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EXTENDED ABSTRACT  

The Operator Choice Model (OCM) was 
developed to model the behaviour of operators 
attending to complex tasks involving 
interdependent concurrent activities, such as in 
Air Traffic Control (ATC). The purpose of the 
OCM is to provide a flexible framework for 
modelling and simulation that can be used for 
quantitative analyses in human reliability 
assessment, comparison between human computer 
interaction (HCI) designs, and analysis of 
operator workload.  

The OCM virtual operator is essentially a cycle of 
four processes: Scan  Classify  Decide 
Action  Perform Action. Once a cycle is 
complete, the operator will return to the Scan 
process. It is also possible to truncate a cycle and 
return to Scan after each of the processes. These 
processes are described using Continuous Time 
Probabilistic Automata (CTPA). The details of the 
probability and timing models are specific to the 
domain of application, and need to be specified 
using domain experts. 

We are building an application of the OCM for 
use in ATC. In order to develop a realistic model 

we are calibrating the probability and timing 
models that comprise each process using 
experimental data from a series of experiments 
conducted with student subjects. These experiments 
have identified the factors that influence perception 
and decision making in simplified conflict detection 
and resolution tasks. 

This paper presents an application of the OCM 
approach to a simple ATC conflict detection 
experiment. The aim is to calibrate the OCM so that 
its behaviour resembles that of the experimental 
subjects when it is challenged with the same task. 
Its behaviour should also interpolate when 
challenged with scenarios similar to those used to 
calibrate it. The approach illustrated here uses 
logistic regression to model the classifications made 
by the subjects. This model is fitted to the 
calibration data, and provides an extrapolation to 
classifications in scenarios outside of the calibration 
data. A simple strategy is used to calibrate the 
timing component of the model, and the results for 
reaction times are compared between the OCM and 
the student subjects. While this approach to timing 
does not capture the full complexity of the reaction 
time distribution seen in the data from the student 
subjects, the mean and the tail of the distributions 
are similar. 
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1. INTRODUCTION 

Current models of operator behaviour are 
inadequate for analysing highly interleaved tasks, 
such as in Air Traffic Control (ATC). As Kirwan 
(1990) notes in his survey of Human Reliability 
Assessment (HRA) approaches, few practical 
techniques have been developed for human-error 
classification during risk assessment. There are 
even fewer practical techniques for human-error 
quantification. One of the best-known techniques – 
and in some senses most general – is the 
Technique for Human Error Rate Prediction 
(THERP) developed by Kirwan (1990). This uses 
event trees with recovery paths to analyse failure 
rates. THERP is typically used in highly 
proceduralized situations in which the task is 
broken down into a sequence of individual steps, 
some of which involve checks on the outcomes of 
previous steps. However, it is difficult to apply 
techniques such as THERP to tasks such as ATC 
in which there is no defined sequence of events.  

Timeliness of actions is a critical aspect of HRA; 
however most HRA techniques do not adequately 
model it. The Human Cognitive Reliability (HCR) 
approach of Hannaman et al. (1985) can be used to 
derive a model of the probability that a task has 
been completed, as a function of time. HCR 
models assume task completion has a probability 
density function of a particular form - a three-
parameter Weibull distribution. Although 
undoubtedly useful in many situations, the 
technique is very limited in settings, such as ATC, 
in which multiple interleaved processes are 
involved.  

A number of formal and semi-formal modelling 
techniques have been applied specifically to ATC; 
however, they do not provide stochastic models. 
The Eurocontrol organisation has developed a very 
sophisticated model of the cognitive processes 
involved in enroute control (Kallus et al., 1999); to 
the best of our knowledge it has not yet been used 
to analyse human error in any depth. Palanque et. 
al. (1997) applied Petri Nets to modelling the 
effect on an ATC task of the introduction of a new 
User-Interface technology (data link). Johnson 
(1997) illustrates the use of formal models to 
support the findings of accident investigations, and 
illustrates the approach on an aircraft accident. 
None of these approaches capture the stochastic 
dimension of ATC. 

Thus there is a need to develop a means of 
modelling ATC which can capture the complexity 
of the task and allow for realistic quantitative 
analyses. The Operator Choice Model provides a 
means of simulating the behaviour of an operator 

who must prioritise and address problems as they 
arise over time.  This provides a novel approach 
which we are applying to the ATC domain. 

2.  OPERATOR CHOICE MODEL 

The OCM was designed to model human 
behaviour in complex real-world systems. Starting 
from a generic model of operator behaviour, it is 
possible to refine the control flow to represent 
many individual systems. This section presents the 
generic OCM, and the following sections will 
provide an example of its application to a 
simplified conflict detection task in ATC. 

2.1. General Form 

The Operator Choice Model (OCM) represents a 
general framework for modelling the behaviour of 
an operator attending to a number of concurrent, 
interleaved tasks with information presented 
through an interface. It is based upon 
psychological theories of decision-making 
(Lindsay & Connelly, 2002). The aim of the OCM 
is not, however, to model human cognition; rather 
it is to provide a means of simulating realistic 
operator behaviour in complex tasks evolving 
unpredictably through time. 

The basic form of the OCM is given in Figure 1 in 
state chart notation (Fowler et al., 1997). It 
separates the task of the operator into four 
component processes that are typically expected to 
occur sequentially: 

Scan: This is the starting state where potential 
problems (“items”) are identified.  There can be a 
number of items to which the operator might 
attend; thus the Scan process requires a method for 
selecting one to attend to.  

Classify: Once attending to an item, the operator 
determines whether it is a problem requiring 
action. If so, the operator proceeds to Decide 
Action; if not, the operator returns to Scan. 

 

 

Figure 1. General form of the OCM 
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Decide Action: The operator develops an 
appropriate plan of action.  

Perform Action: The operator implements the 
plan of action. This typically requires interactions 
with external devices or humans. After the actions 
are complete, the operator returns to Scan.   

During the Decide Action and Perform Action 
processes, the operator might return to Scan if it is 
appropriate to do so.  

The OCM can be applied to situations in which 
there are a variety of types of items to attend to. 
All items are incorporated into Scan, and different 
item types can have different Classify, Decide 
Action, and Perform Action definitions associated 
with them. When used to perform a safety 
assessment, the OCM provides a basis for 
quantitative risk analysis of complex, interleaved 
tasks. There is potential for operator error during 
each process. For example the operator might 
incorrectly classify an item as not requiring further 
action, leading to system failure. A formal analysis 
of erroneous operator behaviour in the OCM, 
applied to the ATC context, is presented in Cerone 
et al. (2005).  

The options available to the operator within each 
of the four key processes are specific to the 
domain of application. These sub-processes can 
also be depicted as state diagrams. This provides a 
means of capturing the “flow of control” of 
operator activities for the particular task, and the 
different possible outcomes of those activities.  

The different sub-states (processes and events) and 
transitions can be described using Hoare’s CSP 
(Hoare, 1985). However to also capture stochastic 
behaviour including the time taken for each 
process, an extended framework is required. 
Continuous Time Probabilistic Automata (CTPA) 
provides such a framework. These describe the 
available states, the possible transitions between 
states, and specify stochastic models for the 
transitions and their duration (Hung and Chaochen, 
1999). 

3. APPLICATION TO A CONFLICT 
DETECTION TASK 

En-route air traffic controllers regulate the speed, 
bearing and flight level of the aircraft within their 
sector, in order to maintain separation between 
aircraft and to manage the flow of air traffic. Key 
aspects of the task have been identified in a task 
analysis (Neal et al., 1998). One of these tasks is to 
ensure that aircraft maintain a minimum distance 
of separation at all times. Aircraft are said to be in 

conflict if their flight paths will cause them to 
violate separation at some future point in time 

We have conducted a series of experiments in 
which subjects are required to monitor a sector of 
airspace and make judgements about whether 
aircraft will violate separation, and take action to 
prevent this occurring. The goal is to illustrate the 
use of the OCM in simulating human performance 
in a dynamic task environment. It is for this reason 
that we are using a highly simplified simulation. 
Below we describe the experimental design for the 
first of these experiments, and a calibration of the 
OCM constructed to model this task.  

3.1. Conflict Detection Experiment 

Twenty-seven first-year undergraduate university 
students, with no prior experience in ATC, were 
instructed to observe pairs of aircraft on a 
simulated ATC radar screen. Aircraft flew in 
straight lines at the same altitude. The subjects 
were asked to classify converging pairs of aircraft 
as conflicts or non-conflicts, according to a 
minimum separation requirement of 5km. Once a 
classification was reached the subjects clicked the 
mouse on a button to identify a pair as a conflict or 
a non-conflict.  

The variables which describe each aircraft pair, 
passing through a common waypoint, are as 
follows:  

1. Distance of Minimum Separation 
(DOMS). The closest distance a pair of 
aircraft will come to each other; 

2. Time to Minimum Separation (ttms). The 
time until the pair reaches DOMS; 

3. Angle (θ). The angle between flight paths 
of the two aircraft; 

4. Velocity of the aircraft which passes 
through the waypoint first (V1) and 
second (V2) 

The experiment consisted of two phases, a training 
phase and a test phase. The training phase was 
designed to expose subjects to the task and give 
them practice in classifying aircraft pairs. Our 
analyses focus on the test phase data. 

A 4x3x3x3 repeated measures experimental design 
was used for the test phase. The levels of each 
experimental variable were: DOMS = 1.25km, 
3.75km, 6.25km, 8.75km; ttms = 33, 66, 99 
seconds; θ = 45°, 90°, 135°; (V1, V2) = (660km/hr, 
927km/hr), (927km/hr, 660km/hr), (927km/hr, 
927km/hr). One aircraft pair was presented at a 
time. Subjects were given 10 seconds during 
which they were free to respond; if they had not 
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responded at the end of the 10 second interval, 
they were required to respond immediately. The 
simulator recorded each participant’s classification 
response and reaction time.  

4. THE OCM CALIBRATION FOR THE 
CONFLICT DETECTION TASK 

The goal of the calibration is to achieve a form for 
the OCM which will simulate the distribution of 
behaviour of the student subjects in the 
classification experiment. Ideally this includes 
both the distribution of classifications and the 
distribution of reaction times.  

For this task, the Classify process of the OCM is 
the most involved to calibrate. A statistical 
modelling method was used for this purpose and 
used the data from the classification test phase 
experiment. The Scan, Decide Action, and Take 
Action components are minimised by the design of 
the classification experiment. For the timing 
component we explored the use of a simplistic 
approach. It involved setting short, fixed, time 
intervals for each transition, and achieving a 
distribution of reaction times by the random 
number of loops that occur through the OCM, 
rather than by using random timing intervals 
themselves. This approach uses a parameter called 
pFinal, which controls, stochastically, the number of 
times the operator loops through the OCM before 
making a final decision. We show the reaction 
time results produced under different values for 
this parameter by the OCM, and compare these 
with the results from the student subjects. 

A state chart diagram of the OCM used for the 
classification test phase experiment is given in 
Figure 2. The CTPA specification is detailed in the 
sub-sections below.  

4.1. Scan 

This process models the operator taking time to 
observe all possible conflicts, and either returning 
to Scan or selecting a pair of aircraft to attend to. 
The states are {scan, attendi}, where i ranges over 
the items, in this case, aircraft pairs. The possible 
transitions are: 
 scan → scan  
 scan → attendi  
where i runs over aircraft pairs. In the test phase 
classification experiment, only a single pair of 
aircraft appear on screen at a time. Thus there is no 
choice between competing items and this part of 
the OCM is effectively circumvented. The 
probability models for transitions are: 
 Pr(scan → scan) = 0 
 Pr(scan → attendi ) = 1 

The timing model for this is non-stochastic and is 
set to: 
 Duration(scan → scan) = 0 s 
 Duration(scan → attendi) = 0 s 
 

 

Figure 2.  OCM model of ATC task 

4.2. Classify 

This process represents the operator attending to a 
pair of aircraft and making a judgement as to 
whether the pair is, or is not, in confict. In this 
version of the OCM there is no option to defer the 
classification and return to Scan. This is a “forced 
decision” model, in which the operator makes a 
classification in the first loop through the OCM. It 
is used in this situation because the operator is 
limited to 10 seconds in which to act. The states in 
the classify process are {attendi, conflicti, non-
conflicti}, and the possible transitions are: 
 attendi → conflicti 
 attendi → non-conflicti 

In the probability model, we use L to denote the 
probability of classifying a pair as a conflict. The 
value of L is determined from experimental data, 
and is a function of the features of aircraft pairs 
(DOMS, ttms, θ, V1, and V2). The probability 
model is expressed as: 
 Pr(attendi → conflicti) = L 
 Pr(attendi → non-conflicti) =1- L 
To obtain an appropriate function for L, in terms of 
the geometry of aircraft pairs, a logistic regression 
model was fitted to the experimental data. Logistic 
regression is used to fit models to proportions 
(McCullough and Nelder, 1989). The dependent 
variable is the probability of classifying a pair as a 
conflict, and the 5 independent variables are 
DOMS, ttms, θ, V1, and V2. All independent 
variables contributed significantly to the fit of the 
model in the experimental data, and there were 
several significant interaction terms.  The model 
obtained was: 
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L =  Logit-1(β0 + β1 DOMS + β2 cosθ + β3 sinθ +  

+ β4 V1/V2 + β5 V2/V1 + β6 1/ttms + β7 V1/V2 sinθ 

+ β8 V2/V1 sinθ + β9 DOMS/ttms),  (1) 

where Logit-1(x) = exp(x)/(1+exp(x)), the fitted 
parameter values are given in Table 1. 

Table 1. Parameters in logistic classification 
model 

i βi i βi 
0 33.185 5 -18.273 
1 -0.281 6 161.779 
2 1.223 7 20.918 
3 -51.433 8 27.584 
4 -12.132 9 -29.112 

The timing model sets a short, non-stochastic, 
duration for this process: 
Duration(attendi → conflicti | non-conflicti) = 0.5 s 

4.3. Decide Action 

The decide process for this calibration identifies if 
the classification of conflict or non-conflict made 
during the classify process is final or non-final. If 
it is final, the operator proceeds to Perform Action. 
If it is non-final, the operator returns to scanning. 
A classification has been made however, so that if 
the 10 second period runs out without a final 
classification, the operator is “forced” to respond 
with the non-final classification. The states are 
{conflicti,, non-conflicti ,  finali , non-finali ,  scan}, 
and the possible transitions are: 
 conflicti   →  finali 
 conflicti   →  non-finali 
 non-conflicti →  finali 
 non-conflicti →  non-finali 
 non-finali → scan  

In this version of the ATC OCM we use a simple 
model in which the operator proceeds to a final 
decision stochastically with probability pfinal. Thus, 
the probability of the various transitions are: 
Pr(conflicti | non-conflicti → finali) = pfinal 
Pr(conflicti | non-conflicti → nonfinali) = 1- pfinal 

The timing model sets a small amount of time for 
this process: 
Duration(conflicti | non-conflicti  → 
  non-finali | finali) = 0.5 s 
If the decision is nonfinali, then the operator 
returns to scan with probability 1, taking 0 
seconds. Thus, 
 Pr(nonfinali  → scan) = 1 
 Duration(nonfinali  → scan) = 0 s 

Table 2. Comparison of Subjects and OCM in 
Proportion of Conflict Classifications 

Condition DOMS Students OCM 
1.25 1.00 0.99 
3.75 0.92 0.86 
6.25 0.12 0.26 

A 

8.75 0.04 0.02 
1.25 0.85 0.91 
3.75 0.73 0.63 
6.25 0.15 0.22 

B 

8.75 0.04 0.03 
1.25 0.85 0.69 
3.75 0.27 0.34 
6.25 0.00 0.11 

C 

8.25 0.00 0.03 

4.4. Perform Action 

The only action taken in the classification 
experiment is to click a button with the mouse to 
indicate conflict or non-conflict. The states are 
{finali , acti }, and the only possible transition in 
the Take Action process is: 
 finali  → acti  
Assuming this takes one second, the probability 
and timing for the transition is: 
 Pr(finali  → acti) = 1 
 Duration(finali  → acti) = 1 s 
After this the operator returns to Scan taking zero 
seconds: 
 Pr(non-finali  → scan) = 1 
 Duration(non-finali  → scan) = 0 s 

5. COMPARISON OF HUMAN SUBJECTS 
AND THE OCM 

In order to assess the performance of the OCM 
calibrated as above, it was used in simulations with 
the same design as the classification experiment 
with student subjects. We also varied the 
parameter pfinal in order to compare reaction time 
distributions. The values chosen were: pfinal = 0.1, 
0.25, 0.5, 0.75, 0.9. Each run was repeated 1,000 
times. Below we compare classification accuracy 
and reaction time distributions between the human 
subjects and the OCM. 

5.1. Classification Accuracy 

Results comparing the classifications of the 
student subjects and the OCM for a subset of the 
experimental design are given in Table 2. Results 
for the other experiments were similar. The results 
given in Table 2 are for the subset: 
A: ttms=33, θ=45, (V1,V2)=(660,927); 
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B: ttms=66, θ=90, (V1,V2)=(927,660); and 
C: ttms=99, θ=135, (V1,V2)=(927,927).  

5.2. Reaction Time 

Histograms of the distribution of reaction times 
produced by the OCM from 1,000 runs, for 
pfinal=0.25 and pfinal=0.75, are given in Figure 3. 
These results are for the OCM experiment with 
DOMS = 1.25, ttms = 66, θ = 90, and (V1,V2) = 
(927,660). The distributions for the other 
experiments with the same pfinal values are similar. 
A key point with this calibration is that the 
reaction time distributions depend only on the 
value of  pfinal. 

In order to compare reaction time distributions 
between the OCM and the subjects, a histogram of 
reaction time results for the latter is given in 
Figure 4. This includes the reaction times from all 
the experiments in the classification test phase 
combined.  

On initial inspection the OCM reaction time 
distribution with pfinal = 0.75 given in Figure 3a, 
bears a resemblance to the reaction time 
distribution for the student subjects.  Indeed the 
mean reaction time for the students was 5.1s, and 
from the OCM experiment with pfinal = 0.25 was 
5.1s. Further, the proportion of observations at ten 
seconds, which corresponds to the “tail” of the 
distribution, was 0.12 for the student data, and 0.10 
for the OCM data. Thus, the simplistic model for 
timing used in the OCM produces similar results 
on these indicators. The way the OCM has been 
defined here, reaction times follow the geometric 
distribution. This distribution starts at the 
maximum (or “mode”) and does not have the 
initial increase to a maximum that is seen in the 
reaction time distributions from the student 
subjects. 

6. DISCUSSION 

The OCM provides a means of modelling the 
behaviour of an operator attending to complex, 
interdependent tasks. It breaks up the activities of 
the operator into four basic processes which are 
performed in sequence, and enable the operator to 
consider each “item” one at a time.  

Calibration of the OCM for application in specific 
domains requires human data in order to produce 
realistic and reliable results. Here we have 
illustrated calibration of the OCM based on a 
simplified ATC task. The approach of logistic 
modelling has proven useful in achieving realistic 
classification data. The use of a very simple 
approach to achieving reaction times has been 

explored. The distribution is achieved not by using 
random durations for transitions, which are part of 
the definition of CTPA, but rather by using 
random numbers of “loops” through the OCM. 
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Figure 3. Reaction time for OCM experiment  a: 
pfinal = 0.25 b: pfinal = 0.75 
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Figure 4. Histogram of reaction times from 
student subjects 

This produces a discrete, rather than a continuous, 
reaction time distribution, and it fails to capture the 
initial increase to a maximum seen in the human 
experimental data. Indeed, a recent and widely 
used modelling approach for reaction time 
involves using the ex-Gaussian distribution 
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(Brown & Heathcote, 2003), which combines a 
Gaussian distribution and an exponential 
distribution. The former produces the initial peak, 
and the latter produces the “tail”. There is no 
simple way to obtain a similar distribution from 
the OCM, using the approach of fixed time for 
transitions and random numbers of “loops” 
through the OCM.  

An alternative approach is to use stochastic models 
for transition times directly in the CTPA. Using 
this approach, both the transitions followed, and 
the time taken for the transitions, are stochastic. 
Conceivably any distribution function for 
durations can be used, and can depend upon values 
of variables, in the same way as the classification 
function does in the calibration given here. This 
approach, and others, will be explored in future 
work. Work is also currently underway applying 
this modelling approach to the analysis of conflict 
detection performance by real air traffic controllers 
in the field.  
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