
LETTER Communicated by Teuvo Kohonen

Auto-SOM: Recursive Parameter Estimation for Guidance of
Self-Organizing Feature Maps

Karin Haese
Data Warehouse/Data Mining, Mummert & Partners Management Consulting, Braun-
schweig, Germany, D-38104

Geoffrey J. Goodhill
Department of Neuroscience, and Georgetown Institute for Cognitive and Compu-
tational Sciences, Georgetown University Medical Center, Washington, D.C. 20007,
U.S.A.

An important technique for exploratory data analysis is to form a mapping
from the high-dimensional data space to a low-dimensional representa-
tion space such that neighborhoods are preserved. A popular method
for achieving this is Kohonen’s self-organizing map (SOM) algorithm.
However, in its original form, this requires the user to choose the values
of several parameters heuristically to achieve good performance. Here
we present the Auto-SOM, an algorithm that estimates the learning pa-
rameters during the training of SOMs automatically. The application of
Auto-SOM provides the facility to avoid neighborhood violations up to
a user-defined degree in either mapping direction.

Auto-SOM consists of a Kalman filter implementation of the SOM
coupled with a recursive parameter estimation method. The Kalman fil-
ter trains the neurons’ weights with estimated learning coefficients so as
to minimize the variance of the estimation error. The recursive parame-
ter estimation method estimates the width of the neighborhood function
by minimizing the prediction error variance of the Kalman filter. In ad-
dition, the “topographic function” is incorporated to measure neighbor-
hood violations and prevent the map’s converging to configurations with
neighborhood violations. It is demonstrated that neighborhoods can be
preserved in both mapping directions as desired for dimension-reducing
applications. The development of neighborhood-preserving maps and
their convergence behavior is demonstrated by three examples account-
ing for the basic applications of self-organizing feature maps.

1 Introduction

Kohonen’s self-organizing map (SOM) (Kohonen, 1982, 1984, 1995) has
found wide application in the fields of data exploration, data mining, data
classification, data compression, and biological modeling, due to its proper-

Neural Computation 13, 595–619 (2001) c© 2001 Massachusetts Institute of Technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15028055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

596 Karin Haese and Geoffrey J. Goodhill

ties of “neighborhood preservation” and local resolution of the input space
proportional to the data distribution. Since it was introduced, it has been
improved in several ways. For instance, the assumption of a fixed archi-
tecture has been relaxed (Martinetz & Schulten, 1994; Haese & vom Stein,
1996; Bauer & Villmann, 1997), and it has been shown how the magnifi-
cation factor can be controlled (Bauer, Der, & Herrmann, 1996). However,
an important limitation still remains: the values of the learning parameters
that are most appropriate for fast convergence to the minima of the neurons’
individual energy functions depend on the unique properties of the data in
each application. Thus, the successful application of the algorithm depends
on the user’s knowledge of the input data and experience with the algo-
rithm. It would be greatly preferable for these parameters to be determined
automatically during training to achieve the best possible outcome, thus
relieving the user of extensive parameter studies and reducing the num-
ber of learning steps required. Kohonen (1995) suggested a partial solution
to this problem by using a batch learning method that dispenses with the
learning rate. Unfortunately, however, the learning rate is used to control
the magnification factor of the final map, which is rapidly gaining interest in
all field of application of SOMs, including speech recognition (Bauer et al.,
1996), medicine (Villmann, in press a), and robotics (Villmann, in press b).
Herrmann (1995) proposed a way to determine automatically the width of
the neighborhood function, but at the cost of further parameters to be spec-
ified (though the values of these parameters may be less critical). A rather
different approach to avoiding the necessity for choosing these parameters
is generative topographic mapping (GTM) (Bishop, Svensen, & Williams,
1996). In this article we present the Auto-SOM: a method for automatic pa-
rameter estimation in the SOM based on estimation by a linear Kalman filter
extended by a recursive parameter estimation method. We demonstrate its
effectiveness on examples including a real application problem, and com-
pare its performance with alternative versions of the SOM and with the
GTM.

Feature maps consist of nodes r arranged on an nA-dimensional lattice.
All nodes are elements of the set A. To each node a weight vector wr is
assigned, which is a point in the nM-dimensional input space. The feature
map develops by adapting the weight vectors wr to the presented input
data v of a manifoldM j <. v is assigned to the output unit r′, which has
the minimum Euclidean distance between v and the weight vector wr′ :

‖wr′(j)− v(j)‖ = min
r∈A
‖wr(j)− v(j)‖. (1.1)

All weights are then adapted toward the input vector v:

wr(j) = wr(j− 1)+1wr(j) (1.2)

1wr(j) = ε(j) · hrr′(σ, j) · [v(j)−wr(j− 1)
]
. (1.3)

Auto-SOM 597

The amplification factor consists of a learning coefficient ε(j) and a neigh-
borhood function hrr′(σ, j). The latter is a gaussian function of width σ of
the Euclidean distance ‖r− r′‖ between the winner neuron and the updated
neuron:

hrr′(σ, j) = e
−
(
ρA(r,r′)√

2·σ(j)

)2

, (1.4)

where ρA(r, r′) =
√
(r1 − r′1)2 + · · · + (rnA − r′nA)

2. Commonly, both learn-
ing parameters ε(j) and σ(j) are chosen to decay exponentially during the
training process. This choice fulfills the necessary and sufficient convergence
conditions for ε(j):

0 < ε(j) < 1, lim
j→∞

∑
ε(j)→∞, lim

j→∞

∑
ε2(j) <∞. (1.5)

However, appropriate initial values and rates of decrease of ε cannot be de-
duced. Furthermore, conditions on the choice of σ are unknown. Although
empirical studies show that a certain relation between both parameters is
essential for the weights to converge to the centers of Voronoi cells while
preserving neighborhood relations as well as possible, the initial values
and rates of the exponential decrease remain to be determined in the gen-
eral case. Consequently, the learning parameters are still an unidentified
function of the network architecture and the input data. Nonuniformly
distributed data require particularly carefully chosen parameter courses
for convergence to neighborhood-preserving, dimension-reducing feature
maps. An initial approach to the problem of automatic parameter estima-
tion has been formulated by Haese (1998, 1999). This estimates the learning
coefficient ε(j) optimally within a state-space model of the learning process,
which is calculated, predicted, and filtered by a linear Kalman filter (KF)
algorithm. We first review this method in section 2, with additional justifica-
tions for the assumptions made. In section 3 we then extend it to achieve an
optimal estimate of the width of the neighborhood function as a function of
time. Instead of modeling the progress of neighborhood preservation qual-
ities, which has been achieved only under major simplifications (see Haese,
1998, 1999), here we estimate the width of the neighborhood function by a
recursive parameter estimation method (RPEM). The advantage of the RPE
algorithm to estimate the width of the neighborhood function is that it aims
to minimize the same prediction error,

e(σ, j) = hrr′(σ, j)v(j)− hrr′(σ, j)wr(σ, j|j− 1), (1.6)

which is minimized by the KF implementation of the SOM. The prediction
error expresses the deviation between the actual learning process and the
prediction of the process based on the process model. Thus, the KF and

598 Karin Haese and Geoffrey J. Goodhill

Figure 1: Block diagram of Auto-SOM. The autonomous learning parameter
estimation method is based on a Kalman filter implementation of the original
SOM and the recursive parameter estimation method for the width σ of the
neighborhood function hrr′(σ, j). See Table 1 for notation.

the RPEM are coupled to yield the Auto-SOM, as depicted in Figure 1. In
section 4 we demonstrate the performance of Auto-SOM on three examples
and one real high-dimensional application problem. We discuss the results
in comparison with the results of the original learning algorithm, the batch-
learning version and the GTM. Table 1 summarizes the symbols used in this
article.

2 Kalman Filter Implementation of the Self-Organizing Algorithm

We now review the state-space model of the self-organizing learning process
proposed by Haese (1998). This state-space model is the basis on which a
linear KF acts to estimate and predict the inner states of the process. A state-
space model in discrete time gives the relations between the input, noise,
and output signals, u(j), q(j), and y(j), respectively, in the form of a first-
order difference equation using an auxiliary state vector x(j). The outputs
y(j) are some linear combination of the states x(j). Noise qx(j) and qy(j) is
assumed to corrupt the states as well as the output of the process, leading
to the general state-space model:

x(j+ 1) = A(j)x(j)+ B(j)u(j)+ qx(j) (2.1)

y(j) = C(j)x(j)+ qy(j). (2.2)

The KF uses the state and measurement equations, 2.1 and 2.2, respectively,
as well as assumptions about the noise density distributions, to predict the

Auto-SOM 599

Table 1: List of Symbols.

A transition scalar of σ in RPEM
A state transition matrix of a general state-space model
A set of nodes r on the feature map
B input matrix of a general state-space model
C measurement matrix of a general state-space model
DM(r, r′) graph of nodes’ connections inM
e prediction error
E{·} expected value
Er dominant part of a neuron’s individual energy function
F(·) topographic function
hrr′ neighborhood function
j learning step
l(·) criterion function
Kr Kalman gain matrix of wr
Kσ Kalman gain matrix of RPEM
M set of input pattern v
nA dimension of feature map
nM dimension of the input space
or response at node r to a pattern v
ôr measured output vector at r
Pr covariance matrix of wr
Pσ covariance matrix of σ in RPEM
qerr quantization error
qor measurement noise in ôr
qwr system noise in weight transition
qx noise corrupting the states x
qy noise corrupting the output y
Qor covariance matrix of qor
Qwr covariance matrix of qwr
r node position vector on feature map
r′ node position of winner neuron
u vector of input signals to a general state-space model
v input vector to feature map
wr weight vector at location r
W matrix of derivatives of dwr

dσ
x state vector of a general process
x(j|j− 1) predicted states x
x(j|j) corrected states x
y output vector of a general process
ŷ measured output vector y
α positive constant of Newton algorithm
ε general learning coefficient
3 weighting matrix in RPEM
Är Voronoi cell of a neuron at r
#Är cardinality of a Voronoi cell Är
9M→A mapping from input spaceM to output spaceA
9A→M mapping from output spaceA to input spaceM
8 matrix of derivatives of de

dσ
ρA(r, r′) Euclidean distance between r and r′ measured in the output space
σ width of the neighborhood function

600 Karin Haese and Geoffrey J. Goodhill

Figure 2: Basic concept of a Kalman filter application to a physical process. A
state-space model of the real process is incorporated in the KF algorithm with
the state vector x(j) and matrices A(j), B(j), C(j). The KF algorithm corrects its
state predictions x(j|j− 1) on the basis of the input and output measurements,
û(j) and ŷ(j), respectively.

states x and the outputs y one time step in advance. The predictions y(j|j−
1) are then compared with the observed outputs ŷ(j) (see Figure 2). This
comparison leads to a residual term, which is weighted with the Kalman
gain K, in order to correct the predictions x(j|j − 1), so that the estimate of
the actual states x(j|j) of the process at time step j is achieved (see Figure 2).
For our application to the SOM, the only observations of the process (see
Figure 3) are the inputs randomly selected from a setM of input patterns.
We assume the measured output ôr(j) of each neuron in response to input
pattern v(j) to be the input pattern weighted by the neighborhood function
hrr′(σ, j):

ôr(σ, j) = hrr′(σ, j)v(j), (2.3)

associated with ŷ in our general state-space model. We model these outputs
by or(σ, j). This is done by first assigning the input v(j) to its nearest neigh-
bor weight vector wr′(j) and then multiplying the weights with their values
of the neighborhood function hrr′(σ, j) to yield

or(σ, j) = hrr′(σ, j)wr(σ, j)+ qor (σ, j). (2.4)

Auto-SOM 601

Figure 3: Kalman filtering concept of the self-organizing learning process
model. The weight vectors wr are the states of the process, transfered by the
identity matrix I to the next learning step and mapped onto the predicted mea-
surements or(σ, j|j− 1) by the neighborhood function hrr′ .

This model is assumed to be corrupted by a noise sequence qor (σ, j) to be
described. Finally, we find the general states x in case of the special learning
process model to be the weights wr(σ, j). At the end of the training, the
weights will define a static mapping from the input space onto the feature
map. This leads to the state equation of the self-organizing learning process:

wr(σ, j) = wr(σ, j− 1)+ qwr (σ, j). (2.5)

Equation 2.5 implies that especially in the first phase of learning, the as-
sumption of a static transition of the weights is not at all correct. During
this training phase, the system noise, qwr (σ, j), accounts for the dynamic
transition. The noise covariances are high at this time, of the order of mag-
nitude of the measurement noise covariances qor (σ, j), which will result in
high Kalman gain elements to correct the system model with the measure-
ment ôr. The noise sequences qwr (σ, j) are easily deduced to be gaussian
distributed with zero mean and covariance,

E{qwr (σ, j) · qT
wr (σ, j+ n)} =

{
Qwr (σ, j) n = 0

0 n 6= 0, (2.6)

starting from the proof that the neurons’ weights during the learning follow
approximately gaussian distributed stochastic processes (Yin & Allinson,
1995). Yin and Allinson showed that for any complex neighborhood func-
tion, the weight vectors converge in the mean square sense to the centers of

602 Karin Haese and Geoffrey J. Goodhill

Voronoi cells Är,

lim
j→∞

E{wr(j)} = 1
#Är

∑
v∈Är

v, (2.7)

with variance

lim
j→∞

E{(wr(j)− E{wr(j)})2} = 0. (2.8)

#Är denotes the cardinality of the data set Är. As the whole process model
is parameterized by the width σ of the neighborhood function, it is not sur-
prising that the state and the measurement noise covariance are also at least
implicit functions of σ . Because the weights wr are modeled to be indepen-
dent, the state covariance matrix is diagonal. The diagonal elements of the
covariance matrix Qwr (σ, j) are the average quadratic distances between
the weight vectors and their expected values:

diag(Qwr (σ, j)) = 1
NA

∑
r∈A

(
wr(σ, j)− E{wr(σ, j)})2 . (2.9)

The expected values E{wr(σ, j)} are known to converge to the centers of
the Voronoi cell Är in the limit σ → 0. This final state is exactly modeled
by the state equation of the learning process (see equation 2.5). Thus, the
corresponding expected values are

E{wr} = 1
#Är

∑
v∈Är

v. (2.10)

Hence, the distribution and convergence analysis by Yin and Allinson
provides fundamental results for the justification of the KF implementation
of the self-organizing learning process. In like manner, it can be used to de-
scribe the statistics of the measurement noise for the modeled state σ → 0.
Considering that the measurements are independent, it follows from equa-
tions 2.3 and 2.4 that the noise sequences qor are white, fulfilling

E{qor (σ, j) · qT
or (σ, j+ n)} =

{
Qor (σ, j) n = 0

0 n 6= 0 (2.11)

and with zero mean. In general its distribution is not gaussian but specified
by the data distribution in the Voronoi cells.

Again modeling the states wr as independent of each other gives the
diagonal shape of the covariance matrix Qor (σ, j). In order to quantify the
covariance matrix elements, we consider the nearest neighbor to the input

Auto-SOM 603

Figure 4: Linear Kalman filtering of the self-organizing learning process model.
The weight vector wr is transferred by the identity matrix I to the next learn-
ing step and mapped onto the predicted measurements or(σ, j|j − 1) by the
neighborhood function hrr′ .

vector v(j) to be at location r′′. With the nearest neighbor to the input vector
v(j − 1) at location r′, the deviation between the observed output and the
prediction according to our model is

qor(j) = hrr′′(σ, j)v(j)− hrr′(σ, j)wr(σ, j|j− 1). (2.12)

Evaluating the corresponding covariance matrix is extremely computation-
ally demanding. Therefore, we consider for our calculation the experimen-
tal outcome v(j) in learning step j to be approximately in the center of the
Voronoi cell Är′′ and compensate for this simplification by averaging the
variance over all neurons. Therefore, we expect the average variance for
each neuron to be

diag(Qor (σ, j)) = 1
NA

∑
r∈A

∑
r′,r′′∈Ahrr′′(σ, j)

1
#Är′′

∑
v∈Är′′

v(j)− hrr′(σ, j)wr(σ, j|j− 1)

2

. (2.13)

Thus, the linear KF applies to the parameterized state-space description
of the learning process (see equations 2.4 and 2.5) as a minimal variance
estimator of the states wr and the measurements or. This estimation is
performed as depicted in the block diagram, Figure 4.

The output or(σ, j|j − 1) is predicted on the basis of (j − 1) measure-
ments ôr and the model of the learning process (see equations 2.4 and 2.5).
or(σ, j|j − 1) is compared with the actual measurement hrr′(σ, j)v(j). The
residual is attenuated by the Kalman gain matrix Kr and then used to cor-
rect the predicted weights wr(σ, j|j− 1), resulting in the equations

wr(σ, j|j) = wr(σ, j|j− 1)+ Kr(σ, j) [ôr(j)− or(σ, j|j− 1)], (2.14)

604 Karin Haese and Geoffrey J. Goodhill

or(σ, j|j) = hrr′(σ, j)wr(σ, j|j), (2.15)

Kr(σ, j) = Pr(σ, j|j− 1) hrr′(σ, j)

[hrr′(σ, j)Pr(σ, j|j− 1) hrr′(σ, j)+Qor (σ, j− 1)](−1) (2.16)

Pr(σ, j|j) = Pr(σ, j|j− 1)− Kr(σ, j) hrr′(σ, j)Pr(σ, j|j− 1). (2.17)

These filter equations follow from Bayes’ rule applied to the a posteriori
probability density of the states wr, assuming a gaussian probability density
function with covariance matrix Pr.

Equation 2.14 provides the self-organizing learning algorithm with an
individual learning coefficient Kr for each weight wr, which is optimal
with respect to minimizing the expected covariance of the innovation term
E{(ôr(j) − or(σ, j|j))(ôr(j) − or(σ, j|j))T}. In contrast, the original learning
rule executes the adaptation control for all weights in general with the learn-
ing coefficient ε(j). Consequently, equations 2.14 through 2.17 execute the
self-organizing learning rule, providing an individual learning coefficient
for each weight during the training.

Finally, the prediction of the states, wr(σ, j|j−1), the outputs, or(σ, j|j−1),
and the state covariance matrix, Pr(σ, j|j−1), is performed by the equations

wr(σ, j|j− 1) = wr(σ, j− 1|j− 1), (2.18)

or(σ, j|j− 1) = hrr′(σ, j)wr(σ, j|j− 1), (2.19)

Pr(σ, j|j− 1) = Pr(σ, j− 1|j− 1)+Qwr (σ, j− 1). (2.20)

We now have a set of system models for the learning process parameterized
by the width σ of the neighborhood function. Each of these models describes
the law for a linear KF to predict the learning process and adapt the neurons’
weights by minimizing the expected covariance matrix of the innovation
term. The problem we are now faced with is to select at each learning step
an appropriate value of σ(j). We do this by making use of the information
provided by the prediction error sequence,

{e} = {j|e(σ, j) = ôr(j)− or(σ, j|j− 1)}, (2.21)

which will lead to the RPEM.

3 Recursive Parameter Estimation of the Width of the Neighborhood
Function

In general, a good system model is one that is good at predicting, that is,
producing small prediction errors e(σ, j). Therefore, we will determine the
parameter σ by minimizing a function l(·) of the prediction error sequence
{e}. A recursive estimation method (Ljung & Söderström, 1983; Ljung, 1999)

Auto-SOM 605

is suitable to tackle the problem. In accordance with our system model, we
expect the error to be a zero-mean white noise sequence. Then a quadratic
criterion function of the prediction error is known to be a good choice (Ljung,
1999) to measure the validity of the model:

l(e, σ, j) = 1
2

eT(σ, j)3(−1)e(σ, j). (3.1)

The best choice for the weighting matrix 3(−1) is the covariance matrix of
the prediction error e, so that the equation E{eeT − 3(−1)} = 0 is solved
numerically (Ljung & Söderström, 1983) by

3(j) = 3(j− 1)+ α(j)[e(j)eT(j)−3(j− 1)]. (3.2)

Minimization of the expected value V(σ) = E{l(e, σ, j)} of the criterion func-
tion (see equation 3.1) is performed by the Newton algorithm,

σ(j+ 1) = σ(j)−
[

d2

dσ 2 V(σ)
](−1) [d

dσ
V(σ)

]T

. (3.3)

The numerical estimation of the derivatives in this equation leads to a recur-
sive scheme of the parameter estimation proposed by Ljung and Söderström
(1983) and Ljung (1999). This parameter estimation technique can be refor-
mulated in terms of KF equations 3.4 through 3.6 and its prediction equa-
tions 3.13 and 3.14 (Haese, 1990). The filter equations,

σ(j|j) = σ(j|j− 1)+ Kσ (j)e(j) (3.4)

Kσ (j) = Pσ (j|j− 1)8(j) [8T(j)Pσ (j|j− 1)8(j)+3(j)](−1) (3.5)

Pσ (j|j) = Pσ (j|j− 1)− Kσ (j)8T(j)Pσ (j|j− 1), (3.6)

correct the predicted width σ of the neighborhood function by adding the
attenuated prediction error of the neuron’s output or. The attenuation is
performed by the Kalman gain matrix Kσ . Kσ is calculated on the basis of
the estimated prediction error covariance matrix 3(j), the derivative 8T(j)
of the prediction error, and the derivative W(j+1)of the weights with regard
to the state σ :

8T(j) = de
dσ

= hrr′(σ (j|j), j)
(

dwr(j+ 1|j)
dσ

)
|σ(j|j)

+
(

dhrr′
dσ

)
|σ(j|j)

wr(j+ 1|j, σ (j|j)) (3.7)

W(j+ 1) =
(

dwr(j+ 1|j)
dσ

)
|σ(j|j)

. (3.8)

606 Karin Haese and Geoffrey J. Goodhill

Finally, the prediction of the width σ(j|j−1) and its covariance Pσ (j|j−1)
is essential for the self-adaptive estimation of σ . Therefore, we are looking
for a transition model describing the transition from σ(j− 1|j− 1) to σ(j|j−
1) as precisely as possible. We could use the decrease on the gradient of
some cost function considered to qualify final map configurations, such
as the quantization error or Luttrell’s training vector quantizer (TVQ) cost
function. However, the quantization error,

qerr = 1
#Ä

∑
r′

∑
v∈Är′

(v− wr′)2, (3.9)

does not depend on the current states of both learning parameters ε(j) and
σ(j). This deficiency is remains in Luttrell’s TVQ cost function,

ETVQ = 1
2

∑
r′

∑
r

hrr′
∑

v∈Är
(v− wr′)2, (3.10)

although here dependence on σ(j) is given. In the same way, the individual
energy functions of the neurons

Ẽr =
∑
r′

hrr′
∑

v∈Är
(v− wr′)2, (3.11)

first introduced by Tolat (1990), do not fulfill our demands. But Erwin, Ober-
mayer, and Schulten (1992) have corrected equation 3.11 for this deficiency
and, moreover, revealed that the individual energy function consists of two
terms. The part

Er = ε 1
NA

∑
r′∈A

hrr′
1

#Är′

∑
v∈Är′

(v−wr)2 (3.12)

dominates for any map configuration except for highly disordered feature
maps. During our simulations with Auto-SOM, we found that disordered
maps occur only during the very first training cycles, so that we can restrict
our model to the gradient of this term. We finally implement the average
over the individual energy functions, which leads to a good transition model
for σ . Thus, the prediction equations follow:

σ(j+ 1|j) = A(σ, j)σ (j|j) (3.13)

Pσ (j+ 1|j) =
(

dA(σ, j)σ
dσ

)2

Pσ (j|j) (3.14)

with

A(σ, j) = 1− 1
NA

∑
r∈A

1
σ

dEr
dσ

. (3.15)

Auto-SOM 607

Figure 5: Detailed block diagram of the Auto-SOM. The combination of the
original SOM’s KF implementation and the KF formulation of the recursive
parameter estimation of σ exploit the prediction error e(σ, j)

Equation 3.13 shows that the state transition depends on the state itself.
Therefore, this KF becomes the extended KF in its state covariance prediction
equation, 3.14.

Finally, the RPEM gives the estimate of σ(j|j) (see equation 3.4) by mini-
mizing the quadratic criterion function in equation 3.1 with respect to σ . The
combined algorithms presented in sections 2 and 3 establish the Auto-SOM,
a learning parameter estimation method that minimizes the expected value
of the prediction error for each neuron. The block diagram in Figure 5 illus-
trates how both algorithms depend on each other. In the upper part of the
diagram, the linear KF and the model of the self-organizing learning process
are shown. The output measurement ôr(j) is compared to its KF prediction
or(σ, j|j − 1) and amplified by the Kalman gain, which now controls the
following increment of the state model. The state model describes the state
transition of the filtered weights wr(σ, j|j) by a time-delayed (expressed by
z(−1)) identity mapping. The predicted weights are attenuated with their
corresponding value of the neighborhood function, yielding the prediction
or(σ, j|j− 1).

The filter estimating the width, σ , of the neighborhood function is de-
picted in the lower part of the diagram. Its structure is similar to the one of
the SOM learning process in the upper half. Thus, the filter also exploits the
prediction error e(σ, j) of the KF of the SOM learning process, but also uses

608 Karin Haese and Geoffrey J. Goodhill

the SOM Kalman gain matrix, Kr, as well as derivatives of the prediction
error8(j+1). On this basis, the gain Kσ is calculated to control the transition
model of the width, σ , which was chosen to be the gradient descent of the
sum of individual energy functions of the neurons.

3.1 Refinement to Guarantee Neighborhood Preservation. In the fol-
lowing, we are going to refine the transition of the width σ modeled by
A(σ, j) (see equation 3.15) in order to guarantee neighborhood preserva-
tion. Neighborhood preservation can be measured for the mapping9M→A
from the input space M to the output space A, and vice versa. The self-
organizing algorithm in general is capable of preserving neighborhoods in
the mapping 9A→M only from the output to the input space. However,
one can attempt to preserve neighborhoods in both directions by imposing
constraints on the width of the neighborhood function. Typical problems
for which the unconstrained SOM would finally converge to maps that vio-
late the neighborhood preservation of the mapping9M→A, are dimension-
reducing applications. During the training phase, the algorithm stabilizes
on bidirectional neighborhood-preserving map configurations, but when
the width of the neighborhood function is further decreased, it loses these
configurations. A phase transition occurs (Ritter & Schulten, 1989). From
a different point of view, this means that the algorithm turns at the phase
transition from a principal curve mapping to a mapping overfitting the in-
put data. Several heuristic approaches to stabilize the training algorithm
in a map configuration preserving the neighborhood, together with de-
tailed analysis of phase transitions, have been proposed (Herrmann, 1995;
Der, Balzuweit, & Herrmann, 1996). These suggest that overfitting can be
avoided using the RPE method by measuring the neighborhood violations
of the mapping9M→A and constraining the transition of the width σ while
continuing to decrease ε(j). Hence, A(σ, j) is constrained to be

A(σ, j) =

−
(

1− ∑
r∈A

1
σ

dEr
dσ

)
F(int(σ)) > 0

1− ∑
r∈A

1
σ

dEr
dσ F(int(σ)) = 0,

(3.16)

with F denoting the “topographic function” (Villmann, Der, Herrmann, &
Martinetz, 1997), a well-known measure of neighborhood preservation (e.g.,
Bruske & Sommer, 1995; Bauer, Herrmann, & Villmann, 1999; Herrmann,
Bauer, & Villmann, 1997). It is defined on the basis of the graph DM(r, r′)
of connections according to the induced Delaunay triangulation (Martinetz
& Schulten, 1994) of the input space:

fr(k)
def= #

{
r′| ‖r − r′‖max > k ; dD

M
(r, r′) = 1

}
, (3.17)

fr(−k)
def= #

{
r′| ‖r − r′‖ = 1 ; dD

M
(r, r′) > k

}
, (3.18)

Auto-SOM 609

F(k)
def=

1
N

∑
r′∈A fr′(k) k > 0

F(1)+ F(−1) k = 0
1
N

∑
r′∈A fr′(k) k < 0.

(3.19)

This measure calculates the number and the order k of neighborhood viola-
tions and is the only measure known to account for the violation order. This
information is exploited in the formulation of the transition of the width
(see equation 3.16). The transition model will increase σ if violations are
measured that are of higher order than the actual width σ(j). In case these
orders of violation occur, σ will not be decreased further until the algorithm
has restored a neighborhood-preserving mapping 9M→A. The results are
demonstrated in the third example (see Figures 8 and 9).

Finally, we guarantee the convergence of the learning algorithm to a
neighborhood-preserving mapping 9A→M from the output to the input
space by applying the constrained transition of σ in equation 3.16 with the
topographic function F(−int(σ)). In the following we demonstrate this by
presenting results for particular applications.

4 Applications

The results obtained with Auto-SOM are demonstrated on three exam-
ples covering the main application problems: (1) approximation of input
data distribution (two-dimensional uniformly distributed trained by a two-
dimensional feature map), (2) dimension reduction with neighborhood pre-
servation (three-dimensional nonlinear manifold trained by a two-dimen-
sional feature map), and (3) dimension reduction. Finally, we demonstrate
the performance of Auto-SOM using a real high-dimensional application
problem by comparing it to the results with generative topographic map-
ping (Bishop et al., 1996).

For the first of these, we consider the proposed training method to reflect
the uniform distribution of the input data Ä = {v(j)|0 ≤ (v)1 ≤ 1 ∧ 0 ≤
(v)2 ≤ 1} by the distribution of the neurons. The training result using a
10 × 10 feature map is shown at the top of Figure 6. We find the nodes of
the feature map uniformly distributed over the input data set, just mov-
ing within their Voronoi cell. The quantization error qerr (see equation 3.9)
reaches 0.0021 after 70,000 learning steps. σ(70,000) is equal to 0.96. These
results can be reached by experts on SOM too, as can be deduced from
our results with the original SOM. We took the estimated learning parame-
ters as a guideline for our choice of the initial values and rates of decrease
(see Figure 6). The final SOM trained with the original learning algorithm
shows nearly the same quantization error after 82,000 learning steps and
σ(82,000) = 0.96. In contrast to the exponentially decreasing learning pa-
rameters usually used with the original SOM, Figure 6 shows that the Auto-
SOM estimates of the learning parameters decrease faster. The estimate of
σ(j) is at first decreasing much faster; later, the decreasing rate reduces

610 Karin Haese and Geoffrey J. Goodhill

until it becomes very slow for σ(j) < 1. This is due to the individual en-
ergy function Er, equation 3.12, which depends on the learning coefficients.
The individual learning coefficients, depicted only for the winner neuron
(see Figure 6), decrease from values 0.3 to 0.06 during the training process.
While σ(j) is smoothly estimated, the estimates of the learning coefficients
are noisier during the whole learning process, as demonstrated by the learn-
ing coefficient Kr′(j) in Figure 6. This is due to the highly inaccurate model
of the learning process at the beginning of the training. The weights are
far from being static, which is modeled by equation 2.5. Additionally, the
system and measurement noise covariances, Qwr and Qor , respectively,
are in the same order of magnitude, which results in considerable fluctu-
ations between the confidence in either the measurements or the process
model. These fluctuations are reflected in the Kalman gain elements. High
values of the Kalman gain express high confidence in the measurements ôr;
in contrast, low values express high confidence in the process model.

During the organization process, the system noise covariance Qwr and
the measurement noise covariances Qor separate from each other by orders
of magnitude. Qwr tends to zero, expressing high confidence in the static
process model, while Qor tends to a limit, which depends on the input data
set and the number of neurons NA (see equation 2.13).

A comparison of Auto-SOM with the batch learning of SOMs is of high
interest, because batch learning is known to converge within an order of
magnitude fewer learning steps than the original SOM and additionally
does not involve the learning rate. Therefore, we also trained the SOM with
the batch-learning method. We started with the training result gained by
Auto-SOM after 50,000 learning steps, which is already ordered. Within
5000 steps, batch learning was able to achieve a well-ordered map with
equal quality (qerr = 0.0022) as those of Auto-SOM and the original SOM.
Therefore, batch SOM here needs fewer learning steps than Auto-SOM.
However, batch-learning techniques get stuck more often in local minima,
because these techniques smooth the noisy optimization process. Therefore,
they are faster, but the noise is known to be a remedy to escape from local
minima. For instance, our final example of high-dimensional learning pat-
terns trained with batch SOM did not lead to any map equal in quality to
the maps from the original or the Auto-SOM.

For the second example, the Auto-SOM is trained with data from non-
linear manifolds. The data are chosen from the surface of a hemisphere (see
Figure 7). Appropriate learning parameters are hard to guess, because the
self-organizing algorithm has to find the projection of three-dimensional
inputs onto the two-dimensional lattice of neurons. However, the Auto-
SOM estimates the learning parameters σ and Kr′ by itself, as shown in
Figure 7. Here they decrease at first linearly, but become sublinear when σ
is between 2 and 1. With σ = 0.9 the map plotted in Figure 7 is achieved.
Here the quantization error is 0.0003, a substantial improvement over the
method proposed by Haese (1999), which was trained until σ was equal

Auto-SOM 611

Figure 6: Feature map trained on uniformly distributed two-dimensional data
using Auto-SOM with the estimated learning parameters σ , Kr′ as well as the
quantization error qerr, and the covariance matrices of the neuron’s outputs and
the weights, Qor and Qwr , respectively.

to 0.7 but remained with a higher quantization error qerr = 0.0128. Further
training of the map in Figure 7 will continue in reducing the quantization
error, but because the energy minimum is very flat, this occurs only very

612 Karin Haese and Geoffrey J. Goodhill

Figure 7: Auto-SOM learning results on training data taken from a nonlinear
manifold. Auto-SOM estimates of σ and Kr′ , as well as the quantization error
qerr, are shown during the course of training.

slowly. For the third and last example, we demonstrate that neighborhoods
can be preserved for both mappings, 9A→M and 9M→A, if we impose the
constraints in equation 3.16 on the width of the neighborhood function. The
training data are selected randomly from a stripe-shaped area—here a rect-

Auto-SOM 613

angle with Ä = {v|0 ≤ (v)1 ≤ 3 ∧ 0 ≤ (v)2 ≤ 6}. If the smaller extension of
the input data set, in direction (v)1, is considered excessively as a dimension
due to noise, a one-dimensional feature map is chosen to quantize the data.
Without any constraints on the width σ , the feature map is guided to the
configuration in Figure 8. The point of phase transition can be observed in
the courses of Kr′ and Qwr . After about 24,000 learning steps, the elements
of the covariance matrix Qwr increase, indicating that the stable map con-
figuration just reached is lost. The distance between the weights and the
centers of their Voronoi cells first tends to increase, before converging to a
new map configuration with a smaller quantization error. This configura-
tion preserves neighborhoods only from the output into the input space.
In order to preserve neighborhoods for the mapping in the other direction,
we need to remain in the first stable map configuration. This is achieved by
refining the transition model of the width σ as proposed in equation 3.16.
Thereby, the width of the neighborhood function remains above the the-
oretical value σcrit ≈ 2.02s (Ritter & Schulten, 1989) with s = 3 being the
width of the stripe. The width σ as well as the estimated learning coefficient
Kr′ and elements of the covariance matrices Qwr and Qor are shown in
Figure 9. They converge in the form of an attenuated oscillation. Finally, a
mapping is reached that does preserve neighborhood relations for the map-
pings 9A→M and 9M→A, but it has a higher quantization error than the
map in Figure 8.

Finally, we show that Auto-SOM can find good mappings for real high-
dimensional input data, which have to be inspected and therefore visual-
ized. We compare the results of Auto-SOM with those of GTM proposed by
Bishop et al. (1996) and further developed in Bishop, Svensen, and Williams
(1997). Both algorithms can be regarded as kernel smoothers (Bishop, Sven-
sen, & Williams, 1998). As the comparison of GTM and the batch SOM
version in Bishop et al. (1998) has revealed once more the lack of guidelines
for how to shrink the width of the neighborhood function with batch SOMs,
now with Auto-SOM we provide a competing algorithm to GTM, whose
learning parameters are determined automatically. Therefore, we compare
both algorithms, Auto-SOM and GTM, using the problem of determining
the fraction of oil in a multiphase pipeline (Bishop & James, 1993) . The
pipeline carries a mixture of oil, water, and gas. Twelve measurements of
the attenuation of gamma beams are taken to decide whether one of the
phases (oil, water, or gas) belongs to laminar, homogeneous, or annular
flow. The training and testing data set consist of 1000 data points, each
drawn with equal probability from one of the three classes.

Figure 10 shows the different visualizations of the input data space using
Auto-SOM without the refinements in section 3.1 and GTM, respectively.
The number of patterns that neurons at location r = [r1, r2]T respond to
is plotted, assigning the class of flow by different gray levels. Auto-SOM
shows high resolution of the nonempty parts of the input space with a small
quantization error, 0.1294. Additionally, only seven neurons on the map are

614 Karin Haese and Geoffrey J. Goodhill

Figure 8: One-dimensional feature map trained on uniformly distributed two-
dimensional data using Auto-SOM with the estimated learning parameters σ ,
Kr′ as well as the quantization error qerr and the covariance matrices of the
neuron’s outputs and the weights, Qor and Qwr , respectively.

stimulated by patterns of different classes. The topology is preserved best
in mapping direction 9M→A with F(k > 18) = 0 and in mapping direction
9A→M F(−k > 9) = 0. In comparison, the GTM with a 12 × 12 grid of
nonlinear basis functions, with common width twice the distance between

Auto-SOM 615

Figure 9: One-dimensional feature map trained to stabilize in a bidirectional
neighborhood-preserving map configuration. The estimated learning parame-
ters σ , Kr′ , the quantization error qerr, and the elements of the covariance matri-
ces, Qor and Qwr , respectively, are depicted during the course of training.

two neighboring basis function centers and constant degree of weight regu-
larization, equal 1000.0 for 1000 iterations, resolves the input space as accu-
rately as Auto-SOM with a quantization error of 0.1272, whereas the number

616 Karin Haese and Geoffrey J. Goodhill

Figure 10: (Top) Auto-SOM and GTM learning results on training data taken
from flow measurements in a three-phase pipeline. (Bottom) Auto-SOM esti-
mates of σ and Kr′ shown during the course of training.

of neurons always responding to different flow configurations nearly dou-
bles to 13. The topology preservation achieved by the GTM is best in map-
ping direction9A→Mwith F(−k > 7) = 0 and in mapping direction9M→A
F(k > 16) = 0. Thus, the Auto-SOM performs as well as the GTM does. Fur-
ther results on this training set were studied applying the original SOM as
well as the batch SOM. The original SOM converged after 60,000 training
cycles to the best mapping with quantization error 0.098 and a minimum of
9 neurons always responding to different flow configurations. The topology
preservation achieved is worse with F(−k > 16) = 0 in mapping direction
9A→M and F(k > 8) = 0 in mapping direction 9M→A. Batch SOM did not
show better results. From this we conclude that the algorithms converge
to maps with very similar qualities in topology preservation and quantiza-
tion of the test patterns. However, the Auto-SOM and the GTM algorithm
render parameter studies unnecessary at the cost of greater computational
expense. The greatest additional part to be performed with Auto-SOM in
comparison to the batch SOM version is described by the linear KF equa-
tions, 2.16, 2.17, and 2.20, which increases with the number of neurons NA.
However, these additional costs are only a fraction of those resulting from

Auto-SOM 617

even one additional parameter study, because the greatest part of CPU time
is needed for searching the winner neurons.

Therefore, these results show that Auto-SOM is a feasible as well as
a tractable method for estimating learning coefficients and the width of
the neighborhood function, which leads to good results in all application
domains of the self-organizing feature map. Consequently, the Auto-SOM is
capable of relieving the user from laborious parameter studies. Furthermore,
it has also been demonstrated how the underlying model of the RPEM can
be modified to yield bidirectional neighborhood preserving mappings in
dimension-reducing applications.

5 Conclusions

We have presented the Auto-SOM, an optimal learning parameter estima-
tion method for the training of feature maps. A KF implementation of the
original SOM calculates the learning coefficient for each neuron to estimate
the weights’ adaptation process with minimal variance. From its estimation
error, the proper width of the neighborhood function is calculated by the
RPEM, which acts on the basis of the neurons’ individual energy functions.
Both algorithms establish the Auto-SOM, which converges automatically to
neighborhood-preserving feature mappings from the output into the input
space. This is guaranteed by the topographic function measuring violations
of neighborhood preservation. The performance and the features of Auto-
SOM were discussed on example applications. Auto-SOM is demonstrated
to yield best results, thus relieving the user from laborious parameter stud-
ies.

In addition, Auto-SOM can be modified to yield bidirectional neighbor-
hood-preserving mappings. This feature is highly appreciated for vector
quantization tasks of noisy data or any applications where it is desirable for
the SOM to stabilize in neighborhood-preserving map configurations.

Furthermore, Auto-SOM can provide insight into the data under exami-
nation by analyzing the estimated learning parameters as well as the noise
covariances. This has the potential to reveal further aspects of SOM features
and its convergence properties.

Acknowledgments

K. H. was supported by the German Aerospace Center and German Re-
search Foundation. G. J. G. was supported by grants from the NIH and
DoD.

References

Bauer, H.-U., Der, R., & Herrmann, M. (1996). Controling the magnification factor
of self-organizing feature maps. Neural Computation, 8, 757–765.

618 Karin Haese and Geoffrey J. Goodhill

Bauer, H.-U., Herrmann, M., & Villmann, T. (1999). Neural maps and topo-
graphic vector quantization. Neural Networks, 12, 659–676.

Bauer, H.-U., & Villmann, T. (1997). Growing a hypercubical output space in a
self-organizing feature map. IEEE Transaction on Neural Networks, 8, 218–226.

Bishop, C. M., & James, G. (1993). Analysis of multiphase flows using dual-
energy gamma densitometry and neural networks. Nuclear Instruments and
Methods in Physics Research, A327, 580–593.

Bishop, C. M., Svensen, M., & Williams, C. K. I. (1996). GTM: The generative
topographic mapping (Tech. Rep.). Birmingham, UK: Aston University.

Bishop, C. M., Svensen, M., & Williams, C. K. I. (1997). Magnification factors
of the SOM and GTM Algorithm. In Proceedings of the Workshop on Self-
Organizing Maps (WSOM ‘97), Espoo, Finland (pp. 333–338). Helsinki: Helsinki
University of Technology.

Bishop, C. M., Svensen, M., & Williams, C. K. I. (1998). GTM: The generative
topographic mapping. Neural Computation, 10(1), 215–234.

Bruske, J., & Sommer, G. (1995). Dynamic cell structure learns perfectly topology.
Neural Computation, 7, 845–865.

Der, R., Balzuweit, G., & Herrmann, M. (1996). Constructing principal manifolds
in sparse data sets by self-organizing maps using self-regulating neighbour-
hood width. In Proc. ICNN‘95, IEEE Int. Conf. on Neural Networks.

Erwin, E., Obermayer, K., & Schulten, K. (1992). Self-organizing maps: Ordering,
convergence properties and energy functions. Biological Cybernetics, 67, 47–55.

Haese, K. (1990). Optimierung des Schätzverhaltens eines Kalman-Filters. Unpub-
lished master’s thesis, RWTH Aachen, Germany.

Haese, K. (1998). Self-organizing feature map with self-adjusting learning pa-
rameters. IEEE Transactions on Neural Network, 9(6), 1270–1278.

Haese, K. (1999). Kalman filter implementation of self-organizing feature maps.
Neural Computation, 11(5), 1211–1233.

Haese, K., & vom Stein, H.-D. (1996). Fast self-organizing of n-dimensional topol-
ogy maps. In VIII European Signal Processing Conference, Trieste, Italy (pp. 835–
838). EURASIP Edizioni LINT Trieste.

Herrmann, M. (1995). Self-organizing feature maps with self-organizing neigh-
borhood widths. In Proc. ICNN‘95, IEEE Int. Conf. on Neural Networks, 6
(pp. 2998–3003). Piscataway, NJ: IEEE Service Center.

Herrmann, M., Bauer, H.-U., & Villmann, T. (1997). A comparison of topography
measures for neural maps. In Proceedings of the Workshop on Self-Organizing
Maps (WSOM‘97), Espoo, Finland (pp. 274–279). Helsinki: Helsinki University
of Technology.

Kohonen, T. (1982). Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43, 59–69.

Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer-
Verlag.

Kohonen, T. (1985). Self-organizing maps. Berlin: Springer-Verlag.
Ljung, L. (1999). System identification: Theory for the user. Englewood Cliffs, NJ:

Prentice Hall.
Ljung, L., & Söderström, T. (1983). Theory and practice of recursive identification.

Cambridge, MA: MIT Press.

Auto-SOM 619

Martinetz, T., & Schulten, K. (1994). Topology representing network. Neural Net-
works, 7(3), 507–522.

Ritter, H., & Schulten, K. (1989). Convergence properties of Kohonen’s topology
conserving maps: Fluctuation, stability and dimension selection. Biological
Cybernetics, 60, 59–71.

Tolat, V. (1990). An analysis of Kohonen’s self-organizing maps using a system
of energy functions. Biological Cybernetics, 64, 155–164.

Villmann, T. (in press a). Analysis of psychotherapy process data using neural
maps. IEEE Transactions on Neural Networks.

Villmann, T. (in press b). Application of magnification control for the neural gas
network in a sensorimotor architectur for robot navigation. In Fortschritts-
berichte des VDI, Workshop SOAVE 2000, Ilmenau. VDI-Verlag.

Villmann, T., Der, R., Herrmann, M., & Martinetz, T. M. (1997). Topology preser-
vation in self-organizing feature maps: Exact definition and measurement.
IEEE Transaction on Neural Networks, 8(2), 256–266.

Yin, H., & Allinson, N. M. (1995). On the distribution and convergence of feature
space in self-organizing maps. Neural Computation, 7(7), 1178–1187.

Received May 17, 1999; accepted June 14, 2000.

