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Quantum-theoretical treatments of three-photon processes
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We perform and compare different analyses of triply degenerate four-wave mixing in the regime where three
fields of the same frequency interact via a nonlinear medium with a field at three times the frequency. As the
generalized Fokker-Planck equati08FPB for the positiveP function of this system contains third-order
derivatives, there is no mapping onto genuine stochastic differential equations. Using techniques of quantum
field theory, we are able to write stochastic difference equations that we may integrate numerically. We
compare the results of this method with those obtained by the use of approximations based on semiclassical
equations, and on truncation of the GFPE leading to stochastic differential equations. In the region where the
difference equations converge, the stochastic methods agree for the field intensities, but give different predic-
tions for the quantum statistics.

DOI: 10.1103/PhysRevA.65.053806 PACS nuntber42.65.Ky, 42.50-p, 02.50.Ey

[. INTRODUCTION vation that the time development could be modeled by Ito
stochastic differential equations, so that it is subject to the
The theoretical study of the interaction of electromagnetidimitations of Pawula’s theorem when it comes to the repre-
waves via a nonlinear medium has a long history, going backentation of third-order noises.
at least to the groundbreaking paper of Armstrengl. [1], The present situation of triply degenerate four-wave mix-
wherein a classical treatment was performed for the proing results in generalized Fokker-Planck equations of third or
cesses of second- and third-harmonic generation, degenerdigher order and hence Langevin equations may not be de-
and nondegenerate down-conversion, and four-wave mixingived. A common procedure in these cases is to use a Wigner
Experimentally, second-harmonic generatig8HG) and  equation truncated at second order, which is equivalent to the
parametric down-conversion are well-known sources ofemiclassical theory of stochastic electrodynarfil®d. This
guantum states of the electromagnetic field. Third-harmoniprocedure necessarily discards the deeper quantum aspects of
generationTHG), wherein input fields at frequenay pro-  the problem and gives answers at odds with quantum me-
duce output fields at frequencyw3is a process that has been chanics for several systeris3,14). There are also situations
observed experimentally in a number of different situationswhere even &-representation Fokker-Planck equation must
An early experiment{2] produced both third- and fifth- also be written in generalized forfd5-18, and more are
harmonic light at the interface of glass and liquids and it wadikely to be investigated in the future. The present problem is
suggested that odd-multipole generation may be a wideene of these situations.
spread phenomenon. THG has been observed in a number of Using the techniques of quantum field theory, we have
other situations, for example, in the interaction of laser lightpreviously developed methods to represent this class of prob-
with a nematic liquid-crystal cell3], and in the interaction lems using stochastic difference equatigd8—20. These
of pulsed light from an Nd:YAGyttrium aluminum garngt  equations may be numerically integrated using computers, so
laser with organic vaporst] and with polyimide filmg5]. that the fact that stochastic differential equations cannot be
As all the processes mentioned above are highly nonlindefined for these systems is not a problem. As the problem of
ear, a full quantum-theoretical treatment is often difficulttriply degenerate four-wave mixing has a Hamiltonian cubic
without resorting to the phase-space representations of quam creation and annihilation operators, it results in a general-
tum optics, generally the positiie{6] or Wigner represen- ized Fokker-Planck equation with third-order derivatives for
tations[7]. In the usual approach, the system Hamiltonian isthe positiveP pseudoprobability distribution. We note here
mapped onto a Fokker-Planck equation for the particulathat a related problem, namely, that of intracavity third-
pseudoprobability distribution being used, which may eithetharmonic generation, has previously been dealt {if)16].
be solved directly or further mapped onto a set of stochastitn Ref. [15], the quantum properties of the fields are ana-
differential equation$8,9]. As the usual methods only allow lyzed in a linearized approximation, R¢L6] looks at mac-
for the mapping of genuine Fokker-Planck equations, that is;oscopic quantum interference. In both cases the steady
equations with derivatives of no higher than second ordestates, which are natural for a resonator, rather than tran-
(this is the content of Pawula’s theor¢d0]), onto stochastic sients, which are natural in the traveling-wave case, are in-
differential equations, the systems that can be investigatedestigated. It should also be noted that there are certain tech-
using this approach are limited. There is at least one othemical problems with Refs[15,16. It appears the authors
known method for the derivation of stochastic differential were unaware that the stochastic equations used could not, in
equations for interacting bosonic systefig]. Although this  fact, be considered Langevin equations in the formal sense,
method gave enhanced stability in the numerics over the noand that these should be considered stochastic difference
mal positiveP, it was assumed at the beginning of the deri-equations. Furthermore, the third-order noise contribution to
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these was not presented constructively. In this paper we willvhich, being nonlinear operator equations, have no obvious
also investigate the related process of spontaneous triple&nalytical solution. In the case of three-photon down-
photon production. This process may be thought of as deeplgonversion, as long as we are interested in the regime where
guantum as, without the third-order noises, it may not prothe number of photons in the high-frequency field is almost
ceed. Intracavity three-photon down-conversion has previunchanged, we may use the undepleted pump approximation,
ously been investigated using the density matrix to calculates is common for the optical parametric amplifi@b,26|.
the Wigner function[21] and a quantum Monte Carlo This involves treating the product af andb as a complex
method to simulate homOdyne detection of the Output ﬁ8|d$]umber and leads to the fo"owing equations of motion:
[22].

We compare the results obtained using our generalized R
positiveP approach with those obtained using different ap- da

proximations. Based on approximately factorizing certain E:Xam’

guantum averages, we can find analytic solutions for the

mean intensities in terms of Jacobi elliptic functions, al-

though this approach can tell us nothing about the quantum da" .

properties of the fields, and, worse than this, has been shown az = xa?, ()]

to be inaccurate after a certain interaction length in other

parametric processef23,24. Two other approximations

used require truncation of the differential equations for theyhere y = «(b(0)).

Wigner and positive® pseudoprobability functions at second  Naively replacing the operator products in E&) with
order, resulting in Fokker-Planck equations that may then b@ numbers leads to the prediction that spontaneous three-

mapped onto stochastic differential equations. photon down-conversion will not occur. However, by setting
N=a'a, we can find a second-order differential equation for
Il. HAMILTONIAN AND SEMICLASSICAL SOLUTIONS R(2)
The generic system that we consider is one of four-wave
mixing in a nonlinear medium, where three of the waves a2
have frequencyw and the fourth has frequencyw3 In our —— = x%(6N?+6N+3). (4)
analysis we will make the approximation that only two dz?

modes are important, which necessarily ignores such effects
as group-velocity dispersion, but will serve to demonstrat
our method in the most simple way possible. Traveling-wav
third-harmonic generation and degenerate three-photo
down-conversion can then be described by the interactio
Hamiltonian

jf we now assume that all operator products factorize and
ﬁxchange operators fernumbers, we immediately see that,
ven starting from the vacuum, the process may proceed.
owever, what we also see is that the photon number, begin-
ning from zero, will increase without limit. In fact, it has
i been shown that it will become infinite in a finite tirh27].
H(z)= T[a”b—a“"b*], (1)  We will, therefore, allow for pump depletion and find solu-
tions for the photon number following the same methods.

. N o When we consider the system with depletion of the pump
where a(z) and b(z) are the annihilation operators for fie|d, we can find solutions for the intensities in both third-
quanta at frequencies and 3w, respectively, at positio@  harmonic generation and three-photon down-conversion, al-
inside the nonlinear medium, andrepresents the effective though these are of no help if we wish to calculate the quan-

couping between the modes. tum statistics of the fields. These solutions, in terms of Jacobi
From the above Hamiltonian we can immediately derivee|jiptic functions, are fully periodic and are given in the Ap-
the Heisenberg operators of motion for the operators pendix. To investigate the quantum properties of the fields
~ and the extent of the semiclassically predicted revivals, we
da ~tor will revert to numerical stochastic integration using phase-
dz xa'‘b, space techniques, comparing the results of a full representa-

tion of the problem using a generalized positReepresen-
2 tation with those obtained by truncation of the equations in

da" . . i ; .

== xa2bT, the positiveP and Wigner representations.
z

db P lll. THE STOCHASTIC APPROACH

=38

dz 37 A. Truncated positive-P equations

: Following the usual procedur¢8], we may map the sys-
db __ Kk @) tem Hamiltonian of Eq(1) onto a generalized Fokker-Planck
equation for the positivé distribution
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9P P P P P question. Again following the usual methofi8], a partial
_:[ —| —(ka*?B)+ (KaZIB*)—( - —a3) differential equation is found for the Wigner distribution of
9z da da* Ip\ 3 the system
J ( K 1) & IW P P P
+ ——a*a) + | —(2ka*B) _:E N *2 2p%xy_ (3
92 3 3
+ 2(2Kaﬂ*)l _ 9 (a*3) _E 7 Elg + J §,3*
da* 9B* 6| 9a3\2 ga*3\2
L okt o) » (¢
- =| K K | —p*
6| ga® da*3 B da’oB* (2a )
XP(a,a*,B,B8%,2). (5) P 9
) ) +—(—a) W(a,a*,B,8*,2). W)
In the above equation, there is a correspondence between the da*29B\2

c-number variables [«a,a*,8,8*] and the operators

[a,a',b,b'] of the interaction Hamiltonian. Equatias) is ~ As this equation also has derivatives of third order, it also
not a genuine Fokker-Planck equation as it contains derivacannot be mapped onto stochastic differential equations.
tives of higher than second order. There are two features th&towever, it is possible to drop the third-order terms to find

are immediately noticeable. The first is that the coefficientdwo coupled deterministic equations with no noise terms, in
of the third-order derivatives are not obviously small and, inan approximation equal to stochastic electrodynamics. In this
fact, may be larger than those of the second-order terms umase the noise comes from the initial conditions for the two
der some circumstances. The second point is that the proces®des, as we integrate the equations

of spontaneous triple down-conversion depends on the pres-

ence of the third-order terms. However, by making the same da

type of approximation that is often used in the Wigner rep- a4z ka* B,

resentation, we may truncate E§) at second order and find

the following set of stochastic differential equations in Ito

calculus: dg K 4 ®

da
e ka'?B+\2ka’ By (2),

a large number of times with the initial conditions chosen
appropriately from the Wigner pseudoprobability distribu-

da’ R tion. This can be thought of as equivalent to adding vacuum
47~ KaB'tN2kaf 1y(2), fluctuations equal to half a photon to each mode.
dg K 4 C. Stochastic difference equations
——=—_a8,
dz 3 As the above approaches use a truncation of the full equa-
. tions and hence will necessarily result in the loss of some
dg _ faTS ©6) information, we wish to map the full interaction Hamiltonian
dz 377 onto some system that can be solved. Following the methods

developed in Ref[19], and used in Refd.18,20, we may
where the two noise terms have the properties thatlevelop stochastic difference equations, which, although
71(2) 7;(z')= 6, 6(z—2'). As always with the positiv® ap-  they have no continuous limit as stochastic differential equa-
proach, the pairs of field variables: (and ', for example  tions, may be simulated numerically.
are not complex conjugate except in the mean of a large Generally speaking;-number techniques of quantum sto-
number of integrated trajectories. This set of equations canhastics arenappingsof quantum problems onto-number
now be integrated numerically and means taken over a larggtochastic problems, such that quantum expectation values of
number of trajectories to calculate any desired normally orinterest equal certain classical averages. A well-known ex-
dered operator product. ample of such quantum-classical mapping is the poskive-
representatiofi6], in which time-normal quantum averages
of the Heisenberg field operators are mapped onto corre-

o ] ) sponding stochastic averages. For a two-mode system,
In an exact treatment, it is a matter of choice which sto-

chastic representation to use. This is no longer the case when <T,é*(z)~ ~bf(z)---TraZ)---b(Z")-- 2
approximations are invoked. We will consider, as an ex-
ample, a truncated Wigner representation for the system in =a'(2)---BYZ)---a(Z")---B(Z")---. (9)

B. Truncated Wigner equations
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(In our casez is a position variable; we, however, prefer to
use the conventional tertime-normal averagdor the left- exp{z (Eloy+ Eboy+ E101+ E0))

hand side of this equationThe upper bar in Eq9) denotes z

an averaging over the statistics of the fasnumber fields

a(2),B(2),a'(2),B8(z). These statistics are characterized =expY, S é1.62,61,6),a,8,a",8"), (13
via stochastic differential equations for thenumber fields. z

There are rare exceptioigsuch as linear systems coupled to

ot t ot
heat baths where a'(z)=a*(2), B'(2)=8%(z2) may be Sinl §1.€2,61.62, 8,2, 87)
maintained, but in general having a genuine positive prob- =it Azn(at+ & BT+ £l + coni
ability in Eq. (9) requires doubling of the phase space. I zhla’+&1.7+ 62,8 )
The positiveP mapping is(at least in principlgexact, yet (14

it is only applicable to problems where interactions are no . -
more than quadratic in creation or annihilation operators. A1€re. the upper bar denotes averaging over the statistics of
much wider class of arbitrary polynomial interaction Hamil- the s:f)urc_?s, the’s are four arbltra_ryc—numb_er fu_ncthns,
tonians may be covered if we allow the mappi@to hold ~ and “conj” acts as a formal Hermitian conjugation, inter-
only approximately, by considering classical stochastic pro€hanging quantities with and without dagger(z) — a'(z),
cesses in discretised time or, as in the present case, space. likewise for the rest, and complex conjugating otber
thus assume that is a discrete variable changing in finite Numbers. For the Hamiltoniafi), we have
steps ofAz. The classical fields obey the generic system of

stochastic difference equations, [with Aa(z)=a(z+AZ) Sm=A7| &l kat?B+ El2kal B+ %L p+ &l| — EQS)
—a(z) and likewise for the rest of the variables 3 3
Aa(2)=04(2), Aal(2)=0l(2), +con;. (15)

B o This completes the first step of the derivation, which results
AB(2)=02(2), AB'(2)=0%(2). (10 in the characteristic functional of the averages of the sources,
Eq. (13), expressed in terms of the cumulants, Ep).
The deterministic terms in the resulting equations of mo-
tion are immediately obvious, being those to first order in the
o¢'s in Eq. (15) [and exactly the same as in E@S), as they
major steps. First, stochastic cumulants of the are ob- mgst bd. The noise contributions to the's are rgadny found
tained via quantum-field-theoretical techniques. In the standSing real and complex Hubbard-Stratonovich transforma-

dard phase-space techniqithis corresponds to the deri- 1ONS, respectively,
vation of the drift terms and the noise matrix. The latter are
nothing but the first- and second-order cumulants of the
sources; whereas failure of the phase-space techniques mani-
fests itself as the presence of higher-order cumulants. Sec-
ondly, Hubbard-Stratonovich transformatiat$ST) [28] are 7
used to find explicit expressions for the sour¢es., to re- expxy)=expxn+yn*)[xy=xn+yn*]. 17
store the sources from their cumulant3his step corre-
sponds to factorization of the noise matrix in the standardiere,x andy are arbitrary quantities, ang and », respec-
techniques. We shall see that using the HST virtually trivial-tively, are the real and complex standardized Gaussian ran-
izes this factorization, and hence can also be of much assisom variables, with the propertieg=7=7°=0, x?
tance in the usual phase-space approaches. =|»|?=1. The formulas in square brackets introduce a con-
Although the rigorous derivation of the cumulants is venient short hand for the real and complex HSTs. In this
rather involved[19], in practice it boils down to a very short hand, applying a real HST to the quadratic term in Eq.
simple recipe. One starts by writing the interaction Hamil-(15) yields
tonian in normally ordered form,

The techniques of Ref.19] then allow one to derive the
random sourcesi.e., the g’s) directly from the interaction
Hamiltonian.

The derivation of the sources may be divided into tw

2

X2 | X%«
expz = expxy

5 =X, (16

X1
HZZh(éT,BT,é_,B):, (11) AzﬂzxaTﬂHﬂXl\/ZKa BAz. (18
whereh(a',b',a,b) is ac-number function of fouc-number ~ Comparing this to Eq(13), the second-order contribution to
arguments. For the present interaction, o is found to be
if K @)=y 1\2kaTBAz. 19
h(aT,b*,a,b)=T(a*3b—a3b*), (12) o= x1\V2ka’' B (19

Divided by Az, this is exactly thep, term in Egs.(6) (more
the normal ordering in Eq(1l) is in fact redundant. The precisely speaking, this is what thg term becomes with
properties of ther sources are given by the formulédrop-  discretization. The corresponding contribution tch{ is
ping thez dependence for notational simplicjty found by formally conjugating Eq.19)
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o1 @=12kap Az (20) As in the normal positivé? method, which has a freedom

in the choice of noise terms constrained only by the factor-
The noise sourceg,; andXI are uncorrelated and the sourcesization of the diffusion matrix of the Fokker-Planck equation,
introduced at differentz are also uncorrelated. More subtle there are other possible choices for the noises in our differ-
choices may be possiblef. Ref.[29]), but we will not con-  ence equations, following on from the factorization of Eq.
sider them here. Note that by construction ihGXI pair at  (21). An obvious degree of freedom is in the choice of the p’s
z must be uncorrelated with the fields at the samehis is ~ and g's, which may be used to reduce the sampling noise in
equivalent to saying that Eq&L0) imply (a discretized vari- the stochastic integration of the difference equations. In the
ety of) 1td calculus. This conjecture is actually an oversim-numerical integrations we performed, we simply set
plification: with thea’s and B’s being solutions of the sto-

chastic Egs.(10), the HSTs at different positions are not 2k P 2k
v PEaO=Y .
3

independent. The reason why this conjecture nevertheless p=9g= 3

(25)
leads to the right answer, is that, due to the causal and Mar-
kovian nature of the classical process, it is only the HST at
the most recent position that is important for the correct unlsing the said freedom in order to get better behavior of the
ravelling of the process. For a detailed argument, see Refgumerical integration remains a subject for further investiga-
[19,30. tion.
The cubic term irs;,;, AngSKﬂIS, is also simply taken
care of, by applying a complex HST followed by a real one, IV. RESULTS AND COMPARISON OF METHODS
1ok B 7 In the case of third-harmonic generation, numerical inte-
Az =>AZ§ 7l+ a7, (21)  gration of the classical equations of motion for the field am-
plitudes shows a complete and irreversible conversion to the
X2 high-frequency mode after some interaction length, as in
—E(xoNpyAzZ+qn*). (22)  traveling-wave second-harmonic generation. In the case of
spontaneous down-conversion, this approach predicts that
After accounting for the conjugated cubic term, we finally the system will remain in the initial state, regardless of the
obtain the set of coupled stochastic difference equations interaction length. The next approximation which we used,
o T . that of beginning with Heisenberg equations of motion for
Aa=rkaBAz+ x1\2ka' BAZ+ X\ pRAZ+q7*, the field intensities and progressing to classical second-order
differential equations, predicts fully periodic behavior in
both cases. As it has previously been seen that both these
methods give misleading results in the case of pure SHG and

Aa'=ka?BTAz+ xIN2kaBTAz+ x5\ pTnTAZ+q ™,

AB=— fa?’AZ spontaneous down-conversion, and in any case do not allow

3 ' for the calculation of the statistical properties of the fields,
we have resorted to stochastic integration in the phase space

i K L representations.

AB -3¢ Az, (23 The three phase-space methods we used, the truncated

Wigner, a positiveP truncated at second order, and a gener-

with the p’s andq’s constrained by the conditions alized positiveP that allows the modeling of higher-order
noises, give the same results for the mean-field intensities, at
_ 2kp 4 2KkBT least in the region where the generalized posifvintegra-
pg= 3 pag= (24

3 tion converged. This method is less stable than even the nor-
mal positiveP approach, and allowed for integration over
due to our choice of complex transformations, but otherW|5@pprox|mate|y 60% of the range shown in Fig. 1. As the
arbitrary. Equationg23) contain four real kl,Xz,Xl,Xz) fundamental intensity began to revive, some trajectories un-
and two complex §,7") Gaussian noises. These are nowderwent huge and sudden excursions, something also seen in
8, (Kroneckej correlated, unliken,, 7, in Egs.(6) which  Ref. [18]. Tuning the noise terms helped a little, but it was
are 8(z—z') (Dirac) correlated. We note here that EQJ) not possible to proceed far enough to see the form of the
without the third-order noises has a natural continuous limipartial revival shown in Fig. 1. For all three methods we used
identical to the positive® equations obtained above via the initial conditions of |a(0)|?>=10° in a coherent state,
usual methods, but that the derivation is much shorter. In}8(0)|?>=0 andx=10""° for the results presented in the fig-
deed, leaving bookeeping aside, the actual derivation conidres. These parameters were chosen purely for computational
sists of calculatings;,; using Eq.(14), and then processing it convenience, so that it was possible to see the main features
as per Egs(18), (21), and(22); all this takes no more than of the behavior without the time required for the numerical
three lines. For situations with noises of less than third orderintegration becoming impractically long. What is immedi-
this method of finding the equations is almost trivial as com-ately obvious from the figure is that the revival in the inten-
pared to proceeding via the master and Fokker-Planck equaity of the fundamental is less marked than in traveling-wave
tions. SHG, possibly due to the fact that a three-photon process
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FIG. 2. The development of th¥ quadrature variances of the
FIG. 1. The development of the intensities of the two fields asywo fields as they traverse the nonlinear medium. The solid lines
they traverse the nonlinear medium. The horizontal axis is a SCH'e@ere calculated using the genera”zed posiﬂ/mpresentaﬂon and
interaction distanc&= «|«(0)|z and the quantities plotted in this are the result of 48 1CP trajectories. The dash-dotted lines were

and subsequent graphs are dimensionless. This plot is the result ghiculated using the truncated positiPe-representation, with
1.85x 10° stochastic trajectories in the truncated positve@epre-  1.85x 10° trajectories.

sentation. Results found by the other stochastic methods were in-

distinguishable until the generalized positiRe-representation L .
failed. (In this realization ag~0.032.) Where the prediction was for excess noise above the vacuum

level, all three methods showed good agreement. The actual

places stronger requirements on the coherence properties @m of the squeezing in both quadrature and intensity is
the fields. very reminiscent of traveling-wave SH[23], with excess

In the process of spontaneous three-photon downnoise being seen as the fundamental begins to revive. This is
conversion, both the positive-and truncated Wigner repre- @ result of the partially spontaneous nature of the down-
sentations predict that no mean field will appear at the funconversion process necessary for this revival, and results in
damental, starting with only the third-harmonic mode fields that exhibit almost thermal statistics.
occupied. While the Wigner result showed a lot of noise in We also integrated the equations for third-harmonic gen-
the integration, the mean field averaged out to zero, indicateration numerically in the three representations, for param-
ing that this process cannot be explained as a result diters ranging fronk=10""—10"" and «(0)=10"—10.
vacuum fluctuations and hence cannot be adequately de-
scribed using stochastic electrodynamics. The generalizer 2
positive P began to predict spontaneous down-conversion,
but was extremely unstable and quickly diverged, so was no !
really a viable option for the investigation of this process. 1.6

In the case of THG, we found differences between the
representations when we began to investigate the statistics ¢ 4
the fields. We calculated the variances in édefined as 1.2

a+a') quadratures of the two fields, as well as the Fano

lances

-

factors, i.e., g
0.8 .
V(Nap) L |
F(Nap)= v (26)  °°
ab 0.4 ]

where in both cases a coherent state exhibits a value of one¢ o.2
A value of less than one signifies decreased fluctuations fron ,
the coherent statéor vacuum value. As our input state 0 0.005 0.01 0.015 0.02
[«(0)] is real, it is theX quadrature that exhibits the maxi- :

mum of noise suppression. Interestingly enough, the trun- FiG. 3. The development of the Fano factors of the two fields as
cated positive® and truncated Wigner methods gave almostihey traverse the nonlinear medium. The solid lines were calculated
indistinguishable results for these quantities, both beingising the generalized positierepresentation and the dash-dotted
overoptimistic with regard to the maximum amount of lines were calculated using the truncated posifiveepresentation,
squeezing available, as can be seen from Figs. 2 and @ith numbers of trajectories as in Fig. 2.
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1x1o5 tions for the intensities again predict periodic behavior, but
can say nothing about the statistics. This process simply will
08r not proceed in the truncated representations. While the gen-
0.6- eralized positiveP representation begins to show spontane-
ous down-conversion, it rapidly falls victim to enormous
04r sampling errors. Whether the freedom we have in writing the
0.2r noise terms can be successfully used to overcome this prob-
2 of i lem is a subject for further investigation.
-0.2f .
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FIG. 4. The sampling errors fa¥, in the generalized positive-
P representation as it nears a divergence, calculated usi0b APPENDIX: DERIVATION OF SEMICLASSICAL
trajectories. The center line is the mean value while the outer ones SOLUTIONS

represent plus or minus one standard deviation. . . . . .
P P Beginning with the Heisenberg equations of moti@)

We found good agreement for the mean intensities for all th@nd proceeding as in Sec. II, wil, , being the number
representations, where there was convergence of the gen@perators for the two modes, we find the nonlinear operator
alized positiveP method. The generalized positive-ap-  €duation,
proach always predicted less maximum noise suppression,
with the general form of the intensities and variances being
the same over the range of parameters examined. We were d?N, ol o e o 2.0 s Al
not able to achieve convergence of the generalized positive- 5 = (BN3+6Na+4)Np—3Na+2N5— 3Na |,
P method for long enough to see a revival in the fundamen- (A1)
tal. What happened is that a number of trajectories began to
undergo rapid and arbitrarily large excursions before this
Po'tﬂt’ causn?g d|vergenc|e t?f éh.e |r|;t.egr:1':1tlorr11.. 'I;}h!s can be jee_vr\]/hich has no obvious solution. Assuming all products fac-
N the sampling errors plotied In F1g. 4, WNICN INCTEAsE Gray, i, ¢ 5 replacing the operator expressions by their expec-
matically near the end of the interval. This eventual failure of A i .
the integration is reminiscent of problems with the positive-{ation values, K s=(N, ,)), gives an equation in two real
P representation in highly nonlinear, undamped systems antf'iables. We now have two different initial conditions, de-
it may be that, just as recent works have exhibited som@ending on which process we wish to investigate.
success in attacking this probld20,31], ways can be found
to make the generalized positiemethod more convergent. . . ,
1. Third-harmonic generation
V. CONCLUSION In pure third-harmonic generation, the initial condition is
thatN,(0)#0 andN,(0)=0. Using conservation of energy

We have performed a fully quantum-mechanical analysisyithin the nonlinear materiafwe are not considering any

of the process of traveling-wave third-harmonic generatiorhther processe¢s we may write Ny(z)=[A—N,(2)]/3,
and compared the results obtained with those obtained usinghere A=N_(0). This allows us to write an equation in

approximate, but more stable methods. The first approximagrms ofN, only
tion used, that of writing second-order differential equations
for the field intensities, predicts periodic behavior with full d?N, P
revivals of the fundamental. The Wigner and positive- 2 =—?(8N3—6AN§—6ANa+4A)- (A2)
equations, both truncated at second order, predict only a par- d
tial revival but agree with the full quantum predictions of the
generalized positivé& method where the integration of the ) ] ) )
latter converges. They do, however, predict significantlyProceeding as in Reff23,32,33, we find a pseudopotential
more squeezing in the output fields than would seem to b# Which the photon number moves,
the case.

In the process of spontaneous triplet-photon production, 5
none of these methods proved to be useful for calculating the ZL

3
_ 4 3_° 2
statistical properties of the fields. The semiclassical equa- UNa)= 3 Na—AN; 2ANa+2ANa+C » (A3)
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whereC is a constant of integration. Treating the total pseu-
doenergy as a constant of the motion leads to a first-order 0~

differential equation folN,(z),

dN,

g, ~ T VE-UN)]

2k 4 3 3 5
= tﬁ Eo—NZ+AN;+ EANa— 2N,, (A4)
whereEy=—-C+ 6E/4x?. The formal solution of EqA4) is
then written as

V3

7= +—

Jo
2k Ja \/EO—N;‘

dN,

(A5)

+ANS+3 AN2— 2N,

We find that there are three cases where &&) has
periodic solutions. Defining

4
3
f(x)=Eo—x*+Ax*+ EAXZ—ZXI —1I (x=x,
k=0
(A6)

so that we may write
fx(z) dx
z== ,
x(0) Vf(X)

we examine the roots of the polynomiilx) = 0. (Note that

(A7)

we have changed the variable xdecause not all the solu-

tions we find will be possible physical solutions fd).

To find which solution is appropriate in this case, we note

that the pseudokinetic energy must be equal to zem=41,

so thatE=U(Ng). As we may add any constant value to a

potential without changing the dynamics, we choGseO0 in
Eq. (A3). For an initial condition ofN,(0)=1C° (which we
used in simulations we find thatf (x) has two real rootsg,
andx,, with x;>X,, and two complex roots. Writing

f(X)= = (X=X)(X=X)(X*=2ux+v),  (A8)
the solution has the form, fot;=x=x,,
No
X(z2)=My+ (A9)

DO_ Cn(Q()Z"‘ ¢0,k0) '

where cn signifies the Jacobi cosine amplit{i84]. Defining
yi=VXi—2ux;+v and y,=\x5—2ux,+ v,
(A10)

we have

Xo—YoX
Mo:yl 27 Y2 1,
Yi—Y2
_2y1Ya(X3—X)
o~ T 2
(Yi—Y2)

PHYSICAL REVIEW A65 053806

yi1t+Y2
Yi—Y2

Y1Y2— X1 Xo+ m(X1+Xo) — v
k0: 2
YiYo

Do(x(0)—Mg)—Ng
X(0)—Mg

do=cn 1 Ko . (A11)

In this case the period of(z) has the form

dt 4

4 (1 y
T = — = K y
0 Qofo VA-t2)(1-K3t?) Qo (ko)

(A12)

whereK (kp) is the full elliptic integral. This solution has the
same formal structure as those for the intensities in traveling-
wave second-harmonic generation with an adg&€tl non-
linearity [33], due to the quartic nature of the pseudopoten-
tial, but is different in detail.

2. Spontaneous triplet production

Mathematically, the difference between third-harmonic
generation and spontaneous three-photon down-conversion
lies in the initial condition. In this cas&,(0)#0 and
N,(0)=0. Beginning with Eq(Al), we again change from
operators to real numbers to find an equationNg(z) ,

d?N,
dz

3
K
= — 5 [8N;-18BN;— (188 —8)N,— 12B].
(A13)

We then find that the equivalent pseudopotential may be
written as

2k

3

9
[NQ—SBNg—(—B—Z)Ni—GBNa

U(Np) = 2

(A14)

where we have set the constant of integration equal to zero.
In this case we find that

dN, 2k

=+

dz \/§

B2
2

Eo— N2+3BN3+

NZ+6BN,,
(A15)

whereE,=3E/4«2. This equation has the formal solution

5

3N,

. |

260 \JE ~ N*+ 3BN3+ (2 B—2)N?+ 6BN,
(A16)

dN,

053806-8
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We may again find a value fd£, by considering that all the
pseudoenergy is potential &zt 0, giving Eg= 0. Writing the
polynomial under the square root as

4
g(x)= —k[[l (X—Xg), (A17)

PHYSICAL REVIEW A 65 053806

we find that forN,(0)=1/3x10°, which is the value we
used in simulations, the polynomial has two real roots, with
X,=<X=X4, and two roots that are complex conjugates. The
motion of the photon number in this case is also periodic and
obeys the general form of E@A9), but with different pa-
rameters.
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