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Universal quantum circuit for two-qubit transformations with three controlled- NOT gates
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We consider quantum circuits made of controlled-NOT ~CNOT! gates and single-qubit unitary gates and look
for constructions that minimize the use ofCNOT gates. We show, by means of an explicit quantum circuit, that
threeCNOT gates are necessary and sufficient in order to implement an arbitrary unitary transformation of two
qubits. We also identify the subset of two-qubit gates that can be performed with only twoCNOT gates and
provide a simple characterization for them.
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In the context of establishing the existence of univer
sets of two-qubit gates for quantum computation@1#,
Barenco et al.@2# showed that any unitary transformation o
n qubits can be decomposed into a sequence of contro
NOT ~CNOT! and single-qubit gates. Since then it is custom
in quantum information to useCNOT and single-qubit gates in
order to express any unitary transformation in the quan
circuit model@3#. As a result, theCNOT gate has acquired
special status as the standard hallmark of multiqubit cont
Among quantum information experimentalists, achieving
CNOT gate is one of the most coveted goals@4#. In turn,
exhaustive theoretical studies on the optimal use of tw
qubit interactions and of entangling gates to perform aCNOT

gate have been conducted@5–8#.
Here we shall consider the construction of quantum

cuits that minimize the use ofCNOT gates. Such optimal con
structions are relevant in two separated scenarios. First,
play a role in determining the algorithmic complexity of
given quantum computation, that is, the number of elem
tary gates required to implement the correspondingn-qubit
unitary evolution. A most remarkable result of Ref.@2# is the
explicit decomposition of an arbitraryUPU(2n) as a se-
quence ofCNOT and single-qubit gates. This general co
struction, however, unavoidably requires exp(n) CNOT gates,
which renders the resulting quantum circuit inefficient, wh
the transformations relevant for quantum computation
precisely those that can be decomposed into only polyn)
elementary gates. Thus, given a unitary transformationU
PU(2n), in quantum computation it is important to dete
mine how manyCNOT gates are required for its implement
tion.

Algorithmic complexity is typically concerned with th
asymptotic scaling of computational resources, and thus w
gates involving a large number of qubits. Here, instead,
shall analyze unitary gates of just two qubits,n52. Quan-
tum circuits that minimize the use ofCNOT gates are also o
interest in this case, but for another, more practical reason
present day experiments, two-qubit gates as theCNOT gate
are implemented in an imperfect way due to technolog
limitations. Therefore, in order to minimize the probabili
that an error occurs in performing a certain unitary evolut
U on n52,3, . . . qubits, it is instrumental that the number
times the qubits interact is as small as possible. Unfo
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nately, there is a general lack of results concerning how
optimally decomposeUPU(2n) into CNOT and single-qubit
gates.

In this paper we describe auniversalquantum circuit for
two-qubit unitary transformationsUPSU(4) consisting of
only threeCNOT gates and four rounds of local gates. T
shortest circuit previously known requires fourCNOT gates
@9#. In addition, we show that threeCNOT gates are necessar
in order to perform a generic two-qubit gate, thereby est
lishing the optimality of the proposed universal quantum c
cuit. We also characterize the subset of two-qubit ga
whose implementation requires only twoCNOT gates and
construct an alternative, smaller quantum circuit for them
this way we give a complete classification of two-qubit ga
in terms of theirCNOT complexity.

We consider two qubits, labeledA andB, and an arbitrary
unitary transformationUPSU(4). Letul ,v lPSU(2) denote
single-qubit unitary gates acting, respectively, on qubitsA
andB, and letUCNOT denote aCNOT gate that has qubitA as
control and qubitB as target,

UCNOTuzm&A^ uzn&B5uzm&A^ uzn% m&B , m,n50,1,
~1!

where i % j denotes sum modulo 2 anduz0& (uz1&) is the
eigenvector with eigenvalue 1 (21) of the third of the Pauli
matrices

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D . ~2!

Theorem 1.An arbitrary unitary gateUPSU(4) can be de-
composed in terms of threeCNOT gates and single-qubit uni
tary gatesul ,v l ~to be specified below! as

~3!

An important element in order to prove Theorem 1 is t
decomposition ofUPSU(4) derived by Khanejaet al. @5#
and Krauset al. @10#, namely,
©2004 The American Physical Society01-1
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~4!

H[hxsx^ sx1hysy^ sy1hzsz^ sz , ~5!

wherep/4>hx>hy>uhzu. An explicit protocol to extract the
single-qubit gatesu1 ,v1 ,u48 ,v48PSU(2) and the coefficients
hx ,hy ,hzPR from U was presented in Ref.@10#. In what
follows we show thate2 iH can be further decomposed as

~6!

where

u2[
i

A2
~sx1sz!e

2 i (hx2p/4)sx, v2[e2 ihzsz, ~7!

u3[
2 i

A2
~sx1sz!, v3[eihysz, ~8!

w[
I 2 isx

A2
, ~9!

so thatu4 andv4 in Eq. ~3! are

u45u48w, v45v48w
21. ~10!

Let us introduce the Bell basis

ug00&[
1

A2
~ u00&1u11&), ug01&[

1

A2
~ u01&1u10&),

ug10&[
1

A2
~ u00&2u11&), ug11&[

1

A2
~ u01&2u10&),

whereumn& denotesuzm&A^ uzn&B . OperatorH in Eq. ~5! can
be rewritten as

H5 (
m,n50

1

lmnugmn&^gmnu, ~11!

with lmn defined as

l00[hx2hy1hz , l01[hx1hy2hz , ~12!

l10[2hx1hy1hz , l11[2hx2hy2hz . ~13!

Thene2 iH becomes

e2 iH5 (
m,n50

1

e2 ilmnugmn&^gmnu. ~14!

Direct inspection shows that circuit~6! indeed acts on the
Bell basisugmn& as @11#
01030
ugmn&→e2 ilmnugmn&. ~15!

Next we describe a way to check this fact. The first~left-
most! CNOT in Eq. ~6! maps the Bell basis into a produc
basis, namely,

ugmn&→uxm&A^ uzn&B , ~16!

where ux0&[(uz0&1uz1&)/A2, ux1&[(uz0&2uz1&)/A2. The
local transformationsu2^ v2 introduce convenient phase
e2 ifmn,

fmn[~21!mS hx1
p

2 D1~21!nhz , ~17!

into this product basis, and map the latter into a new prod
basis,

uxm&A^ uzn&B→e2 ifmnuzm&A^ uzn&B . ~18!

The secondCNOT gate exchanges only two elements of t
new product basis@recall Eq.~1!#,

uz1&A^ uz0&B↔uz1&A^ uz1&B , ~19!

after which local gatesu3^ v3 switch back to theuxm&A

^ uzn&B basis and introduce more phasese2 ifn8,

fn8[~21!n11hy . ~20!

The rightmostCNOT in Eq. ~6! maps the basisuxm&A^ uzn&B
back into the original Bell basis,

uxm&A^ uzn&B→ugmn&, ~21!

and the final local gatesw^ w† exchange vectorsug10& and
ug11& in order to undo the permutation~19! @and also add a
p/2 phase to each of them#, so that circuit~6! implements
transformation~15!. This finishes the proof of Theorem 1.

As shown in Ref.@2#, a nontrivial subset of two-qubi
unitary transformations, namely, control-V transformatio
for VPU(2), can beperformed by using only twoCNOT

gates and single-qubit gates. For these gates, one findhy
5hz50 in its decomposition~4! and ~5!, so that they are
locally equivalent to a control-phase gateUw ,

Uwuzm&A^ uzn&B5e2 imnwuzm&A^ uzn&B , ~22!

for an arbitrary phasew. Theorem 2 characterizes the set
all two-qubit transformations that can be performed w
only two CNOT gates. They correspond tohz50 in Eqs.~4!
and ~5!, and are therefore a subset of zero measure in
space of two-qubit gates.

Theorem 2.A two-qubit gateŪPSU(4) can be decom
posed in terms of twoCNOT gates and single-qubit gate
ūl ,v̄ l as
1-2
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~23!

if and only if hz50 in its decomposition~4! and ~5!.
First we prove that ifhz50, thenŪ can be decompose

as in Eq.~23!. Decomposition~4! and ~5! becomes

~24!

H̄[hx sx^ sx1hy sy^ sy , hx>hy>0. ~25!

One can now expresse2 iH̄ as

~26!

wherew has been defined in Eq.~9! and whereūl ,ūl8 ,v̄ l ,v̄ l8
in Eqs.~23! and ~24! are related through

ū15w†ū18 , v̄15wv̄18 , ū35ū38w, v̄35 v̄38w
†.

~27!

The validity of circuit ~26! can be checked by reasonin
similarly as we did in the proof of Theorem 1. In particula
the first local gateswA

†
^ wB permute vectorsug10& andug11&.

Then the leftmostCNOT gate maps the Bell basisugmn& into
the product basisuxm&A^ uzn&B . Gatesū2^ v̄2 introduce con-
venient phasese2 i f̄mn to uxm&A^ uzn&B ,

f̄mn[~21!mhx2~21!nhy . ~28!

Finally, the rightmostCNOT andwA^ wB
† gates map the loca

basis back into the original Bell basis. This shows that anyŪ
with hz50 in its decomposition~4! and ~5! can be imple-
mented with local gates and twoCNOT gates.

To prove the converse we will argue that circuit~26! is,
up to local unitary gates, the most general form of a g
implementable with twoCNOT gates, as that in Eq.~23!. The
initial and final gatesū1 ,v̄1 ,ū3 ,v̄3 in circuit ~23! do not
change the parametershx ,hy ,hz for Ū and may be ignored
As a rotation on the Bloch sphere, single-qubit gates can
written as a series of three rotations around two perpend
lar axes. In particular we may write

ū25e2 ia1sze2 iasxe2 ia2sz, ~29!

v̄25e2 ib1sxeibsze2 ib1sx ~30!

~see, for example, Theorem 4.1 in Ref.@3#!. Recalling that
the CNOT gate~1! can be expressed as

UCNOT5
I 1sz

2
^ I 1

I 2sz

2
^ sx , ~31!
01030
e

e
u-

it is clear that the leftmost and rightmost exponentials in E
~29! and ~30! commute with the contiguousCNOT gates in
circuit ~26!. This implies that thehx ,hy ,hz parameters ofŪ
are the same as those of the gate,

UCNOT~e2 iasx^ eibsz!UCNOT. ~32!

But up to local gates this is circuit~26! with a5hy and b

5hx . ThereforeŪ hashz50 in the decomposition~4! and
~5!, completing the proof of Theorem 2.

Motivated by current experimental difficulties in the rea
ization of CNOT gates, in this work we have analyzed th
construction of quantum circuits that achieve two-qubit u
tary transformations by using the smallest number ofCNOT

gates possible. For an arbitraryn-qubit unitary transforma-
tion UPU(2n), both characterizing its exactCNOT complex-
ity and constructing an optimal quantum circuit seem ve
ambitious tasks, even by numerical analysis. Surprisingly
the case of two-qubit transformations it has been possibl
characterize theCNOT complexity of an arbitrary gate ana
lytically, and to express this complexity just in terms of th
coefficients (hx ,hy ,hz) of the decomposition presented
@5,10#, as summarized in Table I.

A possible extension of the present analysis is to a
optimize the use of single-qubit unitary transformations
the above constructions. However, in order to perform t
optimization, a sensible cost function for single-qubit gate
first required. In a given experimental setup it could w
happen that rotations in the Bloch sphere around, say, axx
are simpler to perform than around axisy; or it could be
easier to perform rotations by a fixed angle and axis than
arbitrary ones. All these details need to be properly reflec
in a cost function, to be optimized in order to obtain the m
convenient quantum circuit for the given experimental set
However, the following two facts in such optimization a
independent of the specific experimental details:~i! 15 inde-
pendent angles must be specified by means of local op
tions in the case of an arbitrary transformationUPSU(4),
and ~ii ! at least three of these angles correspond to lo
gates that are performed between the threeCNOT gates.

Finally, one may also seek to generalize the present
sults by considering theCNOT complexity of specifictrans-
formations ofn.2 qubits. In the case of three qubits, fo
instance, the Toffoli gate is known to require at most s
CNOT gates@3#, but only five CNOT gates have so far bee
proved to be necessary@12#. In order to study this problem
techniques different from the ones employed in this wo

TABLE I. Number of CNOT gates necessary and sufficient f
the implementation of a two-qubit gateUPSU(2), in terms of the
vector of coefficients (hx ,hy ,hz) of Eq. ~5!, wherep/4>hx>hy

>uhzu. We useh1 andh6 to denoteh.0 anduhuÞ0, respectively.

(hx ,hy ,hz) CNOT complexity

(p/4,0,0) 1
(hx

1 ,hy ,0)a 2
(hx

1 ,hy
1 ,hz

6) 3

aExcept for (p/4,0,0).
1-3
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are required, since no decomposition analogous to decom
sition ~4! and ~5! is known for unitary transformations in
volving more than two qubits.
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