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Abstract: The tyre force components acting at the tyre road 
interface of an off-highway mining truck are estimated using 
an Extended Kalman filter (EKF). The EKF combines an 11 
dof dynamic model of the truck with inertial sensor 
measurements from the truck sprung and un-sprung bodies. 
The tyre force estimates have been compared with the actual 
tyre forces from an advanced virtual truck model. 
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1 Introduction  
This paper describes a method for estimating tyre 
forces on off-highway mining dump trucks. We deal 
specifically with the sensor requirements. 

Off-highway mining dump trucks are large, rigid 
frame trucks used in open pit mining operations to 
transport oar and waste material from the mined 
surface to the crusher and dump areas, see Martin et al. 
(1981). These trucks have typical payloads greater than 
150 tonnes. The combination of high payloads, surface 
irregularities, and driver actions generate dynamic 
forces at the tyre/road interface that are, typically, two 
to three times static loads (Prem 1998). High forces in 
conjunction with relative slip between the road and the 
tyre lead to high rates of tyre wear.  

This work is part of a project to develop an on-line 
truck tyre wear monitor. The monitor aims to detect 
regions of high tyre wear by estimating the forces and 
slip at the tyre/road surface. The first phase of the 
project is to estimate the tyre forces.  

This paper describes the application of the extended 
Kalman filter to estimate tyre forces by combining 
inertial sensor measurements from the truck's body 
with a model of the truck dynamics in the presence of 
model and measurement uncertainty. The estimates 
require no knowledge of tyre or suspension parameters. 
The approach builds on that described in Ray (1995) 
and Ray (1997) by including the estimation of vertical 
components of tyre forces and overcoming the need for 
difficult-to-make velocity measurements. 
 

 
Figure 1. A large off-highway mining truck 

 
2 The Extended Kalman Filter 
The continuous-discrete Extended Kalman filter (EKF) 
estimates the state of continuous, non-linear, stochastic, 
dynamic systems with discrete measurements described 
by 
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where ( ), , tf x u  and ( ), , kh x u  are non-linear 
functions of the state, x , the input vector, u  and time. 
Note Eqn. (2.1) continuous; Eqn. (2.2) is discrete. The 
variables w  and v, are assumed to be generated by 
zero mean, Gaussian processes with covariances Q  
and R  respectively; w is commonly termed the 
process noise and v the measurement noise.  

The computational scheme of the EKF involves 
five steps Gelb (1974): 
1. State estimate propagation 
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2. Error covariance propagation 
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3. Calculation of the Kalman gain 
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4. State estimate update



 

 

Figure 2. The estimation model
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5. Error covariance update 
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The superscripts - and + indicate before and after a 
measurement has been made and the terms ∆f and 
∆h are the Jacobians  
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The Kalman filter produces an optimal updated state 
estimate, ˆ k

+x , that minimises the state error covariance, 

P . 
To ensure the state estimates are convergent, two 

conditions must be met, see Rief et al (1999):  
(i) The system must be observable. This  condition 
ensures that the covariance of the state estimation error 
will always decrease when measurements are made 
(new information is added to the system) . 
(ii) The system must be controllable. This condition 
ensures that the Kalman filter gain matrix influences all 
the states.  

The system we are dealing with here is non-linear 
making it difficult to establish these conditions in a 
strict technical sense. We use a relaxed condition, 
requiring only local controllability and observability, 
justified by the underlying dynamic equations being 
smooth (free of singularities) in the range of expected 
operation. Conditions for observability and 
controllability are realized when the observability and 
controllability Gramians of the linearized systems 
about an operating point are full rank. 
 
3 The estimation model  
The estimation model is based on a simplified 3D truck 
shown in Figure 2. The sprung mass is assumed a rigid 
body. The front suspension is independent and the rear 
uses a suspended rigid axle with a panhard rod 
providing the lateral location. The torque is delivered 
to the rear axle via a drive shaft and is then distributed 
to the rear wheels through a differential located inside 
the axle. The front wheels are steerable by an angle, 
δ . Braking is applied through a braking torques, B , 
at each wheel. The subscripts, fl , fr , rl  and rr  
indicate the front left, front right, rear left and rear right 
wheels respectively. The tyre forces to be estimated are 
the lateral, xF , the vertical, yF , and the 

longitudinal, zF , at each tyre. Gravity is given by g . 
The rigid-body dynamics are the defined by Eqns. 

(3.1), (3.2) and (3.3). These are the translational 
longitudinal and lateral modes and rotational yaw 
mode respectively. The truck is assumed to yaw about 
an axis perpendicular to the road plane passing through 
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the truck's centre of gravity. The total mass of the truck 
is given by tM , and the total yaw inertia is yI . The 
equations are defined with respect to an axis system 
located at the truck’s center of mass. 
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The sprung mass dynamics are the bounce, pitch, and 
roll of the truck body described by Eqns. (3.4), (3.5) and 
(3.6). The mass of the truck body is bM  and the body 

inertias bxI  and bzI . The forces in the suspension struts 
are given by S. The perpendicular distance from the tyre 
road contact to center of mass is given by h . 
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The unsprung mass dynamics are defined in Eqns. 
(3.7) to (3.10). These are the front wheel and rear axle 
bounce modes and the rear axle pitch mode. The front 
suspension of the truck is independent with the front 
wheels only able to translate normal to the road plane. The 
rear axle can both pitch and bounce. Pitching is assumed 
to occur about the axle’s center of mass. 
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Each wheel's rotational dynamics are defined in Eqns. 
(3.11) to (3.14), where the I ’s are the rotational inertias 
of the wheels and the r ’s the rolling radii. The four 
wheels commonly found on the rear axle of an actual 

mining truck have been simplified into one wheel on each 
side of the axle. Rolling resistance is neglected. 
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Inspection of the 3D model’s equations of motion 
reveal that there is insufficient information to individually 
observe each lateral tyre force. The additional information 
needed either includes relating the lateral acceleration of 
each tyre to the lateral forces via an effective tyre mass, or 
by relating the lateral displacement of the each tyre at the 
road contact to lateral force via the lateral tyre 
displacement stiffness. Neither of these options are 
feasible as they require measurements to be made directly 
from the truck’s tyres. An observable system can only be 
obtained for one combined front lateral force and one 
combined rear lateral force. 

Further inspection of the equations also reveals that, 
there is no benefit in including the sprung-body bounce, 
roll and pitch dynamics into the estimation model. 
Removal of these equations relives the need of knowing 
the roll and pitch axis heights. 

In a state space model, forces are generally regarded as 
inputs. However, here the forces must be included as 
states such that they can be estimated. This is achieved by 
using an adaptation of state augmentation (Gelb, 1974) 
where the tyre forces are regarded as correlated noise 
inputs. The tyre force correlation is modelled in a shaping 
filter driven by a white noise process, Eqn (3.15), which is 
augmented to the state vector. 
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The dynamic behaviour of the shaping filter is 
dependent on the magnitude of the driving noise, p . For 
large values of driving noise variance the forces will be 
fast to respond but will be sensitive to noise sources. For 
smaller driving noise variances there is less noise 
attenuation but response time is slower.  

The state vector of the estimation model takes the form 
 

[ ] T
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where [ ]F  is a vector containing the ten tyre forces and 
their derivatives. 



The inputs, u , to the system are the steering angle, 
braking and driving torque, the strut forces and the 
longitudinal and lateral forces transmitted to the rear axle 
through the panhard rod. The driving torque and strut 
forces can be taken from existing OEM on-board truck 
monitoring systems. The steering angle can be measured 
as a displacement on the steering rack or an angular 
displacement on the driver’s steering wheel. Braking 
torque can be measured from the pressure in the hydraulic 
brake lines. The force transmitted through the panhard rod 
can be measured with a strain gauge. The strut and 
panhard rod forces are included as inputs rather than 
measurements to prevent the need for additional states in 
the state vector. 
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The measurement vector that insures all the states are 
observable includes the lateral and longitudinal 
accelerations, the yaw rate, the wheel speeds, the front 
wheel and rear axle vertical acceleration and the rear axle 
angular acceleration. The rear axle angular acceleration 
can be made using two accelerometers, one at each end of 
the axle, measuring rlwy&&  and rrwy&&  respectively. 
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The system is locally controllable when the yaw rate 
and wheel velocity states are all assigned non-zero process 
noise variances and the augmented tyre force derivatives 
are all driven by white noise. 
 
4 A virtual haul truck 
To test the tyre force estimator, a comprehensive virtual 
model of a mining truck, has been developed, see Figure 
3. The model has been built using the dynamic modelling 
package, ADAMS. It is a representation of a 150 tonne 
mechanical drive truck, with the similar dimensions, 
masses and suspension and tyre stiffnesses. In order to 
accurately represent a real haul truck the truck model 
includes non-linear suspension and tyre characteristics 
based on the physical measurements given in French 
(1994). The suspension uses all the moving parts seen on a 
real truck. Nonlinear stiffness and damping curves are 
incorporated into the suspension, stiction is included by 
incorporating dynamic friction into the translational joints 
of the struts and bumps stops are represented by high 
increases in stiffness at the limits of strut travel. The tyres 
are modelled using an advanced tyre model, which 
incorporates a comprehensive slip analysis to determine 
tyre forces and moments. The properties of the virtual 
truck are listed in table 1. 
 

Table 1.Virtual truck model parameters 
Parameter Value 

tM  244500 kg 

yI  1904000 kgm2 

flwM , frwM  2650 kg 

axleM  15800 kg 

axleI  65250 kgm2 

flwr , frwr  1.453 m 

fl  3.969m 

rl  2.28 m 

lf , rf  2.2 m 

lr , rr  2.15 m 

ta  2.15 m 

sa  0.83 m 

 
The Virtual truck is simulated to perform generic truck 

manoeuvres. During these simulations measurement and 
input data is exported for use in the EKF. Tyre force data 
is also recorded from the tyre model to compare with the 
estimates.  

 
Figure 3: Virtual Haul Truck 

 
5 Simulations 
Measurement and input data is exported form the virtual 
truck at 50 Hz. The measurements are corrupted with 
noise according to table 2. The EKF is initialised with the 
truck at rest, with all the initial states set to zero except for 
the vertical tyre forces which are set at static values. The 
initial covariance matrix is assigned the identity matrix. 
The driving noise variances on the tyre force derivatives 
are typically set to values 2 to 3 times the maximum tyre 
force rate of change experienced during the manoeuvre. 
The EKF has been coded in MATLAB. 
 

Table 2. Typical sensor noise variances 
Sensor Noise Variance 
Acceleration 0.0025 (m/s2)2 
Rate 0.0001 (rad/s)2 
Wheel speed 0.0025 (rad/s)2 

 

Figure 4 plots estimates and the true values of the 
vertical and lateral tyre forces for a generic coast-down 
manoeuvre. A coast-down is typically performed to slow a 
truck as it approaches the dumping area. The virtual truck 
is initially travelling at 50 km/h, at 40 seconds the drive 
torque is cut and a 10 degree steering angle is introduced. 
With the introduction of the steering angle lateral tyre 
forces are developed. They peak with lateral acceleration 
and then reduce as the truck slows. During the turn the 
truck rolls, increasing the vertical forces on the left and 
decreasing them on the right.  



 

Figure 4. Tyre force estimates during a coast-down 
 

The front and rear vertical tyre force estimates track well 
during the manoeuvre. However, the consequences of an 
estimated combined lateral forces is evident in the lateral 
force plots of Figure 4. As the truck rolls, the reduction in 
vertical force on the left tyres causes the tyre/road friction 
threshold to be met. Lateral force is transferred from the 
left to the right tyre where the higher vertical force 
enables higher lateral forces. The lateral force estimated 
will only observe the combined effects of actual left and 
right lateral forces.  
 Figure 5 plots the front tyre force estimates for a 
straight line braking manoeuvre. Here the truck is initially 
travelling at 50 km/h at 51 seconds braking torques are 
applied to the front and rear wheels. The braking torques 
are reacted by longitudinal forces which slow the truck to 
3 km/h in approximately 5 seconds. As the truck de-
accelerates it pitches forward increasing the front vertical 
tyre forces and decreasing those at the rear.  
 

The large bias in the front longitudinal tyre force 
estimates can be mostly contributed to large changes in 
tyre wheel radius during the braking manoeuvre (there 
will also be some contribution from neglecting rolling 
resistance). As the truck brakes it pitches forward, 
increasing the vertical force and reducing the effective 
rolling radius of the tyre. If the radius of the wheel 
reduces the longitudinal tyre force must increase to 
compensate and keep the balance of the overall torque at 
the wheel centre. The deficiency in the implemented 
estimation model is it assumes a constant static tyre 
radius.  
 
6 Conclusions 

This paper shows that it is feasible to estimate the 
forces that act at the tyre road contact. The required sensor 
set includes lateral and longitudinal acceleration and yaw 
rate measured on the truck body. The vertical 
accelerations and wheel speeds of each wheel. The system 
inputs include the steering angle, driving and braking 
torques, suspension strut forces and the force in the rear 

axle panhard rod. The estimator requires no knowledge of 
tyre parameters. 

Lateral tyre forces cannot be estimated individually, 
using the proposed model, without additional acceleration 
or displacement measurements made on the tyres. 
Assuming it is un-feasible to make these measurements 
only the combined front and rear lateral forces can be 
estimated.   

In the simulations the force estimates tracked well, 
however, there was evidence that un-modelled truck 
dynamics contributed to estimate errors. In further work, a 
sensitivity analyses is required to quantify the effect of 
estimation model uncertainties on the force estimates. 
These uncertainties may include the variance in the rolling 
radius of tyres, the truck’s payload mass and inertias and 
the position of the centre of mass with respect to sensor 
position.  

Figure 5. Tyre force estimates during braking 
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