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Infrared Hall measurements in the pseudogap phase of the high-Tc cuprates are addressed within the frame-
work of the orderedd-density-wave state. The zero-temperature Hall frequencyvH is computed as a function
of the hole-dopingx. Our results are consistent with recent experiments in absolute units. We also discuss the
signature of the quantum critical point in the Hall frequency at a critical doping inside the superconducting
dome, which can be tested in future experiments.
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I. INTRODUCTION

An ordered state known as thed-density wave(DDW) has
been proposed as the origin of the pseudogap phase of the
cuprates.1,2 A variety of experiments have been explored
from this perspective. These include superfluid density and
resonance peak in neutron scattering,3 Hall number,4 angle-
resolved photoemission spectroscopy(ARPES),5 specific
heat,6,7 quasiparticle charge,8 and the direct signature of
DDW in polarized neutron scattering.9–11 In addition, what
has been explored is how the notion of this competing order,
when combined with interlayer tunneling and the doping im-
balance of the multilayered cuprates, can result in the strik-
ing systematics of the layer dependence of the superconduct-
ing transition temperatureTc.

12 In all cases, the theory is
consistent with the existing observations.

In this paper, we will address the zero-temperature infra-
red (IR) Hall angleQH as a function of the hole-dopingx,
because we are encouraged by the recent measurements of
Rigal et al.13 There are two specific reasons:(1) The DDW
state predicts hole pockets as Fermi surfaces in the under-
doped cuprates, which should have important experimental
consequences. ARPES experiments can only detect half of
each of these pockets,5 which therefore appear as Fermi
arcs.14 Thus an important prediction of our theory remains
untested, except through its indirect signature in the doping
dependence of the superfluid density. A measurement ofQH
can, in principle, clarify this issue, and we believe that it
has.13 (2) The DDW theory also predicts a quantum critical
point at a dopingx=xc within the superconducting dome and
it has been argued that this should be visible in the Hall
number,nH,4 if superconductivity is destroyed by applying a
magnetic field. There is some experimental evidence of this
effect.15 The difficulty with this experiment is that it needs to
performed in a field as high as 60 T, which is experimentally
quite demanding. We believe that a measurement ofQHsvd
at high frequencies in the pseudogap state aboveTc should
have a similar behavior atxc asnH does. We expect that the
high-frequency behavior atT.Tc will be similar to theT
=0 behavior with superconductivity destroyed by a magnetic
field if both experiments probe the same underlying state—
which we believe is the DDW state—which causes the
pseudogap and coexists with superconductivity in the under-
doped superconducting state.

II. MEAN-FIELD FORMALISM OF THE DDW STATE

Given that the DDW state is a broken-symmetry state
with a local-order parameter, it should be describable by a
mean-field Hartree-Fock theory and its consequent elemen-
tary excitations. This is precisely the approach we shall as-
sume in the present paper. The mean-field Hamiltonian for
the DDW state is

H = o
k,a

fsek − mdcka
† cka + siWkcka

† ck+Qa + h . c.dg, s1d

whereck is the annihilation operator for an electron of spina
in thez direction and momentumk, m is the chemical poten-
tial, and the vectorQ=sp ,pd. The lattice spacing will be set
to unity. We ignore the residual interactions between quasi-
particles; the principal effect of electron-electron interactions
is to produce nonzeroWk.

The single-particle spectrum on the square lattice with
nearest-neighbor hoppingt and next-neighbor hoppingt8 is

ek = − 2tscoskx + coskyd + 4t8 coskx cosky. s2d

The d-wave-order parameter of the DDW state is

Wk =
W0sxd

2
scoskx − coskyd, s3d

where the amplitudeW0sxd is a function of doping.
We can express the Hamiltonian in terms of a two-

component quasiparticle operator:Ck,a
† =scka

† ,−ick+Qa
† d, and

then diagonalize this 232 Hamiltonian to get

H = o
k,a

xk,a
† SfE+skd − mg 0

0 fE−skd − mg
Dxk,a. s4d

The two-component quasiparticle operatorxka is unitarily
related toCka, and the sum is over the reduced Brilloun zone
(RBZ). E±skd=e2k ±Îe1k

2 +Wk
2 are the two bands of the or-

dered DDW state, withe1k=−2tscoskx+coskyd and e2k
=4t8 coskx cosky.

III. CALCULATION OF THE INFRARED HALL ANGLE

For a system of DDW quasiparticles in the presence of a
magnetic fieldH in thez direction, and an electric fieldE in
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the x−y plane,QH is the angle betweenE and the currentj :
tan QH=Ey/Ex=sxy/sxx. We will compute the necessary
conductivities,sxy and sxx, in the framework of Boltzmann
theory16 applied to the DDW mean-field-Hamiltonian. Since
we consider a noninteracting model, this semiclassical ap-
proach easily generalizes to finite frequencies as well. A
number of comments regarding the validity of our Boltz-
mann approach are in order.

(1) In a normal metal, it is well known(see Ref. 17) that
the external frequencyv and wave vectorq must satisfyv
!m andq!kF, wherekF is the Fermi wave vector. Although
we must havekFl @1 forlocalization effects to be neglected
(l is the mean-free path), there are no further restrictions on
the productvt, wheret is the lifetime due to impurity scat-
tering.

(2) In a superconductor, the same conditions apply at
high frequencies, unless we want to capture interesting
order-parameter disequilibrium effects, such as charge imbal-
ance, etc., whence we must satisfyv!D, whereD is the
superconducting gap.18

(3) For a particle-hole condensate, such as DDW, the
condition for the validity of the Boltzmann equation should
be the same as in a normal metal. The diagonalization in Eq.
(4) does not mix particles and holes and, therefore, we can
apply the Boltzmann formalism to DDW quasiparticles,
which have relatively simple, particle-number conserving
scattering terms.

(4) We assume that DDW quasiparticles have only one
scattering time, though it may vary along the Fermi
surface.19,20 This assumption is clearly supported by experi-
ments, at least in the pseudogap regime of the high tempera-
ture cuprate superconductor YBCOy for y=6.45–6.75.21 It
surprisingly appears to be true for even very lightly doped
sample ofy=6.30.22 The alternate view that for eachk, there
are two scattering times23 tH,T−2 and ttr ,T−1 appears to
be untenable in this regime.(Above the DDW ordering tem-
perature, the situation may, of course, be more complicated.)

(5) Further complications from interband transitions will
be neglected, because, to a first approximation, the effect of
these high-frequency processes will be simply to renormalize
the effective single band parameters.

The longitudinal and Hall conductivities,sxxsvd and
sxysvd, are,

sxysvd =
2e3H

"4c
E

RBZ

d2k

s2pd2S tk

1 − ivtk
D2] E+skd

] kx

3F ] E+skd
] ky

]2E+skd
] kx ] ky

−
] E+skd

] kx

]2E+skd
] ky

2 G
3dsE+skd − md + sE+ → E−d

=
2e3H

s2pd2"4c
Ixyfv,tkg, s5d

sxxsvd =
2e2

"2 E
RBZ

d2k

s2pd2S tk

1 − ivtk
DS ] E+skd

] kx
D2

dsE+skd − md

+ sE+ → E−d =
2e2

s2pd2"2Ixxfv,tkg. s6d

Here, we have definedIxyfv ,tkg and Ixxfv ,tkg for later ref-

erence. In the equation forsxysvd, we have made the ap-
proximation¹k ln tk <0, which is very reasonable so long
astk is large and varies smoothly.

Thus, the finite-frequency Hall angle is given by,

tan QHsvd =
sxysvd
sxxsvd

=
eH

"2c

Ixyfv,tkg
Ixxfv,tkg

. s7d

At finite-frequencyv, tanQHsvd becomes complex. In the
limit that vtk @1, the imaginary part can be determined
without the complications20 of the unknown anisotropictk.
Thus,

Imfcot QHsvdg = −
v

vH
, s8d

wherevH, the Hall frequency, is defined as

vH =
eH

"2c

Ixy
0

Ixx
0 , s9d

whereIxy
0 and Ixx

0 are the same as the integralsIxyfv ,tkg and
Ixxfv ,tkg, except that the factorstk / f1−ivtkgd is replaced by
unity. The imaginary part of cotQHsvd can therefore be de-
termined in a largely model-independent manner—in this
limit, it is essentially a measure of Fermi-surface
geometry24—while the real part of cotQHsvd involves the
unknown parametertk, which can depend on many details.

If we had replacedtk by its k average over the Fermi
surface,t, the expression for Imfcot QHsvdg would have
been exactly the same as in Eq.(8), regardless of the mag-
nitude of the productvt,25 but now there would have been a
dissipative real part containingt, that is, within this approxi-
mation,

cot QHsvd =
1

vHt
− i

v

vH
. s10d

IV. RESULTS

With Eq. (9) in hand, we can now calculatevH as a func-
tion of x in the DDW state. We choose a representative set of
values for the needed parameters. In keeping with our analy-
sis for the related quantity,nHall,

4 we chooset=0.3 eV, t8 / t
=0.3. For a comparison with experimental data, it is neces-
sary to choose an appropriate relation between the chemical
potentialm and the dopingx. Physically, this relation can be
exceedingly complex in the underdoped regime, where a
plethora of competing charge and spin-ordered states can in-
tervene asx→0. We, therefore, do not discuss the behavior
in this heavily underdoped regime, although in the past we
have attempted to describe this regime by arguing that the
chemical potential is perhaps pinned to zero.3 Between the
overdopedsx*0.2d and the moderately underdoped regime
sx,0.07d, we make the simplest possible assumption thatm
is a smooth function ofx. The actual function is not very
significant, but to be concrete, we choose the relation implied
by the band structure. To discuss the nonanalyticity close to
xc, we neglect thex dependence of the chemical potential for
simplicity, as the doping dependence ofW0sxd is much more
important. For illustrative purposes, we take
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W0sxd = 0.03fs1 − x/xcd + s1 − x/xcd1/2g eV, s11d

with xc=0.2. This form gives mean-field-like nonanalyticity
at xc. (The exponent 1/2 can be replaced if, for instance, 3D
Ising behavior is preferred.) It is also a reasonable represen-
tation of the form suggested in Ref. 26. We believe, however,
that the final result is not strongly dependent on this particu-
lar detailed form of Eq.(11).

Before doing an explicit calculation, it is revealing to plot
the hole pockets as the amplitude of the DDW gapW0sxd is
increased form varying smoothly as a function of dopingx.
In particular, we show the results for afixed value of m in
Fig. 1. One can see that the hole pockets become less ellip-
tical asW0 is increased at constantm. So, even thoughm is
kept constant, with increasingW0 below xc, the curvature of
the hole pockets increases where the Fermi velocity is
largest,24 and consequentlyIxy increases and the perimeter

decreases, so thatIxx decreases.24 The net result is an in-
crease ofvH. This is a robust explanation of the increase of
vH as the system is underdoped, in agreement with Rigalet
al.13

To be quantitative, we explicitly calculatevH using Eq.
(11) and the band-structure parameters given above. Con-
comitantly, as mentioned above,m was determined from the
band structure. The results are shown in Fig. 2. The results
are clearly consistent with the experiment of Rigalet al.13

The enhancement, as the system is underdoped, is signifi-
cant, even though its actual magnitude is perhaps a factor of
2 smaller. Moreover, the absolute magnitudes are well cap-
tured. Beyond this, it is difficult to compare in detail. The
experiment was performed on thin films of YBCO for which
we neither have the precise knowledge of the doping levels,
nor do we have a good criterion to relate the doping with the
chemical potential. To complicate matters further, the chain

FIG. 1. Contour plot of the hole pockets at the fixed value of the chemical potentialm=−0.36 eV as the DDW gap is varied(implicitly
as a function of dopingx). Proceeding clockwise from the left panel on the top,W0sxd=0.01,0.05,0.1, and 0.15 eV; these numbers are for
illustrative purposes only, and them was chosen so as to focus on the lower band only.

INFRARED HALL ANGLE IN THE d-DENSITY-WAVE… PHYSICAL REVIEW B 70, 014514(2004)

014514-3



contributions in YBCO are not included in our calculation,
and these contributions were not subtracted in their experi-
mental results. The parameters used here are generic; it is
possible to improve the agreement with the experiment by
adjusting them, but we do not find this to be a very mean-
ingful exercise.

We then explore more closely the signature of the quan-
tum critical point in the infrared Hall angle, which is already
evident in Fig. 2. To demonstrate the robustness of the quan-
tum critical point, we setm to be a constant, equal to −t
=−0.3 eV and use the mean-field ansatzW0sxd=W0s1
−x/xcd1/2. For a representative value, we takeW0=0.03 eV
and xc=0.2. These are identical to our previous
parametrizations.4 The results are shown in Fig. 3.

By examining the integralsIxy and Ixx in more detail, we
find that, close to the critical doping,vHsxd=C1+C2W0sxc

−xd1/2, whereC1 andC2 are constants, and the slope diverges
at the transition.(At finite temperature, this will be rounded.)
We emphasize that although the hot spots determine the criti-
cal singularity close toxc,

4 the increase ofvH is determined
by the evolution of the hole pockets and the gapping of the
Fermi surface as the doping is decreased.

V. CONCLUSION

The Hall angle measurements of Rigal,et al.13 are strong
evidence for the existence of hole pockets in the underdoped

cuprates. We believe that DDW order is the simplest expla-
nation, which is also consistent with the absence of hole
pockets in ARPES. Consistency with both of these experi-
ments(and the Hall number measurement of Ref. 15) is a
strong challenge of other proposals for the pseudogap. Our
analysis opens a number of interesting directions for future
research. Our calculation could be extended using the Kubo
formalism, which would have a wider region of validity. A
more careful comparison between theory and experiment
could be made with a better model for the chemical potential
at the precise doping levels of the experiment. Finally, fur-
ther exploration of the putative quantum critical point atx
=xc at which DDW order vanishes could more firmly estab-
lish its existence and its properties.
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