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ABSTRACT

Time-course experiments with microarrays are often used to study dynamic biological systems and genetic
regulatory networks (GRNs) that model how genes influence each other in cell-level development of organisms.
The inference for GRNs provides important insights into the fundamental biological processes such as growth and
is useful in disease diagnosis and genomic drug design. Due to the experimental design, multilevel data hierarchies
are often present in time-course gene expression data. Most existing methods, however, ignore the dependency of
the expression measurements over time and the correlation among gene expression profiles. Such independence
assumptions violate regulatory interactions and can result in overlooking certain important subject effects and
lead to spurious inference for regulatory networks or mechanisms. In this paper, a multilevel mixed-effects model
is adopted to incorporate data hierarchies in the analysis of time-course data, where temporal and subject effects
are both assumed to be random. The method starts with the clustering of genes by fitting the mixture model
within the multilevel random-effects model framework using the expectation-maximization (EM) algorithm. The
network of regulatory interactions is then determined by searching for regulatory control elements (activators
and inhibitors) shared by the clusters of co-expressed genes, based on a time-lagged correlation coefficients
measurement. The method is applied to two real time-course datasets from the budding yeast (Saccharomyces
cerevisiae) genome. It is shown that the proposed method provides clusters of cell-cycle regulated genes that are
supported by existing gene function annotations, and hence enables inference on regulatory interactions for the
genetic network.

Keywords: EM algorithm, Mixture models, Multilevel mixed-effects model, Genetic regulatory networks, Time-
course data

1. INTRODUCTION

In recent times, there has been an explosion in the development of comprehensive, high-throughput methods
for molecular biology experimentation. The advent in DNA microarray technologies, such as complementary
DNA (cDNA) arrays and oligonucleotide arrays, provides means for measuring tens of thousands of genes si-
multaneously under different conditions. The complete description of the human genome and those of other
organisms has been a major achievement of modern science. Microarray technologies promise to revolutionize
our approaches in biomedical research and further our understanding of biological processes and the evaluations
of gene expression patterns, regulation, and interactions.1 The study of the dynamics of gene interactions is
amongst the latest research directions in the post-genomic era in biology. It is well-known that the informa-
tion encoded in DNA leads to the expression of certain phenotypes, or characteristics, in the organism.2 The
determination of genetic regulatory networks (GRNs) provides useful information on how genes influence each
other in cell-level development of organisms. It can therefore provide important insights for the fundamental
biological processes such as growth and is useful in disease diagnosis and genomic drug design.2, 3 Time-course
experiments with microarrays are used to measure gene expressions at several points in time as a serial study.
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For example, Cho et al.4 published a 17-point time series data set measuring the expression levels of 6,220 dif-
ferent genes from the budding yeast (Saccaromyces cerevisiae) genome. These temporal profiles of expression
levels reflect genes interactions in pathways. The inference from these time-course gene expression data thus
allows researchers to explore genes interactions from a causal perspective. This inference procedure is referred
to as “reverse engineering”, which attempts to determine the cause (the network of genes interactions) from the
outcome (the observed effects on the gene expression profiles).5

As genes sharing the same expression pattern are likely to be involved in the same regulatory process,
the inference of gene regulation can be accomplished via the clustering of time-course data into groups of co-
expressed genes.5, 6 However, due to the experimental design, multilevel data hierarchies are often present in
time-course gene expression data. For example, gene expressions obtained at the same time point are often
interdependent and tend to be more alike in characteristics than data chosen at random from the population
as a whole. Most existing methods, however, ignore the dependency of the expression measurements over time
and the correlation among gene expression profiles.4, 7–9 Such assumptions of independence violate regulatory
interactions and can result in overlooking certain important subject and temporal effects, and lead to spurious
inference for regulatory networks or mechanisms. In this paper, we propose a clustering-based method for the
inference of GRNs, where a mixed-effects model is adopted to incorporate data hierarchies in the clustering
of time-course data. In the context of multilevel analysis,10 the temporal (subject) effects are assumed to be
random (random effects) and shared among data collected at the same time/condition. The method starts with
the clustering of genes by fitting the mixture model within the multilevel random-effects model framework using
the expectation-maximization (EM) algorithm.11, 12 The clustering of time-course data allows us to extract
groups of genes that are co-expressed over certain cell-cycle periods and hence infer shared regulatory inputs
and functional pathways. The network of regulatory interactions is then determined by searching for regulatory
control elements (activators and inhibitors) shared by the clusters of co-expressed genes, based on a time-lagged
correlation coefficients measurement method.13 The method is applied to two real time-course datasets from
the budding yeast (Saccharomyces cerevisiae) genome.

2. CLUSTERING OF CO-EXPRESSED GENES

The method starts with the clustering of genes into groups in which they have similar expression profiles. This
process helps to identify sets of genes that are potentially regulated by the same mechanism.3 Other potential
applications of co-expressed gene clusters include the inference of functional annotation and the identification of
molecular signatures that are potential predictors of disease outcome.5, 14 As described in Section 1, popular
clustering methods adopted for the analysis of gene expression data, such as hierarchical agglomerative tech-
niques8 and self-organizing maps,15 do not account for the correlation among gene expression levels. In this
paper, we consider the clustering of genes by fitting a normal mixture model within the multilevel mixed-effects
model framework.

2.1. Normal Mixtures and Mixed-effects Models

Let yij be the gene expression level of the ith gene at time j (i = 1, . . . , N ; j = 1, . . . , T ), where N is the number of
genes and T is the number of time points. The time-course microarray data are thus given by y = (y′

1, . . . ,y
′
N )′,

where yi = (yi1, . . . , yiT )′ is the vector of the time-course gene expression data for the ith gene. With a normal
mixture model, the observed data are assumed to have come from a mixture of an initially specified number g
of multivariate normal densities in some unknown proportions π1, . . . , πg, which sum to one.16 That is, each
observed vector yi is taken to be a realization of the mixture probability density function,

f(yi;Ψ) =
g∑

h=1

πhφ(yi;µh,Σh), (1)

where φ(yi;µh,Σh) denotes the T -dimensional multivariate normal density with mean µh and covariance matrix
Σh. The vector Ψ denotes unknown parameters in the model.

The extension of normal mixtures to incorporate data hierarchies via multilevel (linear) mixed-effects models
is formulated as follows. Let the vectors ν = (ν ′

1, . . . ,ν
′
g)

′ and ξ = (ξ′
1, . . . , ξ

′
g)

′ denote the random effects that

Proc. of SPIE Vol. 6039  60390S-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/18/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



occur in the data vector y. Conditional on its membership of the hth component of the normal mixture, the
linear mixed-effects model17 specifies the mean of yi conditional on the realized νh and ξh as

E(yi | νh, ξh) = Xβh + V νhi + Wξh, (2)

where elements of βh are fixed effects (unknown constants) modeling the conditional mean of yi. The vectors
νhi (p-dimensions) and ξh (q-dimensions) represent the unobservable random effects which have zero mean
(E(νhi) = 0; E(ξh) = 0) and are taken, respectively, to be i.i.d. N(0, θh1Ip) and N(0, θh2Iq), where Ip and
Iq are identity matrices with dimensions being specified by the subscripts. Also, it is assumed that the random
effects νh and ξh are mutually independent (h = 1, . . . , g). In Equation (2), X, V , and W are known design
matrices of the fixed effects and random effects parts, respectively. Under this formulation, the vector of unknown
parameters Ψ now consists of π1, . . . , πg−1, βh, θh1, θh2, and σ2

h for h = 1, . . . , g, where σ2
h is the hth component-

variance. McLachlan and Krishnan18 described the learning of single component mixed-effects models via the
EM algorithm. This approach can be extended to the present context where a normal mixture of mixed-effects
model is to be learned.

2.2. Learning via the EM Algorithm
The EM algorithm is a popular tool for iterative maximum likelihood (ML) estimation of mixture models.16

It has a number of desirable properties including its simplicity of implementation and reliable global conver-
gence.12, 18 Within the EM framework, each yi is conceptualized to have arisen from one of the g components.
We let z1, . . . ,zN denote the unobservable component-indicator vectors, where the hth element zhi of zi is taken
to be one or zero according as yi does or does not come from the hth component. We put z = (z′

1, . . . ,z
′
N )′.

With the use of the EM algorithm to learn mixtures of mixed-effects model, the unobservable component
indicator variables z and the random effects ν and ξ are treated as missing data in the EM framework. The
complete data are then given by (y′,z′,ν ′, ξ′)′. On each iteration of the EM algorithm, there are two steps called
the expectation (E) step and the maximization (M) step. On the (k + 1)th iteration, the E-step computes the
so-called Q-function, which is the conditional expectation of the complete-data log likelihood, given the observed
data y and the current estimate Ψ(k). With reference to Eqs. (1) and (2), it follows that the E-step involves the
calculation of the following conditional expectations

EΨ(k)(zhi|y), EΨ(k)(νhi|y), EΨ(k)(ξh|y), EΨ(k)(yi − Xβh − V νhi − Wξh|y). (3)

The conditional expectations in Equation (3) are directly obtainable as shown in Appendix A. In particular, the
conditional expectation, EΨ(k)(zhi|y), is given by

EΨ(k)(zhi|y) = τ
(k)
hi =

π
(k)
h f(yi|zhi = 1;Ψ(k))

∑g
l=1 π

(k)
l f(yi|zli = 1;Ψ(k))

, (4)

which is the current estimated posterior probability that yi belongs to the hth component, and where

log f(yi|zhi = 1;Ψ(k)) = − 1
2

{
log |A(k)

h + B
(k)
h | + (yi − Xβ

(k)
h )′[A(k)

h + B
(k)
h ]−1(yi − Xβ

(k)
h )

}
, (5)

apart from an additive constant, is the marginal (log) density of yi given that it belongs to the hth component.
In Equation (5), we have

A
(k)
h = σ2

h
(k)

IT + θ
(k)
h1 V V ′

and
B

(k)
h = θ

(k)
h2 WW ′.

The M-step updates the estimates that maximize the Q-function with respect to Ψ. It follows from Eqs. (1)
and (2) that the updating formulae for Ψ(k+1) are

π
(k+1)
h =

N∑

i=1

τ
(k)
hi /N, (6)
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β
(k+1)
h = β

(k)
h + σ2

h
(k)

Dh

N∑

i=1

τ
(k)
hi (yi − Xβ

(k)
h )/

N∑

i=1

τ
(k)
hi , (7)

θ
(k+1)
h1 = (

N∑

i=1

τ
(k)
hi ν

(k)
hi

′
ν

(k)
hi + Eh)/(p

N∑

i=1

τ
(k)
hi ), (8)

θ
(k+1)
h2 = (ξ(k)

h

′
ξ

(k)
h + Fh)/q, (9)

and

σ2
h
(k+1)

= (
N∑

i=1

τ
(k)
hi ε

(k)
hi

′
ε
(k)
hi + Gh)/(T

N∑

i=1

τ
(k)
hi ), (10)

where

Dh = [X ′X]−1X[Ah +
N∑

i=1

τ
(k)
hi Bh]−1

and ν
(k)
hi , Eh, ξ

(k)
h , Fh, ε

(k)
hi , and Gh are given in Appendix A.

The E- and M-steps are alternated repeatedly until convergence of the EM sequence of iterations.12 An
outright or hard clustering of the genes16 is obtained by assigning each yi to the component of the mixture
(Equation (1)) to which it has the highest estimated posterior probability of belonging.

3. INFERENCE FOR GENE REGULATORY INTERACTIONS

Once the co-expressed genes are clustered into groups with similar pattern of expression levels, the second step of
the method “predicts” the gene expression profile for each gene based on the estimated parameters Ψ̂ obtained
in the first step. Given that the ith gene belongs to the hth cluster, its gene expression profile at different time
points can be expressed as

ŷi = Xβ̂h + V ν̂hi + Wξ̂h, (11)

where
ν̂hi = EΨ(νhi|y, ẑ; Ψ̂)

and
ξ̂h = EΨ(ξh|y, ẑ; Ψ̂)

correspond to the best linear unbiased predictor19, 20 (BLUP) for random effects νhi and ξh, respectively. The
average gene expression profile for each cluster, ŷh = (ŷh

1 , . . . , ŷh
T )′, is then obtained as

ŷh =
N∑

i=1

ẑhiŷi/
N∑

i=1

ẑhi (h = 1, . . . , g).

Based on the least square approach considered by Booth et al,21 the expression profiles for genes from the same
cluster may be used to estimate the times to peak expression levels and the periods.

The network of regulatory interactions is then determined in the final step by searching for candidate regu-
latory control elements (activators and inhibitors) shared by the clusters of co-expressed genes. In the analysis
of time-course data, Li et al.13 have adopted time-lagged correlation coefficients to characterize the time-delayed
dependency between genes. With our method, the time-lagged correlation coefficients are calculated using the
average gene expression profiles for the clusters. In particular, the correlation coefficient between the hth cluster
at time t and the lth cluster at time t + κ is defined as

Rhl(κ) = corr{(ŷh
1 , . . . , ŷh

(T−κ))
′, (ŷl

κ, . . . , ŷl
T )′}, (12)

where κ = 1, 2, 3, . . . is a constant integer and the function corr(., .) is the standard correlation coefficient between
the two (T − κ) dimensional vectors.13 A large absolute value of Rhl(κ) thus indicates a pair-wise dependence
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between the genes expression of the hth cluster at time t and that of the lth cluster at time t + κ. In practice,
the value of κ should be so chosen that T − κ is not too small, such as T − κ > 10 suggested by Li et al.13 The
examination of the significance of these g∗(g−1) time-lagged correlation coefficients, after adjusting for multiple
testing using the Bonferroni procedure, helps to determine potential regulation between genes that interact with
each other directly or via some intermediates.6 For example, upstream DNA sequence patterns specific to each
cluster may be identified in the promoter region of gene clusters, through which co-regulation of the genes within
the cluster is achieved.22 With our method, we identify the most significant correlations (if present) for a range
of values for κ, for each pair of gene clusters. These identified pairs of gene clusters are then considered to be
potential elements within the network of regulatory interactions.

4. RESULTS

The method is illustrated using two well-known yeast Saccharomyces cerevisiae datasets.4, 8 By analyzing cDNA
microarrays from yeast cultures synchronized by three independent methods over approximately two cell-cycle
periods, Spellman et al.8 identified 800 yeast genes that are characterized as cell-cycle regulated. In our study, we
consider the 18 α-factor (pheromone) synchronization, in which the yeast cells were sampled at 7 minutes intervals
for 119 minutes, for each of 104 yeast genes that are determined to be cell cycle-regulated by traditional meth-
ods.8, 21 These 104 gene-expression profiles were used by Spellman et al.8 to synchronize the initial phases of gene
expression profiles obtained in different experiments.21 A list of these genes (with the relevant list of references)
and a complete data sets are available online at http://genome-www.stanford.edu/cellcycle/data/rawdata.

For the clustering of the cell cycle-regulated genes based on the microarray data of N = 104 genes and T = 18
time points, we take the design matrix X be an 18 × 2 matrix with the l-th row (l = 1, . . . , 18)

(cos(2πl/ω + Φ) sin(2πl/ω + Φ)), (13)

where ω is the period of the cell cycle and Φ is the phase offset.8 We adopt here the least squares estimates
ω = 62 and Φ = 0 obtained by Booth et al.21 in the analysis of the full dataset of Spellman data. For the
design matrices of the random effects parts, we take V = 118 and W = I18, where 118 is a vector of ones with
dimension being specified by the subscript. That is, we assume that there exists random gene effects νhi with
p = 1 and random temporal effects ξh with q = 18 for h = 1, . . . , g and i = 1, . . . , N . Normal mixture models
with mixed effects as described in Section 2.1 were fitted to the data with g = 4 to g = 10. The number of
components g was determined using the Bayesian information criterion (BIC) of Schwarz23 for model selection.16

With BIC, the number of components is determined by selecting the value of g that provides the minimum
negative penalized log likelihood. It indicated here that there are eight clusters. The clustering results for g = 8
are given in Figure 1, where the expression profiles for genes in each cluster are presented. For comparison, we
also depict the predicted average gene expression profile for each cluster. It can be seen that, in some clusters,
large variation of expression profiles are observed for genes within a cluster. In addition, from Figure 1, the
times to peak expression and/or the periods are found to be separated among the eight clusters. Genes in the
same cluster do show biological relevance. For example, genes that expressed in the G1 phase such as CLN2,
RNR1, CDC9, RAD27, and MNN18 are clustered into the same group (cluster 3). Genes that expressed in
the M phase are clustered into two groups with different periods, such as cluster 1 containing CLB2, CDC5 and
SWI5, and cluster 4 containing DBF2 and CDC20.

For the computation of the time-lagged correlation coefficients, we considered κ = 1 to 7. Significant corre-
lation coefficients and the time lags for each pair of gene clusters are given in Table 1, where the first column
represents the leading gene clusters. From Table 1, it can be seen that, for small time lag (κ = 1), genes expressed
in the same cell-cycle phase tend to have significant positive correlation; see, for example, gene clusters 1 and
4 that correspond to the genes that expressed in the M phase. Significant correlation coefficients with respect
to larger time lags are more relevant in the inference for the regulatory network, as these indicate a correlation
between genes that expressed in different phases. For example, the “CLN2” group (cluster 3) is found to be
activated by gene cluster 4 (such as the gene CLN3) and inhibited by gene cluster 1 (such as the gene CLB2).8

On the other hand, the “CDC46” group that expressed at about the M/G1 boundary (cluster 5) is found to be
activated by gene cluster 1 (such as the gene CLB2) and inhibited by gene cluster 4 (such as the gene CLN3).8
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Figure 1. Clustering results for Spellman data. For all the plots, the x-axis is the time point and the y-axis is the
gene expression level. The gene expression profiles are given in dashed lines, while the predicted average gene expression
profiles are presented in solid lines.

We considered another dataset gathered by Cho et al.4 It used Affymetrix oligonucleotide microarrays to
query the abundances of 6,220 mRNA species in synchronized Saccharomyces cerevisiae batch cultures, using a
temperature-sensitive mutation of cdc28. The data provided us with 17 time points across two cell cycles, where
the samples were taken at 10 minutes apart. In our study, we worked with a subset of 384 genes that have non-
negative normalized fluorescence readings across the time points and were assigned to one of the five phases of cell
cycle given at the website http://yscdp.stanford.edu/yeast_cell_cycle/functional_categories.html of
the Cho data. The data set was normalized as in Tamayo et al.,15 where the 17 time points were divided into
two panels that correspond to two cell cycles and were normalized to have mean 0 and variance 1 within each
panel.24 This standardized dataset is available at http://faculty.washington.edu/kayee/cluster/. With
this time course data of N = 384 and T = 17, we take the design matrix X be an 17 × 2 matrix where the
l-th row (l = 1, . . . , 17) is again specified as in Equation (13). Here we adopted the least squares estimates
ω = 85 and Φ = 0.17π obtained by Booth et al.21 in the analysis of the full dataset of Cho data. The design
matrices for the random effects were taken to be V = 117 and W = I17, respectively. Model selection via
BIC indicated that there are six clusters. The clustering results for g = 6 are given in Figure 2. Again, it can
be seen that the six clusters are different in terms of either times to peak expression or the periods. Genes in
the same cluster do show similar functions. For example, genes that expressed at the M/G1 boundary such as
CDC6, CDC46, CDC54, MCM2, and MCM3 involved in DNA replication4 are clustered into the same group
(cluster 4). Genes that expressed in the M phase such as HDR1, MY O1, NUF2, ASE1, and IQG1 involved in
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Table 1. Significant Correlation Coefficients and the Time Lags for Each Pair of Gene Clusters (Spellman data).

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Cluster 1 — 0.923 -0.861 0.929 0.939 -0.855 0.949 0.964
(κ = 3) (κ = 1) (κ = 1) (κ = 3) (κ = 1) (κ = 7) (κ = 7)

Cluster 2 -0.968 — -0.942 0.987 — 0.884 0.902 0.942
(κ = 1) (κ = 6) (κ = 7) (κ = 1) (κ = 3) (κ = 4)

Cluster 3 0.936 0.968 — -0.883 0.983 — 0.954 0.876
(κ = 4) (κ = 7) (κ = 1) (κ = 7) (κ = 2) (κ = 2)

Cluster 4 -0.934 0.983 0.867 — -0.810 — 0.916 0.947
(κ = 3) (κ = 2) (κ = 4) (κ = 6) (κ = 5) (κ = 6)

Cluster 5 — 0.852 — — — — — —
(κ = 1)

Cluster 6 0.960 -0.933 — -0.928 0.940 — 0.933 0.890
(κ = 4) (κ = 3) (κ = 1) (κ = 7) (κ = 2) (κ = 2)

Cluster 7 0.954 -0.872 -0.914 0.937 0.949 -0.901 — —
(κ = 2) (κ = 1) (κ = 2) (κ = 3) (κ = 5) (κ = 2)

Cluster 8 0.970 -0.897 -0.951 0.943 0.931 -0.948 -0.924 —
(κ = 2) (κ = 1) (κ = 2) (κ = 3) (κ = 5) (κ = 2) (κ = 4)

chromosome segregation4 are clustered into the same group (cluster 5). For the computation of the time-lagged
correlation coefficients, we considered κ = 1 to 6. Significant correlation coefficients and the time lags for each
pair of gene clusters are given in Table 2. It can be seen that genes in the cluster 2 (such as HPR5, CDC11,
NNF1, CSE4, Y KR010C, STU2, KEX2, and Y NR009W ) are potential activators25 for gene clusters 3 to 6.

5. DISCUSSION

We have presented a three-step clustering-based method for inference about GRNs on the basis of time-course
gene expression data. The method starts with the clustering of co-expressed genes by fitting normal mixture
models with multilevel random-effects framework via the EM algorithm. The prediction of the average gene
expression profile for each cluster is then performed on the second step. The network of regulatory interactions
is then determined in the final step by searching for regulatory control elements based on the measurement of
time-lagged correlation coefficients between clusters. Our aim is to identify a small set of candidate regulatory
control elements, which will enable biologists to identify and visualize interesting features from time course
expression data. If the promoter regions of the genes are known, as is the case for yeast, it may be possible to
identify the cis-regulatory control elements shared by the co-expressed genes.5

The significance of the time-lagged correlation coefficients is determined with the adjustment for multiple
hypothesis testing using the Bonferroni procedure. The Bonferroni procedure is the most commonly used method
for dealing with multiple testing. It controls the family-wise error rate (FWER), which is the probability that
at least one false positive error (a type I error) will be committed. However, it is known to be conservative
especially when the number of hypothesis testing is very large1; for example, if the number of clusters so chosen
is as large as that described in Chen et al.25 In this case, it may be more appropriate to control the expected
number of false positives among the rejected hypotheses (the false discovery rate (FDR)).26, 27 Alternatively, the
bootstrap resampling technique28 can be adopted to check the reliability of regulatory elements obtained from
the time-lagged correlation coefficients.1, 6
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Figure 2. Clustering results for Cho data. For all the plots, the x-axis is the time point and the y-axis is the gene
expression level. The gene expression profiles are given in dashed lines, while the predicted average gene expression
profiles are presented in solid lines.

With the ML fitting of mixture models via the EM algorithm, it can be seen in Section 2.2 that an initial
parameter value of Ψ, Ψ(0), has to be specified. The monograph of McLachlan and Peel16 provides an in-depth ac-
count of the choice of initial values and the effects of different starting strategies on parameter estimates. Briefly,
with mixture models the likelihood typically will have multiple maxima. Hence in practice the EM algorithm
needs to be started from a variety of initial values for the parameter vector Ψ or for a variety of initial partitions of
the data into g components. The latter can be obtained by randomly dividing the data into g groups correspond-
ing to the g components of the mixture model. With random starts, the effect of the central limit theorem tends
to have the component parameters initially being similar at least in large samples. Nonrandom partitions of the
data can be obtained via some clustering procedure such as k-means. In our method, we adopt the automatic ap-
proach of the EMMIX program16 (available online at http://www.maths.uq.edu.au/~gjm/emmix/emmix.html)
to obtain the initial values Ψ(0). With the automatic approach, the EMMIX algorithm is run for ten starts cor-
responding to classifications of the data by k-means (k-means clustering-based starts). The parameter estimates,
which correspond to the clustering that produces the highest log likelihood, are adopted as the initial estimates
Ψ(0) for the purposes of starting the EM algorithm.

In Section 4, the number of components g was determined using Schwarz’s BIC.23 This criterion, which is
based on a penalized form of the log likelihood, has growing support in the literature for selecting the value of g
in the context of mixture model-based clustering of microarray data.3, 9 In practice, other information criteria in
model selection,16 such as the commonly used Akaike’s information criterion (AIC),29 can also be adopted. An
empirical comparison of these criteria with some of the more recently suggested criteria is provided by McLachlan
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Table 2. Significant Correlation Coefficients and the Time Lags for Each Pair of Gene Clusters (Cho data).

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Cluster 1 — 0.977 -0.842 — 0.931 0.979
(κ = 1) (κ = 3) (κ = 3) (κ = 4)

Cluster 2 -0.909 — 0.972 0.892 0.923 0.976
(κ = 3) (κ = 6) (κ = 5) (κ = 2) (κ = 3)

Cluster 3 0.822 — — — 0.857 0.894
(κ = 1) (κ = 4) (κ = 5)

Cluster 4 — — — — — —

Cluster 5 -0.924 -0.921 — 0.931 — 0.967
(κ = 2) (κ = 3) (κ = 3) (κ = 1)

Cluster 6 -0.831 -0.848 0.839 0.924 — —
(κ = 1) (κ = 2) (κ = 3) (κ = 2)

and Peel.16 When the information criteria scores are compared for a range of values of g, consideration has
to be given to the problem of relatively large local maxima of log likelihood that occur as a consequence of
a fitted component having a very small (but nonzero) generalized variance (the determinant of the covariance
matrix). Such a component corresponds to a cluster containing a few data points either relatively close together
or almost lying in a lower-dimensional subspace. There is thus a need to monitor the relative size of the fitted
mixing proportions and of the generalized component variances in an attempt to identify these spurious local
maximizers.1

APPENDIX A. EVALUATIONS OF CONDITIONAL EXPECTATIONS IN THE
E-STEP

As described in Section 2.2, the conditional expectations in Equation (3) are directly obtainable within the
E-step. With reference to Eqs. (1) and (2), the complete-data log likelihood is given by

log Lc(Ψ) =
g∑

h=1

[
N∑

i=1

zhi log πh − 1
2

{ N∑

i=1

zhip log θh1 + q log θh2 +
N∑

i=1

zhiT log σ2
h+

ν′
hνh

θh1
+

ξ′
hξh

θh2
+

ε′hεh

σ2
h

}]
, (14)

apart from an additive constant, where

ν′
hνh =

N∑

i=1

zhiν
′
hiνhi

and

ε′hεh =
N∑

i=1

zhiε
′
hiεhi

with
εhi = (yi − Xβh − V νhi − Wξh).
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Since ν′
hνh, ξ′

hξh, ε′hεh, and (yi − V νhi − Wξh) are sufficient statistics17, 30 for the complete model (Equa-
tion (14)), the conditional expectation of the complete-data log likelihood is effected simply by replacing these
sufficient statistics in Equation (14) by their conditional expectations.31, 32 That is, we have

EΨ(k)(zhi|y) = τ
(k)
hi =

π
(k)
h f(yi|zhi = 1;Ψ(k))

∑g
l=1 π

(k)
l f(yi|zli = 1;Ψ(k))

,

as given in Equation (4), and

EΨ(k)(ν′
hνh|y) =

N∑

i=1

τ
(k)
hi ν

(k)
hi

′
ν

(k)
hi + Eh,

EΨ(k)(ξ′
hξh|y) = ξ

(k)
h

′
ξ

(k)
h + Fh,

and

EΨ(k)(ε′hεh|y) =
N∑

i=1

τ
(k)
hi ε

(k)
hi

′
ε
(k)
hi + Gh,

where

ν
(k)
hi = EΨ(k)(νhi|y) = θ

(k)
h1

[
V ′A−1

h (yi − Xβ
(k)
h ) − V ′A−1

h Bh[Ah +
N∑

l=1

τ
(k)
hl Bh]−1

N∑

l=1

τ
(k)
hl (yl − Xβ

(k)
h )

]
,

Eh =
N∑

i=1

τ
(k)
hi pθ

(k)
h1 − (

N∑

i=1

τ
(k)
hi − 1)θ2

h1
(k)

trace(V ′A−1
h V ) − θ2

h1
(k)

trace(V ′[Ah +
N∑

i=1

τ
(k)
hi Bh]−1V ),

ξ
(k)
h = EΨ(k)(ξh|y) = θ

(k)
h2 W ′[Ah +

N∑

l=1

τ
(k)
hl Bh]−1

N∑

l=1

τ
(k)
hl (yl − Xβ

(k)
h ),

Fh = qθ
(k)
h2 −

N∑

i=1

τ
(k)
hi θ2

h2
(k)

trace(W ′[Ah +
N∑

i=1

τ
(k)
hi Bh]−1W ),

ε
(k)
hi = yi − Xβ

(k)
h − V ν

(k)
hi − Wξ

(k)
h ,

and

Gh =
N∑

i=1

τ
(k)
hi Tσ2

h
(k) − (

N∑

i=1

τ
(k)
hi − 1)σ4

h
(k)

trace(A−1
h ) − σ4

h
(k)

trace([Ah +
N∑

i=1

τ
(k)
hi Bh]−1).
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Budapest, 1973.

30. S. R. Searle, G. Casella, and C. E. McCulloch, Variance Components, Wiley, New York, 1992.
31. G. Celeux, O. Martin, and C. Lavergne, “Mixture of linear mixed models for clustering gene expression

profiles from repeated microarray experiments,” Stat. Model. 5, pp. 243–267, 2005.
32. S. K. Ng and G. J. McLachlan, “Using the EM algorithm to train neural networks: Misconceptions and a

new algorithm for multiclass classification,” IEEE T. Neural Networ. 15, pp. 738–749, 2004.

Proc. of SPIE Vol. 6039  60390S-12

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/18/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx


