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ABSTRACT: 
 
Using airborne laser scanner data, buildings can be detected automatically, and their roof shapes can be reconstructed. The success 
rate of building detection and the level of detail of the resulting building models depend on the resolution of the laser scanner data, 
which is still lower than the resolution of aerial imagery. Building extraction from aerial images alone is difficult because of 
problems related to shadows, occlusions, and poor contrast. That is why it makes sense to combine these data sources to improve the 
results of building extraction. This article deals with the fusion of airborne laser scanner data and multi-spectral aerial images for 
building extraction. There are three instances in the overall process when exploiting the complementary properties of these data 
appears to be most beneficial: building detection, roof plane detection, and the determination of roof boundaries. Building detection 
is based on the Dempster-Shafer theory for data fusion. In roof plane detection, the results of a segmentation of the laser scanner 
data are improved using the digital images. The geometric quality of the roof plane boundaries can be improved at step edges by 
matching the object edges of the polyhedral models with image edges. Examples are given for a test site in Fairfield (NSW). 
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1. INTRODUCTION 

1.1 Motivation and Goals 

The high potential of LIDAR (LIght Detection And Ranging) 
data for automatic building extraction has been shown in the 
past, e.g. (Vosselman and Dijkman, 2001). The success rate of 
building detection and the level of detail of the resulting 
building models depend on the resolution of the laser scanner 
data, which is typically still lower than the resolution of aerial 
imagery. On the other hand, building extraction from aerial 
images alone is difficult because of shadows and occlusions, 
and also because the transition from 2D image space to 3D 
object space has to be carried out. That is why it makes eminent 
sense to combine these data sources to improve the results of 
building extraction. There are three instances when exploiting 
the complementary properties of these data appears to be most 
beneficial (Rottensteiner and Briese, 2003): 
 
(1) Building detection: The main problem in this context is to 
distinguish buildings from trees. LIDAR data give parameters 
of surface roughness, but with decreasing resolution of the 
LIDAR data, the classification becomes more critical in areas 
where the appearance of trees and buildings is similar. The 
height differences between the first and the last echoes of the 
laser pulse and multi-spectral images can be used as additional 
data sources to improve the classification results.  
(2) Roof plane detection: In order to reconstruct the buildings 
by polyhedral models, roof planes have to be detected first. 
Large roof planes can be detected in the LIDAR data. The 
results thus achieved can be improved by taking into account 
aerial images. 

(3) Determination of roof boundaries: The geometric quality 
of the roof boundaries at step edges, which in general is poor if 
only LIDAR data are used, can be improved by image edges. 
 
This paper deals with the fusion of first and last pulse LIDAR 
data and multi-spectral aerial images for building extraction. It 
consists of two main parts. The first part, describing our method 
for building detection and the results that could be achieved by 
it, is presented in section 2. In the second part, which is 
presented in section 3, we will describe the current state of our 
work for the fusion of LIDAR and image data for roof plane 
detection and the determination of roof boundaries. Section 4 
gives conclusions and an outlook on future work. 
 
1.2 Related work 

1.2.1 Building detection: The building detection starts with the 
generation of a coarse digital terrain model (DTM) from the 
digital surface model (DSM) provided by the LIDAR data, e.g. 
by morphologic filtering. A further classification must separate 
points on buildings from points on trees and other objects by 
evaluating the local surface roughness and other cues. With 
multi-spectral images, the normalised difference vegetation 
index (NDVI) is well-suited for classification in this context 
(Lu and Trinder, 2003).  
 
Various classification techniques have been applied for building 
detection, e.g., unsupervised classification (Haala and Brenner, 
1999), rule-based classification (Rottensteiner et al., 2003), 
Bayesian networks (Brunn and Weidner, 1997), and fuzzy logic 
(Voegtle and Steinle, 2003). The probabilistic approaches 
among the cited ones face the difficulty of modelling the  
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a priori probabilities without training samples, which is 
problematic if the assumption of a normal distribution of the 
data vectors is unrealistic. We propose to use the theory of 
Dempster-Shafer for data fusion, because its capability of 
handling incomplete information gives us a tool to reduce the 
degree to which we have to make assumptions about the 
distribution of our data (Klein, 1999; Lu and Trinder, 2003). 
 
1.2.2 Roof plane detection and delineation: Ameri and 
Fritsch (2000) combined a DSM and aerial images for the 
geometrical reconstruction of buildings by polyhedrons. They 
searched for co-planar pixels in the DSM, which resulted in 
seed regions for region growing in one of the aerial images. The 
resulting roof planes were combined to form a polyhedral 
model, which was then improved by fitting the model to image 
edges. Problems were mainly caused by poor contrast, because 
region growing was only applied to one of the aerial images, 
and because the 3D information provided by the DSM was not 
included in the region growing process.  
 
Schenk and Csatho (2002) put forward the idea of exploiting 
the complementary properties of LIDAR data and aerial images 
to achieve a more complete surface description by feature based 
fusion. LIDAR data are useful for the detection of surface 
patches having specific geometrical properties and for deriving 
parameters related to surface roughness, whereas aerial images 
can help to provide the surface boundaries and the locations of 
surface discontinuities. The planar patches detected in LIDAR 
data are used to improve the results of edge detection in the 
aerial images, and the image edges thus extracted help to 
improve the geometrical quality of the surface boundaries.  
 
Rottensteiner and Briese (2003) described a method for roof 
plane detection from LIDAR data, and they discussed strategies 
for integrating aerial images in their work flow for building 
reconstruction. They proposed to improve their initial planar 
segmentation by adding new planar segments to the original 
ones if sufficient evidence is found in the aerial images. They 
also presented an adjustment model for wire-frame fitting. In 
(Rottensteiner et al., 2003), we have shown how planar 
segments can be detected by a combined segmentation of a 
digital orthophoto and a DSM. In this work, we want to show 
how the initial segmentation of the DSM can be improved by 
matching the planar patches with homogeneous regions 
extracted from two or more aerial images. This will result in 
better approximations for the roof boundaries, and it will 
support the distinction between roof plane intersections and step 
edges (i.e. intersections between roof planes and walls). We 
also want to show how the geometric quality of the step edges 
can be improved using edges extracted from the digital images.  
 
1.3 The Test Data Set 

Our test data were captured in Fairfield (NSW), covering an 
area of 2 x 2 km2. The LIDAR data were captured using an 
Optech laser scanner. Both first and last pulses and intensities 
were recorded with an average point distance of about 1.2 m. 
We derived DSM grids at a resolution of 1 m from these data. 
True colour aerial stereo images (1:11000, f = 310 mm) were 
also available. These images were scanned at a resolution of  
15 µm, corresponding to 0.17 m on the ground. A digital 
orthophoto with a resolution of 0.15 m was created using a 
DTM. Unfortunately, the digital images did not contain an 
infrared band, which would have been necessary for computing 
the NDVI. We circumvented this problem by resampling both 
the digital orthophoto and the LIDAR intensity data 

(wavelength: 1064 nm) to a resolution of 1 m and by computing 
a “pseudo-NDVI-image” from the LIDAR intensities and the 
red band of the digital orthophoto.  
 
In order to evaluate the results of building detection, a reference 
data set was created by digitising building polygons in the 
digital orthophoto. We chose to digitize all structures 
recognisable as buildings independent of their size. The 
reference data include garden sheds, garages, etc, that are 
sometimes smaller than 10 m2 in area. Neighbouring buildings 
that were joined, but are obviously separate entities, were 
digitized as separate polygons, and contradictions between 
image and LIDAR data were excluded. Thus, altogether 2337 
polygons could be used for evaluation.  
 
 

2. BUILDING DETECTION  

The input to our method for building detection is given by three 
data sets. The last pulse DSM is sampled into a regular grid by 
linear prediction with a low degree of filtering. The first pulse 
DSM is also sampled into a regular grid, and by computing the 
height differences between these DSMs, we obtain a model of 
the height differences between the first and the last pulses 
∆HFL. The normalised difference vegetation index (NDVI) is 
computed from the near infrared and the red bands of a 
geocoded multi-spectral image (Lu and Trinder, 2003).  
 
The work flow for our method for building detection consists of 
two stages. First, a coarse DTM has to be generated. We use a 
hierarchic method for DTM generation that is based on 
morphological grey scale opening using structural elements of 
different sizes (Rottensteiner et al., 2003). Along with cues 
derived from the other input data, the DTM provides one of the 
inputs for the second stage, the classification of these data by 
Dempster-Shafer fusion and the detection of buildings. Five 
data sets contribute to a Dempster- Shafer fusion process 
carried out independently for each pixel of the image containing 
the classification results. After that, initial building regions are 
instantiated as connected components of building pixels, and a 
second fusion process is carried out on a per-building level to 
eliminate regions still corresponding to trees. 
 
2.1 Theory of Dempster-Shafer Fusion 

This outline of the theory of Dempster-Shafer is based on 
(Klein, 1999). We consider a classification problem where the 
input data are to be classified into n mutually exclusive classes 
Cj ∈ θ. The power set of θ is denoted by 2θ. A probability mass 
m(A) is assigned to every class A ∈ 2θ by a “sensor” (a 
classification cue) such that m(∅) = 0, 0 ≤ m(A) ≤ 1, and 
Σ m(A) = 1, where the sum is to be taken over all A ∈ 2θ and ∅ 
denotes the empty set. Imprecision of knowledge can be 
handled by assigning a non-zero probability mass to the union 
of two or more classes Cj. The support Sup(A) of a class A ∈ 2θ 
is the sum of all masses assigned to that class: 
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Sup( A ) is the support for the complementary hypothesis of A: 
A ∩ A  = θ. Sup( A ) represents the degree to which the 
evidence contradicts a proposition, and it is called dubiety. If p 
sensors are available, probability masses mi(Bj) have to be 
defined for all these sensors i with 1 ≤ i ≤  p and Bj ∈ 2θ. The 



 

Dempster-Shafer theory allows the combination of the 
probability masses from several sensors to compute a combined 
probability mass for each class A ∈ 2θ: 
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As soon as the combined probability masses m(A) have been 
determined from the original ones, both Sup(A) and Sup( A ) 
can be computed. The accepted hypothesis Ca ∈ θ is the class 
obtaining maximum support. 
 
2.2 Initial Land Cover Classification 

In this process, we want to achieve a per-pixel classification of 
the input data into one of four classes: buildings (B), trees (T), 
grass land (G), and bare soil (S). Five cues are used for this 
purpose, two of them being surface roughness parameters 
derived by applying polymorphic feature extraction (Förstner, 
1994) to the first derivatives of the DSM. They are as follows: 
 
1. The height differences ∆H between the DSM and the DTM 

distinguish elevated objects (trees and buildings) from others. 
We assign a probability mass P∆H = P∆H (∆H) ascending with 
∆H to the combined class B ∪ T, and (1 - P∆H) to G ∪ S.  

2. The height differences ∆HFL between the first and the last 
pulse DSMs are large in areas covered by trees. We assign a 
probability mass PFL = PFL (∆HFL) ascending with ∆HFL to 
class T, and (1 - PFL) to B ∪ G ∪ S. By doing so we neglect 
that large values of ∆HFL might also occur at the borders of 
buildings and at power lines.  

3. The NDVI is an indicator for vegetation, thus for classes T 
and G. We assign a probability mass PN = PN(NDVI) 
ascending with NDVI to the combined class T ∪ G, and  
(1- PN) to B ∪ S.  

4. The strength R of surface roughness, i.e. the texture strength 
of polymorphic feature extraction, is large in areas of great 
variations of the surface normal vectors, which is typical for 
trees. We assign a probability mass PR = PR(R) ascending 
with R to class T, and (1- PR) to B ∪ G ∪ S. By doing so we 
neglect that large values of R might also occur at the borders 
of buildings and at step edges of the terrain.  

5. The directedness D of surface roughness, i.e. the texture 
directedness of polymorphic feature extraction, is also an 
indicator for trees, but only if R differs from 0 significantly; 
otherwise, D is dominated by noise. We assign a probability 
mass PD = PD(R, D) ascending with D to class T, and (1- PD) 
to B ∪ G ∪ S.  

 
The probability masses P∆H, PFL, PN, PR, and PD are assumed to 
be equal to a constant P1 for input parameters x < x1. For input 
parameters x > x2, they are assumed to be equal to another 
constant P2, with 0 ≤ P1 < P2 ≤ 1. Between x1 and x2, the 
probability mass is assumed to be a cubic parabola: 
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In equation 3, i ∈ {∆H, R, FL, N, D}. P1 and P2 are chosen to be 
5% and 95%, respectively. Further, we choose (x1, x2) =  

(1.5 m, 3.0 m) for ∆H and ∆HFL and (x1, x2) = (30%, 65%) for 
the NDVI. With respect to PR, (x1, x2) are linked to the median 
of R to make the definition of PR adaptive to the slope 
variations in a scene: (x1, x2) = [2·median(R), 15·median(R)]. 
PD is modelled in the same way with (x1, x2) = (0.1, 0.9) if  
R < Rmin, and by PD = 0.5 otherwise: if the slope variations are 
not significant, D thus cannot be used to distinguish any of the 
classes. We choose Rmin = 5·median(R). The combined 
probability masses are computed for each pixel using equation 
2, and the pixel is assigned to the class of maximum support. It 
is an important property of this method that no sharp thresholds 
are required, but the probability mass functions have a smooth 
transition between two levels P1 and P2.  
 
2.3 Final Classification of Building Regions 

After the initial classification, we obtain a binary image of 
building pixels. Only a small local neighbourhood contributed 
to the classification of each pixel (via R and D), which causes 
classification errors, e.g. singular “building” pixels, or “tree” 
pixels inside buildings. We use a morphological opening filter 
to eliminate singular building pixels. After that, we create a 
building label image by a connected component analysis. A 
second classification based on the Dempster-Shafer theory is 
applied to the initial building regions thus detected, using four 
cues representing average values for each building region. The 
average height differences ∆Ha between the DSM and the DTM 
and the average NDVI (NDVIa) are used in the same way as ∆H 
and NDVI in the initial classification. We use different 
parameters related to surface roughness. The percentage H of 
pixels classified as “homogeneous” in polymorphic feature 
extraction is an indicator for an object consisting of smooth 
surface patches. Thus, we assign a probability mass PH = PH(H) 
to class B ∪ G ∪ S, and (1 - PH) to T. The percentage P of 
pixels classified as “point-like” in polymorphic feature 
extraction is an indicator for trees. We assign a probability mass 
PP = PP(P) to class T, and (1 - PP) to B ∪ G ∪ S. 
 
The mathematical model described in section 2.2 is also used 
for computing the probability masses for ∆Ha, H, P, and NDVIa. 
Again, we choose P1 = 5% and P2 = 95%, further (x1, x2) =  
(1.5 m, 3.0 m) for ∆Ha, (x1, x2) = (30%, 65%) for NDVIa,  
(x1, x2) = (0%, 60%) for H, and (x1, x2) = (30%, 75%) for P. 
The combined probability masses are evaluated for each initial 
building region, and if such a region is assigned to another class 
than “building”, it is eliminated. Finally, the building regions 
are slightly grown to correct for building boundaries 
erroneously classified as trees.  
 
2.4 Results of Building Detection 

Figure 1 shows the results of the initial Dempster-Shafer 
classification on the left and the final building label image on 
the right. After morphological opening of the binary image of 
the building pixels and after eliminating candidate regions 
smaller than 10 m2, the second Dempster-Shafer classification 
is carried out for altogether 2291 building candidate regions. 
344 of these regions are found to belong to a class other than 
“building”, so that we finally obtain 1947 building regions.  
 
In the initial classification, class “bare soil” mainly corresponds 
to streets and parking lots. Trees are situated near the river 
crossing the scene, along the streets in the residential areas, and 
in backyards. Step edges at the building boundaries are often 
classified as trees. Given the resolution of the LIDAR data, it 



 

was not easy to separate trees from buildings in the residential 
areas. A few residential buildings were erroneously classified as 
trees, especially if the roof consisted of many small faces. 
Problems also occurred with bridges, chimneys or other objects 
on top of large buildings, with parked cars, and with power 
lines. Shadows in the colour orthophoto were an error source. 
There are no shadows in the LIDAR intensity data, so that the 
“pseudo-NDVI” was systematically wrong in these areas.  
 

   
 
Figure 1.  Left: results of the initial classification. White: grass 

land. Light grey: bare soil. Dark grey: trees. Black: 
buildings. Right: the final building label image. 

 
In order to evaluate our method, the completeness and the 
correctness (Heipke, 1997) of the results were determined both 
on a per-pixel and on a per-building level. The evaluation on a 
per-pixel level shows that 94% of the building pixels were 
actually detected. The missed buildings were small residential 
buildings, some having roofs with high reflectance in the 
wavelength of the laser scanner (thus, a high pseudo-NDVI), 
others having roofs consisting of many small planar faces, or 
they are too small to be detected given the resolution of the 
LIDAR data. For a few larger industrial buildings, some 
building parts could not be detected due to errors in DTM 
generation. 85% of the pixels classified as building pixels do 
actually correspond to a building. This number is affected by 
errors at the building boundaries, and there are a few larger 
false positives at bridges, at small terrain structures not covered 
by vegetation, and at container parks.  
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Figure 2.  Completeness and correctness of the detection results 

in dependence of the building size. 
 
The results of the evaluation on a per-building basis are 
presented in figure 2. It shows the cumulative completeness and 
correctness for buildings being larger than the area shown in the 
abscissa. Our algorithm detected 95% of all buildings larger 
than 50m2 and 90% of the buildings larger than 30 m2. 
Buildings smaller than 30 m2 (mostly garden sheds or garages) 
could not usually be detected. The correctness was 96% for 
buildings larger than 120 m2 and 89% for all detected regions.  

3. FUSION OF LIDAR DATA AND IMAGES FOR 
ROOF PLANE DETECTION AND DELINEATION 

The work flow for the geometric reconstruction of the buildings 
consists of four steps (Rottensteiner and Briese, 2003):  
 
1. Detection of roof planes based on a segmentation of the 

DSM and/or the image data to find planar segments which 
are expanded by region growing algorithms.  

2. Grouping of roof planes and model generation: Co-planar 
roof segments are merged, and hypotheses for intersection 
lines and/or step edges are created based on an analysis of the 
neighbourhood relations. This results in a model consisting of 
a conglomerate of roof planes, complemented by walls.  

3. Consistent estimation of the model parameters: The 
parameters of the building models are improved by a 
consistent estimation procedure using all the available data. 

4. Model regularisation: The models are improved by 
introducing hypotheses about geometric constraints between 
planes, and parameter estimation is repeated.  

 
In this section we want to show how the fusion of a LIDAR 
DSM and digital aerial images contributes to an improved 
detection of planar segments and an improved delineation of the 
roof boundary polygons. Examples will be presented for the 
building in figure 3.  
 

           
 
Figure 3.  Left: DSM of a building (grid width: 0.5 m). Right: 

aerial image (ground resolution: 0.17 m). Length of 
the larger wing of the building: 30 m. 

 
3.1 Data Fusion for Roof Plane Detection 

The left part of figure 4 shows the planar segments that were 
extracted from the DSM in figure 3 using the iterative 
segmentation scheme by Rottensteiner and Briese (2003). The 
basic structure of the building has been captured, but the 
segment outlines are very irregular. A proper determination of 
the roof plane boundaries from these results is difficult for two 
reasons. First, the segmentation errors cause errors in the 
neighbourhood relations between the segments, the latter being 
important prerequisites for checking whether the intersection 
line between two neighbouring planes is a part of the boundary 
polygons. Second, the geometric quality of step edges is poor in 
LIDAR data, and in order to improve it, better approximations 
are required. In other cases than the one depicted in figure 3, 
some of the roof planes might actually be missing 
(Rottensteiner and Briese, 2003). The results of roof plane 
segmentation in figure 4 can be improved by matching the 
planar segments detected in the DSM with image segments. 
 
We extract homogeneous segments from the aerial images using 
polymorphic feature extraction (Foerstner, 1994). In order to 
mitigate the problem of erroneously merged regions, this is 
done iteratively, in a similar way as for DSMs (Rottensteiner 
and Briese, 2003). We use the DSM for geo-coding the results 
of image segmentation, yielding a label image in object space 
for each of the aerial images involved (figure 4). The resolution 
of these label images is chosen in accordance with the image 



 

resolution. In spite of errors in geo-coding caused by errors in 
the DSM at the building outlines, the segment boundaries in 
figure 4 match the actual roof boundaries quite well. 

     
Figure 4.  Left: planar segments detected in the DSM (fig. 3). 

Centre/right: Homogeneous segments from two aerial 
images projected to the DSM. Resolution: 0.1 m. 

 
The DSM label image is resampled to the same resolution as the 
projections of the image segmentation results. We obtain 
altogether N + 1 label images, where N is the number of aerial 
images. For each pixel i, we obtain a tuple hi = {lDi, l1i, …, lNi} 
of corresponding labels, indicating a matching candidate 
between a planar segment lD and N image segments {l1i, …, lNi}. 
We determine the number ni of occurrences for each candidate 
hi. We also compute the percentage pji = ni / nj of each segment 
lji that contributes to hi, where nj is the number of pixels of lji in 
the label image j, with j ∈ {D, 1, …, N}.  
 
Due to segmentation and geo-coding errors, the set of matching 
candidates hi will contain errors. Hence, we firstly classify each 
hypothesis hi according to the percentages pji. A hypothesis is 
classified to have strong support if it has at least one component 
j with pji > 50%. Otherwise, it is said to have partial support if 
there is at least one component with 33% < pji ≤ 50%, or weak 
support if there is there is at least one component with 5% < pji 
≤ 33%. If pji ≤ 5% for all components of the hypothesis hi or if 
the number ni of pixels giving support to it is below a certain 
threshold, hi is eliminated. Further, if for a hypothesis hi there 
exists another hypothesis hk = {lDk, l1i, …, lNi} that has a higher 
support than hi (thus, if there is a planar segment Dk ≠ 0 
corresponding to a larger portion of the co-occurrence of image 
segments l1i, … , lNi than Di), then hi is eliminated as well. In 
this way, contradicting hypotheses between planar segments 
and tuples of image segments are eliminated.  
 
A set of hypotheses hij ∈ {hi} for each planar segment Dj ≠ 0 is 
thus obtained, consisting of all hypotheses hij for which the first 
component is Dj. We improve the initial segmentation by region 
growing, taking into account the matching results. Each pixel 
not yet assigned to a planar segment is tested according to 
whether it belongs to segment Dj by computing its height from 
the planar equation of that segment (to avoid errors at the 
building outlines). The resulting 3D point is back-projected to 
all images, and the image labels at the projected positions are 
evaluated. If the set of labels corresponds to one of the 
hypotheses hij, the pixel is assigned to segment Dj (figure 5).  
 
In order to improve the initial segmentation by extracting new 
planar segments, it would be necessary to evaluate the 
hypotheses hi0, i.e. the hypotheses of multiple image labels 
corresponding to areas not yet classified. It would be necessary 
to first compute the plane parameters of these new segments 
using the DSM. This has not yet been implemented.  
 
A major advantage of our technique is that using multiple 
images can mitigate segmentation errors. For instance, if two 
planes are merged in one image due to poor contrast, but 
correctly separated in another, the algorithm overcomes this 
problem because any coincidence of two or more image labels 
is considered to be a new “combined” image label. 

The left part of figure 5 shows the results of region growing. 
The planar segments resemble the roof planes much better than 
the initial segments from the DSM. The segment boundaries are 
smoothed by morphologic filtering, and co-planar neighbouring 
segments are merged, which results in the label image in the 
centre of figure 5. The right part of figure 5 shows the Voronoi 
diagram of that label image (Fritsch and Ameri, 2000). It is 
used to derive the neighbourhood relations of the planar 
segments, and the boundaries of the segments in the Voronoi 
diagram provide the first estimates of the roof boundaries.  

     
Figure 5.  Left: planar segments after region growing. Centre: 

the segments after morphologic filtering and merging 
of co-planar segments. Right: Voronoi diagram. 

 
3.2 Delineation of the 3D Roof Planes 

Rottensteiner and Briese (2003) describe how each portion of 
the original boundary polygon which separates two planes is 
classified according to whether it is an intersection line, a step 
edge, or both, in which case that polygon portion is split into 
smaller parts. The positions of the intersection lines can be 
determined precisely by the intersection of the neighbouring 
planar segments. The location of the step edges is critical, 
especially if it has to be carried out using LIDAR data alone. 
Here we want to show how the initial boundary polygons can 
be improved using edges extracted from the aerial images by 
polymorphic feature extraction. 
 
We start by computing 3D straight line segments from image 
edges. As the boundary polygon of a roof plane has to be 
situated in that roof plane, it is possible to match edges 
extracted from different images by using the assumption that 
these edges are situated in or at the border of the plane. Thus, in 
order to delineate the boundary of a roof plane, we project all 
the image edges in a certain neighbourhood of the approximate 
polygon to that plane. If the projections of two edge segments l1 
and l2 from two different images are found to be almost parallel 
(indicated by a small angle α between their normal vectors, e.g. 
α < 15°) and if there is at least one point on one of the segments 
that has a distance from the other segment smaller than another 
threshold (e.g. 0.25 m), the image edges are assumed to be the 
images of the same straight line in object space. This straight 
line is computed by adjustment through the end points of the 
projected image edge segments. The end points of the combined 
3D segment are determined so that the combined segment 
merges both projected image segments (Figure 6). If two such 
adjusted straight line segments are found to overlap in object 
space, they will be merged. Thus, we favour long object edges. 

 
 

Figure 6. Matching and merging edge segments. l1 and l2: edges 
from images 1 and 2. l12: combined edge, covering the 
projections of both l1 and l2. 

 
Next, these 3D straight line segments have to be matched with 
the approximate roof polygons. Again, this matching is based 
on geometric proximity and parallelism, with relatively loose 
thresholds because of the poor quality of the approximate 

l1 

l2

l12



 

polygon. Multiple matches are eliminated based on a minimum 
distance criterion. The results for the building in figure 3 are 
presented in figures 7 and 8. The shapes of the boundary 
polygons could be improved considerably. However, the 
polygons are not yet completely correct at the building corners. 
This could be overcome either by instantiating hypotheses 
about regularities in areas that do not receive support from 
image features, or by iterating the matching technique in cases 
where the approximations are not good enough. There is a small 
displacement between the intersection lines and image edges, 
which is either caused by errors in the geo-coding or in the 
plane parameters. This emphasises the importance of a final 
adjustment, taking into account both the LIDAR points, the 
image edges (both for step edges and intersection lines), and 
geometric constraints, using the adjustment model described in 
(Rottensteiner and Briese, 2003) The considerable improvement 
of the shapes of the building outlines as compared to figure 5 
also improves the prospects for the success of such an 
adjustment. 
 

 
Figure 7.  Delineation of step edges for four roof planes. 

Dashed lines: 3D edges. Dotted line: approximate 
polygon. Full line: polygon after matching. 

 

     
 

Figure 8.  Left: roof polygons after matching. Right: back-
projected to one of the aerial images. 

 
 

4. CONCLUSION AND FUTURE WORK 

We have presented a method for building detection from 
LIDAR data and multi-spectral images, and we have shown its 
applicability in a test site of heterogeneous building shapes. The 
method is based on the application of the Dempster-Shafer 
theory for classification. The results achieved were very 
satisfactory. The detection rate for buildings larger than 50 m2 
was 95%, and about 89% of the detected buildings were correct. 
The detection rates decrease considerably with the building 
size: building structures smaller than 30 m2 could generally not 
be detected. In this context, future work will concentrate on 
evaluating the relative contribution of the cues used for 
classification. We also want to extend the evaluation to the 
influence of the LIDAR resolution on the results. 
 
We have also shown how aerial images and LIDAR DSM can 
be combined to improve both the results of roof plane detection 
and the shapes of the roof boundaries. This is still work in 
progress, and the algorithms involved can be improved in many 
ways. For instance, moments or other invariants of the image 

segments could be considered in matching, especially if new 
planar segments are to be introduced based on evidence from 
the images. The matching of 3D straight lines and roof polygon 
segments could be expanded to include more robust techniques 
for outlier detection. However, we have already shown some of 
the benefits that can be achieved by using multiple data sources 
for the reconstruction of buildings by polyhedral models. 
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