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Effects of x „3… nonlinearities in traveling-wave second-harmonic generation
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We investigate the effects of self-phase and cross-phasex (3) nonlinearities, in the process of traveling-wave
second-harmonic generation. We derive a semiclassical analytical solution for the field intensities, comparing
this with the numerically obtained fully quantum solutions. We also investigate the effects of the cross-phase
modulation on the quantum statistical properties of the fields. We find that, as thex (3) components increase,
there are qualitative changes to both the field intensities and the quantum statistics.
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I. INTRODUCTION

It has long been known that nonlinear parametric p
cesses such as second-harmonic generation~SHG!, optical
parametric oscillation~OPO!, and amplification~OPA! can
produce nonclassical states of the electromagnetic field@1#.
Much theoretical and experimental work has been done
these cases, in both of which electromagnetic fields at dif
ing frequencies are coupled by a second-order,x (2) nonlin-
earity. As all real nonlinear materials are expected to have
effective x (3) component, it is of interest to calculate th
effects of this component in these nonlinear optical p
cesses.

There have been a number of theoretical analyses of
tems in which bothx (2) and higher-order nonlinearities ar
present, although few of these are for frequency upcon
sion processes and most make a number of approximat
such as classical, undepleted pumping@2–4#. We have pre-
viously performed an analysis of SHG with addedx (3) non-
linearities in both the traveling-wave and intracavity cas
comparing and contrasting the fully quantum solutions w
those found by the common process of linearization@5#. In
this previous work we gave an analytical semiclassical so
tion for the field intensities in the process of traveling-wa
SHG with self-phase modulation, finding that this w
closely similar to the fully quantum solutions, as opposed
the case with pure SHG, where the semiclassical and q
tum solutions are markedly different@6#. In this present pa-
per we give an analytical solution for the intensities w
both self-phase and cross-phase modulation present, com
ing this to the full quantum solutions, obtained using t
positive-P representation@7#.

II. ANALYTICAL SOLUTION

We consider a nonlinearx (2) andx (3) crystal, in which a
pump field at frequencyv produces an harmonic field a
frequency 2v. We consider here only the case of perfe
phase-matching between the two fields, with both fields c
sidered as plane waves. In the traveling-wave regime we
write an interaction Hamiltonian, with the trivialv depen-
dence of the fields removed, as
1050-2947/2001/64~5!/053802~6!/$20.00 64 0538
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~1!

whereâ and b̂ are the annihilation operators for photons
frequenciesv and 2v, respectively, at positionz inside the
nonlinear crystal,k represents the effective strength of th
nonlinear interaction between the two modes,x represents
the effective strength of the self-phase modulationx (3) non-
linearity, andj represents the strength of the cross-ph
modulation x (3) nonlinearity. We consider here the ca
where the Kerr-type interaction has equal effective streng
for each mode. The cross-phase modulation strength will
pend on such things as the mode overlap and can typic
vary up to the maximum of the self-interaction strength.

The operator equations of motion for the system are fou
as

dâ

dz
5kâ†b̂22ixâ†â222i jâb̂†b̂,

db̂

dz
52

k

2
â222ixb̂†b̂222i jâ†âb̂, ~2!

for which no analytical solution is known. The first level o
approximation often used in solving operator equations
linearization, or assuming that the operators can be dire
replaced by complex numbers to give the mean values of
fields. In the case of traveling-wave pure SHG, this meth
has been shown to have limited validity@6#, but in the
present case the analytical solution for the photon num
follows more closely the full quantum solutions when t
cross-phase modulation term,j, is set to zero@5#. Following
a similar procedure, we make the substitutionsâ→a5^â&
and b̂→b5^b̂&, giving the following semiclassical equa
tions:

da

dz
522ixuau2a22i jubu2a1ka* b,
©2001 The American Physical Society02-1
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db

dz
522ixubu2b22i juau2b2

k

2
a2. ~3!

Note that we have not bothered with the normal method
calculating fluctuations around the classical solutions, as
perience with the pure SHG system has shown the resul
be highly inaccurate after a short-interaction length and
would expect this to be the case here also.

Defining a(z)5ua(z)u2 and b(z)5ub(z)u2 ~note that
these are real numbers, not the operators used above!, we
find that Eq.~3! can be written as

da

dz
5kv,

db

dz
52

k

2
v, ~4!

where

v5a* 2b1a2b* . ~5!

From Eq.~4! and the principle of conservation of energy,
follows that c0@5a(z)12b(z)# is a constant of the propa
gation. In pure SHG, whereub(0)u250, we have c0
5ua(0)u2. If we now introduce the variable

w~z!5 i ~a* 2b2a2b* !, ~6!

we can write Eq.~3! in the form

dv
dz

5ka~4b2a!12@~2x2j!a1~2j2x!b#w,

dw

dz
52@~x22j!b1~j22x!a#v. ~7!

Using the fact thata5c022b and introducing a new
variable

x~z!52~x22j!b12~j22x!a5~10x28j!b

12c0~j22x!, ~8!

we can combine Eqs.~4! and ~7! in the form

dx

dz
52gv,

dw

dz
5xv,

dv
dz

5a02a1x2a2x22xw, ~9!

where

g5
ks

2
,
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a052kc0
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8kc0n

s
2

12kn2

s2
,

a15
24kn

s2
2

8kc0

s
,

and

a25
12k

s2
, ~10!

in which

s510x28j,

and

n52c0~2x2j!. ~11!

Using the first and second equations of Eq.~10!, we can
now define another constant of the motion

1

2
x2~z!1gw~z!5c1 , ~12!

wherec152(2x2j)2ua(0)u4. We can now utilize Eqs.~10!
and ~12! to find an equation of motion for the variablex(z)

d2

dz2
x52a0g1~c11a1g!x1a2gx22

1

2
x3. ~13!

It is clear that Eq.~13! can be written in the form

d2

dz2
x52

]

]x
U~x!, ~14!

where the pseudopotentialU(x) has the form

U~x!52
1

2
~a1x1a2x21a3x31a4x4!. ~15!

In the above,

a1522a0g,

a25c11a1g,

a35
2

3
a2g,

and

a452
1

4
. ~16!

It is now evident that, by treating a total pseudoenergy a
constant of the motion, we can write
2-2
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1

2 S dx

dzD
2

1U~x!5E, ~17!

which leads to the first-order differential equation forx(z)

dx

dz
56Aa01a1x1a2x21a3x31a4x4, ~18!

wherea052E. The formal solution of Eq.~18! is

z56E
x(0)

x(z) dx

Aa01a1x1a2x21a3x31a4x4
, ~19!

wherex(0)522(2x2j)ua(0)u2.
We find that there are three cases where Eq.~19! has

periodic solutions. Defining

f ~x!5 (
k50

4

akx
k52l2)

k51

4

~x2xk!, ~20!

wherea452l2, with l51/2, we can now examine the roo
of the polynomialf (x)50.

In the first-two cases, there are four real roots:x1.x2
.x3.x4 and the solution can be written as

x~z!5M1
N

D1sn2~Vz1f,k!
, ~21!

where sn is the Jacobi sine amplitude of modulusk @8# and

V5
l

2
A~x12x3!~x22x4!,

k5A~x12x2!~x32x4!

~x22x4!~x12x3!
, ~22!

and the constantf is determined from the initial condition
by

f5sn21SAN2D~x~0!2M !

~x~0!2M !
,kD . ~23!

The functionx(z) is periodic, with the period given by

T5
2

VE
0

1 dt

A~12t2!~12k2t2!

5
2

V
K~k!, ~24!

whereK(k) is the full elliptic integral. It is clear from the
definition that the period ofx(z) is the same as that o
ua(z)u2.

We find that there are two separate cases for the solu
given by Eq. ~21!. The first of these cases, which is th
encountered for the parameters we have used in this inv
gation is where

~i! x3>x>x4
05380
n

ti-

In this caseM5x1 , N52(x12x4)(x12x3)/(x32x4),
andD5(x12x3)/(x32x4).

~ii ! x1>x>x2.
In this case,M5x4 , N5(x12x4)(x22x4)/(x12x2), and

D5(x22x4)/(x12x2). These two-cases correspond to m
tion of a pseudoparticle in the two different branches o
quartic pseudpopotential.

The other type of periodic solution arises when we fi
two real roots,x1 and x2, with x1.x2, and two complex
roots for f (x). Writing

f ~x!52l2~x2x1!~x2x2!~x222mx1n!, ~25!

the solution has the form, forx1>x>x2

x~z!5M01
N0

D02cn~V0z1f0 ,k0!
, ~26!

where cn signifies the Jacobi cosine amplitude. Defining

y15Ax1
222mx11n and y25Ax2

222mx21n,
~27!

we have

M05
y1x22y2x1

y12y2
,

N05
2y1y2~x12x2!

~y12y2!2
,

D05
y11y2

y12y2
,

V05lAy1y2,

k05Ay1y22x1x21m~x11x2!2n

2y1y2
,

f05cn21S D0~x~0!2M0!2N0

x~0!2M0
,k0D . ~28!

In this case the period ofx(z) has the form

T05
4

V0
E

0

1 dt

A~12t2!~12k0
2t2!

5
4

V0
K~k0!. ~29!

III. SEMICLASSICAL SOLUTIONS

Solving the semiclassical equations~3! for the field am-
plitudes numerically using a fourth- and fifth-order Rung
Kutta method also shows that the mean-field intensities
dergo periodic revivals, as shown in Fig. 1. The horizon
axis is a normalized interaction distance,r5kzua(0)u/A2.
Note that there is no visible difference in the solutions
x (3)51027 whether we ignore the effects of the cross-pha
modulation or set it to its maximum value,j5x5x (3), how-
ever when the Kerr nonlinearity is increased by an order
2-3
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magnitude, the two solutions do become slightly differe
When thex (3) component is increased even further, to 1025,
as seen in Fig. 2, self-phase modulation makes a ma
difference to the solutions, changing both the period and
plitude of the oscillations. Although the Kerr nonlineari
used in this example is rather high for nonlinear optical cr
tals, this result suggests that the oscillations between ato
and molecular condensates predicted in photoassociatio
Bose-Einstein condensates@9# should be sensitive to the ac
tual atom-atom, atom-molecule, and molecule-molecule s
tering lengths, as these are typically huge compared to
nonlinearities found in optical systems.

FIG. 1. The semiclassically calculated intensities of the fun
mental as functions of the normalized interaction distance,r, for
ua(0)u25106, k50.01, and values ofx5j51027 and 1026. Note
that all quantities plotted in the figures are dimensionless.

FIG. 2. The semiclassically calculated intensities of the fun
mental and harmonic as functions of the normalized interaction
tance,r, for ua(0)u25106, k50.01, andx51025. The full lines
are for j5x, while the dash-dotted lines are without self-pha
modulation.
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The fact that the numerical solutions for the field amp
tudes show oscillations is interesting in itself when compa
with the semiclassical solution for the field amplitudes
traveling-wave SHG, which does not exhibit any periodic
@10#, although writing equations for the field intensities lea
to a periodic solution in terms of Jacobi elliptic functions@6#.
The essential difference is that the semiclassical solutions
the field amplitudes in pure SHG stay real when we ha
phase matching, unlike the solutions with addedx (3) compo-
nent, which causes the phase of the amplitude variable
rotate. The real-valued solution fora(z) in pure SHG can go
to zero, after whichb(z) cannot change, as the equation f
b then becomesdb/dz50. This can be further understoo
because in the pure-SHG case,b becomes negative and rea
while a remains positive and real. This means thatda/dz
<0 anddb/dz<0, but with the phase rotation due to thex3

interaction,da/dz can periodically become positive, henc
the revivals in the fundamental. Quantum mechanica
there are always fluctuations present in the amplitudes
either case, which also preventsa(z) from reaching zero.

However, as has been shown previously@6,11,12#, neither
the analytical nor the numerical solutions of the classi
equations allow us to reliably calculate any of the quant
statistics of the two fields after a certain interaction leng
To do this we turn to one of the phase-space representa
of quantum optics.

IV. QUANTUM PROPERTIES

Although the inclusion of what we would expect to be t
maximum value of the cross-phase term makes no vis
difference to the mean fields for small values of the K
nonlinearity@5#, it is still of interest to investigate what effec
it may have on the quantum statistics of the two fields.
can also investigate whether the quantum solutions for
mean-fields diverge from the semiclassical solutions as
Kerr nonlinearity is increased.

Using the usual methods@13#, this system can be mappe
exactly onto stochastic partial differential positive-P equa-
tions ~note that we are using Itoˆ calculus!, via the master and
Fokker-Planck equations. We find that, unlike the case w
no cross-phase modulation, the positive-P Fokker-Planck
equation for the system no longer has a diagonal diffus
matrix, which means that no simple and obvious factori
tion resulting in the stochastic differential equations sugge
itself. However, the factorization we have chosen~which is
by no means unique!, leads to the following system of sto
chastic equations:

da

dz
5ka†b22ixa2a†22i jab†b1A22i

x
jah1~z!

1Akb22ia2~x2j2/x!h3~z!,

da†

dz
5kab†12ixa†2a12i ja†b†b1A2i

x
ja†h2~z!

1Akb†12ia†2~x2j2/x!h4~z!,

-

-
s-
2-4
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db

dz
52

k

2
a222ixb2b†22i ja†ab1A22ixb2h1~z!,

db†

dz
52

k

2
a†212ixb†2b12i ja†ab†1A2ixb†2h2~z!,

~30!

where the noise termsh j (z) are real and Gaussian such th

h j~z!hk~z8 !̄5d jkd~z2z8!. ~31!

Due to the independence of these noise terms, the varia
a anda† @also~b, b†)# are not complex conjugate except
the mean of a large number of stochastic trajectories.

From numerical integration of these equations we fi
that the intensities of the two fields are not noticea
changed from the semiclassical solutions, whetherj50 or is
equal tox. This can be seen in Fig. 3, where we show t
quantum solutions for the field intensities withx5j51027,
with the solutions for pure SHG given for purposes of co
parison. The fact that inclusion of the quantum features d
not invalidate the semiclassical predictions can be explai
by the fact that it is the phase rotation that has the domin
effect on the dynamics and this is well described by
semiclassical equations. This type of effect is also appa
in the superchemistry of Bose-Einstein condensates, w
as long as the coupling lasers are not too strong, the pro
of molecular photoassociation is well described by the se
classical equations@9,14#. The solutions with Kerr nonlinear
ity present do not noticeably change here whether we incl
the cross-phase modulation or not. When we examine
variance of theXa(5â1â†) quadrature for the same param
eters, as shown in Fig. 4, we see that there is slightly
squeezing available when the cross-phase term is introdu

FIG. 3. The intensities of the fundamental and harmonic
functions of the normalized interaction distance,r, for ua(0)u2

5106, k50.01, andx5j51027, calculated using the positive-P
representation. The dash-dotted lines are forx (3)50, the case of
pure second-harmonic generation.
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although whether this difference would be significant
practice is difficult to judge. Both results with Kerr nonlin
earity experience excess noise well before the variance
pure SHG begins to increase. The peak value of the varia
where the fields exhibit almost thermal statistics due to
semispontaneous nature of the downconversion proces
about 10% greater with the full value ofj included. This
peak value is so large that it cannot be shown in Fig. 4 wh
still leaving the amount of noise reduction visible.

When we increase the Kerr nonlinearity to 1026, the
quantum solutions, shown in Fig. 5 are still indistinguisha
from the semiclassical solutions, but, as can be seen,

s
FIG. 4. TheXa quadrature variances, calculated using 105 sto-

chastic trajectories, forua(0)u25106 andk50.01. The solid line is
for x5j51027, the dash-dotted line is forx51027 and j50,
while the variance for pure SHG is shown by the dashed line.

FIG. 5. The intensities of the fundamental and harmonic
functions of the normalized interaction distance,r, for ua(0)u2

5106, k50.01, andx51026, calculated using the positive-P rep-
resentation. The solid line is forj51026, while the dash-dotted line
is for j50.
2-5
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addition of cross-phase modulation does make a percep
difference to the mean intensities. For this value of non
earity there is significantly less quadrature squeezing pre
with cross-phase modulation, as shown in Fig. 6. The ma
mum value of the squeezing is now found atr'6, well
beyond the experimentally achievable parameter regimes
the results of stochastic integration shown have samp
errors of typically less than 1%.

The fact that the addition of self-phase modulation d
creases the degree of squeezing available can be expla
by the fact thatx2 andx3 processes introduce different type
of dynamical phase matching and hence interfere with e
other. As quadrature squeezing is phase sensitive, it natu
decreases. The further degree to which the cross-p
modulation decreases the squeezing can be understood
shearing, rotation, and deformation of the contours of
Wigner function, a property ofx3 processes@15#. When we
look at Eq.~3!, we can see that whenj5x, both fields have

FIG. 6. TheXa quadrature variances, calculated using 105 sto-
chastic trajectories, forua(0)u25106, k50.01, andx51026. The
solid line is forj51026 and the dash-dotted line is forj50.
F.

S.
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the maximum value of phase-modulation nonlinearity, i.
2ix(uau21ubu2), so that these contours will deform at the
maximum rate. This naturally leads to an increase in
quadrature variances.

V. CONCLUSION

We have analyzed traveling-wave second-harmonic g
eration in the case where the nonlinear crystal has addedx (3)

nonlinearities, finding a semiclassical analytical solution
the generalized case where both self-phase and cross-p
modulation are present. We find marked differences betw
the dynamical behavior of the fields with and without t
x (3) components. As the nonlinearity is increased, both
period and amplitude of the oscillations between the fun
mental and harmonic are changed. This feature is also
relevance to proposals for coherent molecular photoasso
tion of Bose-Einstein condensates~BECs!, where the self-
interaction and cross-interaction terms are typically mu
larger than in optical systems. Although BECs are not sing
mode systems, the effects we find here should be prese
least in a qualitative sense. As far as the quantum statistic
the fields are concerned, we find that less squeezing
achievable in thex (3) case, with the addition of cross-phas
modulation worsening the squeezing as the modula
strength increases.

As all materials have somex (3) component, and the ratio
of x (3)/x (2) that we have used are typical of nonlinear med
from optical crystals to BEC, it is of interest to know wh
the signatures of this component are. We have found sev
signatures that should be accessible to experimental obse
tion and have shown that if it is either a maximum of noi
supression or large amplitude oscillations that is sought,
terials should have as small ax (3) component as possible.

ACKNOWLEDGMENTS

This research was supported by the Marsden Fund of
Royal Society of New Zealand and the Foundation for R
search, Science, and Technology~Contract No. UFRJ0001!.
V.

S.

s.
@1# See, for example,Nonclassical Effects in Quantum Optics, ed-
ited by P. Meystre and D. F. Walls~AIP, New York, 1991!.

@2# C. C. Gerry and S. Rodrigues, Phys. Rev. A36, 5444~1987!.
@3# P. Tombesi, Phys. Rev. A39, 4288~1989!.
@4# P. Garcı´a Ferna´ndez, P. Colet, R. Toral, M. San Miguel, and

J. Bermejo, Phys. Rev. A43, 4923~1991!.
@5# M. K. Olsen, V. I. Kruglov, and M. J. Collett, Phys. Rev. A63,

033 801~2001!.
@6# M. K. Olsen, R. J. Horowicz, L. I. Plimak, N. Treps, and C.

Fabre, Phys. Rev. A61, 021 803~R! ~2000!.
@7# P. D. Drummond and C. W. Gardiner, J. Phys. A13, 2353

~1980!.
@8# I. Gradshtein and I. Ryzhik,Table of Integrals, Series and
Products~Academic Press, New York, 1994!.
@9# D. J. Heinzen, R. Wynar, P. D. Drummond, and K.

Kheruntsyan, Phys. Rev. Lett.84, 5029~2000!.
@10# J. A. Armstrong, N. Bloembergen, J. Ducuing, and P.

Pershan, Phys. Rev.127, 1918~1962!.
@11# M. K. Olsen and R. J. Horowicz, Opt. Commun.168, 135

~1999!.
@12# M. K. Olsen, L. I. Plimak, M. J. Collett, and D. F. Walls, Phy

Rev. A62, 023 802~2000!.
@13# C. W. Gardiner, Quantum Noise~Springer-Verlag, Berlin,

1991!.
@14# J. J. Hope and M. K. Olsen, Phys. Rev. Lett.86, 3220~2001!.
@15# G. J. Milburn, Phys. Rev. A33, 674 ~1985!.
2-6


