
Refinement of Higher-Order Logic Programs

Robert Colvin1, Ian Hayes2, David Hemer1, and Paul Strooper2

1 Software Verification Research Centre
{robert,hemer}@itee.uq.edu.au

2 School of Information Technology and Electrical Engineering
University of Queensland, Brisbane, Australia, 4072

{ianh,pstroop}@itee.uq.edu.au

Abstract. A refinement calculus provides a method for transforming specifica-
tions to executable code, maintaining the correctness of the code with respect to its
specification. In this paper we extend the refinement calculus for logic programs
to include higher-order programming capabilities in specifications and programs,
such as procedures as terms and lambda abstraction. We use a higher-order type
and term system to describe programs, and provide a semantics for the higher-order
language and refinement. The calculus is illustrated by refinement examples.

1 Introduction

The logic programming refinement calculus [5] provides a method for systematically
deriving logic programs from formal specifications. It is based on: a wide-spectrum
language [12] that can express both specifications and executable programs; a refinement
relation that models the notion of correct implementation; and a collection of refinement
laws providing the means to refine specifications to code in a stepwise fashion.

The wide-spectrum language includes assumptions and specification constructs, as
well as a subset that corresponds to Horn clauses (code). The refinement relation is
defined so that an implementation must produce the same set of solutions as the specifi-
cation it refines, but it need do so only when the assumptions hold. There are refinement
laws for manipulating assumptions and specifications, and for introducing code con-
structs. The decision of which refinement law to apply at each step is determined by the
developer. The calculus could be used as the basis for a program synthesis system [3] that
would allow the developer or refiner to obtain some degree of automation, depending
on the problem and the synthesis scheme chosen.

In this paper we extend the refinement calculus for logic programs so that variables
may range over procedures, i.e., procedures become terms in our language. We can then
make procedure calls on variables that represent procedures, and pass procedures as
parameters. We may also construct procedures anonymously (lambda abstraction). We
achieve this by embedding the specification language in a type system developed by
Nadathur and Miller [10] for λProlog [9]. The semantics of the language and refinement
are then extended to include typed variables, and procedures become special types of
functions in the term language.

The paper is structured as follows. In Sect. 2 we give an overview of the type and
term system presented in [10]. In Sect. 3 we extend the type system with the type Cmd

M. Leuschel (Ed.): LOPSTR 2002, LNCS 2664, pp. 126–143, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Queensland eSpace

https://core.ac.uk/display/15025311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Refinement of Higher-Order Logic Programs 127

representing programs, and present our wide-spectrum language. We also give the intu-
ition behind the refinement relation (the notion of implementation), and some example
programs. In Sect. 4 we present some examples of refining higher-order procedures. In
Sections 5 - 8 we present the semantics of refinement and our higher-order wide-spectrum
language. In Sect. 9 we discuss problems with allowing equality on procedure-valued
terms in the context of refinement and higher-order logic programing.

2 Type System

In this section we present a general introduction to the type system described by Nadathur
and Miller [10] for λProlog. In Sect. 3 we discuss how the type system is used to
represent commands in our wide-spectrum language. The system is based on Church’s
Simple Theory of Types. It includes base types as well as functional types, and allows
abstraction and application as terms.

2.1 Types

We use the following definitions.

Name Represents Examples
S base types Z, B
C type constructors list/1, set/1,→ /2

Types all allowed types Z, list(Z), Z → B

The set S includes all the base types, such as integers (Z) and booleans (B). The set
C is the set of all type constructors, that is, functors which take types as arguments and
return a type. For example, list is a constructor which takes a type, e.g., Z, and returns
a type representing a list of elements of Z. Typically we only need to be concerned
with the set Types. This includes every base type and every possible application of the
type constructors. In particular, it includes every possible function from a type to a type,
for instance Z → list(Z), and list(Z) → list(list(Z → Z)) → B. The function type
constructor ‘→’ associates to the right.

We assume a set of variables, Var, which have an associated type, and a set of
constants (including functions) of given types. There is at least one variable and constant
of each type.

We assume a base type Pred, representing first-order predicates. The operators for
the type Pred include conjunction, disjunction, etc., and the existential and universal
quantifiers. We assume a rich set of mathematical operators, including equality and
arithmetic operators, is available in our predicate language. The semantics of predicates
is discussed in more detail in Sect. 5.2.

2.2 Terms

We define a term in this language as follows.

1. a constant or variable of type σ is a term of type σ.

128 Robert Colvin et al.

2. (λ X: σ • E), where X is a variable of type σ and E is a term of type τ , is a term of
type σ → τ .

3. F(E), where F is a term of type σ → τ and E is a term of type σ, is a term of type
τ .

Thus a term can be a variable or a constant, a lambda abstraction, or an application.
For example, given the integers as constants of type Z, the (constant) empty list of
integers []

Z
, and the constructor [. | .]

Z
for lists of integers, we can write terms such

as [1 | [2 | []
Z
]
Z
]
Z
. In the rest of the paper we drop the subscript on the list constants

and use the usual list notation for lists of any type, though in practice there are different
constructors for each distinct list type. Note that badly typed function applications are
not terms.

3 Wide-Spectrum Language

In our wide-spectrum language we can write both specifications as well as executable
programs. This has the benefit of allowing stepwise refinement within a single notational
framework. To make the use of higher-order constructs easier, we have embedded our
language in the type system described in Sect. 2. We introduce a new base type, Cmd,
representing all possible commands that may be constructed in our language.We describe
the basic constructors of the language in the next section, then discuss how procedures
are treated in the framework, allowing reasoning about higher-order constructs. Our base
language is similar to that presented in [5], except that in the new type system, quantified
variables and parameters to procedures must be typed.

3.1 Basic Constructs

A summary of the basic constructs of the language is shown in Fig. 1.

Cmd Type Example
{ } Pred → Cmd assumption {X �= 0}
〈 〉 Pred → Cmd specification 〈Y = 2 ∗ X〉
∨ Cmd → Cmd → Cmd disjunction S ∨ T
∧ Cmd → Cmd → Cmd parallel conj. S ∧ T
, Cmd → Cmd → Cmd sequential conj. S, T

∃σ (σ → Cmd) → Cmd existential quant. (∃ X: Z • S)
∀σ (σ → Cmd) → Cmd universal quant. (∀ X: Z • S)

Fig. 1. Summary of wide-spectrum language

Specifications and Assumptions. A specification 〈P〉, where P is a predicate, represents
a set of instantiations of the free variables of the program that satisfy P. For example,
the specification 〈X = 5 ∨ X = 6〉 represents the set of instantiations {5, 6} for X.

An assumption {A}, where A is a predicate, allows us to state formally what a program
fragment assumes about the context in which it is used. For example, some programs
may require that an integer parameter be non-zero, expressed as {X �= 0}.

Refinement of Higher-Order Logic Programs 129

Program Operators. The disjunction of two programs (S ∨ T) computes the union of the
results of the two programs. There are two forms of conjunction: a parallel version (S ∧
T), where S and T are evaluated independently and the intersection of their respective
results is formed on completion; and a sequential form (S, T), where S is evaluated
before T . In the sequential case, T may assume the context established by S.

Quantifiers. For brevity, the existential quantifier (∃σ(λ X: σ • S)) will be written in
the usual way, i.e., (∃ X: σ • S). It generalises disjunction, computing the union of the
results of S for all possible values of X of type σ. Similarly, the universal quantifier
(∀ X: σ • S) computes the intersection of the results of S for all possible values of X of
type σ. Note that there are an infinite number of quantifiers, as there is an ∃σ and ∀σ for
each type σ.

The following Cmd is an example of a program that can be constructed in our
language.

{X, Z ∈ Z ∧ X �= 0}, 〈Y = Z div X〉
The program assumes that the variables X and Z are bound to integers, and that X is
non-zero, then establishes the relation that Y is the whole number division of Z by X.

3.2 Procedures

A procedure in the wide-spectrum language is a function whose result type is Cmd, and
whose argument types are not of type Cmd or Pred (i.e., the constructors in Fig. 1 are
not procedures). In addition, a procedure must be a closed term, that is, contain no free
variables.

A summary of some relevant procedure-related constructs is given in Fig. 2. We
discuss each below, and describe the method we use for procedure definition.

Syntax Type
pc(T) or P(T) procedure call Cmd

(λ V : list(Z) • S) non-recursive proc. list(Z) → Cmd
µ P • (λ V : Z • ...P(X)...) recursive proc. Z → Cmd

id =̂ proc procedure definition

Fig. 2. Procedure-based constructs

Procedure Call. A procedure call is the application of a procedure to parameters, and
is a term of type Cmd. Note that we allow application of procedure variables; i.e., if P
is a procedure variable, P(T) is a Cmd (variables are disallowed as functors in some
versions of Prolog).

Non-recursive Procedures. A non-recursive procedure is a term of the form (λ X: σ • S),
where S is a wide-spectrum program and X is a parameter to the procedure of type σ (a
procedure may have multiple parameters, expressed in the usual way).

130 Robert Colvin et al.

Recursive Procedures. We use the least fix-point operator µ to define the meaning of a
recursive procedure. We use the following notation:

µ P • (λ X: σ • C(P))

The body of the procedure, C, encodes zero or more recursive calls to P.

Procedure Definition. A procedure definition has the form p =̂ proc, where p is some
name and proc is a procedure. For example, we may define a procedure double that
doubles an integer:

double =̂ (λ N : Z, N ′: Z • {N ∈ Z}, 〈N ′ = N ∗ 2〉)
Note that the syntax for a procedure definition (=̂) just introduces a shorthand for the
procedure itself; the names of the procedures are not semantic entities in our system.
The type of double is Z → (Z → Cmd).

We do not allow terms representing commands to appear inside predicates. This does
not remove the ability to do any of the things we would normally like in our higher-
order programming language – it is our wide-spectrum programming language that we
are making higher-order, not the predicate language (allowing higher-order predicates,
that is, predicate variables to range over predicates, is different from allowing predicate
variables to range over commands). Allowing the wide-spectrum language constructs to
appear inside predicates would unnecessarily complicate the predicate language and its
semantics.

3.3 Refinement

To model the notion of implementation, we define the refinement operator, ‘�’. We say
a program S refines to a program T , written S � T , if T terminates more often that S
(w.r.t. its assumptions), and if T preserves the same effect on its free variables. A formal
definition of refinement is presented in Sect. 7.

We present a number of derived refinement laws below. Each law represents a re-
finement (synthesis/transformation) that may be made. Where a law is divided into two
parts divided by a horizontal line, the part above the line is the proof obligation that must
be satisfied for the refinement below the line to be applied.

Law 1 Equivalent specifications

P ≡ Q
〈P〉 � 〈Q〉

We can refine a specification by transforming its predicate under logical equivalence.

Law 2 Weaken assumption

A � B
{A} � {B}

We may weaken an assumption by transforming its predicate under implication.

Refinement of Higher-Order Logic Programs 131

Law 3 List case analysis

{L ∈ list(σ)}, S
� {L ∈ list(σ)}, ((〈L = []〉 ∧ S) ∨

(∃ H: σ, T : list(σ) • 〈L = [H | T]〉 ∧ S))

A program S which has an associated assumption that variable L is a list may be split
into the cases where L is empty and non-empty. This law has no proof obligations.

Law 4 Recursion introduction
Where (σ, ≺) is a well founded set,

∀ X: σ • (∀ Y : σ • {Y ≺ X}, pc(Y) � id(Y)
) ⇒ pc(X) � C(id)

pc � (µ id • (λ X: σ • C(id)))

This law is similar to the one presented and proved in [5], and follows from the principle
of well-founded induction.

In order to apply Law 4, we must prove that the predicate above the line holds. This
is done by showing that pc(X) � C(id), assuming that

(∀ Y : σ • {Y ≺ X}, pc(Y) � id(Y)) (1)

We call (1) the inductive hypothesis. It permits refinements to recursive calls as long
as the parameter Y is less than X according to some well-founded relation ≺ on σ,
ensuring that the recursion will terminate. The program C(id) is just some program that
may involve calls on the procedure id. Note that if pc =̂ (λ X: σ • S) then pc(X) is
equivalent to the procedure’s body, S.

The law is used in the following steps:

1. Focus on the body of pc, S.
2. Refine S, possibly using the inductive hypothesis to introduce a call to id.
3. Call this refined program C(id).
4. Then, the proof obligation for the law has been proved (by instantiating C), and

the original non-recursive procedure pc has been refined to the recursive procedure
(µ id • (λ X: σ • C(id))).

The second step will in general be complex, involving user direction as with most pro-
gram derivations. The other steps in the process are trivial, including the construction of
the inductive hypothesis, which is determined by the syntactic form of the specification.

3.4 Example Specification and Implementation

Consider the following specification of the standard higher-order procedure map, that
applies a procedure P to all the elements in a list L, returning the list L′.

Definition 1 Map

map =̂ λ P: σ → τ → Cmd, L: list(σ), L′: list(τ) •
{L ∈ list(σ)},
〈#L = #L′〉 ∧ (∀ i: 1..#L • P(L(i), L′(i)))

132 Robert Colvin et al.

Note the assumption that L is a list. The type of L is given by its type declaration in the
parameter list, but to guarantee that L is instantiated (i.e., not unbound) the assumption
must be included. This allows us to implement the procedure using recursion. For the
well-founded ordering we use < on the length of the list parameter L. The assumption
{L ∈ list(σ)} ensures L is bound; without the assumption, L could be unbound, and the
recursion would not terminate.

We briefly outline the refinement of map below. We wish to refine it to a recursive
procedure, and therefore use Law 4. Thus we must discharge the proof obligation, which
involves refining the body of map assuming the following inductive hypothesis. We use
m as the name of the recursive call.

(∀ T : list(σ), T ′: list(σ), P: σ → τ → Cmd •
{#T < #L},

{T ∈ list(σ)},

〈#T = #T ′〉 ∧ (∀ i: 1..#T • P(T(i), T ′(i)))
� m(P, T , T ′))

(2)

First we refine the body of map (Definition 1) by splitting into the cases where L is
empty and non-empty (Law 3) and simplifying.

{L ∈ list(σ)},
〈L = [] ∧ L′ = []〉 ∨
(∃ H: σ, H ′: τ, T : list(σ), T ′: list(τ) •

〈L = [H | T] ∧ L′ = [H ′ | T ′]〉,
〈#T = #T ′〉 ∧ (∀ i: 1..#L • P(L(i), L′(i))))

Now we split the universal quantification over i in the range 1..#L into the cases where
i = 1 and i is in the range 2..#L. We note that L(1) = H and L′(1) = H ′, and that
indexing L in the range 2..#L is equivalent to indexing its tail T in the range 1..#T (and
similarly for L′ and T ′). We also add some assumptions about T , which we do by noting
that L ∈ list(σ) and L = [H | T].

{L ∈ list(σ)},
〈L = [] ∧ L′ = []〉 ∨
(∃ H: σ, H ′: τ, T : list(σ), T ′: list(τ) •

〈L = [H | T] ∧ L′ = [H ′ | T ′]〉,
P(H, H ′) ∧
{#T < #L},
{T ∈ list(σ)},
〈#T = #T ′〉 ∧ (∀ i: 1..#T • P(T(i), T ′(i))))

Note that the bottom three lines match the left side of the inductive hypothesis (2), and
therefore we can use it to introduce a call to m.

{L ∈ list(σ)},
〈L = [] ∧ L′ = []〉 ∨
(∃ H: σ, H ′: τ, T : list(σ), T ′: list(τ) •

〈L = [H | T] ∧ L′ = [H ′ | T ′]〉,
P(H, H ′) ∧ m(P, T , T ′)

Refinement of Higher-Order Logic Programs 133

The above refinement steps comprise the proof obligation for Law 4, and thus we may
refine the original procedure map to:

µ m • λ P: σ → τ → Cmd, L: list(σ), L′: list(τ) •
〈L = [] ∧ L′ = []〉 ∨
(∃ H: σ, H ′: τ, T : list(σ), T ′: list(τ) •

〈L = [H | T] ∧ L′ = [H ′ | T ′]〉,
P(H, H ′) ∧ m(P, T , T ′))

Now that we have an implementation for map, we want to be able to refine programs
like

{X ∈ list(Z)}, 〈#X = #X ′〉 ∧ (∀ i: 1..#X • double(X(i), X ′(i)))

to map(double, X, X ′). This refinement is trivial by folding, i.e., pattern matching with
the specification of map (though in general, higher-order matching is non-trivial [2]).

More generally, we have the following refinement law.

Law 5 Parameter application. Given pc =̂ (λ X: σ • S) then

S[Y
X] � pc(Y)

4 Higher-Order Refinement

In this section we provide a more complex example, in which we use some general alge-
braic properties to match a specification with a recursive procedure definition. Consider
a procedure foldR, where a call foldR(P, Base)(L, Result) applies procedure P, repre-
senting a binary operator, right-associatively to the list L, starting with base element Base
(typically the identity of the binary operator represented by P), producing the answer
Result. For example, assuming plus implements binary addition, i.e.,

plus =̂ (λ X, Y , Z: Z • {X, Y ∈ Z}, 〈Z = X + Y〉)

foldR(plus, 0)([1, 2, 3], X) would bind X to 6 (the result of 1+(2+(3+0))).
As a second example, given the definition

snoc =̂ (λ A: σ, B: list(σ), C: list(σ) • 〈C = B � [A]〉)

a list may be reversed (inefficiently) using foldR:

reverse(R, R′) � foldR(snoc, [])(R, R′)

or more succinctly,

reverse � foldR(snoc, [])

This may be transformed to a more efficient version using a similar higher-order proce-
dure foldL, that captures left-associativity, as shown in [14].

134 Robert Colvin et al.

We define foldR as a procedure that takes a procedure and a base value and returns
a recursive procedure.

foldR =̂ (λ P: σ → τ → τ → Cmd, Base: τ •
(µ fr •

(λ L: list(σ), Result: τ •
{L ∈ list(σ)},
(〈L = [] ∧ Result = Base〉 ∨
(∃ H: σ, T : list(σ) • 〈L = [H | T]〉,

(∃ R: τ • fr(T , R) ∧ P(H, R, Result)))))))

We prove a general theorem for using foldR to implement relations that satisfy certain
properties.

Theorem 1.
Given constants Q: list(σ) → τ → Pred, B: τ , and P: σ → τ → τ → Pred, that
satisfy:

Q([], B) (3)

Q([H | T], N) ⇔ (∃ R: τ • Q(T , R) ∧ P(H, R, N)) (4)

and a procedure op that implements P, i.e.,

op =̂ (λ H: σ, R: τ, N : τ • 〈P(H, R, N)〉) (5)

then the following refinement holds:

(λ L: list(σ), N : τ • {L ∈ list(σ)}, 〈Q(L, R)〉) � foldR(op, B)

Note that right-associativity is encoded into properties (3) and (4). In the summation
example above, Q is the relation between a list of numbers and its sum, B is 0, and P is
binary addition. In the reverse example, Q is the reverse relation between lists, B is [],
and P is the predicate

(λ A: σ, B: list(σ), C: list(σ) • C = B � [A])

which is implemented by the procedure snoc.
Proof. We use Law 4, and therefore assume the following inductive hypothesis.

(∀ T : list(σ), N ′: τ • {#T < #L}, {T ∈ list(σ)}, 〈Q(T , N ′)〉 � fr(T , N ′)) (6)

We begin the refinement of the body of the procedure on the left-hand side of the
refinement.

{L ∈ list(σ)}, 〈Q(L, N)〉
� case analysis on L using Law 3 and simplifying Q([], N) using (3)

{L ∈ list(σ)},
(〈L = []〉 ∧ 〈N = B〉 ∨
(∃ H: σ, T : list(σ) • 〈L = [H | T]〉 ∧ 〈Q(L, N)〉))

� focus on second disjunct

Refinement of Higher-Order Logic Programs 135

1 • (∃ H: σ, T : list(σ) • 〈L = [H | T]〉 ∧ 〈Q(L, N)〉)
� expand Q using (4)

(∃ H: σ, T : list(σ) • 〈L = [H | T]〉 ∧
〈(∃ R: τ • Q(T , R) ∧ P(H, R, N))〉)

� Lift quantification and conjunction
(∃ H: σ, T : list(σ) • 〈L = [H | T]〉 ∧

(∃ R: τ • 〈Q(T , R)〉 ∧ 〈P(H, R, N)〉))
� implement using op from (5)

(∃ H: σ, T : list(σ) • 〈L = [H | T]〉,
(∃ R: τ • 〈Q(T , R)〉 ∧ op(H, R, N)))

� include assumptions about T (from L ∈ list(σ) and L = [H | T])
(∃ H: σ, T : list(σ) • 〈L = [H | T]〉,

(∃ R: τ • ({#T < #L}, {T ∈ list(σ)}, 〈Q(T , R)〉)
∧ op(H, R, N)))

� introduce recursive call from (6)
(∃ H: σ, T : list(σ) • 〈L = [H | T]〉,

(∃ R: τ • fr(T , R) ∧ op(H, R, N)))

The above refinement steps complete the proof obligation for Law 4, resulting in the
procedure:

(µ fr • λ L: list(σ), N : τ •
{L ∈ list(σ)},
(〈L = []〉 ∧ 〈N = B〉 ∨
(∃ H: σ, T : list(σ) • 〈L = [H | T]〉,

(∃ R: τ • fr(T , R) ∧ op(H, R, N)))))

This is equivalent to foldR(op, B). �

To apply this theorem to the summation example we need the definitional properties
of sum corresponding to (3) and (4) respectively:

sum([], 0)
sum([H | T], N) ⇔ (∃ R: Z • sum(T , R) ∧ N = H + R)

and a procedure that implements binary addition

plus =̂ (λ X, Y , Z: Z • {X ∈ Z ∧ Y ∈ Z}, 〈Z = X + Y〉)
With Q, B and P as sum, 0 and binary addition respectively, we can apply Theorem 1 to
deduce

(λ L: list(Z), N : Z • {L ∈ list(Z)}, 〈sum(L, R)〉) � foldR(plus, 0)

For the example above op(H, R, N) represented a binary function from H and R to
N . Now we consider an example where op represents a relation where there may be more
than one value of N for a given pair of values for H and R. The permutation relation on
lists may be formulated to correspond with the properties (3) and (4).

permutation([], [])
permutation([H | T], P) ⇔

(∃ R: list(σ) • permutation(T , R) ∧ interleave(H, R, P))

136 Robert Colvin et al.

where

interleave(H, R, P) ⇔
(∃ F, B: list(σ) • R = F � B ∧ P = F � [H] � B)

Given some implementation interleaveOp of interleave, we can apply Theorem 1 to
deduce

(λ L: list(σ), P: list(σ) • {L ∈ list(σ)}, 〈permutation(L, P)〉)
� foldR(interleaveOp, [])

and hence for appropriately typed L and P,

{L ∈ list(σ)}, 〈permutation(L, P)〉 � foldR(interleaveOp, [])(L, P)

5 Semantics

In this section we ascribe a meaning to terms of type Cmd, and define formally the
refinement relation. The semantics we use are a modified version of earlier work [5,4].
We begin our formal treatment of the semantics by defining the domains over which our
semantics of programs are given. We present an abridged version, which we modify to
cope with changes for higher-order features. The main changes occur at the lowest level,
where we define the set of values in our universe, and the evaluation of a term. Once
these changes are in place, the semantics for the language constructs and refinement are
similar to the semantics described in [5].

5.1 Variables and Values

For each type σ (from Sect. 2.1) we assume an associated set of values Valσ . We assume
that no value is a member of two different value sets, i.e.,

(∀σ, τ : Types • σ �= τ ⇒ Valσ ∩ Valτ = {})

We define Val as the union of all sets Valσ .

Val =
⋃{σ: Types • Valσ}

Similarly we assume a unique set of variables Varσ for each type σ, and define Var
as the union of these sets.

5.2 Bindings, States and Predicates

A binding is a total function that maps every variable to a value of the correct type.

Bnd == {b: Var → Val | (∀σ: Types • (∀ V : Varσ • b(V) ∈ Valσ))}
Each binding corresponds to a single ground answer to a Prolog-like query. The mech-
anism for representing “unbound” variables is described below.

Refinement of Higher-Order Logic Programs 137

A state is a set of bindings:

State == P Bnd

A state corresponds to our usual notion of a predicate with some free variables, which
is true or false once provided with a binding for those variables, i.e., for a binding in the
state. Given a predicate P, we write pred P to denote the set of bindings satisfying P. A
completely unbound variable of type σ is represented by a (possibly infinite) state that
has one binding to each element of Valσ .

5.3 Term Evaluation

A term has a value relative to some binding. For a term T and binding b,

1. if T is a variable V , eval b T is simply the value for V in b, i.e., b(V);
2. if T is a function application F(X), eval b T is the evaluation of F applied to the

evaluation of X , i.e., (eval b F)(eval b X);
3. if T is a function (λ X: σ • e) where e is of type τ , eval b T is a function from

elements of Valσ to elements of Valτ , defined as follows.

(λ V : Valσ • eval (b ⊕ {X �→ V}) e)

The binding b ⊕ {X �→ V} is the binding that maps all variables as b maps them,
but with X mapped to V . In general the function f ⊕ g, where f and g are functions,
behaves as g for all elements in the domain of g, and as f for elements in the domain
of f that are not in the domain of g.

6 Program Execution

In this section we model programs as functions from state to state. The notation {X: T |
P • E} describes the set of values of the expression E, for each X of type T for which
predicate P holds (when P is true we may omit it, i.e., {X: T • E}). The notation
{X: T | P} filters the elements of T to leave only those that satisfy P.

6.1 Executions

We define the semantics of our language in terms of executions, which are mappings
from initial states to final states. The mapping is partial because the program is only well-
defined for those initial states that guarantee satisfaction of all the program’s assumptions.
Executions satisfy three healthiness properties, which restrict executions to model pure
logic programs.

Exec == {e: State �→ State |
dom e = P{b: Bnd | {b} ∈ dom e} ∧ (7)

(∀ s: dom e • e(s) ⊆ s) ∧ (8)

(∀ s: dom e • e(s) = {b: s | e({b}) = {b}})} (9)

138 Robert Colvin et al.

The notation ‘ �→’ denotes a partial function. An execution, e, maps a state, s (a set
of bindings or possible answers), to a new state, e(s). Because execution of a command
always constrains the set of possible answers, e(s) must be a subset of s (property (8)).
For a pure logic program, the new state can be constructed by considering whether each
binding b in s is kept or not (property (9)); note that because of property (8), e({b}) is
either {b} or {}. For a pure logic program, the domain of execution e can be determined
by considering for each binding b whether or not {b} is in the domain of e. The states in
the domain of e are then all possible subsets of the set of all such bindings (property (7)).
The healthiness properties are discussed in more detail in [5].

6.2 Semantic Function for Commands

We define the semantics of the commands in our language via a function that takes a
command and returns the corresponding execution.

exec: Cmd → Exec

The semantics of the basic commands (excluding recursion, which is treated in Section 8)
is shown in Figure 3. In the remainder of this section, we explain the definitions. In [4],
we show that all executions constructed using the definitions satisfy the healthiness
properties of executions.

exec(〈P〉) = (λ s: State • s ∩ P)
exec({A}) = (λ s: P A • s)
exec(c1 ∨ c2) = exec c1 ·∪ exec c2

exec(c1 ∧ c2) = exec c1 ·∩ exec c2

exec(c1 , c2) = exec c1 o
9 exec c2

exec(∃ V : σ • c) = existsσV(exec c)
exec(∀ V : σ • c) = forallσV(exec c)

Fig. 3. Execution semantics of basic commands

Specifications and Assumptions. The result of executing specification 〈P〉 consists of
those bindings in s that satisfy P.

An assumption {A} is defined for all states s such that A holds for all bindings in
s; the result of executing assumption {A} has no effect (the set of bindings remains
unchanged).

Propositional Operators. Disjunction and parallel conjunction are defined as point-wise
union and intersection of the corresponding executions. We present the definitions as Z
axiomatic definitions [16]; the signatures are given above the line, and the definitions in
the form of predicates are given below the line.

Refinement of Higher-Order Logic Programs 139

·∩ : Exec × Exec → Exec
·∪ : Exec × Exec → Exec

(e1 ·∩ e2) = (λ s: dom e1 ∩ dom e2 • (e1 s) ∩ (e2 s))
(e1 ·∪ e2) = (λ s: dom e1 ∩ dom e2 • (e1 s) ∪ (e2 s))

For a conjunction (c1 ∧ c2), if a state s is mapped to s′ by exec c1 and s is mapped to s′′

by exec c2, then exec(c1 ∧ c2) maps s to s′ ∩ s′′. Disjunction is similar, but gives the
union of the resulting states instead of intersection.

Sequential conjunction (c1 ,c2) is defined as function composition of the correspond-
ing executions.

Quantifiers. For a type σ, variable V , and a state s, we define the state ‘unbindσ V s’
as one whose bindings match those of s in every place except V , which is mapped to all
values of type σ.

unbindσ: Varσ → State → State

unbindσ V s = {b: s; x: Valσ • b ⊕ {V �→ x}}
Execution of an existentially quantified command (∃ V : σ • c) from an initial state

s is defined if executing c is defined in the state s′, which is the same as s except that V
is unbound. Since executions either keep or discard individual bindings (property (8)),
the execution of (∃ V : σ • c) keeps a binding b if there exists some value x such that b,
with V mapped to x, would be kept by the execution of c. A binding b is kept, therefore,
if e({b ⊕ {V �→ x}}) �= ∅), where e is the execution of c. We thus make the following
definition of the existential quantifier for executions.

existsσ: Varσ → Exec → Exec

existsσ V e = (λ s: State | unbindσ V s ∈ dom e
• {b: s | (∃ x: Valσ • e({b ⊕ {V �→ x}}) �= ∅)})

Universal quantification behaves in a similar fashion, except that to retain a binding b,
execution of e must retain b ⊕ {V �→ x} for all values x of type σ.

forallσ: Varσ → Exec → Exec

forallσ V e = (λ s: State | unbindσ V s ∈ dom e
• {b: s | (∀ x: Valσ • e({b ⊕ {V �→ x}}) �= ∅)})

7 Refinement

An execution e1 is refined by an execution e2 if and only if e2 is defined wherever e1 is
and they agree on their outputs whenever both are defined. This is the usual “definedness”
order on partial functions, as used, for example, by Manna [7]: it is simply defined by
the subset relation of functions viewed as sets of pairs, i.e.,

e1 �Exec e2 ⇔ e1 ⊆ e2

140 Robert Colvin et al.

Thus, if (s1, s2) is in e1, then it must also be in e2. Since both e1 and e2 are functions,
there can be no other state associated with initial state s1. This ensures that the set of
answers is preserved by refinement, when the assumptions associated with e1 hold. For
some state s′ �∈ dom e1, (s′, s′′) may be in e2 for any s′′; in this case, the assumptions
for e1 do not hold (in s′), and thus e2 may choose any answer (as long as the properties
for executions are maintained).

Refinement is a pre-order — a reflexive and transitive relation — because subset
is a pre-order on sets. Refinement for commands is defined in terms of refinement of
executions.

c1 � c2 ⇔ exec(c1) �Exec exec(c2)

Refinement equivalence (��) is defined for Cmd and Exec as refinement in both
directions.

8 Recursion

In this section we discuss the semantics of recursion. The treatment is different to our
earlier approaches, as we do not have a separate environment that maps procedure names
to procedures, because this may now be represented as part of the state. In addition, the
move to higher-order programs means that some programs we can construct are not
continuous, and thus to construct the fix point of a recursive procedure we need to go
past the first infinite ordinal.

Consider the following function which takes as its argument a procedure and returns
a procedure.

Ctx =̂ (λ P: σ → Cmd • (λ X: σ • C(P)))

C(P) is some Cmd in our language involving calls the procedure P.
We define abortσ to be the least defined procedure in our language, i.e., it always

aborts for any input of type σ.

abortσ =̂ (λ X: σ • {false})

Now, as all contexts definable in our language are montonic [4], the least fix-point
µ Ctx of Ctx exists [1], and furthermore, there exists an ordinal γ such that

µ .Ctx = Ctxγ(abortσ)

Given the definition of Ctx above, we write µ .Ctx as

µ P • (λ X: σ • C(P))

9 Procedures and Equality

While a logic programming language can provide a primitive equality relation for terms
composed from basic types, extending equality to procedures is problematic. Many ver-
sions of Prolog represent procedures as terms, but implement equality as syntactic equal-
ity on the terms. However two syntactically different procedures may be semantically

Refinement of Higher-Order Logic Programs 141

equivalent, and hence such an implementation does not reflect the desired semantics.
Unfortunately determining whether two syntactically different procedures are semanti-
cally equivalent is an undecidable problem, and hence equality cannot be implemented
on procedures.

One special case that avoids this problem is an equality of the form P = proc, where
the variable P is unbound. P can be bound to proc and no comparison of procedures is
required. However, such an equality is still problematic in the context of the refinement
calculus, because if proc is refined by proc′, one would like to be able to replace proc
by proc′ in any context. However proc′ is not equivalent to proc, it is a refinement.

This issue also complicates the notion of monotonicity of the language when proce-
dure equality is included. For instance, the program

P = proc ∧ P = proc (10)

should refine to just P = proc. However, if we have proc � proc′ and proc � proc′′

for some proc′ and proc′′ which do not refine each other, the following is also a valid
refinement.

P = proc′ ∧ P = proc′′ (11)

The two bindings for P are both semantically and syntactically different, and thus the
program should fail – yet a program that fails would not typically be regarded as a valid
refinement of (10).

The problems with such a construct prompted us to disallow the use of procedure
equality. The only mechanism we allow to bind a procedure value to a variable is via
parameter passing. In this case the formal parameter variable is guaranteed to be unbound,
and gets bound once at the time the procedure is called.

Note that a procedure passed as a parameter can be replaced by a refinement. For
example, a call of the form q(proc, X), where proc is a procedure parameter, can be
replaced by q(proc′, X) if proc � proc′. This is guaranteed by the monotonicity under
refinement of our language.

By disallowing procedure equality, we limit the programs we can describe. We cannot
have a procedure that accepts an unbound procedure variable as an input and on com-
pletion binds the variable to some procedure. For example we cannot write a procedure
that succeeds and binds P to test if its other parameter satisfies test.

testBind =̂ (λ P: σ → Cmd, X: σ • {X ∈ σ}, test(X) ∧ P = test)

However, we may still achieve the same effect on non-procedure variables without
the procedure equality command. For instance, for a program C(P, Y) containing calls to
procedure variable P and references to some set of non-procedure variables Y (possibly
containing X), a program

testBind(P, X), C(P, Y)

may be rewritten as

test(X), C(test, Y)

In both cases the bindings for the variables in Y will be the same, but the latter program
does not constrain P in any way.

142 Robert Colvin et al.

10 Conclusions

In this paper we have presented a semantics for refinement of higher-order logic pro-
grams. We have used Nadathur and Miller’s semantics for higher-order logic programs
[10] for the basis of our semantics. They describe an implementation of the semantics,
involving hereditary Harrop formulas, in the logic programming language λProlog [9].
The calculus we describe here would be suitable for developing programs for higher-
order languages such as λProlog and Mercury [15].

In general, higher-order programming is more developed in the functional program-
ming community. Some examples of development of functional programs include a
refinement calculus for nondeterministic expressions [17] and development of extended
ML programs [13]. Lacey, Richardson, and Smaill [6] use higher-order techniques to
synthesise both first- and higher-order logic programs. They develop an automatic syn-
thesiser in λClam, which is a proof system written in λProlog. They adopt a proof-
planning approach to the problem. The refinement calculus approach we take is similar
to Morgan’s approach for imperative programs [8], though he does not explicitly men-
tion higher-order programming. Naumann [11] uses a predicate transformer semantics
to give a semantics for a higher-order imperative programming language, including a
procedure binding construct.

In this paper we have extended earlier work [5] by including a type system in our
wide-spectrum language. The semantics of dealing with procedures has also been sim-
plified, by eliminating the need for a mapping from procedure identifiers to procedures
(an environment). We presented some examples of using higher-order features in re-
finement, and discussed some of the problems associated with a mechanism for binding
a procedure to a variable in a logic program development framework. We have distin-
guished higher-order programming, where variables may take the value of procedures,
from meta-programming, where variables may take the value of any command in our
language, e.g., a procedure call rather than a procedure itself. Meta-programming by
this definition is not dealt with in this paper – this is an avenue for future work.

References

1. B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 1990.

2. Oege de Moor and Ganesh Sittampalam. Higher-order matching for program transformation.
Theoretical Computer Science, 269(1–2):135–162, 2001.

3. Y. Deville and K.-K. Lau. Logic program synthesis. Journal of Logic Programming,
19,20:321–350, 1994. Special Issue: Ten Years of Logic Programming.

4. I. Hayes, R. Nickson, P. Strooper, and R. Colvin. A declarative semantics for logic program
refinement. Technical Report 00-30, Software Verification Research Centre, The University
of Queensland, 2000.

5. I. J. Hayes, R. Colvin, D. Hemer, R. Nickson, and P. A. Strooper. A refinement calculus
for logic programs. Theory and Practice of Logic Programming, 2(4–5):425–460, July–
September 2002.

6. David Lacey, Julian Richardson, and Alan Smaill. Logic program synthesis in a higher-order
setting. In John W. Lloyd et al., editor, Computational Logic 2000, volume 1861 of LNAI,
pages 87–100. Springer-Verlag, 2000.

Refinement of Higher-Order Logic Programs 143

7. Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.
8. Carroll Morgan. Programming from Specifications. Prentice Hall, second edition, 1994.
9. G. Nadathur and D. Miller. An overview of Lambda-PROLOG. In Kenneth A. Bowen

and Robert A. Kowalski, editors, Fifth International Logic Programming Conference, pages
810–827. MIT Press, 1988.

10. G. Nadathur and D. Miller. Higher-order logic programming. In Dov M. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of Logics for Artificial Intelligence and Logic
Programming, volume 5, chapter 8, pages 499–590. Clarendon Press, Oxford, 1998.

11. D. A. Naumann. Predicate transformer semantics of a higher order imperative language with
record subtyping. Science of Computer Programming, 41(1):1–51, September 2001.

12. H. A. Partsch. Specification and Transformation of Programs. Springer-Verlag, 1990.
13. D. Sannella. Formal program development in Extended ML for the working programmer.

In Proc. 3rd BCS/FACS Workshop on Refinement, Springer Workshops in Computing, pages
99–130. Springer, 1990.

14. S. Seres and M. Spivey. Higher-order transformation of logic programs. In K.-K. Lau,
editor, Proceedings of the Tenth International Workshop on Logic-based Program Synthesis
and Transformation (LOPSTR 2000), volume 2042 of LNCS, pages 57–68. Springer-Verlag,
2000.

15. Z. Somogyi, F.J. Henderson, and T.C. Conway. Mercury, an efficient purely declarative logic
programming language. In R. Kotagiri, editor, Proceedings of the Eighteenth Australasian
Computer Science Conference, pages 499–512, Glenelg, South Australia, 1995. Australian
Computer Science Communications.

16. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second edition, 1992.
17. Nigel Ward. A Refinement Calculus for Nondeterministic Expressions. PhD thesis, Depart-

ment of Computer Science, University of Queensland, 1994.

	1 Introduction
	2 Type System
	2.1 Types
	2.2 Terms

	3 Wide-Spectrum Language
	3.1 Basic Constructs
	3.2 Procedures
	3.3 Refinement
	3.4 Example Specification and Implementation

	4 Higher-Order Refinement
	5 Semantics
	5.1 Variables and Values
	5.2 Bindings, States and Predicates
	5.3 Term Evaluation

	6 Program Execution
	6.1 Executions
	6.2 Semantic Function for Commands

	7 Refinement
	8 Recursion
	9 Procedures and Equality
	10 Conclusions
	References

