
ePubWU Institutional Repository

Jan Mendling and Gustaf Neumann

Yet Another Event-driven Process Chain - Modelling Workflow Patterns with
yEPCs

Article (Published)
(Refereed)

Original Citation:
Mendling, Jan and Neumann, Gustaf (2005) Yet Another Event-driven Process Chain - Modelling
Workflow Patterns with yEPCs. Enterprise Modelling and Information Systems Architectures, 1 (1).
pp. 3-13. ISSN 1866-3621

This version is available at: http://epub.wu.ac.at/6018/
Available in ePubWU: January 2018

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the publisher-created published version. It is a verbatim copy of the publisher
version.

http://epub.wu.ac.at/

http://epub.wu.ac.at/6018/
http://epub.wu.ac.at/

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Yet Another Event-driven Process Chain 3

Jan Mendling, Gustaf Neumann, Markus Nüttgens

Yet Another Event-driven Process Chain

Modelling Workflow Patterns with yEPCs

The 20 workflow patterns proposed by van der Aalst et al. provide a comprehensive benchmark for comparing
process modelling languages. In this article, we discuss workflow pattern support of Event-Driven Process Chains
(EPCs). Building on this analysis, we propose three extensions to EPCs in order to provide for workflow pattern
support. These are the introduction of the so-called empty connector; inclusion of multiple instantiation concepts;
and a cancellation construct. As both the latter are inspired by YAWL, we refer to this new class of EPCs as Yet
Another Event-driven Process Chain (yEPC). Furthermore, we sketch how a transformation to YAWL can be used to
specify the semantics of yEPCs.

1 Motivation

The 20 workflow patterns gathered by van der Aalst,
ter Hofstede, Kiepuszewski and Barros [AHKB03] are
well suited for analyzing different workflow
languages: researchers can reference to these
control flow patterns in order to compare different
process modelling techniques. This is of special
importance considering the heterogeneity of process
modelling languages (see e.g. [MNN04]). The
patterns have been used to analyze several workflow
and business process modelling languages in order
to understand in how far they are suited to express
complex behaviour in an intuitive manner. Building
on the pattern analysis and on the insight that no
language provides support for all patterns, van der
Aalst and ter Hofstede have defined a new workflow
language called YAWL [AH05]. YAWL takes workflow
nets [Aa97] as a starting point and adds non-petri-
nets constructs in order to support each pattern
(except implicit termination) in an intuitive manner.

Besides Petri nets, Event-Driven Process Chains
(EPC) [KNS92] are another popular technique for
business process modelling. Yet, their focus is rather
related to semi-formal process documentation than
formal process specification, e.g., the SAP reference
model has been defined using EPC business process
models [KM94]. The debate on EPC semantics (see
e.g. [Ri00, NR02, ADK02]) has recently inspired the
definition of a mathematical framework for a
formalization of EPCs in [Ki04]. As a consequence,

we argue that workflow pattern support can also be
achieved by starting with EPCs instead of Petri nets.
In this article, we define an extension to EPCs that is
called Yet Another EPC (yEPC). yEPCs can be used to
model all of the workflow patterns in an intuitive
manner. As such they contribute to closing the gap
between business process modelling with EPCs and
workflow modelling with YAWL.

Before this background, the article is structured as
follows. Section 2 will give a detailed workflow
pattern analysis of EPCs. This shows that EPCs are
able to capture several patterns, yet they fail to
support state-based patterns, multiple instantiation,
and cancellation patterns. Furthermore, we highlight
the non-local semantics of the EPC XOR join, and its
implications for workflow pattern support. In Section
3, we illustrate three extensions of EPCs that are
sufficient to provide for direct support of the 20
workflow patterns. These include the empty
connector, a multiple instantiation concept, and
cancellation areas. Both the latter are adopted from
YAWL. As yEPCs and YAWL might appear to be quite
similar up to this point, we discuss sophisticated
differences between the two languages in Section 4.
These differences have to be reflected by a suitable
transformation algorithm from yEPCs to YAWL. In
Section 5, we present related research on extensions
of EPCs. Section 6 closes the article and gives an
outlook on future research.

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

4 Jan Mendling, Gustaf Neumann, Markus Nüttgens

2 Workflow Patterns and EPCs

EPCs are a modelling language to specify the
temporal and logical relationships between activities
of a business process [KNS92]. The original EPC
offers the following element types: function type,
event type, and connector type which can be linked
via control flow arcs (see Figure 1). A function
represents an activity that is executed in a process.
Events represent pre- and post-conditions of
functions. As a rule, functions and events have to
alternate. In contrast to Petri Net-based process
modelling languages, EPCs allow multiple start
events and multiple end events. In EPCs there are
three different kinds of connectors: AND, XOR, and
OR. They may be used as either join connectors
(multiple incoming, one outgoing arc) or split
connectors (one incoming, multiple outgoing arcs).
Even if there are connectors in between functions
and events, the alternation rule must hold.

Furthermore, a distinction can be made between
function-event connectors and event-function
connectors. Considering this as well as the three
connector types AND, XOR, and OR, and splits and
joins, there are 12 possible kinds of connectors. The
AND split activates all subsequent branches in
concurrency while the XOR split defines a choice to
activate one of multiple branches. The OR split
triggers one, two or up to all of multiple branches
based on conditions. In both cases of the XOR and
OR split, the activation conditions are given in
events subsequent to the connector. Accordingly,
event-function-splits are forbidden with XOR and OR
as these activation conditions do not become clear in
the model. The AND join waits for all incoming
branches to complete, then it propagates control to
the subsequent EPC element. The semantics of the
OR join have been debated as non-local – for an
overview see e.g. [Ki04]. Non-locality means that
the OR join synchronizes all incoming branches that
are active. In order to do so, it must be aware of
which branches are still active and which will never
be active. In acyclic process models such
synchronization can be achieved via dead-path-
elimination which was also proposed for EPCs
[LNS98]. Yet, cycles cannot be handled with this
approach. For an approach to resolve this problem,
see [Ki04]. The XOR split has also non-local
semantics: if there is only one branch active (which
is the expected case) it actives the subsequent EPC
element. Yet, if there are multiple branches active, it
synchronizes them and blocks [NR02]. EPCs offer
two concepts for defining decomposition of models:
hierarchical functions and process interfaces. A
hierarchical function allows pointing to another EPC
process that defines the behavior of the hierarchical
function. The linked EPC process can be regarded as

a sub-process in this context. The process interface
defines a point in an EPC process where another EPC
process is triggered. In contrast to a hierarchical
function, this triggered process does not return
control back to the process interface. In the
following we illustrate how EPCs can be used to
model workflow patterns [MNN05a]. For a more
formal approach on EPC semantics refer to Kindler
[Ki04].

Figure 1: Symbols of the EPC notation

Workflow Pattern 1 (Sequence): Figure 2 shows an
EPC model for workflow pattern 1 (sequence). In
EPCs each activity or task is modelled as a so-called
function symbolized by rounded rectangles.
Functions can be separated via so-called events
given as hexagons. As events represent pre- and
post-conditions for functions the respective event
must have occurred before a subsequent function
can be executed. In Figure 1 (Workflow Pattern 1)
function A triggers an event that is the pre-condition
of function B.

Workflow Pattern 2 (Parallel Split): EPCs define a
restriction on the number of incoming and outgoing
arcs of events and functions. Each function must
have exactly one incoming and one outgoing arc,
each event at most one incoming and one outgoing
arc. In order to allow for complex routing of control
flow so-called connectors are introduced. A
connector may have one incoming and multiple
outgoing arcs (split) or multiple incoming and one
outgoing arc (join). Figure 2 (Workflow Pattern 2)
illustrates how the AND split connector is applied to
achieve control flow behaviour as defined by the
parallel split pattern. That means after function A all
the three subsequent functions B, C, and D are
activated to be executed concurrently. The
connector is represented by a circle. The and-symbol
∧ indicates its type. Connectors have no influence on
the alternation of events and functions. This means,
for example, that an event is always followed by a
function no matter if there are no, one, or more
connectors between them.

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Yet Another Event-driven Process Chain 5

Figure 2: Workflow Patterns 1-5 as EPC models

Workflow Pattern 3 (Synchronization): Figure 2
(Workflow Pattern 3) shows the AND connector as a
join. Each of the functions B, C, and D have to be
completed before E can be executed. The AND join
synchronizes the parallel threads of execution just
as described by the synchronization pattern. The
symbols for AND split and AND join are the same.
They can only be distinguished by the cardinality of
incoming and outgoing arcs.

Workflow Pattern 4 (Exclusive Choice): Pattern 4
(exclusive choice) describes a point in a process
where a decision is made to continue with one of
multiple alternative branches. This situation can be
modelled with the XOR split connector of EPCs,
compare Figure 2 (Workflow Pattern 4). After
function A has completed, a decision is taken to
continue with one of functions B, C, and D.

Workflow Pattern 5 (Simple Merge): Figure 1 (Work-
flow Pattern 5) shows the XOR join that precisely
captures the semantics of pattern 5. There has been
a debate on the non-local semantics of the XOR join.
While Rittgen [Ri00] and Van der Aalst [Aa99]
proposes a local interpretation, recent research
agrees upon non-local semantics (see e.g.
[NR02,Ki04]). This means that the XOR join is only
allowed to continue when one of the functions B, C,
and D has finished, and it is not possible that the
other functions will ever be executed. Accordingly,
EPC's XOR join works perfect when used in an XOR
block started with an XOR split, but may block e.g.
when used after an OR split depending on whether
more than one branch has been activated.
Regarding this non-local semantics it is similar to a
synchronizing merge (see workflow pattern 7) but
with the difference that it blocks when further
process folders may be propagated to the XOR join.
In contrast to this, pattern 5 (simple merge) defines
a merge without synchronization, but building on the
assumption that the joined branches are mutually
exclusive. The XOR join in YAWL [AH05] can
implement such behaviour with local semantics:
when one of parallel activities is completed the next
activity after the XOR join is started. But when the
assumption does not hold, i.e., when another of the
parallel activities has finished the activity after the
XOR join is activated another time, and so forth.
This observation allows two conclusions. First, there
is a fundamental difference between the semantics
of the XOR join in EPCs and YAWL: the XOR join in
EPCs has non-local semantics and blocks if there are
multiple paths activated; the XOR join in YAWL has
local semantics and propagates each incoming
process token without ever blocking. Accordingly,
the YAWL XOR join can also be used to implement
pattern 8 (multiple merge). Second, as the XOR join
in EPCs has non-local semantics, there is no

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

6 Jan Mendling, Gustaf Neumann, Markus Nüttgens

mechanism available to model workflow pattern 8
with EPCs.

Figure 3: Workflow Patterns 6, 7, 10, and 11 as EPC
models

Workflow Pattern 6 (Multiple Choice): Figure 3
(Workflow Pattern 6) gives an EPC model for
multiple choices using the OR split connector. This
connector activates multiple branches based on
conditions.

Workflow Pattern 7 (Synchronizing Merge): The OR
join connector depicted in Figure 3 (Workflow
Pattern 7) synchronizes multiple paths of execution
as described in the synchronizing merge pattern.
The OR join has both in EPCs and in YAWL non-local
semantics. This means that function E can only be
executed when all concurrently activated branches
have completed. This is different to workflow pattern
3 (synchronization) where all branches have to
complete, no matter if they have been activated or
not. Accordingly, the OR join in Figure 3 needs to
consider not only if functions B, C, or D have been
completed, but also if there is the chance that they
can potentially be activated in the future. If this is
the case, the OR join has to wait until an execution
of these functions is no longer possible or until they
have completed.

Workflow Pattern 10 (Arbitrary Cycles): EPCs also
provide for direct support of workflow pattern 10.
Arbitrary cycles are explicitly allowed in EPCs. Yet,
one needs to be aware that arbitrary cycles in
conjunction with uncontrolled entrances via OR join
or XOR join connectors may lead to EPC process
models with so-called unclean semantics [Ki03].
Furthermore, it is not allowed to have cycles
composed of connectors only [NR02]. Figure 3
(Workflow Pattern 10) gives an example of a cycle
with two entrance connectors at the top.

Workflow Pattern 11 (Implicit Termination): Implicit
termination is also supported by EPCs [Ru99]. Figure
3 (Workflow Pattern 11) gives the example of an
EPC process fragment with multiple end events.
EPCs do not terminate before all activities have
completed or process folders are locked in non-local
XOR joins or AND joins [Ru99]. As a consequence,
the model of Figure 3 is equivalent to a model that
synchronizes these three end events with an OR join
connector to only one new end event.

Altogether, workflow patterns 1 to 7, 10, and 11 are
supported by EPCs [MNN05a]. In the following, we
introduce extensions to EPCs in order to provide for
additional modelling support of workflow patterns 5
(simple merge), 8 (multiple merge), 9
(discriminator), 12-15 (multiple instantiation), 16
(deferred choice), 17 (interleaved parallel routing),
18 (milestone), and 19-20 (cancellation).

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Yet Another Event-driven Process Chain 7

3 Workflow Patterns and yEPCs

In order to align EPCs for direct support of workflow
patterns, different extensions have to be added. In
this section we introduce three measures that suffice
to provide for direct modelling support of all
workflow patterns in EPCs. These measures include
the introduction of the so-called empty connector;
an inclusion of multiple instantiation concepts; and
the introduction of a cancellation concept (see Figure
4 and [MNN05b]). Furthermore, it should be
mentioned that these modifications have no impact
on the validity of existing EPC models. This means
that valid EPCs according to the definitions in
[KNS92, NR02, Ki03] are still valid with respect to
this new class of EPCs. We refer to this extended
class as Yet Another EPC (yEPCs) with the letter y as
a reference to YAWL, the workflow language that
inspired this research.

Figure 4: Symbols of the yEPC notation

3.1 The Empty Connector

EPCs cannot represent state-based workflow
patterns. This shortcoming can be resolved by
introducing a new connector type that we refer to as
the empty connector. This connector is represented
by a circle, just like the other connectors, but
without any symbol inside. Semantically, the empty
connector represents a join or a split without
imposing a rule. We will illustrate its behaviour by
giving yEPCs that use this empty connector to model
workflow patterns 16, 8, 17, and 18. In the following
we interpret events similar to states. Note that the
association of EPC events with states follows most
research contributions on EPC formalization (see e.g.
[KNS92, Ru99, Ri00, NR02]). Kindler, who uses arcs
to represent states of an EPCs [Ki03], mentions that
his choice was motivated rather by a straight
forward presentation of his ideas than by semantic
considerations. The tokens that capture the state of
an EPC are called process folders or just folder
[Ru99, NR02]. In this context, empty connectors
allow to put folders on an event from multiple
sources (empty join) and consume folders from
multiple successors of an event (empty split).

Workflow Pattern 8 (Multiple Merge): Figure 5
(Workflow Pattern 8) shows a process model for the
multiple merge. As we have argued in the previous
section, there is only non-local support in EPCs for
the simple merge pattern due to the semantics of

the EPC XOR join connector. Accordingly, the XOR
join cannot be used to model the multiple merge
pattern. The empty join connector can be used to fix
this problem. It represents that after each
completion of B, C, or D a new folder is added to the
pre-condition event of E. Yet, it needs to be
mentioned that a design choice has to be made
between a multiset state representation as described
e.g. in [NR02] and a simple set representation as
specified in e.g. [Ki03]. The multi-set variant would
consume further folders of C and D even if B had
been executed and E not yet started. The simple set
semantics would block incoming folders until the
execution of E had consumed the folder on the
event. The same mechanism can be used to
implement workflow pattern 5 (simple merge) with
non-local semantics, yet assuming that there is only
one folder that can arrive.

Figure 5: Workflow Patterns 8 and 16 as yEPC
models

Workflow Pattern 16 (Deferred Choice): Figure 5
illustrates the application of the empty split
connector to represent the deferred choice. After
function A has completed, a folder is added to the
subsequent event. The empty split represents that
this folder may be picked up by any of the
subsequent functions.Accordingly, the input pre-
conditions of all three functions B, C, and D are
satisfied. Yet, the first of these functions to be

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

8 Jan Mendling, Gustaf Neumann, Markus Nüttgens

Figure 6: Workflow Patterns 17 and 18 as yEPC models

activated consumes the folder and by this means
deactivates the other functions.

Workflow Pattern 17 (Interleaved Parallel Routing):
Empty connectors can also be used for other state-
based workflow patterns. Figure 6 shows the process
model of pattern 17 (interleaved parallel routing)
following the ideas presented in [AHKB03]. The
event at the centre of the model manages the
sequential execution of functions B and C in arbitrary
order. It corresponds to the “mutual exclusion place
(mutex)” introduced in [AHKB03]. The AND split
after function A adds a folder to this mutex event via
an empty connector. The AND joins before the
functions B and C consume this folder and put it
back to the mutex event afterwards. Furthermore,
they consume the individual folders in pre-B and
pre-C, respectively. These events control that each
function of B and C is executed only once. After both
have been executed, there are folders in post-B,
post-C, and mutex. Accordingly, E can be started. In
[Ro95] sequential split and join operators are
proposed to describe control flow behaviour of
workflow pattern 17. Yet, it is no clear what the
formal semantics of these operators would be when
these operators are not used pair wise.

Workflow Pattern 18 (Milestone). Figure 6 shows the
application of empty connectors for the modelling of
workflow pattern 18. The event between A and B
serves as a milestone for D. This means that D can
only be executed if A has completed and B has not
yet started. This model exploits the newly introduced
empty connector to model such behaviour: if B is
started before D, the milestone is expired and D can
no longer be executed. If D is started before E, a
folder is put to the subsequent event to D which
implies that B and E can then be started. Thus, the
introduction of the empty connector allows for a
straight-forward modelling of workflow patterns 8
and 16 to 18.

3.2 Multiple Instantiation

The lack of support for multiple instantiation has
been discussed for EPCs before (see e.g. [Ro02]).
For yEPC we adopt the respective concept from
YAWL [MNN05b]. In the notation, multiple in-
stantiation is represented by drawing the respective
EPC symbol with double line. In this context, it is
helpful to define sub-processes in order to model
complex blocks of activities that can be executed
multiple times as a whole. Traditionally, there are
two different kinds of sub-processes in EPCs:
functions with a so-called hierarchy relation

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Yet Another Event-driven Process Chain 9

represented by a function symbol with a second
function symbol in the background [NR02, MN04]
and process interfaces symbolized by a function with
an event in the background [KT98, MN04]. The first
one, the hierarchical function, can be interpreted as
a synchronous call to the sub-process. After the sub-
process has completed, navigation continues with
the next function subsequent to the hierarchical
function. The process interface can be regarded as
an asynchronous spawning off of a sub-process.
There is no later synchronization when the sub-
process completes.

Workflow Pattern 12 (Multiple Instantiation without
Synchronization): Figure 7 (Workflow Pattern 12)
shows a model fragment including a process
interface. Process interfaces can be regarded as a
short-hand notation for a hierarchical function that is
followed by an end event. The figure illustrates how
workflow pattern 12 (multiple instantiation without
synchronization) can be modelled using a process
interface. The double lines indicate that the function
may be instantiated multiple times. The variables
min and max define the minimum and maximum
cardinality of instances that may be created. The
required parameter specifies an integer number of
instances that have to be finished in order to
complete the multiple instance function. The creation
variable may take the values static or dynamic which
specify whether further instances may be created at
run-time (dynamic) or not (static).

[min, max, required, creation]

B

A

[min, max, required, creation]

[min, max, required, creation]

B

Workflow Pattern 12: Multiple
Instances without Synchronization

Workflow Pattern 13-15: Multiple
Instances with Synchronization

Figure 7: Workflow Patterns 12-15

Workflow Pattern 13-15 (Multiple Instantiation with
Synchronization): Figure 7 (Workflow Patterns 13-
15) gives a model fragment of a simple function that
may be instantiated multiple times (indicated by the
doubled lines). Furthermore, a hierarchical function
can also be specified to supports multiple
instantiation. In contrast to the process interface the
multiple instances are synchronized and the
subsequent event is not triggered before all
instances have completed.

3.3 Cancellation

Cancellation patterns have not yet been discussed
for EPCs. We adopt the concept of YAWL [MNN05b].
Cancellation areas (symbolized by a lariat) may
include functions and events. The end of the lariat
has to be connected with a function. When this
function completes, all functions and events in the
lariat are cancelled. Cancellation can be used to
model workflow patterns 9, 19, and 20.

Workflow Patterns 19-20 (Cancel Activity, Cancel
Case): Figure 8 (Workflow Patterns 19-20) shows
the modelling notation of the cancellation concept. It
specifies that when function B has completed,
function A and the event are cancelled. This concept
can further be used to implement workflow pattern
20, the cancellation of a whole case.

A B

B

C

D

E

Workflow Pattern 19-20: Cancellation

Workflow Pattern 9: Discriminator

Figure 8: Workflow Patterns 9, 19-20

Workflow Pattern 9 (Discriminator): Furthermore,
the cancellation concept can be combined with the
deferred choice to model the discriminator. Figure 8
(Workflow Pattern 9) shows a respective model

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

10 Jan Mendling, Gustaf Neumann, Markus Nüttgens

fragment. The functions B, C, and D may be
executed concurrently. When the first of them is
completed the subsequent event is triggered. This
allows function E to start. The completion of E leads
to cancellation of all functions in the cancellation
context that still might be active.

4 Differences between yEPC and
YAWL

Both yEPC and YAWL offer quite similar primitives to
model the 20 workflow patterns. Yet, there are some
sophisticated differences that will be discussed in
this section.

Figure 9: YAWL notation

Figure 9 gives an overview of YAWL and its notation.
A YAWL process model includes exactly one input
and one output condition to denote start and end of
a process. Activities of a process are represented via
tasks. Tasks can contain join and split rules of type
AND, OR, and XOR. The XOR join has local
semantics propagating all incoming tokens; the
other rules have equal semantics as the respective
EPC connectors. Tasks are separated by conditions
which are the YAWL analogue to places in Petri nets.
If two tasks are connected by an arc, the arc
represents an implicit condition. Furthermore, a task
can be decomposed to a sub-process. The
cancellation and the multiple instantiation concept as
explained before for yEPCs is adopted from YAWL.

Although yEPCs and YAWL are very similar, there
are four differences which we illustrate by the help
of Figure 10. The first difference is related to
connectors. As connectors are independent elements
in an EPC, it is allowed to build so-called connector
chains, i.e. paths of two or more consecutive
connectors. In Figure 9 there are three connector
chains: an XOR join followed by an empty split
between the start events and functions 1 and 2, and
two starting with an XOR join followed by an AND
split and an AND join between functions 3 to 6 and
the respective end events. In YAWL splits and joins
are only allowed as part of tasks. Accordingly, there
is nothing like a connector chain in YAWL. The
second difference stems from multiple start and end
events. An EPC can include alternative start events.

Multiple end events represent implicit termination:
the triggering of an end event does not terminate
the process as long as there is another path still
active. In YAWL there is only one start condition and
one end condition. The third difference is related to
state representation. EPC events represent an
eventuated state that can trigger a set of activities
[KNS92]. Though this definition might suggest a
direct mapping of events to YAWL conditions (the
YAWL equivalent to places in Petri nets), there is a
problem of alternative event-function and function-
event connectors. In Figure 9 there is an event-
function AND split after function 1 and event 1. On
the other hand, the AND split after function 2 is
given as a function-event split. This second
alternative could be mapped element-wise to YAWL,
the first one not. Accordingly, EPC events are related
to states, but they do not directly match conditions
in YAWL. Finally, the XOR join of EPCs has non-local
semantics while the YAWL XOR join has local
semantics. This means that the EPC XOR join blocks
if there is more than one incoming branch active. In
Figure 9 the XOR join after function 4 and 5 cannot
deadlock, because both functions are exclusive due
to the empty split upstream.

START A START B

Function 2Function 1

Event 1

Event 2 Event 3

Function 3 Function 4 Function 5 Function 6

END BEND A

Figure 10: Example yEPC

Multiple Start and End Events: yEPC start and end
events are easy to transform if there is only one
start and only one end. In this case the yEPC start
event maps to a YAWL input condition and the end
event to a YAWL output condition. If there are
multiple start events, they have to be bundled: the

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Yet Another Event-driven Process Chain 11

one YAWL input condition is followed by an empty
task with an OR-split rule. Each yEPC start event is
then mapped to a YAWL condition that is linked as a
successor with the YAWL OR split (see Figure 11).
Analogously, each of multiple yEPC end events is
mapped to a YAWL condition which are all connected
with an OR join of an empty task that leads to the
one YAWL output condition. Note that some EPCs of
the SAP Reference Model have several start events.
Applying this transformation rule makes these
models difficult to analyze, because 2|n| states have
to be considered with n being the amount of EPC
start events. In this case, graph reduction rules
could be applied in order to get compacter models.
Yet, this issue is beyond the scope of this article.

Figure 11: Mapping of Multiple Start Events

Connector Chains: Joins and splits are first class
elements of yEPCs while in YAWL they are part of
tasks. As a consequence, there may be the need to
introduce empty tasks only to map a connector. This
is in particular the case with connector chains.
Figure 12 illustrates how a connector chain is trans-
formed. If the post-event successor of a join
connector is not a function, an additional empty task
is required to include the join rule. If the pre-event
predecessor of a split connector is not a function, an
additional empty task has to include the split rule. If
a join connector is followed by a split, they are
combined into one empty task. Otherwise, split and
joins are combined with the pre-event predecessor
function or the post-event successor function,
respectively.

Figure 12: Mapping of Connector Chains

State Representation: As mentioned above, events
cannot be identified with states directly. For the
transformation the yEPC process graph can be
traversed and it can be taken advantage of the fact
that YAWL does not enforce an alternation of tasks
and conditions. Basically, events can be ignored that
are not start or end events (see Figure 13).

Therefore, most states of the generated YAWL
process model are associated with implicit
conditions.

Figure 13: State Representation in yEPC and YAWL

XOR Join: Basically, in a mapping to YAWL the EPC
XOR join could be mapped to an OR join with non-
local semantics or an XOR join with local semantics.
The latter is the better choice, because it allows a
mapping back from YAWL to EPC without loss of
semantics. This choice is also supported by the
semantics of both XOR joins. Although the yEPC XOR
join has non-local semantics leading to a deadlock if
there are multiple incoming branches active and the
YAWL XOR-join propagates each incoming token, the
intended behaviour is the same, i.e. to continue
after one of alternative branches has completed.
Furthermore, in case of a deadlock in the yEPC the
corresponding YAWL-net is most likely to show
incorrect behaviour in terms of not being sound (for
soundness of YAWL models see [AH05]).

5 Related Work

The workflow patterns proposed by [AHKB03]
provide a comprehensive benchmark for comparing
different process modelling languages. A short
workflow pattern analysis of EPCs is also reported in
[AH05], yet it does not discuss the non-local
semantics of EPCs XOR join. In this article, we
highlighted these semantics as a major difference
between YAWL and EPCs. Accordingly, we propose
the introduction of the empty connector in order to
capture workflow pattern 8 (multiple merge). There
is further research discussing notational extensions
to EPCs. In Rittgen [Ri00] a so-called XORUND
connector is proposed to partially resolve semantic
problems of the XOR join connector. Motivated by
space limitations of book pages and printouts, Keller
and Teufel introduce process interfaces to link EPC
models on different pages [KT98]. We adopt process
interfaces in this paper to model spawning off of
sub-processes. Rosemann [Ro95] proposes the
introduction of sequential split and join operators in
order to capture the semantics of workflow pattern
17 (interleaved parallel routing). While the informal
meaning of a pair of sequential split and join

 Enterprise Modelling and Information Systems Architectures

 Vol. 1, No. 1, October 2005

12 Jan Mendling, Gustaf Neumann, Markus Nüttgens

operators is clear, the formal semantics of each
single operator is far from intuitive. As a
consequence, we propose a state-based
representation of interleaved parallel routing
inspired by Petri nets. Furthermore, Rosemann
introduces a connector that explicitly models a
decision table and a so-called OR1 connector to mark
branches that are always executed [Ro95].
Rodenhagen presents multiple instantiation as a
missing feature of EPCs [Ro02]. He proposes
dedicated begin and end symbols to model that a
branch of a process may be executed multiple times.
Yet, this notation does not enforce that a begin
symbol is followed by a matching end symbol. As a
consequence, we adopt the multiple instantiation
concept of YAWL that permits multiple instantiation
only for single functions or sub-processes, but not
for arbitrary branches of the process model.

6 Summary and Future Research

In this article, we have discussed workflow pattern
support of Event-driven Process Chains (EPC). As
EPCs fail to support state-based patterns as well as
multiple instantiation and cancellation patterns, we
have proposed yEPCs as an extension to EPCs.
yEPCs introduce empty connectors, multiple
instantiation parameters and cancellation areas.
Therefore, yEPCs are able to support the modelling
of all 20 workflow patterns in an intuitive manner.
Both yEPCs and YAWL are quite similar, not only
concerning the fact that both allow for com-
prehensive modelling of the workflow patterns1, but
also their modelling primitives are similar. Yet, there
are still differences between yEPCs and YAWL: yEPCs
allow multiple start and end events, yEPCs may
include connector chains, state representation of
yEPCs needs further investigation, and the XOR joins
of both languages have different semantics. In
future research, we aim to define a formal mapping
from yEPCs to YAWL. This will be implemented as a
transformation program from EPC Markup Language
(EPML) [MN05] to the XML format of YAWL. With this
transformation program, YAWL analysis tools will be
accessible for EPC models.

References

[Aa97] van der Aalst,W. M. P.: Verification ofWorkflow Nets.
In: Azéma, P.; Balbo, G., eds.: Application and Theory
of Petri Nets 1997. volume 1248 of Lecture Notes in
Computer Science. pp. 407–426. 1997.

1 Note that YAWL does not support the implicit termination pattern.

[Aa99] van der Aalst, W.M.P.: Formalization and Verification
of Event-driven Process Chains. Information and
Software Technology 41 (1999) 639-650.

[ADK02] van der Aalst, W. M. P., Desel, J., und Kindler, E.:
On the semantics of EPCs: A vicious circle. In: M.
Nüttgens; F. J. Rump, eds.: Proc. of the 1st GI-
Workshop on Business Process Management with
Event-Driven Process Chains (EPK 2002), Trier,
Germany. pp. 71–79. 2002.

[AH05] van der Aalst, W. M. P.; ter Hofstede, A. H. M.:
YAWL: Yet Another Workflow Language. Information
Systems. 30(4):245–275. 2005.

[AHKB03] van der Aalst,W. M. P.; ter Hofstede, A. H. M.;
Kiepuszewski, B.; Barros, A. P.: Workflow Patterns.
Distributed and Parallel Databases. 14(1):5–51. July
2003.

[Ki03] Kindler, E.: On the semantics of EPCs: A framework
for resolving the vicious circle (Extended Abstract). In:
M. Nüttgens, F. J. Rump, eds.: Proc. of the 2nd GI-
Workshop on Business Process Management with
Event-Driven Process Chains (EPK 2003), Bamberg,
Germany. pp. 7–18. 2003.

[Ki04] Kindler, E.: On the semantics of EPCs: Resolving the
vicious circle. In: J. Desel; B. Pernici; M. Weske, eds.:
Business Process Management, 2nd International
Conference, BPM 2004. volume 3080 of Lecture Notes
in Computer Science. pp. 82–97. Springer Verlag.
2004.

[KM94] Keller, G.; Meinhardt, S.: SAP R/3 Analyzer.
Business process reengineering based on the R/3
reference model. SAP AG. 1994.

[KNS92] Keller, G.; Nüttgens, M.; Scheer, A. W.:
Semantische Prozessmodellierung auf der Grundlage
“Ereignisgesteuerter Prozessketten (EPK)”. Technical
Report 89. Institut für Wirtschaftsinformatik
Saarbrücken. Saarbrücken, Germany. 1992.

[KT98] Keller, G.; Teufel, T.: SAP(R) R/3 Process Oriented
Implementation: Iterative Process Prototyping.
Addison-Wesley. 1998.

[LNS98] P. Langner, C. Schneider, and J. Wehler. Petri Net
Based Certification of Event driven Process Chains. In
J. Desel; M. Silva, eds.: Application and Theory of Petri
Nets, volume 1420 of Lecture Notes in Computer
Science, pp. 286-305, 1998.

[MN04] Mendling, J.; Nüttgens, M.: Exchanging EPC
Business Process Models with EPML. In: Nüttgens, M.;
Mendling, J., eds.: Proceedings of the 1st GI Workshop
XML4BPM – XML Interchange Formats for Business
Process Management at 7th GI Conference
Modellierung 2004, Marburg Germany. pp. 61–80.
March 2004.

[MN05] J. Mendling; M. Nüttgens. EPC Markup Language
(EPML) - An XML-Based Interchange Format for Event-
Driven Process Chains (EPC). Technical Report JM-
2005-03-10, Vienna University of Economics and
Business Administration, Austria, 2005.

[MNN04] Mendling, J.; Neumann, G.; Nüttgens, M.: A
Comparison of XML Interchange Formats for Business
Process Modelling. In: Proceedings of EMISA 2004 –
Information Systems in E-Business and E-Government.
LNI. 2004.

Enterprise Modelling and Information Systems Architectures
Vol. 1, No. 1, October 2005

Yet Another Event-driven Process Chain 13

[MNN05a] Mendling, J.; Neumann, G.; Nüttgens, M.:
Towards Workflow Pattern Support of Event-Driven
Process Chains (EPC). In: Nüttgens, M.; Mendling, J.,
eds.: Proc. of the 2nd GI Workshop XML4BPM - XML for
Business Process Management at BTW 2005,
Karlsruhe, Germany, pp. 23-38, March 2005.

[MNN05b] Mendling, J.; Neumann, G.; Nüttgens, M.: Yet
Another Event-Driven Process Chain. In: W.M.P. van
der Aalst et al.: Proceedings of the 3rd International
Conference on Business Process Management (BPM
2005), volume 3649 of Lecture Notes in Computer
Science, Nancy, France, September 2005, pp. 428-
433.

[NR02] Nüttgens, M.; Rump, F. J.: Syntax und Semantik
Ereignisgesteuerter Prozessketten (EPK). In: J. Desel;
M.Weske, eds.: Promise 2002 - Proceedings of the GI-
Workshop, Potsdam, Germany. volume 21 of Lecture
Notes in Informatics. pp. 64–77. 2002.

[Ri00] Rittgen, P.: Quo vadis EPK in ARIS? Ansätze zu
syntaktischen Erweiterungen und einer formalen
Semantik. WIRTSCHAFTSINFORMATIK. 42(1):27–35.
2000.

[Ro02] Rodenhagen, J.: Ereignisgesteuerte Prozessketten -
Mulit-Instantiierungsfähigkeit und referentielle
Persistenz. In: M. Nüttgens, F. J. Rump, eds.: Proc. of
the 1st GI Workshop on Business Process Management
with Event-Driven Process Chains (EPK 2002). Trier,
Germany, pp. 95–107. 2002.

[Ro95] Rosemann, M.: Erstellung und Integration von
Prozeßmodellen – Methodenspezifische Gestaltungs-
empfehlungen für die Informationsmodellierung. PhD
thesis. Westfälische Wilhelms-Universität Münster.
1995.

[Ru99] Rump, F. J.: Geschäftsprozessmanagement auf der
Basis ereignisgesteuerter Prozessketten -
Formalisierung, Analyse und Ausführung von EPKs.
Teubner Verlag. 1999.

Jan Mendling

Information Systems and New Media
Vienna University of Economics and Business Administration
Augasse 2-6
A-1090 Vienna
Austria
jan.mendling@wu-wien.ac.at

Prof. Dr. Gustaf Neumann

Information Systems and New Media
Vienna University of Economics and Business Administration
Augasse 2-6
A-1090 Vienna
Austria
neumann@wu-wien.ac.at

Prof. Dr. Markus Nüttgens

Business Information Systems
University of Hamburg
Von-Melle-Park 9
D-20146 Hamburg
Germany
markus.nuettgens@wiso.uni-hamburg.de

