
ePubWU Institutional Repository

Cristina Cabanillas Macias and Anne Baumgrass and Claudio Di Ciccio

A Conceptual Architecture for an Event-based Information Aggregation
Engine in Smart Logistics

Book Section (Published)
(Refereed)

Original Citation:
Cabanillas Macias, Cristina and Baumgrass, Anne and Di Ciccio, Claudio (2015) A Conceptual
Architecture for an Event-based Information Aggregation Engine in Smart Logistics. In: Enterprise
modelling and information systems architectures. Lecture Notes in Informatics (LNI) - Proceedings,
Volume P-248, Gesellschaft für Informatik e.V., Bonn. pp. 109-123. ISBN 978-3-88579-642-8

This version is available at: http://epub.wu.ac.at/6008/
Available in ePubWU: January 2018

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the publisher-created published version. It is a verbatim copy of the publisher
version.

http://epub.wu.ac.at/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/150173524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/6008/
http://epub.wu.ac.at/


Jens Kolb et al. (Eds.): Enterprise Modelling and Information Systems Architectures,

Lecture Notes in Informatics (LNI), Gesellschaft fr Informatik, Bonn 2015 109

A Conceptual Architecture for an Event-based Information

Aggregation Engine in Smart Logistics

Anne Baumgrass1, Cristina Cabanillas2, Claudio Di Ciccio2

Abstract: The field of Smart Logistics is attracting interest in several areas of research, including
Business Process Management. A wide range of research works are carried out to enhance the capa-
bility of monitoring the execution of ongoing logistics processes and predict their likely evolvement.
In order to do this, it is crucial to have in place an IT infrastructure that provides the capability of
automatically intercepting the digitalised transportation-related events stemming from widespread
sources, along with their elaboration, interpretation and dispatching. In this context, we present here
the service-oriented software architecture of such an event-based information engine. In particular,
we describe the requisites that it must meet. Thereafter, we present the interfaces and subsequently
the service-oriented components that are in charge of realising them. The outlined architecture is
being utilised as the reference model for an ongoing European research project on Smart Logistics,
namely GET Service.

Keywords: Smart Logistics; Service-oriented Architectures; Complex Event Processing

1 Introduction

GET Service3 is a European FP7 research project aiming at the realisation of a distributed

service-oriented platform for the planning, execution and monitoring of smart transporta-

tion processes. The devised platform is meant to be adopted by Logistics Service Providers

(LSPs) Europe-wide, in order to take advantage of a powerful infrastructure that allows the

improvement of their core business processes, in terms of reduced CO2 emissions, better

time scheduling, more precise service time estimates and thus, reduced costs. Against this

goal, we notice that such a platform must build upon the regular synchronisation of its

real-world context-awareness. For instance, it is vital that the position of involved trans-

portation means is kept under control during the shipment of goods in order to assist its

run-time monitoring. Such information can be gathered by the interception, analysis and

interpretation of so-called events.

Events are known to be detected by different sensors and reported by several sources. Due

to the dynamic nature of the context domain, such information is intrinsically meant to

change over time. Therefore, the GET Service core module that is in charge of extract-

ing relevant information on the current development of transportation processes, deals

with concurrent event streams stemming from various originators. The information com-

ing from the collection and comparison of the events in the flow of updates has to be

1 Hasso-Plattner-Institut, University of Potsdam, Germany, anne.baumgrass@hpi.de
2 Vienna University of Economics and Business, name.[particle.]surname@wu.ac.at
3 http://www.getservice-project.eu/



110 Anne Baumgrass, Cristina Cabanillas, Claudio Di Ciccio

interpreted to detect and possibly foresee the development of the transportation process,

given its execution history and the context within which it is carried out. This paper aims

at defining the architecture of the information aggregation and provisioning engine in the

context of smart logistics; in particular, in the scope of the GET Service software infras-

tructure, which is under development at the time of writing and is henceforth referred to

as the platform.

The remainder of this paper is structured as follows. Section 2 presents background on

event processing. In particular, Section 2.1 introduces the fundamental concepts of event

processing networks (EPN), processing agents (EPA), source, consumer, object, and chan-

nel. Section 2.2 explains how such concepts come into play in the context of event pro-

cessing. Furthermore, it outlines how aggregation and correlation patterns contribute to the

gathering of knowledge regarding the evolution of transportation processes, out of event

streams. Then, Section 3 delves into the details of the functionalities that the information

aggregation services must offer in the GET Service platform. The discussion is promoted

to Section 4, where the architecture of the component offering those services is detailed,

in conformance with the aforementioned criteria. Section 5 concludes this paper.

2 Background

This section summarises the background on event processing as well as the requirements

that are necessary to design the event aggregation engine.

2.1 Event Processing Infrastructure

Events that are of importance in our context are the transportation-related events. They

serve three main purposes: (i) tracing how a specific transportation process is executed,

(ii) coordinating the different parties involved, and (iii) making appropriate decisions in

relation to re-planning and rescheduling. Typically, events are produced and collected by

different kind of systems spanning an event processing network (EPN) in which event

processing agents (EPA) are linked by event channels to exchange events [EN10], (cf.

Fig. 1). Each EPA may act as an event consumer to receive event objects, and as an event

source in case it observes events and publishes them in a machine-readable form as event

objects. In this way, an EPA reacts to its input by processing events and outputs events that

can be fed to other EPAs over event channels [Lu01].

In the context of GET Service, the GET Service Platform should act as an event consumer

to gather events from several event sources (e.g. driver’s mobile devices and weather sta-

tions) and process them to generate transportation-related events, which might be provided

to several consumers, e.g., Logistics Service Providers (LSPs) [Ba13b].



Architecture for an Event-based Information Aggregation Engine in Smart Logistics 111

Fig. 1: Event processing infrastructure.

2.2 Event Processing Mechanism

In a smart logistics context like the one of GET Service, it is of utmost importance that all

events related to the transportation of goods and corresponding transportation plans can be

observed. Furthermore, such events have to be processed to derive transportation-related

information, and be published to all interested consumers. To this extent, event processing

is in charge of computing operations on events, including reading, creating, transforming,

or discarding [EN10]. Specifically, an EPA carries out these operations.

First, an EPA contains an event adapter, which transforms events into event objects [Lu01],

e.g., for importing weather forecasts in XML format. The EPA receives the events from

an event channel as input in order to process them. Adapters are used to identify event ob-

jects published by several event sources, in possibly different formats. Data can be indeed

encoded according to standards such as EDIFACT (United Nations/Electronic Data Inter-

change For Administration, Commerce and Transport [Be94]), MXML (Mining eXtensi-

ble Markup Language [vD05]), XES (eXtensible Event Stream, [GV14]), but also more

general-purpose ones like CSV (Comma-Separated Values), Excel and XML (eXtensible

Markup Language).

Second, events are related to each other according to event relationships. Typically, events

are related by time, causality, aggregation [Lu01] or correlation [ROS11]. Event patterns

are used to specify these relationships and identify them in an event stream considered

by an event processing system. For example, only if Container mounted happened be-

fore Goods loaded in a certain time window and both event objects refer to the same

container, they are related by a correlation relationship and can be aggregated to an event

Goods ready for transportation (cf. Tab. 1). In this way, a correlation is specified

through defining correlation attributes (e.g., time and container in the example) between

event object types. Furthermore, event aggregation patterns can be used for recognising or



112 Anne Baumgrass, Cristina Cabanillas, Claudio Di Ciccio

Goods loaded Container mounted Goods ready for transportation

Description New goods are loaded in Con-

tainer1.

Container1 is mounted onto

Truck1.

Truck1 is ready to start its

transportation.

Occurrence time January 2nd 2014 07:30 January 1st 2014 16:30 January 2nd 2014 07:30

Occurrence location Harbour of Rotterdam Harbour of Rotterdam Port of Rotterdam

Originator(s) Container1 Truck1, Container1 GET Service Platform

Impact Truck may start the transporta-

tion.

Goods can be loaded in the

container.

Truck may start driving and

transport the loaded goods to

their destination.

Target(s) Container1 Truck1 TransportationOrder1

Tab. 1: Example events in logistics. For the sake of simplicity, the example is kept simple and ab-

stracted from the real-world. For example, in order to have a truck ready for transportation other

events might be relevant as well (e.g., documentation on board).

detecting a significant group of events from among a set of events, and creating a single

event that summarises their significance in its data.

Third, event patterns are also used to forward events to interested consumers. For this pur-

pose, an event consumer subscribes to an event processing system with a defined event

pattern. Events that match that pattern are sent as notifications over event channels to the

consumer. A notification contains data describing an event and may additionally carry in-

formation describing the circumstances of the event. In [MFP06], the event processing

infrastructure only represents the theoretical components and disregards the issues to be

dealt with when implementing this infrastructure in practice, e.g., access control or mes-

saging formats.

We aim to use the transportation context to identify events from several event sources,

process them into transportation-related events, and forward them to interested parties.

3 Design of the Information Aggregation Engine

The Information Aggregation Engine is a main component of the platform, which is re-

sponsible for collecting events from different sources and processing them in order to

offer a unified interface to clients, planners, information providers, and other stakehold-

ers. Thereby, the engine supports, among others, the use cases of track&trace, vessel ar-

rivals and capacity visualisation. The specific functionalities that this service requires in

transportation are described in the following sections. Such functionalities derived from a

preliminary requirements elicitation phase and thorough analysis of the typical use cases

scenario in the context of the GET Service project [Tr13].

3.1 Import and Export of Event Data

It is crucial that the interfaces of the platform adhere to existing messaging standards and

interchange formats of all services that are used by the involved stakeholders. For this



Architecture for an Event-based Information Aggregation Engine in Smart Logistics 113

purpose, the messaging standards of logistics were investigated in [Ve13]. Four common

message types where identified: (i) EDIFACT, used by shipping lines, terminal operators,

or customs; (ii) EDIFACT XML (UN/CEFACT working groups); (iii) Business Logistics

XML, used by larger Logistics Service Providers (LSPs); and (iv) Excel uploads and down-

loads, used by smaller Transportation Service Providers (TSPs). Furthermore, applications

might use JSON as exchange format, which has less markup overhead in comparison to

XML. To unify the communication in logistics for all stakeholders, the e-Freight project4

developed a standard framework that also needs to be considered in the platform. It is a

standard for freight information exchange covering all transport modes and stakeholders.

Each of the above mentioned message types can be transported over different channels

using different protocols and services, for example through SOAP web services, HTTP

protocols, RPC, or FTP file transfers.

Thus, to extract events from all exchanged messages and to publish transportation-related

events in the aggregation engine, it requires four generic interfaces for communication:

1. An interface to import messages of events from different sources (e.g. from client

devices of LSPs) provided in different formats. Based on the aforementioned mes-

sage formats, the engine must be able to call external web services, connect to mes-

sage queuing services, generate HTTP requests, and download files from FTP. Ad-

ditionally, it has to offer an interface, to which clients can push events contained in

messages.

2. An interface for identifying the event information in these kinds of messages. By

implementing adapters the aggregation engine defines where and how to extract

events from all the imported messages types. Thus, it must be possible to import

events using EDIFACT, XML, Excel, JSON, and the e-Freight format.

3. An interface for submitting event patterns to be notified of the occurrence(s) of

events that the stakeholders are interested in. For this purpose, the aggregation en-

gine must enable all stakeholders to specify these event patterns in a well-chosen

language, such as Esper5. Furthermore, the aggregation engine must be extendable

to implement the functionality of deriving event patterns from transportation plans,

logistic process models, and route descriptions.

4. An interface to forward events to interested targets. Thus, the aggregation engine

must itself provide functionalities to publish events and provide them to the stake-

holders involved in transportation. Community systems or other platforms might

act as intermediate event distributors. Thus, the engine needs to implement a mes-

sage queuing service to distribute events and also forward notifications containing

information on a subset of events. This forwarding may be implemented as HTTP

responses or as API, but may also be realised through emails to be shown on the

mobile client devices. The format for the notifications depends on the client devices

but should at least adhere to the message standards mentioned above, including ED-

IFACT, XML, Excel, JSON, and the e-Freight format.

4 http://www.efreightproject.eu/
5 http://esper.codehaus.org/



114 Anne Baumgrass, Cristina Cabanillas, Claudio Di Ciccio

Each of these interfaces must provide capabilities to access and modify the functionali-

ties in order to adapt to a changing environment. Therefore, the interfaces should provide

methods to support the standard operations of Create, Read, Update, and Delete (CRUD).

For example, partners interacting with the platform should be able to adapt their own ag-

gregation rules to changing plans, or set up new event sources, but also be able to delete

rules that are no longer required.

3.2 Normalisation of Events

Because events are collected from different sources that can have different formats, events

need to be normalised into a common unified format for further event processing. The

normalisation needs to take place in the aggregation engine in order to process events. The

normalisation includes the definition of the format of the normalised events, as well as the

stored event properties that are available for purposes ranging from information extraction

to correlation of events based on values. The different formats and their differing structure

imply that the target event format needs to be extensible and general enough to allow for

incorporation of structured or unstructured information from all different sources.

The transformation into the unified format can be specified by corresponding adapters.

An adapter refers to a component that formats heterogeneous event data into a suitable

input format. For example, an event stream in XML format can be processed by an XML

parser and events can be extracted based on conversion rules, which can include mappings

for different formats of dates and timestamps to the internal format. The mapping rules

should be extensible and reusable, such that the task of connecting new sources can be

conveniently performed.

3.3 Integration of Event Processing

Once the events are made available to the aggregation engine in a normalised format,

the actual event processing has to be performed in form of aggregation and correlation.

Thus, the functional requirements for the event processing engine is to support the above

mentioned relations between events, i.e. to detect relations based on time, causality, ag-

gregation and correlation. These relations are stored as rules that allow to relate and to

aggregate several events.

Furthermore, the aggregation engine is expected to capture a large amount of events and

needs to be able to process them within a complex environment where many actors sub-

scribe for their respective events. The actual Complex Event Processing (CEP) system that

is used is therefore required to be scalable.

3.4 Predictive Functionalities in Cooperation with Discriminative Classifiers

The ability not only to monitor but also to interpret the context information can be seen

as one of the main objectives of the event processing component. Indeed, streams of



Architecture for an Event-based Information Aggregation Engine in Smart Logistics 115

transportation-related events represent a temporal snapshot over the current development

of transportation processes. As an example, the consecutive coordinates and altitude lev-

els of an aeroplane trace its movements. The events may rise from different sources (e.g.,

weather conditions along the route, traffic information in the arrival airport, etc.) and can

altogether concur in the creation of a dangerous situation for the regular advancement of

the transportation. Therefore, it is of considerable relevance to distinguish the sequences

of events that lead to a disruption from those that are safe. Evaluating queries over event

streams is a basic approach to this extent. Such queries would weigh the combination of

events over time in order to determine whether the current evolvement of facts is likely to

end up in a risky situation, or not. However, it would be impractical to predefine all such

queries a priori. This is due both to the quantity of possible concurrent causes to check,

and to the unfeasibility of foreseeing any possible anomalous sequence of events. To this

extent, classifiers from the field of Machine Learning [Mi97] can be of significant help.

For instance, Support-Vector Machines (SVMs [CV95]) are supervised learning models

for linear classifications, i.e., able to identify a hyperplane in the space of features that

separates numeric representations of input objects in two different categories. The hyper-

plane is determined on the basis of a learning process made on labelled historical data. In

the context of transportation-related events, e.g., labelled historical data can represent the

reported trajectories of aeroplanes, divided into those that were known to have landed in

time and in the expected airport, and those, which were known to have been delayed or

diverted. Once trained on such data, the classifier (e.g., SVM) can analyse current flights

and predict whether they show an anomalous behaviour, or not. The input as events can

be provided by a CEP system, as long as the transportation process specifies the informa-

tion to be extracted from events to this extent. The learning systems can be used indeed

to correlate available data, in order to detect anomalies based on previous knowledge. The

selection of independent and dependent variables for the decision functions is thought to

be determined a priori, since they are strongly domain-related. For instance, the SVM

can recognise a possible diversion of flights on the basis of features such as gained dis-

tance from the departure airport, velocity and altitude of the aeroplane. However, the input

sources (e.g., flight monitoring services) as far as the information aggregation and features

extraction (e.g., from positional data to distance, velocity and altitude) are meant to be

predefined.

On the basis of the prediction made by the classifier, a new event raising an alert can be

generated in case of anomaly detection. Therefore, it is required for the event stream to be

restructured in a way that makes it readable from an external classifier, on one hand. On

the other hand, the classification returned as a result has to be treated and transformed into

a new event. It is worthwhile to recall here that a framework for controlling the safe exe-

cution of tasks and signalling possible misbehaviours at runtime has already been outlined

in [Ca14b], and preliminary results are already applied in the context of flight diversion

detections [Ca14a].



116 Anne Baumgrass, Cristina Cabanillas, Claudio Di Ciccio

3.5 Correlation of Events to Processes

An additional function within the aggregation engine is the (semi-)automatic derivation

of correlation rules on the basis of process data and transportation plans. The intention

is to analyse process models, route descriptions, or transport execution plan as input that

is analysed to derive correlation and aggregation rules. For this purpose, the components

outside the aggregation engine need to provide these documents in a way they can be

parsed and event patterns can be derived. In case of processes modelled with the Business

Process Model and Notation (BPMN) 2.06 format [Du13], the approach of [Ba13a] can be

implemented to correlate events to process instances and identify whether this instance of

a process model was executed successfully.

3.6 Notification Mechanism

The aim of the platform is to offer services to many clients and hence, it needs to adhere

to common notification paradigms. The publish/subscribe paradigm is very common in

distributed systems [MFP06] and needs to be supported by the information aggregation

engine. Using this paradigm allows clients and planners to subscribe to certain types of

events or aggregated events. For example, a planner might subscribe to all events that

are correlated to the respective transportation plans that the planner has created. Then, if

events occur during execution, the planner is notified about their occurrence and can react

accordingly.

Besides the publish/subscribe paradigm, regular access to events is required in the plat-

form. That is, information providers need the option to add new events directly into the

platform via the appropriate interface (push). And additionally, the option to query for

recent events from the event history should be made available in that interface (pull).

3.7 Summary

The above sections point out that we aim to design appropriate filtering mechanisms at

early stages, to reduce the burden on the correlation and prediction activities. Further-

more, the derivation of correlation rules based on processes range from very simplistic ap-

proaches (e.g., correlating by container id), to more sophisticated, control flow, location,

and time-aware correlation mechanisms. To provide a brief overview of the requirements

of the aggregation engine, a tabular representation is given in Tab. 2.

4 Architecture of the Information Aggregation Engine

This section presents the architecture of the information aggregation engine, in the light

of the requirements previously explained. UML component diagrams are used to visualise

the logical interconnection of its internal components.

6 http://www.bpmn.org/



Architecture for an Event-based Information Aggregation Engine in Smart Logistics 117

Requirement Description

R1. Heterogeneous Sources Connection to different kinds of event sources

R2. Heterogeneous Formats Collect events from different message formats

R3. Normalisation of Events Store events of different formats in same normalised format

R4. Event Storage Store normalised events in a central database

R5. Event Processing

R5.1 Event Aggregation Provide functionality to aggregate events of finer granularity to single events

R5.2 Query Subscription Register queries to be informed of events of interest

R5.3 Domain-Specific Query Subscription Register queries to be informed of transportation-related events of interest

R5.4 Domain-Specific Event Correlation Automatically correlate events to transportation processes

R6. Notification Mechanism Notify subscribed clients of respective events

R7. Event Classifiers Determine criticality of an event for transportation

Tab. 2: Summary of required capabilities of the event-based information aggregation engine.

4.1 Design of External Interfaces

The information aggregation engine offers four interfaces to be used either by external

event sources (e.g., driver, weather stations) or event consumers (e.g., planner, driver).

Furthermore, it implements an interface to access the information store to request static

information. All five interfaces are required to provide the functionalities described in

Section 3. These are shown in the component diagram in Fig. 2 and summarised as follows.

EventAdministrationInterface. The EventAdministrationInterface receives the struc-

tural description of an event type and offers further administrative tasks related to events.

The communication through this interface has to be implemented in two ways. It should

be either initiated by any event source sending the event type description of the events it

publishes (push) or it can be configured inside the corresponding event source adapter (cf.

EventSourceAdapter, Fig. 4). The implementation is meant to be realised by means of a

web service to which the event source can push the event type description.

EventSourceAdapterInterface. Through the EventSourceAdapterInterface the ag-

gregation engine is able to receive events (resp. implementing R1 in Tab. 2). Each event

source is intended to be connected through a specific adapter. This adapter then offers an

interface of its own that can be used by the event source. Each adapter has to internally

use the EventImportInterface (cf. Fig. 4), i.e., the interface through which the Aggegra-

tionService can take as input and process new events.

EventSubscriptionInterface The EventSubscriptionInterface is used to register sub-

scriptions to the aggregation engine. These subscriptions can be arbitrarily complex, i.e.,

they may be composed of specific event processing queries. The subscriptions should

be pushed to the aggregation engine. Therefore, the aggregation engine provides an im-

plementation of a request-response pattern to register subscriptions in the platform. The

events being imported via the EventImportInterface are forwarded to the event consumers

by the aggregation engine based on registered subscriptions.



118 Anne Baumgrass, Cristina Cabanillas, Claudio Di Ciccio

<<component>>

AggregationService

<<component>>

Information Store

EventAdministrationInterface

EventSourceAdapterInterface

EventSubscriptionInterface

StaticInformationInterface

EventServicesInterface

Fig. 2: Interfaces of the information aggregation engine.

EventServicesInterface. The EventServicesInterface combines all services of the ag-

gregation engine that are visible to the external consumers. For example, a consumer may

submit routes to the aggregation engine, which can be used in subscriptions later on.

StaticInformationInterface. The StaticInformationInterface offers access to informa-

tion to enrich events. The aggregation engine uses it to receive all types of information,

e.g., about transportation plans and schedules.

Tab. 3 summarises the interfaces with a short description, their inputs and outputs, the

interaction pattern realised, and how errors should be handled.

4.2 Structure and Functionality of the Information Aggregation Engine

In this section the three components realising the aggregation engine are described in de-

tail: they are EventHandler, EventProcessing, and EventServices. Fig. 3 shows the three

components of the aggregation engine, derived from Fig. 2. The interfaces that they im-

plement are also depicted, along with the interconnecting associations. In the middle, the

EventProcessing component handles event transformations and querying. Thus, it includes

the functionality of event processing and implements the requirements R5.1 and R5.2 and

provides the functionality to implement R5.3 and R5.4 shown in Tab. 2.

4.2.1 The EventHandler

The EventHandler is meant to be implemented to collect, receive, and handle events from

different kinds of systems in different formats. This means, it implements the requirements

R1, R2, R3, and R4. For that purpose, it provides the EventAdministratorInterface and the

EventSourceAdapterInterface. The internal structure of the EventHandler is represented

by the following four components (see also Fig. 4).



Architecture for an Event-based Information Aggregation Engine in Smart Logistics 119

Interface ID EventAdministrationInterface

Description Push event type definitions to the platform, necessary in order to import events of this type, and

conduct administrative tasks on events.

Input Structural description of an event type (e.g. as XSD) or task execution

Output Confirmation

Interaction Patterns Synchronous request/response

Error Handling Synchronous confirmation

Interface ID EventSourceAdapterInterface

Description Events are pushed by event source, pulled from event sources or received by a subscription to

event sources.

Input Events including a reference to its event type (e.g., XML)

Output None

Interaction Patterns Synchronous push or pull, or publish/subscribe (always depends on the adapter)

Error Handling No error handling

Interface ID SubscriptionInterface

Description Subscribe for events by queries (or other criteria)

Input event processing query (e.g., String or EPL) or other event criteria

Output ID of an event channel from which the events are pushed, events

Interaction Patterns Synchronous request/response, publish/subscribe

Error Handling Synchronous response or exception, retransmission on publish/subscribe communication

Interface ID EventServicesInterface

Description Additional services are offered in relation to events, e.g. process model monitoring or route han-

dling.

Input Process models (e.g., BPMN), transport orders (e.g., XML), or routes (e.g., JSON)

Output ID of an event channel from which the events are pushed, events

Interaction Patterns Synchronous request/response

Error Handling Synchronous response or exception

Interface ID StaticInformationInterface

Description Request/response interface to access information, e.g., about route information and timetables.

Input Database queries or function calls to databases

Output Route, timetable, transportation plan

Interaction Patterns Synchronous request/response

Error Handling Synchronous response or exception

Tab. 3: Overview of the Interfaces of the information aggregation engine.

EventSourceAdapter Each kind of event sources requires an EventSourceAdapter,

which is able to retrieve events from any kind of event source (over the

EventSourceAdapterInterface). Event sources differ in the mechanism they use to provide

events, e.g., downloads of event information from a FTP server or offering a web service to

request events. Thus, all mechanisms to request events from event sources are considered

by implementing a corresponding event source adapter through which requirement R1 is

met (cf. Tab. 2).

EventReceiver The EventReceiver is responsible for converting the events of an event

source into event objects that the aggregation engine can process. For example, one

EventSourceAdapter receives events in form of an XML document and another adapter in

the JSON format (cf. Section 2.1 and R2 in Tab. 2). Thus, the EventReceiver normalises



120 Anne Baumgrass, Cristina Cabanillas, Claudio Di Ciccio

<<component>>

AggregationService

<<component>>

EventHandler

<<component>>

EventProcessing

(Aggregation and

Correlation)

<<component>>

EventServices

EventAdministratorInterface
EventSubscriptionInterface

EventServicesInterface

StaticInformationInterface

EventSourceAdapterInterface
EventProcessingInterface

EventHandlingInterface

Fig. 3: Architecture Overview of the information aggregation engine.

events in different formats and converts them into the internal structure for processing, i.e.,

implementing requirement R3 shown in Tab. 2.

EventStore Events are stored in the EventStore, which realises requirement R4 in

Tab. 2 of the aggregation engine.

EventManager The EventManager handles all operations on events. This component

is the connection between the Event Receiver, the stores and the EventProcessing compo-

nent via the EventProcessingInterface. In the same way, the connection to the EventSer-

vices component is established via the EventHandlingInterface. Thus, the EventManager

is responsible to both save and load events and event types from the stores and thereby

enables a synchronized access to events and event types.

In summary, the EventHandler is the central component of the Information Aggregation

Engine.

4.2.2 The EventServices

The EventServices component handles the associations of events to information stored

in the event store and handles the communication to event consumers. To this extent, it

includes the EventSubscriptionInterface and the EventServicesInterface to external con-

sumers as well as the EventProcessingInterface and the StaticInformationInterface. For

internal communication to the EventHandler also the EventHandlingInterface is required,

e.g., to reference a specific event type within a subscription. The following three main

components are required for its realisation (cf. Fig. 5).



Architecture for an Event-based Information Aggregation Engine in Smart Logistics 121

<<component>>

EventHandler

<<component>>

EventReceiver

<<component>>

EventManager

<<component>>

EventStore

<<component>>

EventSourceAdapter

EventAdministrator

EventSourceAdapterInterface

EventImportInterface

EventProcessingInterface

Fig. 4: Structure of the EventHandler component.

SubscriptionManager The SubscriptionManager handles the publication of events to

the event consumers based on subscriptions they provided and which are stored in the

subscription store. For this purpose, each subscription must include an address to which

the events are pushed.

SubscriptionStore All subscriptions are administered in the SubscriptionStore. It thus

mainly gathers the requests for receiving updates on events of interests, and serves as a

repository where the targets for dispatching events are recorded.

ServiceUnits The ServiceUnits component is a placeholder for all upcoming function-

alities that enrich events with external knowledge For example, the coordinates given by

an event may be used to identify the city in which the event occurs. However, this re-

quires that an external knowledge source to be accessible, where the boundaries of cities

are given. A first idea of such enhanced event processing is published in [Me13].

Furthermore, predicting algorithms should be developed in this component, to implement

the functionality discussed in Section 3.4. In particular, ServiceUnits are meant to be used

to meet requirement R7.

In summary, the purpose of the EventServices component is to correlate events to logistics

processes but also to external knowledge sources. It is therefore used to extend the platform

and realise the requirements R5.3, R5.4, and R7 shown in Tab. 2. Furthermore, it is meant

to be used to allow the subscription to events, thus implementing requirements R5.2 and

R6.



122 Anne Baumgrass, Cristina Cabanillas, Claudio Di Ciccio

<<component>>

EventServices

<<component>>

SubscriptionManager

<<component>>

ServiceUnits

<<component>>

SubscriptionStore

EventSubscriptionInterface EventServicesInterface

StaticInformationInterface

EventProcessingInterface

Fig. 5: Structure of the EventServices component.

5 Conclusion

Throughout this paper, the architecture of an event-based information aggregation engine

in the context of smart logistics has been described. In particular, the requirements that

the information aggregation engine must fulfil have been detailed. They serve as the basis

according to which the architecture of the component is designed. Indeed, this paper ends

with a thorough analysis of the interfaces offered by the event processing module, along

with the description of its internal components and the functionalities offered.

Although all functional requirements are given, challenges may be faced during the imple-

mentation. This is due to the dynamic nature of the development process. These dynamics

might occur during the implementation of the single components of the aggregation engine

and their interaction. More integration effort and dynamics are expected by the integration

of the aggregation service in the core GET Service platform. Challenges may also arise

from technical requirements (hard- or software) or from necessary event sources that are

not publicly available. Furthermore, the complexities of data integration for unifying data,

messages, information, and events have to be faced.

Future work will be dedicated to the implementation of the described software compo-

nents, with a particular focus on the enhancement of their interoperability and extendibil-

ity. Efforts will be also put in the devising of the automated process-model-to-queries task

for monitoring and processing events, and on the realisation of prediction modules that

foresee plausible delays or disruptions during the run-time execution of the transportation

activities.

Acknowledgement

The presented research work has received funding from the European Union’s Seventh

Framework Programme (FP7/2007-2013) under grant agreement 318275 (GET Service).



Architecture for an Event-based Information Aggregation Engine in Smart Logistics 123

References

[Ba13a] Backmann, Michael; Baumgrass, Anne; Herzberg, Nico; Meyer, Andreas; Weske, Math-
ias: Model-Driven Event Query Generation for Business Process Monitoring. In: ICSOC
Workshops. S. 406–418, 2013.

[Ba13b] Baumgrass, Anne; Cabanillas, Cristina; Di Ciccio, Claudio; Meyer, Andreas; Schmiele,
Jürgen: GET Service D6.1: Taxonomy of transportation-related events. http://
getservice-project.eu/en/project/public-deliverables, 2013.

[Be94] Berge, John: The EDIFACT standards. Blackwell Publishers, Inc., 1994.

[Ca14a] Cabanillas, Cristina; Campara, Enver; Di Ciccio, Claudio; Koziel, Bartholomäus;
Mendling, Jan; Paulitschke, Johannes; Prescher, Johannes: Towards a Prediction Engine
for Flight Delays based on Weather Delay Analysis. In: EMoV. Jgg. 1185 in CEUR
Workshop Proceedings. CEUR-WS.org, S. 49–51, March 2014.

[Ca14b] Cabanillas, Cristina; Di Ciccio, Claudio; Mendling, Jan; Baumgrass, Anne: Predictive
Task Monitoring for Business Processes. In: BPM. Jgg. 8659 in Lecture Notes in Com-
puter Science. Springer, S. 424–432, September 2014.

[CV95] Cortes, Corinna; Vapnik, Vladimir: Support-Vector Networks. Machine Learning,
20(3):273–297, 1995.

[Du13] Dumas, Marlon; La Rosa, Marcello; Mendling, Jan; Reijers, Hajo A.: Fundamentals of
Business Process Management. Springer, 2013.

[EN10] Etzion, Opher; Niblett, Peter: Event Processing in Action. Manning Publications Co.,
Greenwich, CT, USA, 1st. Auflage, 2010.

[GV14] Günther, Christian W.; Verbeek, Eric: XES Standard Definition, 2014.

[Lu01] Luckham, David C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[Me13] Metzke, Tobias; Rogge-Solti, Andreas; Baumgrass, Anne; Mendling, Jan; Weske, Math-
ias: Enabling Semantic Complex Event Processing in the Domain of Logistics. In: ICSOC
Workshops. S. 419–431, 2013.

[MFP06] Mühl, Gero; Fiege, Ludger; Pietzuch, Peter R.: Distributed Event-based Systems.
Springer, 2006.

[Mi97] Mitchell, Thomas M.: Machine Learning. McGraw Hill series in computer science.
McGraw-Hill, Inc., New York, NY, USA, 1. Auflage, 1997.

[ROS11] Rozsnyai, Szabolcs; Obweger, Hannes; Schiefer, Josef: Event Access Expressions: A
Business User Language for Analyzing Event Streams. In: AINA. IEEE Computer Soci-
ety, S. 191–199, 2011.

[Tr13] Treitl, Stefan; Rogetzer, Patricia; Hrušovský, Martin; Burkart, Christian; Bellovoda,
Bruno; Jammernegg, Werner et al.: GET Service D1.2: Use Cases, Success Criteria and
Usage Scenarios, 2013.

[vD05] van Dongen, Boudewijn: The MXML standard. http://www.processmining.org/
WorkflowLog.xsd, 2005.

[Ve13] van der Velde, Marten; Rook, Hans; Saraber, Paul; Grefen, Paul; Ernst, Albert Charrel:
GET Service D2.1: Report Message Standards. http://getservice-project.eu/
en/project/public-deliverables, 2013.


