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Universal quantum circuit for two-qubit transformations with three controlled- NOT gates
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We consider quantum circuits made of controllealr (cNOT) gates and single-qubit unitary gates and look
for constructions that minimize the use @fioT gates. We show, by means of an explicit quantum circuit, that
threecNOT gates are necessary and sufficient in order to implement an arbitrary unitary transformation of two
qubits. We also identify the subset of two-qubit gates that can be performed with onlgnwmogates and
provide a simple characterization for them.
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In the context of establishing the existence of universahately, there is a general lack of results concerning how to
sets of two-qubit gates for quantum computatioi], optimally decompos&) e U(2") into cNOT and single-qubit
Barenco et al[2] showed that any unitary transformation on gates.

n qubits can be decomposed into a sequence of controlled- In this paper we describe universalquantum circuit for
NOT (CcNOT) and single-qubit gates. Since then it is customarytwo-qubit unitary transformation) e SU(4) consisting of

in quantum information to useNoT and single-qubit gates in  Only threecNOT gates and four rounds of local gates. The
order to express any unitary transformation in the quantunghortest circuit previously known requires fookoT gates
circuit model[3]. As a result, theeNoT gate has acquired a [9]- In addition, we show that threenoT gates are necessary
special status as the standard hallmark of multiqubit controli® Order to perform a generic two-qubit gate, thereby estab-

Among quantum information experimentalists, achieving allshing the optimality of the proposed universal quantum cir-
CNOT gate is one of the most coveted god. In turn cuit. We also characterize the subset of two-qubit gates

exhaustive theoretical studies on the optimal use of tWOyvhose implementation requires only taNoT gates and

ubit interactions and of entanaling aates to perforaNaT construct an alternative, smaller quantum circuit for them. In
gate have been conductfs-§| ging g P this way we give a complete classification of two-qubit gates

. _ . in terms of theircNOT complexity.

Here we shall consider the construction of quantum cir- We consider two qubits, labelgdlandB, and an arbitrary
cuits t_hat minimize the use afNOT gates. Such optlmal_ con- unitary transformatiot) e SU(4). Letu, ,v| e SU(2) denote
structions are relevant in two separated scenarios. First, theé{ngle-qubit unitary gates acting, respectively, on qulits

play a role in determining the algorithmic complexity of a andB, and letU cyor denote acNOT gate that has qubi as
given quantum computation, that is, the number of elemenzonirol and qubiB as target,

tary gates required to implement the correspondirgubit

unltgry evolution. A most remarkaple result ofnREZ] is the UcnotZMa® |7nYg="m)a® |?nem)sg, m.n=0,1,
explicit decomposition of an arbitrary) e U(2") as a se- (1)
guence ofcNOT and single-qubit gates. This general con-

struction, however, unavoidably requires eXp¢NOT gates, wherei®j denotes sum modulo 2 ardo) (|21)) is the

which renders the resulting quantum circuit inefficient, while gjgenvector with eigenvalue 1) of the third of the Pauli
the transformations relevant for quantum computation argnatrices

precisely those that can be decomposed into only poly(
elementary gates. Thus, given a unitary transformation 0o 1 0 —i 1 0

e U(2"), in quantum computation it is important to deter- e _( ) y ( ) o, ( ) 2)
mine how manycNOT gates are required for its implementa-

tion.

Algorithmic complexity is typically concerned with the Theorem 1An arbitrary unitary gaté) e SU(4) can be de-
asymptotic scaling of computational resources, and thus witkomposed in terms of threvoT gates and single-qubit uni-
gates involving a large number of qubits. Here, instead, weary gatesu; ,v, (to be specified belopas
shall analyze unitary gates of just two qubitss 2. Quan-

tum circuits that minimize the use aNOT gates are also of . . . .

interest in this case, but for another, more practical reason. In ul =

present day experiments, two-qubit gates asakeT gate ©)
are implemented in an imperfect way due to technological

limitations. Therefore, in order to minimize the probability

that an error occurs in performing a certain unitary evolutionAn important element in order to prove Theorem 1 is the

Uonn=2,3, ... qubits, it is instrumental that the number of decomposition ofU € SU(4) derived by Khanejat al. [5]
times the qubits interact is as small as possible. Unfortuand Krauset al.[10], namely,

1 0 ) “lo -1
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— — u, ul |7mn>‘>e_i)\mn| Y- (15
U — -iH 4
[ . . .
— v, vy ) Next we describe a way to check this fact. The fifsft-
mosh CNOT in Eg. (6) maps the Bell basis into a product
H=h,o,® oy +hyo,®0y+h,0,00,, (5)  basis, namely,
wherew/4=h,=h,=|h,|. An explicit protocol to extract the | Y — M) A® |2n)5 , (16)

single-qubit gatesi;,v,U;,v,€ SU(2) and the coefficients
hy,hy,h,e R from U VY?HS presented in Refl10]. In what  \\here X0)=(|20)+ |21))/V2, |*1)=(]?0)—|?1))/y2. The
follows we show thae™" can be further decomposed as  |ocal transformationsu,®v, introduce convenient phases

e_i‘f)mn’
— — u, ugj w
-iH Ju—
e | — - (6)
= v D v D w br=(—1)" hx+g +(=1)",, (17)
where
into this product basis, and map the latter into a new product
i _ . basis,
Upy= E(O_X_i_ a_z)e—l(hx—'n'/4)a'x’ UZEe_IhZUZ, (7) '
"m)a®|*n)g—e~'Ymn?m) 1@ |*n)g . (18)
Ug= __i(a +a,), ve=ely: (8) The secondNOT gate exchanges only two elements of the
N ’ new product basifrecall Eq.(1)],
| —ioy ?1)a®|0)g+|*1)a®|*1)p, (19
w= 7 9
after which local gatesi;®@uv4 switch back to the/*m),
so thatu, anduv, in Eq. (3) are ®|*n)g basis and introduce more phaséé"’r'r,
U4:U£W, U4:U‘,1W71. (10) ¢';E(_ 1)n+lhy. (20)

Let us introduce the Bell basis _ ) .
The rightmostcNoT in Eq. (6) maps the basiE'm),®|n)g

1 1 back into the original Bell basis,
=—(|00)+|11)), =— (|01 +10)),
| Yoo \/§(| ) +111), | vor) \/§(| )+110))

m)a® "N)e— | Ymn), (21)
1 1 : t
=-—(]00)—|11)), =-"—(]01)—|10)), and the final local gatew@w' exchange vectorpy,;o and
719 \/§(| =11 ) \/§(| )~110) |v11) in order to undo the permutatigid9) [and also add a

/2 phase to each of thgmso that circuit(6) implements
where|mn) denoteg’m),®|?n)g . OperatoH in Eq.(5) can  transformation(15). This finishes the proof of Theorem 1.
be rewritten as As shown in Ref.[2], a nontrivial subset of two-qubit

unitary transformations, namely, control-V transformations

1
_ for Ve U(2), can beperformed by using only twa@NOT
H_m;:() Nl Yo (Yl (1) gates and single-qubit gates. For these gates, one fipds
=h,=0 in its decomposition(4) and (5), so that they are
with A\, defined as locally equivalent to a control-phase gate ,
Noo=hy—hy+h,,  No;=hy+hy—h,, (12 U(P|zm>A®|zn>B:efimn¢|zm>A®|zn>B, (22)

=—h,+h,+ =—h,—h,—h,. . .
o= Mt hyth, - A= —hy=hy—h, (13 for an arbitrary phase. Theorem 2 characterizes the set of

Thene™ " pecomes all two-qubit transformations that can be performed with
only two CNOT gates. They correspond lg=0 in Egs.(4)
_ 1 _ and (5), and are therefore a subset of zero measure in the
e iH= > . e mn y M Vel - (14)  space of two-qubit gates.
m,n=

Theorem 2A two-qubit gateU e SU(4) can be decom-
Direct inspection shows that circui6) indeed acts on the Posed in terms of twaNOT gates and single-qubit gates
Bell basis| ym,) as[11] u,v, as
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— — W U, U3 —
U| = — — —

— — ViU Ve[ Vs

(23

if and only if h,=0 in its decomposEorM) and (5).

First we prove that ih,=0, thenU can be decomposed

as in Eq.(23). Decomposition4) and(5) becomes
—_ u _us
Ul = = | = (24)
-1 vy v
H=h, o,®@0,+hy oy®0,, h=h=0. (25
One can now express"ﬁ as
e
P S ey B N o I
e vz \ w

wherew has been defined in E¢9) and whereu; ,u/ ,v; v/
in Egs.(23) and(24) are related through

V=W, Ug=usw, vgz=viw'

(27)

ur=w'uy,
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TABLE |. Number of cNOT gates necessary and sufficient for
the implementation of a two-qubit gatée SU(2), interms of the
vector of coefficients ff ,h, ,h,) of Eqg. (5), where n/4=h,=h,
=|h,|. We useh™ andh™ to denoteh>0 and|h|#0, respectively.

(hy,hy,hy) CNOT complexity
(7r/4,0,0) 1
(hy ,hy,0)? 2
(hy \hy ,h7) 3

%Except for (w/4,0,0).

it is clear that the leftmost and rightmost exponentials in Egs.
(29) and (30) commute with the contiguousNOT gates in

circuit (26). This implies that thén, ,h, ,h, parameters ol
are the same as those of the gate,

Ucnor(e ™' “*®€'A2)U cyor- (32

But up to local gates this is circui26) with a=h, and g

=h,. ThereforeU hash,=0 in the decompositioi4) and
(5), completing the proof of Theorem 2.

Motivated by current experimental difficulties in the real-
ization of CNOT gates, in this work we have analyzed the
construction of quantum circuits that achieve two-qubit uni-
tary transformations by using the smallest numbecebT
gates possible. For an arbitranyqubit unitary transforma-

The validity of circuit (26) can be checked by reasoning tion U e U(2"), both characterizing its exacNoT complex-
similarly as we did in the proof of Theorem 1. In particular, jty and constructing an optimal quantum circuit seem very

the first local gates/\®wg permute vectorsy;o) and| y;).
Then the leftmostNoOT gate maps the Bell basjy,,,) into
the product basiEm),®|?n)s . Gatesu,® v, introduce con-
venient phases™'mn to |*m),®|?n)g,

Pmn=(— 1)mhx_(_1)nhy-

Finally, the rightmostNoOT ande®w;§ gates map the local

(28)

basis back into the original Bell basis. This shows thatEny

with h,=0 in its decompositiori4) and (5) can be imple-
mented with local gates and twaNOT gates.
To prove the converse we will argue that circ(#6) is,

up to local unitary gates, the most general form of a gatea

implementable with twa@NOT gates, as that in E¢23). The

initial and final gatesu;,v;,Us,v5 in circuit (23) do not

ambitious tasks, even by numerical analysis. Surprisingly, in
the case of two-qubit transformations it has been possible to
characterize thenoT complexity of an arbitrary gate ana-
Iytically, and to express this complexity just in terms of the
coefficients fi,,hy,h,) of the decomposition presented in
[5,10], as summarized in Table I.

A possible extension of the present analysis is to also
optimize the use of single-qubit unitary transformations in
the above constructions. However, in order to perform this
optimization, a sensible cost function for single-qubit gates is
first required. In a given experimental setup it could well
happen that rotations in the Bloch sphere around, say,xaxis
re simpler to perform than around axisor it could be
easier to perform rotations by a fixed angle and axis than by
arbitrary ones. All these details need to be properly reflected
in a cost function, to be optimized in order to obtain the most

change the parameteng,h, ,h, for U and may be ignored. convenient quantum circuit for the given experimental setup.
As a rotation on the Bloch sphere, single-qubit gates can beiowever, the following two facts in such optimization are
written as a series of three rotations around two perpendlcqndependem of the specific experimental detdils15 inde-

lar axes. In particular we may write

UZ =e" ial”’ze7 i aoya~ iathZ,

(29

0_2: e*ibloxeiﬁazefibla'x (30)
(see, for example, Theorem 4.1 in RE3]). Recalling that
the cNOT gate(1) can be expressed as

|+ o, | —a,
R0y,

UCNOT:T® +T (31

pendent angles must be specified by means of local opera-
tions in the case of an arbitrary transformatidre SU(4),

and (i) at least three of these angles correspond to local
gates that are performed between the tlereT gates.

Finally, one may also seek to generalize the present re-
sults by considering theNoT complexity of specifictrans-
formations ofn>2 qubits. In the case of three qubits, for
instance, the Toffoli gate is known to require at most six
CNOT gates[3], but only five cNOT gates have so far been
proved to be necessaf$?2]. In order to study this problem,
techniques different from the ones employed in this work
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