k be the determinant of the Laplacian ob-
tained through zeta function regularization, whose de®nition we now recall. Let
flM;k; mg be the sequence of non-zero eigenvalues of the Laplacian DM;k, and de®ne
the zeta function

zM;k�s� �
P
m

lÿs
M;k; m:

The above series converges for all s A C with Re�s� su½ciently large. Using small
time asymptotics of the heat kernel associated to DM;k, one can prove that the zeta
function zM;k�s� has a meromorphic continuation to all s A C which is holomorphic
at s � 0 (see [MP 49]). With this, one de®nes the logarithm of the determinant of the
Laplacian by

log�det� DM;k� � ÿz 0M;k�0�:

Directly from formulae (15), (18) and the discussion after (19) in [BK 86a] we have
the following variational formula, which holds locally on Mg.
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Lemma 3. Let q denote the holomorphic derivative on Mg with respect to the natural

complex structure. Then, with notation as above, we have the local variational formula

qq log
det� DM;1

det�hzi; zji�
� �ÿ13 det� DM;2

det�hji; jji�

 !" #
� 0:

Let ZM�s� be the Selberg zeta function associated to the ®nite volume hyperbolic
Riemann surface M, which is de®ned for Re�s� > 1 by the Euler product

ZM�s� �
Qy
n�0

Q
l AP�M�

�1ÿ eÿ�s�n�l�;

where P�M� is the set of lengths of inconjugate, primitive closed geodesics. One
obtains a holomorphic continuation of ZM�s� to all s A C by the Selberg trace for-
mula (see [He 83]). Details concerning properties of the Selberg zeta function can be
found in a number of sources, beginning with [He 83] and the references therein.

Lemma 4. There exist universal constants c1 and c2 such that, with notation as above,
we have the relations

Z 0M�1� � c
gÿ1
1 det� DM;1 and ZM�2� � c

gÿ1
2 det� DM;2:

Proof. These relations were ®rst proved in [DP 86]: see formulae (3.11) and (3.8) of
that paper.

By combining the formulae in Lemma 3 and Lemma 4, we obtain the di¨erential
equation

�1� qq log
Z 0M�1�

det�hzi; zji�
� �ÿ13

ZM�2�
det�hji; jji�

 !" #
� 0:

Our main theorem will follow by studying (1).

In order to study (1) locally in Mg, one needs to choose a locally holomorphically
varying basis of holomorphic 1-forms fzig, which, by the Riemann-Roch theorem,
has (complex) dimension g, and a locally holomorphically varying basis of hol-
omorphic 2-forms fjig, which has dimension 3gÿ 3 (see page 80 of [FK 92]). We are
interested in solving (1) over the simply connected region �Ds�n, which parameterizes
a degenerating family of compact Riemann surfaces fMtg, and then studying the
behavior of the solution as t! 0.

Lemma 5. Let �Ds�n parameterize a semi-stable degenerating family of compact

hyperbolic Riemann surfaces. Then, with the above described families of holomorphic

1-forms and holomorphic 2-forms, there is a non-vanishing holomorphic function F

on �Ds�n such that
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Z 0M�1�
det�hzi; zji�
� �ÿ13

ZM�2�
det�hji; jji�

 !
� jF�t�j2:

Furthermore, there is some constant C (which depends on M0, on the choice of the basis

of holomorphic 2-forms fjig and the choice of local coordinates ftjg, but is independent

of the way t! 0 in �Ds�n) such that

logjF�t�j2 � ÿ2
Pn
j�1

logjtjj2 � C � o�1�:

as t! 0 in �Ds�n.

Proof. As stated above, results from Chapter 3 of [Fa 73] and [Ma 76] assert the
existence of bases of holomorphic 1-forms fzig and holomorphic 2-forms fjig which
vary holomorphically over �Ds�n such that the functions

det�hzi; zji� and det�hji; jji�

are well-de®ned over �Ds�n. Since the region �Ds�n is simply connected, one can solve
the di¨erential equation (1) over all of �Ds�n, and the solution of the equation is as
asserted, namely

�2� Z 0M�1�
det�hzi; zji�
� �ÿ13

ZM�2�
det�hji; jji�

 !
� jF �t�j2;

i.e., any pluri-harmonic function on simply connected region is the logarithm of the
square modulus of a non-vanishing holomorphic function. What remains is to verify
the claimed behavior of F as t! 0 in �Ds�n. This result is the ``double-pole'' conjec-
ture, ®rst stated in [BK 86a], [BK 86b] and later proved in detail in [BM 86]. Pre-
cisely, the assertion follows directly from (2.19), (3.4) and (4.27) of [BK 86b]; cf. (2),
(4), (5) in [BM 86].

Lemma 5 leads us to study the asymptotic behavior of the other functions which
appear in (2). We recall the asymptotic behavior of the Selberg zeta function over
�Ds�n, a problem ®rst studied in [Wo 86] and [He 90]. in the next lemma we use the
sharper form of these estimates obtained in [JL 97].

Lemma 6. With notation as above, there exist universal constants c1 and c2 such that

as t! 0 in �Ds�n we have the asymptotic formulae:

a) log Z 0Mt
�1� � ÿPn

j�1

p2

3lj
ÿ log Psge�Mt� � log Psev�Mt� � log Z 0M0

�1� � c1 � o�1�;

b) log ZMt
�2� � ÿPn

j�1

p2

3lj
ÿ 3 log Psge�Mt� � log ZM0

�2� � c2 � o�1�:
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Proof. Let PD�Mt� denote the set of lengths of inconjugate primitive pinching geo-
desics, counted with multiplicity. Set

ZMt
�s� � Qy

n�0

Q
l APD�Mt�

�1ÿ eÿ�s�n�l�:

Then for Re�s2 ÿ s� > ÿ1=4 we have, after taking logarithms and integrating the
formula given in Theorem 4.5 of [JL 97]

lim
t!0

ZMt
�s�

ZMt
�s�Psev;Mt

�s2 ÿ sÿ lMt;k�
� �

� ZM0
�s�

Psev;M0
�s2 ÿ sÿ lM0;k�

;

where Psev;Mt
denotes a product over the small eigenvalues on the surface Mt. To

complete the proof of Lemma 6, it su½ces to study the behavior of ZMt
�s� as t! 0

for s � 1 and s � 2. To do this, we recall the de®nition of the Dedekind Delta func-
tion (see e.g. [Se 73])

D�t� � e2pitQy
n�1

�1ÿ e2pint�24

which is valid whenever Im�t� > 0 and which satis®es the functional equation

D�t� � tÿ12D�ÿ1=t�:

Thus one can obtain the asymptotics of ZMt
�1� and ZMt

�2� via this functional
equation, taking t � il=2p. (Note that for each pinching geodesic, there are two in-
conjugate, primitive homology classes corresponding to the two di¨erent possible
orientations of the geodesic, so there are two such factors, i.e. two di¨erent Dedekind
Delta functions, which appear for each lj in l. This factor of 2 is necessary in the
calculations outlined above.)

In order to compare the asymptotic formulae in Lemma 5 and Lemma 6 we need the
following result.

Lemma 7. Under the degeneration t! 0 given above, we have

lj � �2p�2
ÿlogjtjj2

�O
1

�logjtjj�2
P
k

1=�logjtkj�2
 !

;

from which we obtain the asymptotic formula

�2p�2
lj
� ÿlogjtjj2 � o�1�:

J. F. Grotowski, J. Huntley, J. Jorgenson736

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 10/7/15 3:04 AM



Proof. The result is quoted directly from Example 4.3 of [Wo 90].

To complete the study of all quantities which appear in Lemma 3, we need the fol-
lowing formulae.

Lemma 8. With notation as above, we have:

a) the equality

det�hzi; zji�t � det Im�Wt�;

b) the asymptotic behavior under degeneration t! 0

log det�hji; jji�t � ÿ
Pn
j�1

�2p�2
lj
ÿ 3 log Psge�Mt� � C1 � o�1�;

where C1 depends on the basis of 2-forms fjig and the limit surface M0.

Proof. The ®rst assertion is a direct consequence of the classical Riemann bilinear
relations. The ®rst two terms in (b) follow directly from p. 634 of [Ma 76], where the
author obtained a partial asymptotic expansion (out to O�1�) of the determinant of
the matrix of inner products of holomorphic 2-forms, viz.

�3� log det�hji; jji�t � ÿ
Pn
j�1

�2p�2
lj
ÿ 3 log Psge�Mt� �O�1�:

The limitation of the method in [Ma 76] was the lack of a su½ciently precise
asymptotic expansion of the hyperbolic metric in neighborhoods of the pinching
geodesics, which was later obtained in [Wo 90] (see Expansion 0.1 and 4.2). Thus,
by combining these results, one can replace the error O�1� in (3) with the term
C1 � o�1�, which completes the proof of the lemma.

Proof (of Main Theorem). If we write Lemma 5 in terms of the length parameters via
Lemma 7, we obtain the formula

logjF�t�j2 �Pn
j�1

8p2

lj
� C1 � o�1�;

for some constant C1. In other words, the quantity

logjF�t�j2 ÿPn
j�1

8p2

lj

has a ®nite limit under degeneration. From Lemma 6(a) and Lemma 8(a) we get
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log
Z 0M�1�

det�hzi; zji�
� �

� ÿPn
j�1

p2

3lj

� �
ÿ log Psge�Mt� � log Psev�Mt�

ÿ log det Im�Wt� � C2 � o�1�

for some constant C2. From Lemma 6(b) and Lemma 8(b) we get

log
ZMt
�2�

det�hji; jji�t

 !
�Pn

j�1

11p2

3lj

� �
� C3 � o�1�

for some constant C3. Theorem 1 follows by combining these asymptotic formulae
and Lemma 5.

§4 Concluding remarks

A crucial ingredient in our proof of Theorem 1 is the ``double-pole'' conjecture
(Lemma 5). Although we quote the proof given in [BM 86], one should note that the
®rst proof of this conjecture was given in [Wo 87]; in that paper, the author estab-
lished the (weaker) asymptotic formula

logjF�t�j � ÿ2
Pn
j�1

logjtj j2 � o
Pn
j�1

logjtjj2
 !

by proving Lemma 6 and then using the known asymptotic formula for the matrix
of inner product of quadratic di¨erentials as given in [Ma 76] (see (3)) together with
previously quoted results from Chapter 3 of [Fa 73] concerning the order of growth
of the period matrix and the eigenvalue growth estimate from [SWY 80] quoted in the
introduction. The proof of Lemma 5 from [BM 86] involves methods from algebraic
geometry. In essence, our proof of Theorem 1 is based on the improvement in the
error term in Lemma 5 provided by [BM 86] over that which was proved in [Wo 87].

In addition, let us comment on the role of [Wo 90] in our paper. As noted in the
proof of Lemma 8(b), the results of [Ma 76] yield an error term of O�1� in Lemma
8(b), from which one can conclude that our function is simply bounded through
degeneration. However, [Wo 90] allows for the sharpening of Lemma 8(b), namely
that an asymptotic expansion out to o�1� exists, from which we conclude the same for
the logarithm of our function. It is interesting to note that this weaker version of
Theorem 1 (bounded through degeneration, not necessarily having a limit) is itself a
surprising relation between the short geodesics, the small eigenvalues, and the deter-
minant of the imaginary part of the period matrix.

A problem which remains is to consider Theorem 1 in the setting of degenerating
non-compact surfaces. Although the proof of Lemma 6 from [Wo 87] and [He 90]
holds only for degenerating families of compact hyperbolic Riemann surfaces,
the work in [JL 97] establishes asymptotic behavior of the Selberg zeta function
for degenerating non-compact surfaces. We believe that one can readily extend the
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remainder of the above lemmas to the non-compact setting to obtain a generalization
of Theorem 1 to the case of degenerating hyperbolic Riemann surfaces of ®nite vol-
ume, not necessarily non-compact. To go further, based on formal calculations when
considering families of both compact and non-compact surfaces, we can state the
following conjecture.

Conjecture 9. With notation as in Theorem 1,

lim
t!0

Psev�Mt�
Psge�Mt� �det Im�Wt��ÿ1 � p vol�M0�Q�p vol�Mj�� �det Im�W0��ÿ1:

In particular, in the case n � k ÿ 1,

lim
t!0

Psev�Mt�
Psge�Mt� �

p vol�M0�Q�p vol�Mj�� :

Consider the case where n � k ÿ 1 � 1, so that the single pinching geodesic separates
each surface in the family Mt. The limit surface M0 consists of two components, of
genra g1 and g2, and there is a single node obtained by identifying two points, one
from each component. Using the results in [Bu 90], it was computed in [Ji 93] that
one has the limit

lim
t!0

l1�t�
l�t� �

1

2p2

2gÿ 2

�2g1 ÿ 1��2g2 ÿ 1� ;

which veri®es Conjecture 9 in this case.

Finally, we remark that in [SWY 80], the authors obtain bounds on small eigenvalues
not just for the hyperbolic metric, but for general metrics of negative curvature. In
our setting, we can prove analogues of Theorem 1 and Corollary 2 for any family of
metrics obtained by a compactly supported conformal perturbation of the hyperbolic
metric such that the support of the perturbation remains bounded away from the
pinching geodesics. To do so, one simply uses the result obtained in the hyperbolic
case, namely Lemma 6 and the relation to the hyperbolic determinant of the Lap-
lacian as stated above, together with the Polyakov variation formula which relates
two determinants of the Laplacian under a conformal change of metric. Elementary
considerations immediately yield an extension of Lemma 6 to the non-hyperbolic
consideration (although we lose the interpretation of the determinant of the laplacian
in terms of special values of zeta functions, other than the spectral zeta function). The
other steps in the above arguments are identical to those in the hyperbolic case.
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