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ABSTRACT

We present a model for detection of the states of a coupled quantum dots (qubit) by a quantum point contact.
Most proposals for measurements of states of quantum systems are idealized. However in a real laboratory the
measurements cannot be perfect due to practical devices and circuits. The models using ideal devices are not
sufficient for describing the detection information of the states of the quantum systems. Our model therefore
includes the extension to a non-ideal measurement device case using an equivalent circuit. We derive a quantum
trajectory that describes the stochastic evolution of the state of the system of the qubit and the measuring device.
We calculate the noise power spectrum of tunnelling events in an ideal and a non-ideal quantum point contact
measurement respectively. We found that, for the strong coupling case it is difficult to obtain information of the
quantum processes in the qubit by measurements using a non-ideal quantum point contact. The noise spectra
can also be used to estimate the limits of applicability of the ideal model.
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1. INTRODUCTION

Many theories for the measurement of the states of quantum systems, such as quantum dots, are idealized.1–3

That is, the uncertainty in the conditioned state of the quantum system is due purely to the stochastic nature of
the quantum processes. Such a perfect measurement is not possible in a real laboratory due to practical devices
and circuitry. It is desirable to have a realistic model of this kind of measurement so that realistically available
results can be related to the state of the quantum system. There have been a number of recent suggestions for
(solid state) quantum computer architecture involving quantum dots of varying kinds.4–6 A knowledge of how
to read out physical properties, such as charge, at a single-electron level is required for these proposals to be
practical.1 Various devices have been proposed to measure coupled-dot systems. In particular, quantum point
contacts (QPCs)7, 8 and single electron transistors (SETs).1, 2, 9

We consider continuous measurement of the state of a pair of coupled quantum dots by a non-ideal QPC.
The dots are occupied by a single electron that can tunnel coherently between them, thus allowing the pair to
be considered as a qubit.

The system and its functionality are detailed in Sect. 2. In Sect. 3 we model the quantum measurement of the
qubit state. We derive a quantum trajectory that describes the stochastic evolution of the state of the system of
the qubit and the measuring device. The calculated results as noise power spectra for the measurements of qubit
states with an ideal and non-ideal QPC are presented in Sect. 4. The influence of the non-ideal components on
the noise spectrum is analyzed by comparing with the spectra of the ideal QPC case. Finally, we discuss and
summarize in Sect. 5. We found that, for the strong coupling (between two dots) case it is difficult to obtain
information of the quantum processes in the qubit by measurements using a non-ideal quantum point contact.
The limits of applicability of the ideal model can also be estimated from the noise power spectra.
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212 1 QPC

Figure 1. Schematic representation of the measurement of two coupled quantum dots occupied by a single electron using
a QPC.

2. THE SYSTEM

The schematic diagram is depicted in Fig. 1. The quantum system to be measured is a pair of spatially separated
and coherently coupled dots occupied by a single electron. Dot 1 is located near the QPC and is called the target.
Each dot is assumed to have only one available state. The interaction between the target and the QPC is via a
Coulomb blockade. The state of the qubit (the coupled dots) at a particular time is determined by the location
of the electron at that time. The electron tunnelling rate through the QPC is influenced by the location of the
qubit electron in a similar way that the gate voltage controls the tunnelling rate in general cases. We assume
that when the electron is located in dot 2 the tunnelling rate is denoted by λ0 and an additional tunnelling rate
of λ1 (> 0) occurs when dot 1 is occupied. The quantum point contact (QPC) is therefore used as a detector
to measure the state of the qubit. In the perfect case λ0 is zero however Johnson noise gives nonzero quiescent
tunnelling rate.

For measurement of the qubit states by a non-ideal QPC, the current measured by an observer involves more
than just the tunnelling events through the QPC. A real measurement circuit involves a number of noise sources
from circuit components as well as the quantum noise due to the stochastic nature of the tunnelling processes
through the QPC. We construct an equivalent circuit and analyze it to obtain an expression for the measured
current at time t, I(t), which will be detailed in Sect. 3. Figure 2 shows the equivalent circuit we use to model
our measurement of the qubit states using a non-ideal QPC. The circuit consists of the QPC, a current amplifier
and miscellaneous circuit components. We model the QPC tunnel junction as a capacitance, C1, in parallel with
a parasitic capacitance, CP , that exists between the source and drain 2DEGs. Typically, due to the larger ‘area’
of CP , CP � C1. In the analysis, we consider the equivalent parallel capacitance C = C1 + CP . We refer to C
as the equivalent capacitor. Tunnelling events through the QPC are modelled as a current source. The circuit
has an equivalent resistance R. We have a non-ideal, DC bias voltage consisting of an ideal voltage, ε, in series
with an input noise voltage source eIn. The Johnson noise of R is included in eIn. The measured current, I, is
measured with an ideal ammeter after amplification by a non-ideal current amplifier. This introduces an output
noise into the measured current, eOut/R

′. The current amplifier is at the laboratory temperature T ′. These
circuit components introduce an input noise into the current through the QPC.

3. FORMALISM

3.1. Ideal QPC case

The total Hamiltonian of the qubit dots is

H = h̄
2∑

j=1

ωjc
†
jcj + ih̄

Ω
2
(c†1c2 − c†2c1) (1)

where Ω is the coupling frequency and cj and c
†
j (j = 1, 2) are the Fermi annihilation and creation operators for

the single electron states within the qubit quantum dots. The second term of the right hand side of equation (1)
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Figure 2. Equivalent circuit for measurement of current through the QPC. The QPC is modelled as a capacitor C1. A
parasitic capacitance, CP , between the source and drain is included in parallel with the QPC. Tunnelling events through
the QPC are modelled as a current source.

is the interaction between the two dots. We assume that the tunnelling through the QPC is one way only and the
tunnelling rate is larger than all other rates, and the QPC can be adiabatically eliminated.1 The unconditional
quantum master equation for the state of the qubit is given by1

dρ(t)
dt

= −i[H, ρ(t)] + γD[n1]ρ(t)

= Lρ(t), (2)

where γ = 2λ0 + λ1 is the decoherence rate of the qubit, λ0 and λ1 are the tunnelling rates through the QPC
introduced in section 2, n1 = c†1c1 is the occupation number of dot1 and we have adopted the convention of
h̄ = 1. The second line of equation (2) defines the Louivillian super-operator, L. This master equation is of the
Lindblad form12 for valid evolution∗ derived in the appendix of reference1,1 where

D[X]Y ≡ XYX† − 1
2
(X†XY + Y X†X), (3)

The tunnelling increment dN(t) is formally defined by:

dN2 = dN (4)

E
[
dN(t)
dt

]
= λ0Tr [(1− n1)ρc(t)(1− n1)]

+(λ0 + λ1)Tr [n1ρc(t)n1]
= λ0 + λ1〈n1〉c(t) (5)

Notice that the (classical) expectation values have been expressed as quantum averages.
∗That is, preserving the Hermiticity, norm and positivity of ρ.
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We define the current through the QPC in terms of the discrete Poissonian process dN(t):

i(t) = q
dN(t)
dt

(6)

where q = −|q| is the charge on an electron.
Here we present the quantum trajectory (stochastic master equation) for the case of ideal measurement.

Omitting the time argument for simplicity, the Itô form of the stochastic master equation is1

dρc = dN

[
J

Tr[Jρc]
− 1

]
ρc

+ dt{−λ1A[n1]ρc + λ1Tr[ρcn1]ρ− i[H, ρc]}.
(7)

where the super-operator J is defined as Jρc = λ0ρc + λ1J [n1]ρc + 2λ0D[n1]ρc for simplicity and J is defined
by J [X]Y ≡ XYX†. It is useful to note that the expectation value of dN(t) is expressible in terms of J as

E
[
dN(t)
dt

]
= Tr[Jρc(t)] (8)

A quantum trajectory describes the stochastic evolution of the state matrix, ρc(t). The evolution is condi-
tioned on tunnelling events through the QPC at earlier times, hence the subscript c. Averaging the quantum
trajectory over the observed stochastic processes (in this case by setting dN equal to its expectation value)
recovers the unconditional master equation, (2).

3.2. Non-ideal QPC case

We analyze the equivalent circuit of figure 2 using Kirchhoff’s laws and obtain the following Itô differential
equation11 for the charge on the parasitic capacitor, Q(t):

dQ(t) = −
(
αQ(t) + β +

√
DIn

dWIn(t)
dt

)
dt+ qdN(t) (9)

where dWIn(t) is the input noise Wiener process ,11 α = 1/RC, β = ε/R and DIn = 4kBT/R. kB is Boltzmann’s
constant and the circuit component values R and T are defined in figure 2; dN(t) is the discrete tunnelling process
defined by equations (4) and (5). The positive sign on the tunnelling increment is a result of our definition of
the direction of the current in the circuit.

The solution of equation (9) is

Q(t) = −β

α
+

√
DIne

−αt

∫ t

−∞
eαt1

dWIn(t1)
dt1

dt1

+qe−αt

∫ t

−∞
eαt1

dN(t1)
dt1

dt1 (10)

Further analysis of the equivalent circuit of Fig. 2 with Kirchhoff’s laws yields the following expression for
the measured current

I(t) = −αQ(t)− β +
√
DIn

dWIn(t)
dt

+
√
DOut

dWOut(t)
dt

(11)

where DOut = 4kBT
′/R′ and dWOut is the output noise Wiener increment.
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Substitution of equation (10) into this expression yields

I(t) = −α
√
DIne

−αt

∫ t

−∞
eαt1

dWIn(t1)
dt1

dt1 − αqe−αt

∫ t

−∞
eαt1

dN(t1)
dt1

dt1

+
√
DIn

dWIn(t)
dt

+
√
DOut

dWOut(t)
dt

(12)

In a realistic situation, an experimentalist has access to the current I(t), not to the point process dN/dt.
Thus the realistic conditional state of the system would be conditioned upon I(t), rather than upon dN/dt as in
Eq. 7. It is possible to do this, following the method introduced for photodetectors in Refs..14, 15 The result is
a stochastic Fokker-Planck equation for ρc(Q), where Tr[ρc(Q) is the conditional probability that the charge on
the capacitor is Q, and where

∫
dQρc(Q) is the conditional quantum state, averaged over the unobserved charge

Q. The details of this equation, and its derivation, will be left to a future publication.

4. NOISE POWER SPECTRA

Noise is characterized by its power spectrum S(ω), which is the Fourier transform of the current-current two-time
autocorrelation function,13 G(τ):

G(τ) = 〈i(t)i(t+ τ)〉ss − 〈i(t)〉ss〈i(t+ τ)〉ss (13)

where i(t) represents the current through the QPC as a function of time and 〈K〉ss denotes the steady-state
(quantum) average of K. The noise spectrum is expressible as1

S(ω) = 2
∫ ∞

0

G(τ) cos(ωτ)dτ (14)

To characterize the noise involved in the detection of qubit states by a QPC, we derive the noise power spectrum.
Two types of noise are considered in this study: Johnson noise due to thermal motion of electrons and shot noise
due to the discreteness of the charge of electrons. In the steady state, Johnson noise is white noise which has a
flat power spectrum. The voltage spectrum is given by16

S = 4kBTR (15)

where kB is Boltzmann’s constant, T is the absolute temperature of the conductor and R is the conductor
resistance. This approximation of Johnson noise as white noise is actually valid for many practical situations,
not just in the steady state.16

In devices such as p-n junctions and tunnel junctions, the transfer of electrons can be described by Poisson
statistics.13 For these devices, the shot noise has its maximum value

S = 2qIm ≡ SPoisson (16)

where q is the electronic charge and Im is the time-averaged mean current through the device. This is valid for
electron pulse widths less than 1/ω. The shot noise can be suppressed below SPoisson by correlations.13

When plotting the noise spectrum, we use dimensionless parameters and normalize S(ω) by the full shot
noise level 2qIm to produce what is known as the Fano factor

F (ω) =
S(ω)
2qIss

(17)
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Figure 3. Fano Factor plots for ideal QPC measurement of the current for different values of the tunnel coupling between
qubit dots: (I) Ω = 0.1γ, (II) Ω = 0.6γ, (III) Ω = 3γ.

4.1. Noise spectrum in the Ideal QPC case

The noise in this case is purely due to the stochastic nature of the quantum processes. The processes that produce
shot noise are represented by the stochastic point process dN(t). The current tunnelling through the QPC in
this case is derived in section 3.1. Using the definition (13) yields the following steady-state autocorrelation
function:

G(τ) = qissδ(τ) +
e2λ2

1

8

(
b+e

b−τ − b−eb+τ√
(γ/4)2 − Ω2

)
(18)

where
b± = −γ/4±

√
(γ/4)2 − Ω2 (19)

are two (possibly complex) numbers with non-positive real parts; γ = 2λ0 + λ1 is the decoherence rate of
the qubit1 and Ω is the coupling frequency between the qubit dots (both introduced in Sect. 3). The Fourier
transform of G(τ) gives the noise spectrum:

S(ω) = qiss +
e2λ2

1Ω
2

4
√
(γ/4)2 − Ω2

[
1

b2+ + ω2
− 1
b2− + ω2

]
(20)

In order to visualize the characteristics of the noise properties of the measurement we plot the noise spectra (as
a Fano Factor plot) in Fig. 3 for three different values of Ω corresponding to the cases of weak (top), intermediate
(middle)and strong coupling between the two dots, respectively. The double peaked structure indicates coherent
tunnelling between the qubit dots. The separation of the peaks is a measure of the strength of the tunnel coupling
- larger separation corresponds to stronger coherence in tunnelling between the qubit dots.

4.2. Noise Spectrum in the Non-Ideal QPC Case

The expression for the measured current in the non-ideal circuit was derived in Sect. 3.2 as Eq. 11. We now
substitute Eq. 12 into Eq. 13 to calculate the steady-state two-time autocorrelation function and obtain:
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G(τ) = qIssδ(τ) +DOutδ(τ) +DIn

(
δ(τ)− α

2
e−ατ

)
+

α2e2λ2
1

8
√
(γ/4)2 − Ω2

{
b+

α2 − b2−
eb−τ − b−

α2 − b2+
eb+τ

+
(

b+
α2 − b2−

− b−
α2 − b2+

+
b−

α (α+ b+)
− b+
α (α+ b−)

)
e−ατ

}
(21)

The corresponding noise spectrum is evaluated using Eq. 14 and is:

S(ω) = qIss +DOut +DIn

(
1− α2

α2 + ω2

)

+
e2λ2

1Ω
2

4
√
(γ/4)2 − Ω2

[
1

b2+ + ω2
− 1
b2− + ω2

] (
α2

α2 + ω2

)
(22)

where b± is defined by equation (19) and α = 1/RC.

The calculated results for various parameters are plotted in Figs. 4, 5 and 6. For comparison with the plots of
the ideal spectrum (that is, the noise spectrum for ideal measurement), we plot the non-ideal spectrum using the
same values for the tunnelling rate between the qubit dots, Ω. The influence of the non-ideal circuit components
is shown in the non-ideal spectra of Figs. 4, 5 and 6 for strong, intermediate and weak coupling strength between
the qubit dots, respectively.

Figure 4 shows that the non-ideal circuit components have a very strong influence on the noise spectrum
features for strong tunnel coupling between the qubit dots. In the top plot, where R = 100 ohms and C = 10 pF ,
this influence is so strong that the original spectral features that provide information about the qubit are almost
unidentifiable. The sharp peaks have been suppressed by the measurement circuit into small bumps in the wings
of the spectrum. These values of the parasitic variables R and C are chosen from the literature17 as realistic
values. As the parasitic capacitance is decreased (the lower two plots) in the Fig. 4, the bandwidth of the
high-pass filter broadens and the ‘wings’ decrease to a negligible height within the domain shown - physically
this corresponds to the input white noise being filtered out of the measured current. The original features of
the ideal noise spectrum (III) in Fig. 3 are recovered. These results can be used to determine the value of the
combination of non-ideal circuit components (RC) for which the measurement device and circuit can be well
approximated by the ideal model or where information about the quantum system can no longer be obtained
from the measurement.

For intermediate tunnel coupling strength between the qubit dots, figure 5 shows a weaker influence of the
non-ideal circuit components on the features of the noise spectrum. The filter shape remains identical, but the
peaks are not suppressed by as much as for stronger coupling (i.e. higher rates). We chose the values of the
parasitic variables R and C to be the same as in figure 4 for comparison. The peaks showing the coupling
strength between the qubit dots are easily visible in all three plots, i.e. for all three values of RC. This suggests
that, for intermediate coupling strength between the qubit dots, information about the qubit is more readily
obtainable by non-ideal measurement (provided RC < 10−9s) than for stronger coupling strength.

For weak coupling between the qubit dots, as shown in figure 6, the non-ideal circuit components have a
negligible influence on the noise spectrum features. The spectra are very close to the spectrum in the ideal QPC
case, (I) in Fig. 3.

In summary, we have found that the non-ideal circuit components increased the current noise. The influence
of the (classical) non-ideal circuit components on the features of the noise spectrum that provide information
about the quantum system (qubit) is greatest for strong tunnelling coherence between the qubit dots. That is,
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Figure 4. Fano Factor plot for non-ideal QPC measurement of the current when the coupling between the qubit dots is
relatively strong: Ω = 3γ.
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Figure 5. Fano Factor plot for non-ideal QPC measurement of the current when the coupling rate between the qubit
dots is an intermediate value: Ω = 0.6γ.

for strong coupling between the qubit dots, it is difficult to obtain information about the qubit in a non-ideal
measurement (for the realistic value of RC ≈ 10−9s). The non-ideal noise spectrum can also be used to determine
limits of applicability of the non-ideal and ideal models. That is, we can estimate values of the combination of
non-ideal circuit components R and C for which the non-ideal model can be approximated by the ideal model.

5. SUMMARY

We extend our quantum stochastic approach to the measurement of the states of the coupled quantum dot system
using a non-ideal QPC. We use an equivalent circuit to model the realistic devices. The current through the
detector QPC is derived using a quantum trajectory. We then calculated the current noise power spectrum and
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Figure 6. Fano Factor plot for non-ideal QPC measurement of the current when the coupling between the qubit dots is
weak: Ω = 0.1γ.

found that, in general, the non-ideal circuit components increased the current noise. We showed that the influence
of the non-ideal circuit components on the current noise spectrum is greatest for strong tunnelling coherence
between the qubit dots. We also found that, for this strong coupling, it is difficult to obtain information about
the quantum processes within the qubit from non-ideal measurement. The non-ideal spectrum can also be used
to make estimates pertaining to the limits of applicability of the non-ideal and ideal models.
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