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We study the occupation numbers and number fluctuations of ultracold atoms in deep optical lattices for
finite-temperatures within the Bose-Hubbard model. Simple analytical expressions for the mean occupation
number and number fluctuations are obtained in the weak-hopping regime using an interpolation between
results from different perturbation approaches in the Mott-insulator and superfluid phases. With this approach
the magnitude of number fluctuations under a wide range of experimental conditions can be estimated and the
properties of the finite-temperature phase diagram can be studied. These analytical results are compared to
exact one-dimensional numerical calculations using a finite temperature variant of the density-matrix renor-
malization group(DMRG) method and found to have a high degree of accuracy. We find very good agreement,
also in the crossover “thermal” region. We also analyze the influence of finite temperature on the behavior of
the system in the vicinity of the zero-temperature phase transition, in one, two, and three dimensions.
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I. INTRODUCTION

The Bose-Hubbard(BH) model, first studied in the late
1980s[1], has long been considered a rather academic testing
ground for analytical as well as numerical approaches in
quantum statistical mechanics. Its most interesting feature is
the existence of a quantum phase transition[2] at zero tem-
perature between a superfluid and a Mott-insulating phase.
With recent advances in the experimental techniques of atom
trapping and optical lattices, the BH model has regained sub-
stantial practical importance. As noticed in[3], the BH
Hamiltonian applies to bosonic atoms trapped in a deep lat-
tice potential. Recent experiments with optical lattices[4]
have spectacularly confirmed the existence of the superfluid-
insulator transition. Since the Mott-phase is characterized by
a well-defined occupation number of the potential wells, the
phase transition has important potential applications in quan-
tum information processing[5,6] or Heisenberg-limited
matter-wave interferometry[7], both of which require optical
lattices with regular filling. Although techniques to eliminate
lattice defects have been designed[8], an important issue for
the implementation of these applications under experimental
conditions are fluctuations in the particle number per site at
finite T. In this work we analyze these fluctuations by study-
ing the finite-temperature BH model.

The zero-temperature BH model has been extensively in-
vestigated in the past by methods such as the Gutzwiller
projection ansatz[9], the strong-coupling expansion[10–13],
and Quantum Monte-Carlo[14–18], as well as with various
mean-field approaches(see, e.g.,[1,19,20]). A very powerful
numerical technique in the case of one spatial dimension is
the density matrix renormalization group(DMRG) [21],
which is used to calculate first- and second-order(i.e., am-
plitude and number-number) correlations[22]. Less attention
has been paid to the nonzero temperature properties of the
BH system. We note here that the quantum phase transition
exists in the strict sense only atT=0. For finiteT the com-
pressibility, i.e., the change of the particle number per site
with the chemical potential, is always nonzero and thus only

an approximate Mott phase exists. Furthermore, the transi-
tion between superfluid and insulating behavior passes
through an intermediate thermal region. Recently this ther-
mal crossover has been studied within a slave-boson formal-
ism [23]. In this work we study the finite-T properties using
a perturbative analytic approach in the strong-coupling limit,
deriving simple analytical expressions for the occupation
number and number fluctuations that cover both quantum
and thermal effects. We are able to verify these results nu-
merically in one spatial dimension by employing a finite-T
version of the DMRG approach[21]. We observe good
agreement between perturbative and DMRG results, includ-
ing the description of the thermal crossover between the su-
perfluid and insulating phases. Finally, we analyze the behav-
ior of the BH system in the vicinity of the zero-temperature
phase transition in 1D, 2D and 3D, including thermal effects
and characteristic scaling behavior in both the superfluid and
thermal regions.

II. FINITE-TEMPERATURE NUMBER FLUCTUATIONS
IN THE LIMIT OF STRONG CONFINEMENT

We consider ad-dimensional cubic lattice ofN nonlinear
oscillators characterized by the following Hamiltonian:

Ĥ − mN̂ = Ĥhop+ Ĥ0, s1d

wherem is the chemical potential,N̂=ok n̂k is the operator
of the total number of atoms, andn̂k= âk

†âk, with âk
†, âk being

the usual bosonic creation and annihilation pairs. The lattice
sites are numbered with ad-dimensional index k
=hk1,¯ ,kdj, while ok means summation over all lattice
sites. The first term,

Ĥhop= − Jo
kkll

sâk
†âl + âl

†âkd, s2d

on the right-hand-side of(1) is the hopping Hamiltonian,J
ù0; the sum extends over nearest neighbors and we assume
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cyclic boundary conditions. The second term on the right-

hand-side of(1), Ĥ0=ok Hnlsn̂kd, is a sum of the nonlinear
site Hamiltonians

Hnlsn̂kd =
U

2
n̂ksn̂k − 1d − mn̂k =

U

2
sn̂k − n̄d2 + const, s3d

where n̄=m /U+1/2 is thefilling. The quantum averaging
is defined in the standard manner ask¯l
=Z−1Trfe−bsĤ−mN̂ds¯dg, whereZ=Tr e−bsĤ−mN̂d is the statis-
tical sum andb=1/T is the inverse temperature. Note that
oscillator units with"=kB=1 are used throughout this paper.

While elaborate methods are needed if we wish to exactly
pinpoint lobe boundaries or calculate long-range correla-
tions, local quantities, such as the average number of atoms
and the number fluctuations, may be obtained at a lesser cost.
We develop such methods separately for the Mott insulator
and superfluid phases and then continue by deriving interpo-
lating formulae covering both regions.

A. The Mott insulator

To zero order in the hopping, the ground state of the Mott
insulator isu0lJ=0=pkun0lk, wheren0=roundsn̄d, cf. Eq. (3).
A first-order perturbative correction to this state will contain
all states that are found fromu0lJ=0 by moving one atom to a
neighboring site. All such “single-hop” states are eigenstates
of H0 with the same relative energyU, resulting in an espe-
cially simple expression for the ground state to first order in
J [24]. Up to second order we find

u0l = aS1 −
1

U
HhopDu0lJ=0 + OsHhop

2 d, s4d

wherea is a normalization factor. By direct calculation we
then find

k0un̂ku0l = n0,

dn2 = k0un̂k
2u0l − k0un̂ku0l2 =

2zJ2n0sn0 + 1d
U2 , s5d

wherez=2d is the number of nearest neighbors in the lattice.
These formulas are expected to be a good approximation
deep in the Mott-insulator phase, where a large energy gap
exists and the thermal occupation of higher levels can be
disregarded.

It is worth noting that, if staying within the perturbation
approach, these expressions cannot be extended to the ther-
modynamic limit N→`. To demonstrate this, consider the
following formula thus obtained for the normalization con-
stanta:

a2S1 +
1

U2k0uHhop
2 u0lD = 1,

k0uHhop
2 u0l = zJ2Nn0sn0 + 1d. s6d

These results hold only ifzJ2Nn0sn0+1d!U2, therefore
making the thermodynamic limit impossible.(This problem

went unnoticed in Ref.[24].) On the other hand, local(on-
site) quantities should become independent of the size of the
system when it becomes large enough(thermodynamic
limit ). In fact, our DMRG simulations show that Eq.(6)
equally holds ifzJ2Nn0sn0+1d*U2.

B. The superfluid

In the superfluid phase, one has to account for states with
the total number of quanta different fromNn0. In the limit of
zero hopping, an arbitrary eigenstate is a product state,unl
=pkunklk. With n̄ close to a half integer, it suffices to keep
only two states for each site,un0l and un0+1l, effectively
turning bosons into fermions[25]. We shall call the subspace
of states withnk=n0,n0+1, the f-subspace. In this subspace
we introduce standard fermionic creation and annihilation
operatorsĉkĉl

†+ ĉl
†ĉk=dkl. To make the relation between the

bosonic and fermionic states unambiguous, we assume that
all sites are enumerated in a particular linear order, and that
this order is always maintained when adding “fermions”
to the system. For example for a bosonic state
with n0+1 bosons at first two sites andn0 bosons at all
others, un0+1,n0+1,n0,¯ ,n0l= ĉ2

†ĉ1
†un0,n0,n0,¯ ,n0l=

−ĉ1
†ĉ2

†un0,n0,n0,¯ ,n0l. This eliminates the sign uncertainty
emerging from anticommutivity of fermionic operators at
different sites. In 1D, it is then straightforward to check that
within the f-subspace,

Ĥ − mN̂ = DEo
k

ĉk
†ĉk − Jsn0 + 1do

kkll
sĉk

†ĉl + ĉl
†ĉkd + const,

s7d

where DE=Us1/2+n0− n̄d=Un0−m. Furthermore, all local
(on-site) averages may be reexpressed in fermionic terms by
simply replacingn̂k→ ĉk

†ĉk+n0. The latter replacement holds
irrespective of dimensionality, this unfortunately being not
the case for Eq.(7). The reason is that confining bosons to
two local states introduces pseudofermions(spins) rather
than fermions proper: we find fermionic(anticommuting) be-
havior at each site while retaining bosonic(commuting) re-
lations between sites. On the other hand, the distinction be-
tween fermions and pseudofermions ceases to be of
importance if their density is low. This means that Eq.(7) is
exact at the phase transition points, remaining a valid ap-
proximation close to these. With this reservation, projection
onto the f-subspace makes the Hamiltonian linear so it can
be directly diagonalized(omitting the additive constant)

Ĥ − mN̂ = o
l

sEwl1
+ ¯ + Ewld

d f̂ l
†f̂ l , s8d

where l =hl1,¯ , ldj, wl =2psl −1d /N, Ew=DE/d−2Jsn0

+1dcosw, and f̂ l are related toĉk by ad-dimensional discrete
Fourier transform(see Appendix A for details). The average
on-site particle number and number fluctuations are then ex-
pressed by the average number of fermions per site,Dn
=kĉk

†ĉkl, as

kn̂kl = n0 + Dn,

kn̂k
2l = ksn0 + ĉk

†ĉkd2l = n0
2 + s2n0 + 1dDn,
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dn2 = kn̂k
2l − kn̂kl2 = Dns1 − Dnd. s9d

For Dn we readily findsb=1/Td

Dn = Sp
s=1

d E
0

2p dws

2p
D 1

1 + expbos=1

d
Ews

. s10d

This formula holds in the thermodynamic limitN→`; in
more than 1D, it also implies that eitherDn!1 or 1−Dn
!1.

Interpolating between the insulator and the superfluid

The relations(5), (9), and(10) are found under mutually
exclusive conditions. Equation(5) follows if we assume that
only the ground state is important and retain the first nonva-
nishing correction to its wave function; with only one level
being important, temperature is of no concern. Conversely,
Eqs.(9) and (10) ignore corrections to the eigenstate wave-
functions yet account for energy shifts; with many levels
being accounted for, thermal properties are retained. The
question we now address is whether a relation can be derived
that covers both insulator and superfluid regions, plus, even
more importantly, the crossover region(which is naturally
termed the thermal region). It would be natural to include
perturbative corrections to all “fermionic” states, but this re-
sults in some intractable algebra. It turns out, however, that
for J!U, simple interpolating formulas between the two
above results may be found that apply not only to the insu-
lator and superfluid regions, but also to the thermal crossover
region between them. Namely,

kn̂kl = n0 + Dn,

dn2 = Dns1 − Dnd +
2zJ2sn0 + Dndsn0 + Dn + 1d

U2 , s11d

whereDn is given by Eq.(10). The idea behind(11) is rela-
tively simple: for smallJ, the quantum contribution(5) is
negligible in the thermal and(even more so) the superfluid
regions, while in the insulator region,Dn<0 (or 1), so that
(11) coincides with(5).

III. RESULTS AND DISCUSSION

A. Comparison with a 1D DMRG calculation

To verify these results in one spatial dimension, we use a
finite-temperature version of the DMRG approach[21]. At
the core of our approach is the following block-doubling
algorithm: assuming that we know the optimized states for a
block of lengthL, we can then find eigenstates of a ring of
three such blocks(recall that we use periodic boundary con-
ditions) and calculate the thermalr-matrix. Tracing over the
states of one block yields ther-matrix of a double-sized
block. Diagonalizing thisr-matrix and taking a certain num-
ber of eigenstates corresponding to the largest eigenvalues
results in the optimized basis for a block of length 2L. The
loss of probability is assessed by summing the neglected
eigenvalues; if this loss becomes unacceptable the iterations
are stopped. To initiate the algorithm, we start from a ring of

L0+L8 oscillators, and then trace out the states ofL8 oscilla-
tors, resulting in an optimized basis for a block ofL0 sites.
We found this to yield much better results than starting from
an open-ended block by simply selecting its lowest eigen-
states. The full details of the algorithm will be discussed
elsewhere.

A word of caution is necessary here. While borrowing
much of the technical side of the DMRG method, our ap-
proach is conceptually different, the difference residing in
the importance of temperature. Similar to other
renormalization-group methods, DMRG relies on the fact
that the dimension of the physically relevant subspace of the
full Hilbert space does not grow with the system size. For
finite temperatures this can only be true until the thermal
correlation length is reached. Consequently we only grow the
block up to a size comparable to the thermal correlation
length and must simply stop as soon as the probability loss
becomes unacceptable. We use periodic rather than open
boundary conditions based on the same argument. For the
temperatures considered here, the maximum block length
reached in this way is long enough so that finite-size effects
are unimportant. For higher temperatures, a combination of
stochastic and DMRG techniques can be used, which we are
developing and will present in a later work.

The results of our calculations using both DMRG and
perturbative approaches in 1D are summarized in Fig. 1,
where we plot average on-site numbers and number fluctua-
tions for three cross sections along them axis, for J
=0.01U , 0.02U , 0.05U. Each plot shows data for two tem-
peratures:T=0.01U and T=0.001U. The top and bottom
rows of plots represent, respectively, the on-site population
kn̂kl and number fluctuationsdn2=kn̂k

2l−kn̂kl2. To gain more
insight into the thermal region, the middle row of plots
shows the differenceDn between the on-site population and
the nearest integer value. AtT=0.001U, the insulator region
is clearly defined byDn abruptly falling to zero. AtT
=0.01U, Dn is a smooth function vanishing asm goes deeper
into the insulator region. A similar effect is seen for the on-
site number fluctuations. AtT=0.001U, the phase transition
points are well defined, whereas atT=0.01U the boundaries
of the insulator phase are “eroded” so thatdn2 is a visually
smooth function ofm.

Comparing the DMRG to perturbative results, we see that
the latter provide a surprisingly good description of the quan-
tities in question. ForJ=0.01U (left column of the plots), we
find a very good agreement between the perturbative and
DMRG results. This agreement is good forJ=0.02U (center
column) becoming only fair atJ=0.05U (right column).
Note that, even in the latter case, the error is mostly in po-
sitioning the thermal region between the insulator and super-
fluid phases. Away from the thermal region, the results of the
perturbative approach show good agreement with the DMRG
results, both for the superfluid and for the insulator.

B. Behavior of Dn in the vicinity of zero-temperature
phase transition

1. Making Dn computable in 2D and 3D

Equation(10) expressesDn as ad-dimensional integral,
which is of little use in numerics except in 1D. Luckily,
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irrespective of dimensionality, this integral can be replaced
by one that is 1D. As shown in Appendix B,

Dn =
1

2
+ PE

−`

+` dy

2pi
e−iyDE/s J0

dsyd
k sinh y/k

, s12d

whereP denotes the principal value,J0 is the Bessel func-
tion, s=2Jsn0+1d, and k=bs /p=2bJsn0+1d /p. Being a
Fourier-transform of a singular function, this result is also
not quite suitable for numerical use. To remove the singular-
ity, we note thatJ0s0d=1; adding and subtracting 1 fromJ0

d

yields:

Dn =
1

1 + ebDE +E
−`

+` dy

2pi
e−iyDE/s J0

dsyd − 1

k sinh y/k
. s13d

The integrand here is a continuous function vanishing expo-
nentially aty= ±`, which makes the numerics much easier.
Nevertheless, computing this integral for large values ofk
remains a challenge. Some details on using relations(12) and
(13) ask→` may be found in the appendix.

2. The limit of zero temperature and thermal effects
at the phase transition

Having expressedDn in a computable form, we now wish
to derive some analytic approximations. We note that the

inital Eq. (10) is more suitable for this purpose than(13).
Firstly, consider the limit of zero temperature. AsT→0, the
integrand in Eq.(10) turns into a step function, so that

DnuT=0 = Sp
s=1

d E
0

2p dws

2p
DuS− o

s=1

d

EwsD . s14d

This integral equals 0 unlessuDEu,ds, or, equivalently,

uUn0 − mu , 2dJsn0 + 1d. s15d

This condition defines a superfluid “bay” situated between
the insulator lobes with the filling factorsn0 andn0+1. The
bay boundaries are atm±=Un0±2dJsn0+1d. In Fig. 2, we
plot the insulator lobe boundaries as predicted by our ap-
proach. The insert shows those in 2D found by means of the
strong-coupling expansion[11]. Our results are in obvious
agreement with the latter, especially for smaller values of
J/U. This is also the case for the phase diagrams in 1D as
well as in the limit of infinite number of dimensions.(See,
e.g., [11] for results of the strong-coupling expansion and
Quantum Monte-Carlo.)

At m<m− (for example), we can use the approximation
cosws<1−ws

2/2 in Eq. (14), making the integral, up to a
factor, the volume of ad-dimensional sphere. We thus obtain

FIG. 1. Average number and number fluctuations versusm for two temperaturessT=0.01U ,0.001Ud and three values of the hopping
parametersJ=0.01U ,0.02U ,0.05Ud. Top row, on-site population,n=kn̂kl; middle row, differenceDn betweenkn̂l and the nearest integer;
bottom row, on-site number fluctuationsdn2=kn̂k

2l−kn̂kl2. The lines show perturbative resultssT=0.001U , solid line; T
=0.01U , dashed lined; the markers show results of DMRG calculationssT=0.001U , diamonds;T=0.01U , circlesd. Open markers are used
for Dn,0.
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DnuT=0,m<m−
= 5 2

dGsd/2dF m − m−

4pJsn0 + 1dGd/2

, m . m−,

0, m ø m−.

s16d

Figure 3 shows the overall behavior ofDn when m crosses
the superfluid region. The upper plot corresponds toT
=0.001 sk=12.73d and the bottom one toT=0.01 sk
=1.273d. Each plot showsDn as a function ofm in 1D, 2D,
and 3D. More specifically, we plotDn versus a scaled and
shifted variablej=m /2dJsn0+1d−n0; the zero temperature
phase transition points and the center of the superfuid bay
are atj= ±1 andj=0, respectively. Figure 4 is a blowup of
Fig. 3 in a vicinity of the phase transition point atj=−1. As
can be seen from the figures, the overall behavior ofDn as a
function of m changes dramatically, depending on both tem-
perature and dimensionality. AtT=0.001, the phase transi-
tion remains qualitatively defined, as well as the characteris-
tic sm−m−dd/2 scaling ofDn at the phase-transition point. At
T=0.01, all these details are washed out. Another observa-
tion is that thermal effects are more pronounced for lower
dimensionality; e.g., atT=0.001, the thermal effects are
small except in 1D.

Comparing our results to Ref.[23] we see a number of
qualitative as well as quantitative differences. In our ap-
proach, the insulator and superfluid phases exist only at zero
temperature. At a finite temperature, the superfluid, insulator,
and thermal regions are defined only qualitatively. Further-
more, there is no critical temperature of any kind. Thermal
effects “switch on” smoothly; strictly speaking, they are not
negligible unless the temperature is exactly zero. This ap-
pears to be in contrast to Fig. 4 of Ref.[23], which shows a
critical temperature for a superfluid-normal phase-transition.
Another discrepancy is with, e.g., Fig. 10 of the same work,
which shows that the density depends onU for the insulator

state. Understanding what causes these discrepansies is a
subject for further work.

3. The thermal region

Another case when Eq.(10) may be approximated, result-
ing in additional physical insight, is the “thermal tail” ofDn
when m goes inside an insulator lobe. To be specific, con-
sider the lobe situated below the superfluid bay, with filling
n0, which corresponds tom,m−. At T=0, in this region
Dn=0. If TÞ0, but is large enough, then form,m− we can
make the approximation:

1

1 + expbos=1

d
Ews

< expS− bo
s=1

d

EwsD . s17d

The integrand being thus factorized, the integral(10) is eas-
ily calculated, resulting in

FIG. 2. Phase diagram of the BH model as predicted by our
approach. The dimensionless variablesdJ/U and m /U are chosen
so as to make the diagram independent of dimensionality(this is an
artifact of our approximations). The inset shows the same in 2D
found by means of the strong-coupling expansion in Ref.[11]. The
scale of the inset matches that of the main graph.

FIG. 3. The overall behavior ofDn as a function ofm, in 1D,
2D, and 3D, for two temperatures:T=0.001U (top) and T=0.01U
(bottom). We plot Dn versus a scaled and shifted variable,j
=m /2dJsn0+1d−n0 ; the zero-temperature phase transition points
and the center of the superfluid bay are atj= ±1 andj=0, respec-
tively. For T=0.01U, all traces of the phase transition are erased by
thermal effects. Change of the line style(solid to dotted) serves to
remind the reader that in 2D and 3D our results apply only ifDn is
small or close to 1; the same applies to Figs. 4 and 5.
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DnuTÞ0,m,m− = e−bsUn0−mdJ0
df2ibJsn0 + 1dg. s18d

This result is illustrated in Fig. 5 where we plot the results
of a direct calculation ofDn, together with the asymptotic
relation (18), for the same values of parameters as in
Figs. 3 and 4.

IV. SUMMARY

We have developed a simple perturbative approach to the
finite-temperature BH model, allowing one to estimate such
important quantities as the average number of bosons per site
and its fluctuations. This approach gives good results also in
the “thermal” region around the(zero-temperature) phase
transition point. In 1D, we were able to verify this approach
by a finite-temperature version of the density matrix renor-
malization group technique. A very good agreement was
found, especially in the limit of strong confinement.
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APPENDIX A: DIAGONALIZING THE HOPPING
OPERATOR

We start from writing[cf. Eqs.(2) and (7)],

o
kkll

sĉk
†ĉl + ĉl

†ĉkd = o
k,l

ĉk
†Akl

sddĉl . sA1d

In 1D, Akl
s1d=1 if k= l ±1smod Nd, and 0 otherwise. This ma-

trix is diagonalized by the discrete Fourier-transform,

Ukl =
1

ÎN
exp

2pisk − 1dsl − 1d
N

, sA2d

so that

FIG. 4. Dn as a function ofm in the vicinity of the zero-
temperature phase transition point,j=−1. (See the caption to Fig. 3
for more details.) Solid lines are as in Fig. 3; dashed lines represent
the zero-temperature approximation,sm−m−dd/2, cf. Eq. (16). The
temperature effects decrease with increasing dimensionality.

FIG. 5. The “thermal tail” ofDn as a function ofm. Solid lines
are as in Fig. 3; dashed lines represent the asymptotic approxima-
tion, Eq. (18). The zero-temperature phase transition point is atj
=−1. (See the caption to Fig. 3 for more details.) Note that the “tail”
seemingly vanishing faster for larger dimensionality is an artifact of
using the scaled variablej.
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fUAs1dU†gkl = 2dkl cos
2psl − 1d

N
, sA3d

and

o
kkll

sĉk
†ĉl + ĉl

†ĉkd = o
l=1

N

2f̂ l
†f̂ l cos

2psl − 1d
N

, sA4d

where f̂ l =ok=1
N Ulkĉk. In higher dimensionalities,

As2d = As1d
^ I + I ^ As1d,

As3d = As1d
^ I ^ I + I ^ As1d

^ I + I ^ I ^ As1d,

sA5d

and so on. In dimensionalityd the hopping term is diagonal-
ized by thed-dimensional discrete Fourier-transform,Usdd

=U ^ U ^ ¯ ^ U sd timesd, leading to Eq.(8).

APPENDIX B: EVALUATING EQ. (10) FOR AN
ARBITRARY NUMBER OF DIMENSIONS

We rewrite Eq.(10) as [with s=2Jsn0+1d],

Dn =E
−`

+` dx

1 + ebxSp
s=1

d E
0

2p dws

2p
DdSx − DE + so

s=1

d

coswsD .

sB1d

Expressing the Dirac delta in the standard way as a Fourier-
transform,

dSx − DE + so
s=1

d

coswsD =E
−`

+` dy

2p
eiysx−DE+sos=1

d cos wsd,

sB2d

allows us to calculate the integrals over thew’s,

E
0

2p dws

2p
eiys cos ws = J0ssyd, sB3d

whereJ0 is the Bessel function. Finally, using the fact that
(with P denoting the principal value),

E
−`

+` dx eixy

1 + ebx =
p

ib
P 1

sinh py/b
+ pdsyd, sB4d

and with the change of variabley→y/s, we arrive at

Dn =
1

2
+ PE

−`

+` dy

2pi
e−iyDE/s J0

dsyd
k sinh y/k

, sB5d

wherek=bs /p=2bJsn0+1d /p. Furthermore, removing the
singularity by adding and subtracting 1 fromJ0

d yields

Dn =
1

1 + ebDE +E
−`

+` dy

2pi
e−iyDE/s J0

dsyd − 1

k sinh y/k
. sB6d

The integrand here,

J0
dsyd − 1

sinh y/k
, sB7d

is continuous while vanishing exponentially aty= ±`.
In the limit of extremely low temperatures, the first term

in Eq. (B6) becomes close to a step function. This near-
singularity is an artifact and hence has to be compensated by
a similar near-singularity in the second term. However, this
only affects the calculation ofDn in the vicinity of DE=0. In
this region, our results apply only in 1D;Dn aroundDE=0 is
featureless and exhibits very little change with temperature,
thus being of no physical interest(cf., Fig. 5). What is im-
portant is that, in the vicinity of the phase transition, Eq.
(B6) works well for all temperatures, even whenk→`.
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