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Abstract

Many modern applications of AI such as web search, mobile browsing, image processing,

and natural language processing rely on finding similar items from a large database of com-

plex objects. Due to the very large scale of data involved (e.g., users’ queries from commer-

cial search engines), computing such near or nearest neighbors is a non-trivial task, as the

computational cost grows significantly with the number of items. To address this challenge,

we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a

distributed computing environment (specifically, Hadoop). We identify several optimizations

which improve performance, suitable for deployment in very large scale settings. The exper-

imental results demonstrate our variants of LSH achieve the robust performance with better

recall compared with “vanilla” LSH, even when using the same amount of space.

1 Introduction

Every day, hundreds of millions of people visit web sites and commercial search engines to

pose queries on topics of their interest. Such queries are typically just a few key words intended

to specify the topic that the user has in mind. To provide users with a high quality service,

search engines such as Bing, Google, and Yahoo require intelligent analysis to realize users’

implicit intents. The key resource that they have to help tease out the intent is their large his-

tory of requests, in the form of large scale query logs, as well as the log of user actions on the

corresponding result pages. A key primitive in learning users’ intents is finding the nearest

neighbors for a user-given query. Computing nearest neighbors is useful for many search-

related problems on the Web and Mobile such as finding related queries [1–3], finding near-

duplicate queries [4], spelling correction [5, 6], and diversifying search results [7]; and Natural

Language Processing (NLP) tasks such as paraphrasing [8, 9], calculating distributional simi-

larity [10–12], and creating sentiment lexicons from large-scale Web data [13].

In this paper, we focus on the problem of finding nearest neighbors over very large data

sets, and ground our study with the application of searching for the best match of a given

PLOS ONE | https://doi.org/10.1371/journal.pone.0191175 January 18, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Cormode G, Dasgupta A, Goyal A, Lee CH

(2018) An evaluation of multi-probe locality

sensitive hashing for computing similarities over

web-scale query logs. PLoS ONE 13(1): e0191175.

https://doi.org/10.1371/journal.pone.0191175

Editor: Yeng-Tseng Wang, Kaohsiung Medical

University, TAIWAN

Received: May 5, 2017

Accepted: December 3, 2017

Published: January 18, 2018

Copyright: © 2018 Cormode et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: � Deidentified AOL

data is available from the figshare repository

https://doi.org/10.6084/m9.figshare.5527231.v1�

QLogs data is proprietary and cannot be released

by us. Requests to access this data can be

addressed to Yahoo’s academic relations manager,

kimcapps@oath.com.

Funding: This work of GC is supported in part by

European Research Council grant ERC-2014-CoG

647557, the Yahoo Faculty Research and

Engagement Program and a Royal Society Wolfson

Research Merit Award. These funders did not have

https://doi.org/10.1371/journal.pone.0191175
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191175&domain=pdf&date_stamp=2018-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191175&domain=pdf&date_stamp=2018-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191175&domain=pdf&date_stamp=2018-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191175&domain=pdf&date_stamp=2018-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191175&domain=pdf&date_stamp=2018-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191175&domain=pdf&date_stamp=2018-01-18
https://doi.org/10.1371/journal.pone.0191175
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.5527231.v1
mailto:kimcapps@oath.com


query from very large scale query logs from a large search engine. In order to understand the

implicit users’ intent, each query is initially represented in a high dimensional feature space,

where each dimension corresponds to a clicked url. Given the importance of this question, it is

critical to design algorithms that can scale to many queries over huge logs, and allow online

and offline computation. However, computing nearest neighbors of a query can be very costly.

Naive solutions that involve a linear search of the set of possibilities are simply infeasible in

these settings due to the computational cost of processing hundreds of millions of queries.

Even though distributed computing environments such as Hadoop make it feasible to store

and search large data sets in parallel, the naive pairwise computation is still infeasible. The rea-

son is that the total amount of work performed is still huge, and simply throwing more

resources at the problem is not effective. Given a log of hundreds of millions queries, most are

“far” from a query of interest, and we should aim to avoid doing many “useless” comparisons

that only confirm that other queries are indeed far from it.

In order to address the computational challenge, this paper aims to find nearest neighbors

by doing a small number of comparisons—that is, sublinear in the dataset size—instead of

brute force linear search. In addition to minimizing the number of comparisons, we aim to

retrieve neighboring candidates with 100% precision and high recall. It is important that the

false positive rate (ratio of “incorrectly” identifying queries as close) is penalized more severely

than the false negative rate (ratio of missing “true” neighbors).

When seeking exact matches for queries, effective solutions are based on storing values in a

hash table and mapping in via hash functions. The generalization of this approach to approxi-

mate matches is the framework of Locality Sensitive Hashing, where queries are more likely to

collide under the hash function if they are more alike, and less likely to collide if they are less

alike. The methods we propose in this paper meet our criteria by extending Locality Sensitive

Hashing [14–16]. In particular, we apply the framework within a distributed system, Hadoop,

and take advantage of its distributed computing power.

Our work makes the following contributions:

1. We describe four variants of vanilla LSH motivated by the research on Multi-Probe LSH

[17]. We show that two of these achieve much better recall than vanilla LSH using the same

number of hash tables. The main idea behind these variants is to intelligently probe multi-

ple “nearby” buckets within a table that have high probability of containing near neighbors

of a query.

2. We present a framework on Hadoop that efficiently finds nearest neighbors for a given

query from commercial large-scale query logs in sublinear time.

3. We discuss the applicability of our framework on two real-world applications: finding

related queries and removing (near) duplicate queries. The algorithms presented in this

paper are currently being implemented for production use within a large search provider.

2 Problem statement

We start with user query logs C having query vectors collected from a commercial search

engine over some domain (e.g. URLs); closeness of queries is measured via cosine similarity

on the corresponding vectors. Given a set of queries Q and similarity threshold τ, the problem

is to develop a batch process to return a small set T of candidate neighbors from C for each

query q 2 Q such that:

1. T = {l j s(l, q)� τ, l 2 C}, where s(q1, q2) is a function to compute a similarity score between

query feature vector q1 and q2;
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2. T achieves 100% precision with “large” recall. That is, our aim is to achieve high recall,

while using a scalable efficient algorithm.

The exact brute force algorithm to solve the above problem would be to compute s(l, q) for

all q 2Q and all l 2 C and return those (l, q) where s(l, q)> τ. This approach is computationally

infeasible on a single machine, even if the size of Q is of the order of few thousands when the

size of C is hundreds of millions. Even in a distributed setting such as Hadoop, the resulting

communication needed between machines makes this strategy impractical.

Our aim is to study locality sensitive hashing techniques that enable us to return a set of

candidate neighbors while performing a much smaller (sublinear in |Q| × |C|) set of compari-

sons. In order to tackle this scalability problem, we explore the combination of distributed

computation using a map-reduce platform (Hadoop) as well as locality sensitive hashing

(LSH) algorithms. We explore a few commonly known variants of LSH and suggest several

variants that are suitable to the map-reduce platform. The methods that we propose meet the

practical requirements of a real life search engine backend, and demonstrates how to use local-

ity sensitive hashing on a distributed platform.

3 Proposed approach

We describe a distributed Locality Sensitive Hashing framework based on map-reduce. First,

we present the “vanilla” LSH algorithm due to Andoni and Indyk [16]. This algorithm builds

on prior work on LSH and Point Location in Equal Balls (PLEB) [14, 15]. Subsequent prior

work on new variants of PLEB [18] for distributional similarity can be seen as implementing a

special case of Andoni and Indyk’s LSH algorithm. We next present four variants of vanilla

LSH motivated by the technique of Multi-Probe LSH [17]. A significant drawback of vanilla

LSH is that it requires a large number of hash tables in order to achieve good recall in finding

nearest neighbors, making the algorithm memory intensive. The goal of Multi-probe LSH is to

get significantly better recall than the vanilla LSH with the same number of hash tables. The

main idea behind Multi-probe LSH is to look up multiple buckets within a table that have a

high probability of containing the nearest neighbors of a query. We present the high-level

ideas behind the Multi-probe LSH algorithm; for more details, the reader is referred to [17].

3.1 Vanilla LSH

The LSH algorithm relies on the existence of a family of locality sensitive hash functions. Let H
be a family of hash functions mapping RD to some universe S. For any two query terms p, q,

we choose h 2 H uniformly at random and analyze the probability that h(p) = h(q). Suppose d
is a distance function (e.g. cosine distance), R> 0 is a distance threshold, and c> 1 an approxi-

mation factor. Let P1, P2 2 (0, 1) be two probability thresholds. The family H of hash functions

is called a (R, cR, P1, P2) locality sensitive family if it satisfies the following conditions:

1. If d(p, q)� R, then Pr[h(p) = h(q)]� P1,

2. If d(p, q)� cR, then Pr[h(p) = h(q)]� P2

An LSH family is generally interesting when P1 > P2. However, the difference between P1

and P2 can be very small. Given a family H of hash functions with parameters (R, cR, P1, P2),

the LSH algorithm amplifies the gap between the two probabilities P1 and P2 by concatenating

K hash functions to create g(�) as: g(q) = (h1(q), h2(q), . . ., hK(q)). A larger value of K leads to a

larger gap between probabilities of collision for close neighbors (i.e. distance less than R) and

those for neighbors that are far (i.e. distance more than cR); the corresponding probabilities

are PK
1

and PK
2

respectively. This amplification ensures high precision by reducing the
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probability of dissimilar queries having the same hash value. To increase the recall of the LSH

algorithm, Andoni et al. use L hash tables, each constructed using a different gj(�) function,

where each gj(�) is defined as gj(q) = (h1,j(q), h2,j(q), . . ., hK,j(q))); 81� j� L.

Algorithm 1 Locality Sensitive Hashing Algorithm

Preprocessing: Input is N queries with their respective feature
vectors.
• Select L functions gj, j = 1, 2, . . ., L, setting gj(q) = (h1,j(q), h2,

j(q), . . ., hK,j(q)), where {hi,j, i 2 [1, K], j 2 [1, L]} are chosen at
random from the LSH family.

• Construct L hash tables, 81 � j � L. All queries with the same gj
value (81 � j � L) are placed in the same bucket.

Query: Set of M test queries. Let q denote a test query.
• For each j = 1, 2, . . ., L
– Retrieve all the queries from bucket gj(q)
– Compute cosine similarity between query q and all retrieved que-
ries. Return all the queries within threshold τ.

3.2 LSH for cosine similarity

For cosine similarity we adapt the LSH family defined by Charikar [15]. The cosine similarity

between two queries p; q 2 RD is
p:q
kpkkqk

� �
. The LSH functions for cosine similarity use a ran-

dom vector a 2 RD to define a hash function as hα(p) = sign(α � p). A negative sign is inter-

preted as 0 and positive sign as 1 to generate indices of buckets in the hash tables (i.e. the range

of each gj) as K bit vectors. To create α, we exploit the intuition in [19] and sample each coordi-

nate of α from {−1, +1} with equal probability. In practice, these are generated by hash func-

tions that maps that index to {−1, +1} (a.k.a. the “hashing trick” of [20]). This lets us avoid

explicitly storing a (huge) D × K × L random projection matrix.

Algorithm 1 gives the algorithm for creating and querying the data structure. In a prepro-

cessing step, the algorithm takes as input N queries along with the associated feature vectors.

In our application, each query is represented using an extremely sparse and high dimensional

feature vector constructed as follows: for query q, we take all the webpages (urls) that any user

has clicked on when querying for q. Using this representation, we generate the L different hash

values for each query q, where each such hash value is again the concatenation of K hash func-

tions. These L hash values per query are then used to create L hash tables. Since the width of

the index of each bucket is K and each coordinate is one bit, each hash table contains 2K buck-

ets. Each query term is placed in its respective buckets in each of the L hash tables.

To retrieve near neighbors, we first find all query terms appearing in the buckets associated

with each of the M test queries. We compute cosine similarity between each of the retrieved

terms and the input test queries and return all those queries as neighbors which are within a

similarity threshold (τ).

The above algorithm fits the Map-Reduce setting quite naturally. We describe a batch set-

ting which performs the LSH on all queries together to perform an all-pairs comparison; other

variations are possible depending on the setting. Our implementation performs two map-

reduce iterations: in the first phase, the map jobs read in all the queries and their vector repre-

sentation and outputs key-value pairs that contain the hash-function id (2[1, L]) and the

bucket id (2[0, 2K − 1]) as the keys and the query as the value. The reduce jobs then aggregate

all queries belonging to a single bucket for a particular hash function, and output candidate

pairs. A second map-reduce job then joins these candidate query pairs with their respective

feature vectors, computes the exact cosine similarity, and outputs the pairs that have similarity
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larger than τ, ensuring that our precision is 100%. To only consider matches between the M
test queries and the N stored queries, we simply tag each query with its type (test or stored),

and only consider candidate pairs that have one of each type. Our experiments show that this

map-reduce implementation scales to hundreds of millions of queries.

3.3 Reusing hash functions

Directly implementing vanilla LSH requires L × K hash functions. But generating hash func-

tions is computationally expensive as it takes time to read all features and evaluate hash func-

tions over all those features to generate a single bit. To reduce the number of hash functions

evaluations, we use a trick from Andoni and Indyk [16] in which hash functions are reused to

generate L tables. K is assumed to be even and R �
ffiffiffi
L
p

. We generate fj(q) = (h1,j(q), h2,j(q), . . .,

hK/2,j(q))) of length k/2. Next, we define g(q) = (fa, fb), where 1� a< b� R. Using such pair-

ings, we can thus generate L ¼ RðR� 1Þ

2
hash indices. This scheme requires OðK

ffiffiffi
L
p

) hash func-

tions, instead of O(KL). We use this trick to generate L hash tables with bucket indices of

width K bits.

3.4 Multi-Probe LSH

Since generating hash functions can be computationally expensive and the memory required

by the algorithm scales linearly with L, the number of hash tables, it is desirable to keep L
small. The large memory footprint of vanilla LSH makes it impractical for many real applica-

tions. Here, we first describe four new variants of the vanilla LSH algorithm motivated by the

intuition in Multi-probe LSH [17]. Multi-probe LSH obtains significantly higher recall than

vanilla LSH while using the same number of hash tables. The main intuition for Multi-probe

LSH is that in addition to looking at the hash bucket that a test query q falls in, it is also possi-

ble to look at the neighboring buckets in order to find its near neighbor candidates. Multi-

probe LSH in [17] suggests exploring neighboring buckets in order of their Hamming distance

from the bucket in which q falls. They show (empirically) that these neighboring buckets con-

tain the near neighbors with very high probability. Though Multi-probe LSH achieves higher

recall for the same number of hash tables, it makes more probes as it searches multiple buckets

per table. The advantage of searching multiple buckets over generating more tables is that less

memory and time is required for table creation.

The original Multi-probe LSH algorithm was developed for Euclidean distance. However,

that algorithm does not immediately translate to our setting of cosine similarity. For example,

in generating the list of other buckets inspected, [17] utilizes the distance of the hash value to

the bucket boundary—this makes sense when the hash value is a real number, but we have

bits. We present four variants of Multi-probe LSH for cosine similarity:

• Random Flip Q: Our baseline version first computes the initial LSH of a test query q to give

the L bucket ids. Next, we create F alternate bucket ids by flipping a set of coordinates ran-

domly in each gj(q). For scalability, we restrict our implementation to flipping a single bit

out of the K possible bits each time, and ensure that the sampling is done without repetition.

Since the hash functions are randomly chosen, we implement this by simply flipping the first

bit, then revert it and flipping the second bit, until we reach the F’th bit.

• Random Flip B: The second variant is another baseline similar to the previous one. Instead

of just flipping the bits for only the test query, here we flips bits for both the test query and all

the queries in the database: this increases the “radius” of the search. We treat each database

point as if it were a query, and flip a random bit in each of its hash representations F times

over. Note that this method requires applying flipping to all the queries in the database. This
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is a one-time operation done while creating the database. We generate up to F variants of

each hash, so for each query, first its L LSH representations of length K are generated. On

each of the L representations, flipping of bits is applied F times to generate LF representa-

tions of a query.

• Distance Flip Q: The third variant is a smarter version of Random Flip Q. It selects coordi-

nates based on the distance of q from the random hyperplane (hash function) used to create

this coordinate. The distance of the test query q from the random hyperplane α is the abso-

lute value which we get before applying the sign function on it (see Section 3.2), i.e., abs(α �
q), the distance of q from hyperplane α. This method flips up to F coordinates in order of

increasing distance from the hyperplane. That is, for each group of K hash values, we sort by

the distance to the hyperplane, and swap each of the first F of these in turn. As with Random

Flip Q, we restrict to flip only a single bit in each repetition, so F� K.

• Distance Flip B: Our fourth variant flips bits for both the test query and for the queries in

the database (i.e., the intelligent version of the second baseline). Like Random Flip B, it

rquires us to flip all database items, which is a one-time data pre-processing step.

The map-reduce implementation of Multi-probe LSH follows the same structure as the

vanilla one—the map phase of the first map-reduce job generates the alternate bucket-ids for

both the test query and the queries in the database. For all LSH methods, the first preprocess-

ing step is the same, which is to evaluate the hash functions to generate K
ffiffiffi
L
p

bits. The second

step is to generate tables indexed by the hash function id and bucket id. Within the map job,

each query is mapped to its various indices. For multiprobe LSH, each query is also mapped to

additional indices. Within the reduce job, all queries with the same index are collected and all

colliding pair of queries (that share the same index) are output. The final step is to compute

similarity for the colliding pairs and only keep those pairs that are above the threshold τ (based

on exact comparison using their original feature representation).

3.5 Time cost

The exact running time of these algorithms is hard to predict, as it depends on the distribution

of the data, as well as the configuration of the computing environment (number of machines,

communication topology etc.). Broadly speaking, the time cost is comprised of the preprocess-

ing (the one-time cost to build the database of queries), and the runtime cost to process a new

set of query look-ups. The communication cost of our algorithms in the Map-Reduce frame-

work is low, since the majority of the work is embarassingly parallel. Across all our methods, at

most OðK
ffiffiffi
L
p
Þ hash function evaluations are needed. While it may seem that the multiprobe

LSH methods require more hash function evaluations, we aim to choose the parameters K and

L so that less work is needed overall in order to achieve the same level of recall compared to

the vanilla LSH methods. The final step, to compute the true similarity of the retrieved pairs, is

proportional to the number of collisions. We expect the proposed methods to be faster here,

since there should be fewer candidates to test. This stands in contrast to the naive exact

method, which performs an all-pairs comparison.

Due to the variation in real world configurations, we do not explicitly measure the time

taken to perform the experiments. Rather, we make use of the number of comparisons as a sur-

rogate. Our informal tests indicate that this is a robust measure of effort required, since the

total CPU time was broadly proportional to this measure across a number of different configu-

rations, while we find that the number of comparisons is not subject to interference from

external factors (overall cluster loading etc.).
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4 Experiments

4.1 Data

We use two data sources for our experiments. The first is the AOL-logs dataset that contains

search queries posed to the AOL search engine and that dataset was made available in 2006

[21]. This data is accessible from the figshare repository, https://doi.org/10.6084/m9.figshare.

5527231.v1. We also use a partial sample of query logs from a commercial search engine,

denoted as Qlogs. Note that realistic query log information is considered confidential and con-

tains potentially sensitive information about individuals. We are therefore careful in our han-

dling of the data, and report only aggregate results and carefully chosen examples. We do not

have permission to share the Qlogs data further, but to allow reproduction of results we show

all our analyses on the public data. We were provided access to this data on request to Yahoo

via an electronic file. Requests for access to this data can be addressed to Yahoo’s academic

relations manager, mailto:kimcapps@oath.com.

As Qlogs reaches hundreds of millions of queries (approximately 600M unique queries), we

generated multiple datasets from Qlogs by sampling at various rates: Qlogs001 represents a

1% sample, Qlogs010 represents a 10% sample and Qlogs100 represents the entire Qlogs.

The smaller datasets are primarily used to explore parameter ranges and identify suitable val-

ues that we then use to experiment with the larger dataset. For each query q, a feature vector in

a high dimensional feature space, denoted as q = (f1, f2, � � �, fD), was created by setting fi to be

the click through rate of url i when shown in the search results page of search-query q. Note

that in our real implementation, q is represented as a sparse feature vector with only non-zero

click-through rate features being present. In a pre-processing step, we remove all queries with

at most five clicked urls. Table 1 summarizes the statistics of our query-log datasets.

Test Data. In all experiments we use a randomly sampled set of 2000 queries Q, as the test

set. That is, we want to find set T, where T = {l j s(q, q0)� τ}, s(q, q0) is cosine similarity, and q0

2 C for C 2 {Qlogs001, Qlogs010, Qlogs100, AOL-logs}. For most experiments,

we set the similarity threshold τ = 0.7, meaning that for q, candidates q0 having cosine similar-

ity of larger than or equal to 0.7 are retrieved.

Evaluation Metrics. We use two metrics for evaluation: recall and number of comparisons.

The recall of an LSH algorithm measures how well the algorithm can retrieve the true similar

candidates. The number of comparisons performed by an algorithm is computed as the aver-

age number of pairwise comparisons done per test query, and measures the total computation

done. The aim is to maximize recall and to minimize the number of comparisons.

4.2 Evaluating vanilla LSH

First, we vary the similarity threshold parameter τ in the range {0.7, 0.8, 0.9} while fixing

K = 16 and L = 10 for the AOL-logs and Qlogs001 datasets. Table 2 shows that τ = 0.9

achieves higher recall than τ = 0.7. This is expected as finding near duplicates is actually easier

Table 1. Query-logs statistics.

Data N D
AOL-logs 0.3 × 106 0.7 × 106

Qlogs001 6 × 106 66 × 106

Qlogs010 62 × 106 464 × 106

Qlogs100 617 × 106 2.4 × 109

https://doi.org/10.1371/journal.pone.0191175.t001
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than finding near neighbors that satisfy only a looser similarity criterion. For the rest of this

paper, τ is set as 0.7 since it represents the more challenging case.

In the second experiment, we vary R to be in {1, 4, 7, 10}, corresponding to values of L of {1,

10, 28, 55}, while fixing K = 16 on the AOL-logs and Qlogs001 datasets. Recall that L
denotes the number of hash tables and K is the width of the index of the buckets in the table.

Increasing K results in increasing precision of the candidate pairs by reducing false positives,

but L needs to be correspondingly increased in order to maintain good recall (i.e. reduce false

negatives). Table 3 shows that increasing L leads to better recall, at the cost of more compari-

sons on both datasets. In addition, large L means generating many random projection bits and

hash tables which is both time and memory intensive. Hence, we fix L = 10, to achieve reason-

able recall with a tolerable number of comparisons.

Next, we vary K in {4, 8, 16} while fixing L = 10. As expected, Table 4 shows that increasing

K reduces the number of comparisons and worsens recall on both datasets. This is intuitive as

the larger value of K leads to larger gap between probabilities of collision for queries that are

close and those that are far. Henceforth, we fix K = 16 to have an acceptable number of

comparisons.

In the fourth experiment, we fix L = 10 and K = 16 as determined above, and we increase

the size of training data. Table 5 demonstrates that as we increase data size, the number of

comparisons done by the algorithm also increase. This result indicates that K needs to be

Table 2. Varying τ with fixed K = 16 and L = 10.

τ AOL-logs Qlogs001

Comparisons Recall Comparisons Recall

0.7 57 .63 1052 .67

0.8 .84 .81

0.9 .98 .96

https://doi.org/10.1371/journal.pone.0191175.t002

Table 3. Varying L with fixed K = 16 and τ = 0.7.

L AOL-logs Qlogs001

Comparisons Recall Comparisons Recall

1 7 .28 106 .36

10 57 .63 1052 .67

28 152 .77 2908 .78

55 297 .89 5648 .84

https://doi.org/10.1371/journal.pone.0191175.t003

Table 4. Varying K with fixed L = 10 with τ = 0.7.

K AOL-logs Qlogs001

Comparisons Recall Comparisons Recall

4 112,347 .98 2,29,2670 .96

8 11,008 .90 221,132 .88

16 57 .63 1,052 .67

https://doi.org/10.1371/journal.pone.0191175.t004
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tuned with respect to a specific dataset, as a larger K will reduce the probability of dissimilar

queries falling within the same bucket. K and L can be tuned by randomly sampling a small set

of queries. In this paper, we randomly select 2000 queries to tune parameter K.

Table 6 shows the best choices of K for our datasets. We note that on Qlogs100 the preci-

sion/recall cannot be computed, as it was computationally infeasible to find the exact similar

neighbors. On our biggest dataset of 600M queries, we set K = 24 and L = 10. These settings

require only 464 comparisons (on average) to find approximate neighbors compared to exact

cosine similarity that involves brute force search over all 600M queries.

4.3 Evaluating multi-probe LSH

First, we compare flipping F bits in the query only. We evaluate two approaches: Random Flip

Q and Distance Flip Q. We make several observations from Table 7: 1) As expected, increasing

the number of flips improves recall at the expense of more comparisons for both Distance Flip

Q and Random Flip Q. 2) The last row of Table 7 shows that when we flip all K bits (F = 16),

Distance Flip Q and Random Flip Q converge to the same algorithm, as expected. 3) We see

that Distance Flip Q has significantly better recall than Random Flip Q with a similar number

of comparisons. In the second row of the table with F = 2, the recall of Distance Flip Q is nine

points better than that of Random Flip Q.

Table 5. Fixed K = 16 and L = 10 with τ = 0.7.

Data Comparisons Recall

AOL-logs 57 .63

Qlogs001 1,052 .67

Qlogs010 10,515 .64

Qlogs100 105,126 -

https://doi.org/10.1371/journal.pone.0191175.t005

Table 6. Best parameter settings of K (minimizing comparisons and maximizing recall) with L = 10.

Data Comparisons Recall

AOL-logs (K = 16) 57 .63

Qlogs001 (K = 16) 1,052 .67

Qlogs010 (K = 20) 695 .53

Qlogs100 (K = 24) 464 -

https://doi.org/10.1371/journal.pone.0191175.t006

Table 7. Flipping the bits in the query only with K = 16 and L = 10 on AOL-logswith τ = 0.7.

Method Random Flip Q Distance Flip Q

F Comparisons Recall Comparisons Recall

1 108 .65 106 .72

2 159 .66 155 .75

5 311 .70 303 .79

10 557 .75 552 .81

16 839 .82 839 .82

https://doi.org/10.1371/journal.pone.0191175.t007
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Table 8 shows the result of flipping F bits in both query and the database. In the second row

of Table 8 with F = 2, Distance Flip B has thirteen points better recall than Random Flip B with

a similar number of comparisons. Comparing across the second row of Tables 7 and 8 shows

that flipping bits in both query and database has better recall at the expense of more compari-

sons. This is expected as flipping both means that we increase our “radius of search” to include

queries at distance two (one flip in query, one flip in database), and hence have more queries

in each table when we probe. We also compared distance-based flipping with random flipping

on different input sizes, and found that distance-based flipping always has much better recall

compared to random flipping (for brevity, we omit these numbers).

We select F = 2 as the best parameter setting with goal of maximizing recall by restricting

comparisons to a minimum. For better recall at the expense of more comparisons, F = 5 can

also be selected. However, results in Tables 7 and 8 indicate that F> 5 does not increase recall

significantly while leading to more comparisons.

Table 9 gives the results of both variants of distance-based Multi Probe, i.e. Distance Flip Q

and Distance Flip B, on different sized datasets. We present results with the parameters L = 10,

F = 2, and value of K chosen as per the values used in the final vanilla LSH experiment. As

observed there, flipping bits in both query and the database is significantly better in terms of

recall with more comparisons. The second and third row of the table respectively shows that

flipping bits in both query and the database has eight points better recall on both Qlogs001
and Qlogs010 datasets. With the goal of maximizing recall with some extra comparisons, we

select Distance Flip B as our preferred algorithm. Distance Flip B maximizes recall with few

tables and comparisons. On our entire corpus (Qlogs100) with hundreds of millions of que-

ries, Distance Flip B only requires 3,427 comparisons per test query, compared to hundreds of

millions of comparisons by the exact brute force algorithm. Distance Flip B returns 9 neigh-

bors on average per given query, averaged over 2000 random test queries. Here, many queries

are long, and have few neighbors.

Table 8. Flipping the bits in both the query and the database with K = 16 and L = 10 on AOL-logs with τ = 0.7.

Method Random Flip B Distance Flip B

F Comparisons Recall Comparisons Recall

1 204 .71 192 .80

2 433 .73 405 .86

5 1557 .86 1475 .93

10 4138 .94 4059 .96

16 5922 .96 5922 .96

https://doi.org/10.1371/journal.pone.0191175.t008

Table 9. Best parameter settings of K (minimizing comparisons and maximizing recall) with L = 10, F = 2, τ = 0.7.

Method Distance Flip Q Distance Flip B

Data Comps. Recall Comps. Recall

AOL-logs (K = 16) 155 .75 405 .86

Qlogs001 (K = 16) 2980 .76 7904 .84

Qlogs010 (K = 20) 1954 .64 5242 .72

Qlogs100 (K = 24) 1280 - 3427 -

https://doi.org/10.1371/journal.pone.0191175.t009

An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs

PLOS ONE | https://doi.org/10.1371/journal.pone.0191175 January 18, 2018 10 / 14

https://doi.org/10.1371/journal.pone.0191175.t008
https://doi.org/10.1371/journal.pone.0191175.t009
https://doi.org/10.1371/journal.pone.0191175


4.4 Discussion

Tables 10 and 11 shows some qualitative results for a set of arbitrarily chosen queries. These

results are found by applying our system (Distance Flip B with parameters L = 10, K = 24, and

F = 2) on Qlogs100. These results help to highlight several applications that can take signifi-

cant advantage of the approximate Distance Flip B algorithm presented in this paper. For

example, the second column in Table 10 shows that the returned approximate similar neigh-

bors can be useful in finding related queries [1, 2]. The first column in Table 11 shows an

example where we find several popular spelling errors automatically, which can usefully be

used for query suggestion.

One interesting application of near-neighbor finding is to understand specific intents

behind the user query. Given a user’s query, Bing, Google, and Yahoo often delivers direct dis-

play results that summarize expected contents of the query. For instance, when a query “f

stock price” is issued to search engines, the quick summary of the stock quote with a chart is

delivered to the user as the part of the search engine result page. Such direct display results are

expected to reduce the number of unnecessary clicks by providing the user with the appropri-

ate content early on. However, when the query “f today closing price” is issued to search

engines, the three major search engines fail to deliver the same direct display experience to the

Table 10. 10 similar neighbors returned by Distance Flip B with L = 10, K = 24, and F = 2 on Qlogs100 for two

example queries.

how lbs in a ton coldwell banker baileys harbor

how much lbs is a ton coldwell banker sturgeon bay wi

number of pounds in a ton coldwell banker door county

how many lb are in a ton door county wi mls listings

How many pounds are in a ton? door county realtors sturgeon bay

how many pounds in a ton DOOR CTY REAL

1 short ton equals how many pounds door county coldwell banker

how many lbs in a ton? door realty

how many pounds in a ton? coldwell banker door county horizons

How many pounds are in a ton door county coldwell banker real estate

how many lb in a ton coldwell banker door county wisconsin

https://doi.org/10.1371/journal.pone.0191175.t010

Table 11. 10 similar neighbors returned by Distance Flip B with L = 10, K = 24, and F = 2 on Qlogs100 for two

example queries.

michaels trumbull ct weather

maichaels trumbull ct weather forecast

machaels weather in trumbull ct

mechaels weather in trumbull ct 06611

miachaels trumbull weather forecast

michaeils trumbull ct 06611

michaelos trumbull weather ct

michaeks trumbull ct weather report

michaeels trumbull connecticut weather

michaelas weather 06611

michae;ls weather trumbull ct

https://doi.org/10.1371/journal.pone.0191175.t011
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user query, even though its query intent is strongly related to “f stock price”. By employing an

algorithm similar to Distance Flip B, we can build a synonym database, which will help trigger

the same direct display among related queries. The first column of Table 10 and the second

column of Table 11 show examples of near-duplicate queries that can be automatically

answered [4].

Another application is to remove duplicated instances in a set of suggested results. When a

query set is retrieved from a repository and presented to users, it is important to remove simi-

lar queries from the set so that the user is not distracted by duplicated results. Given a set of

queries, we can apply Distance Flip B algorithm to build a lookup table of near-duplicates in

order to find the “duplicated query terms” efficiently. As “near-duplicates” among query terms

typically require a “higher” degree of similarity (relatively easier problem) than “relatedness”,

we can tune parameters (K, L, F) based on a specific τ (e.g τ = 0.9) from training samples. The

second column in Table 11 illustrates several effective duplicates: “trumbull weather ct” and

“weather in trumbull ct”.

5 Related work

There has been much work in last decade focusing on approximate algorithms for finding sim-

ilar objects, too much to survey in full, so we highlight some important related publications.

From the NLP community, prior work on LSH for noun clustering [10] applied the original

version of LSH based on Point Location in Equal Balls (PLEB) [14, 15]. The disadvantage of

vanilla LSH algorithm is that it involves generating a large number of hash functions (in the

range L = 1000) and sorting bit vectors of large width (K = 3000). To address that issue, Goyal

et al. [18] proposed a new variant of PLEB that is faster than the original LSH algorithm but

that still requires large number of hash functions (L = 1000). In addition, their work can be

seen as an implementing a special case of Andoni and Indyk’s LSH algorithm, that was applied

to the problem of detecting new events from a stream of Twitter posts [22].

A major distinction of our research is that existing work deals with approximating cosine

similarity by Hamming distance [10, 18, 23–25]. Moran et al. [25] proposed a data-driven

non-uniform bit allocation across hyperplanes that uses fewer bits than many existing LSH

schemes to approximate cosine similarity by Hamming distance. In all these existing problem

settings, the goal is to minimize both false positives and negatives. However, we focus on mini-

mizing false negatives with zero tolerance for false positives. [26] developed a distributed ver-

sion of the LSH algorithm, for the Jaccard distance metric, that scales to very large text corpora

by virtue of being implemented on a map-reduce, and by using clever sampling schemes in

order to reduce the communication cost. Our work addresses the cosine similarity metric, and

uses bit flipping in a distributed manner to reduce the number of hash tables in LSH and

hence the memory.

Other work in this area has addressed engineering throughput for massively parallel com-

putation [27], distributed LSH for Euclidean distance [28], and variants such as “entropy-

based LSH”, also for Euclidean distance [29].

6 Conclusion

In this work, we applied the vanilla LSH algorithm of Andoni et al. to search query similarity

applications. We proposed four variants of LSH that aim to reduce the number of hash tables

used. Two of our variants achieve significantly better recall than vanilla LSH while using the

same number of hash tables. We also present a framework on Hadoop that efficiently finds

nearest neighbors for a given query from a commercial large-scale query logs in sublinear

time. On our entire corpus (Qlogs100) with hundreds of millions of queries, Distance Flip B
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only requires 3,427 comparisons compared to hundreds of millions of comparisons by exact

brute force algorithm. In future, we plan to extend our LSH framework to several large-scale

NLP, search, and social media applications.
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