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ABSTRACT: 
 
A new road classification technique from LIght Detection And Ranging (LIDAR) data is presented that relies on region growing in 
order to classify areas as road. The new method corrects some of the problems encountered with previously documented LIDAR 
road detectors. A major benefit of the new road detection method is that it can be combined with standard building detection 
techniques to detect bridges within the road network. As a consequence bridges are identified as false positive detections in the 
candidate building regions and can be removed, thus improving the obtained building mask whilst more detail is added to the final 
classification scheme seen in the road network.  Vectorisation of the detected road network is performed using a Phase Coded Disk 
(PCD) thus completing the detection and vectorisation processes. The benefits of using LIDAR data in road extraction is emphasised 
by the simple but automated creation of longitudinal profiles and cross sections from the vectorised road network. 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

1.1 Motivation and Aims 

In contrast to the well studied problem of building detection and 
reconstruction from LIght Detection And Ranging (LIDAR) 
data (Brunn and Weidner, 1997; Haala and Brenner, 1999; 
Rottensteiner and Briese, 2002; Rottensteiner, et al., 2003), the 
detection of roads from LIDAR is in its infancy (Clode et al., 
2004b). The demand for automatic road extraction is driven by 
the importance of maintaining Geographic Information Systems 
(GIS) (Fuchs et al., 1998). Road detection from remotely sensed 
data is a difficult problem that requires more research due to the 
many unsolved questions related to scene interpretation (Hinz 
and Baumgartner, 2003). Existing road extraction techniques 
are characterised by poor detection rates and the need for 
existing data and / or user interaction (Zhang, 2003; Hatger and 
Brenner, 2003). The aims of this paper are to improve current 
road detection techniques from a single data source, namely 
LIDAR data, combine building and road detection techniques to 
help identify bridges within the road network and to vectorise 
the detected road network. Additionally, the paper aims to 
highlight the need for the development of the ontology between 
spatial classes within an urban scene by introducing building 
and vegetation detection into the road detection algorithm. In 
this context, ontology is a description of the concepts and 
relationships that exist for a spatial class or a set of spatial 
classes.  
 
This section will continue with a review of related work. 
Existing road model assumptions are discussed and put in 
perspective. Section 2 describes the new approach and discusses 
differences in road model assumptions. Section 3 discusses the 
vectorisation method used, namely the Phase Coded Disk 

(PCD) and describes some benefits of using LIDAR to detect 
roads as compared with other remotely sensed data sources. 
Results from the two sample data sets are discussed in section 4 
whilst conclusions and future work are examined in section 5. 
 

1.2 Related Work 

The increased use and reliance on GIS within the spatial 
information community has stimulated research on automated 
road extraction (Hinz and Baumgartner, 2003). The extraction 
of roads from optical or RADAR imagery is a well studied 
problem summarized well by Auclair-Fortier et al. (2000) and 
by Zhang (2003). The task of road extraction from remotely 
sensed data involves two distinct steps, classification and 
vectorisation or road parameter determination. There are many 
difficulties associated with extracting roads from aerial images; 
the basic task of road extraction from LIDAR is similar to 
methods used to extract roads from other remotely sensed data.  
 
LIDAR is a relatively new technology that has the ability to 
acquire very dense point clouds in a short period of time 
(Kraus, 2002). A consequence of this infancy combined with 
the difficulty of road extraction in general, is that there have 
been relatively few attempts to extract roads from LIDAR data. 
Most attempts have required a form of data fusion to complete 
the task such as in (Hatger and Brenner, 2003). Road geometry 
parameters were estimated by combining high resolution 
LIDAR data (4 points per m2) and an existing database to derive 
the height, slope, curvature and width of the road. The road 
centreline was provided by the existing database. The centreline 
is essential to the definition of a road and was used to extract 
the other road parameters but ultimately the primary road 
definition was not provided by the LIDAR data.  
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High resolution LIDAR data was used by Rieger et al. (1999) in 
forested areas to extract road information. The roads were 
initially detected in order to generate breaklines to enhance the 
quality of the previously determined Digital Terrain Model 
(DTM). The road network was modelled by pairs of parallel 
edges that were identified using “ twin snakes”  and line and 
point feature extraction. The connection between road network 
models and DTM’ s is highlighted by Akel et al. (2003) where 
DTMs in urban areas are extracted by initially estimating the 
DTM from the road network present. The interesting model 
assumption is made that roads lie on the DTM.  
 
The success of a road extraction technique is largely dependant 
on the suitability or degree of approximation of the road model 
to adequately represent the road network being detected. As 
described by Zhang (2003) the selection of a road model is 
dependant of the appearance of a road in the sensor data. 
Auclair-Fortier et al. (2000) identified four different categories 
by which road characteristics could be classified, namely, 
spectral, geometric, topologic and contextual. It seems natural 
that a successful road detection model would address each of 
the different categories.  
 
The fact that LIDAR data is an explicit 3D data source means 
that model assumptions pertaining to each dimension are quite 
feasible. For instance, the assumption that a road network lies 
on the DTM is valid and to some extent addresses the geometric 
properties of a road. In our previous work, this geometric 
assumption was used to first filter out last-pulse LIDAR 
positions that coincided or almost coincided with the DTM 
(Clode et al., 2004b). Model assumptions relating to both 
spectral and contextual characteristics are then applied to only 
this subset of data. By means of prior knowledge, a valid range 
of acceptable laser intensity values that adequately represent the 
reflectivity of the road surface is initially determined. The 
subset is then further thinned based on this spectral criterion. A 
local point density is then calculated, whereby the number of 
points in the local neighbourhood is compared to a simple 
threshold value to find all the LIDAR strikes that fit the road 
model assumptions. Thus the contextual characteristics have 
been fulfilled. As (Clode et al., 2004b) only deals with the 
classification of roads on a pixel by pixel basis, the topologic 
characteristics have been ignored in the model assumptions. The 
results presented were very promising but the authors 
highlighted some deficiencies in their model assumptions, 
especially with bridges, where the definition of the “ terrain”  is 
ambiguous. Interestingly, bridges were also noticed to be an 
error source in building detection, because they are higher than 
the DTM (if the DTM is defined to represent the lowest terrain 
surface) and have a smooth surface (Rottensteiner et al., 2003). 
This ambiguity is inherent in the definition of a bridge: on the 
one hand, bridges are man-made objects similar to buildings, 
and on the other hand, they are part of the road network. The 
paper presented here highlights this relationship between road 
and building detection and questions whether one can be 
performed successfully without the other.  
 
The second problem in road extraction is vectorisation. One of 
the most common techniques used in vectorisation is the Hough 
or Radon Transform (Duda and Hart, 1972). Roads appear as 
either relatively thin lines in low resolution data or as two-
dimensional areas with both width and length, in high 
resolution data. As LIDAR data is classified as high resolution 
in this context, the centre line of the road can not be extracted 
directly as the centreline is not the longest line in the image 
(Clode et al., 2004a). Scale space methods have been used to 
reduce this effect. The Phase-Coded-Disk (PCD) overcomes 
these problems as discussed in (Clode et al., 2004a) and will be 
used in this paper to vectorise the final road network. 
 

2. CLASSIFICATION OF ROADS IN CITY SCENES 

2.1 Pre-processing  

A last pulse Digital Surface Model (DSM) is created from the 
original LIDAR points using inverse distance weighting. A 
gradient image is then created by differentiating the DSM. A 
DTM is created using morphologic filtering in a hierarchical 
framework that commences by creating an initial coarse DTM 
from the one large structural element. A rule-based algorithm is 
then applied to detect large buildings in the data (Rottensteiner 
et al. 2003). A smaller structural element is used to create a 
finer DTM, but buildings detected in the previous iteration have 
there corresponding heights substituted from DTM of the 
previous iteration. The process is continued until a minimum 
size for the structural element is reached. In order to remove any 
of the residual artefacts caused by the smallest structural 
element size, the final DTM is created by re-interpolating the 
surface but excluding LIDAR points classified as “off-terrain” . 
A normalised DSM (nDSM) identifying areas that lie above the 
terrain is created: 
 
 DTMDSMnDSM −=   (1) 
 
We also compute an intensity density image Iρ according to  
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where pk is the spatial location of the grid point being 
interpolated, pj is the spatial location of the last-pulse LIDAR 
data point, d is the size of the local neighbourhood and S and S1 
are the set of all LIDAR points and all LIDAR points with the 
intensity matching the spectral properties of the road surface to 
be detected. By using the density function some of problems 
caused by noise within the intensity image as described in 
(Vosselman, 2002) can be overcome. 
 
Using the nDSM and surface roughness parameters, buildings 
are detected by a rule-based algorithm similar to (Rottensteiner, 
2003). As we shall see in section 2.2, the results of building 
detection will help to detect bridges. Vegetation is also detected 
using the algorithm described in (Clode et al., 2005). The tree 
outlines are generated from the local point density of points 
within the local neighbourhood that have registered a difference 
between the first- and last- pulse laser strikes. A more stringent 
density is required in order to classify a tree so that the 
overhanging areas over a road can still be classified as road but 
not have the road pass through the centre of the treed area. The 
detected trees will be used to determine a stopping criterion for 
region growing in the road detection algorithm. 
 
2.2 The Road Detection Algorithm 

We propose a region growing algorithm for the detection of the 
road network that assumes a similar road model to the one 
described in (Clode et al., 2004b). As pointed out in section 1.2, 
that model exploits the continuous homogeneous nature of a 
road by using the normalised local point density of LIDAR 
points that lie on or near the DTM and meet certain reflectance 
requirements in the wavelength of the ALS system. We have 
improved the original algorithm by considering the results of 
building and vegetation extraction, thus overcoming problems 
caused by bridges and by vegetation overhanging roads.  
 
The region growing algorithm scans the image for a seed point 
that meets the criteria set out in Clode et al. (2004b). The 
requirements are that the seed point must lie on or near the 
DTM and the spectral density requirements meet the required 
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percentage of the local neighbourhood. Once a valid seed point 
is identified, the region attempts to grow by testing the 
neighbouring pixels based on three criteria: (1) The percentage 
of LIDAR points in the local neighbourhood that have similar 
spectral properties must be above a certain threshold. (2) The 
pixel must not be classified as a tree and (3) the change in 
height between the current pixel and the pixel to be added to the 
region must not exceed a predefined threshold. A region will 
grow until no further pixel can be added to it. Once the region is 
complete, another seed point is sought until the image has been 
completely interrogated. 
 
On completion of a region growing, the percentage of the region 
that lies on or near the DTM compared to the overall region size 
is calculated and is accepted if it is less than as predefined 
threshold. This threshold is data dependant as the size and 
number of bridges within a road network will affect this value. 
In areas where elevated roads exist, the threshold will need to 
be set much lower to allow the region to be accepted. At this 
time the size of the grown region is also checked to ensure that 
the region is not just noise. Small regions are removed. Finally 
the size of each region is compared to its bounding rectangle 
and regions with a low area ratio are removed.  In the final road 
segments, small gaps are removed by labelling the inverse of the 
road image and removing small components. By combining the 
detected road segments and the candidate building regions, 
bridge pixels are detected where a road segment and a building 
region overlap. Groups of pixels are labelled using connected 
component analysis to ultimately identify potential bridges. 
Areas classified as bridges provide extra information about the 
detected roads, in particular in areas where a road passes over 
another road. The presence of bridges in this scenario will 
determine whether a junction is formed. Detected bridges are 
also removed from the building image. 
 

3. VECTORISATION 

3.1 The PCD 

In order to satisfy the final road characteristic set out in 
(Auclair-Fortier et al., 2000) vectorisation of the road must be 
performed. Vectorisation of the classified image can be 
achieved by using the methods described in (Clode et al., 
2004a) where a PCD (figure 1a) is convolved with the binary 
classified road image. The result of this convolution is a phase 
and magnitude image allowing the centreline, direction and 
width of the road all to be calculated. The benefit of the PCD 
over other line detection methods is that it will detect the 
centreline of a thick line (road) rather than the longest line in 
the image as in the case of the Hough or Radon Transform 
(Clode et al., 2004a).  

 
The PCD used is defined by                           where 

222 ryx ≤+ , ϑ = tan-1(y/x) and r is the radius of the disk. The 

PCD takes a convolution approach to centreline detection by 
convolving OPCD with the binary image F(x,y) of road pixels. 
Figure 1 shows a constructed PCD and how the disk will be 
overlaid on a binary road image during the convolution process. 
The result of the convolution yields a magnitude (M) and a 
phase image (P) which are defined by equation 3:  
 
        (3) 
 

 
Clode et al. (2004a) describe three important relationships that 
relate the road parameters to the convolution results: (1) the 
relationship between the centreline of the road and the peak of 
the magnitude image, (2) the width of the road and the 
magnitude image and (3) the direction of the line and the phase 
image. The magnitude can be shown to be a function of the 

width of the road as described in equation 4 at any point that 
corresponds to the centreline of the road (which is represented 
by a peak in the magnitude image). The phase at any position 
represents twice the directional angle φ of the underlying road. 
The relationships are described by Figure 1b where w is the 
width of the road, r is the radius of the PCD and φ is the 
direction of the road. 
 
       
        (4) 
 
 

 
To extract the road centrelines the magnitude image is masked 
with the binary road mask to remove noise. A seed point is 
created for the tracing algorithm at the maximum value in the 
image and the corresponding line direction is read from the 
phase image. Tracing occurs by moving through the image pixel 
by pixel ensuring that the point is still a maximum against its 
neighbours until the line ends at a pixel of zero magnitude. 
Points either side of the traced line within the calculated road 
width are zeroed as the centreline is traced to ensure that a 
similar path is not retraced. The process is completed in the 
diametrically opposed line direction to complete the line 
tracing. This process is continued until all lines have been 
traced. Neighbouring centreline segments are then joined 
according to their direction and intersection locations to ensure 
that road centrelines that were traced with more than one seed 
are represented as a single continuous road. Intersections are 
created in areas where a road join passes over another centreline 
in areas where a bridge is not present. Road edge positions are 
calculated for all points along each centreline as determined by 
the road width and direction and is described in section 3.2 in 
more detail.  
 
 

  
(a). The PCD’s phase coding (b). Detecting a line 

 

Figure 1.  The Phase Coded Disk 
 
3.2 Generation of longitudinal sections and Cross sections. 

Longitudinal profiles are obtained by sampling the DSM heights 
along the centreline at the predetermined interval. Cross-
sections are generated at every longitudinal point by obtaining 
the DSM height values along the cross section at the point. The 
cross section is calculated by first obtaining the width of the 
road and the direction of the road φ (equation 4). The road 
width is then smoothed by applying a low pass filter to the 
widths of each position on the road centreline. Cross section 
points are generated by calculating the offsets spacing at a 
direction based on the road direction plus or minus 90°. All 
offset values can then be plotted in a single cross section. 
 

4. RESULTS 

4.1 The Test Data Sets 

Two data sets are used in this paper to demonstrate the 
proposed algorithm. Both data sets are from Australia, namely 
Fairfield (NSW), and Yeronga (QLD). The average point 
density of the data sets is one point per 1.3 and 0.5 m2, 
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respectively. In order to evaluate the road classification, ground 
truth data for the road networks were obtained by manually 
digitising the roads in an orthophoto of the area. The resultant 
ground truth images are displayed in Figures 2(a) and 2(c).  
 

4.2 The Detected Road Network 

4.2.1 Classification Results: The results of the classification 
can be visually inspected in Figures 2(b) and 2(d). The 
classification results were then compared directly to the 
digitised ground truth in order to measure the success of the 
classification method. Each pixel was classified in terms of 
being true positive (TP), false negative (FN) or false positive 
(FP), and the completeness, the correctness and the quality of 
the results were determined, based on Heipke (1997), according 
to Equation 5: 
 
   Completeness 
 
 Correctness     (5) 
 
 Quality 
 
The results of the algorithm presented in this paper are 
presented in Table 1. These results can be directly compared to 
the results of the algorithm presented in (Clode et al., 2004b) as 
both the same data and ground truth were used. The results from 
this algorithm are presented in Table 2. The results of the new 
region growing algorithm appear to yield similar results than the 
algorithm described in (Clode et al., 2004b) with the additional 
benefit of not requiring a hard threshold with respect to the 
DTM. This improvement has allowed potential bridges to be 
identified in the data sets. The similarity of results was expected 
as the model assumptions were similar in both methods. 
 

 Completeness Correctness Quality 
Fairfield 0.87 0.70 0.63 
Yeronga 0.73 0.85 0.65 

 

Table 1.  Quality Results from the region growing algorithm 
 

 Completeness Correctness Quality 
Fairfield 0.86 0.69 0.62 
Yeronga 0.79 0.80 0.66 

 

Table 2.  Quality Results from the workflow in Clode (2004b) 
 
4.3 Bridges 

From the method detailed in Section 2.2 there were 5 potential 
bridges detected in the Fairfield data set and 6 potential bridges 
detected from the Yeronga data set. The spatial location of each 
detected bridge is shown in Figure 3. Each bridge has been 
labelled and identified with a blue arrow to assist the reader.  
 
A visual inspection of the Fairfield data set yielded four (4) 
bridges within the area. These bridges are labelled 1, 2, 3 and 4 
in Figure 3a and are displayed in Figure 4 to provide the reader 
with an understanding of the types and nature of bridges being 
detected. The bridge labelled 5 in the Figure 3a appears to be a 
false positive detection. From the orthophoto the area appears to 
be an elevated car park that was classified as road.  
 
After a visual inspection of the Yeronga orthophoto it was 
concluded that there were five (5) bridges in the area which 
consisted of four bridges in the road network and 1 in the 
railroad network. These bridges are labelled 6, 7, 8 and 11 in 
Figure 3b and are displayed in Figure 4. There were 2 false 
positive bridge detections. The two false positives coincide with 
detected bridges 9 and 10 and appear on either side of bridge 6. 
Differences between the DSM and DTM have caused the 

problem in these areas of sharp rises in terrain. It is anticipated 
that a more accurate DTM would fix these two false positive 
detections. In Figure 4(g) bridge 8 is the bridge in the left hand 
side of the image. On the right hand side the fourth of the road 
network bridges is found. This bridge was not detected by the 
algorithm probably because the height was too low to be 
registered as a building. Bridge 11 is a railroad bridge and this 
was not contained in the ground truth data as only roads were 
digitised. 
 

  
(a) Fairfield – Ground Truth (b) Fairfield – Detected 

  
(c) Yeronga – Ground Truth (d) Yeronga – Detected 

 

Figure 2.  Ground truth and results for both the data sets 
 

  
(a) Detected bridges in the 

Fairfield data set 
(b) Detected Bridges in the  

Yeronga data set 
 

Figure 3.  Detected Bridges 
 

(a) Bridge 1 (b) Bridge 2 (c) Bridge 3 (d) Bridge 4 

(e) Bridge 6 (f) Bridge 7 (g) Bridge 8  (h) Bridge 11 
 

Figure 4.  Manually identified bridges within the Fairfield 
(above) and Yeronga (below) data sets 

 
4.4 Building Detection 

One of the additional benefits to this method is the reduction in 
the number of false positive detections caused by bridges in the 
building image. A candidate building image is generated by the 
methods detailed in (Rottensteiner et al., 2003) (cf. Figure 5a 
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for the Yeronga data set). Figure 5b shows the updated building 
mask with the identified bridge areas removed. These buildings 
have been highlighted in the original image by the use of a red 
circle. It is an encouraging outcome of this research that no 
buildings were falsely identified as a bridge, in either data set, 
thus suggesting that the method will be effective in improving 
building detection rates. 
 

  
(a) Detected buildings without 

road detection in Yeronga 
(b) Detected buildings with 
road detection in Yeronga 

 

Figure 5.  Building detection can be improved by first 
considering the road network. 

 
4.5 Road Vectorisation and Determination of Profiles 

The vectorised centrelines of the detected roads from both data 
sets are found in Figure 6. The roads were vectorised as 
described in Section 3.1, ultimately providing a traced road 
centreline network that can be used to form longitudinal profiles 
and cross sections of the road network.  

  
(a) Vectorised road 

centrelines in Fairfield 
(b) Vectorised road 

centrelines in Yeronga 
 

Figure 6.  Vectorisation using the PCD and tracing algorithm. 
 
The vectorised network provides a good representation of the 
detected road network as shown in Figure 7. The quality of the 
vectorised centreline results are summarised in Table 3 as 
described by Wiedemann (2003). One problem area that needs 
to be worked on is the modelling of the vectorisation process at 
a round-about as described in Figure 7b. The extracted 
centrelines have been used to generate the longitudinal profiles 
and cross sections of the road network as displayed in Figure 8. 
Elevations have been taken from the last-pulse DSM. 
 

 RMS Completeness Correctness 
Fairfield 1.48 0.86 0.69 
Yeronga 1.42 0.79 0.83 

 

Table 3.  Quality results from the vectorisation process as 
described in Wiedemann (2003) with a buffer width 
of 2 metres. 

 
4.6 Discussion 

In order to analyse the results carefully, the spatial distributions 
of the results are plotted in Figure 9 displaying the TP, FN , FP 
and True Negatives (TN) pixels in yellow, blue, red and white 
respectively. Both data sets show a very good correlation 

between the detected and ground truth. The Yeronga data set is 
missing quite a few segments that are displayed in blue in 
Figure 9 and also reflected in the low completeness numbers in 
Table 1.  The reason why these sections are missing is that there 
were several small regions in each missing section that had been 
stopped because of one of the criteria. Unfortunately, each of 
these small regions did not meet the requirements for the 
minimum size and hence were removed from the detected image 
displayed in Figure 2d. 
 

  
(a) Road centrelines (portion 

of the Fairfield data set) 
(b) Vectorisation of round-

abouts 
 

Figure 7.  Vectorisation overlaid on the orthophoto. 
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(b) Cross sections along Figure 9a at 200m, 300m and 400m. 
 

Figure 8.  An example of automatically generated profiles 
 

  
(a) Fairfield  (b) Yeronga  

 

Figure 9.  Spatial distribution of errors 
 

The majority of the false positives can be attributed to carparks 
with one notable exception.  In the Yeronga data set, there is a 
long road-like structure visible on the western side of the image 
running approximately North-South. This area is actually a 
railway line that has been detected by the algorithm as it has 
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many of the same properties as a road. The detection of the 
railroad here is the reason why bridge 11 has been detected as 
displayed in Figure 3b. 
 
The automatic generation of longitudinal profiles and cross 
sections yielded surprisingly good results  as displayed in 
Figure 8. The results appear a little noisy but the noise in 
general is in the order of ±5cm which is within the working 
limits of a LIDAR system. These results could be improved by 
applying a low pass filter over the values to smooth the end 
results. The quality of the detected road width appears very 
good except in areas near intersections. This problem is 
overcome by applying a low pass filter to the widths before the 
road edges are calculated.  
 

5. CONCLUSION 

This paper highlights the complexity of extracting features from 
LIDAR data. Many spatial objects to be recognised within a 
scene have very similar traits, making it extremely difficult to 
differentiate between object classes. This paper has shown that 
by combining different detection techniques the overall quality 
of existing algorithms can be improved, thus ultimately 
providing a better city model. Future work in city model 
creation should concentrate on developing ontologies for 
objects that need to be classified within an urban scene. Once 
the ontology is defined better algorithms can be developed. 
 
Future algorithmic work will be concentrated on two distinct 
areas. Firstly the detection algorithm can be improved in 2 
ways, namely by making the algorithm more robust so that no 
detected road segments are removed when removing small noisy 
areas, and by making the algorithm less dependant on 
thresholds. Although most of the parameters are data dependant 
others need to be calculated a-priori based on the road 
properties. It would be desirable to be able to approximate these 
thresholds based on the data itself. The second major area of 
improvement that has been identified is the vectorisation model 
used in the occurrence of a round-about. The current tracing 
algorithm will enter the round-about and exit immediately and 
then do a similar thing from the other side. Due to the blanking 
nature of the algorithm, the two road components, although 
representative of their road section appear incorrectly as 
disconnected road sections.  
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