

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 448 – 464, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An MDA Approach Towards
Integrating Formal and Informal Modeling Languages

Soon-Kyeong Kim, Damian Burger, and David Carrington

School of Information Technology and Electrical Engineering,
The University of Queensland, St. Lucia, 4072, Australia
{soon, damian, davec}@itee.uq.edu.au

Abstract. The Model Driven Architecture (MDA) involves automated trans-
formations between software models defined in different languages at different
abstraction levels. This paper takes an MDA approach to integrate a formal
modeling language (Object-Z) with an informal modeling language (UML) via
model transformation. This paper shows how formal and informal modeling
languages can be cooperatively used in the MDA framework and how the trans-
formations between models in these languages can be achieved using an MDA
development environment. The MDA model transformation techniques allow us
to have a reusable transformation between formal and informal modeling lan-
guages. The integrated approach provides an effective V&V technique for the
MDA.

1 Introduction

Integration between formal and informal or semi-formal visual modeling (or specifi-
cation) languages is a well-known topic in the literature [8, 11, 12, 14]. There are
many advantages to be gained from integrating formal techniques with informal or
semi-formal approaches in the field of software development. Integration can make
formal methods easier to apply and informal methods more precise, aiming towards
“the best of both worlds”. Despite the potential for taking benefits from both types of
techniques, the integrated approach is seldom used in practice. Several drawbacks we
have identified are: transformations between formal and informal models are often not
explicitly defined [1, 8, 13, 14, 15, 23], which makes it difficult to know on what se-
mantic basis the transformation has taken place, whether semantics of models are pre-
served during the transformation and whether the transformation is complete and con-
sistent. Also a lack of tool support for the actual transformation is a drawback in this
area. In order to contribute to this area, this paper presents an MDA approach towards
the integration of a formal modeling language Object-Z [4] with the Unified Model-
ing Language (UML) [19], a semi-formal visual modeling language.

The Model Driven Architecture (MDA) [18] is a new software development
framework that aims to separate business logic from underlying platform technology.
It involves automated transformations between software models defined in different
languages. In MDA, a Platform Independent Model (PIM) of a system is specified
and a Platform Specific Model (PSM) is derived from the PIM using transformations.
MDA model transformation can be applied to the integrated approach. In the MDA,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15018036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 449

models are integrated by their common basis in the Meta Object Facility (MOF) [16],
which is the meta-language standard for UML and the other OMG modelling lan-
guages. That is, each modeling language is defined in terms of a metamodel using the
MOF. Given the metamodels of different modeling languages, a set of transformation
rules is defined explicitly using a transformation language, which is also a MOF
model. Actual transformations are then achieved automatically using a transformation
tool that understands the transformation language. In this paper, we use this reusable
MDA transformation framework for modeling language integration with Object-Z and
UML. For this, we first define Object-Z in terms of a metamodel based on the MOF.
Given the metamodels of UML and Object-Z, we then define transformation rules us-
ing a transformation language1. The metamodel-based MDA transformation frame-
work allows us to define transformations precisely and explicitly in terms of trans-
formation rules, which is critical for rigorous model evolution from informal to for-
mal and vice-versa. It also allows us to have a reusable transformation that can be ap-
plied to any models in the two languages. Actual transformations are achieved using
tools supporting MDA.

Additionally our integrated approach can deliver benefits to MDA. To get the full
potential of the MDA, the MDA transformation infrastructure (currently being stan-
dardized [18]) should include the ability to use modelling notations that are the most
appropriate to capture different aspects of a system, and should have a capability of
transforming between models in these different notations. Also there must exist effi-
cient ways to check the models for properties such as consistency and correctness.
Currently UML is proposed as the central modelling language by OMG in the MDA.
However, using only UML has limitations to provide these capabilities required for
the MDA. Our integrated approach with formal and informal modeling techniques can
contribute to this area. For example, it provides the convenience to choose appropriate
modeling techniques to capture different aspects. Formal techniques provide effective
means to check models providing increased quality for both specification and imple-
mentation. In this integrated MDA modeling framework, models are corrected and
evolved via model transformation from informal to formal and vice-versa. In fact, the
integrated approach can be a V&V technique for the MDA. For example, an Object-Z
model derived from a UML model is a V&V model of the UML model. Any formal
reasoning techniques available for Object-Z can be used to validate the UML model.

It should be noted that in this paper it is not our intention to present a complete
definition of Object-Z or UML, or a complete set of transformation rules between the
two languages. Rather we focus on explaining how the MDA model transformation
framework can be applied to the integration of the two languages. The transformation
presented in this paper should pave the way for others to follow the same transforma-
tion approach towards integrating different formal and informal modeling languages.

The structure of the rest of this paper is as follows. Section 2 discusses relevant
background information. Section 3 presents the model transformation environment

1 In this paper, we use the Distributed Systems Technology Centre (DSTC)’s transformation

language [3] that has been submitted to respond to the OMG’s MOF 2.0
Query/Views/Transformations (QVT) Request for proposals [17], and its transformation en-
gine Tefkat [2]. Once the OMG finalizes a standard transformation language, the transforma-
tion rules can be converted into the standard language.

450 S.-K. Kim, D. Burger, and D. Carrington

used in this work and its rationale. Section 4 discusses the transformation itself in de-
tail with an example. Finally, Section 5 concludes and discusses further work.

2 Background Information

In this section, we present a metamodel of Object-Z and a metamodel of UML. The
Object-Z metamodel presented in this section is an enhanced version of the one pre-
sented in [9, 10]. The UML metamodel presented in this section is a simplified ver-
sion of UML 2.0 [19].

2.1 Object-Z Metamodel

Figure 1 is a UML class diagram showing core model elements in Object-Z and their
structure (we add OZ to the names of the model constructs to distinguish them from
the UML modeling constructs). Figure 2 shows types in Object-Z (see [10]).

OZElement is a top-level metaclass from which all possible model elements in Ob-
ject-Z can be drawn. OZNamedElement represents all model elements with names
(e.g. attributes, classes, operations, and parameters). OZNamespace is an element that
can own other named elements (e.g. classes or operations).

Fig. 1. Object-Z model elements

OZElement

OZNamedElement

name : String

OZNamespace

OZMultipl ici ty

isOrdered : Boolean
upper : Unl imitedNatural [0..1]
lower : Integer [0..1]

PureAttribute

initialValue : OZValue

BooleanExp

OZExpression

body : String

0..n

0..1

0..n

0..1

OZPredicate

10..1

+specification

10..1

RelationshipAttribute

isContainment : Boolean

Invariant

OZAttribute

isStatic : Boolean
visibil ityKind : Visibil i tyKind

OZParameter

parameterKind : ParameterKind

OZClass

+type
{subsets type}

0..n

0..1

0..n

0..1
0..n

0..n

+general

0..n

+special

0..n

0..n 0..10..n 0..1

OperationPredicate

OZOperation

visibil ityKind : Visibil i tyKind

0..n 0..10..n 0..1

0..n

0..1

+precondition

0..n

0..10..n

0..1

0..n

0..1

0..n

0..1

+postcondition

0..n

0..1

OZTypedElement

OZValue

OZTypedElementOZType 0..1 +type0..1

OZSpecification

0..n

0..1

0..n

0..1

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 451

Fig. 2. Object-Z types

OZTypedElement presents elements with types (e.g. attributes and parameters) and
the type of a typed element constrains the set of values that the typed element may re-
fer to. OZMultiplicity is an abstract metaclass of elements with multiplicity informa-
tion that specifies the allowable cardinalities for an instantiation of the elements (e.g.
attribute values and parameter values). It also has an attribute (isOrdered) to define
whether the values in an instantiation of this element must be ordered.

OZPredicate is a metaclass to define a condition in classes or operations. Condi-
tions defined in a class are invariants and conditions defined in an operation are either
a precondition or a postcondition of the operation. Predicates contain expressions that
will have a set (possibly empty) of values when evaluated in a context. Boolean ex-
pressions are one type of expression in Object-Z.

UML is a visual modelling language and does not provide a language for specify-
ing expressions al-though OCL [19] is recommended as a constraint language for
UML by OMG. Consequently UML treats expressions as an uninterpreted textual
statement (see the meta-class OpaqueExpression in the UML metamodel) and the se-
mantics of expressions depends on the language. For this reason, we do not further
clarify expressions in Object-Z in this paper focusing on transforming the structural
constructs of the two languages and leave this issue as further work to map Object-Z
expressions to a specification language such as OCL.

Classes: In Object-Z, classes are the major modeling construct for specifying a sys-
tem. A Class is a template for objects that have common behaviors. A Class has a set
of attributes (PureAttibute) and a set of operations. Each attribute has a name, a type,
a visibility and an attribute (isStatic) specifying whether the attribute is static. By spe-
cializing multiplicity element, an attribute supports a multiplicity that specifies valid
cardinalities for the set of values associated with the attribute. An operation has a
name, a visibility and a set of parameters, each of which also has a name, a type and
the multiplicity information for the set of values associated with the parameter.

Relationships and instantiation: Classes can be instantiated in other classes as at-
tributes. In Object-Z, instantiation is used as a mechanism for modeling relationships

OZNamedElement

name : String

GivenType

SchemaType

BasicType

CartesianType

OZType

0..n

0..1

0..n

0..1

OZTypedElement

0..1

+type

0..1

OZClass PolimorphicType

0..n

0..n+sub

0..n

0..n
1

0..n

+super

1

0..n

Natural
<<BasicType>>

Integer
<<BasicType>>

Visibi li tyKind
<<enumeration>>

ParameterKind
<<enumeration>>

Boolean
<<BasicType>>

OZValue

Enumeration
Li teral

EmunerationType

0..n

0..1

0..n

0..1

452 S.-K. Kim, D. Burger, and D. Carrington

between objects, which in UML is modeled using a separate modeling construct, As-
sociation. Objects that instantiate other classes as their attributes (RelationshipAttrib-
ute) can refer to the objects of the instantiated classes. The values of these attributes
are object-identities of the referenced objects. Each relationship attribute has an at-
tribute (isContainment) specifying whether the referenced objects are owned by their
referencing object (a containment relationship).

Inheritance: Classes in Object-Z can be used in defining other classes by inheritance.
A class can inherit from several classes (multiple inheritance). In the Object-Z meta-
model, inheritance is defined with an association between classes.

2.2 A implified UML Metamodel

Figure 3 presents class modeling constructs in UML. In this paper, we are concerned
with only a subset of the UML modeling constructs that are relevant to the discussion
of transformation with Object-Z. For a full description of the UML 2.0 metamodel re-
fer to [19].

Classes: A class in UML is a descriptor of a set of objects with common properties in
terms of structure, behavior, and relationship. Class is a kind of classifier whose fea-
tures are attributes and operations. Attributes of a class are represented by instances of
Property that are owned by the class. Some of these attributes may represent the navi-
gable ends of binary associations. An attribute has a name, a visibility, a type, and
amultiplicity. An operation also has a name, a visibility and parameters. Each parame-

Fig. 3. A simplified UML metamodel

+ownedAttribute

Feature

isStatic : Boolean

StructuralFeatureBehavioralFeature

ParameterDirectionKind
<<enumeration>>

Generalization

isSubstitutable : Boolean

Parameter

name : String
direction : ParameterDirectionKind
lowerValue : Integer
upperValue : UnlimitedNatural

Operation

name : String
visibility : VisibilityKind
isOrdered : Boolean

*

0..1

+formalParameter*

0..1

AggregationKind
<<enumeration>>

Class

name : String
isAbstract : Boolean

1+general 1

*

1

*

+specific1

*

0..1

+ownedOperation
*

+owner 0..1

Property

name : String
aggregation : AggregationKind
lowerValue : Integer
upperValue : UnlimitedNatural
visibility : VisibilityKind
isOrdered : Boolean

*

0..1

*+owner

0..1

Association

0..1

2..n

+association 0..1

+memberEnd 2..n *

0..1

+ownedEnd
*

0..1

DataType

PrimitiveType

Enumeration

VisibilityKind
<<enumeration>>

S

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 453

ter of an operation has a name and a given type. Attributes and operations have a visi-
bility. Visibility in UML can be private, public, or protected.

Associations: In UML, relationships between classes are represented as associations.
An association specifies a semantic relationship that can occur between typed in-
stances. It has at least two ends represented by properties, each of which is connected
to the type of the end. When a property is owned by an association, it represents a
non-navigable end of the association. In this case the property does not appear in the
namespace of any of the associated classifiers. When a property at an end of an asso-
ciation is owned by one of the associated classifiers, it represents a navigable end of
the association. In this case the property is also an attribute of the associated classi-
fier. Only binary associations may have navigable ends. A property of an association
has attributes indicating whether the property has an aggregation (aggregation) and if
it is compositionally aggregated (isComposite).

Generalizations: In UML, a generalization is a taxonomic relationship between a
more general class and a more specific class. Each instance of the specific class is
also an indirect instance of the general class. Thus, the specific classifier inherits the
features of the more general class. An attribute, isSubstitutable, indicates whether the
specific class can be used wherever the general class can be used.

3 Transformation Environment

Sendal and Kozaczynski [20] identify a number of challenges in model transforma-
tion. Most importantly, defining a model transformation requires a clear understand-
ing of the abstract syntax and the semantics of both the source and target models. In
the metamodel-based approach, each modelling notation is precisely defined in terms
of its metamodel (using the OMG’s MOF). Model transformations are then defined in
terms of the relationship between a source MOF metamodel and a target MOF meta-
model. Previously the authors defined a set of formal mapping functions between Ob-
ject-Z and UML 1.4 based on their metamodels [9]. We implement these formal map-
ping functions using a transformation language in a MDA development environment.
This section covers background information of the implementation.

3.1 DSTC Transformation Language Overview

In 2002, OMG issued a Queries, Views and Transformations (QVT) Request For Pro-
posals (RFP) [17] and is currently in the process of selecting a standard MDA model
transformation language. Several proposals have been submitted to the request. The
Distributed Systems Technology Centre (DSTC)’s transformation language [3] is one
of them and is used in this paper to define mappings between UML and Object-Z.

Figure 4 illustrates how an Object-Z model is transformed into a UML model using
the DSTC’s transformation language. At the meta-level, we have four metamodels:
the UML metamodel, an Object-Z metamodel, a Transformation metamodel defining
the concepts in the DSTC’s trans-formation language and a Tracking metamodel de-
fining the mapping relationships between model elements in Object-Z and UML. The
diagram in Figure 5 is a Tracking metamodel used in our work.

454 S.-K. Kim, D. Burger, and D. Carrington

Fig. 4. Model Transformation with the DSTC’s Transformation Language

For example, an Object-Z class maps to a UML class, an Object-Z attribute maps
to a UML attribute, an Object-Z operation maps a UML operation and an Object-Z at-
tribute modelling a relation maps to an association in UML. Since both the languages
share common concepts in object technology, mappings between these two languages
are mostly straightforward.

Fig. 5. Tracking model for UML and Object-Z

At the model-level, an Object-Z model (an instance of the Object-Z metamodel)
and a transformation model are input to a transformation engine. The transformation
model includes a set of transformation rules specifying how to convert an Object-Z
element into a UML model element. These rules are based on the mapping relation-

Transformation Engine

Input Output

A UML model

MOF
metamodel

UML
metamodel

Object-Z
metamodel

Transformation
metamodel

A Object-Z
model

A Transformation
model (Rules)

Tracking metamodel
(Between Object...

UMLToOZ
Tracking model

Meta-Level

Model-Level

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 455

ships defined in the Tracking metamodel. Then the transformation engine populates a
target UML model based on the source model according to the transformation rules.
During the transformation, a tracking model is created and used to store correspon-
dences between source elements and target elements. These correspondences can then
be used to link transformation rules together. For example, the OZClassToUMLClass
tracking class records the corresponding UML class for each Object-Z class. This is
stored so that the UML class generated from a particular Object-Z class can be looked
up from other transformation rules. For example, a UML operation generated for an
Object-Z operation can be inserted into the right UML class by querying the tracking
model.

The DSTC’s transformation language consists of three major concepts: pattern
definitions, transformation rules, and tracking relationships [3]:

• Pattern definitions can be used to define common structures to be reused through-
out a transformation.

• Transformation rules are used to describe the elements to be created in a target
model based on the elements in a source model. Transformation rules can be ex-
tended or superseded allowing for modularity and reusability.

• Tracking relationships are used to associate target elements with the source ele-
ments that led to their creation, important for rule reuse.

Currently the DSTC’s Transformation language uses a concrete syntax in the style
of SQL [3]. An example transformation rule (OZSpec2UMLModel) in the DSTC
transformation language is given below. It simply maps each Object-Z specification
to a UML Model. Line 1 declares the rule name and variables to be used in the rule.
Lines 2 and 3 then express that for each Object-Z specification found in the source
model (FORALL statement), a UML Model should be created in the target model
(MAKE statement). Line 4 preserves the tracking relationship between the UML
Model that was created and the Object-Z specification it was created from. This is
done by using a LINKING...WITH statement and setting the ozspec and umlmodel
references of the tracking model class OZSpecToUMLModel (see Figure 5). This
tracking will allow other rules to find the corresponding UML Model for an OZ speci-
fication. We present other rules in detail in Section 4.

1 RULE OZSpec2UMLModel(ozs, umlm)
2 FORALL OZSpecification ozs
3 MAKE Model umlm
4 LINKING OZSpecToUMLModel WITH ozspec = ozs, umlmodel = umlm;

3.2 Model Transformation Tool Environment

Figure 6 shows the overall tool architecture used in our work. The Eclipse Platform
[5] is a universal tool platform – an IDE that allows tool developers to add functional-
ity through tool plug-ins. It is used as a tool integration environment for transforma-
tion. The plug-ins we use are: EMF [7] and Tefkat [2].

3.2.1 Eclipse Modeling Framework (EMF)
EMF is a Java framework for building applications based on simple class models [7].
It allows developers to turn the models into customizable Java code. EMF plays a

456 S.-K. Kim, D. Burger, and D. Carrington

very important role in our transformation tool architecture as it is used to construct the
metamodels and instances that are used as input to the Tefkat Transformation Engine.

Fig. 6. Tool Architecture used in this work

The metamodels for Object-Z and UML defined using EMF are Ecore models (e.g.
the Object-Z metamodel Object-Z.ecore, the UML metamodel UML2.ecore2, and the
Tracking metamodel OZToUMLTracking.ecore), which then allows the automatic
generation of an editor to create Object-Z (instance) models, stored in XMI format, to
be transformed into UML. The Ecore language used to create models in EMF is a
core subset of the OMG’s MOF [16] that provides a common basis of models in the
MDA. However, to avoid any confusion, the MOF-like core meta model in EMF is
called Ecore. In fact, EMF can generate an Ecore model from Rational Rose (.mdl
file), which is the approach taken in this paper to construct the Object-Z metamodel.
Alternatively, we could create an Ecore model using an EMF supporting tool such as
Omondo EclipseUML [6] which is a visual modelling tool that allows users to visu-
ally create and edit both UML and Ecore models, or from XML schema and other
inputs.

Figure 7 shows the editor generated by EMF from the Object-Z metamodel pre-
sented in Section 2.1. When we click on the right button at the top of the tree editor,
we can see all the model elements definable at the Object-Z specification level such
as classes and data types. To create an Object-Z class instance, we simply choose
Class from the list and fill in properties such as name in the property window. Once
an instance of an Object-Z class is created, we can define attributes and operations us-
ing the editor. Once an Object-Z instance specification is created, EMF will generate
an output in XMI that is an input to the Tefkat transformation engine. The example
Object-Z model created using the editor in Figure 7 specifies a key system containing
four classes resulting in the KeySystem.oz file. To view the Object-Z model in its
concrete syntax (see Figure 8), we need to map the abstract syntax to a concrete syn-
tax such as [21]. This work is under investigation.

2 In this work, we use the UML2.ecore file supplied by the UML2 project [22].

Open Open

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 457

3.2.2 Tefkat Transformation Engine
Tefkat is DSTC’s prototype model transformation engine [2]. It is built on EMF, in
that it works with Ecore models and corresponding XMI instances, and implements
the DSTC’s transformation language [3].

Fig. 7. Object-Z editor generated by EMF Fig. 8. Object-Z model in its concrete syntax

The user creates a Tefkat project containing the required Object-Z and UML
metamodels, Object-Z source model, transformation rules file and possibly a tracking
model. Tefkat includes a configuration editor which is used to create a configuration
file specifying the locations of the required files. The transformation is set to run
automatically each time the project is updated, creating a target UML instance. Tefkat
also provides a textual editor for transformation rule files (.qvt), which highlights syn-
tax and dynamically reports any syntax errors in the Eclipse Problems View.

4 Transformation Rules from Object-Z to UML

In this section, we describe how to convert Object-Z constructs to UML constructs us-
ing the DSTC transformation language and its Transformation Engine. The mapping
is based on the metamodels of Object-Z and UML, and the tracking model defined in
previous sections. Currently the DSTC’s transformation language does not support bi-
directional transformations [3]. For this reason, in this paper we define a set of trans-
formation rules from Object-Z to UML, but the rules will be readily redefined when
the transformation language supports the bi-directional feature.

458 S.-K. Kim, D. Burger, and D. Carrington

4.1 Transformation Rule for Object-Z Classes

Semantically, an Object-Z class represents a set of objects of that class. This seman-
tics is the same as that of a UML class, so we convert an Object-Z class to a UML
class. The OZClass2UMLClass rule implements this mapping by creating a UML
class for each OZClass. Line 5 declares the rule name and variables to be used in the
rule. Line 7 introduces a WHERE...LINKS statement. This is the way in which the
tracking relationship created in the OZSpec2UMLModel rule presented in Section 3.1
can be queried in order to find the correct UML model into which to place the created
UML Class. Lines 7 and 8 effectively find the Object-Z specification that is contain-
ing the source Object-Z class (ozc.owner), and then look up and store the correspond-
ing UML model (umlm) for use later in the rule. Line 9 creates the target UML class,
while Line 10 introduces a SET statement, which is used to set the attributes and ref-
erences of created target elements. In this case, the UML class name is set to the same
name as the Object-Z class, and the UML class is added to the UML model. Note that
umlc is being added to the ownedMember collection of the UML model, umlm3. Line
11 preserves the tracking relationship, also storing the corresponding Object-Z speci-
fication and UML model as these will be used in other rules.

5 RULE OZClass2UMLClass(ozs, umlm, ozc, umlc)
6 FORALL OZClass ozc
7 WHERE OZSpecToUMLModel LINKS ozspec = ozs, umlmodel = umlm
8 AND ozc.owner = ozs
9 MAKE Class umlc
10 SET umlc.name = ozc.name, umlm.ownedMember = umlc
11 LINKING OZClassToUMLClass WITH ozclass = ozc, umlclass = umlc,

ozspec = ozs, umlmodel = umlm;

4.2 Transformation Rule for Object-Z Operations

Each Object-Z operation is converted to a UML operation. The OZOpera-
tion2UMLOperation rule implements this mapping. This rule has a similar structure
to OZClass2UMLClass, except that a UML Operation is created for each OZOpera-
tion and placed inside the correct UML Class (Line 19). However, the rule is different
in that it demonstrates the use of two patterns in Lines 14 and 16. Many rules pre-
sented in this paper need to find the corresponding UML class for an Object-Z class.
The lookupClass pattern on Line 21 simplifies this by defining the common
WHERE...LINKS statement as a pattern so that it can be used in many rules. Also the
pattern convertVisibility in Line 24 matches visibilities in both languages and it is
used in the rules presented in this paper4.

12 RULE OZOperation2UMLOperation(ozc, umlc, ozo, umlo, vis)
13 FORALL OZOperation ozo
14 WHERE lookupClass(ozc, umlc)
15 AND ozo.owner = ozc
16 AND convertVisibility(ozo.visibilityKind, vis)
17 MAKE Operation umlo
18 SET umlo.name = ozo.name, umlc.ownedOperation = umlo,

umlo.visibility = vis

3 In the DSTC transformation language the syntax is the same for setting the value of a single-

valued attribute or reference as it is for adding an element to a collection.
4 Due to the page limits, we omit details of some pattern definitions.

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 459

19 LINKING OZOpToUMLOp WITH ozop = ozo, umlop = umlo,
 ozclass = ozc, umlclass = umlc;

20 // look up correct UML classes
21 PATTERN lookupClass(ozc, umlc)
22 WHERE OZClassToUMLClass LINKS ozclass = ozc, umlclass = umlc;
23 // convert Object-Z visibility kinds into UML visibility kinds
24 PATTERN convertVisibility(ozvis, umlvis) …;

4.3 Transformation Rule for Object-Z Operation Parameters

Prior to describing the transformation of parameters, we explain how to convert data
types. While types of attributes and parameters in UML are a language-dependent
specification of the implementation types, those in Object-Z are language-
independent specification types. For this reason, we define a rule to match only those
types that are common in both languages such as Integer and Boolean (see the rule
OZBasicType2UMLPrimitiveType) and we do not define a specific rule for other data
types in Object-Z.

25 RULE OZBasicType2UMLPrimitiveType(bt, pt, ozs, umlm)
26 FORALL BasicType bt
27 WHERE OZSpecToUMLModel LINKS ozspec = ozs, umlmodel = umlm
28 AND bt.owner = ozs
29 MAKE PrimitiveType pt
30 SET pt.name = bt.name, umlm.ownedMember = pt
31 LINKING BasicTypeToPrimitiveType WITH basic = bt, prim = pt;

Due to the differences in data types in both languages, we apply different rules for
parameters with different types. OZBasicParam2UMLParam is the rule to map the pa-
rameters of Object-Z operations with basic types to UML operation parameters with
primitive types. Again, a WHERE...LINKS statement is used to find the correct UML
operation for the created UML parameter in Line 34 and 35; to check the type (using
the pattern isBasicType in Line 36); to find the correct matching UML type (using the
pattern lookupBasicType in Line 37); to find the correct matching UML parameter
kind (using the pattern convertParamKind in Line 38). Parameters in both languages
have several equivalent properties that are mapped including name, isOrdered and
upper and lower multiplicity values. The LiteralInteger and LiteralUnlimitedNatural
classes must be used to set the upper and lower multiplicity values of the UML pa-
rameter because they are the types of the lowerValue and upperValue references re-
spectively in the MultiplicityElement class of the UML2 metamodel (UML2.ecore).

32 RULE OZBasicParam2UMLParam(ozo, umlo, ozp, umlp, int, nat,
pkind, umltype)

33 FORALL OZParameter ozp
34 WHERE OZOpToUMLOp LINKS ozop = ozo, umlop = umlo
35 AND ozp.owner = ozo
36 AND isBasicType(ozp.type)
37 AND lookupBasicType(ozp.type, umltype)
38 AND convertParamKind(ozp.parameterKind, pkind)
39 MAKE Parameter umlp, LiteralInteger int,

LiteralUnlimitedNatural nat
40 SET umlp.name = ozp.name, umlp.isOrdered = ozp.isOrdered,

umlo.ownedParameter = umlp, int.value = ozp.lower,
nat.value = ozp.upper, umlp.lowerValue = int,
umlp.upperValue = nat, umlp.direction = pkind,
umlp.type = umltype;

41 // convert Object-Z parameter kinds into UML parameter kinds
42 PATTERN convertParamKind(ozparkind, umlparkind)…;
43 // match OZ basic types with UML primitive types
44 PATTERN lookupBasicType(oztype, umltype)

460 S.-K. Kim, D. Burger, and D. Carrington

45 WHERE BasicTypeToPrimitiveType LINKS basic = oztype,
prim = umltype;

46 // check Basic types
47 PATTERN isBasicType(oztype)
48 FORALL BasicType oztype;

Rules for transforming parameters with other types are very similar to this rule ex-
cept for the mapping of types. We omit these rules due to the page limits.

4.4 Transformation Rule for Object-Z Pure Attributes

Object-Z pure attributes (attributes with types that are not class types) are converted
to a UML attribute. The OZBasicPureAttr2UMLProperty rule implements the map-
ping of pure attributes with basic types, setting the name, isStatic, isOrdered, lower-
Value and upperValue properties of the created UML Property appropriately. Again a
WHERE...LINKS statement is used to find the corresponding UML class for an Ob-
ject-Z class in Line 51; to check the type in Line 52; to find the correct matching
UML type in Line54; to find the correct matching UML visibility kind in Line 55.

49 RULE OZBasicPureAttr2UMLProperty(ozc, umlc, oza, umlp, int,
nat, vis, umltype)

50 FORALL PureAttribute oza
51 WHERE lookupClass(ozc, umlc)
52 AND isBasicType(oza.type)
53 AND oza.owner = ozc
54 AND lookupBasicType(oza.type, umltype)
55 AND convertVisibility(oza.visibilityKind, vis)
56 MAKE Property umlp, LiteralInteger int,

LiteralUnlimitedNatural nat
57 SET umlp.name = oza.name, umlc.ownedAttribute = umlp,

int.value = oza.lower, nat.value = oza.upper,
umlp.isStatic = oza.isStatic, umlp.isOrdered =
oza.isOrdered, umlp.lowerValue = int, umlp.upperValue =
nat, umlp.visibility = vis, umlp.type = umltype;

4.5 Transformation Rule for Relationship Attributes

Object-Z RelationshipAttribute defines relationships between objects. This semantics
of relationship attributes in Object-Z maps to that of associations in UML. The OZ-
ConRelAttr2UMLAssoc rule implements the mapping of relationship attributes with a
containment property to UML Associations. Lines 60 - 62 are required to find the cor-
responding UML classes for the Object-Z class owning the relationship attribute and
also the Object-Z class that is the type of that attribute (oza.classType). Line 63
matches the visibility, and Lines 64 and 65 match the containment property. An Asso-
ciation and two Properties are created as a result of the transformation rule. When an
Object-Z class has a relationship attribute, the attribute is navigable by the owning
class. In this rule, the nav property represents the navigable end of the association,
while the non property is the non-navigable end. The SET statement in this rule ac-
complishes the following:

1. The name of the navigable end of the association is set to be the same as the name
of the relationship attribute.

2. The type of the navigable end is set to the UML class corresponding to the Object-
Z class that is the type of the relationship attribute.

3. The isStatic, isOrdered, lowerValue and upperValue properties of the navigable
end are matched with the corresponding properties of the relationship attribute.

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 461

4. The type of the non-navigable end is set to the UML class corresponding to the
Object-Z class that is the owner of the relationship attribute.

5. The navigable end property is added to the attributes of the UML class correspond-
ing to the Object-Z class that is the owner of the relationship attribute. This is done
because in the UML2.0 [19], a navigable end property of an association is also an
attribute of the associated UML class.

6. In UML an Association has at least two memberEnd properties representing the
ends of the association, and non-navigable ends are owned by the Association. This
is accomplished at the end of Line 67 as both association ends are added to the
memberEnd collection of the Association and the ownedEnd is set to the non-
navigable end.

7. Finally, the new association is placed in the UML model by adding it to the
ownedMember collection.

58 RULE OZContRelAttr2UMLAssoc(ozc, umlc, umlm, oza, umla, non,
nav, umlt, int, nat, vis, agg)

59 FORALL RelationshipAttribute oza
60 WHERE lookupClass(ozc, umlc)
61 AND oza.owner = ozc
62 AND OZClassToUMLClass LINKS ozclass = oza.classType,

umlclass = umlt, umlmodel = umlm
63 AND convertVisibility(oza.visibilityKind, vis)
64 AND isContainment(oza)
65 AND convertContainment(oza.isContainment, agg)
66 MAKE Association umla, Property non, Property nav,

LiteralInteger int1, LiteralUnlimitedNatural nat1,
LiteralInteger int2, LiteralUnlimitedNatural nat2

67 SET nav.name = oza.name, nav.type = umlt,
nav.isStatic = oza.isStatic, nav.isOrdered =
oza.isOrdered, int1.value = oza.lower, nat1.value =
oza.upper, nav.lowerValue = int1, nav.upperValue = nat1,
nav.visibility = vis, non.aggregation = agg,
int2.value = 0, nat2.value = 1,
non.lowerValue = int2, non.upperValue = nat2,
non.type = umlc, umlc.ownedAttribute = nav,
umla.ownedEnd = non, umla.memberEnd = nav,
umla.memberEnd = non, umlm.ownedMember = umla;

68 // check containment property
69 PATTERN isContainment(ozattr)
70 WHERE ozattr.isContainment = true;

The rule for mapping relationship attributes with a non-containment property is ba-
sically the same as this rule except for the mapping of the containment property.

4.6 Transformation Rule for Inheritance

In Object-Z, inheritance is a mechanism to incrementally extend an Object-Z model.
Sub-classes inherit all features defined in its super classes. We convert Object-Z in-
heritance to generalization in UML. The OZInherit2UMLGeneral rule achieves this
mapping. For each pair of Object-Z classes where one is a superclass of the other, a
UML Generalization is created. The lookupClass pattern is used twice to find the cor-
responding UML classes in Line 73 and 74. In the UML2.0 [19], a Generalization has
specific and general references to store the subclass and superclass respectively, and
the Generalization itself is owned by the subclass. These values are set appropriately
in the SET statement. Since inheritance in Object-Z does not support subtyping auto-
matically, we leave the isSubstitutable property of the generalization undefined.

462 S.-K. Kim, D. Burger, and D. Carrington

71 RULE OZInherit2UMLGeneral(ozc, umlc, ozg, umlg, umlgen)
72 FORALL OZClass ozc, OZClass ozg
73 WHERE lookupClass(ozc, umlc)
74 AND lookupClass(ozg, umlg)
75 AND ozc.general = ozg
76 MAKE Generalization umlgen
77 SET umlgen.specific = umlc, umlc.generalization = umlgen,

umlc.generalization.general = umlg;

4.7 Transformation Example

Figure 9 shows the target UML model generated from the example source Object-Z
model presented in Figure 8 according to the transformation rules defined in this sec-
tion. The actual output (KeySystem.uml2) is in XMI but we visualize it using a UML
class diagram.

Fig. 9. A target UML model

5 Conclusion and Future Work

This paper has presented an MDA approach to integrating formal and informal mod-
eling languages within the Eclipse tool integration environment. Using the MDA
model transformation approach, we define a metamodel of Object-Z using the MOF.
Given the metamodels of UML and Object-Z, we then define transformation rules us-
ing a transformation language, the DSTC’s Transformation Language.

The metamodel-based MDA transformation framework allows us to define trans-
formation rules precisely and explicitly, which is essential to be able to know the se-
mantic basis of the transformation, to check the completeness and consistency of the
transformation, and to provide the traceability of notations. It also allows us to have a
reusable transformation that can be applied to any models in the two languages. Fi-
nally we achieve an automatic transformation using existing tools supporting MDA.
In addition, the integrated approach with formal and informal techniques incorporates
an effective V&V mechanism into the MDA and it supports model evolution that is
concerned with correcting errors in the model.

The transformation rules presented in this paper are from Object-Z to UML. When
the transformation language supports multi-directional transformation, the rules will
be refined accordingly to support the bi-directional transformation between the two

MaterKey

Key

keyNumber : Integer

accessGranted(in rm : Room)
accessDenied(in rm : Room)

Room

locked : Boolean

Lock()
Unlock()

0..n0..n

SingleRoomKey

1

0..1

1

0..1

 An MDA Approach Towards Integrating Formal and Informal Modeling Languages 463

languages. Mapping the abstract syntax of Object-Z to its concrete syntax and con-
verting Object-Z expressions to OCL expressions are under investigation.

Acknowledgements

This research is funded by an Australian Research Council Discovery Grant:
DP0451830. We wish to thank Keith Duddy, Michael Lawley and other DSTC staff
for their assistance with their transformation language [3] and their Tefkat tool [2].

References

1. S. Dascalu and P. Hitchcock, An approach to integrating semi-formal and formal notations
in software specification, ACM symposium on Applied computing, pp. 1014–1020, 2002.

2. DSTC, Tefkat: The EMF transformation engine. http://www.dstc.edu.au/Research/Projects/
Pegamento/tefkat/index.html

3. DSTC Transformation Language, MOF query/views/ transformations: Second revised sub-
mission, 2004. http://www.omg.org/docs/ad/04-01-06.pdf

4. R. Duke and G. Rose, Formal Object-Oriented Specification Using Object-Z, Macmillan,
2000.

5. Eclipse Foundation. http://www.eclipse.org/
6. EclipseUML, Omondo http://www.eclipsedownload.com/
7. EMF, The eclipse modeling framework. http://download.eclipse.org/tools/emf/scripts/

docs.php?doc=references/overview/EMF.html
8. R. France, J. Wu, M. M. Larrondo-Petrie, and J.-M. Bruel, A Tale of Two Case Studies:

Using Integrated Methods to Support Rigorous Requirements Specification, Proc. BCS
FACS Methods Integration Workshop, 1996.

9. S-K. Kim and D. Carrington, A Formal Mapping between UML Models and Object-Z
Specifications, ZB2000, LNCS 1878, pp. 2-21, 2000.

10. S-K. Kim, A Metamodel-based Approach to Integrate Object-Oriented Graphical and For-
mal Specification Techniques, PhD Thesis, ITEE, The University of Queensland, 2002.

11. R. Laleau and F. Polack. Coming and going from UML to B: A proposal to support trace-
ability in rigorous IS development. Proc. ZB’2002, LNCS 2272, pp. 517–534, 2002.

12. K. Lano, D. Clark and K. Androutsopoulos, UML to B: Formal Verification of Object-
Oriented Models, Proc. IFM’04, LNCS 2999, pp. 187 - 206 2004.

13. J. Lilius and I. P. Paltor, Formalizing UML state machines for model checking, Proc.
UML'99, LNCS 1723, pp. 430-445, 1999.

14. W. McUmber and B. Cheng. A General Framework for Formalizing UML with Formal
Languages. in IEEE Conference on Software Engineering, pp. 433–442, 2001.

15. M. Y. Ng and M. Butler. Tool Support for Visualizing CSP in UML. Proc. ICFEM’02,
LNCS 2495, pp. 287–298. 2002.

16. OMG, Meta Object Facility (MOF),1.4, OMG Document ad/02-04-03, 2002.
17. OMG, MOF 2.0 Query/Views/Transformations RFP, OMG Document ad/02-04-10, 2002.
18. OMG, MDA Guide Version 1.0.1, 2003. http://www.omg.org/docs/omg/03-06-01.pdf
19. OMG, UML 2.0 Superstructure Specification, OMG Document ptc/03-08-02.

http://www.omg.org/docs/ptc/03-08-02.pdf, 2003.
20. S. Sendall and W. Kozaczynski, Model Transformation: The Heart and Soul of Model-

Driven Software Development, IEEE Software, pp. 42-45, Sep/Oct 2003.

464 S.-K. Kim, D. Burger, and D. Carrington

21. J. Sun, J. S. Dong, J. Liu, and H. Wang. Z family on the web with their UML photos.
http://nt-appn.comp.nus.edu.sg/fm/zml/

22. UML2, The eclipse UML2 project. http://www.eclipse.org/uml2/
23. R. Wieringa, E. Dubois, and S. Huyts. Integrating Semi-formal and Formal Requirements.

in Advanced Information Systems Engineering, LNCS 1250, pp. 19-32, 1997.

	Introduction
	Background Information
	Object-Z Metamodel
	A implified UML Metamodel

	Transformation Environment
	DSTC Transformation Language Overview
	Model Transformation Tool Environment

	Transformation Rules from Object-Z to UML
	Transformation Rule for Object-Z Classes
	Transformation Rule for Object-Z Operations
	Transformation Rule for Object-Z Operation Parameters
	Transformation Rule for Object-Z Pure Attributes
	Transformation Rule for Relationship Attributes
	Transformation Rule for Inheritance
	Transformation Example

	Conclusion and Future Work
	Acknowledgements
	References

