Design Derivation of an Open, Java-based Reengineering Platform

Paul Bailes
, Ian Peake
School of Information Technology and Electrical Engineering
The University of Queensland QLD 4072 AUSTRALIA
{paul, ian.peake}@itee.uq.edu.au

Abstract

. Essential reengineering platform functionality can be

made more accessible, and even extended, using Java as

* a basis for platform development, as follows. The proc-
| ess of software reengineering tool development should

be able to enjoy the benefits conferred by “open” ena-
bling technologies. Redngineering tool development and

-use involves distinctive processes and thus has distinc-
tive requirements of enabling technologies. The earlier

dominant “Software Refinery” proprietary reengineer-
ing tool development platform is both lacking with re-

" spect to required reengineering characteristics and
‘moreover has limited accessibility. However, using Java

as basis, the functionality of the proprietary platform
can be substantially recreated to achieve open technol-

- ogy goals of adaptability, portability, accessrbdtty and
-. eventually heterogeneity also.

1. Introduction

The general benefits of “open” approaches to soft-

. ware development — their methodologies and enabling
- technologies — as opposed to the alternative idiosyn-

| cratic/stand-alone/proprietary systems are weil-known

i. {11. They include:

1 o. heterogeneity — ability to integrate components de-
. veloped using different technologies;

| e portability — ability to use on a wide variety -of
- hardware/software environments;

' e accessibility — beyond mere portability, not prohibi-
. tively expensive as well (the nature of sofiware econom-
' ics seems to be that portability is incompatible with pro-
. hibitive expense, thus accessibility implies portability);

o adaptability - rtelative ease of modifica-

tion/extension of existing behaviour, on account of visi-

bility to some extent of the internal components of a
software system.
However, one significant software domain — that of

. the development of (semi-) automatic reengineering

'$34-5351/03 $17.00 © 2003 IEEE

239

tools — has hitherto tended to be dominated by proprie-
tary rather than open technology. The purpose of this
paper accordingly is to introduce an open platform for
software reengineering tool development, by. seq‘ucn—
tially:

a) deriving, after consideration of the special charactcr- Sl
istics of software reengmeenng, the- technical reqmre-' A

ments for software reengineering tool platforms;

. b) demonstrating, with respect to these: reqmreménté, -

the limitations of a dominant proprietary platform; -
c) exhibiting the design of “Bahasa” '
Java-based reengineering p]atfom1, :
d) presenting the conceptual hierarchical progress:on of
the extensions to Java that lead to a canomcal ‘implemen-

- .tation of Bahasa.

Thas, while the platform r&sultmg from this process

- (“Bahasa™) is potentta!ly significant, the deeper signifi-
.cance of this paper is its exposition of how the platform

is derived from the requirements of the reengineering
domain, and its transparency to other platform develop-
ers. :

2. Reengineering Platform Requirements

It is important carefully to distinguish between the

three kinds of software:

e reengineering platforms, in which ate developed ..

e reengineering fools, which in order to facilitate reen-
gineering are applied to ...

] appbcat:on systems.

It is the first of these that is our concern here, though
it would be surprising if the use of an open réengineering
tool platform (and thus an open approach to reengineer-
ing tool development) did not engender a degree of
openness in the tools themselves and maybe likewise
even in the resulting applications themselves.

The essence of the derivation of reengineering plat-
form requirements (according to which our open plat-

_form is to be developed) is a reengineering tool devel-

opment and application process model — our Generic
Reengineering Architecture (GRA). The GRA in tum is

- an alternative

derived from an analysis of what distinguishes reengi-
neering from other types of software development,

2.1. Distinguishing characteristics of reéngi—
neering

Reengineering tool development may be character-
ised by the important distinctions between it and other
kinds of programming, and in particular from other kinds
of metaprogramming such as compiler-writing.

2.1.1. Imperfectibility. Source-level transition requires
a much higher level of program comprehension com-
pared to compilation, because of the requirement that the
result be expressed in high-level terms comprehensible
to 2 human reader (such as a maintenance programmer).
Moreover, the meaning of source code can be deeply
disguised, ultimately in the form of idiomatic expres-
sions which we conjecture are as opaque as the idioms of
natural language that contribute so much to the “Al-
hardness” of such as natural language understanding,
and related problems such as theorem-proving, Thus a
transition fool will generally require some degree of hu-
man operator assistance. See also [2].

2.1.2. Infrequency. Whereas compilers are applied
many times to the same source code during development
and maintenance, the -singular nature of transition im-
plies that these tools are applied much less frequently to
each Origin-Target pair under consideration. The impli-
cation is that transition processes and tools can be de-
signed with the usual compromise between machine effi-
ciency vs tool capability/expressiveness weighted more
heavily towards the latter than normal. While tool use
might be affected by such a compromise, application use
is not affected, since application source code itself
would simply have been translated from one form to
another and could still be compiled as usual.

2.2. The GRA: réengineering process model

We have earlier reported {3] on an initial version of 2
process model for reengineering tool development and
application: the Generic Reengineering Architecture
(GRA). The latest version of the GRA is a 3-level hier-
archy as summarised in fig 1 above. Note the distinc-
tions between:

1. application of a reengineering tool (/TALIC TEXT)

2. implementation of a reengineering tool (BOLD
TEXT)

3. specification of a reengineering tool and a reengi-

neering process (BOLD UNDERLINE)

2.2.1. Reengineering - application-level architecture,
The architecture’s tool-application components are ag
follows.

-
-
-
-

:OM * ™

Figure 1. Generic Reengineering Architecture

* External Censoring (EC): because not all reengineer-
ing functions can be automated (“imperfectability”),
manual preprocessing of original source code may be
considered in order to elide constructs not amenable to
automatic processing - quasi-retention of such constructs
may be achieved by “commenting out™.

¢ Syntactic Analysis (SA): parse remaining original
source code into internal (e.g. abstract syntax tree) form;
note that valuable extra-linguistic content e.g. comments
may be retained by attachment to nearest AST node.
(By “ASTs” we refer metaphorically to the internal rep-
resentation of any analysed artifact of the maintenance
process, and representations of the output of subsequent
derived high level analyses.)

The explicit iteration of the next two stages implies
that human operators have the opportunity to inspect the
results and to make intelligent decisions about which TR
or IC operation should be performed next.
® Transformation (TR): apply (typically) prepro-
grammed transformations to AST in order to effect de-
sired transition.
¢ Intemal Censoring (IC): delete or reduce to com-
ment-status further AST nodes that emerge as not ame-
nable to automatic processing (corresponds to EC).
¢ Differential Synthesis (DS): generate target source
code from AST; because not all original source code

;- may have been transformed by TR (“imperfectability”),
- the tree may be a hybrid, hence synthesis should differ-
- entiate between source code generated in origin vs. tar-
--get languages; also, original comments may be regener-
.. ated at some corresponding location in target code.

-'e Reconciliation (RC): manually postprocess hybrid
~code, involving replacement of residual origin by target
" code and inspection comments for elided (by EC or IC)

-origin code and replacement by target code.

7:2.2.2. Reengineering - tool implementation. While the
“.infrequency of transition has implications for the tech-

nology used to implement transition tools, the implemen-

- tation process itself reflects the familiar “compilers”
~-approach.

_® Origin Modelling (OM): specify concrete and ab-
. stract syntax for origin language (from which parser and

AST generator for SA above can be generated).

o Target Modelling (TM): specify concrete and ab-
stract syntax for target language (from which un-
parse/printer/code generator for DS can be generated).

.* Transformation Specification (TS): programming of
-, origin-target transformations to be available for selection
- in TR above. »

“'2.2.3. Reenginering - tool specification. The ultimate
*"imperfectability of transition tools is manifested in the

feedback from tool application into tool specification.

~'e Concept Mapping (CM): high-level specification of

“origin-target conversions for implementation in TS.

e Target Lifting (TL): simplify CM (and so TS) by
" semantic extension of target language (e.g. by develop-

ment of libraries) to match semantics of origin.
The above two operations are mutually-iterative: TL

"_is inspired by requirements of CM; CM is simplified by
" suitable TL.

* Idiom Analysis (1A): take account of possibly appli-
cation-, or organisational-dependent means of expressing

‘concepts that are not otherwise obviously expressible in

the origin language; occurs prior to CM in order that CM
may safely ignore potentially imperfectable special cases

| otherwise manageable by IA.

The feedback from application architecture manual

v components (EC, TR, IC RC) into 1A, preceding CM, is

indicative of how human interaction with transition tools

is likely to yield insights into further idioms and other.

mappings between origin and target constructs.

2.3. Required characteristics of reengineering
platforms

The basic characteristics of reengineering ‘and their
refinement in terms of our GRA imply that reverse engi-

241

neering platform should support key attributes of persis-
tence, expressiveness and extensibility.

2.3.1. A framework for linguistic adequacy. We pro-
pose that the adequacy of a programming language (and
by inheritance, reengineering platforms also) can be or-
dered:

1. primary criterion — adequacy to an intended applica-
tion domain;

2. secondary criterion — adequacy to a prevailing pro-
gramming methodology;

3. tertiary criterion — adequacy to universal principles

f)f‘ language design [4].

These “universal principles” merit further elabora-
tion. The principle of adequacy, as elaborated by this
framework, is one such. Another such principle is sim-
plicity, which is nothing but the converse of obviously-
undesirable complexity. A third principle, extensibility,
arises out the tension between adequacy and simplicity
as follows. Naively, the most adequate language would
be one with every conceivable value, type, operation,
control construct in some way predefined. Equally na-
ively, the simplest language would have a correspond-
ingly simple formal definition, namely { }. Extensibility
therefore is the means by which the tension between
adequacy and simplicity can be managed: a small exten-
sible base language will be simple, yet by virtue of its
various extensions can achieve adequacy according to
specific instances of the primary and secondary criteria
above.

Example characterizations of programming languages
according to this framework are as follows.
¢ FORTRAN has primary adequacy to the application
domain of scientific computation, little adequacy to any
recognized programming methodology and some exten-
sibility at the operator/statement level (from subroutines
and functions). ‘

* C has primary adequacy to the systems programming
domain, support for “structured programming” (control
constructs) and, as well as FORTRAN-style extensibil-
ity, a useful macro preprocessor. _

¢ Functional languages [14] by contrast glory in pro-
viding little inbuilt support for specific domains. Rather,
they emphasise tertiary adequacy (general extensibility)
from which support for specific applications (e.g. in the
Haskell case from arithmetic to animation) can be syn-
thesized. Explicit support of a specific methodology is
increasingly popular (e.g. Haskell [5] emphasizes a func-
tional flavour of object-orientation), and research con-
tinues in how to synthesise such secondary adequacy by
extending a methodologically-neutral basis [6].

We acknowledge that primary application-domain-
specifics may impinge upon the secondary and tertiary
notions of adequacy.

2.3.2. Reengineering-specific adaptations. In the case
~ of reengineering, domain influences upon the above-
identified three levels of adequacy are as follows.

1. Primarily, GRA components SA, DS, OM and TM
all require concrete/abstract syntax specification capabil-
ity of reengineering platforms. Furthermore, with respect
to the further specifics of the reengineering domain, im-
perfectability, as manifested in particular by the user
control of the Transformation (TR) and Internal Censor-
ing (IC) components of the GRA, requires that the plat-
form support persistent storage of internal representa-~
tions of source code (AST and related structures). This
usc of “persistent” is in the specific sense of the potential
for arbitrary user-control of operations on and interac-
tion with data structures that results from their continued
existence after a program that processes them has termi-
nated. An example of such persistence would be the file
system component of an operating system - individual
programs process files, but by default the files “persist”™
after each program terminates. i

2. Methodologically, TR and TS require capability
for expressing source-source transformations on ASTSs.
Infrequency means that as the time/resource efficiency of
reengineering tools may not need to be as great as for
applications development tools, very-high-level lan-
guage technologies that emphasise expressiveness over
efficiency may be considered as bases for reengineering
platforms. Congruently, imperfectability as manifested
by the cycle from application-level components back to
Idiom Analysis (IA) suggests an overall view of reengi-
neering tool development as a kind of continuous evolu-
tionary prototyping, the very-high-level enabling tech-
nologies for which being compatible with the foregoing
expressiveness requirements.

3. GRA’s Target Lifting (TL) is a good example of
the universal need for extensibility, in this case of the
target language if possible. Further, the feedback loop
into reengineering tool development (starting at IA)
from reengineering tool application (IC, TR) is indica-
tive of increments that may need to be made in TS, OM
and TM so that e.g. as insights into the particular con-
version are discovered during reengineering too! use,
they can be incorporated into the automated capability.
For example, it may be necessary to develop a family of
reengineering tools for different dialects of one language
(e.g. proprietor variants), and in so doing it would be
desirable to express the variants relative to a common
basis. Ultimately however, the fact that the GRA is itself
a work in progress means that there is also a meta-level
feedback loop from the GRA process of reengineering
tool development into the design of reengineering plat-
forms. The consequent necessary adaptability of the plat-
form itself could well result from how it has been devel-

242

oped explicitly by an open extension process from a base
language.

2.3.3. Summary. These requirements can be grouped
under headings as follows. '
o Expressiveness — very-high-level programming lan- ..
guage, especially metalinguistic and transformationa}
capabilities.

e Persistence - storage permitting user interac.
tion/selection of operations on ASTs.

o Adaptability — incremental language transformation
and modeling capability, and an open implementation
architecture for the platform itself.

e Open-ness — in addition, recall that in addition to
adaptability we have embraced the further aspects of
heterogeneity, portability and accessibility.

3. Proprietary Reengineering Platform—
Software Refinery

Software Refinery [7] was arguably an industry stan-
dard software reengineering platform, with numerous
practical successes to its credit [8]. However, there are -
significant reasons for extensive review: g
a) while its level of fulfillment of the above criteria is
high, they are incompletely so, particular in respect of
open-ness; : u
b) as a proprietary technology, Software Refinery (and
its user base) is at the mercy of its developers (Reason-
ing Systems Inc.); in fact, they seem to have lost interest
in the technology (see http://www.reasoning.com) for
presumably commercial reasons.

In essence, Software Refinery consists of
e “Refine” programming language — Common LISP
front-end incorporating wide-spectrum VHLL elements
from logic, functional and OO paradigms;

e ‘“object base” — providing object-oriented storage
with persistence relative to LISP interactive sessions;

e “Dialect” — concrete/abstract syntax modeling;

o “Intervista” — GUI tool;

e all supported by interactive Common LISP develop-
ment/execution environment.

4. Bahasa in Summary

“Bahasa” names our attempt to provide for Java a set
of features meeting the reengineering platform require-
ments above. In detail, Bahasa was to recreate the essen-
tial functionality of Software Refinery in an open- -
technology, specifically Java-based, context, up to and
including the extended metaprogramming capabilities of -
our Dialect/LXWB. A comparison to Software Refinery .
is given later. Bahasa is conceptually developed as a

. sequence of preprocessors from Java incorporating suc-
. cessively constructs from Pizza, Refine and Dia-
- lect/LXWB.

"4.1. Java as basis for development

Java offers an accessible, modern language design
. that not only already satisfies many of our reengineering
platform design criteria but is moreover likely to inherit
from other developments. Java is already:
® Expressive - generally, in that it directly supports
object-orientation, and specifically for reengineering in
© 'that it supports metaprogramming (e.g. through the Java-
i CUP [12] compiler-compiler); _
. Persistent — in that e.g. CORBA-compliant adapters
S exist;
" ® Adaptable — if necessary, Java’s reflective capabili-
. ties could be used in developing extensions;
"._ ® Open—Javais at least portable/accessible.
: The combination of these desirable properties also in-
- creases the likelihood that separate Java development

. . efforts in parallel to ours will generate useful improve-

" - ments that can be applied in the reengineering domain,

- 4.2. Piza provides parameterised program-
ming

The validity of the foregoing hypothesis was almost

immediately proven when contemplating extensions to

Java to support higher-order functions and data types as
found in Software Refinery, when it was discovered that

* Pizza [13] went a long way to satisfying our require-

‘ments. Pizza is conceptually a Java preprocessor, ex-
tending Java to provide higher-order functions and data
types (aka generic data types) and algebraic type
specifications. Of these: higher-order/generic data types
are most essential since they are required for
. implementing the Bahasa standard library of
.. counterparts of Refine primitives. Higher-order
: " functions are arguably indispensable because of their
“contribution to adaptability/extensibility in general, in
particular because of their role in programming as
prototyping [14] since they directly contribute to
extensibility, and especially because of their
applicability to advanced parsing methods [9, 10].

4.3. Refine-style transformation specification

Pizza/Java now serves as a basis for packaging and
presenting additional constructs characteristic of Refine,
a useful selection of which is as follows.

* Generic data types: following Refine, Bahasa sup-
ports definition and processing of generic sets, and a
specialization thereof — sets of pairs or “maps” that can

243

be applied like functions. For example:

o “set <T>" is the type of a set of elements of type T

“{{X1, ..., Xn}}” defines a set by enumeration

“{{1.. 10}}" is a set of the integers from 1 to 10

“S1 union $2” unites sets

“filter (P, S)” filters from S elements that don’t sat-

isfy P

“map <T1, T2>" is the type of a set of pairs with

elements respectively of types T1 and T2

o “M (X)” gives the second element of a pair in M for
which X is the first element

o “compose (M1, M2)” composes the maps Mi

o “closure_under (M, S)” closes set S under map M
Implementation of all the above in Pizza is straight-

forward.

* Generic tree operations: also following Refine, Ba-

hasa predefines (higher-order) functions to package fa-

miliar operations and traversals of abstract syntax trees.

For example, given that certain fields of specific classes

can be restricted to maintaining a tree structure over the

related instances (via application of a new “tree” modi-
fier to their definitions):]

o “replace (X1,X2)” replaces the existing tree node X1
by X2 in situ

o “parent (X)” returns the parent node of X in its tree

 (if it exists, otherwise null)

o “descendants (X)” returns the set of all descendants
of X (i.e. closure of the immediate subtrees)

o “postorder_transform (X, F, B)” applies F to every
descendant of X following a post-order traversal; re-
application of F to subtrees after a node is trans-
formed is flagged by argument B (“preor-
der_transform” likewise).

Implementation of all the above in Pizza is likewise
straightforward.

0O 00O

o}

4.4. Dialect-style language modeli‘ng

Bahasa realises the essentials of Dialect’s language
specification style by following Refine’s exercise of the
class mechanism for AST definition and overloading
thereof for concrete syntax as well (see Introductory
Bahasa Example above, but also see later for how ncre-
mental syntax specifications are planned to be achieved),
In this summary, we first focus on the challenge of how
to achieve familiar concrete syntax functions with the
overloading.

* Nonterminal symbols: each distinct syntactic cate-
gory corresponds to a class,

® Alternate productions: altematives for a syntactic
category are expressed in terms of alternate subclasses

- for the corresponding class.

* Concatenation within productions: because syntactic
categories correspond to attribute types (via the class-

type correspondence), and because the types of attributes
are well-defined, the concrete syntax for an AST node
can be specified indirectly in terms of its attributes rather
than their types. The advantage of this approach (as in
Dialect) is that no additional notation is required to de-
rive concrete-abstract mappings.

o Lexical analysis: from the parser’s point of view,
terminal symbols are values from Bahasa primitive
types. A generic lexer-parser interface that mimics Soft-
ware Refinery’s is being developed.

Naturally, there are pathological cases where the
above genetal correspondences break down. Dialect’s
“local-nonterminal” and “semantics” constructs etc.
which provide for these exceptions are effected in Ba-
hasa by a combination of dummy classes and higher-
order functions.

In addition to enhanced classes as above, 2 Bahasa
“language model” also supports routine disambiguation
of operator precedence and associativity, identification
of start symbol, etc.

S. Introductory Bahasa Example

A standard demonstrator of the basic yet key compo-
nents of Software Refinery that support metaprogram-
ming, is the interactive calculator. Its Bahasa rendition is
as follows, where about Bahasa interrupt
the Bahasa source code as needed.

(Note ~ this presentation will be more immediately
accessible to readers with a background in Software Re-
finery; see also the succeeding section for an alternative
presentation summarising developments from Java.)

-

l Bahasa modules are packages as in Java
package csm.bahasa.ready_reckoner;

Limport predefined entities]
import net.sf.pizzacompiler.lang.*;
import net.sf.pizzacompiler.util.*;

. import csm.bahasa.*;

classes

the class of AST nodes for calculator expressions are a sub-
class of user_object, with any specific attributes to be pro-
vided by further subclasses

—

calc_ast = user_object { }

// type identifiers

types are represented in the AST, and each different type has a
different concrete syntax

type = calc_ast { }
real_type = type(}
integer_type = type{} ::=

1:= "real*;
"integer®;

// identifier references

identifiers are represented in the AST with a symbol-typed
attribute for their spelling; concrete syntax in each case is
determined by the spelling; NB following Dialect, in order
that the one specification define both concrete and abstract
syntax, concrele syntax RHSs refer to attributes rather than
attribute types (= nonterminal symbols)

identifier = calc_ast {
symbol spelling:;
spelling;

AST nodes for expressions have a single method/attribute — to
evaluate the expression; the evaluator also takes a symbol
table s (of type calc_ast->int mapping) and the default evalua-
tor returns 0; concrete syntax for expression derives from that
of each of its subclasses (as for types above)

expression = calc_ast {
public int evalExp (map<calc_ast,int> s) {
return 0;

}

identifier occurrences within expressions combine an evalua-
tion method with identifiers as above, but have the same basic
concrete syntax.

identifier_expr = expression {
identifier ident;
int evalExp (map<calc_ast,int> s) {
return s.get (ident);

-

}

:= ident;

integer constants have value and evaluator attributes, and the
concrele syntax of int(egers)

a language-model declaration extends a class declaration
with concrete syntax specifications
language_model Calc = {

L Jix operator precedence and associativity
precedence for expression
brackets *(* .. o)»
highest left associative **~, =*/n;
left associative "+*, "-v;

Lmiscellaneous lexical details

keywords case_sensitive
float may_replace "real";

[start symbol for grammar (Refine-style)]
file_classes calc_program

244

integer_constant = expression (
int intv;
int evalExp {map<calc_ast,int> s) {
return intv; i
} :

t:= intv;

}

(the subclass of) binary_expressions have a pair of subtrees as
attributes

binary_expression = expression {
expression argl, arg2;

}

add_expressions etc. are binary_expressions with an appro-
priate evaluator attribute and the usual concréte syntax

add_expression = binary_expression (
int evalExp (map<calc_ast,int> s) {
return argl.evalExp(s) + arg2.evalExp(s);

:= argl “+" arg2;

sub_expression = binary_expression {

int evalExp (map<calc_ast,int> g} {

' return argl.evalExp(s) - arg2.evalExp(s);
-* arg?;

mul_expression = binary_expression {

int evalExp (map<calc_ast,int> s) {
return argl.evalExp(s) * arg2.evalExp(s):

argl °** arg2;

;'-q;:lv_expression = binary_expression {
©int evalBxp (map<calc_ast,int> s) {
' return argl.evalExp(s) / arg2.evalExp(s);
o}
:3= axgl */* arg?;

/ statements

stituent expressions, surrounded by “(...)" and preceded by
keyword “print”

::= “print" "(" expressions +/ "," ")";

// declarations

declarations are a subclass of calc_ast, with any specific at-

tributes to be provided by further subclasses

declaration = calc_ast {}

identifier_declarations have anonymous attributes of the given
types “type” and “identifier”; references to these attributes

(e.g. in concrete syntax) can simply cite the type names

| statements update a symbol 1able (= calc_ast->int map);

I hence the evaluator for a statement yields a new symbol table;

| default is empty map; specific attributes and concrete syntax
. derive from subclasses

identifier_declaration = declaration {
type:;
identifier;

} ::= *var*® identifier *:" type;

// program

a calc_program has attributes for its name, sequence of decla-
rations, sequence of statements

tatement = calc_ast { .
map<calc_ast, int> eval (map<calc_ast,int> s)

return new map(};

1

calc_program = calc_ast {
identifier program_name;
seq <declaration> declarations;
seq < statement > statements;

the evaluator for a calc_program applies a local method
on its sequence of statements (below} to an initially empty
symbol table

1 an assignment statement updates a symbol table by mapping
its lhs attribute to the value of its exp, and the usual concrete
§ syntax

ssignment_statement = statement {
identifier lhs;
‘expression exp;

the new map is s but “with” an additional identifier (lhs),
value (exp) pair

~map<calc_ast,int> eval (map<calc_ast,int> s)(
map<calc_ast,int> t =

s.with{new tuple2(lhs,exp.evalExp{s)));
return t;

)
t:= lhs ":=" exp;

& print_statement has a sequence of expressions as altribute,
--as well as an evaluator; the evaluator evaluates and prints the
\value of each expression and yields the symbol table un-
. changed

i, print_statement = statement {
.7 ' seq <expression> expressions;

map<calc_ast,int> eval (map<calc_ast,int> s){
for {
seg<expression> e = expressions;
te.isEmpty({);
e = e.tail()
Y {
System.out.printin(e.head{).evalExp(s));
}
return s;
. |
}

the essence of print_statement concrete syntax is the comma-
separated sequence of the concrete syntax of 1 or more con-

void eval () { .
map<calc_ast, int> state = new map();
evalStmts(statements, state):;

1

the local method exists to iterate evaluation over a
calc_program’s statement sequence

static void evalStmts (
seg<statement> stmts,
map<calc_ast, int>
) {
if (!stmts.isEmpty()) {
map<calc_ast,int> t=
stmts.head() .eval(s};
evalStmts (stmts.tail({), t):
}
}

} €

the essence of program concrete syntax is 0 or more ;-
separated declarations followed by 0 or more *;'-separated
statements, with the usual keywords; if 0 declara-
tions/statements occur, the corresponding attribute values
are the empty sequence.

:+= *program* [program_name}
declarations */ *;*
“begin”
statements */ *;*
lend-;

} //end Calc

6. Implementing Bahasa

While most of Bahasa is directly inherited from its
Java/Pizza ancestors, innovations inspired by Re-

3
£
&
i

fine/Dialect/LXWB have to be accommodated. Some of
these accommodations interact with Java/Pizza.

6.1. Overall architecture

The translation from Bahasa ultimately down to Java
can be thought of as an instance of the GRA, additional
complexity deriving from the multiple levels and the
multiple technologies that coexist at some levels.

1. Metaprogramming originates from Bahasa, but with
two targets: Java-oriented compiler-compiler “Java-
CUP” to handle concrete syntax specifications; and an
intermediate “Bahasa-minus” for the remainder of Ba-
hasa.]

2. Persistence can be implemented by next intercept-
ing references to persistent classes and objects in the
outputs of the above and translating them into IDL;
however the current prototype uses “native™ Pizza/Java
objects and classes (i.e. standardised e.g. CORBA-
compliant persistence is yet to be implemented).

3. Refine-inspired extensions beyond Pizza are trans-
lated (from Bahasa-minus) into Pizza.

4. Parameterised programming features provided with
Pizza are handled by the Pizza-Java preprocessor.

5. Java forms the target that reconciles outputs from
several of the above: Java-CUP from 1., IDL/Java com-
bination from 2., Pizza-Java preprocessor from 4. Need-
less to say, great care has to be taken to ensure that the
various to-Java translations are consistent, but no objec-
tive obstacle to this has as yet arisen.

6.2. Bootstrapping from Refine

In ‘writing the preprocessors written by us and our
colleagues we naturally are using Software Refinery as
the best transition tool available. (This in the absence of
Bahasa, but NB deferral of 2. means that its preferred
implementation platform will be the non-persistent pro-
totype implementation of Bahasa.)

Following usual bootstrapping practice, we write a
Refine-Bahasa translator (in Refine — see more details
below) and apply that translator to itself to produce Re-
fine-Bahasa (in Bahasa). At present, Refine-Bahasa still
requires a Reconciliation process, but once that is
avoided further development of Bahasa (e.g. implement-
ing persistence) could then be implemented in Bahasa.

The current implementation will be found at

http://www.itee.uq.edu.au/~csmweb/

6.3. Refine-Bahasa

This is a straightforward exercise in translator-
writing, with a minor optimization opportunity exploited
in that whereas Dialect constructs translate into Bahasa,

246

simple Refine constructs can and do translate directly
into Bahasa-minus. A practical test of Refine-Bahasa
was made in the generation of a COBOL design recov-
ery tool. A language model for COBOL in Java was suc-
cessfully generated from a Software Refinery language
model for COBOL. The Java-based version was made
operational with a minimum of Reconciliation.

6.4. Persistence

Early versions of the prototype involved a generator for
CORBA IDL definitions, anticipating connection to ap-
propriate persistent object stores. However, as men-
tioned above, this aspect of the platform has not been
formalized or completed. This is discussed further in our
comparison with Software Refinery below.

7. Comparison with other work

Other platforms, notably including Software Refinery
and ASF+SDF, satisfy identified reengineering platform
criteria, however we know of no effort explicitly to ad- -
dress all the criteria, nor moreover any effort focused
specifically on a Java-based multiparadigmatic platform,

7.1. Software Refinery

7.1.1. Expressiveness. Software Refinery programmers -
are limited to a single wide-spectrum compromise be-
tween different paradigms. This is not to say that the -
existing compromise cannot be improved upon, nor that -
wide-spectrum languages have no place, but rather thata
more robust solution to the expressiveness challenge
would be to support heterogeneous interworking of dif- .
ferent language technologies, each of which may give :
optimal support to different paradigms that may different
roles in reengineering tool development. For example, a *,
logic language may be a better basis for TS than the lan- -
guage used for OM and TM. Bahasa's complex of very- -
high-level and metaprogramming capabilities derived ;
from Java, Pizza, Java-CUP and the projected standard- -
ized object store interface is evidently competitive with
the reference point of Software Refinery, and even with- ..
out the Refine patterns and transforms that are yet to be -
incorporated into Bahasa (and which have not seen the
greatest of use in our experience). By way of compensa- -,
tion, Bahasa’s high degree of faithfulness to the rest of
Software Refinery means that incorporation of our Dia- .
lect/LXWB extensions into Bahasa is obviously feasible, :
and in our opinion would be of greater practical benefit. -

7.1.2. Persistence. The persistence of Software Refin-
ery’s “object base” in which ASTs etc are stored is lim

_-jted to individual LISP interactive sessions, unless the
s entire contents are explicitly saved. Saving object base
."contents is quite coarse-grained — individual objects may
;.not be selected for saving in this manner. Moreover, the
“prospect of multiple users at least inspecting (perhaps
pot transforming) an AST is inconceivable from the
‘Software Refinery point of view. A genuine, e.g.
CORBA-compliant persistent store [11] would obviate
these problems.
< As acknowledged, persistence is yet to be imple-
“mented in Bahasa. This involves prescribing representa-
tions for Bahasa entities on disk or in memory to enable
standardisation. However, several paths to standardisa-
‘tion are perfectly compatible with our Java basis and
extensions (besides CORBA/IDL, there are XML op-
tions perhaps more worthy of consideration {20]). Mov-
ing persistence out of the closed environment of Soft-
ware Refinery is not without potential drawbacks, e.g.
“the loss of uniformity of interactions in reengineering
tool development and application, but against this must
be offset the standard advantages of open systems: het-
“erogeneity, portability etc.

: 7.1.3. Adaptability. The self-implementation of Soft-
“'ware Refinery does achieve overall effects similar to an
"open implementation architecture. Organic changes to
-the platform (e.g. adding function-valued functions to
Refine) can be achieved with the same ease with which
reengineering tools can be developed.

‘Software Refinery offers however limited support for

"incremental language modeling in that structures for
! abstract syntax types may be synthesized using inheri-
"tance, but complementary facilities for incremental con-
crete syntax definition are inflexible. While syntax de-
_fined in one grammar may be reused in another, syntax
- can only be redefined at the level of granularity of a non-
' terminal. Concrete and abstract syntax must be located
¢ separately. We have accordingly developed a variant to
Software Refinery’s Dialect component — the “Language
. eXtension WorkBench” [9, 10]. Dialect/LXWB reme-
dies the above infelicities respectively as follows: syntax
may be redefined at the level of granularity of a single
. production, and concrete and abstract syntax may be
:defined together in a single “language model” construct.
. Moreover, LXWB provides additional alternatives for
.. parser generation, including modutar, general, recursive
descent parsers. ’

Software Refinery’s self-implementation within a
closed interactive environment advantageously extends
the tool development-application continuum established

" for persistence to include platform development as well.
. The Bahasa open implementation architecture seems to
achieve at least comparable ultimate control over the
platform’s design and according implementation, if not

247

as “comfortably” then certainly more “openly” than
Software Refinery, again with all that implies for hetero-
geneity, portability etc.

7.1.4. Open-ness. Software Refinery drawbacks in
adaptability and heterogeneity have been highlighted
above. Further, not only does the platform run on a lim-
ited range of systems, but also applications require a
proprietary run-time environment. Combined with com-
mercial pricing, the result is severely to limit portability
and accessibility. Adaptability aside, the remaining open
systems benefits are all actually or potentially available
in Bahasa to very significantly greater extents compared
to Software Refinery: .

e Heterogeneity will only be tested once CORBA-
compliant persistence is implemented; however

o Portability and Accessibility are assured by using
Java as development basis (and eventually a standard
such as CORBA for persistence), and by self-
implementation.

7.2. ASF+SDF

ASF+SDF [18] is a mature metalanguage featuring
many-sorted logic and concrete syntax based transforma-
tions, which satisfies the reengineering platform criteria
except for inadequacies pertaining to expressiveness.

7.2.1. Expressiveness. ASF+SDF has a fully featured
metalanguage for defining algebraic terms and associ-
ated concrete syntax, with integrated lexical syntax defi-
nition and mechanisms for ambiguous languages.
ASF+SDF provides for “equations” to be used in a de-

" clarative style to define evaluations or transformations

on terms. Equations are defined via the concrete syntax
of terms and admit pattern matching in the style of
Scheme’s metavariables [15]. ASF+SDF’s current im-
plementations support interpretation as well as compila-
tion to C. However, as observed by Moreau et al [19},
ASF+SDF is itself still a single-paradigm (rule-based)
language which itself lacks features that would normally
be provided by conventional imperative languages such
as input/output or user-interface implementations, let
alone the object-oriented domain modeling found in Ba-
hasa as well as Software Refinery. This is compensated
somewhat by ASF+SDF’s integration with the
“ToolBus” (sce below) and the ability to compile to na-
tive C code. ASF+SDF’s developers clearly express the.
need for increased expressiveness even within the trans-
formational paradigm in the form of e.g. support for tra-
versal functions and graphs within the language, as well

- as support for debugging and error messages [18]. On

the other hand, both Bahasa and Software Refinery are
already wide-spectrum languages by design.

7.2.2. Persistence. While persistence is not completely
and explicitly provided for by ASF+SDF, it is certainly
enabled via the ToolBus interface and ATerm support
(see “Openness” below). Note though that the ToolBus
itself is not a persistent store. The ATerm interface could
be employed to implement persistence.

7.2.3. Adaptability. ASF+SDF has incremental lan-
guage modeling abilities, and has been substantially
bootstrapped, so provides all the features necessary for
adaptability.

7.2.4. Open-ness. Heterogeneity is enabled via the
“ToolBus” architecture [16] which provides a mecha-
nism for interconnecting tools with widely different con-
trol and data mechanisms. Further, the ATerm protocol
[17] used by ASF+SDF-generated tools provides a
coarse-grained, standard mechanism for storing terms
optimized both for human-readability (text) or space and
speed efficiency (binary). Adaptors for ATerms exist for
Cand Java,

8. Conclusions

While several important details need to be resolved,
the prospect of recreating proprietary reengineering plat-
form functionality in an open, Java-based context seems
substantially achievable. The strength of our approach
derives as much from its grounding in a detailed domain
analysis (i.e. of the reengineering process) as it does in
its embrace of the “open” approach, including especially
Open-ness to parallel developments, Thus, even allowing
for the possibility of infelicities in the detailed engineer-
ing of Bahasa, its merits may still be accessed.

9. Acknowledgements

We gratefully acknowledge the contributions to the
development of Bahasa made by current and former col-
leagues, especially Paul Bumim, Ven-Yu Chong, Dan
Johnston and Eric Salzman. Our use of Software Refin-
ery was sponsored by the DSTO Australia,

10. References

{1} www.sei.comu.edw/str/descriptions/cots. htral/

[2] Weide, B.W,, Heym, W.D. and Hollingsworth, J.E.,
Reverse Engineering of Legacy Code is Intractable, OSu-
CISRC~10/94-TR55, Ohio State University, Columbus, Ohio
1994, :

[3]1 Bailes, P.A,, Atkinson, S., Chapman, M., Johnson, D.

248 -

and Peake, 1., “Towards an Open Software Conversion Archj.
tecture”, International Journal of Sofiware Engineering ang
Knowledge Engineering, 1995, pp. 423-444,

[41 McKeeman, WM, “Programming Language De-
sign”, in Bauer, F.L. and Eickel, 1. (ed.), Compiler Constrye.
fion - An Advanced Course, Springer, Berlin, 1976, pp. 514.
524, .

[5] www.haskell.ore

[6] Bailes, P.A., “The Programmer as Language Designer
(Towards a Unified Theory of Programming and Language .
Design)”, Proc. 1986 Australian Software Engineering Con-

Jerence, Canberra, 1986, pp.14-18,.

[7] Reasoning Systems, Refine User's Guide, Palo Alto,
1992,

[81 Newcomb, P. and Markosian, L., “Automating the
Modularisation of Large COBOL Programs: Application of
an Enabling Technology for Reengineering”, Proc. Working
Conference on Reverse Engineering, 1EEE, 1993, pp. 222. -
230.

[9] Peake, 1. and Salzman, E.J., “Support for modular pars- .
ing in software reengineering”, Proc. Conf. Software Technol-
ogy and Engineering Practice '97, London, 1997, pp. 58-66.

[10] Peake, 1., “Enabling meta-level support for language
design and implementation through modular parsers”, PhD
Thesis, The University of Queensland, 2002,

[11} Soley, RM. (ed), Object Management Architecture
Guide, Object Management Group, 1992, :

[12] www.cs.grinceton.edu/~ngge!/modcm/iavaiCUP.l‘

[13} Odersky, M. and Wadler, P., “Pizza into Java: Translat-
ing Theory into Practice”, Proc. POPL 97, ACM, 1997, pp.
132-145.

{14] Hughes, J., “Why Functional Programming Matters”,
Comput. J., vol. 32, no. 2, 1989, pp. 98-107.

{15} Kelsey, R. et al. (ed), “Revised report on the algorithmic '_ o
language Scheme (1 998)”, 4 Cﬁ‘l SIGPLAN Notices, 1998. o

{16] Bergstra, J.A. and P. Klint, P. “The discrete fime K

ToolBus ~ a software coordination architecture.” Sci. Comput.

Prog., vol. 31, no. 2.3, 1998, pp. 205-229.

{17] van den Brand, M.G.J., de Jong, HA,, Klint, P. and .
Olivier, P.A., “Efficient Annotated Terms”, Sofiware Practice B
& Experience, vol. 30, no. 3, 2000, pp. 259—291. o

[18] Van Den Brand, M.G.J., Heering, J., Klint, P. and Ofiv-
ier, P.A,, “Compiling language definitions: the ASF+SDF -
compiler”, ACM TOPLAS vol. 24, no. 4, pp. 334-368, 2002

{19] P. Moreau and C. Ringeissen and M. Vittek, “A patiern-
matching compiler”, Workshop on Language Descriptions,
Tools and Applications (LDTA , Electronic Notes in Theoreti-
cal Computer Science, vol. 422 (2001) ’

[20] http:i/www.pupro.de/GX1/

