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ABSTRACT: 
 
In this paper, we describe the evaluation of a method for building detection by the Dempster-Shafer fusion of LIDAR data and 
multispectral images. For that purpose, ground truth was digitised for two test sites with quite different characteristics. Using these 
data sets, the heuristic model for the probability mass assignments of the method is validated, and rules for the tuning of the 
parameters of this model are discussed. Further we evaluate the contributions of the individual cues used in the classification process 
to the quality of the classification results. Our results show the degree to which the overall correctness of the results can be improved 
by fusing LIDAR data with multispectral images. 
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1. INTRODUCTION 

1.1 Motivation and Goals 

The high potential of LIDAR data for automatic building 
detection has been shown in the past, e.g. (Rottensteiner et al., 
2004). Building detection essentially is a classification of the 
input data to separate points situated on buildings from those on 
other objects. The main problem in this task is to distinguish 
buildings from trees. Surface roughness parameters can be 
determined from LIDAR data, but as the resolution of the 
LIDAR data decreases, the classification becomes more critical 
in areas where the appearance of trees and buildings in the data 
is similar. To assist in overcoming this problem, the height 
differences between the first and the last echoes of the laser and 
multi-spectral images can be used as additional data sources to 
improve the classification results.  
 
In our previous work, we have presented a method for fusing 
first and last pulse LIDAR and multispectral image data based 
on the theory of Dempster-Shafer (Rottensteiner et al., 2004). It 
could be shown that the algorithm delivered very good results 
for an urban test site. However, several questions remained. 
How does the method perform with data acquired from sensors 
having other characteristics? How general are the assumptions 
taken on the model of the probability masses? How is the 
tuning of the parameters dependent on the input data? How do 
the individual cues used in data fusion contribute to the quality 
of the classification results? How well is the NDVI suited for 
classification in shadow areas? It is the goal of this paper to 
give answers to these questions, based on a thorough evaluation 
of our method using two data sets of quite different character-
istics. We will also describe how the method was improved 
based on the experience gained in the course of this project. 

1.2 Related Work 

Building detection starts with the generation of a coarse digital 
terrain model (DTM) from the digital surface model (DSM) 
provided by the LIDAR data, e.g. by morphologic filtering 
(Brunn and Weidner, 1997), or by hierarchic robust linear 
prediction (Rottensteiner and Briese, 2002). A further 
classification must separate points on buildings from points on 
trees and other objects by evaluating the local surface 
roughness and other cues. With multi-spectral images, the 
normalised difference vegetation index (NDVI) is well-suited 
for classification in this context (Rottensteiner et al., 2004).  
 
Various classification techniques have been applied for building 
detection, e.g., unsupervised classification (Haala and Brenner, 
1999), rule-based classification (Rottensteiner and Briese, 
2002), Bayesian networks (Brunn and Weidner, 1997), and 
fuzzy logic (Vögtle and Steinle, 2003; Matikainen et al., 2003). 
The probabilistic approaches among the cited ones face the 
difficulty of having to model all a priori probabilities, which is 
problematic if the assumption of a normal distribution of the 
data vectors is unrealistic. The theory of Dempster-Shafer can 
help overcome these problems as its capability to handle 
incomplete information gives us a tool to reduce the degree to 
which we have to make assumptions about the distribution of 
our data (Klein, 1999; Rottensteiner et al., 2004). 
 
Vögtle and Steinle (2003) evaluated their method for building 
detection using two test data sets of 1 m resolution and achieved 
detection rates of 93% and 96%, respectively. The authors state 
that the classification accuracy decreases with the building size, 
without quantifying this effect. Matikainen et al. (2003) used 
LIDAR data for building change detection. Their method 
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detected 90% of all building pixels in a reference map, with a 
false-alarm rate of 20%. For buildings larger than 200 m2, 
completeness and correctness are 91% and 84%, respectively; 
the respective values for buildings smaller than 200 m2 are 
42.1% and 34.9%. A minimum percentage of overlap of 70% is 
required for a building to be classified as “correctly identified”.  
 
Vosselman et al. (2004) first separate bare earth LIDAR points 
from other points and then further classify the other points 
according to whether they belong to buildings or trees. They 
apply their classification to the original LIDAR point clouds. 
Their results for points on buildings correspond to a 
completeness of 85% and a correctness of 92%. In their 
conclusions they state that using additional colour information 
increased the classification accuracy for buildings by 3%.  
 
1.3 The Test Data Sets 

We use two test data sets, one captured over Fairfield (NSW) 
using an Optech ALTM 3025 laser scanner, and the other over 
Memmingen (Germany) with a TopoSys scanner. Both cover an 
area of 2 x 2 km2, and both contain the first and the last echoes 
of the laser beam. The characteristics of the two test areas are 
quite different. Fairfield covers a suburban area with low 
density of development in the southwest half of the scene, 
whereas the northeast part is dominated by large industrial 
buildings. The trees are mostly Eucalypts and thus are 
evergreen. Memmingen features a densely developed historic 
centre in the north of the scene and industrial areas in the 
remainder. The Memmingen data set was captured at a time 
when the trees had hardly any foliage, so that a much larger 
proportion of last pulse points were reflected by the ground. 
The multi-spectral information was also quite different for the 
two data sets. For Fairfield, an RGB orthophoto with a 
resolution of 0.15 m was available (figure 1). We created a 
“pseudo-NDVI-image” at a resolution of 1 m, using the red 
band from the orthophoto and substituting the LIDAR intensity 
values for the infrared band. For Memmingen, geo-coded RGB 
and CIR (colour infrared) images with a resolution of 0.5 m 
were available (figure 1). The infrared bands of the data sets 
thus corresponded to different wavelengths.  
 
From the original LIDAR point clouds, DSM grids were 
interpolated for both the first and the last pulse echoes by linear 
prediction using a small degree of smoothing (Rottensteiner and 
Briese, 2002). The original point distances, the grid widths ∆ of 
the DSM grids, and the wavelengths of the infrared band used 
for computing the NDVI are shown in table 1. 
 

 Si Sc ∆ IR  nB Bp Tp 
F 1.2 1.2 1.00 1047 2424 26 17 
M 0.2 1.2 0.75 770-890 2046 17 28 

 

Table 1. Characteristics of the test datasets. F: Fairfield, M: 
Memmingen. Si, Sc: point spacing in and across flight 
direction [m]; ∆: grid width of the interpolated  
DSM [m]; IR: wavelength of the infrared band [µm]. 
nB: number of buildings digitised. Bp, Tp: percentage 
of area covered by buildings and trees [%]. 

 
Reference data were captured by digitising buildings and trees 
in the orthophotos. We chose to digitize all structures 
recognisable as buildings or trees independent of their size. 
Neighbouring buildings that are joined but are obviously 
separate entities were digitized as separate polygons. Larger 
areas covered by trees were digitised as one polygon. No 

information on single trees was captured. The numbers of 
building polygons and the percentage of the area covered by 
buildings and trees are shown in table 1. In Fairfield, the 
orthophoto and the LIDAR data correspond to different epochs. 
We thus had to exclude 49 building polygons that were only 
available in one data set from our analysis.  
 

   
 

Figure 1. Orthophotos for Fairfield (left), Memmingen (right).  
 
 

2. THE ALGORITHM FOR BUILDING DETECTION 

The input to our method is given by four data sets that have to 
be generated from the raw data by pre-processing: the two DSM 
grids corresponding to the first and the last pulse data, the 
DTM, and the NDVI. The DTM is optional because it could 
also be derived from the last pulse DSM by hierarchic 
morphologic filtering (Rottensteiner et al., 2004). As we only 
want to evaluate our classification method based on Dempster-
Shafer fusion, we chose to determine DTM grids by robust 
linear prediction (Rottensteiner and Briese, 2002).   
 
The work flow for building detection consists of three stages. In 
the first stage there are five “sensors” (classification cues) that 
contribute to a Dempster-Shafer fusion process carried out for 
each pixel of the DSM grid independently. The second stage is 
a post-classification process that aims at eliminating errors of 
the initial classification at building outlines. Morphological 
filtering of the binary “building image” eliminates small areas 
of pixels erroneously classified as building pixels. Connected 
components of building pixels are then sought, which results in 
initial building regions. The third stage of building detection is 
a Dempster-Shafer fusion process carried out on a per-building 
level to eliminate spurious initial building regions.  
 
2.1 Dempster-Shafer Fusion 

This outline of the theory of Dempster-Shafer is based on 
(Klein, 1999). We consider a classification problem where the 
input data are to be classified into n classes Cj ∈ θ. The power 
set of θ is denoted by 2θ. A probability mass m(A) is assigned to 
every class A ∈ 2θ by a “sensor” (a classification cue) such that 
m(∅) = 0, 0 ≤ m(A) ≤ 1, and Σ m(A) = 1, where the sum is to be 
taken over all A ∈ 2θ and ∅ denotes the empty set. Imprecision 
of knowledge can be handled by assigning a non-zero 
probability mass to the union of two or more classes Cj. The 
support Sup(A) of a class A ∈ 2θ is the sum of all masses 
assigned to that class. The plausibility Pls(A) sums up al 
probability masses not assigned to the complementary 
hypothesis A  of A with A ∩ A  =∅ and A ∪ A  = θ : 
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Sup( A )is called dubiety. It represents the degree to which the 
evidence contradicts a proposition. If p sensors are available, 
probability masses mi(Bj) have to be defined for all these 
sensors i with 1 ≤ i ≤  p and Bj ∈ 2θ. From these probability 
masses, a combined probability mass can be computed for each 
class A ∈ 2θ: 
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The sum in the denominator of equation 2 is a measure of the 
conflict in the evidence. As soon as the combined probability 
masses m(A) have been determined, both Sup(A) and Pls(A) can 
be computed. The accepted hypothesis Ca ∈ θ is determined 
according to a decision rule, e.g. as the class of maximum 
plausibility or the class of maximum support. 
 
2.2 Initial Land Cover Classification 

In this process, we want to achieve a per-pixel classification of 
the input data into one of four classes: buildings (B), trees (T), 
grass land (G), and bare soil (S). Five “sensors” are used for this 
purpose. In our model for the distribution of the evidence from 
each sensor to the four classes, we assume in general that each 
sensor i can separate two complementary subsets UCi and CiU  
of θ. The probability mass Pi (xi) assigned to UCi by the sensor i 
depending on the sensor output xi is assumed to be equal to a 
constant P1 for xi < x1. For xi > x2, it is assumed to be equal to 
another constant P2, with 0 ≤ P1 < P2 ≤ 1. Between x1 and x2, 
the probability mass is heuristically assumed to be a cubic 
parabola with horizontal tangents at xi = x1 and xi = x2, yielding 
a smooth transition between the probability levels P1 and P2: 
 

        ( ) ( )





















−
−

⋅−







−
−

⋅⋅−+=
3

12

1
2

12

1
121 23

xx
xx

xx
xxPPPxP ii

ii    (3) 

 

The probability mass [1 - Pi (xi)] will be assigned to class CiU . 
The combined probability masses are computed for each pixel, 
and the pixel is assigned to the class of maximum support / 
plausibility. In the following sections, we will describe this 
model and its modifications for each of the five “sensors”. We 
will also validate the model using the ground truth and show 
how the model parameters can be chosen.  
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Figure 2:  P∆H (∆H) for B ∪ T from ground truth compared to 

the theoretical model. Abscissa: ∆H [m]. 
 
2.2.1 Height differences ∆H between DSM and DTM: ∆H 
distinguishes elevated objects from others. We assign a 
probability mass P∆H = P∆H (∆H) according to the model 
described above to B ∪ T, and (1 - P∆H) to G ∪ S. The last pulse 
DSM should be used to optimise the classification accuracy for 

buildings. Figure 2 compares P∆H (∆H) derived from the ground 
truth to the theoretical model with (P1, P2) = (5%, 95%) and  
(x1, x2) = (0 m, 4 m). The theoretical model fits quite well to the 
data of both Memmingen and Fairfield. The differences for 
small values of ∆H correspond to pixels within the tree 
polygons having a last pulse return from the terrain. We 
consider the parameters given above to be generally applicable.  
 
2.2.2 Strength of surface roughness: Surface roughness R, 
i.e. the texture strength of polymorphic feature extraction 
(Förstner, 1994) applied to the first derivatives of the DSM, is 
large in areas of great variations of the surface normal vectors, 
which is typical for trees. The absolute values of R will vary 
with the scene, so that it is impossible to find values for the 
parameters of the model described by equation 3 that are 
generally applicable. The situation can be improved by a re-
parameterisation of R. Rather than using R, we characterise 
surface roughness by the percentage RP(R) of pixels for which 
the surface roughness is smaller than R. RP(R) is limited to the 
interval [0..100%]. We assign a probability mass PR = PR(RP) to 
class T, and (1- PR) to B ∪ G ∪ S. By doing so we neglect that 
large values of R might also occur at the borders of buildings 
and at step edges of the terrain. 
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Figure 3:  PR(RP) for T from ground truth compared to the 

theoretical model for Fairfield (above) and 
Memmingen (below). LP/FP: Last / First pulse data. 
Abscissa: RP [%]. 

 
Assuming that the trees correspond to the areas of maximum 
surface roughness, we can use an estimate for the percentage of 
the scene covered by trees to derive the values of the 
parameters of the model in equation 3. Denoting the percentage 
of trees by Tp, x1 can be determined so that PR(RP) = 50%. 
Using (P1, P2) = (5%, 95%) and x2 = 100% yields: 
 

      x1 = x2 – 2 · Tp     (4) 
 

Using rounded values for Tp according to table 1, this results in 
x1 = 70% for Fairfield and x1 = 50% for Memmingen. Figure 3 
compares the distribution of PR(RP) from ground truth with the 
theoretical values thus obtained. It shows that the model fits 
quite well to the last pulse data in Fairfield, with a larger 
deviation for first pulse data which is mainly caused by 
powerlines. With Memmingen, the model fits quite well to the 
first pulse data, but not so well to the last pulse data. This is 
caused by the high penetration rate of the laser pulse in this data 
set. There are many laser strikes on the ground in the forested 
areas, which means that the DSM almost corresponds to the 
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(smooth) DTM in these areas. As a consequence, we let the user 
decide whether to use first or last pulse data for computing 
surface roughness, depending on which data set represents the 
roughness of the DSM for vegetation in a better way. In 
Fairfield, we use last pulse data, in Memmingen, first pulse. 
 
2.2.3 Directedness of surface roughness: The directedness 
D of surface roughness, i.e. the texture directedness of 
polymorphic feature extraction (Förstner, 1994), is also an 
indicator for trees, but only if R differs significantly from 0; 
otherwise, D is dominated by noise. We assign a probability 
mass PD = PD(R, D) to class T, and (1- PD) to B ∪ G ∪ S. The 
same considerations with respect to using first or last pulse data 
as for R hold true. In order to decide whether R is significant or 
not, we have to compare it to a threshold Rmin. We determine 
Rmin so that Tp percent of the data have R > Rmin; thus, D will be 
considered for the Tp “roughest” pixels. We select (P1, P2) = 
(10%, 70%) and (x1, x2) = (0, 1). The lower value for P2 should 
compensate for the fact that large values for D occur with 
buildings having many small roof planes. Figure 4 shows the 
distribution of D and the theoretical values, using the same 
values for Tp as in section 2.2.2. It fits quite well for the last 
pulse data in Fairfield. There are some deviations in the 
Memmingen data set, but the model should be applicable there 
as well. The most important parameter is the estimate for Tp.  
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Figure 4:  PD (D) for T from ground truth compared to the 

theoretical model. Abscissa: D. 
 
2.2.4 Height differences ∆HFL between first and last pulse: 
∆HFL is large in areas covered by trees. We assign a probability 
mass PFL = PFL (∆HFL) to class T. However, a small value of 
∆HFL does not necessarily mean that there are no trees. That is 
why we assign the probability mass (1 - PFL) to θ  and not to  
B ∪ G ∪ S. We consider the values (P1, P2) = (5%, 95%) and 
(x1, x2) = (0 m, 4 m) to be generally applicable. Figure 5 
compares PFL (∆HFL) derived from ground truth to the 
theoretical model. The empirical curves are not quite as steep as 
the theoretical one, which is caused by large values of ∆HFL at 
building outlines. In Fairfield, the upper limit for the probability 
mass seems to be 80% rather than 95%, which is caused by 
large values of ∆HFL at powerlines.  
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Figure 5:  PFL (∆HFL) for T from ground truth compared to the 

theoretical model. Abscissa: ∆ HFL [m]. 
 
2.2.5 NDVI: The NDVI is an indicator for vegetation, thus 
for classes T and G. According to the general model described 

above, we would assign a probability mass PN = PN (NDVI) to  
T ∪ G, and (1- PN) to B ∪ S. This model has to be improved to 
consider the uncertainty of the NDVI in shadow areas. The 
NDVI is defined as the ratio between the difference and the sum 
of the infrared band IR and the red band Rd. Its standard 
deviation σNDVI can be computed from: 
 

  
( )2

22222
RdIR

IRRd RdIR
NDVI +

⋅+⋅⋅
=

σσ
σ    (5) 

 

         
 

Figure 6:  CIR image (left), NDVI (centre) and σNDVI (right). In 
the σNDVI image, white areas correspond to low σNDVI. 

 
In equation 5, σRd and σIR are the standard deviations of Rd and 
IR. They are determined by analysing the first derivatives of IR 
and Rd (Förstner, 1994). Figure 6 shows the CIR image, the 
NDVI, and σNDVI for a part of the Memmingen data set. For 
buildings with a ridge in east-west direction, the NDVI is 0.25 
in the shady roof planes and -0.1 in the sunny areas, with 
standard deviations of about ±0.1 and ±0.02, respectively. The 
NDVI suggests a strong support for classifying the roof planes 
in the shade as vegetation. This is compensated for by 
modulating the probability masses depending on σNDVI. For 
σNDVI ≥ 0.25, we assign a probability mass of 1.0 to θ, i.e., the 
NDVI will not contribute to the classification. If σNDVI < 0.25, 
PNθ = 2 · σNDVI is assigned to θ. Using PN

0 = PN (NDVI) 
according to equation 3, we assign PN = (1 – 2 · σNDVI) · PN

0 to 
class T ∪ G and PNinv =(1 – 2 · σNDVI) · (1 - PN

0) to B ∪ S.  
 
We do not have ground truth for the classes G and S, so that we 
cannot check our model for the NDVI. Given the different 
spectral characteristics of the infrared bands for the two data 
sets (cf. table 1) and the fact that the NDVI depends on the 
lighting conditions and the predominant type of vegetation, we 
think that the parameters for the model have to be determined in 
a training phase. Here we choose (P1, P2) = (10%, 90%) for 
both data sets. Further, we choose x1 and x2 to be (-0.3, 0.3) for 
Fairfield and (-0.1, 0.3) for Memmingen.  
 
2.3 Post-Classification 

We apply a rule-based technique for post-classification in order 
to eliminate single building pixels and to compensate for errors 
at the building outlines in our model for the probability masses. 
Two steps are carried out in an iterative way until a maximum 
number of iterations is reached. First, we check pixels where 
the classification is insecure due to contradicting evidence as 
indicated by a conflict K > 50%. For these pixels, we compute a 
histogram of the classes in a 5 x 5 neighbourhood. If the class 
C5x5 having the maximum number of occurrences is identical to 
the class C2 achieving the second highest score according to the 
decision rule in the Dempster-Shafer fusion (cf. section 2.1), the 
classification of the pixel is changed to C2. In the second step, 
we determine the class C3x3 having a maximum number of 
occurrences in a 3 x 3 neighbourhood of each pixel. The 
classification is changed if C3x3 is identical to C2 or if all pixels 
except the central one are assigned to C3x3. In the resulting 
binary building image, small elongated areas of building pixels 
are eliminated by morphologic opening. After that, a building 
label image is created by a connected component analysis. 
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2.4 Region-based Classification  

A second classification based on the Dempster-Shafer theory is 
applied to the initial building regions. The average height 
differences ∆Ha between the DSM and the DTM and the 
average NDVI (NDVIa) are used in the same way as ∆H and 
NDVI in the initial classification. In computing NDVIa, the 
individual NDVI values are weighted by 1/σNDVI

2. We use the 
percentage P of pixels classified as “point-like” in polymorphic 
feature extraction as an indicator for trees. We assign a 
probability mass PP = PP(P) to class T, and (1 - PP) to B ∪ G ∪ 
S. The percentage H of pixels classified as “homogeneous” in 
polymorphic feature extraction (Rottensteiner et al., 2004) is no 
longer used because it eliminates too many buildings having 
small roof planes.  
 
The mathematical model described in section 2.2 is also used 
for computing the probability masses for ∆Ha, P, and NDVIa. 
For NDVIa we choose the same model as for the NDVI. For the 
remaining sensors, we select (P1, P2) = (5%, 95%). For ∆Ha, the 
values for (x1, x2) = (1 m, 3 m) are chosen to be a bit tighter 
than for ∆H. The parameters for P depend on the average size 
of a roof plane in relation to the LIDAR resolution. They have 
to be determined in a training phase. Here, we selected (x1, x2) 
= (25%, 75%) for P. No ground truth is available for validating 
the models for P and NDVIa. The combined probability masses 
are evaluated for each initial building region, and any region 
assigned to another class than “building” is eliminated.  
 
 

3. RESULTS AND EVALUATION 

3.1 Evaluation of the Classification Results 

Figure 7 shows the results of the Dempster-Shafer classification 
after post-processing. We used the model for probability masses 
described in section 2 and eliminated all candidate regions 
smaller than 10 m2. Table 2 shows the numbers of buildings 
detected in the two data sets before and after the region-based 
classification. Region-based classification eliminates many 
false candidates in the Fairfield data set. For the Memmingen 
data set, only a few buildings are actually eliminated at that 
stage. In the initial classification, class “bare soil” mainly 
corresponds to streets, parking lots, railway lines, and bare 
fields. Step edges at the building boundaries are often classified 
as trees, an effect that is reduced but not completely eliminated 
by post-classification. Problems occurred with very small 
buildings, bridges, chimneys or other objects on top of large 
buildings, with lorries, and with power lines.  
 
In order to evaluate our method, the completeness and the 
correctness of the results were determined both on a per-pixel 
and on a per-building level using the methodology described in 
(Rottensteiner, et al., 2004). The results of the evaluation on a 
per-pixel level are also shown in table 2. In both data sets, 90% 
of the building pixels were detected. The missed buildings were 
mostly small residential buildings having roofs consisting of 
many small faces, or they were too small to be detected given 
the resolution of the LIDAR data. A slightly larger percentage 
of the pixels classified as building pixels actually correspond to 
a building. False positives mostly occur at bridges, at small 
terrain structures not covered by vegetation, and at container 
parks. Post-classification and region-based classification 
improve completeness by 5%, but decrease correctness by 
about half that amount. These numbers have to be interpreted 
with caution because they are affected by errors in the reference 

data. The orthophotos were generated using a DTM, so that 
buildings are shifted away from the nadir point of the sensor. In 
Fairfield, this can be up to 5 m for a building of 10 m in height.  
 

   
 

Figure 7.  Results of the Dempster-Shafer classification after 
post-processing for Fairfield (left) and Memmingen 
(right). Light green: grass land. Brown: bare soil. 
Dark green: trees. Red: buildings. 

 

 Bi Bf Cpi / Cri [%] Cpf / Crf [%] 
F 2019 1737 84.8 / 96.0 90.2 / 93.3 
M 2124 2102 85.0 / 94.2 90.1 / 91.9 

 

Table 2.  Bi/Bf: Number of buildings before / after region-based 
classification. F / M: Fairfield / Memmingen. Cpi / Cri 
and Cpf / Crf: completeness / correctness for building 
pixels with and without region-based classification.  
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Figure 8.  Completeness and correctness of the detection results 

as a function of the building size [m2] for Fairfield 
(above) and Memmingen (below). 

 
For the evaluation on a per-building basis, a building in the 
reference data set is counted as a true positive if at least 50 % of 
its area is covered by buildings detected automatically and vice 
versa (Rottensteiner et al., 2004). Figure 8 shows the 
completeness and correctness for buildings depending on the 
building size. In Fairfield, buildings larger than 100 m2 can be 
detected reliably, with both completeness and correctness being 
larger than 90%. Our algorithm could detect 80% of the 
buildings with an area between 50 m2 and 100 m2, and the 
majority of buildings with an area between 30 m2 and 50 m2 
could still be detected. Buildings smaller than 30 m2 were not 
detectable. With Memmingen, a greater percentage of smaller 
buildings could be detected, at the cost of a somewhat higher 
ratio of false positives with an area of 30 m2 to 50 m2. False 
positives are eliminated by region-based classification in 
Fairfield, but not in Memmingen. Looking at the cumulative 
completeness / correctness, we can say that 95% of all 
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buildings larger than 40 m2 (Fairfield) and 20 m2 (Memmingen) 
could be detected, whereas 95% of all detected buildings larger 
than 50 m2 (Fairfield) and 70 m2 (Memmingen) were correct.  
 
3.2 Contributions of the Individual Classification Cues 

In order to evaluate the contributions of the individual sensors 
to the accuracy of building detection, we apply our method for 
building detection to four different combinations of sensors. In 
the variant LP, we only use last pulse LIDAR data, thus only 
the three cues ∆H, R, and D are used. In Memmingen, the 
model for surface roughness has to be updated using Tp = 15% 
for the percentage of trees visible in the last pulse data. In 
variant LP+FP, we combine first and last pulse data. In variant 
LP+NDVI, we use last pulse data and the NDVI. The last 
variant uses all available data as described in section 3.1. 
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Figure 9. Correctness of the detection results in dependence of 

the building size [m2] for the four variants described 
in the text [%]. Above: Fairfield, below: Memmingen. 

 
The completeness achieved in all these variants is almost 
identical for the Fairfield data set. In Memmingen, variant LP 
performs worse than the others for buildings smaller than  
150 m2, for which 15% of the buildings between 90 m2 and  
120 m2 are missing. The other variants differ by 1% - 2% for 
buildings smaller than 40 m2, with variant LP + NDVI generally 
performing best. The correctness shows larger differences 
between the variants. In Fairfield, variants LP and LP + FP 
perform equally well. Adding the NDVI to LP increases 
correctness by about 3% for buildings larger than 100 m2, but 
by about 10% for buildings smaller than that limit. As the limits 
of classification by LIDAR data are reached, the NDVI 
substantially increases correctness. In Memmingen, variant LP 
performs worse than the others. Variants LP + FP and  
LP + NDVI perform almost equally well. Adding the first pulse 
or the NDVI to LP increases the correctness by 5% - 15%, with 
the increase growing with decreasing building size. The order 
of all variants except LP is not so obvious from figure 9. As a 
tendency, the NDVI will increase correctness by about 2% - 4% 
compared to variant LP + FP, though in some area intervals, 
variant LP + FP performs slightly better. Variant LP + NDVI 
performs equally well as the variant using all data. 
 
 

4. CONCLUSION 

We have presented a method for building detection based on 
Dempster-Shafer fusion of LIDAR data multispectral images. 
We have validated the assumptions of the model for assigning 

probability masses using two data sets comprising both 
different sensor and scene characteristics. For the pixel-based 
classification we found simple rules for setting the parameters 
of that model if an estimate for the area covered by trees is 
known. Only the parameters for the NDVI seem to require 
training. We have improved the method by considering the 
uncertainty of the NDVI and by post-classification. We have 
also evaluated the method, giving detailed quality measures on 
a per-pixel and on a per-building basis. Buildings larger than  
50 m2 could be reliably detected in both data sets. An investiga-
tion into the contributions of the individual cues showed that 
the NDVI increases the correctness by up to 15% for smaller 
buildings. First pulse data also help, though to a lesser degree.  
 
In the future, we want to improve the region-based 
classification method by investigating other cues than those 
currently in use. Our method performed well in Fairfield, but 
not so well in Memmingen. We further want to evaluate the 
sensitivity of the results with respect to the parameter settings, 
and the relation between completeness / correctness of the 
results and the resolution of the LIDAR data. 
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