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Abstract

We assess the relationship between model size and complexity in the time-varying pa-

rameter VAR framework via thorough predictive exercises for the Euro Area, the United

Kingdom and the United States. It turns out that sophisticated dynamics through drift-

ing coefficients are important in small data sets while simpler models tend to perform

better in sizeable data sets. To combine best of both worlds, novel shrinkage priors help

to mitigate the curse of dimensionality, resulting in competitive forecasts for all scenar-

ios considered. Furthermore, we discuss dynamic model selection to improve upon the

best performing individual model for each point in time.
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1 Introduction

In contemporary econometrics, two main bearings can be found. First, simple models are

increasingly replaced by more sophisticated versions in order to avoid functional misspec-

ification. Second, due to increased data availability, small information sets become more

sizeable and models thus higher dimensional which in turn decreases the likelihood of

omitted variable bias. The goal of this paper is a systematic assessment of the relation-

ship between model size and complexity in the popular time-varying parameter vector au-

toregressive framework with stochastic volatility (TVP-VAR-SV). Our conjecture is that the

introduction of drifting coefficients can control for an omitted variable bias in small-scale

models or conversely, larger information sets can substitute for non-linear model dynam-

ics. Since recent research increasingly focuses on combining large models with non-linear

model dynamics, appropriate solutions to combine the best of both worlds are needed to

avoid overfitting and decreased predictive power.

Within a Bayesian framework, it is thus necessary to develop suitable shrinkage priors

for the TVP-VAR-SV case that overcome issues related to overfitting. In this paper we ex-

ploit the non-centered parameterization of the state space model (see Frühwirth-Schnatter

and Wagner, 2010) to disentangle the time-invariant component of the model from the

dynamic part.1 Shrinkage is achieved by modifying two global-local shrinkage priors to ac-

commodate features of the Minnesota prior (Doan et al., 1984; Sims and Zha, 1998). The

first specification proposed is a modified version of the Normal-Gamma (NG) shrinkage

prior (Griffin and Brown, 2010; 2017; Bitto and Frühwirth-Schnatter, 2016) while the sec-

ond version modifies the recent Dirichlet-Laplace (DL) shrinkage prior (Bhattacharya et al.,

2015) to cater for lag-wise sh rinkage (Huber and Feldkircher, 2017). Both priors proposed

combine recent advances on Bayesian VARs (Korobilis and Pettenuzzo, 2016) with the lit-

erature on infinite dimensional factor models (Bhattacharya and Dunson, 2011). Our prior

controls for model uncertainty by pushing higher lag orders dynamically towards zero and

in the same step applies shrinkage on the time-variation of the autoregressive coefficients

and covariance parameters. Loosely speaking, we introduce a lag-specific shrinkage pa-

rameter that controls how much lags to include and to what extend the corresponding

coefficients drift over time. This lag-specific shrinkage parameter is expected to grow at

an undetermined rate, increasingly placing more mass around zero for coefficients associ-

ated with higher lags of endogenous variables. By contrast, the standard implementations

1For recent applications of this general modeling strategy within state space models, see Belmonte et al.
(2014); Bitto and Frühwirth-Schnatter (2016); Eisenstat et al. (2016).
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of the NG and the DL priors rely on a single global shrinkage parameter that pushes all

coefficients to zero. To render computation feasible, we apply the algorithm put forward

in Carriero et al. (2016) and estimate the TVP-VAR-SV on an equation-by-equation basis.

This, in combination with the two proposed shrinkage priors, permits fast and reliable

estimation of large-dimensional models.

In an empirical exercise, we examine the forecasting properties of the TVP-VAR-SV

equipped with our proposed shrinkage priors using three well-known data sets for the Euro

area (EA), the United Kingdom (UK) and the United States (US). We evaluate the merits

of our model approach relative to a set of other forecasting models, most notably a con-

stant parameter Bayesian VAR with SV and a TVP-VAR with a weakly informative shrinkage

prior. Since the size of the information set could play a crucial role in assessing whether

time-variation is necessary, we investigate for each data set a small model that features 3

variables, a moderately sized one with 7 variables and a large model with 15 variables.

Our results are three-fold: First, we show that the proposed TVP-VAR-SV shrinkage models

improve one-step ahead forecasts. Allowing for time variation and using shrinkage priors

leads to smaller drops in forecast performance during the global financial crisis – a find-

ing that is also corrob orated by looking at model weights in a dynamic model selection

exercise. Second, comparing the proposed priors we find that the DL prior shows a strong

performance in small-scale applications, while the NG prior outperforms using larger infor-

mation sets. This is driven by the higher degree of shrinkage the NG prior provides which

is especially important for large scale applications. Last, we demonstrate that the larger

the information set the stronger the forecast performance of a simple, constant parameter

VAR with SV. However, also here the NG-VAR-SV model turns out to be a valuable alter-

native providing forecasts that are not far off those of the constant parameter competitor.

To allow for different models at different points in time, we also discuss the possibility of

dynamic model selection.

The remainder of the paper is structured as follows. The second section sets the stage,

introduces a standard TVP-VAR-SV model and highlights typical estimation issues involved.

Section 3 describes in detail the prior setup adopted. Section 4 presents the necessary

details to estimate the model, including an overview of the Markov chain Monte Carlo

(MCMC) algorithm and the relevant conditional posterior distributions. Section 5 provides

empirical results alongside the main findings of our forecasting comparison. Furthermore,

it contains a discussion of dynamic model selection. Finally, the last section summarizes

and concludes the paper.

3



2 Econometric framework

In this paper, the model of interest is a TVP-VAR with stochastic volatility (SV) in the spirit

of Primiceri (2005). The model summarizes the joint dynamics of an M -dimensional zero-

mean vector of macroeconomic time series {yt}Tt=1 as follows:2

yt = A1tyt−1 + · · ·+Aptyt−p + εt, εt ∼ N (0M ,Σt). (2.1)

The M ×M matrix Ajt (j = 1, . . . , p) contains time-varying autoregressive coefficients, εt
is a vector white noise error with zero mean and a time-varying variance-covariance matrix

Σt = HtVtH
′
t. Ht is a lower unitriangular matrix and Vt = diag(ev1t , . . . , evMt) denotes a

diagonal matrix with time-varying shock variances. The model in Eq. (2.1) can be cast in a

standard regression form as follows,

yt = Atxt + εt, (2.2)

with At = (A1t, . . . ,Apt) being an M × (pM) matrix and xt = (y′
t−1, . . . ,y

′
t−p)

′. Following

Cogley and Sargent (2005) we can rewrite Eq. (2.2) as

yt −Atxt = Htηt, with ηt ∼ N (0,Vt), (2.3)

and multiplying from the left with H̃t := H−1
t yields

H̃tεt = ηt. (2.4)

For further illustration, note that the first two equations of the system are given by

ε1t = η1t, (2.5)

h̃21,tε1t + ε2t = η2t, (2.6)

with h̃21,t denoting the second element of the first column of H̃t. Eq. (2.6) can be rewritten

as

y2t = A2•,txt − h̃21,tε1t + η2t, (2.7)

2To simplify the model exposition, we omit an intercept term in this section. Irrespectively of this, we
allow for non-zero intercepts in the empirical applications that follow.
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where Ai•,t denotes the ith row of At. More generally, the ith equation of the system is a

standard regression model augmented with the residuals of the preceding i− 1 equations,

yit = Ai•,txt −
i−1∑

s=1

h̃is,tεst + ηit. (2.8)

Thus, the ith equation is a standard regression model with Ki = pM+i−1 explanatory vari-

ables given by zit = (x′
t,−ε1t, . . . ,−εi−1,t)

′ and a Ki-dimensional time-varying coefficient

vector Bit = (Ai•,t, h̃i1,t, . . . , h̃ii−1,t)
′. For each equation i > 1, the corresponding dynamic

regression model is then given by

yit = B′
itzit + ηit. (2.9)

The states in Bit evolve according to a random walk process,

Bit = Bit−1 + vt, with vt ∼ N (0,Ωi), (2.10)

where Ωi = diag(ω1, . . . , ωKi
) is a diagonal variance-covariance matrix. Note that if a given

diagonal element of Ωi is zero, the corresponding regression coefficient is assumed to be

constant over time.

Typically, conjugate inverted Gamma priors are specified on ωj (j = 1, . . . , Ki). How-

ever, as Frühwirth-Schnatter and Wagner (2010) demonstrate, this choice is suboptimal if

ωj equals zero, since the inverted Gamma distribution artificially places prior mass away

from zero and thus introduces time-variation even if the likelihood points towards a con-

stant parameter specification. To alleviate such concerns, Frühwirth-Schnatter and Wagner

(2010) exploit the non-centered parameterization of Eqs. (2.9) and (2.10),

yit = B′
i0zit + B̃′

it

√
Ωizit + ηit. (2.11)

We let
√
Ωi denote the matrix square root such that Ωi =

√
Ωi

√
Ωi and B̃it has typical

element j given by b̃ij,t =
bij,t−bij,0√

ωij
. The corresponding state equation is given by

B̃it = B̃it−1 + uit, with uit ∼ N (0, IKi
). (2.12)

Moving from the centered to the non-centered parameterization allows us to treat the

(signed) square root of the state innovation variances as additional regression parame-
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ters to be estimated. Moreover, this parameterization also enables us to control for model

uncertainty associated with whether a given element of zit, i.e., both autoregressive coeffi-

cients and covariance parameters, should be included or excluded from the model. This can

be achieved by noting that if bij,0 �= 0 the jth regressor is included. The second dimension

of model uncertainty stems from the empirically relevant question whether a given regres-

sion coefficient should be constant or time-varying. Thus, if ωjj �= 0, the jth regressor drifts

smoothly over time. Especially for forecasting applications, appropriately selecting which

subset of regression coefficients should be constant or time-varying proves to be one of

the key determinants in achieving superior forecasti ng properties (D’Agostino et al., 2013;

Korobilis, 2013; Belmonte et al., 2014; Bitto and Frühwirth-Schnatter, 2016)

Finally, we also have to introduce a suitable law of motion for the diagonal elements of

Vt. Here we assume that the vits evolve according to independent AR(1) processes,

vit = µi + ρi(vit−1 − µi) + wit, wit ∼ N (0, σ2
i ), (2.13)

for i = 1, . . . ,M . The parameter µi denotes the mean of the ith log variance, ρi is the

corresponding persistence parameter and σ2
i stands for the error variance of the relevant

shocks.

3 Prior specification

We opt for a fully Bayesian approach to estimation, inference, and prediction. This calls

for the specification of suitable priors on the parameters of the model. Typically, inverse

Gamma or inverted Wishart priors are used for the state innovation variances in Eq. (2.10).

However, as discussed above, such priors bound the diagonal elements of Ωi artificially

away from zero, always inducing at least some movement in the parameters of the model.

We proceed by utilizing two flexible global-local (GL) shrinkage priors (see Polson and

Scott, 2010) on Bi0 and ωi = (ωi1, . . . , ωiKi
)′. A GL shrinkage prior comprises of a global

scaling parameter that pushes all elements of the coefficient vector towards zero and a

set of local scaling parameters that enable coefficient-specific deviations from this general

pattern.

3.1 The Normal-Gamma shrinkage prior

The first prior we consider is a modified variant of the Normal-Gamma (NG) shrinkage prior

proposed in Griffin and Brown (2010) and adopted within the general class of state space
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models in Bitto and Frühwirth-Schnatter (2016). In what follows we let a0 = vec(A0)

denote the time-invariant part of the VAR coefficients with typical element a0j for j =

1, . . . , K = pM2. The corresponding signed squared root of the state innovation variance is

consequently denoted by ±
√
ωj or simply

√
ωj. Thus,

√
ωj crucially determines the amount

of time variation in the jth element of at.

With this in mind, our prior specification is a scale mixture of Gaussians,

a0j|τ 2aj, λl ∼ N (0, 2/λl τ
2
aj), τ 2aj ∼ G(ϑl, ϑl) (3.1)

√
ωj|τ 2ωj, λl ∼ N (0, 2/λl τ

2
ωj), τ 2ωj ∼ G(ϑl, ϑl) (3.2)

λl =
l∏

s=1

νs, νs ∼ G(cλ, dλ), (3.3)

where τ 2aj and τ 2ωj denote a set of local scaling parameters that follow a Gamma distribution

and λl is a lag-specific shrinkage parameter. Thus, if the jth element of a0 is related to the

lth lag of the endogenous variables, λl applies a lag-specific degree of shrinkage to all

coefficients associated to yt−l as well as the corresponding standard deviations
√
ωj. The

hyperparameter ϑl = ϑ/l2 also depends on the lag length of the system and controls the

excess kurtosis of the marginal prior,

p(a0j|λl) =

∫
p(a0j|τ 2aj, λl)dτ

2
aj, (3.4)

obtained after integrating out the local scaling parameters. For the marginal prior, λl con-

trols the overall degree of shrinkage. Lower values of ϑl place increasing prior mass on

zero while at the same time lead to heavy tails of p(a0j|λl). Thus, our specification implies

that with increasing lag length we increasingly place more mass on zero while maintaining

heavy tails.

In our case, we specify λl to be a lag-wise shrinkage parameter that follows a multi-

plicative Gamma process proposed in Bhattacharya and Dunson (2011),3 with cλ and dλ

denoting hyperparameters. As long as νs exceeds unity, this prior stochastically introduces

more shrinkage for higher lag orders. Note that λl simultaneously pulls all elements in a0

associated with the lth lag and the corresponding
√
ωjs to zero. This implies that if a given

lag of the endogenous variables is not included in the model, time-variation is also less

likely. However, it could be the case that a given element in a0 associated with a higher lag

3See Korobilis (2014) for a recent application of a similar idea to the TVP-VAR-SV case.
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order might be important to explain yt. In that case, the local scaling parameters introduce

sufficient flexibility to pull sufficient posterior mass away from zero, enabling non-zero

regression sign als if necessary.

On the covariance parameters h̃is,0 (i = 2, . . . ,M ; s = pM+1, . . . , Ki) and the associated

innovation standard deviations γis =
√
ωis we impose the standard implementation of the

NG prior. To simplify prior implementation we collect the v = M(M − 1)/2 free covariance

parameters in a vector h̃0 and the corresponding elements of Ω = diag(Ω1, . . . ,ΩM) in a

v-dimensional vector γ with typical elements h̃i0 and γi,

h̃i0|τ 2hi, � ∼ N (0, 2/� τ 2hi), τ 2hi ∼ G(ϑh, ϑh), (3.5)

γi|τ 2γi, � ∼ N (0, 2/� τ 2γi), τ 2γi ∼ G(ϑh, ϑh), (3.6)

� ∼ G(c�, d�). (3.7)

Here, τ 2hi and τ 2γi are local scaling parameters and � is a global shrinkage parameter that

pushes all covariance parameters and the corresponding state innovation standard devia-

tions across equations to zero. The hyperparameter ϑh again controls the excess kurtosis

of the marginal prior.

Note that this prior also captures several features of the Minnesota prior (Doan et al.,

1984; Sims and Zha, 1998) since it captures the notion that more distant lags appear to be

less relevant to predict the current value of yt. However, as opposed to the deterministic

penalty function on higher lag orders introduced in a standard Minnesota prior our model

specification entails an increasing degree of shrinkage in a stochastic manner, effectively

allowing for deviations if the data suggests it.

3.2 The Dirichlet-Laplace shrinkage prior

The NG prior possesses good empirical properties. However, from a theoretical point of

view its properties are still not well understood. In principle, GL shrinkage priors aim

to approximate a standard spike and slab prior (George and McCulloch, 1993; George

et al., 2008) by introducing suitable mixing distributions on the local and global scaling

parameters of the model. Bhattacharya et al. (2015) introduce a prior specification and

analyze its properties within the stylized normal means problem. Their prior, the Dirichlet-

Laplace (DL) shrinkage prior, excels both in theory and empirical applications, especially in

very high dimensions. Thus, for the TVP-VAR-SV it seems to be well suited given the large

dimensional parameter and state space.
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Similarly to the NG prior, the DL prior also depends on a set of global and local shrink-

age parameters,

a0j|ψaj, ξ
2
aj, λ̃l ∼ N (0, ψajξ

2
aj/λ̃

2
l ), ψaj ∼ Exp(1/2), ξj ∼ Dir(na, . . . , na), (3.8)

√
ωj|ψωj, ξ

2
ωj, λ̃l ∼ N (0, ψωjξ

2
ωj/λ̃

2
l ), ψωj ∼ Exp(1/2), ξj ∼ Dir(na, . . . , na), (3.9)

λ̃l =
l∏

s=1

ν̃s, ν̃s ∼ G(cλ, dλ). (3.10)

Hereby, for s ∈ {a, ω}, ψsj is again a set of local scaling parameters and ξsj constitutes an

auxiliary scaling parameter defined on the (K − 1)-dimensional unit simplex SK−1 = {x =

(x1, . . . , xK)
′ : xj ≥ 0,

∑K
j=1 xj = 1} with ξs = (ξs1, . . . , ξsK)

′. The lag-specific shrinkage pa-

rameter λ̃l is defined analogously to the NG prior. Our specification of the global-shrinkage

parameter differs from the original implementation by assuming that λ̃l is applied to a sub-

set of the regression coefficients only; the original variant of the prior features one single

global shrinkage coefficient. The parameter na controls the overall tightness of the prior.

Bhattacharya et al. (2015) show that if na = K−(1+ε) for ε close to zero, the corresponding

prior displays excellent theoretical shrinkage properties.

For the variance-covariance matrix we also impose the DL prior,

h̃i0|ψhi, ξ
2
hi, �̃ ∼ N (0, ψhiξ

2
hi/�̃

2), ψ2
hi ∼ Exp(1/2), ξhi ∼ Dir(nh, . . . , nh), (3.11)

γi|ψγi, ξ
2
γi, �̃ ∼ N (0, ψγiξ

2
γi/�̃

2), ψ2
γi ∼ Exp(1/2), ξγi ∼ Dir(nh, . . . , nh), (3.12)

�̃ ∼ G−1(2vnh, 1/2). (3.13)

The local shrinkage parameters ψsi and ξ2si for s ∈ {h, γ} are defined analogously to the

case of the regression coefficients described above. We let �̃ denote a global shrinkage

parameter with large values implying heavy shrinkage on the covariance parameters of the

model.

The main differences of the NG and the DL prior are the presence of the Dirichlet

components that introduce even more flexibility. Bhattacharya et al. (2015) show that

in the framework of the stylized normal means problem this specification yields excellent

posterior contraction rates in light of a sparse data generating process. Within an extensive

simulation exercise they moreover provide some evidence that this prior also works well in

practice.

Finally, the prior setup on the coefficients in the state equation of the log-volatilities

closely follows Kastner (2016). Specifically, we place a weakly informative Gaussian prior
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on µi, µi ∼ N (0, 102) and a Beta prior on ρi+1
2

∼ B(25, 1.5). Additionally, σ2
i ∼ G(1/2, 1/2)

introduces some shrinkage on the process innovation variances of the log-volatilities. This

setup is used for all equations.

4 Bayesian inference

The joint posterior distribution of our model is analytically intractable. Fortunately, how-

ever, the full conditional posterior distributions mostly belong to some well known family

of distributions, implying that we can set up a conceptually straightforward Gibbs sampling

algorithm to estimate the model.

4.1 A brief sketch of the Markov chain Monte Carlo algorithm

Our algorithm is related to the MCMC scheme put forward in Carriero et al. (2016) and

estimates the latent states on an equation-by-equation basis. Specifically, conditional on a

suitable set of initial conditions, the algorithm cycles through the following steps:

1. Draw (B′
i0, ωi1, . . . , ωiKi

)′ for i = 1, . . . ,M from N (µBi,Vi) with Vi = (Z ′
iZi +V −1

i )−1

and µBi = Vi(ZiYi). We let Zi be a T × (2Ki) matrix with typical tth row [z′
it, (Bit �

zit)
′] e−(vit/2), Yi is a T -dimensional vector with element yit e−(vit/2), and V i is a prior

covariance matrix that depends on the prior specification adopted. Note that in con-

trast to Carriero et al. (2016) who sample the VAR parameters in A0 and the elements

of H̃0 conditionally on each other, we propose to draw these jointly which speeds up

the mixing of the sampler.

2. Simulate the full history of {B̃it}Tt=1 by means of a forward filtering backward sam-

pling algorithm (see Carter and Kohn, 1994; Frühwirth-Schnatter, 1994) per equa-

tion.

3. The log-volatilities and the corresponding parameters of the state equation in Eq. (2.13)

are simulated using the algorithm put forward in Kastner and Frühwirth-Schnatter

(2014) via the R package stochvol (Kastner, 2016).

4. Depending on the prior specification adopted, draw the parameters used to construct

V i using the conditional posterior distributions detailed in Section 4.2 (NG prior) or

Section 4.3 (DL prior).
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This algorithm produces draws from the joint posterior distribution of the states and the

model parameters. In the empirical application that follows we use 30,000 iterations where

we discard the first 15,000 as burn-in.

4.2 Full conditional posterior distributions associated with the NG prior

Conditional on the full history of all latent states in our model as well as the lag-specific

and global shrinkage parameters it is straightforward to show that the conditional posterior

distributions of τ 2sj for s ∈ {a, ω} and j = 1, . . . , K are given by

τ 2aj|• ∼ GIG(ϑl − 1/2, a20j, ϑlλl), τ 2ωj|• ∼ GIG(ϑl − 1/2, ω2
j , ϑlλl), (4.1)

where • indicates conditioning on the remaining parameters and states of the model. More-

over, GIG(ζ, χ, �) denotes the Generalized Inverse Gaussian distribution with density pro-

portional to xζ−1 exp{−(χ/x + �x)/2}. To draw from this distribution, we use the algo-

rithm of Hörmann and Leydold (2013) implemented in the R package GIGrvg (Leydold

and Hörmann, 2017).

The conditional posteriors of the local scalings for the covariance parameters and their

corresponding innovation standard deviations also follow GIG distributions,

τ 2hi|• ∼ GIG(ϑh − 1/2, h̃2
hi, ϑh�), τ 2γi|• ∼ GIG(ϑh − 1/2, γ2

i , ϑh�). (4.2)

Concerning the sampling of νl, note that combining each component of the Gamma

likelihood given by p(τ 2aj, τ
2
ωj|νl, λl−1) = p(τ 2aj|νl, λl−1)×p(τ 2ωj|νl, λl−1) with the Gamma prior

p(νl) yields a conditional posterior that itself follows a Gamma distribution,

ν1|• ∼ G

{
cλ + 2ϑ1M

2, dλ +
ϑ1

2

∑

j∈A1

(τ 2aj + τ 2ωj)

}
for l = 1, (4.3)

where A1 denotes an index set that allows selecting all elements in A0 and
√
Ω associated

with the first lag of the endogenous variables. For lags l > 1, the conditional posterior is

also Gamma distributed,

νl|λl−1, • ∼ G

{
cλ + 2ϑlM

2, dλ + λl−1
ϑl

2

∑

j∈Al

(τ 2aj + τ 2ωj)

}
for l > 1. (4.4)
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Likewise, the conditional posterior of � is given by

�|• ∼ G

{
c� + 2ϑhv, d� +

ϑh

2

v∑

i=1

(τ 2hj + τ 2γj)

}
. (4.5)

4.3 Full conditional posterior distributions associated with the DL prior

We start by outlining the conditional posterior distribution of ψaj. Similar to the NG case,

Bhattacharya et al. (2015) show that ψaj and ψωj follow a GIG distribution,

ψaj|• ∼ GIG(1/2, |aj0|λ̃l/ξaj, 1), ψωj|• ∼ GIG(1/2, |
√
ωj|λ̃l/ξωj, 1). (4.6)

For the Dirichlet components, the conditional posterior distribution is obtained by sampling

a set of K auxiliary variables Naj, Nωj (j = 1, . . . , K),

Naj|• ∼ GIG(na − 1, 2|aj0|, 1), Nωj|• ∼ GIG(na − 1, 2|
√
ωj0|, 1). (4.7)

After obtaining the K scaling parameters we set ξaj = Naj/Na and ξωj = Nωj/Nω with

Na =
∑K

j=1 Naj and Nω =
∑K

j=1 Nωj.

The lag-specific shrinkage parameters under the DL prior are obtained by stating the DL

prior in its hierarchical form,

a0j|λ̃l ∼ DE(ξaj/λ̃l), ξaj ∼ Dir(na, . . . , na), (4.8)
√
ωj|λ̃l ∼ DE(ξωj/λ̃l), ξωj ∼ Dir(na, . . . , na), (4.9)

with DE(λ) denoting the double exponential distribution whose density is proportional to

λ−1e−|x|/λ. Using the same prior representation for
√
ωj and noting that p(a0j,

√
ωj|λ̃l, ξaj, ξωj) =

p(a0j|λ̃l, ξaj, ξωj)× p(
√
ωj|λ̃l, ξaj, ξωj) yields

∏

j∈Al

p(a0j,
√
ωj|λ̃l, ξωj, ξaj) = λ̃2M2

l exp

{
−λ̃l

∑

j∈Al

(
|a0j|
ξaj

+
|
√
ωj|

ξωj

)}
. (4.10)

Combining Eq. (4.10) with Eq. (3.10) for l = 1 leads to

p(ν̃1|•) ∝ ν̃
(cλ+2M2)−1
1 exp

{
−

[
dλ +

∑

j∈A1

(
|a0j|
ξaj

+
|
√
ωj|

ξωj

)]
ν̃1

}
, (4.11)
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which is the kernel of a Gamma density G
{
cλ + 2M2, dλ +

∑
j∈A1

(
|a0j |
ξaj

+
|
√
ωj |

ξωj

)}
. For

higher lag orders l > 1 we obtain

p(ν̃l|λ̃l−1, •) ∝ ν̃
(cλ+2M2)−1
l exp

{
−

[
dλ + λ̃l−1

∑

j∈Al

(
|a0j|
ξaj

+
|
√
ωj|

ξωj

)]
ν̃l

}
, (4.12)

i.e. G
{
cλ + 2M2, dλ + λ̃l−1

∑
j∈Al

(
|a0j |
ξaj

+
|
√
ωj |

ξωj

)}
.

The conditional posterior distributions of ψhi and ψγi for i = 1, . . . , v are given by

ψhi|• ∼ GIG
(
1/2, |h̃i0|/(�̃ζhi), 1

)
, ψγi|• ∼ GIG (1/2, |γi|/(�̃ζγi), 1) . (4.13)

Again, we introduce a set of auxiliary variables Nhi, Nγi,

Nhi|• ∼ GIG(nh − 1, 2|h̃i0|, 1), Nγi|• ∼ GIG(nh − 1, 2|γi|, 1), (4.14)

and obtain draws from ξhi and ξγi by using ξhi = Nhi/
∑v

i=1 Nhi and ξγi = Nγi/
∑v

i=1 Nγi.

The final component is the global shrinkage parameter on the covariance parameters

and the process innovation variances which again follow a GIG distribution,

�̃|• ∼ GIG

{
2v(nh − 1), 2

v∑

j=1

(
|hi0|
ξhi

+
|γi|
ξγi

)
, 1

}
. (4.15)

5 Forecasting macroeconomic quantities for three major economies

In what follows we systematically assess the relationship between model size and model

complexity by forecasting several macroeconomic indicators for three large economies,

namely the EA, the UK and the US. In Section 5.1, we briefly describe the different data

sets and discuss model specification issues. Section 5.2 deals with simple visual summaries

of posterior sparsity in terms of the VAR coefficients and their time-variation for the two

shrinkage priors proposed. The main forecasting results are discussed in Section 5.3. Fi-

nally, Section 5.4 discusses the possibility to dynamically select among different specifica-

tions in an automatic fashion.
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5.1 Data and model specification

We use prominent macroeconomic data sets for the EA, the UK and the US. All three data

sets are on a quarterly frequency but span different periods of time. For the euro area we

take data from the area wide model (Fagan et al., 2001) and additionally include equity

prices available from 1987Q1 to 2015Q4. UK data stem from the Bank of England’s “A mil-

lenium of macroeconomic data” (Thomas et al., 2010) and covers the period from 1982Q2

to 2016Q4. For the US, we use a subset from the FRED QD data base (McCracken and Ng,

2016) which covers the period from 1959Q1 to 2015Q1.

For each of the three cases we use three subsets, a small (3 variables), a medium (7 vari-

ables) and a large (15 variables) subset. The small subset covers only real activity, prices

and short-term interest rates. The medium models cover in addition investment and con-

sumption, the unemployment rate and either nominal or effective exchange rates. For the

large models we add wages, money (measured as M2 or M3), government consumption,

exports, equity prices and 10-year government bond yields.

To complete the data set for the large models, we include additional variables depend-

ing on data availability for each country set. For example, the UK data set offers a wide

range of financial data, so we complement the large model by including also data on mort-

gage rates and bond spreads. For the EA data set we include also a commodity price

indicator and labor market productivity, while for the US we add consumer sentiment and

hours worked. In what follows we are interested not only in the relative performance of

the different priors, but also in the forecasting performance using different information

sets. Thus we have opted to first strike a good balance between different types of data

(e.g., real, labor market and financial market data) and secondly to alter variables for the

large data sets slightly. This is done to rule out that performance between information sets

depends crucially on the type of information that is added (e.g., labor market data versus

financial market dat a).

For data that are non-stationary we take first differences, see Table A.1 in the appendix

for more details. Consistent with the literature (Cogley and Sargent, 2005; Primiceri, 2005;

D’Agostino et al., 2013) we include p = 2 lags of the endogenous variables in all models.

Before proceeding to the empirical results, a brief word on the specific choice of the

hyperparameters is in order. For the NG prior we set ϑ = ϑh = 0.1 and cλ = 1.5, dλ = 1. The

first choice is motivated by recent empirical evidence provided in Huber and Feldkircher

(2017) who integrate ϑ out of the joint posterior in a Bayesian fashion. The second choice is

not critical empirically but serves to place sufficient prior mass on values of νs above unity.
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(d) State innovation sds: NG prior

Fig. 1: Posterior means in the large model – Euro area.

Moreover, we set c� = d� = 0.01 to induce heavy shrinkage on the covariance parameters.

For the DL prior cλ and dλ are specified analogously to the NG case and na = 1/K, nh = 1/v.

Note that if na is set to larger values the degree of shrinkage is too small and the empirical

performance of the DL prior becomes much worse.

5.2 Inspecting posterior sparsity

Before we turn to the forecasting exercise we assess the amount of sparsity induced by our

two proposed global-local shrinkage specifications, labeled TVP-SV NG and TVP-SV DL. This

analysis is based on inspecting heatmaps that show the posterior mean of the coefficients

as well as the posterior mean of the standard deviations that determine the amount of

time variation in the dynamic regression coefficients. Figs. 1 to 3 show the corresponding

heatmaps. Red and blue squares indicate positive and negative values, respectively. To

permit comparability we use the same scaling across priors within a given country.
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(d) State innovation sds: NG

Fig. 2: Posterior means in the large model – UK.

We start by inspecting posterior sparsity attached to the time-invariant part of the mod-

els, provided in the upper panels of Figs. 1 to 3. We generally find that the first own lag

of a given variable appears to be important while the second lag is slightly less important

in most equations. This can be seen by dense (i.e., colored) main diagonals elements.

Turning to variables along the off-diagonal elements, i.e. the coefficients associated with

variables j �= i in equation i, we find considerable evidence that the (un)employment rate

as well as long-term interest rates appear to load heavily on the other quantities in most

country models, as indicated by relatively dense columns associated with the first lag of

unemployment and interest rates.

Equations that are characterized by a large amount of non-zero coefficients (i.e., dense

rows) are mostly related to financial variables, namely exchange rates, equity and com-

modity prices. These observations are general in nature and relate to all three countries

considered.
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(d) State innovation sds: NG

Fig. 3: Posterior means in the large model – US.

In the next step we investigate sparsity in terms of the degree of time variation of the

VAR coefficients (see the lower panels of Figs. 1 to 3). Here, we observe that, consis-

tent with the dense pattern in a0, equations associated with financial variables display the

largest amount of time-variation. Interestingly, the results suggest that coefficients in the

euro area tend to display a greater propensity to drift as compared to the coefficients of the

UK country model.

Comparing the degree of shrinkage between both the DL and the NG prior reveals that

the latter specification induces much more sparsity in large dimensional systems. While

both priors yield rather sparse models, the findings point towards a much stronger degree

of shrinkage of the NG prior. Notice that the NG prior also favors constant parameter

specifications. This suggests that in large scale applications the NG prior might be particular

useful when issues of overparametrization are more of a concern, while in smaller models

the flexibility of the DL prior might be beneficial.
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5.3 Forecasting results

In this section we examine the forecasting performance of the proposed prior specifications.

The forecasting set-up largely follows Huber and Feldkircher (2017) and focuses on the

one-quarter and one-year ahead forecast horizons and three different information sets:

small (3 variables), medium (7 variables) and large (15 variables). We use an expanding

window and a hold-out sample of 80 quarters which results into the following hold out

samples: 1995Q4-2015Q3 for the EA, 1997Q1-2016Q4 for the UK and 1995Q4-2015Q3

for the US.

Forecasts are evaluated using log predictive scores (LPSs), a widely used metric to mea-

sure density forecast accuracy (see e.g., Geweke and Amisano, 2010). We compare the NG

and DL specifications with a simpler constant parameter Bayesian VAR (BVAR-SV) and a

time-varying parameter VAR with a loose prior setting (TVP-SV) as a general benchmark.

Specifically, this benchmark model assumes that the prior on
√
ωj is given by

ωj ∼ G(1/2, 1/2) ⇔ ±
√
ωj ∼ N (0, 1). (5.1)

On a0 and for the BVAR-SV we use the NG shrinkage prior described in Section 3. For the

evaluation, we focus on the joint predictive distribution of three focal variables, namely

GDP growth, inflation and short-term interest rates. This allows us to assess the predictive

differences obtained by switching from small to large information sets. Fig. 4 summarizes

the results for the one-step-ahead forecast horizon. All panels display log predictive scores

for the three focus variables relative to the TVP-SV specification. To assess the overall

forecast performance over the hold-out sample, particularly consider the rightmost point

in the respective figures.

Doing so reveals that the time-varying parameter specifications, TVP-SV NG and TVP-SV

DL outperform the benchmark for all three countries and information sets as indicated by

positive log predictive Bayes factors. With the exception of the euro area and the small

information set, this finding holds also true for the constant parameter VAR-SV specifica-

tion. Zooming in and looking at performance differences among the priors reveals that

the TVP-SV DL specification dominates in the case of small models. The TVP-SV NG prior

ranks second and the constant parameter VAR-SV model performs worst. The dominance

of the DL prior stems from the performance during the period of the global financial crisis

2008/09. While predictions from all model specifications worsen, they deteriorate the least

for the DL specification. In particular for the EA and the UK, the dominance of the DL prior
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Fig. 4: One-quarter-ahead cumulative log predictive Bayes factors over time relative to the
TVP-SV-VAR without shrinkage. Top row: Small model (3 variables). Middle row:
Medium model (7 variables). Bottom row: Large model (15 variables).

stems mainly from improved forecast for short-term interest rates, see Figs. B.1 and B.2 in

Appendix B.

It is worth noting that in small-dimensional models the TVP-SV specification also per-

forms quite well and proves to be a competitive alternative relative to the BVAR-SV model.

This is due to the fact that parameters are allowed to move significantly with only little

punishment introduced through the prior, effectively controlling for structural breaks and

sharp movements in the underlying structural parameters. This result corroborates findings

in D’Agostino et al. (2013) and appears to support our conjecture that for small informa-

tion sets, allowing for time-variation proves to dominate the detrimental effect of the large

number of additional parameters to be estimated.

In the next step we enlarge the information set and turn our focus to the seven vari-

able VAR specifications. Here, the picture changes slightly and the NG prior outperforms

forecasts of its competitors. Depending on the country, either forecasts of the DL specifi-

cation or the constant parameter VAR-SV model rank second. For US data it pays off to
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Fig. 5: Four-quarter-ahead cumulative log predictive Bayes factors over time relative to the
TVP-SV-VAR with loose shrinkage. Top row: Small model (3 variables). Middle row:
Medium model (7 variables). Bottom row: Large model (15 variables).

use a time-varying parameter specification since – as with the small information set – the

BVAR-SV model performs worst. Finally, we turn to the large VAR specifications featuring

15 variables. Here we see a very similar picture as with the seven variable specification.

The TVP-SV NG prior yields the best forecasts with the constant parameter model turning

out to be a strong competitor. Only for US data, both time-varying parameter specifications

clearly outperform the constant parameter competitor.

We now briefly examine forecasts for the four quarter horizon displayed in Fig. 5. For

the small and medium sized models, all competitors yield forecasts that are close or worse

compared to the loose shrinkage benchmark prior model. The high degree of shrinkage

induced by the NG prior yields particularly poor forecasts, especially for observations that

fall in the period of the global financial crisis. The picture slightly reverses when consider-

ing the large-scale models. Here, all competitors easily outperform forecasts of the loose

benchmark model implying that shrinkage pays off. Viewed over all settings, the DL prior

does a fine job in balancing the degree of shrinkage across model sizes.
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5.4 Improving predictions through dynamic model selection

The discussion in the previous subsection highlighted the marked heterogeneity of model

performance over time. In terms of achieving superior forecasting results one could ask

whether there are gains from dynamically selecting models.

Following Raftery et al. (2010); Koop and Korobilis (2012); Onorante and Raftery

(2016) we perform dynamic model selection by computing a set of weights for each model

within a given model size. These weights are based on the predictive likelihood for the

three focus variables at t − 1. Intuitively speaking, this combination scheme implies that

if a given model performed well in predicting last quarters output, inflation and interest

rates, it receives a higher weight in the next period. By contrast, models that performed

badly receive less weight in the model pool. We further employ a so-called forgetting factor

that induces persistence in the model weights over time. This implies that the weights are

not only shaped by the most recent forecast performance of the underlying models but also

by their historical forecasting performance. Finally, to select a given model we simply pick

the one with the highest weight.

The predicted weight associated with model i is computed as follows

wt|t−1,i :=
wα

t−1|t−1,i∑
i∈M wα

t−1|t−1,i

, (5.2)

with α = 0.99 denoting a forgetting factor close to unity and wt−1|t−1,i is given by

wt−1|t−1,i =
wt−1|t−2,ipt−1|t−2,i∑

i∈M wt−1|t−2,ipt−1|t−2,i

.

Here, pt−1|t−2,i denotes the one-step-ahead predictive likelihood for the three focus variables

in t− 1 for model i within the model space M. Letting t0 stand for the final quarter of the

training sample, the initial weights wt0+1|t0,i are assumed to be equal for each model.

Before proceeding to the forecasting results, Fig. 6 shows the model weights over time.

One interesting regularity for small-scale models is that especially during the crisis period,

the algorithm selects the benchmark, weak shrinkage TVP-SV model. This choice, however,

proves to be of transient nature and the algorithm quickly adapts and switches back to

either the TVP-SV NG or the TVP-SV DL model. We interpret this finding to be related

to the necessity to quickly adjust to changes in the underlying macroeconomic conditions

in light of the small information set adopted. The TVP-SV model allows for large shifts

in the underlying regression coefficients whereas the specifications based on hierarchical
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Fig. 6: Model weights over time. Top row: Small model (3 variables). Middle row:
Medium model (7 variables). Bottom row: Large model (15 variables).

shrinkage priors introduce shrinkage, which excels over the full hold-out period but proves

to be detrimental during crisis episodes.

For the medium and large information set, the model weights corroborate the results

reported in the previous subsection. Specifically, we see that TVP-SV NG and TVP-SV DL re-

ceive high weights during the global financial crisis while the BVAR-SV receives large shares

of posterior probability during the remaining periods. This implies that during periods with

overall heightened uncertainty, gains from using a time-varying parameter framework are

sizable.

We now turn to the forecasting results using DMS, provided in Fig. 7. The figure shows

the log predictive Bayes factors relative to the best performing models over the whole

sample period. These correspond to those achieving the highest cumulative log predictive

Bayes factors in Fig. 4.

The results indicate that dynamic model selection tends to improve forecasts throughout

all model sizes and for all three country data sets. In particular, during the period of the

global financial crisis, selecting from a pool of model pays off. Forecast gains during the
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Fig. 7: Log predictive Bayes factor of dynamic model selection relative to the best per-
forming model over time. Top row: Small model (3 variables). Middle row: Medium
model (7 variables). Bottom row: Large model (15 variables).

crisis are more pronounced for the EA and the UK, whereas with US data forecasts are

more gradually improving over the sample period. Forecasts for the EA that are based on

the large information set are less precise during the period from 2000 to 2012 compared to

the benchmark models. This might be related to the creation of the euro which in turn has

triggered a fundamental shift in the joint dynamics of the euro area’s macro model. Due to

the persistence in the models’ weights, the model selection algorithm takes some time to

adapt to the new regime. This can be seen by investigating the latest period in the sample,

in which dynamic model selection again outperforms forecasts of the benchmark model. In

other words , for EA data either restricting the sample period to post 2000 or reducing the

persistence via the forgetting factors might improve forecasting results.

6 Conclusive remarks

In this paper we have adapted two recent global-local shrinkage priors and used them

to efficiently estimate time-varying parameter VARs of differing sizes and for three large
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economies. The priors capture convenient features of the traditional Minnesota prior, ef-

fectively pushing coefficients associated with higher lag orders as well as their propensity

to drift towards zero.

Applying the proposed priors to three different data sets, we find improvements in one-

step ahead forecasts from the time-varying parameter specifications against various com-

petitors. Allowing for time variation and using shrinkage priors leads to smaller drops in

forecast performance during the global financial crisis, while their forecasts remain com-

petitive during the rest of the sample period. This finding is further corroborated by a

dynamic model selection exercise which attaches sizable model weights to time-varying

parameter models during the period of the global financial crisis. In that sense using flexi-

ble time-varying parameter models leads to large forecast gains during times of heightened

uncertainty.

Finally, and comparing the two proposed priors, we find that the DL prior outperforms

in small-scale VARs. By contrast, the TVP-VAR equipped with a NG prior shows the strongest

performance in medium to large scale applications along with the constant parameter NG-

VAR with SV. This is driven by the fact that the NG prior induces more shrinkage on the

coefficients and pushes more strongly towards a constant parameter model and the payoffs

of more shrinkage in larger scale models are well documented. The same holds true for the

four steps ahead forecast horizon. The DL prior does a fine job in small to medium scale

models, while the merits of the NG prior play out most strongly in large models.

That said, our results also point at a trade-off between complexity (i.e., allowing for

time-varying parameters) and model size (i.e., data information). The larger the informa-

tion set, the stronger the performance of the constant parameter model. In other words,

within the VAR framework for macroeconomic time series, it is advisable to use sophisti-

cated models for small data and simple models for sizeable data. For consistently good per-

formance independently of the size of the data, we recommend to use sophisticated models

with strong shrinkage priors such as the proposed NG shrinkage prior. This alleviates the

problem of overfitting and provides a plethora of additional inferential opportunities.
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Fig. B.1: Euro Area: Univariate cumulative log predictive one-quarter-ahead Bayes factors
over time relative to the TVP-SV-VAR with loose shrinkage. Top row: Small model (3
variables). Middle row: Medium model (7 variables). Bottom row: Large model (15
variables).
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Fig. B.2: United Kingdom: Univariate cumulative log predictive one-quarter-ahead Bayes
factors over time relative to the TVP-SV-VAR with loose shrinkage. Top row: Small
model (3 variables). Middle row: Medium model (7 variables). Bottom row: Large
model (15 variables).
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Fig. B.3: United States: Univariate cumulative log predictive one-quarter-ahead Bayes
factors over time relative to the TVP-SV-VAR with loose shrinkage. Top row: Small
model (3 variables). Middle row: Medium model (7 variables). Bottom row: Large
model (15 variables).
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