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Effects of x'® nonlinearities in second-harmonic generation
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We investigate the effects of higher-ordgf®), nonlinearities on the process of second-harmonic genera-
tion. In the traveling-wave case we find substantive differences in the macroscopic behavior of the fields when
the x(®) components are present. In the intracavity case, which has been investigated before using a linearized
analysis, we investigate regions where these analyses may not be valid, comparing and contrasting the full
guantum simulations with previous results.
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[. INTRODUCTION The process of intracavity second-harmonic generation
with an addedy® nonlinearity which affects the fundamen-

It has long been known that nonlinear parametric protal mode only has been analyzed by Cabréloal. [9]. The
cesses such as second-harmonic generd8®iG), optical authors, using a linearized analysis, calculate that the Hopf
parametric oscillatiofOPO), and amplification(OPA) can  bifurcation normally found in SHG can be shifted towards
produce nonclassical states of the electromagnetic ffilgld higher photon numbers and that, for a high enough value of
Much theoretical and experimental work has been done ox(®), the system can be completely stabilized. Calculating
these cases, in both of which electromagnetic fields at differthe quadrature noise spectra, the authors also find a supres-
ing frequencies are coupled by a second-orgé?, nonlin-  sion of the excess noise in the antisqueezed quadrature,
earity. caused by the Kerr nonlinearity. The authors calculate that,

There have also been a number of theoretical analyses ¢dr the appropriate combination of parameters, perfect
systems in which both/® and higher-order nonlinearities quadrature squeezing can be found at the critical operating
are present. Gerry and Rodrigy@$ investigated a system of point, although a linearized fluctuation analysis is not ex-
traveling-wave down-conversion with an adde® anhar-  pected to be fully valid at this point.
monic term. Making the approximation that the pump field Our aim in this work is to perform a fully quantum inves-
was classical and undepleted during the interaction with théigation of the system of SHG with competindg? and
nonlinear medium, they predicted squeezing and antibunchronlinearities in both modes, using the positReepresen-
ing effects for short interaction times. Tombg3] analyzed tation[10] and a linearized fluctuation analysis where appro-
a system with two external pumping fields agé?, x(®),  priate. We wish to calculate how the inclusion of the Kerr
and y® nonlinearities. He predicted enhanced quadratur@onlinearities may affect the mean fields and the quantum
squeezing via reduced interaction length, although he alsstatistics in both the traveling-wave and cavity configurations
assumed classical, undepleted pumping. Gafernadez of second-harmonic generation. In the traveling-wave case
et al. [4] analyzed the degenerate parametric amplifier withwe use numerical stochastic integration as it has been shown
added fourth-order interaction and undepleted classicabreviously that linearization in the case of pure SHG has
pumping, using a linearized fluctuation approach. limited validity, not even giving the correct solutions for the

Cabrillo and Bermejd5] dropped the undepleted pump mean fields[11-13. In the intracavity case, we use both
approximation to analyze the optical parametric oscillatomumerical stochastic integration and, where we can demon-
with a y©® interaction in the low frequency mode only. Us- strate its validity, a semianalytical linearization method.
ing a linearized analysis, they found that even though the
quadrature noise in the total field tended to increase, there Il. TRAVELING-WAVE CASE
was a spectral redistribution so that they actually found bet-

i i (2) (3) i i
ter squeezing at some frequencies. Cabeli@l. [6] studied We consider a nonlinegy™™ andx™ crystal, in which a

. ) . pump field at frequencw produces a harmonic field at fre-
the quadrature squeezing and mean fields for an OPA wit uency 2». We consider here only the case of perfect phase-

2?0%?1?; tic’ dlijf?érr]gnzalllleir:t?c:lrlosn :f ;Y]'%Z?r: r?ﬁgezﬁggat:gpematching between the two fields, with both fields considered
q » ad 9 P gs plane waves. In the traveling-wave regime we can write

Fhuemcpoi?plgxlémritl?gégr:m?:nkﬁn E;T?orK;]'e;%nfg;mgéegf 22N interaction Hamiltonian, with the triviad dependence of
P P P Y the fields removed, as

driven OPO with third-order nonlinearity, calculating the ef-

fects of the quantum noise on the nonlinear dynamics and BK a o an .
quantum statistics of the signal field. They again used a clas- H= T[a* b—a’b"+#x[a" %a®+b' %?]

sical pump approximation. Kheruntsyat al. [8] used the

complex P representation to calculate the Wigner function +2%iy.,a’ab’d, (1)

for a similar system, but with a quantum treatment of both A A
high and low frequency modes, although only the degenerat@herea andb are the annihilation operators for photons at
low frequency mode was subject to thé€” interaction. frequenciesw and 2w, respectively, at positioa inside the
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nonlinear crystalx represents the effective strength of the so that @x/dz)?+2U(x)=2E is a constant of the motion.
nonlinear interaction between the two modgsrepresents In the above equations, definir@,=8y? «(0)|*, we also
the effective strength of the self-phase modulati®® non-  have

linearity, andy,, represents the strength of the cross-phase

modulation x* nonlinearity. We consider here the case 14y

where the Kerr type interaction has equal effective strengths == 5 Co.

for each mode. The cross phase modulation strength will

depend on such things as the mode overlap and can typically 4

vary up to the maximum of the self-interaction strength. The a,==k?Cy+Cy,

operator equations of motion for the system are found as 5 ®)
da 2k
P N\ D az;=—,
E:Ka*b—2|XaTa2—2|XababTb, 37 By
) 2 1
db KA nn ~onn QY=—.
_ 2_92i  hTH2_ 9j T 4
——=—za"—2i —2i
iz 2a xb'b Xapd'ab,
We can now rearrange and integrate E2).to give
for which no analytical solution is known.
The first level of approximation often used in solving op- X(2) dx
erator equations is linearization, or assuming that the opera- z= iJ > 3 7 (7)
x(0) Vag+ax+ a x>+ agx®+a,x

tors can be directly replaced by complex numbers to give the
mean values of the fields. In the case of traveling-wave SHG, ) , L
this method has been shown to have limited valiftg], but ~ Wherex(0)= —4x|a(0)|*. Using energy conservation, it is
in the present case we find an analytical solution for the"€ar Ehat any solution for(z) also implies a solution for
photon number which more closely follows the full quantum a(2)|*. We find that there are three cases where(Eghas
solutions, at least when we set the cross-phase modulatidifriodic solutions. Defining

term x.p to zero. Making the substitutiors— a=(a) and

4
b— B=(b) gives the following classical equations: Fx)=> axk,

da ) )
— =—2ix|a|?a—2ixap|Bl?at ka* B,

dz =211 (x=xw), ®
=1
3)
dg : : K — )2 -
E:_2|X|:8|218_2|Xab|a’|2/8_Eaz. V;/fz)ere a,=—\? and \>0, we examine the roots df(x)

In the first two cases, there are four real rootg=>Xx,
Note that we have not bothered with the normal method of>x,>x, and the solution can be written as
calculating fluctuations around the classical solutions, as ex-
perience with the pure SHG system has shown the results to
be highly inaccurate after a short interaction length and we X(z2)=M+ ,
would expect this to be the case here also. D+sm(Qz+ ¢,k)

In this situation, as opposed to the situation of pure ) o )

traveling-wave SHG, we can find a reasonably accurate andvhere sn is the Jacobi sine amplitude of modiis4] and

lytical solution for the field intensities. After much manipu-

(€)

lation (see the Appendix and settingy,,, to zero, we find an _ ﬁ — —
equation of motion for the new variabbe=2y[5|5(2)|? 0 2\/()(1 X3) (X2~ Xa),
—-2|a(0)]?], (10
(X1 =X2)(X3—Xy)
dx k= ,
4, = Vao+axta’+ag+ax’, (4) (X2~ X4) (X1~ X3)

and the constang is determined from the initial condition
where ap=2E, the pseudoenergy obtained by treatingby
d?x/dZ? as a pseudoacceleration resulting from a pseudopo-

tential B N—D[x(0)—M]
d=sn 1( V—[x(O)—M] ,k). (11)

1
__ = 2 3 4
V00 == 5 (axtapx +agx+an, © The functionx(z) is periodic, with the period given by
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T= zfl a = 2 K(k) (12

QJoJ1-t)(1-K*?» Q ’ o
where K(k) is the full elliptic integral. It is clear that the 8
period ofx(z) is the same as that 0f&(z)|2.

We find that there are two separate cases for the solutior
given by Eq.(9). The first of these cases, which is that en- _ ¢

countered for the parameters we have used in this investigas Al

x 10
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|t

B

tion, is where(i) xz=x=x,: In this caseM=x;, N=
— (X1 X4) (X1 X3)/ (X3—X4), and D= (X1 —X3)/(X3—Xa);
(i) x;=x=X,: In this case, M=Xx,, N=(X;—X4) (X,
_X4)/(X1_X2), and D:(XZ_X4)/(X1_X2) These two

cases correspond to motion of a pseudoparticle in the twc =zt .

different branches of a quartic pseudpopotential.

The other type of periodic solution arises when we find

two real roots,x; and x,, with x;>x,, and two complex
roots forf(x). Writing

f(X)= = N2(X=X) (X=X2) (X*=2ux+v), (13
the solution has the form, fot;=x=x,,
No
X(zZ)=Mgy+ (14

Do—cn(Qoz+ ¢, ko)’
where cn signifies the Jacobi cosine amplitude. Defining

Y1= VX1~ 2uX; v,
Y2= VX3— 2uxXpt v,

(19

we have

_ Y1Xo—YoXyg

" yi-y,

_ 2Y1Y2(X3—X3)
No=—"———>,
(Y1—Y2)
:y1+y2
O yi-y,

Qo=AVY1Y2,

Y1Y2— XiXo+ m(Xg+Xp) — v
2y1Y>

ko=

Do[x(0)—Mg]—Ng
Xx(0)—Mg

¢0=cn1< Ko . (16)

In this case the period of(z) has the form

T —iJl at —iK(k) 17
" oo Ja-H(1-KD) Qo

[}
2
£

4 4

a3k 4

FIG. 1. The classically calculated intensities of the fundamental
and harmonic as functions of the normalized interaction distace,
for |a(0)|?=1C°, «k=0.01, andy=10"".

Fig. 1. The horizontal axis is a normalized interaction dis-
tance,£= «z|a(0)|/\/2. Note that there is no visible differ-
ence in these solutions whether we ignore the effects of the
cross-phase modulation or set it to its maximum vajysg,

= y. Although interesting in itself when compared with the
classical solution for traveling-wave SHG, which does not
exhibit any periodicityf 15], neither the analytical or numeri-
cal solutions of the classical equations allow us to reliably
calculate any of the quantum statistics of the two fields. To
do this we turn to one of the phase space representations of
guantum optics.

Using the usual method46], this system can be mapped
exactly onto positivd® equations, via the master and
Fokker-Planck equations. For purposes of comparison, we
first give the equations witly,,, set to zero, which allows a
particularly simple factorization of the diagonal diffusion
matrix, giving

da
a7 ka'B—2ixya?at+JkB— 2i)(0127]l(2),

da’ ) -
dz kafl+2ixa' 2a+ BT+ 2ixal 29,(2),

(18)
(;—'(Z: -~ gaz—Zixﬁzﬁ“r —2ixB°n3(2),

d,BT K . "
4y = 52X B 2ixB ny(2).

In the above system of equations, there is a correspondence
between[a,a’,b,b'] and[«,a',B,8], although the latter

Solving the classical equations numerically using a fourtharec-number variables that are not complex conjugate except
and fifth order Runge-Kutta method also shows that thén the mean of a large number of stochastic trajectories. This
mean-field intensities undergo periodic revivals, as shown ifis due to the independence of the real noise terms, which
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FIG. 2. The intensities of the fundamental and harmonic as FIG. 3. TheX quadrature varignces for the tra\_/eling-wave_case
functions of the normalized interaction distancg, for |a(0)|2 In Fhe fqndamental and harmonic, calculated. us!né Q]ﬁchastlg
—10°, x=0.01, andy=10"7, calculated using the positive rep- trajectories. The parameters are the same as in Fig. 2. The variances
resentation. The dotted lines are fpr 0, the case of pure second- for pure SHG are shown by the dotted lines.
harmonic generation.

have used that it only happens well after the squeezing has
have the propertiesm=0 and W: 5,6(z es_s_ent|ally dl_sappeared. Thls means that even though_the
—27'). The positiveP equations can then be numerically in- minimum noise is fognd in a d|fferent. quadrature, this
tegrated to calculate not only the mean-field behavior, bufiuadrature never exhibits better squeezing thgnaround
also the quantum statistics of the fields. The mean-field iné~2—3. The variances in the fundamental are shown for

tensities, calculated using 1Gstochastic trajectories, are Various quadratures in Fig. 4.
shown in Fig. 2 for an initial photon number in the funda-
mental of(a’a)=10° and nonlinearities ofk=0.01 andy
=107, aratio which is realistic for many materials. We can  aithough the inclusion of what we would expect to be the
readily see that, unlike the case of pure SHG, the behavior ig,aximum value of the cross-phase term made no visible
close to that found classically. _ difference to the mean fields, it is still of interest to investi-
In this case we are also interested in the quadrature varkaie \what effect it may have on the quantum statistics of the
ances, as unusual behavior has previously been found in the,, fie|ds. Proceeding as above, we find that the poskive-

pure x(?) case. Defining the quadratures by

X,=ae '+a'd’ (19

Effect of cross-phase modulation

181

we see that the coherent state value for any quadrature var |
ance is equal to 1. Th¥, quadrature variances for the fun-
damental and harmonic are shown in Fig. 3, with the same 14
guantities for pure SHG shown by dotted lines. It can imme-
diately be seen that the maximum obtainable squeezing ig
less when the'® interaction is included, with the squeezing
being available over a smaller interaction length. This g
change in the statistics of the fields, from squeezed to highly%o'a_
antisqueezed, is explained by the spontaneous nature of th es
downconversion process as energy is transferred back fron
the harmonic to the fundamental. o
One interesting question with the present system is o:
whether other quadratures at differehtmay exhibit better
squeezing for different interaction lengths. After all, tié) % o5 1 s e zés s s 4 a5 s

term essentially operates on the phase of the fields and coulu
well produce a quadrature rotation effect. This quadrature FiG. 4. TheX, quadrature variances for the traveling-wave case

rotation effect is apparent in simulations, with the variancesn the fundamental, calculated using®lochastic trajectories. The
for different # actually crossing at different interaction ¢ values are equally spaced from 0 #d2. It can be seen that the
lengths, but is such a small effect for the parameters that wamaximum squeezing is found far=0.

nces

1.2r-

1

ture v;
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Fokker-Planck equation for the system no longer has a diag-  dp K o R
onal diffusion matrix, which means that no simple and obvi- 7y =~ 728~ 5a"~2ixB B+ =2ixBZns(1),
ous factorization resulting in the stochastic differential equa-

tions suggests itself. However, the factorization we have dpt

chosen(which is by no means uniguideads to the following P et K 2 0i 8T 284 Biv BT 2mi(t
system of stochastic equations: dt i XPB XB""malt)-
da —2i In the above, we have assumed phase matching without the

EzKaTﬁ_z'XazaT_z'XabaﬁTﬁ+ TXabanl(z) x® terms and they; are the cavity loss rates at each fre-

quency, whilee represents the classical pumping field at the

+\KkB—2ia®(x— x5/ X) 13(2), lower frequency. The noise terms are as before, except that
they are nows correlated in time rather than in space. In our

da’ ¥ oo 42 ) gt \F t calculations we will always sef,=vy,=1.
g " KaB F2ixa fat2ixape fBT o Xab? 72(2) In normal SHG, it is well known that a Hopf bifurcation
exists at a critical pumping strengthe.=(1/«)(7y-
VBT +2ia’ A x— X2 x) 1a(2), (200 +2y)V2y2(y1+ v,) [17,18. It is normally assumed that a
linearized fluctuation analysis can be performed below this
dg K critical point, which is found by writing operators as the sum
— 2 H 2t H T : 2 . -
Az 2% T2XBB ~2ixapa @tV 2iXB 71(2), of a classical, mean value part and a fluctuations operator,
e.g.,a=a+ da, where it is assumed thata is somehow
dg’ K wo 0 1o . R small compared te. This allows equations to be written for
dz 2¢ +2ixB" “B+2ixapa’ apf the fluctuation operators in the form of an Ornstein-
Uhlenbeck process, allowing easy calculation of the noise
+2ixB" 2n,(2), spectra. The critical point is actually found by examining the
eigenvalues of the drift matrix in the equation for the fluc-
where all variables and noises are defined as in(E8). tuations. As long as these do not have a positive real part, the

From numerical integration of these equations we findsolutions will be stable, although this process in itself says
that the intensities of the two fields are not noticeablynothing about the size of the fluctuations, nor does it say how
changed, whethey,,=0 or is equal toy. In parameter re- accurately equations thus solved will give the quantum sta-
gions where quadrature noise reduction is found with ndistics of the fields.
cross-phase modulation present, the addition of the maxi- Crucial to this stability analysis is the ability to obtain
mum x,p value does not perceptibly change the squeezinglassical steady state solutions to the system obtained by
found. However, for the quadrature angles and regimeslropping the noise terms in E€21). With standard SHG,
which exhibit excess noise, the maximum cross-phase moduhis process is trivial and with the(®) interacting only with
lation can increase this noise by a factor of approximatelithe fundamental, it is also easy. In our case, however, we use
10%. a perturbation expansion, writing

1. INTRACAVITY CASE ass= agt xay+ xlast o,

. . . . . 22
The case of intracavity SHG with addad® interaction 22

has been previously examined in the case where this interac-
tion affects only the fundamental mod@]. This analysis
also used a linearized fluctuation analysis about the stea
state values of the fields. Here we wish to include the highe
order nonlinearity in both the modes and calculate the field"d & real pump,
statistics without necessarily using the linearization ap-

BSS:BO+XB1+XZBZ+ Tty

hereay and B, are the steady state solutions to the classi-
dé\fal equations withy=0. With phase matchingy;=y,=7vy
we find that, is the real solution of

2

proach. We also compare noise spectra calculated in the lin- K_a3+ ot e=0 23)
earized approach with those obtained by stochastic integra- 2y 0 Yo '

tion of the full quantum equations. We will first investigate

the case without cross-phase modulation, whejig=0. and Bo=— Kag/zy_ As x much smaller than the other pa-

With a cavity, the positivd>-representation equations are rameters we will only take our perturbation expansion to first
order. This leads to the solutions

da
azf—yla-i-KaTB—Zi)(azaTJr\/K,B—Zi)(azﬂl(t)'
2i YA
Bss=Bo— 2 ’ (24)
y L7 B
WZG*—ylaT-i—Ka,BT-i-ZixaTza K% Kag yao

+VkB T+ 2ixa’ 2n(2), (21)  where
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M. K. OLSEN, V. I. KRUGLOV, AND M. J. COLLETT PHYSICAL REVIEW A63 033801

1

091
081

071 -

FIG. 5. TheX, fundamental quadrature variances for the cavity  FIG. 6. TheX, fundamental quadrature variances for the cavity
case withe=0.4¢.. The dash-dotted line is the linearized variance case at the critical point. The full line is the result of Hlochastic
and the full line is the result of stochastic integration, both for trajectories and the dash-dotted line is the linearized variance, both
=10""7. For these parameters there is no visible difference for puravith y=10"".
SHG.
For purposes of comparison and verification of the linear-
,361 . %gg ized spectra, we have also calcula@) stochastically, as
A= ——agt (25  the Fourier transform of the mean value of the normally or-
0 Ko dered two-time covariance of th&, quadrature, taken over

and 10° trajectories of the positiv® equations,

S(w)=1+FT{:Xq(t),Xo(t+7):). (27
_ X . 03
@ss™ @0 KT(O(V'BlJFZ'BO)' @29 As we can only numerically integrate the equations over a
finite time interval, we would expect our numerical solution
It can be seen from the above expressions that, to first ordei@ be most accurate for higher frequencies, as is shown in
the effect of the Kerr nonlinearity is to add an imaginary Fig. 5. We also find that achieving a smooth noise spectrum
component to the two field amplitudes. by stochastic integration requires more trajectories than a
The steady state solutions thus obtained are then used &nooth mean fol(X,) in the time domain. What we can
perform a numerical stability analysis of the system. We findsee here, however, is that the two methods are in reasonable
that, for the values we use here, there is still a Hopf bifurca@greement, with no new features of the spectrum appearing
tion so that above a certain critical pumping amplitude, wein the stochastic resuilt.
expect self-pulsing behavior analogous to that found in pure
SHG. Our approach here is slightly different from that of B. At the critical point
Cabirillo et al.[9], who define the critical point in terms of a - -
normalized photon number in the fundamental mode. We When the' cav@y IS pumpgd at the critical rqtg we would
feel that a definition in terms of pump amplitude should pheSXPect any Imeanz_ed analy_5|s to have_ lost validity, wheregs
more experimentally useful. For small valuesafwe find SFOChaSt'C Integration remains valid, given th_e fact_ors of fi-
that the critical pumping parameter found from our first. Nite integration time and finite number of trajectories men-

order expansion is little changed from that found for puref“oned above. We_have again used both methods of calculat-
SHG. ing the spectra, with all parameters unchanged except for the
pump amplitude. In Fig. 6, we show the linearized and sto-
chastic results with the/®® component present. We can
readily see that the stochastically calculated spectrum has
Below the critical point is where linearization should be two large spikes of excess noise, @t /3 andw~3. The
most valid, enabling us to calculate steady state noise specttawer frequency spike is hinted at in the linearized result, but
by treating our system as an Ornstein-Uhlenbeck process much smaller and at a slightly higher frequency. This
[19], using our first-order perturbative solutions as the steadgpike is at the frequency of the purely imaginary eigenvalues
states. We find that, as shown in Fig. 5, tBé&b) for theX,  of the linearized fluctuations matr[48], o~ /3 for our pa-
quadrature is effectively unchangedet 0.4e. for our pa-  rameters. This lower frequency spike is a signature of the
rameters ofc=0.01 andy=10"7, the plotted spectra being x®) component, not being present in the pure SHG results at
indistinguishable on the scale we use. the critical point, as we can see in Fig. 7. This figure shows

A. Below the critical point
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1

091

0.8

0.7

Intensities

FIG. 7. TheX, fundamental quadrature variances for pure int- ) ) )
racavity SHG at the critical point. The full line is the result of ~ FIG. 8. The mean fields for=1.2¢., showing the self-pulsing

10P stochastic trajectories and the dash-dotted line is the linearizeB€havior. This is the stochastic solution for ®1@rajectories
variance. x=10"7. The classical solution is not visibly different at this scale.

a narrower spike at the higher frequency, but absolutely ndhis excess noise is actually less than that found with pure
new structure in the linearized spectrum. The spikes at thgHG, showing that the(®) component has to some extent
higher frequency seem to be related to an oscillation in th@tapbilized the fields by comparison. The other quadrature
quadrature variance which is not actually visible in the timeangles also all display excess noise as the time increases.
plots until a higher pump power is used. This is typical of rhis tells us that, as there are no steady state squeezing ef-

soft-mode oscillations, which will show up in the two-time ¢octs we would not expect to see very much quadrature
correlation function in the frequency domain before they aresque’ezing in the frequency domain

visible in the time domain. . : . .
What is of interest in both these figures is that the positiveTai Previously published ‘analytical calculatiof@1], ob

P spectra and the linearized spectra are still in broad agree- ned by a linearization "?“0“”0' .the periodic solut!ons fgr
ment, despite being at the critical point. However, from timeP4"® SHG in the self-pulsing regime, suggest that intensity

domain integrations we saw that the variances at any othgdHeezing may be found in this regime. These results also

' S . Show a huge first-order correction to the amplitude spectrum,
guadrature angle tended to increase with time, with only th%. ; . AU .

) ; o inting that amplitude quadrature squeezing is possibly not
Xo quadrature showing steady state squeezing. This is ar " .
: . . ; X observable above the critical point.
other feature that is not found in a linearized analysis. We

should note here that our calculations do not use the param-
eters that others have used to predict nearly perfect quadre '
ture squeezing at the critical point, with one cavity loss rate 4|
much larger than the othg20], as we are more interested in
looking for signatures and effects of ty&®) component than o8-

in perfecting the squeezing.

0.7

C. Above the critical point o8

As expected, above the critical point we find self-pulsing §“°-5-
behavior, as shown in Fig. 8, calculated to+ 1.2¢.. Again
the semiclassical solutions for the mean fields are almos
indistinguishable from those obtained using the posifve 03 ]
The pulsing behavior is different to that of pure SHG, with ,
the oscillations beginning earlier and having a greater ampli-
tude and lower frequency, although the time-averaged value: o1} .
for the intensities are almost identical. Wigs®) we also see
oscillations with two different amplitudes, another feature % 05 1 15 2 25 3 85 4 45 5
not seen in pure SHG. "

When we examine the quadrature variances, we see that FIG. 9. Short time behavior of the variance in tig quadrature
the Xy quadrature displays transient squeezing as shown isf the fundamental, foe=1.2¢, and y=10"7. We can see that
Fig. 9, but soon develops excess noise, as shown in Fig. 18queezing is only a transient effect in this situation.

041 b
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400 ' ' ' ' ' point. The amount by which the critical point is changed
depends on whether cross-phase modulation is included or
not. At and above the critical point, however, we find obvi-
ous signatures of thg® components. Although the Hopf
bifurcation is not moved very much, the self-pulsing behav-
ior is quite different. A new oscillation with two distinct
amplitudes emerges, with a period significantly larger than
that found for pure SHG.

350 1

300 b

ono
> As all materials have somg®> component, and the ratio
ol of x®/x? that we have used is rather small, but typical of
nonlinear media, it is of interest to know what the signatures
100} 1 of this component are. We have found several signatures that
should be accessible to experimental observation.
50
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creases and becomes periodic as the self-pulsing begins. It is easily

seen that there will be no steady state squeezing in this quadrature.
APPENDIX: DERIVATION OF

D. Cross-phase modulation in the cavity ANALYTICAL SOLUTION

Well below the critical point we do not find any notice-

able differences in the behavior of the system when we in: Lo : 2 _
clude our maximum value of,,, either in the positiveP the propagation, in our case being equal¢0)|” and de

. . _ 2 _ 2
simulations or in linearized results, again performed using ;;mlng a(z)—|fr(z)| 2 b(z)—!,B(z)| (note that these are not
perturbation expansion to first order. However, as we inthe operators andb), we find that
crease the pump power so as to approach the usual critical

Using the fact thata(z)|?+ 2| 8(z)|?=C, is constant in

point (with x(?) only), we find that the low frequency spike da _ <V

in the X, quadrature noise spectrum begins to appear earlier. dz '

When we use the normal critical pumping, the spike is much (A1)
more pronounced, but at the same frequency. Stochastic in- db K

tegration also shows this spike as more pronounced and ap- az_ EV'

pearing at a lower pump power than with self-phase modu-
lation only. This is a strong indication that the critical point
has moved, although a linearized fluctuation analysis to firs¥_v
order iny does not show any significant change. This indi-
cates that linearization is not as trustworthy with the cross-

here V=a*?B+a?B*. Defining also W(z)=i(a*28
a?B*), we find

phase terms included and we must resort to stochastic inte- d_V: ka(4b—a)+2y(2a—b)W,
gration at lower pumping than for pugé?, or with just the dz
inclusion of the self-phase modulation. We plan to further (A2)
investigate both the noise properties and the effects of the
cross-phase modulation near and above the critical point as EZZX(b_za)V-
part of a more general study into the limits and applicability
of linearization. We now introduce the variable
IV. CONCLUSION x=2x[5|B(2)|*~2|a(0)|?], (A3)

We have analyzed second-harmonic generation in theg that we can write
case where the nonlinear crystal has adgé€d nonlineari-

ties. In the traveling-wave case we find marked differences dx
between the dynamic behavior of the fields with and without a4z gV,
the x(®) components. As far as the quantum statistics of the
fields are concerned, we find that less squeezing is achiev- dw
able in they® case. The behavior of the fields is not sig- ——=VXx, (A4)
nificantly changed by the inclusion of cross-phase modula- dz
tion terms.
When we investigate the intracavity situation, we find that dv _

the behaviors are essentially the same below the critical dz

033801-8
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where g=5ky;, ao=7KCS/25, a1=4kCy/25y, and a,
=3k/25x%. We now define another constant of the motion,

1, 2 4
C1=§x (2)+gW(z)=8x? a(0)|*, (A5)
so that we can now write
d?x , 1,
—=—agg+(Ci+a19)X+ agx“— =x°.  (A6)
dz 2

Treating d°x/dZ> as a pseudoacceleration att{x) as a
pseudopotential, we can write

d’>  U(x)
a2 ox

(A7)

PHYSICAL REVIEW A 63 033801

which leads to

dx d?x dx dU(x)
——=-T (A8)
dz g2 dz ox

or
d[1/dx\?] du A
dzl2\dz) |7 a7 (A9)

From the above equation we can see thHdtx/dz)?
+U(x) is a constant, which leads immediately to E4).
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