

warwick.ac.uk/lib-publications

Original citation:
Fomin, Fedor V., Lokshtanov, Daniel, Misra, Neeldhara, Ramanujan, Maadapuzhi Sridharan
and Saurabh, Saket (2015) Solving \emphd-SAT via backdoors to small Treewidth. In:
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, San Diego, USA, 4–6 Jan 2015. Published
in: Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms pp. 630-641.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/97702

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
First Published in Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms 2015
published by the Society for Industrial and Applied Mathematics (SIAM). Copyright © by
SIAM. Unauthorized reproduction of this article is prohibited.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may be
cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/150167626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/97702
mailto:wrap@warwick.ac.uk

Solving d-SAT via Backdoors to Small Treewidth

Fedor V. Fomin∗ Daniel Lokshtanov∗ Neeldhara Misra† M. S. Ramanujan∗

Saket Saurabh∗‡

Abstract

A backdoor set of a CNF formula is a set of variables
such that fixing the truth values of the variables from
this set moves the formula into a polynomial-time de-
cidable class. In this work we obtain several algorith-
mic results for solving d-SAT, by exploiting backdoors
to d-CNF formulas whose incidence graphs have small
treewidth.

For a CNF formula φ and integer t, a strong
backdoor set to treewidth t is a set of variables such that
each possible partial assignment τ to this set reduces φ
to a formula whose incidence graph is of treewidth at
most t. A weak backdoor set to treewidth t is a set of
variables such that there is a partial assignment to this
set that reduces φ to a satisfiable formula of treewidth
at most t. Our main contribution is an algorithm that,
given a d-CNF formula φ and an integer k, in time
2O(k)|φ|,

• either finds a satisfying assignment of φ, or

• reports correctly that φ is not satisfiable, or

• concludes correctly that φ has no weak or strong
backdoor set to treewidth t of size at most k.

As a consequence of the above, we show that d-SAT
parameterized by the size of a smallest weak/strong
backdoor set to formulas of treewidth t, is fixed-
parameter tractable. Prior to our work, such results
were know only for the very special case of t = 1
(Gaspers and Szeider, ICALP 2012). Our result not
only extends the previous work, it also improves the
running time substantially. The running time of our
algorithm is linear in the input size for every fixed k.
Moreover, the exponential dependence on the parame-
ter k is asymptotically optimal under Exponential Time
Hypothesis (ETH).

∗Department of Informatics, University of
Bergen, Norway, fomin@ii.uib.no, daniello@uib.no,

ramanujan.sridharan@ii.uib.no
†Indian Institute of Science, Bangalore,

neeldhara@csa.iisc.ernet.in
‡Institute of Mathematical Sciences, India,

saket@imsc.res.in

One of our main technical contributions is a
linear time “protrusion replacer” improving over a
O(n log2 n)-time procedure of Fomin et al. (FOCS
2012). The new deterministic linear time protrusion re-
placer has several applications in kernelization and pa-
rameterized algorithms.

1 Introduction

There is a mysterious disparity in the way the Boolean
Satisfiability problem (also often referred to as Propo-
sitional Satisfiability and abbreviated as SAT) is per-
ceived by different communities in Computer Science
and Artificial Intelligence. From a theoretician’s per-
spective, since SAT is NP-complete, the existence of
an efficient algorithm for this problem is highly unex-
pected. Even worse, all currently known algorithms for
SAT with n variables, in the worst case, do not perform
significantly better than a trivial brute-force algorithm
trying all possible 2n assignments to the variables [5].
On the other hand, in practice, modern SAT solvers
can solve instances with hundreds thousands of vari-
ables within seconds. According to Malik and Zhang
[21], similar to mathematical programming tools or lin-
ear equation solvers, SAT solvers have matured to the
point to be used in a wide range of application domains.
Thus encoding a problem as an instance of SAT and
then applying a SAT solver is a success story for many
applications. Understanding the reasons for such a huge
discrepancy between theory and practice is not only an
intellectual challenge, it also can bring us closer to even
faster SAT solvers.

The notion of backdoors to SAT was introduced
by Williams et al. in [26] in an effort towards a rig-
orous understanding of the surprising performance of
SAT solvers in practice. Roughly speaking, backdoors
are small sets of variables capturing the overall combi-
natorics of the SAT instance. The definition of back-
doors is based on the notion of a polynomial time algo-
rithm, a sub-solver, solving tractable instances of SAT.
A sub-solver is an algorithm A which, given a formula φ,
in polynomial time either rejects the input or correctly
solves φ. Furthermore, given any partial assignment τ
to the variables of φ, if A solves φ, then A also solves

630 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

the reduced instance φ[τ]. For example, A can be an
algorithm solving φ if it is an instance of 2-SAT and
rejecting all other instances.

A nonempty subset B of the variables is a weak
backdoor to φ for a sub-solver A if there exists an
assignment τ to the variables in B such that A returns a
satisfying assignment of the reduced instance φ[τ]. We
say that B is a strong backdoor to φ for a sub-solver A if
for each assignment τ to the variables in b, A solves φ[τ],
i.e. either returns a satisfying assignment or concludes
unsatisfiability of φ[τ]. It appears that many instances
in practice happen to have small “weak” or “strong”
backdoors for different sub-solvers [20, 26]. There
has been an extensive theoretical study of backdoors
to different sub-solvers in the realm of parameterized
complexity [23, 25, 16]. We refer to the surveys of
Gaspers and Szeider [15] for more background.

One of the well-studied classes of SAT solvable in
polynomial time is the class of “decomposable” for-
mulas. In particular, the tree- (and its close relative
branch-) width measures have been applied to satisfia-
bility in the following way. If the treewidth of the in-
cidence graph (the bipartite graph on the variables and
clauses where a variable is adjacent to all the clauses
containing it) does not exceed some constant, then SAT
for such formulas can be decided in polynomial time
[6, 11, 24].

Since the property of having an incidence graph
with small treewidth makes SAT polynomial time solv-
able, it is very natural to ask about backdoors to a sub-
solver on formulas of bounded treewidth. The study of
such backdoors from the parameterized complexity per-
spective was initiated by Gaspers and Szeider in [14, 16].
In [14], Gaspers and Szeider study the problem of de-
tecting a weak backdoor of size at most k to acyclic SAT,
i.e, a weak backdoor to a sub-solver on formulas with
incidence graphs of treewidth at most 1. They show
that this problem is W[2]-hard in general but FPT on
d-CNF formulas for fixed d, when parameterized by k.
In [16] Gaspers and Szeider gave an FPT-approximation
algorithm for strong backdoor set to treewidth at most
t which either detects in time f(k)n3, for some function
f , a strong backdoor of size at most 2k or reports that
there is no strong backdoor of such size.

Let Wη be a class of formulas of treewidth at most
η. Let us note that for a formula φ, the minimum
sizes of weak and strong Wη-backdoor sets can be very
different. For a satisfiable formula the minimum size of a
weak backdoor does not exceed the size of a strong one.
However, this is not true for unsatisfiable formulas. For
example, any unsatisfiable formula does not have a weak
backdoor but it could have a small strong backdoor.
In this work we give an FPT algorithm for d-SAT

parameterized by the minimum of both sizes. Formally,
our main result is the following.

Theorem 1.1. There is an algorithm that takes as
input a d-CNF formula φ and an integer k, runs in
time 2O(k)|φ| and

• either finds a satisfying assignment of φ, or

• reports correctly that φ is not satisfiable, or

• concludes correctly that φ has no weak or strong
Wη-backdoor set of size at most k.

The main features of our result as well as the
techniques are the following.

* It extends the tractability results for d-SAT in [14]
to a significantly larger class of d-CNF formulas.
Furthemore, although our algorithm for d-SAT
does not rely on actually computing the entire
backdoor sets, our methods show that a weak
backdoor set to treewidth at most t can in fact be
detected in FPT time.

* The running time of our algorithm is 2O(k)|φ|,
that is, it has a single exponential dependence on
the parameter and linear dependence on the input
length |φ|. It is also easy to show that unless the
Exponential Time Hypothesis (ETH) fails, there is
no 2o(k)|φ|O(1) solving d-SAT for every d ≥ 3 [17].
Thus, our algorithm is asymptotically optimal.

* On the way to obtaining our algorithm we develop
a new deterministic linear time protrusion replacer
algorithm (we refer to Preliminaries for the defini-
tion of a protrusion replacer). Prior to our work
the best deterministic protrusion replacer was of
running time O(n log2 n) [7]. This improvement
implies a speedup for many parameterized and ker-
nelization algorithms based on protrusion replace-
ments. In particular, due to this replacement, all
kernelization algorithms obtained in [2, 8, 9, 12, 19]
and parameterized algorithms from [7, 19] can be
implemented to run in deterministic linear time.

At first glance, the problem of detecting a weakWη-
backdoor set resembles the algorithmic graph problem
of deleting at most k vertices such that the new graph is
of treewidth at most t. However, as it was observed by
Gaspers and Szeider in [14], already the problem of com-
puting a weak backdoor set to acyclic d-SAT is very dif-
ferent from the seemingly related Feedback Vertex
Set problem because while the size of the backdoor, k,
can be very small, the treewidth of the incidence graph
can be unbounded by any function of k. As a result,
the techniques developed by a subset of the authors in

631 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

[7] merely provide a starting point and need to be built
upon in a problem specific way to detect backdoor sets.
To further confirm this intuition, we show that under
standard complexity theoretic assumptions, the prob-
lem of detecting a weak Wη-backdoor does not admit
a polynomial kernel. This separates the kernelization
complexity of the two “related” problems because the
vertex removal problem does in fact admit a polynomial
kernel [7].

We briefly describe the ideas involved in our ran-
domized algorithm, which are somewhat easier to ex-
plain. We say that a subset S of a graph G is a Wη-
modulator if the treewidth of G − S is at most η. Our
starting point is the observation that if X is a subset
of variables that form a strong (or weak) Wη-backdoor,
then the set of their neighbours in the incidence graph,
N(X), is a Wη-modulator. Note that |N(X)| could be
arbitrarily large compared to |X|. In particular, it is fu-
tile to attempt to look for a smallWη-modulator among
the clauses. We begin with a linear-time preprocessing
procedure which ensures that for every Wη-backdoor
set X, the set N(X) is incident with a large fraction
of the edges in G. Therefore, if we pick an edge uni-
formly at random, the clause endpoint of the edge be-
longs to N(X) with constant probability. Further, since
the clauses are of constant size d, we have that a ran-
domly chosen variable from the clause belongs toX with
some probability f(d, η) > 0.

Having located a variable in the backdoor, when
we are working with SAT using weak backdoors, the
algorithm simply branches on the chosen variable x in
the usual way: in one branch, we simplify the formula
by setting x to 1, and in the other branch, we set
x to 0. At this point, we recurse. However, when
working with SAT using strong backdoors, it is not
clear that this approach can be used as it is. Our
algorithm solving SAT using weak backdoors exploits
the fact that a formula admits a weak backdoor if
and only if it is satisfiable. On the other hand, in
the case of strong backdoors, we are faced with three
possible scenarios — that the formula does not admit
a small strong backdoor, or that it does, and it is
either satisfiable or not. Combining the varied recursive
outputs appropriately is less obvious in this situation.
The typical approach for solving SAT using strong
backdoors involves first finding a strong backdoor using
a search tree similar to the above. The set output by
the recursive procedure is the union of all the recursively
obtained solutions and thus its size can be proportional
to the size of the search tree, often 2k. Finally, SAT
is solved in the standard way, which involves trying
all possible truth assignments of the strong backdoor,
and therefore, the overall expense incurred for solving

SAT is 22
k |φ|O(1). Under ETH, even if we are given a

strong backdoor of size `, we do not expect algorithms
solving SAT in time 2o(`)|φ|O(1). Fortunately, it turns
out that detecting backdoors is not a prerequisite to
solving SAT. Indeed, in our algorithms, we sidestep
the problem of detecting strong backdoors, and directly
achieve a running time of 2O(k)|φ|, where k is the size
of a smallest Wη-strong backdoor to φ. As side-effect
of this, our algorithm does not count all the satisfying
assignments.

One of the main ingredients of our algorithm is the
linear time preprocessing step which ensures that a large
fraction of the edges are incident with the neighbors of
every backdoor set. Towards this we give a new de-
terministic linear time “protrusion replacer” which has
several applications in kernelization and parameterized
algorithms. A protrusion is a subgraph that has con-
stant treewidth and a constant-sized neighbourhood.
Protrusions were employed in [2, 9] for obtaining meta-
kernelization theorems for problems on sparse graphs
like planar andH-minor-free graph. Our new protrusion
replacer algorithm begins by enumerating all connected
sets of size p with neighbourhood of size q. By a clas-
sical lemma of Bollobás [18], it can be shown that the
number of such sets is at most

(
p+q
p

)
. However, for the

purposes of developing the protrusion replacer, we use
the enumeration algorithm proposed by Fomin and Vil-
langer [10] in the context of designing exact algorithms
for treewidth. Given these n ·

(
p+q
p

)
sets, we carefully

partition them into groups such that each of them form
protrusions that are mutually internally disjoint (that
is, while they may share their boundaries, their interi-
ors do not overlap). We are also able to prove that these
protrusions together account for a large fraction of the
vertices appearing in any “collection of protrusions”.

Having found these protrusions, we need an al-
gorithm that can reduce protrusions, that is, remove
these protrusions and replace them with smaller ones
maintaining equivalence. We note that the known re-
sults about protrusion replacement cannot be used di-
rectly here. The existing machinery for replacing pro-
trusions relies crucially on the notion of finite integer in-
dex. However, in our context, defining an appropriately
equivalent notion applicable in the usual way seems
rather difficult. Thus, we resort to the “finite state”
style of making protrusion replacement. Also this is a
more practical and arguably more direct line of attack.
We consider a tree decomposition of the protrusion and
analyze it to identify bags that are “equivalent”, and
then suggest a suitable reduction rule. The methods
described here are similar in spirit to the ideas used
in [13] for kernelization.

632 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

2 Preliminaries

2.1 CNF Formulas and Assignments We con-
sider propositional formulas in conjunctive normal form
(CNF). We assume, without loss of generality, that the
clauses do not contain a pair of complementary literals.
For a CNF formula φ, we use var(φ) and cla(φ) to refer
to the sets of variables and clauses in φ, respectively. We
say that a variable x is positive (negative) in a clause
C if x ∈ C (x ∈ C), and we write var(C) for the set
of variables that are positive or negative in C, while we
use lit(C) to denote the set of literals in C.

The length of a formula φ is given by |var(φ)| +∑
C∈cla(φ)(1 + |var(C)|) and is denoted by |φ|. A truth

assignment τ is a mapping from a set of variables,
denoted by var(τ), to {0, 1}. A truth assignment τ
satisfies a clause C if it sets at least one positive variable
of C to 1 or at least one negative variable of C to 0. A
truth assignment τ of var(φ) satisfies the formula φ if
it satisfies all clauses of φ. The satisfiability problem
(SAT) of a CNF formula φ is to decide whether F has
a satisfying truth assignment.

Given a CNF formula φ and a truth assignment τ ,
φ[τ] denotes the truth assignment reduct of φ under
τ , which is the CNF formula obtained from φ by first
removing all clauses that are satisfied by τ and second
removing from the remaining clauses all literals x, x with
x ∈ var(τ). For a formula φ and a subset of clauses
C ⊆ cla(φ), we use φ \ C to denote the formula φ with
the clauses in C removed.

The incidence graph of a CNF formula φ, inc(φ),
is the bipartite graph whose vertices are the variables
and clauses of φ, and where vertices corresponding to
a variable x and a clause C are adjacent if and only
if x ∈ var(C). Further, an edge between a vertex
corresponding to x ∈ var(φ) and C ∈ cla(φ) has the
label + if x ∈ lit(C) and is labeled − if x ∈ lit(C).

We refer to the class of two-edge colored bipartite
graphs as SAT incidence graphs, or incidence graphs for
short. Typically, we use (G = (X,C), E, `) to denote an
incidence graph, where ` : E → {+,−}. The formula
ψ(G) is defined over the variable set {xv | v ∈ X}, with
a clause Cu for every u ∈ C. Further, the clause Cu
consists of the literals:

{xv | (xv, u) ∈ E and `(xv, u) = +}∪

{xv | (xv, u) ∈ E and `(xv, u) = −}.

For an incidence graph G, we abuse notation and
use var(G) to refer to the vertices of G that correspond
to variables in ψ(G), and cla(G) to refer to the vertices
of G that correspond to clauses in ψ(G). Also, for
a vertex subset X ⊆ V (G), we continue to use the
notations var(X) and cla(X) to refer to the sets var(G)∩

X and cla(G) ∩X, respectively.
We say that G is an incidence graph of order d if G

is an incidence graph where the maximum degree among
the vertices in cla(G) is bounded by d. Note that these
graphs correspond to d-CNF formulas (where a d-CNF
formula involves clauses of length at most d).

Let B denote a fixed class of formulas under con-
sideration. A weak B-backdoor set of a CNF formula
φ is a set B of variables such that there is a truth as-
signment τ of the variables in B such that the formula
φ[τ] is satisfiable and φ[τ] ∈ B. Such an assignment is
called a witness assignment for the weak backdoor. A
strong B-backdoor set of F is a set B of variables such
that for each truth assignment τ of the variables in B,
the formula φ[τ] is in B.

We let Kη denote the class of formulas φ for which
inc(F) excludes the (η×η) grid as a minor (c.f. Subsec-
tion 2.3 for the relevant definitions), and let wbg(φ, η)
(respectively, sbg(φ, η)) denote the smallest possible size
of a weak (respectively, strong) Kη backdoor. Also,
we let Wη denote the class of formulas φ for which
inc(F) has treewidth at most η (c.f. Subsection 2.2
for the relevant definition), and let wbtw(φ, η) (respec-
tively, sbtw(φ, η)) denote the smallest possible size of
a weak (respectively, strong) Wη backdoor. Note that
wbg(φ, η) ≤ wbtw(φ, η), and sbg(φ, η) ≤ sbtw(φ, η), since
every backdoor toWt is also a backdoor to Kt (although
the converse is not necessarily true).

2.2 Treewidth. Let G be a graph. A tree decompo-
sition of G is a pair (T,X = {Xt}t∈V (T)) where T is a
tree and X is a collection of subsets of V (G) such that:

• ∀e = uv ∈ E(G), ∃t ∈ V (T) : {u, v} ⊆ Xt and

• ∀v ∈ V (G), T [{t | v ∈ Xt}] is a non-empty
connected subtree of T .

We call the vertices of T nodes and the sets in X bags
of the tree decomposition (T,X). The width of (T,X)
is equal to max{|Xt| − 1 | t ∈ V (T)} and the treewidth
of G is the minimum width over all tree decompositions
of G.

2.3 Minors Given an edge e = xy of a graph G, the
graph G/e is obtained from G by contracting the edge
e, that is, the endpoints x and y are replaced by a new
vertex vxy which is adjacent to the old neighbors of x
and y (except from x and y). A graph H obtained by a
sequence of edge-contractions is said to be a contraction
of G. We denote it by H ≤c G. A graph H is a minor
of a graph G if H is the contraction of some subgraph of
G and we denote it by H ≤m G. We say that a graph G
is H-minor-free when it does not contain H as a minor.
We also say that a graph class G is H-minor-free (or,

633 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

excludes H as a minor) when all its members are H-
minor-free. It is well-known [22] that if H ≤m G then
tw(H) ≤ tw(G). We will also use the fact that every
graph of treewidth at least η100 contains the (η×η) grid
as a minor [4]. We also use �η to denote the (η × η)
grid.

2.4 Protrusions and Protrusion Replacement
For a graph G and S ⊆ V (G), we define ∂G(S) as the
set of vertices in S that have a neighbor in V (G) \ S.
For a set S ⊆ V (G) the neighbourhood of S is NG(S) =
∂G(V (G) \ S). When it is clear from the context, we
omit the subscripts. A r-protrusion in a graph G is a
set X ⊆ V such that |∂(X)| ≤ r and tw(G[X]) ≤ r.
Further, a (r, s)-protrusion is a set X ⊆ V such that
|∂(X)| ≤ r and tw(G[X]) ≤ s. If G is a graph
containing a r-protrusion X and X ′ is a r-boundaried
graph, the act of replacing X by X ′ means replacing G

by G
∂(X)
V (G)\X ⊕X

′.

Let G be the incidence graph of a formula F . A
variable r-protrusion in G is a r-protrusion such that
all the vertices in ∂(X) correspond to variables of F .

A protrusion replacer for a parameterized graph
problem Π is a family of algorithms, with one algorithm
for every constant r. The r’th algorithm has the
following specifications. There exists a constant r′

(which depends on r) such that given an instance (G, k)
and an r-protrusion X in G of size at least r′, the
algorithm runs in time O(|X|) and outputs an instance
(G′, k′) such that (G′, k′) ∈ Π if and only if (G, k) ∈ Π,
k′ ≤ k and G′ is obtained from G by replacing X by a r-
boundaried graph X ′ with less than r′ vertices. Observe
that since X has at least r′ vertices and X ′ has less than
r′ vertices this implies that |V (G′)| < |V (G)|.

3 Algorithms for d-SAT using Kη-Backdoors

In this section, we present our algorithms for solving
SAT, which are described assuming the existence of al-
gorithms that we call reducers. We provide the descrip-
tion of the reducers in the full version of this work, and
also explicit algorithms that replace protrusions while
preserving satisfiability as well as the existence of small
backdoor sets.

We begin by presenting a linear time randomized
algorithm for d-SAT parameterized by the size of a
weak Kη-backdoor set. We then give a deterministic
version of this algorithm while still managing to achieve
the optimal asymptotic dependence on the parameter
and the formula size. Following this, we present our
algorithm for d-SAT parameterized by the size of a
strong Kη-backdoor set. We conclude this subsection
with a proof sketch of the fixed parameter tractability
of computing weak Wη-backdoor sets.

The basis of the randomized (and subsequently, the
deterministic) algorithms is the fact that the reducers
ensure that the vertices corresponding to backdoors are
always incident with a large fraction of the edges in
the incident graph. This property is formalized by the
following definition.

Definition 3.1. Let G be a graph and let S ⊆ V (G).
Also, let 0 < ρ < 1. We call S a ρ-cover for G
if
∑
v∈S d(v) ≥ ρ

∑
v∈V (G) d(v). Let φ be a d-CNF

formula and S ⊆ var(φ). We call S a ρ-cover for φ
if Ninc(φ)[S] is a ρ-cover for the graph inc(φ).

Next, we formalize the properties of the algorithms
that we refer to as reducers.

Definition 3.2. Let η ≥ 1 and 0 < ρ < 1 be constants
and Q a class of d-CNF formulas. A (wb,Q, ρ)-reducer
is a pair of algorithms (A,A′) such that A takes as input
a d-CNF formula φ and returns a d-CNF formula φ′ and
A′ takes as input a truth assignment τ ′ to φ′ and returns
a truth assignment τ to φ such that

• |φ′| ≤ |φ|.

• For every 0 ≤ k ≤ |var(φ)|, φ has a weak Q-
backdoor set of size at most k if and only if φ′ has
a weak Q-backdoor set of size at most k.

• every set of variables which forms a weak Q-
backdoor set for the formula φ′ is a ρ-cover of φ′.

• if τ ′ is a satisfying assignment for φ′ then τ is a
satisfying assignment for φ.

A (sb,Q, ρ)-reducer is defined analogously with respect
to strong Q-backdoor sets along with the additional
property that the formula φ′ computed by A is explicitly
required to be equivalent to φ.

3.1 d-SAT parameterized by weak Kη-backdoor
sets We now turn to the descriptions of the algorithms.
We first present an accessible description of a random-
ized algorithm for d-SAT when parameterized by the
size of weak Kη-backdoor sets. Subsequently, we show
that there is also a single-exponential deterministic al-
gorithm.

Lemma 3.1. Let (A1,A′1) be a (wb,Kη, ρ)-reducer.
Then, Algorithm Randomized-FPT-SAT-Weak
(Figure 1) on input φ and an integer k, runs in time
O(k(|φ|+ TA1

(|φ|) + TA′
1
(|φ|))). Furthermore,

• If φ has a weak Kη-backdoor set of size at most
k then with probability at least (ρ

2(d+1))
k, the algo-

rithm computes a satisfying assignment of φ.

634 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Randomized-FPT-SAT-weak(φ,k)

φ0 := φ, i := 0

While (inc(φi) has treewidth more than η100) pro-
ceed as follows:

1. If k ≤ 0 return that φi does not have a k-sized
weak Kη-backdoor set .

2. Execute algorithm A1 on φi and obtain an
equivalent formula φ′i.

3. Pick an edge e ∈ E(inc(φ′i)) uniformly at
random. Let xi be the variable endpoint of
e.

4. Select αi ∈ {0, 1} uniformly at random.

5. Set φi+1 := φ′i[xi = αi], k := k − 1, i := i+ 1.

Solve satisfiability of φi using a bounded-treewidth
sub-solver. If unsatisfiable, simply return the an-
swer. If satisfiable, compute a satisfying assign-
ment of φi and recover a satisfying assignment for
φ using A′1.

Figure 1: Algorithm Randomized-FPT-SAT-Weak

• Correctly concludes that φ has no weak Kη-backdoor
set of size at most k otherwise.

Proof. Since each iteration of this algorithm is dom-
inated by the time required to run the (wb,Kη, ρ)-
reducer on input φ and there are at most k possible
iterations, the bound on the running time of the algo-
rithm follows. It is clear that if φ has no weak Kη-
backdoor set of size at most k, then the algorithm cor-
rectly concludes that there is not such backdoor set.
Therefore, we only need to consider the case when a
smallest weak Kη-backdoor set for φ, say S, has size
at most k. Observe that in this case, φ is satisfiable,
and a satisfying assignment may be obtained by using a
bounded-treewidth sub-solver (note that inc(φ) does not
have �η as a minor and hence its treewidth is bounded
by at most η100). We now prove the following claim
regarding a run of the algorithm on the input (φ, k).

Claim 3.1. For each 0 ≤ i < k, with probability at least
(ρ
2(d+1))

i+1 the following events occur.

1. φi+1 ≡ φ,

2. φi+1 has a weak Kη-backdoor set of size at most
k − (i+ 1).

Proof. The proof is by induction on i. Consider the base
case when i = 0. Let S0 be a smallest weak Kη-backdoor
set for φ′0. Since S0 is a ρ-cover for φ′0, we have that S0

is a ρ
d+1 -cover for inc(φ′0). Therefore, the probability of

choosing an edge incident on S0 is at least ρ
d+1 which is

also a lower bound on the probability that x0 ∈ S0.
Furthermore, algorithm A1 by definition guarantees
that φ′0 is equivalent to φ0 and that |S0| ≤ k. Therefore,
let τ∗0 : var(φ)→ {0, 1} be a satisfying assignment of φ′0
such that φ′0[τ∗0 |S0

] is in Kη. Observe that φ′0[τ∗0 |x0
] is

also satisfiable and furthermore, S0 \ {x0} is a weak
Kη-backdoor set for φ′0[τ∗0 |x0]. Finally, the probability
that φ1 = φ′0[τ∗0 |x0

] is the probability that α0 = τ∗|x0
,

which is at least 1
2 . Therefore, we conclude that with

probability at least ρ
2(d+1) , φ1 ≡ φ0 and φ1 has a weak

Kη-backdoor set of size at most k − 1.
We now move on to the induction step for i ≥

1. Algorithm A1 by definition guarantees that φ′i
is equivalent to φi. Furthermore, by the induction
hypothesis, with probability at least (ρ

2(d+1))
i+1, we

have that φi ≡ φ, implying that φi is satisfiable.
Therefore, φ′i is satisfiable. Also, we have that φi
has a weak Kη-backdoor set of size at most k − i.
Therefore, algorithm A1 guarantees that φ′ has a weak
Kη-backdoor set, say Si of size at most k − i. Let
τ∗i : var(φi) → {0, 1} be a satisfying assignment of φ′i
such that φ′i[τ

∗
i |Si] ∈ Kη. Since Si is a ρ

d+1 -cover of
inc(φ′i), the probability that xi ∈ Si is at least ρ

d+1 .
Also φ′i[τ

∗
i |xi] is satisfiable and Si \ {xi} is a weak

Kη-backdoor set for φ′i[τ
∗
i |xi

]. Since αi = τ∗i |xi
with

probability at least 1
2 , we conclude that φi+1 = φ′i[τ

∗
i |xi

]
and therefore both events occur with probability at least
(ρ
2(d+1))

i+1. This completes the proof of the claim. �

Given the above claim, it follows that with prob-
ability at least (ρ

2(d+1))
k, for some ` ≤ k, the formula

φ` ∈ Kη and φ` ≡ φ. Since φ is satisfiable, so is φ`
and this is correctly detected by a bounded-treewidth
sub-solver. Finally, we can compute the satisfying as-
signment for φ by starting with a satisfying assignment
for φ` and applying the algorithm A′1 iteratively to the
formulas φ`, φ`−1, . . . , φ1. This completes the proof of
the lemma. �

We now give a deterministic version of the above
algorithm. Our branching strategy is based on the
intuition that a subset of vertices that covers a constant
fraction of all the edges in G must contain sufficiently
many vertices of high degree. Equivalently, a set
of variables that form a ρ-cover must contain some
variables that occur with a substantial frequency among
the clauses of φ. We use a partition of the variables
according to frequency that formalizes this intuition,
which is based on the definitions in [7]. Indeed, our

635 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Input: (φ, k), where φ is a d-CNF formula, and k
is a positive integer.

Output: Fail if φ has no weak Kη-backdoor set of
size at most k, a satisfying assignment τ∗

otherwise.
if k = 0 and φ /∈ Kη: then

return Fail
if k = 0 and φ ∈ Kη: then

Solve SAT for φ in polynomial time.
if φ has a satisfying assignment τ∗: then

return τ∗

if φ is not satisfiable: then
return Fail

if k > 0 then
φ′ := A(φ)
Compute the buckets B1, . . . , Bdlogne for φ′

for each big bucket Bi do
for each subset S ⊆ Bi such that
|S| ≥ ` · |Bi| do

for each assignment τ : S → {0, 1} do
R:=SolveWB(φ′[τ], k − |S|)
if R is not Fail then return τ∗ ∪ τ

end

end

end
return Fail

Algorithm 1: SolveWB((φ, k))

branching algorithm is exactly along the same lines;
however, we present the details here for the sake of
completeness.

Lemma 3.2. Let (A,A′) be a (wb,Kη, ρ)-reducer.
Then, there is a deterministic algorithm that takes as
input a d-CNF formula φ and an integer k, runs in
time 2O(k)(|φ|+ TA(|φ|) + TA′(|φ|)) and

• either finds a satisfying assignment of φ, or

• concludes correctly that φ has no weak Kη-backdoor
set of size at most k.

Proof. We first execute the algorithm A on input φ
(see Algorithm 1) to obtain a formula φ′ such that φ
has a weak Kη-backdoor set of size at most k if and
only if φ′ has a weak Kη-backdoor set of size at most k
and furthermore, any S ⊆ var(φ′) which is a weak Kη-
backdoor set is a ρ-cover of φ′ for some constant ρ < 1.
Let G = inc(φ′). The branching strategy is based on
a partition the variables of φ′ into sets, called buckets,
which are defined as follows. For each i ≥ 1, we let:

Bi =
{
v ∈ V (G)| n

2i
< d(v) ≤ n

2i−1

}
.

Fix constants µ and ` such that (4`+3µ)
2 < ρ

d+1 and
let X be a fixed smallest weak Kη-backdoor set. We

call a bucket Bi big if |Bi| > iµ and we call it good if
|Bi ∩NG[X]| ≥ `|Bi|. We compute the buckets, and for
each big bucket Bi, for every subset S of Bi of size at
least `|Bi|, for every partial truth assignment τ to the
variables in S, we recurse on the instance (φ′[τ], k−|S|).
We return that φ is satisfiable if for some bucket Bi and
some subset S and some assignment τ , the recursion
(φ′[τ], k − |S|) returned it is satisfiable and we return
that φ has no weak Kη-backdoor set of size at most k
otherwise. We now turn to the proof of correctness and
analysis of running time.

Claim 3.2. There is a bucket which is both big and
good.

Proof. Since X is a ρ
d+1 -cover in inc(φ′), we have that∑

v∈X d(v) ≥ ρ
d+1 · 2m, where m = |E(G)|. If there

were no buckets which are good as well as big, then
we have the following. For the sake of contradiction,
assume that φ does not have a bucket that is both big
and good. Then, we have the following.

∑
v∈X

d(v) =

logn∑
i=1

∑
v∈Bi∩X

d(v)

=
∑

{i|Biis not good}

∑
v∈Bi∩X

d(v)+
∑

{i|Biis not big}

∑
v∈Bi∩X

d(v)

≤ ` · 4m+
∑

{i|Biis not big}

iµ ·
(n

2i

)

≤ ` · 4m+ 3µn = 2dm
4`+ 3µ

2
<

2mρ

d+ 1
,

which contradicts that X is a ρ
d+1 -cover in inc(φ′). �

The correctness of the algorithm follows from the
above claim and the exhaustiveness of the branching.
We now analyze the running time. Suppose for the sake
of analysis that all buckets are big, and let ai be the
size of bucket i. Then we have that

T (k) ≤
logn∑
i=1

(
ai
k

)
T (k − `ai) ≤

logn∑
i=1

2aiT (k − `ai)

Assuming T (k) = xk, substitute recursively to get:

T (k) ≤
logn∑
i=1

2aix(k−`ai) ≤ xk
logn∑
i=1

(
2

x`

)ai

636 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	 Yes No Fail
Yes Yes Yes Yes
No Yes No Fail
Fail Yes Fail Fail

� Yes No Fail
Yes Yes Yes Yes
No Yes No No
Fail Yes No Fail

Figure 2: The functions � and 	.

If 2
x` < 1 then each term of the sum is maximized

when the exponent is as small as possible. We will
choose x (based on `) such that 2

x` < 1 holds. Since
ai ≥ µi for any big bucket we have that

T (k) ≤ xk
logn∑
i=1

(
2

xd

)µi
The sum above is a geometric series and converges to a
value that is at most 1 for x = c, for a suitably small
choice of c depending only on ` and µ, which depended
only on η. This bounds the running time by ck. Further,
if not all buckets are big the sum above should only be
done over the big buckets, yielding the same result. �

3.2 d-SAT parameterized by strong Kη-
backdoor sets We now introduce Algorithm 2, which
is a deterministic algorithm that either determines the
satisfiability of the input formula, or declares that the
input formula has no strong Kη-backdoor of size at
most k. The overall branching strategy is rather similar
to Algorithm 1, however, the manner in which the
outputs of the recursive subroutines are merged is more
intricate in this case, and there are subtle differences
that will be apparent in the proof of correctness.

Lemma 3.3. Let (A,A′) be a (sb,Kη, ρ)-reducer.Then,
there is a deterministic algorithm that takes as input
a d-CNF formula φ and an integer k, runs in time
2O(k)(|φ|+ TA(|φ|) + TA′(|φ|)) and

• either finds a satisfying assignment of φ, or

• reports correctly that φ is not satisfiable, or

• concludes correctly that φ has no Kη strong back-
door set of size at most k.

Proof. As with the proof of Lemma 3.2, we begin by
running the algorithm A on φ to ensure that φ is an
equivalent instance where every strong backdoor set of
size at most k is a ρ-cover for some constant ρ. We then
classify the variables into different buckets according to

Input: (φ, k), where φ is a d-CNF formula, and k
is a positive integer.

Output: Fail if φ has no strong Kη-backdoors of
size at most k, otherwise; Yes if φ has a
satisfying assignment, and No if φ is not
satisfiable.

Remark: See Figure 2 for the definition of 	 and
� for two arguments, and note that the functions
are associative.
if k = 0 and φ /∈ Kη: then

return Fail
if k = 0 and φ ∈ Kη: then

Solve SAT for φ in polynomial time.
if φ is satisfiable: then

return Yes
if φ is not satisfiable: then

return No
if k > 0 then

Let (A,A′) be the (sb,Kη, ρ) assumed reducer.
Let φ∗ denote the output of A(φ).
Compute the buckets B1, . . . , Bdlogne for φ∗.
for each big bucket Bi do

Let S := {S | S ⊆ Bi and |S| ≥ ` · |Bi|}.
for S ∈ S do

Let S := {z1, . . . , zb}
Let z[S] := 	τ∈2S
solveSB((φ∗[τ], k − b)).

end
return �S(z[S])

end
Algorithm 2: SolveSB((φ, k))

their degree, and we will have, as before, that there is a
bucket that is both large and also contributes a constant
fraction of its vertices to the ρ-cover.

We remark that the analysis of the running time of
the algorithm is identical to the analysis in Lemma 3.2.
Therefore, we now focus on the proof of correctness for
Algorithm 2. Note that the algorithm has three possible
outputs; namely Yes, No, and Fail. We claim that
if the algorithm reports Fail, then φ has no Kη strong
backdoor set of size at most k. On the other hand, if the
algorithm returns Yes (respectively, No), then φ has a
satisfying assignment (respectively, is not satisfiable).
We proceed by induction on k. In the base case, when
k = 0, if φ ∈ Kη, then a small-treewidth sub-solver for
SAT will correctly determine the satisfiability of φ, so
the correctness of these outputs follow. On the other
hand, if φ /∈ Kη, then there is (by definition) no strong
Kη-backdoor of size k, and accordingly, the output is
Fail.

Our induction hypothesis is that the output of the
algorithm on (φ, `) is correct for all values of ` ≤ k,

637 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

on all formulas φ. Now, consider the behavior of the
algorithm on (φ, k + 1). By the correctness of the
replacer algorithm, the formula φ∗ has a strong Kη-
backdoor of size at most (k + 1) if and only if φ has
a strong Kη-backdoor of size at most (k + 1). The
algorithm then proceeds to examine all subsets of size at
most (k + 1) of the big buckets. We now show that the
output of the algorithm is correct for all of its possible
outputs, which leads us to the following cases.

– SolveSB((φ, k)) = Yes. Observe that
solveSB((φ, k + 1)) returns Yes if, and only
if, there is a subset S ∈ S for which z[S] was Yes.
This in turn is true if, and only if, there is an
assignment τ ∈ 2S to the variables in S for which
SolveSB((φ∗[τ], k − b)) returns Yes. Inductively,
this implies that φ∗[τ] is in fact a satisfiable
formula. Let τ ′ then be a satisfying assignment for
φ∗[τ]. Note that τ∗(x), given by:

τ∗(x) =

{
τ(x) if x ∈ S,
τ ′(x) if, x /∈ S,

is a satisfying assignment for φ∗. By the equiva-
lence of φ and φ∗ with respect to satisfiability (as
guaranteed by the reducer) we know that φ is also
satisfiable, concluding the proof.

– SolveSB((φ, k)) = No. In this case,
solveSB((φ, k + 1)) returns No if, and only
if, there is a subset S ∈ S for which z[S] was
No. This in turn is true if, and only if, there for
every assignment τ ∈ 2S , SolveSB((φ∗[τ], k − b))
returns No. Since we have, inductively, that
φ∗[τ] is not satisfiable for any assignment to
the variables in S, we know that φ∗ is also not
satisfiable. Indeed, suppose to the contrary that
φ∗ does admit a satisfying assignment τ∗. Then
the formula φ∗[τ∗�S] would be satisfiable as well,
which contradicts the induction hypothesis. The
correctness again follows from the equivalence of φ
and φ∗ with respect to satisfiability.

– SolveSB((φ, k)) = Fail. Here, we have that
solveSB((φ, k + 1)) returns Fail if, and only if,
for all subsets S ∈ S, z[S] is Fail. In other words,
for every subset S ∈ S, there is an assignment τS
to the variables of S for which SolveSB((φ∗[τS], k+
1 − |S|)) is Fail. By the induction hypothesis, we
have that the formulas φ∗[τS] do not admit a strong
backdoors of size at most k+1−|S| for every S ∈ S.

Suppose, for the sake of contradiction, φ∗ does
admit a strong Kη-backdoor of size at most k + 1.
Since φ∗ is the output of a (sb,Kη, ρ)-reducer, we

know every Kη-backdoor in φ∗ is a ρ-cover, and
therefore intersects a large fraction of one of the
sets in S. In particular, let S∗ be a strong backdoor
of size at most (k+1) such that its intersection with
Bi is at least `|Bi|. Then S′ := S∗ ∩ Bi ∈ S, and
for any τ ∈ 2S

′
, we have that φ∗[τ] does admit a

strong backdoor of size at most k+1−|S′|, indeed,
S ∗ ∩var(φ∗[τ]) would be such a strong backdoor.
However, by the discussion above, there exists an
assignment τ ′ to S′ for which SolveSB((φ∗[τ ′, k +
1− |S′|)) returns Fail, contradicting the induction
hypothesis. The correctness for (φ, k + 1) follows
from the equivalence of φ and φ∗ with respect to
having strong backdoors of size at most (k+ 1), as
guaranteed by the reducer.

Observe that the case analysis above is exhaustive, and
establishes the correctness of Algorithm 2. �

We conclude at this point by observing that com-
bining Lemmas 3.2 and 3.3 along with the existence of
the appropriate reduces gives us two algorithms – one
for d-SAT parameterized by the size of a smallest weak
Kt-backdoor and one for d-SAT parameterized by the
size of a smallest strong Kt-backdoor. For any input
(φ, k), we can in fact run both algorithms on the same
input, giving us Theorem 1.1.

3.3 Fixed Parameterized Tractability of com-
puting weak Wη-backdoor sets We also obtain the
following fixed parameter tractability result (assuming
appropriate reducers) for the problem of deciding if a
given formula has a weak Wη backdoor set of size at
most k.

Theorem 3.1. There is an algorithm that, given a d-
CNF formula φ and an integer k, runs in time 2O(k)|φ|
and either returns a set of at most k variables which
form a Wη weak backdoor set or correctly concludes that
such a set does not exist.

Proof. To prove the theorem, we repurpose the algo-
rithm of Lemma 3.1, where instead of just fixing a ran-
dom assignment to a randomly chosen variable, we now
also add this variable to the Wη weak backdoor set.
Therefore, it suffices to have a linear time (wb,Wη, ρ)-
reducer. This gives a randomized 2O(k)|φ| algorithm to
detect weak Wη-backdoor sets of size at most k. This
algorithm can be derandomized identical to the way the
algorithm of Lemma 3.1 is derandomized in Lemma 3.2.
The correctness and running time bounds of this algo-
rithm follow along the same lines as those for the algo-
rithm of Lemma 3.2. �

638 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

4 Fast Protrusion Replacement

In this section, we present our linear time algorithm
to detect protrusions that cover a sufficiently part of a
given graph. Using this algorithm, we prove our Linear
Time Protrusion Replacement Theorem. Although the
main motivation behind designing this algorithm is to
achieve reducers that run in linear time for d-SAT, this
theorem is developed in a much more general setting
so as to facilitate “black-box” applications and can
also be invoked directly to improve several existing
kernelization as well as FPT results. We begin by
recalling the notions of protrusion covers.

Definition 4.1. A (a, b, r, η)-protrusion cover in a
graph G is a collection Z = Z1, . . . , Zq of sets such that

• for every i, N [Zi] is a (r, η)-protrusion in G

• for every i, a ≤ |Zi| ≤ b

• for every i 6= j, Zi ∩ Zj = ∅ and N [Zi] ∩ Zj = ∅.

The size of Z is denoted by |Z|.

Note that the protrusions in a (a, b, r, η)-protrusion
cover are not necessarily connected. However, the fol-
lowing lemma shows that we may make this assumption
at a cost of decreasing the lower bound on the sizes of
the protrusions.

Lemma 4.1. Let G be a graph with a (s, 6s, r, η)-
protrusion cover Z. Then, G has a (s2r , 6s, r, η)-
protrusion cover Z ′ of size at least |Z| such that for
every Z ∈ Z ′, the connected components of G[Z] have
the same neighbourhood.

Proof. Let Z1, . . . ,Zp be the partition of the sets in Z
according to their neighborhood. Furthermore, for each
Zi, let Pi denote a subset of Zi such that for every
Z ∈ Zi, there is a set P ∈ Pi such that |P | ≥ s

2r

and the connected components of G[P] have the same
neighborhood. Since each Z ∈ Zi has size at least s and
neighbourhood at most r, such a P exists for every Z
and therefore Pi exists for every Zi. Observe that the
set P = {Pi|i ∈ [p]} is indeed a (s2r , 6s, r, η)-protrusion
cover satisfying the conditions in the statement of the
lemma. �

Clearly, it is very desirable to be able to compute
protrusion covers of large size, which then allows us to
reduce the size of instances by a significant amount.
Our next algorithm achieves this – in linear time, it
computes a protrusion cover which “approximates” any
protrusion cover in the graph with certain parameters.
We use the following algorithm for enumerating small
connected components with a small neighborhood.

Proposition 4.1. [10] Let G be a graph and let v ∈
V (G), p, q ∈ [|V (G)|]. The number of sets S containing
v such that G[S] is connected, |S| ≤ p, and |N(S)| ≤ q
is at most

(
p+q
p

)
and given v, they can be enumerated in

constant time for fixed p and q.

Lemma 4.2. For every r and s where s > 2r, there is
an algorithm that runs in time O(m+ n) and computes
a (s2r , 7s, r, η)-protrusion cover. Furthermore, if G has
a (s2r , 6s, r, η)-protrusion cover Z such that for every
Z ∈ Z ′, the connected components of G[Z] have the
same neighbourhood then the computed (s2r , 7s, r, η)-
protrusion cover Z ′ has size at least δ|Z|, where δ is
a constant depending only on r and s.

Proof. For every vertex v ∈ V (G), we use Proposition
4.1 to enumerate the family Sv = {S ⊆ V (G)|v ∈
S, |S| ≤ 6s, |N(S)| ≤ r,G[S] is connected }. Since enu-
merating the family Sv for each vertex takes constant
time, the sets Sv for all vertices can be computed in
time O(n). For every v ∈ V (G), we discard the sets
S ∈ Sv such that tw(G[S]) > t. Since we can use the
algorithm of Bodlaender[3] to compute the treewidth of
each S ∈ Sv in constant time, the discarding process
taken over the sets Sv for all v ∈ V (G) can be done
linear time. Let S∗ =

⋃
v∈V (G) Sv. We now group the

sets in S∗ according to their neighbourhood. More pre-
cisely, we compute a partition of S∗ where sets with
the same neighbourhood are in the same class of the
partition. This can be done as follows (see for example
[7]). Fix an ordering of the vertex set of G and sort
the neighbor lists of each set in S∗. Following this, in r
stable bucket sorts, we can sort the sets in S∗ based on
their ‘first’ neighbor first, then the ‘second’ and so on.
This procedure takes time O(nr) since |S∗| = O(n) and
each set in S∗ has a boundary of size at most r. Let
X1, . . . ,Xq be the partition of S∗ obtained as described
above. Observe that for any i ∈ [q], for any S1, S2 ∈ Xi,
S1 ∩ S2 = ∅. This follows from the fact that G[S1] and
G[S2] are both connected. More precisely, if S1∩S2 6= ∅
then S1 must have a neighbor in S2, contradicting the
fact that they lie in the same class of the partition.

We now club together certain sets in each class
of the partition together as follows. For each Xi do
the following. As long as

∑
S∈Xi

|S| ≥ s
2r , select a

minimal collection X ′i ⊆ Xi such that
∑
S∈X ′

i
|S| ≥ s

2r

and add it to the set Y and remove the sets in this
collection from Xi. We repeat this step as long as
possible. Observe that each time we add a minimal
collection X ′i ⊆ Xi to Y, it must be the case that
s
2r ≤

∑
S∈X ′

i
|S| ≤ 6s + s

2r ≤ 7a. Let Y1, . . . ,Yq be

the collections added to Y in this way where we know
that for every i ∈ [q], the sum of the sizes of the sets in
Yi is at least s

2r and at most 7s.

639 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Before describing the subsequent steps of the algo-
rithm, we prove a bound on the size of the set Y as-
suming the existence of a (s2r , 6s, r, η)-protrusion cover
Z. Let Z1, . . . ,Zp be the partition of the sets in Z ac-
cording to their neighbourhood. Observe that for each
i ∈ [p], Zi is a subset of Xj for some unique j, denoted
by σ(i). We will show that for Zi, the number of col-
lections contributed by Xσ(i) to the set Y is a constant
fraction of the number of sets in Zi.

More precisely, let Vi be the set of vertices in the
union of the sets in Zi. Since every set in Zi has size

at least s
2r , the size of each set Zi is at most |Vi|2r

s .
Furthermore, since every collection contributed by Xσ(i)
to Y covers at most 7s vertices, the number of collections

contributed by Xσ(i) to Y is at least b |Vi|
7s c. If |Vi| ≤ 8s,

then since Xσ(i) contributes at least one collection to Y,
we conclude that the number of collections contributed
by Xσ(i) to Y is at least a 1

8·2r = 1
2r+3 fraction of the size

of Zi. On the other hand, if |Vi| > 8s, then since Xσ(i)
contributes at least |Vi|

7s −1 collections to Y, we infer that
the number of collections contributed by Xσ(i) to Y is at

least a 1
2r+3 fraction of the size of Zi. Having concluded

that for any (s2r , 6s, r, η)-protrusion cover Z, we have
that |Y| ≥ ω · |Z| where ω = 1

2r+3 , we now move to the
final step of obtaining the required protrusion cover Z ′.

Let H be a graph with vertex set corresponding to
the sets in Y and edge set defined as follows. There is an
edge between vertices u and v in H if the corresponding
sets Yu and Yv are such that for some Yu ∈ Yu and
Yv ∈ Yv, Yu ∩ Yv 6= ∅ or Yu has an edge to Yv. We
observe that the maximum degree ∆(H) of the graph
H is bounded by a constant depending only on s and
r. Indeed, for each Yu, the number of sets in S∗ that
intersect a set Y ∈ Yu is bounded by |Y | ·

(
6s+r
r

)
.

Furthermore, the number of sets in S∗ that intersect
N(Y) is bounded by r ·

(
6s+r
r

)
. Finally, the number of

vertices contained in the union of the sets in Yu for any
u ∈ V (H) is bounded by 7s and each Yu is a union of
sets in S∗. Therefore, the degree of any vertex in H
is bounded by λ = (7s + r) ·

(
6s+r
r

)
. Therefore, we can

compute in time O(V (H)+E(H)) an independent set in

H of size at least |V (H)|
λ+1 . We set Z ′ to be the collection

of sets corresponding to the vertices in this independent
set. It is clear that Z ′ indeed is a (s2r , 7s, r, η)-protrusion
cover of G. Therefore, it only remains to prove the
required lower bound on the size of Z ′. Set δ = ω

(λ+1) .

Observe that the size of Z ′ is at least a 1
λ+1 fraction of

|V (H)|, which in turn is at least ω|Z|. This completes
the proof of the lemma. �

In particular, the above lemma implies that if G
has a protrusion-cover Z such that a constant fraction
of vertices of G appear in distinct reducible sets in Z,

then we can reduce G by a constant fraction of its
vertices in linear time by computing a large enough
approximate protrusion cover and then invoking the
appropriate protrusion replacer, leading to a linear time
algorithm for protrusion replacement. We now state
and prove our theorem formally. Before we state the
theorem, we recall the following lemma from [7] relating
protrusion decompositions and protrusion covers with
certain size guarantees.

Lemma 4.3. [7] Let G be a graph with a (α, β, η)-
protrusion decomposition. Then, for all s > β, G has
a (s, 6s, 3(β + 1), η)-protrusion cover of size at least
n

122s − α.

Theorem 4.1. (Linear Time Protrusion Replacement
Theorem) Let Π be a problem that has a protrusion
replacer which replaces r protrusions of size at least
r′ for some fixed r. Let s and β be constants such
that s ≥ r′ · 2r and r ≥ 3(β + 1). Given an instance
(G, k) as input, there is an algorithm that runs in time
O(m + n) and produces an equivalent instance (G′, k′)
with |V (G′)| ≤ |V (G)| and k′ ≤ k. If additionally G has
a (α, β)-protrusion decomposition such that α ≤ n

244s ,
then we have that |V (G′)| ≤ (1 − δ)|V (G)| for some
constant δ.

Proof. We first run the algorithm of Lemma 4.2 with
the parameters r and s to compute a (s2r , 7s, r, r)-
protrusion cover Z. Since s

2r > r′, each set in Z
is a reducible protrusion and therefore we invoke the
protrusion replacer to reduce all protrusions in Z to
get an equivalent instance (G′, k′), where |V (G′)| ≤
|V (G)| − |Z|. We now claim that if G has a (α, β)-
protrusion decomposition such that α ≤ n

244s , then we
have that |Z| ≥ δV (G) for some constant δ, implying
that |V (G′)| ≤ (1− δ)|V (G)|.

By Lemma 4.3 we know that if G has a (α, β)-
protrusion decomposition then for all s > β, G has
a (s, 6s, 3(β + 1), r)-protrusion cover of size at least
n

122s − α ≤
n

244s . Furthermore, by Lemma 4.1, we know
that G has a (s2r , 6s, r, r)-protrusion cover Z ′ of size at
least n

244s such that for every Z ∈ Z ′, the connected
components of G[Z] have the same neighbourhood.
However, in this case Lemma 4.2 guarantees that the
computed protrusion cover Z has size at least δ′|Z ′| for

some constant δ′. Therefore, setting δ = δ′

244s completes
the proof of the theorem. �

References

[1] I. Adler, M. Grohe, and S. Kreutzer, Comput-
ing excluded minors, in Proceedings of the 19th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2008), ACM-SIAM, 2008, pp. 641–650.

640 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

[2] H. Bodlaender, F. V. Fomin, D. Lokshtanov,
E. Penninkx, S. Saurabh, and D. M. Thilikos,
(Meta) Kernelization, in Proceedings of the 50th An-
nual Symposium on Foundations of Computer Science
(FOCS), IEEE, 2009, pp. 629–638.

[3] H. L. Bodlaender, A linear-time algorithm for find-
ing tree-decompositions of small treewidth, SIAM J.
Comput., 25 (1996), pp. 1305–1317.

[4] C. Chekuri and J. Chuzhoy, Polynomial bounds for
the grid-minor theorem, in STOC, 2014, pp. 60–69.

[5] E. Dantsin and E. A. Hirsch, Worst-case up-
per bounds, in Handbook of Satisfiability, A. Biere,
M. Heule, H. van Maaren, and T. Walsh, eds., vol. 185
of Frontiers in Artificial Intelligence and Applications,
IOS Press, 2009, pp. 403–424.

[6] R. Dechter and J. Pearl, Tree clustering for con-
straint networks., Artif. Intell., (1989), pp. 353–366.

[7] F. V. Fomin, D. Lokshtanov, N. Misra, and
S. Saurabh, Planar F-deletion: Approximation, ker-
nelization and optimal FPT algorithms, in Proceed-
ings of the 53rd Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, 2012, pp. 470–479.

[8] F. V. Fomin, D. Lokshtanov, and S. Saurabh,
Bidimensionality and geometric graphs, in Proceedings
of the 22nd Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), SIAM, 2012, pp. 1563–1575.

[9] F. V. Fomin, D. Lokshtanov, S. Saurabh, and
D. M. Thilikos, Bidimensionality and kernels, in Pro-
ceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), SIAM, 2010, pp. 503–
510.

[10] F. V. Fomin and Y. Villanger, Treewidth compu-
tation and extremal combinatorics, Combinatorica, 32
(2012), pp. 289–308.

[11] E. C. Freuder, A sufficient condition for backtrack-
bounded search, J. ACM, 32 (1985), pp. 755–761.

[12] J. Gajarský, P. Hlinený, J. Obdrzálek, S. Ordy-
niak, F. Reidl, P. Rossmanith, F. S. Villaamil,
and S. Sikdar, Kernelization using structural pa-
rameters on sparse graph classes, in Proceedings of
the 21st Annual European Symposium on Algorithms
(ESA), vol. 8125 of Lecture Notes in Computer Science,
Springer, 2013, pp. 529–540.

[13] V. Garnero, C. Paul, I. Sau, and D. M. Thilikos,
Explicit Linear Kernels via Dynamic Programming, in
STACS, 2014, pp. 312–324.

[14] S. Gaspers and S. Szeider, Backdoors to acyclic
SAT, in Proceedings of the 39th International Collo-
quium on Automata, Languages, and Programming
(ICALP), vol. 7391 of Lecture Notes in Computer Sci-
ence, Springer, 2012, pp. 363–374.

[15] , Backdoors to satisfaction, in The Multivariate
Algorithmic Revolution and Beyond, 2012, pp. 287–
317.

[16] , Strong backdoors to bounded treewidth SAT,
in 54th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE Computer Society,
2013, pp. 489–498.

[17] R. Impagliazzo and R. Paturi, The complexity of k-
sat, in COCO ’99: Proceedings of the Fourteenth An-
nual IEEE Conference on Computational Complexity,
Washington, DC, USA, 1999, IEEE Computer Society,
p. 237.

[18] S. Jukna, Extremal combinatorics With applications
in computer science, Springer-Verlag, Berlin, 2001.

[19] E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Ross-
manith, I. Sau, and S. Sikdar, Linear kernels and
single-exponential algorithms via protrusion decompo-
sitions, in Proceedings of the 40th International Col-
loquium of Automata, Languages and Programming
(ICALP), vol. 7965 of Lecture Notes in Computer Sci-
ence, Springer, 2013, pp. 613–624.

[20] Z. Li and P. van Beek, Finding small backdoors in
SAT instances, in Proceedings of the 24th Canadian
Conference Advances in Artificial Intelligence (Cana-
dian AI), vol. 6657 of Lecture Notes in Computer Sci-
ence, Springer, 2011, pp. 269–280.

[21] S. Malik and L. Zhang, Boolean satisfiability from
theoretical hardness to practical success, Commun.
ACM, 52 (2009), pp. 76–82.

[22] N. Robertson and P. D. Seymour, Graph minors.
V. Excluding a planar graph, J. Combin. Theory Ser.
B, 41 (1986), pp. 92–114.

[23] M. Samer and S. Szeider, Backdoor sets of quantified
boolean formulas, in Proceedings of SAT 2007, Tenth
International Conference on Theory and Applications
of Satisfiability Testing, May 28-31, 2007, Lisbon,
Portugal,, J. Marques-Silva and K. A. Sakallah, eds.,
vol. 4501 of Lecture Notes in Computer Science, 2007,
pp. 230–243.

[24] , Constraint satisfaction with bounded treewidth
revisited, J. Comput. Syst. Sci., 76 (2010), pp. 103–
114.

[25] S. Szeider, Matched formulas and backdoor sets, in
Proceedings of SAT 2007, Tenth International Confer-
ence on Theory and Applications of Satisfiability Test-
ing, May 28-31, 2007, Lisbon, Portugal,, J. Marques-
Silva and K. A. Sakallah, eds., vol. 4501 of Lecture
Notes in Computer Science, 2007, pp. 94–99.

[26] R. Williams, C. Gomes, and B. Selman, Backdoors
to typical case complexity, in Proceedings of the Eigh-
teenth International Joint Conference on Artificial In-
telligence, IJCAI 2003, G. Gottlob and T. Walsh, eds.,
Morgan Kaufmann, 2003, pp. 1173–1178.

641 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

01
/1

9/
18

 to
 1

37
.2

05
.2

02
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

