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Quantum-theoretical treatments of three-photon processes
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We perform and compare different analyses of triply degenerate four-wave mixing in the regime where three
fields of the same frequency interact via a nonlinear medium with a field at three times the frequency. As the
generalized Fokker-Planck equation~GFPE! for the positive-P function of this system contains third-order
derivatives, there is no mapping onto genuine stochastic differential equations. Using techniques of quantum
field theory, we are able to write stochastic difference equations that we may integrate numerically. We
compare the results of this method with those obtained by the use of approximations based on semiclassical
equations, and on truncation of the GFPE leading to stochastic differential equations. In the region where the
difference equations converge, the stochastic methods agree for the field intensities, but give different predic-
tions for the quantum statistics.

DOI: 10.1103/PhysRevA.65.053806 PACS number~s!: 42.65.Ky, 42.50.2p, 02.50.Ey
ti
ac

ro
er
in

o
n

n
ns
-
a

id
e
h

lin
ul
ua

i
la
e

st

t i
de

t
th
ia

no
ri

Ito
the
re-

ix-
or
de-
ner
the

cts of
me-
s
st

is

ve
rob-

, so
be
of

bic
ral-
for
re
d-

a-

ady
ran-
in-

ech-
s
t, in

nse,
nce
to
I. INTRODUCTION

The theoretical study of the interaction of electromagne
waves via a nonlinear medium has a long history, going b
at least to the groundbreaking paper of Armstronget al. @1#,
wherein a classical treatment was performed for the p
cesses of second- and third-harmonic generation, degen
and nondegenerate down-conversion, and four-wave mix
Experimentally, second-harmonic generation~SHG! and
parametric down-conversion are well-known sources
quantum states of the electromagnetic field. Third-harmo
generation~THG!, wherein input fields at frequencyv pro-
duce output fields at frequency 3v is a process that has bee
observed experimentally in a number of different situatio
An early experiment@2# produced both third- and fifth
harmonic light at the interface of glass and liquids and it w
suggested that odd-multipole generation may be a w
spread phenomenon. THG has been observed in a numb
other situations, for example, in the interaction of laser lig
with a nematic liquid-crystal cell@3#, and in the interaction
of pulsed light from an Nd:YAG~yttrium aluminum garnet!
laser with organic vapors@4# and with polyimide films@5#.

As all the processes mentioned above are highly non
ear, a full quantum-theoretical treatment is often diffic
without resorting to the phase-space representations of q
tum optics, generally the positive-P @6# or Wigner represen-
tations@7#. In the usual approach, the system Hamiltonian
mapped onto a Fokker-Planck equation for the particu
pseudoprobability distribution being used, which may eith
be solved directly or further mapped onto a set of stocha
differential equations@8,9#. As the usual methods only allow
for the mapping of genuine Fokker-Planck equations, tha
equations with derivatives of no higher than second or
~this is the content of Pawula’s theorem@10#!, onto stochastic
differential equations, the systems that can be investiga
using this approach are limited. There is at least one o
known method for the derivation of stochastic different
equations for interacting bosonic systems@11#. Although this
method gave enhanced stability in the numerics over the
mal positiveP, it was assumed at the beginning of the de
1050-2947/2002/65~5!/053806~9!/$20.00 65 0538
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vation that the time development could be modeled byˆ
stochastic differential equations, so that it is subject to
limitations of Pawula’s theorem when it comes to the rep
sentation of third-order noises.

The present situation of triply degenerate four-wave m
ing results in generalized Fokker-Planck equations of third
higher order and hence Langevin equations may not be
rived. A common procedure in these cases is to use a Wig
equation truncated at second order, which is equivalent to
semiclassical theory of stochastic electrodynamics@12#. This
procedure necessarily discards the deeper quantum aspe
the problem and gives answers at odds with quantum
chanics for several systems@13,14#. There are also situation
where even aP-representation Fokker-Planck equation mu
also be written in generalized form@15–18#, and more are
likely to be investigated in the future. The present problem
one of these situations.

Using the techniques of quantum field theory, we ha
previously developed methods to represent this class of p
lems using stochastic difference equations@18–20#. These
equations may be numerically integrated using computers
that the fact that stochastic differential equations cannot
defined for these systems is not a problem. As the problem
triply degenerate four-wave mixing has a Hamiltonian cu
in creation and annihilation operators, it results in a gene
ized Fokker-Planck equation with third-order derivatives
the positive-P pseudoprobability distribution. We note he
that a related problem, namely, that of intracavity thir
harmonic generation, has previously been dealt with@15,16#.
In Ref. @15#, the quantum properties of the fields are an
lyzed in a linearized approximation, Ref.@16# looks at mac-
roscopic quantum interference. In both cases the ste
states, which are natural for a resonator, rather than t
sients, which are natural in the traveling-wave case, are
vestigated. It should also be noted that there are certain t
nical problems with Refs.@15,16#. It appears the author
were unaware that the stochastic equations used could no
fact, be considered Langevin equations in the formal se
and that these should be considered stochastic differe
equations. Furthermore, the third-order noise contribution
©2002 The American Physical Society06-1
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these was not presented constructively. In this paper we
also investigate the related process of spontaneous tri
photon production. This process may be thought of as de
quantum as, without the third-order noises, it may not p
ceed. Intracavity three-photon down-conversion has pr
ously been investigated using the density matrix to calcu
the Wigner function @21# and a quantum Monte Carl
method to simulate homodyne detection of the output fie
@22#.

We compare the results obtained using our general
positive-P approach with those obtained using different a
proximations. Based on approximately factorizing cert
quantum averages, we can find analytic solutions for
mean intensities in terms of Jacobi elliptic functions,
though this approach can tell us nothing about the quan
properties of the fields, and, worse than this, has been sh
to be inaccurate after a certain interaction length in ot
parametric processes@23,24#. Two other approximations
used require truncation of the differential equations for
Wigner and positive-P pseudoprobability functions at secon
order, resulting in Fokker-Planck equations that may then
mapped onto stochastic differential equations.

II. HAMILTONIAN AND SEMICLASSICAL SOLUTIONS

The generic system that we consider is one of four-w
mixing in a nonlinear medium, where three of the wav
have frequencyv and the fourth has frequency 3v. In our
analysis we will make the approximation that only tw
modes are important, which necessarily ignores such eff
as group-velocity dispersion, but will serve to demonstr
our method in the most simple way possible. Traveling-wa
third-harmonic generation and degenerate three-pho
down-conversion can then be described by the interac
Hamiltonian

H~z!5
i\k

3
@ â†3b̂2â3b̂†#, ~1!

where â(z) and b̂(z) are the annihilation operators fo
quanta at frequenciesv and 3v, respectively, at positionz
inside the nonlinear medium, andk represents the effectiv
couping between the modes.

From the above Hamiltonian we can immediately der
the Heisenberg operators of motion for the operators

dâ

dz
5kâ†2b̂,

dâ†

dz
5kâ2b̂†,

db̂

dz
52

k

3
â3,

db̂†

dz
52

k

3
â†3, ~2!
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which, being nonlinear operator equations, have no obvi
analytical solution. In the case of three-photon dow
conversion, as long as we are interested in the regime w
the number of photons in the high-frequency field is alm
unchanged, we may use the undepleted pump approxima
as is common for the optical parametric amplifier@25,26#.
This involves treating the product ofk and b̂ as a complex
number and leads to the following equations of motion:

dâ

dz
5xâ†2,

dâ†

dz
5xâ2, ~3!

wherex5k^b̂(0)&.
Naively replacing the operator products in Eq.~3! with

c numbers leads to the prediction that spontaneous th
photon down-conversion will not occur. However, by setti
N̂5â†â, we can find a second-order differential equation
N̂(z) ,

d2N̂

dz2
5x2~6N̂216N̂13!. ~4!

If we now assume that all operator products factorize a
exchange operators forc numbers, we immediately see tha
even starting from the vacuum, the process may proce
However, what we also see is that the photon number, be
ning from zero, will increase without limit. In fact, it ha
been shown that it will become infinite in a finite time@27#.
We will, therefore, allow for pump depletion and find sol
tions for the photon number following the same methods

When we consider the system with depletion of the pu
field, we can find solutions for the intensities in both thir
harmonic generation and three-photon down-conversion
though these are of no help if we wish to calculate the qu
tum statistics of the fields. These solutions, in terms of Jac
elliptic functions, are fully periodic and are given in the Ap
pendix. To investigate the quantum properties of the fie
and the extent of the semiclassically predicted revivals,
will revert to numerical stochastic integration using pha
space techniques, comparing the results of a full represe
tion of the problem using a generalized positive-P represen-
tation with those obtained by truncation of the equations
the positive-P and Wigner representations.

III. THE STOCHASTIC APPROACH

A. Truncated positive-P equations

Following the usual procedures@9#, we may map the sys
tem Hamiltonian of Eq.~1! onto a generalized Fokker-Planc
equation for the positive-P distribution
6-2
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]P

]z
5H 2F ]

]a
~ka* 2b!1

]

]a*
~ka2b* !

]

]b S 2
k

3
a3D

1
]

]b*
S 2

k

3
a* 3D G1

1

2 F ]2

]a2
~2ka* b!

1
]2

]a* 2
~2kab* !G

2
1

6 F ]3

]a3
~2kb!1

]3

]a* 3
~2kb* !G J

3P~a,a* ,b,b* ,z!. ~5!

In the above equation, there is a correspondence betwee
c-number variables @a,a* ,b,b* # and the operators

@ â,â†,b̂,b̂†# of the interaction Hamiltonian. Equation~5! is
not a genuine Fokker-Planck equation as it contains der
tives of higher than second order. There are two features
are immediately noticeable. The first is that the coefficie
of the third-order derivatives are not obviously small and,
fact, may be larger than those of the second-order terms
der some circumstances. The second point is that the pro
of spontaneous triple down-conversion depends on the p
ence of the third-order terms. However, by making the sa
type of approximation that is often used in the Wigner re
resentation, we may truncate Eq.~5! at second order and fin
the following set of stochastic differential equations in Iˆ
calculus:

da

dz
5ka†2b1A2ka†bh1~z!,

da†

dz
5ka2b†1A2kab†h2~z!,

db

dz
52

k

3
a3,

db†

dz
52

k

3
a†3, ~6!

where the two noise terms have the properties t
h i(z)h j (z8)5d i j d(z2z8). As always with the positiveP ap-
proach, the pairs of field variables (a anda†, for example!
are not complex conjugate except in the mean of a la
number of integrated trajectories. This set of equations
now be integrated numerically and means taken over a la
number of trajectories to calculate any desired normally
dered operator product.

B. Truncated Wigner equations

In an exact treatment, it is a matter of choice which s
chastic representation to use. This is no longer the case w
approximations are invoked. We will consider, as an
ample, a truncated Wigner representation for the system
05380
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question. Again following the usual methods@9#, a partial
differential equation is found for the Wigner distribution o
the system

]W

]z
5

k

3 H 2F ]

]a
~3a* 2b!1

]

]a*
~3a2b* !2

]

]b
~a3!

2
]

]b*
~a* 3!G2

1

6 F ]3

]a3 S 3

2
b D1

]3

]a* 3 S 3

2
b* D

1
]3

]a2]b*
S 9

2
a* D

1
]3

]a* 2]b
S 9

2
a D G J W~a,a* ,b,b* ,z!. ~7!

As this equation also has derivatives of third order, it a
cannot be mapped onto stochastic differential equatio
However, it is possible to drop the third-order terms to fi
two coupled deterministic equations with no noise terms
an approximation equal to stochastic electrodynamics. In
case the noise comes from the initial conditions for the t
modes, as we integrate the equations

da

dz
5ka* b,

db

dz
52

k

3
a3, ~8!

a large number of times with the initial conditions chos
appropriately from the Wigner pseudoprobability distrib
tion. This can be thought of as equivalent to adding vacu
fluctuations equal to half a photon to each mode.

C. Stochastic difference equations

As the above approaches use a truncation of the full eq
tions and hence will necessarily result in the loss of so
information, we wish to map the full interaction Hamiltonia
onto some system that can be solved. Following the meth
developed in Ref.@19#, and used in Refs.@18,20#, we may
develop stochastic difference equations, which, althou
they have no continuous limit as stochastic differential eq
tions, may be simulated numerically.

Generally speaking,c-number techniques of quantum st
chastics aremappingsof quantum problems ontoc-number
stochastic problems, such that quantum expectation value
interest equal certain classical averages. A well-known
ample of such quantum-classical mapping is the positiveP
representation@6#, in which time-normal quantum average
of the Heisenberg field operators are mapped onto co
sponding stochastic averages. For a two-mode system,

^T2â†~z!•••b̂†~z8!•••T1â~z9!•••b̂~z-!•••&

5a†~z!•••b†~z8!•••a†~z9!•••b~z9!•••. ~9!
6-3
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~In our case,z is a position variable; we, however, prefer
use the conventional termtime-normal averagefor the left-
hand side of this equation.! The upper bar in Eq.~9! denotes
an averaging over the statistics of the fourc-number fields
a(z),b(z),a†(z),b†(z). These statistics are characteriz
via stochastic differential equations for thec-number fields.
There are rare exceptions~such as linear systems coupled
heat baths! where a†(z)5a* (z), b†(z)5b* (z) may be
maintained, but in general having a genuine positive pr
ability in Eq. ~9! requires doubling of the phase space.

The positive-P mapping is~at least in principle! exact, yet
it is only applicable to problems where interactions are
more than quadratic in creation or annihilation operators
much wider class of arbitrary polynomial interaction Ham
tonians may be covered if we allow the mapping~9! to hold
only approximately, by considering classical stochastic p
cesses in discretised time or, as in the present case, spac
thus assume thatz is a discrete variable changing in finit
steps ofDz. The classical fields obey the generic system
stochastic difference equations, @with Da(z)5a(z1Dz)
2a(z) and likewise for the rest of the variables#

Da~z!5s1~z!, Da†~z!5s1
†~z!,

Db~z!5s2~z!, Db†~z!5s2
†~z!. ~10!

The techniques of Ref.@19# then allow one to derive the
random sources~i.e., thes ’s! directly from the interaction
Hamiltonian.

The derivation of the sources may be divided into tw
major steps. First, stochastic cumulants of thes ’s are ob-
tained via quantum-field-theoretical techniques. In the st
dard phase-space techniques@9# this corresponds to the der
vation of the drift terms and the noise matrix. The latter a
nothing but the first- and second-order cumulants of
sources; whereas failure of the phase-space techniques m
fests itself as the presence of higher-order cumulants. S
ondly, Hubbard-Stratonovich transformations~HST! @28# are
used to find explicit expressions for the sources~i.e., to re-
store the sources from their cumulants!. This step corre-
sponds to factorization of the noise matrix in the stand
techniques. We shall see that using the HST virtually trivi
izes this factorization, and hence can also be of much as
tance in the usual phase-space approaches.

Although the rigorous derivation of the cumulants
rather involved@19#, in practice it boils down to a very
simple recipe. One starts by writing the interaction Ham
tonian in normally ordered form,

H5:h~ â†,b̂†,â,b̂!:, ~11!

whereh(a†,b†,a,b) is ac-number function of fourc-number
arguments. For the present interaction,

h~a†,b†,a,b!5
i\k

3
~a†3b2a3b†!, ~12!

the normal ordering in Eq.~11! is in fact redundant. The
properties of thes sources are given by the formulas~drop-
ping thez dependence for notational simplicity!
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expF(
z

~j1
†s11j2

†s21j1s1
†1j2s2

†!G
5exp(

z
sint~j1 ,j2 ,j1

† ,j2
† ,a,b,a†,b†!, ~13!

sint~j1 ,j2 ,j1
† ,j2

† ,a,b,a†,b†!

52 i\21Dzh~a†1j1
† ,b†1j2

† ,a,b!1conj.

~14!

Here, the upper bar denotes averaging over the statistic
the sources, thej ’s are four arbitraryc-number functions,
and ‘‘conj’’ acts as a formal Hermitian conjugation, inte
changing quantities with and without dagger,a(z)↔a†(z),
and likewise for the rest, and complex conjugating othec
numbers. For the Hamiltonian~1!, we have

sint5DzFj1
†ka†2b1j1

†2ka†b1j1
†3k

3
b1j2

†S 2
k

3
a3D G

1conj. ~15!

This completes the first step of the derivation, which resu
in the characteristic functional of the averages of the sour
Eq. ~13!, expressed in terms of the cumulants, Eq.~15!.

The deterministic terms in the resulting equations of m
tion are immediately obvious, being those to first order in
j ’s in Eq. ~15! @and exactly the same as in Eqs.~6!, as they
must be#. The noise contributions to thes ’s are readily found
using real and complex Hubbard-Stratonovich transform
tions, respectively,

exp
x2

2
5expxx F x2

2
→
x

xxG , ~16!

exp~xy!5exp~xh1yh* !@xy⇒
h

xh1yh* #. ~17!

Here,x andy are arbitrary quantities, andx andh, respec-
tively, are the real and complex standardized Gaussian
dom variables, with the propertiesx̄5h̄5h̄250, x̄2

5uhu251. The formulas in square brackets introduce a c
venient short hand for the real and complex HSTs. In t
short hand, applying a real HST to the quadratic term in
~15! yields

Dzj1
†2ka†b→

x1

j1
†x1A2ka†bDz. ~18!

Comparing this to Eq.~13!, the second-order contribution t
s1 is found to be

s1
(2)5x1A2ka†bDz. ~19!

Divided byDz, this is exactly theh1 term in Eqs.~6! ~more
precisely speaking, this is what theh1 term becomes with
discretization!. The corresponding contribution tos1

† is
found by formally conjugating Eq.~19!
6-4
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s1
†(2)5x1

†A2kab†Dz. ~20!

The noise sourcesx1 andx1
† are uncorrelated and the sourc

introduced at differentz are also uncorrelated. More subt
choices may be possible~cf. Ref. @29#!, but we will not con-
sider them here. Note that by construction thex1 ,x1

† pair at
z must be uncorrelated with the fields at the samez. This is
equivalent to saying that Eqs.~10! imply ~a discretized vari-
ety of! Itô calculus. This conjecture is actually an oversim
plification: with thea ’s and b ’s being solutions of the sto
chastic Eqs.~10!, the HSTs at different positions are n
independent. The reason why this conjecture neverthe
leads to the right answer, is that, due to the causal and M
kovian nature of the classical process, it is only the HST
the most recent position that is important for the correct
ravelling of the process. For a detailed argument, see R
@19,30#.

The cubic term insint , Dzj1
†3kb/3, is also simply taken

care of, by applying a complex HST followed by a real on

Dzj1
†3kb

3
⇒
h

Dzj1
†2p

2
h1j1

†qh* , ~21!

→
x2

j1
†~x2AphDz1qh* !. ~22!

After accounting for the conjugated cubic term, we fina
obtain the set of coupled stochastic difference equations

Da5ka†2bDz1x1A2ka†bDz1x2AphDz1qh* ,

Da†5ka2b†Dz1x1
†A2kab†Dz1x2

†Ap†h†Dz1q†h†* ,

Db52
k

3
a3Dz,

Db†52
k

3
a†3Dz, ~23!

with the p’s andq’s constrained by the conditions

pq5
2kb

3
, p†q†5

2kb†

3
~24!

due to our choice of complex transformations, but otherw
arbitrary. Equations~23! contain four real (x1 ,x2 ,x1

† ,x2
†)

and two complex (h,h†) Gaussian noises. These are no
dzz8 ~Kronecker! correlated, unlikeh1 ,h2 in Eqs.~6! which
are d(z2z8) ~Dirac! correlated. We note here that Eq.~23!
without the third-order noises has a natural continuous li
identical to the positive-P equations obtained above via th
usual methods, but that the derivation is much shorter.
deed, leaving bookeeping aside, the actual derivation c
sists of calculatingsint using Eq.~14!, and then processing i
as per Eqs.~18!, ~21!, and ~22!; all this takes no more than
three lines. For situations with noises of less than third or
this method of finding the equations is almost trivial as co
pared to proceeding via the master and Fokker-Planck e
tions.
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As in the normal positive-P method, which has a freedom
in the choice of noise terms constrained only by the fact
ization of the diffusion matrix of the Fokker-Planck equatio
there are other possible choices for the noises in our dif
ence equations, following on from the factorization of E
~21!. An obvious degree of freedom is in the choice of the
and q’s, which may be used to reduce the sampling nois
the stochastic integration of the difference equations. In
numerical integrations we performed, we simply set

p5q5A2kb

3
, p†5q†5A2kb†

3
. ~25!

Using the said freedom in order to get better behavior of
numerical integration remains a subject for further investi
tion.

IV. RESULTS AND COMPARISON OF METHODS

In the case of third-harmonic generation, numerical in
gration of the classical equations of motion for the field a
plitudes shows a complete and irreversible conversion to
high-frequency mode after some interaction length, as
traveling-wave second-harmonic generation. In the case
spontaneous down-conversion, this approach predicts
the system will remain in the initial state, regardless of t
interaction length. The next approximation which we us
that of beginning with Heisenberg equations of motion
the field intensities and progressing to classical second-o
differential equations, predicts fully periodic behavior
both cases. As it has previously been seen that both th
methods give misleading results in the case of pure SHG
spontaneous down-conversion, and in any case do not a
for the calculation of the statistical properties of the field
we have resorted to stochastic integration in the phase s
representations.

The three phase-space methods we used, the trunc
Wigner, a positive-P truncated at second order, and a gen
alized positiveP that allows the modeling of higher-orde
noises, give the same results for the mean-field intensitie
least in the region where the generalized positive-P integra-
tion converged. This method is less stable than even the
mal positive-P approach, and allowed for integration ov
approximately 60% of the range shown in Fig. 1. As t
fundamental intensity began to revive, some trajectories
derwent huge and sudden excursions, something also se
Ref. @18#. Tuning the noise terms helped a little, but it w
not possible to proceed far enough to see the form of
partial revival shown in Fig. 1. For all three methods we us
initial conditions of ua(0)u25106 in a coherent state
ub(0)u250 andk51025 for the results presented in the fig
ures. These parameters were chosen purely for computat
convenience, so that it was possible to see the main feat
of the behavior without the time required for the numeric
integration becoming impractically long. What is immed
ately obvious from the figure is that the revival in the inte
sity of the fundamental is less marked than in traveling-wa
SHG, possibly due to the fact that a three-photon proc
6-5
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places stronger requirements on the coherence propertie
the fields.

In the process of spontaneous three-photon do
conversion, both the positive-P and truncated Wigner repre
sentations predict that no mean field will appear at the f
damental, starting with only the third-harmonic mo
occupied. While the Wigner result showed a lot of noise
the integration, the mean field averaged out to zero, indi
ing that this process cannot be explained as a resul
vacuum fluctuations and hence cannot be adequately
scribed using stochastic electrodynamics. The general
positive P began to predict spontaneous down-conversi
but was extremely unstable and quickly diverged, so was
really a viable option for the investigation of this process

In the case of THG, we found differences between
representations when we began to investigate the statisti
the fields. We calculated the variances in theX ~defined as
â1â†) quadratures of the two fields, as well as the Fa
factors, i.e.,

F~Na,b!5
V~Na,b!

^Na,b&
, ~26!

where in both cases a coherent state exhibits a value of
A value of less than one signifies decreased fluctuations f
the coherent state~or vacuum! value. As our input state
@a(0)# is real, it is theX quadrature that exhibits the max
mum of noise suppression. Interestingly enough, the tr
cated positive-P and truncated Wigner methods gave alm
indistinguishable results for these quantities, both be
overoptimistic with regard to the maximum amount
squeezing available, as can be seen from Figs. 2 an

FIG. 1. The development of the intensities of the two fields
they traverse the nonlinear medium. The horizontal axis is a sc
interaction distancej5kua(0)uz and the quantities plotted in thi
and subsequent graphs are dimensionless. This plot is the res
1.853105 stochastic trajectories in the truncated positive-P repre-
sentation. Results found by the other stochastic methods wer
distinguishable until the generalized positive-P representation
failed. ~In this realization atj'0.032.)
05380
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3.

Where the prediction was for excess noise above the vac
level, all three methods showed good agreement. The ac
form of the squeezing in both quadrature and intensity
very reminiscent of traveling-wave SHG@23#, with excess
noise being seen as the fundamental begins to revive. Th
a result of the partially spontaneous nature of the dow
conversion process necessary for this revival, and result
fields that exhibit almost thermal statistics.

We also integrated the equations for third-harmonic g
eration numerically in the three representations, for para
eters ranging fromk51025→1027 and a(0)5102→103.

s
ed

of

in-

FIG. 2. The development of theX quadrature variances of th
two fields as they traverse the nonlinear medium. The solid li
were calculated using the generalized positive-P representation and
are the result of 4.63105 trajectories. The dash-dotted lines we
calculated using the truncated positive-P representation, with
1.853105 trajectories.

FIG. 3. The development of the Fano factors of the two fields
they traverse the nonlinear medium. The solid lines were calcula
using the generalized positive-P representation and the dash-dott
lines were calculated using the truncated positive-P representation,
with numbers of trajectories as in Fig. 2.
6-6
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We found good agreement for the mean intensities for all
representations, where there was convergence of the g
alized positive-P method. The generalized positive-P ap-
proach always predicted less maximum noise suppress
with the general form of the intensities and variances be
the same over the range of parameters examined. We
not able to achieve convergence of the generalized posi
P method for long enough to see a revival in the fundam
tal. What happened is that a number of trajectories bega
undergo rapid and arbitrarily large excursions before t
point, causing divergence of the integration. This can be s
in the sampling errors plotted in Fig. 4, which increase d
matically near the end of the interval. This eventual failure
the integration is reminiscent of problems with the positiv
P representation in highly nonlinear, undamped systems
it may be that, just as recent works have exhibited so
success in attacking this problem@29,31#, ways can be found
to make the generalized positive-P method more convergen

V. CONCLUSION

We have performed a fully quantum-mechanical analy
of the process of traveling-wave third-harmonic generat
and compared the results obtained with those obtained u
approximate, but more stable methods. The first approxi
tion used, that of writing second-order differential equatio
for the field intensities, predicts periodic behavior with fu
revivals of the fundamental. The Wigner and positiveP
equations, both truncated at second order, predict only a
tial revival but agree with the full quantum predictions of t
generalized positive-P method where the integration of th
latter converges. They do, however, predict significan
more squeezing in the output fields than would seem to
the case.

In the process of spontaneous triplet-photon product
none of these methods proved to be useful for calculating
statistical properties of the fields. The semiclassical eq

FIG. 4. The sampling errors forNa in the generalized positive
P representation as it nears a divergence, calculated using 53103

trajectories. The center line is the mean value while the outer o
represent plus or minus one standard deviation.
05380
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tions for the intensities again predict periodic behavior, b
can say nothing about the statistics. This process simply
not proceed in the truncated representations. While the g
eralized positive-P representation begins to show spontan
ous down-conversion, it rapidly falls victim to enormou
sampling errors. Whether the freedom we have in writing
noise terms can be successfully used to overcome this p
lem is a subject for further investigation.
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APPENDIX: DERIVATION OF SEMICLASSICAL
SOLUTIONS

Beginning with the Heisenberg equations of motion~2!

and proceeding as in Sec. II, withN̂a,b being the number
operators for the two modes, we find the nonlinear opera
equation,

d2N̂a

dz2
5k2F ~6N̂a

216N̂a14!N̂b2
2

3
N̂a

312N̂a
22

4

3
N̂aG ,

~A1!

which has no obvious solution. Assuming all products fa
torize and replacing the operator expressions by their exp
tation values, (Na,b5^N̂a,b&), gives an equation in two rea
variables. We now have two different initial conditions, d
pending on which process we wish to investigate.

1. Third-harmonic generation

In pure third-harmonic generation, the initial condition
that Na(0)Þ0 andNb(0)50. Using conservation of energ
within the nonlinear material~we are not considering an
other processes!, we may write Nb(z)5@A2Na(z)#/3,
where A5Na(0). This allows us to write an equation i
terms ofNa only

d2Na

dz2
52

k2

3
~8Na

326ANa
226ANa14A!. ~A2!

Proceeding as in Refs.@23,32,33#, we find a pseudopotentia
in which the photon number moves,

U~Na!5
2k2

3 FNa
42ANa

32
3

2
ANa

212ANa1CG , ~A3!

es
6-7
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whereC is a constant of integration. Treating the total pse
doenergy as a constant of the motion leads to a first-o
differential equation forNa(z),

dNa

dz
56A2@E2U~Na!#

56
2k

A3
AE02Na

41ANa
31

3

2
ANa

222Na, ~A4!

whereE052C16E/4k2. The formal solution of Eq.~A4! is
then written as

z56
A3

2k
E

A

Na dNa

AE02Na
41ANa

31 3
2 ANa

222Na

. ~A5!

We find that there are three cases where Eq.~A5! has
periodic solutions. Defining

f ~x!5E02x41Ax31
3

2
Ax222x52)

k50

4

~x2xk!,

~A6!

so that we may write

z56E
x(0)

x(z) dx

Af ~x!
, ~A7!

we examine the roots of the polynomialf (x)50. ~Note that
we have changed the variable tox because not all the solu
tions we find will be possible physical solutions forNa).

To find which solution is appropriate in this case, we no
that the pseudokinetic energy must be equal to zero atz50,
so thatE5U(N0). As we may add any constant value to
potential without changing the dynamics, we chooseC50 in
Eq. ~A3!. For an initial condition ofNa(0)5106 ~which we
used in simulations!, we find thatf (x) has two real roots,x1
andx2, with x1.x2, and two complex roots. Writing

f ~x!52~x2x1!~x2x2!~x222mx1n!, ~A8!

the solution has the form, forx1>x>x2 ,

x~z!5M01
N0

D02cn~V0z1f0 ,k0!
, ~A9!

where cn signifies the Jacobi cosine amplitude@34#. Defining

y15Ax1
222mx11n and y25Ax2

222mx21n,
~A10!

we have

M05
y1x22y2x1

y12y2
,

N05
2y1y2~x12x2!

~y12y2!2
,

05380
-
er

e

D05
y11y2

y12y2
,

V05Ay1y2,

k05Ay1y22x1x21m~x11x2!2n

2y1y2
,

f05cn21S D0„x~0!2M0…2N0

x~0!2M0
,k0D . ~A11!

In this case the period ofx(z) has the form

T05
4

V0
E

0

1 dt

A~12t2!~12k0
2t2!

5
4

V0
K~k0!, ~A12!

whereK(k0) is the full elliptic integral. This solution has th
same formal structure as those for the intensities in travel
wave second-harmonic generation with an addedx (3) non-
linearity @33#, due to the quartic nature of the pseudopote
tial, but is different in detail.

2. Spontaneous triplet production

Mathematically, the difference between third-harmon
generation and spontaneous three-photon down-conver
lies in the initial condition. In this caseNb(0)5” 0 and
Na(0)50. Beginning with Eq.~A1!, we again change from
operators to real numbers to find an equation forNa(z) ,

d2Na

dz2
52

k3

3
@8Na

3218BNa
22~18B28!Na212B#.

~A13!

We then find that the equivalent pseudopotential may
written as

U~Na!5
2k2

3 FNa
423BNa

32S 9

2
B22DNa

226BNaG ,

~A14!

where we have set the constant of integration equal to z
In this case we find that

dNa

dz
56

2k

A3
AE02Na

413BNa
31S 9

2
B22DNa

216BNa,

~A15!

whereE053E/4k2. This equation has the formal solution

z56
A3

2k
E

0

Na dNa

AE02Na
413BNa

31~ 9
2 B22!Na

216BNa

.

~A16!
6-8
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We may again find a value forE0 by considering that all the
pseudoenergy is potential atz50, giving E050. Writing the
polynomial under the square root as

g~x!52)
k51

4

~x2xk!, ~A17!
rs

ev

n.

n,

05380
we find that forNb(0)51/33106, which is the value we
used in simulations, the polynomial has two real roots, w
x2<x<x1, and two roots that are complex conjugates. T
motion of the photon number in this case is also periodic a
obeys the general form of Eq.~A9!, but with different pa-
rameters.
tt,

tt,

.
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