
Viewpoint-Based Testing of Concurrent
Components

Luke Wildman, Roger Duke, and Paul Strooper

School of Information Technology and Electrical Engineering,
The University of Queensland,

{luke,rduke,pstroop}@itee.uq.edu.au,
Fax: +61 7 3365 4999,

Phone: +61 7 3365 2097

Abstract. The use of multiple partial viewpoints is recommended for
specification. We believe they also can be useful for devising strategies
for testing. In this paper, we use Object-Z to formally specify concurrent
Java components from viewpoints based on the separation of application
and synchronisation concerns inherent in Java monitors. We then use
the Test-Template Framework on the Object-Z viewpoints to devise a
strategy for testing the components. When combining the test templates
for the different viewpoints we focus on the observable behaviour of the
application to systematically derive a practical testing strategy. The
Producer-Consumer and Readers-Writers problems are considered as
case studies.

Keywords: Viewpoints, Object-Z, Test Template Framework, Concur-
rency, Java

1 Introduction

Concurrent programs are notoriously difficult to test because of the ways in
which threads can synchronise and interact with each other. In this paper, we
focus on testing concurrent Java components and we assume that the compo-
nent can be accessed by any number of threads. We apply a specification-based
testing approach to derive a strategy for testing such concurrent components.
When devising a strategy for testing concurrent components, one has to assume
a basic concurrency model whether it is the Java monitors model (as in our
case) or another (more generic) model. Our starting point for deriving a test-
ing strategy is a formal, Object-Z [7] model of a Java monitor. We apply the
Test Template Framework [19] to this model to derive generic test conditions
for Java monitors. However, the strategy will be applied to specific components,
so we need to consider what happens when we combine this information with
application-specific test conditions. To do this, we take a viewpoints-based ap-
proach. We combine the generic test conditions from the Java monitor model
with test conditions derived from an Object-Z specification of a model of the ap-
plication we want to test. As we illustrate using a Producer-Consumer monitor,

E. Boiten, J. Derrick, G. Smith (Eds.): IFM 2004, LNCS 2999, pp. 501–520, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 824.882] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

502 L. Wildman, R. Duke, and P. Strooper

if we do this naively, then the number of test conditions becomes unmanageable.
That is, if we model the Producer-Consumer application in Object-Z, apply the
Test Template Framework, and combine the resulting test conditions with the
generic ones, we obtain a very large number of test conditions. Moreover, many
of these conditions test the generic behaviour of Java monitors, rather than the
application-specific behaviour of the Producer-Consumer monitor that we are
interested in.

To alleviate this problem, we use a restricted viewpoint of the general model
of Java monitors that focuses on those aspects of the model that have an exter-
nally visible effect on the behaviour of the concurrent component. By combining
the test conditions from this restricted viewpoint with the application-specific
test conditions, we reduce the number of test conditions and can focus on those
conditions that are relevant to the observable behaviour of the application.

Although we do not discuss it in detail, the test conditions that are generated
by the approach described in this paper could be used to generate test sequences
in a testing tool such as ConAn [12].

1.1 Related Work

We apply the Test Template Framework [19] to concurrent Java components
in Object-Z [7]. Test Templates have been generated from Object-Z before [5]
and there has been some work dealing with the issues of concurrency under the
guise of interactive systems [15]. Interactive systems have also been considered
by others [1]. However, the Test Template Framework has not previously been
applied directly to concurrent components.

The use of the Test Template Framework with inheritance has been consid-
ered elsewhere [17], as has the combination of Object-Z operations [18]. However,
neither deal with the issues of multiple inheritance as we do here.

We use viewpoint-based specifications [10,3]. That is, multiple partial spec-
ification are used rather than a single monolithic specification. This approach
allows different concerns to be treated separately without constructing a com-
plicated unified model. Viewpoints-based testing has been considered before [14,
4], but in this previous work different viewpoints are represented in different
specification languages, whereas we use a single specification language.

1.2 Overview

An introduction to Java and the Java concurrency model is given in Section 2.
This includes a formal specification of a Java monitor in Object-Z. In Section 3
the Test Template Framework is described and applied to the Java monitor spec-
ification to produce a set of test conditions. The specification of the Producer-
Consumer monitor is considered in Section 4 along with test conditions for the
application-specific behaviour. In Section 5 a naive combination of the test hier-
archies from the two viewpoints is discussed and a different approach based on a
restricted concurrency viewpoint is presented. To further evaluate and illustrate

Viewpoint-Based Testing of Concurrent Components 503

the approach, its application to the Readers-Writers problem is considered in
Section 6. Concluding remarks are presented in Section 7.

2 Java Concurrency

A typical application involving Java concurrency is presented in Figure 1. The
Java code implements a finite buffer which may be shared between many Pro-
ducer and Consumer threads for the purpose of communicating resources. We
shall assume a basic understanding of the Java synchronisation model. The put

public class BufferImpl {

protected int[] buf;
protected int in = 0;
protected int out= 0;
protected int count= 0;
protected int size;

public BufferImpl(int size) {
this.size = size;
buf = new int[size];

}

public synchronized void put(int i) throws InterruptedException {
while (count==size) wait();
buf[in] = i;
++count;
in=(in+1) % size;
notifyAll();

}

public synchronized int get() throws InterruptedException {
while (count==0) wait();
int i =buf[out];
--count;
out=(out+1) % size;
notifyAll();
return (i);

}
}

Fig. 1. A Java implementation of a finite buffer.

method is used to add a resource to the finite buffer. The calling thread waits
until space is available and then notifies all waiting threads after it adds the re-
source. The get method retrieves a resource from the buffer. The calling thread

504 L. Wildman, R. Duke, and P. Strooper

waits until a resource is available and then notifies all other waiting threads after
it removes the resource. An object of the class BufferImpl conforms to the under-
lying Java thread synchronisation model based on synchronised methods and
blocks of code, together with the Java methods wait, notify and notifyAll inher-
ited from the Java Object superclass. (Other Java features like thread creation,
join, sleep and interrupt, or the deprecated suspend, resume and stop will not be
discussed.)

In previous work [8], the specification of the class Object (presented below)
was used to capture the underlying Java concurrency mechanism consistent with
that described within the Java Language Specification [9] and the Java Virtual
Machine (JVM) Specification [11]. Instances (i.e. objects) of the class Object
denote the objects in a Java system, such as instances of BufferImpl; the class
Object captures the underlying concurrency of the system from the viewpoint of
these objects.

In the specification of Object , Thread denotes the set of all possible program
threads in a Java system. The set OneThread is defined by

OneThread == {st : P Thread | #st � 1}
and denotes subsets of threads containing at most one thread.

Consider now the class Object in detail. A basic understanding of Object-Z
is assumed. The three state attributes each denote subsets of threads. The at-
tribute isLockedBy denotes the thread (if any) that holds the lock on the object,
isBlocking denotes the set of threads blocked on the object, and hasAskedToWait
denotes the set of threads that are waiting to be notified by the object. These
three subsets are mutually disjoint, capturing the requirement that at any given
time a thread can play at most one of these roles for any given object. Initally
all three subsets are empty.

A call to a synchronised method or entry into a synchronised block is mod-
elled in two steps. The thread initiates a lockRequestedByThread and the JVM
responds with a giveLockToThread . The operation lockRequestedByThread cap-
tures the object’s view of the situation when a Java thread seeks to enter a
synchronised block of an object it is not already locking. We do not model re-
cursive locks. (If a thread holds the lock on an object, in our model we assume
that it can enter any synchronised block of that object without restriction. In
particular, it does not need to request a further lock on the object.) The thread
in question cannot be blocked on the object and cannot be waiting to be notified
by the object. The outcome of the operation is that the thread joins the set of
threads blocked by the object.

The operation giveLockToThread specifies what happens when the JVM se-
lects a thread from among those currently blocked on the object and allows that
thread to lock it. This captures the object’s view of the situation when a Java
thread is given access to the synchronised blocks of the object. The object can-
not already be locked, and the outcome of the operation is that the thread is
given the lock on the object and is removed from the set of blocked threads.
giveLockToThread can occur whenever the object is not locked, i.e., initially, or
whenever a thread releases the lock as described by the following 2 operations.

Viewpoint-Based Testing of Concurrent Components 505

The operation lockReleasedByThread specifies what happens when the thread
that currently holds the lock on the object releases that lock. This captures the
object’s view of the situation when the Java thread currently locking the object
no longer requires access to any synchronised block of the object. The outcome
is that the object is no longer locked.

Object

isLockedBy : OneThread
isBlocking : P Thread
hasAskedToWait : P Thread

disjoint〈isLockedBy , isBlocking ,
hasAskedToWait〉

INIT
isLockedBy = ∅

isBlocking = ∅

hasAskedToWait = ∅

lockRequestedByThread
∆(isBlocking)
t? : Thread

t? �∈ isLockedBy
t? �∈ isBlocking
t? �∈ hasAskedToWait
isBlocking ′ = isBlocking ∪ {t?}

giveLockToThread
∆(isLockedBy , isBlocking)
t ! : Thread

isLockedBy = ∅

t ! ∈ isBlocking
isLockedBy ′ = {t !}
isBlocking ′ = isBlocking \ {t !}

lockReleasedByThread
∆(isLockedBy)
t? : Thread

isLockedBy = {t?}
isLockedBy ′ = ∅

askThreadToWait
∆(isLockedBy , hasAskedToWait)
t ! : Thread

isLockedBy = {t !}
isLockedBy ′ = ∅

hasAskedToWait ′ =
hasAskedToWait ∪ {t !}

notifyThread
∆(isBlocking , hasAskedToWait)
t ! : OneThread

isLockedBy �= ∅

t ! ⊆ hasAskedToWait
#hasAskedToWait > 0 ⇒

#t ! = 1
hasAskedToWait ′ =

hasAskedToWait \ t !
isBlocking ′ = isBlocking ∪ t !

notifyAllThreads
∆(isBlocking , hasAskedToWait)
st ! : P Thread

isLockedBy �= ∅

st ! = hasAskedToWait
hasAskedToWait ′ = ∅

isBlocking ′ = isBlocking ∪ st !

The operation askThreadToWait specifies what happens when the object
requests that the thread currently holding the lock on the object wait for no-
tification. This captures the object’s view of the situation when a Java thread

506 L. Wildman, R. Duke, and P. Strooper

executes a wait while accessing a synchronised block of the object. The outcome
is that the thread is added to the set of threads waiting to be notified, and the
object is no longer locked.

The operation notifyThread specifies what happens when the JVM selects a
thread from among those currently waiting on the object and notifies it. This
captures the object’s view of the situation when a notify is executed by some other
thread currently accessing a synchronised block of the object. The outcome is
that the selected thread is removed from the set of waiting threads and added to
the set of threads blocked on the object. Note that notifyThread does nothing if
no threads are waiting, i.e. in this case execution of notify will wake no threads.

The operation notifyAllThreads is like notifyThread except that all threads
waiting on the object are notified. This captures the object’s view of the sit-
uation when a notifyAll is executed by some other thread currently accessing a
synchronised block of the object. The outcome is that all the threads currently
waiting on the object are added to the set of threads blocked on the object, while
the set of threads waiting on the object becomes empty.

3 Object Class Test Cases

3.1 Test Template Framework

The Test Template Framework (TTF) [19] provides a systematic way to select
and record abstract test cases for individual operations from a model-based
formal specification. Test case selection remains under the control of the human
tester and multiple testing strategies are supported. The original work focused
on specifications written in the Z notation, but the framework has been extended
for Object-Z specifications [5].

3.2 Process

The framework provides a systematic way of finding partitions for each opera-
tion. The precondition of an operation is used as the starting point for partition-
ing since Object-Z operations are disabled for inputs outside the precondition.
The precondition is called the valid input space (VIS). The valid input space is a
subset of the input space (IS) of an operation, which is defined as the restriction
of the operation’s signature to input components (inputs and pre-state compo-
nents). The output space (OS) is similarly defined over the output components.

A strategy in the framework identifies a particular technique for deriving
test cases. Both traditional techniques such as input partitioning and boundary
analysis, and specialised techniques that exploit the specification notation are
used. The framework encourages the use of multiple strategies to build the test
template hierarchy (TTH). The hierarchy captures the relationships between test
templates and strategies, and serves as a record of the test development process.
The root of the hierarchy is the valid input space.

The hierarchy is created by applying testing strategies to existing test tem-
plates to derive additional ones. A test template hierarchy is usually a directed

Viewpoint-Based Testing of Concurrent Components 507

acyclic graph with the leaf nodes partitioning the valid input space. Strategies
are applied to the hierarchy until the tester is satisfied that the leaf templates
of the hierarchy represent adequate sources of tests, that is, every instantiation
of a leaf template is equally likely to reveal an error in an implementation.

To identify test data, the tester instantiates the leaf test templates (TT) in
the test template hierarchy by supplying specific values for the state and inputs.
The resulting test templates are called instance templates (IT). The framework
also defines output templates (OT) corresponding to test or instance templates.
These define the expected final states and outputs corresponding to the test or
instance template. The output is calculated by restricting the operation to the
input described in the template and then projecting onto the operation’s output
space.

3.3 Object TTH

We now discuss the application of the Test Template Framework to the Object
specification. We discuss the derivation for the lockRequestedByThread operation
in detail for each step and mention the interesting aspects of the application to
the other operations.

Note that the INIT schema is ignored because it is not an operation. That
is, it has no input space to which we can apply the Test Template Framework.

Valid Input Space. The Valid Input Space for lockRequestedByThread is:

VISlockRequestedByThread =̂ pre lockRequestedByThread

which expands and simplifies to

VISlockRequestedByThread =̂
[isLockedBy : OneThread ; isBlocking , hasAskedToWait : P Thread ;
t? : Thread | disjoint〈isLockedBy , isBlocking , hasAskedToWait〉 ∧
t? �∈ isLockedBy ∧ t? �∈ isBlocking ∧ t? �∈ hasAskedToWait]

Test Templates. The lockRequestedByThread test template hierarchy is de-
fined as follows (taking the set of all possible strategies as given):

[Strategies];
TTHlockRequestedByThread :

TTlockRequestedByThread × Strategy 	→ P TTlockRequestedByThread

The function TTHlockRequestedByThread captures the combination of test tem-
plates with testing strategies to derive additional test templates. For most strate-
gies, the children partition the parent.

A common, intuitive testing strategy is 0-1-many, based on the cardinality
of a set such as isBlocking . This strategy is referred to as (one example of)
type-based selection. Type-based selection (TB : Strategies) is identified as a

508 L. Wildman, R. Duke, and P. Strooper

particular testing strategy and is used to partition the valid input space into
cases where isBlocking is empty, a singleton, and a set with more than one
element, generating three test templates (distinguished with numeric subscripts)
as a result.

TTlockRequestedByThread.0 =̂ [VISlockRequestedByThread | #isBlocking = 0]
TTlockRequestedByThread.1 =̂ [VISlockRequestedByThread | #isBlocking = 1]
TTlockRequestedByThread.2 =̂ [VISlockRequestedByThread | #isBlocking > 1]

TTHlockRequestedByThread(VISlockRequestedByThread ,TB) =
{TTlockRequestedByThread.0,TTlockRequestedByThread.1,TTlockRequestedByThread.2}

We can apply a similar type-based selection strategy to both the isLockedBy and
hasAskedToWait state variables to partition the above test templates further.
Since isLockedBy is of type OneThread , it can only be empty or contain 1 ele-
ment. When we do this, the result is 2 ∗ 3 ∗ 3 = 18 test templates. At that stage,
we decide not to partition the templates any further and we stop the process
with these 18 leaf templates.

Applying the same type-based strategy to the other operations results in a to-
tal of 60 test templates for all the operations (all the other operations have fewer
leaf templates than lockRequestedByThread because constraints on the valid in-
put space of these operations restrict the number of possible combinations).

Instance and oracle templates. Consider the following leaf test template for
lockRequestedByThread :

TTlockRequestedByThread =̂
[VISlockRequestedByThread |
#isLockedBy = 1 ∧ #isBlocking = 1 ∧ #hasAskedToWait = 1]

An instance template can be defined for this test template by instantiating the
state variables and input:

ITlockRequestedByThread =̂
[isLockedBy : OneThread ; isBlocking , hasAskedToWait : P Thread ;
t? : Thread | t? = t1 ∧
isLockedBy = {t2} ∧ isBlocking = {t3} ∧ hasAskedToWait = {t4}]

where t1, t2, t3 and t4 are all distinct threads in Thread .
The oracle/output template for this instance template is:

OTlockRequestedByThread =̂
[isLockedBy ′ : OneThread ; isBlocking ′, hasAskedToWait ′ : P Thread |
isLockedBy ′ = {t2} ∧ isBlocking ′ = {t1, t3} ∧ hasAskedToWait ′ = {t4}]

Instance and oracle templates can easily be generated for the other 59 test
templates as well.

Viewpoint-Based Testing of Concurrent Components 509

4 Concurrent Application Test Cases

4.1 Application Specification

Our approach to the specification of the application is to describe the different
behaviours corresponding to the different thread paths through the synchronized
object. This captures two important aspects of the application: (1) the effects
on the application-specific variables, and (2) the conditions under which syn-
chronisation occurs. The first aspect relates to the functional behaviour of the
application that does not directly relate to its concurrent behaviour. That is,
the effect on application-specific variables. The second aspect relates purely to
the concurrent behaviour and captures the synchronisation policy of the appli-
cation, i.e. the conditions under which the synchronisation primitives offered by
the underlying concurrency mechanism should be invoked.

4.2 Example: Buffer

Our approach is illustrated by the following example specification of the
Producer-Consumer problem. An Object-Z specification of the application-
specific viewpoint of the finite buffer component presented in Figure 1 is
now presented. The class provides the operations putAndNotifyAll , waitForPut ,
getAndNotifyAll and waitForGet . The internal mechanism of the buffer is mod-
eled by a sequence. The putAndNotifyAll (and getAndNotifyAll) operation spec-
ifies the behaviour when a space for a resource (or a resource) is available in the
buffer. These schemas also capture the conditions under which a notifyAll will be
invoked. The waitForPut (and waitForGet) operation specifies the conditions in
which a Producer (or Consumer) will wait until a put (or a get) is possible.

Buffer
�(INIT , putAndNotifyAll ,waitForPut , getAndNotifyAll ,waitForGet)

size : N

buffer : seq Z

size > 0
#buffer ≤ size

INIT
buffer = 〈 〉

putAndNotifyAll
∆(buffer)
item? : Z

#buffer < size
buffer ′ = buffer � 〈item?〉

getAndNotifyAll
∆(buffer)
item! : Z

#buffer > 0
buffer = 〈item!〉 � buffer ′

waitForPut
#buffer = size

waitForGet
#buffer = 0

510 L. Wildman, R. Duke, and P. Strooper

4.3 Buffer TTH

Test templates may be generated for the Buffer class by employing a type-based
testing strategy. Variable size is examined by applying boundary analysis, e.g.
the minimum size is 1 and we pick another “middle” size of 3. The specific values
of the inputs and outputs may be left out of the test templates because the buffer
is data-independent. Two examples follow from the 11 basic templates generated
this way for the Buffer class.

TTputAndNotifyAll.1 =̂ [buffer : seq Z; size : N | #buffer = 0 ∧ size = 1]
TTwaitForPut.1 =̂ [buffer : seq Z; size : N | #buffer = 1 ∧ size = 1]

TTputAndNotifyAll.1 describes a case where a put operation should succeed and
TTwaitForPut.1 describes a case where a put operation should wait.

Test instances and sequences. Test instances are generated from the tem-
plates by choosing appropriate values. Test oracles are created also. To enable
test execution, test sequences must be created from the test instances. Test se-
quences have been generated automatically by bounded model checking using
NuSMV [6]. Very briefly, we negate the test condition and get the model checker
to produce the counter-example.

In practice, test sequences are comprised of calls to the Java component in-
terface by different producer and consumer threads. Here, we use the interface
offered by the Object-Z class. Sequences of executable method calls may be
calculated from the operation sequences by taking into account the underlying
JVM. (Some interactions may be infeasible in some versions of the JVM.) Ex-
ample test sequences exercising test instances corresponding to the templates
TTputAndNotifyAll.1 and TTwaitForPut.1 follow.

(INIT (size = 1); putAndNotifyAll(item? = 1))
(INIT (size = 1); putAndNotifyAll(item? = 1); waitForPut)

Each test sequence begins with an INIT annotated with the size of the buffer
(mimicking the Java constructor). The middle part of the sequence (which is
empty for the first example) establishes the precondition of the desired test
template. The last operation denotes a call to the operation in which the desired
test template will be exercised.

While it is clear that checking the results of the execution of the test se-
quences against the oracles will verify the behaviour of the buffer with respect
to the availability of the resource, the test sequences do not verify that the syn-
chronisation mechanisms are called correctly. That is, we do not know whether
notifyAll has been called rather than notify, or whether wait has been called when
the waitForPut/waitForGet conditions occur. Verification of the suspension be-
haviour of the threads with respect to calls to wait and notifyAll is the topic of
the next section.

Viewpoint-Based Testing of Concurrent Components 511

5 A Concurrent Viewpoint of the Application

The complete specification of the concurrent behaviour of an application such as
the buffer is formed by combining the application-specific behaviour as embodied
in the Buffer class specified in the last section with the underlying concurrency
model as embodied in the Object class specified in Section 2. It turns out that
the complete specification of the behaviour involves not just application-specific
detail but all of the detail of the synchronisation mechanism, and that test
templates generated from the complete specification test the complete system,
including the underlying synchronisation mechanism.

We will use the buffer example to first illustrate the problems inherent in
testing the combination of application and synchronisation, and then see how to
hide the internal mechanism of the Object class to produce test templates that
focus solely on the application itself.

5.1 Buffer Object

The Buffer class and the Object class are combined to form the BufferObject
class. It provides five (visible) operations.

BufferObject
�(lockRequestedByThread , putAndNotifyAll ,waitForPut ,

getAndNotifyAll ,waitForGet)

Buffer

Object

putAndNotifyAll =̂
giveLockToThread o

9 notifyAllThreads o
9 lockReleasedByThread

waitForPut =̂ giveLockToThread o
9 askThreadToWait

getAndNotifyAll =̂
giveLockToThread o

9 notifyAllThreads o
9 lockReleasedByThread

waitForGet =̂ giveLockToThread o
9 askThreadToWait

The first operation, lockRequestedByThread , is inherited unchanged from the
Object class. This operation corresponds to a thread requesting a lock for entry
into a synchronised block. The operation putAndNotifyAll specifies the behaviour
when a Producer thread successfully puts some item into the buffer. The specifi-
cation of this operation makes direct use of the Object-Z inheritance mechanism.
To be specific, as the definition of putAndNotifyAll , namely,

putAndNotifyAll =̂
giveLockToThread o

9 notifyAllThreads o
9 lockReleasedByThread

defined in the class BufferObject has the same name as an operation inherited
from the class Buffer , it is conjoined with this inherited operation. The overall

512 L. Wildman, R. Duke, and P. Strooper

result is that the specification of the operation putAndNotifyAll in the class
BufferObject is equivalent to

putAndNotifyAll =̂ putAndNotifyAllBuffer

∧
(giveLockToThreadObject
o
9 notifyAllThreadsObject
o
9 lockReleasedByThreadObject)

where subscripts are used in this expression simply to indicate the class
from which the specific operation is inherited. The overall effect of the
putAndNotifyAll operation is that, a thread, having already requested entry into
the synchronised block (by way of membership of the set isBlocking), receives the
lock, notifies all waiting threads, releases the lock, and at the same time achieves
the effect of the putAndNotifyAll operation specified in the Buffer class. This
style of specification, used for each of the other operations in the BufferObject
class, emphasises the concurrent aspects of the operation and helps delineate the
synchronisation mechanism of Object .

The operation waitForPut specifies the behaviour when a put is not possible
and the thread has to wait. Upon receiving the lock, the thread finds that the
condition for putting an item, as described by the waitForPut operation inherited
from Buffer , does not hold and hence the thread waits.

The operations getAndNotifyAll and waitForGet are similar.

5.2 Test Case Selection

Applying the Test Template Framework to this class is complicated by the use
of sequential composition to specify the combined operations. However, a proce-
dure [18] exists for creating the test templates and oracles of Object-Z operations
formed by combining other operations with conjunction, sequential composition,
and parallel composition, out of the test templates and oracles of the component
operations. In [18], Periyasamy and Alagar consider compositions of operations
from a single class and without inheritance. Single inheritance has been consid-
ered elsewhere [17]; however, our buffer-object example inherits from multiple
classes.

Multiple inheritance requires that the test templates for the inherited op-
erations are promoted to the complete inherited state. Strategies for further
developing the inherited templates should be carefully chosen to fit the design of
the application. This approach is demonstrated on the lockRequestedByThread
and putAndNotifyAll operations below.

Example: lockRequestedByThread . This operation is inherited unchanged from
Object and becomes an operation of the BufferObject class. However, the state
of the BufferObject class consists of the state of the Object class merged with
the state of the Buffer class. The approach presented in [18] for building test
templates from sub-components is to start with the union of the test templates

Viewpoint-Based Testing of Concurrent Components 513

of the sub-components, promote the test templates to the combined state-space
and then apply further test strategies to expand the promoted result. For in-
stance, to generate the test templates for the promoted lockRequestedByThread
operation, one has to conjoin each test template in the test template hierar-
chy for lockRequestedByThread with a schema which describes what happens
to the Buffer state during the lockRequestedByThread operation. However, the
lockRequestedByThread operation does not change the state of the Buffer com-
ponent. This results in a set of test templates similar to the following.

TTlockRequestedByThread.i =̂ ΞBuffer .State ∧ Object .TTlockRequestedByThread.i

Following this, one should apply test strategies to extend the test hierarchy
further. A naive testing strategy for expanding this test hierarchy is to apply a
type-based testing strategy to the promoted template.

If a 0-1-many testing strategy is applied to each promoted test template
then the result will be 5 ∗ 18 = 90 test templates! However, these test templates
are all re-testing the lockRequestedByThread operation in the presence of the
application-specific inputs. This is testing two aspects.

1. It is re-testing lockRequestedByThread ; exactly what we want to avoid, and
2. because the other operations, putAndNotifyAll etc. all rely on the given

thread having already attempted entry to the synchronised block (as mod-
elled by lockRequestedByThread) by way of the thread being in the set
isBlocking (inherited from class Object), this is testing that a request for
mutually exclusive access preceeds every other operation.

The first aspect should definitely be avoided, and more importantly, it is
pointless to test the lockRequestedByThread for every application-specific input.
However, by not testing lockRequestedByThread , there is a risk that exclusive
access to the Object is not being verified.

In practice, it is impossible to test the correct use of lockRequestedByThread
by black-box testing alone because the JVM manages the granting of locks by
hidden internal operations. In light of this, the most sensible strategy for the
black-box tester is to ignore the lockRequestedByThread operation1.

Example: putAndNotifyAll . Applying the approach outlined above, the set
of base test templates for putAndNotifyAll is the union of the promoted test
templates of putAndNotifyAll from Buffer and the promoted test templates cor-
responding to the sequence of synchronisation operations from Object .

The test templates for the sequence may be generated using the proce-
dure outlined in [18]. However, the promotion of the operations suffers from
the same problems as described above. In addition, the sequence of operations
from giveLockToThread to lockReleasedByThread of Object completely hides the
granting of the lock (isLockedBy equals the empty set at the start and at the
1 In practice, code inspection is a more effective way to check for the correct use of

synchronised blocks and methods.

514 L. Wildman, R. Duke, and P. Strooper

end). Furthermore, as is the case for lockRequestedByThread , the state of the set
of blocked threads isBlocking is completely hidden by the JVM.

The problems illustrated above demonstrate the infeasability of testing the
Buffer with the Test Template Hierarchy developed from the combination of
Buffer andObject classes. This leads us to the conclusion that this deep com-
bination of Buffer and Object is not appropriate for producing black-box tests
and motivates the more abstract model of the Object now presented.

5.3 Restricted Object Viewpoint

We now consider a restricted viewpoint of Object that captures the use of syn-
chronisation by the application but that does not retest the underlying mech-
anism. We observe that the application controls the membership of the set
hasAskedToWait by use of wait and notifyAll but that the JVM controls the
blocking of threads and the granting of locks by giveLockToThread . In addition,
the application class does not specify a behaviour for the lockRequestedByThread
operation because the effect of the associated entry into a synchronised block or
method is completely hidden. It is the “use” of an object that forms the basis
of our restricted viewpoint. Variable and operation hiding is used to restrict the
test cases generated for class Object . The locked thread represented by variable
isLockedBy and the related operation lockRequestedByThread are hidden as well
as the blocking set represented by isBlockedBy and the related giveLockToThread
and lockReleasedByThread operations. The class UseObject defines the resulting
class and is expanded below.

UseObject =̂ Object \ (isLockedBy , isBlocking , lockRequestedByThread ,
giveLockToThread , lockReleasedByThread)

UseObject
�(INIT , askThreadToWait ,notifyThread ,notifyAllThreads)

hasAskedToWait : P Thread
INIT
hasAskedToWait = ∅

askThreadToWait
∆(hasAskedToWait)
t ! : Thread

hasAskedToWait ′ =
hasAskedToWait ∪ {t !}

notifyAllThreads
∆(hasAskedToWait)
st ! : P Thread

st ! = hasAskedToWait
hasAskedToWait ′ = ∅

notifyThread
∆(hasAskedToWait)
t ! : OneThread

t ! ⊆ hasAskedToWait
#hasAskedToWait > 0 ⇒ #t ! = 1
hasAskedToWait ′ = hasAskedToWait \ t !

Viewpoint-Based Testing of Concurrent Components 515

UseObject Test Cases. The test templates resulting from applying the TTF
to the UseObject class need only consider 0, 1, and many waiting threads. This
gives 3 test templates for testing the correct application of each of the synchro-
nisation mechanisms.

5.4 Application with UseObject

The application can be re-specified by the following.

BufferUseObject
�(putAndNotifyAll ,waitForPut , getAndNotifyAll ,waitForGet)

Buffer

UseObject

putAndNotifyAll =̂ notifyAllThreads

waitForPut =̂ askThreadToWait

getAndNotifyAll =̂ notifyAllThreads

waitForGet =̂ askThreadToWait

By including the definition putAndNotifyAll =̂ notifyAllThreads explicitly in
the class BufferUseObject , we are associating the name putAndNotifyAll with the
operation notifyAllThreads inherited from UseObject . This ensures that this op-
eration is conjoined with the operation putAndNotifyAll inherited from Buffer .
The other three visible operations in the class BufferUseObject are defined sim-
ilarly.

BufferUseObject Test Cases. The base test templates for the combina-
tion are the union of the test templates for Buffer and the test templates for
UseObject . As illustrated below, a common strategy for developing the test hi-
erarchy further is to consider the different types of threads.

6 Strategy

This section summarises our derived strategy for testing concurrent components.

1. Specify the application-specific viewpoint. Define operations that cover all
synchronisation paths through the monitor. That is, paths that start when a
lock is granted (resulting either from the initial entry or from being notified
after waiting) and end when the lock is released (either from exiting the
synchronised block or from waiting). Operations should differentiate between
paths that use notify, notifyAll, or use no notification.

2. Partition the application-specific viewpoint operations into a base test tem-
plate hierarchy.

516 L. Wildman, R. Duke, and P. Strooper

3. Combine the test template hierarchy of the application-specific model with
that of the restricted concurrency model to introduce thread suspension
behavior.

4. Use the number and type of waiting threads to further develop the resultant
test template hierarchy.

In step 1 we have used the underlying thread mechanism provided by the
Object class to decide the synchronisation points that should be covered by the
operations. In other work [13] we have used Concurrency Flow Graphs to produce
the test conditions. In future work we will look at how these two approaches can
be combined.

Step 2 is a standard application of the Test Template Framework to the
viewpoint specification produced in Step 1.

Step 3 requires some ingenuity on the part of the tester to decide strategies
that take advantage of the component design to avoid re-testing the underly-
ing Java mechanism and to focus on the synchronisation under control of the
application.

Step 4 is possible because of the introduction of the threads themselves in
step 3. Test partitioning based on the number and type of suspended threads is
standard for this type of application because it shows whether particular classes
of thread (such as Producers or Consumers) are starved because of inappropriate
wait conditions or notification.

As a further demonstration of this strategy we next apply it to the Readers-
Writers problem.

6.1 Case Study: Readers-Writers

The Readers-Writers problem involves a shared resource which is read by reader
threads and written to by writer threads. To prevent non-interference, individual
writers must be given exclusive access to the resource, locking out other writers
and readers. However, reading does not result in interference and so multiple
readers may access the resource concurrently. A monitor is used to control access
to the resource. Our approach is built on that presented in standard concurrency
textbooks [2,16].

Step 1. We specify the application-specific behaviour of the Readers-Writers
monitor by considering all paths through the synchronisation points. Object-Z
class ReadersWriters (presented below) specifies operations corresponding to the
different ways in which a thread may progress through the monitor.

The state of the monitor involves two counters corresponding to the number
of readers and writers concurrently accessing the resource. The state invariant
captures the desired monitor invariant: the resource is accessed either by concur-
rent readers or writers but never by both, and the number of concurrent writers
is never greater than one. Initially there are no readers or writers.

The operations capture the application-specific aspects only. The concurrent
behaviour is added in Step 3.

Viewpoint-Based Testing of Concurrent Components 517

A read request will succeed immediately if there are no writers. This is cap-
tured by operation requestRead . A read request will be delayed (the thread
waits) if there is currently a writer accessing the resource (waitForRequestRead).
Once finished reading, a reader releases the resource. There are two cases, if the
thread is not the last reader, i.e., readers > 1 before the release, then the read-
ers just stops reading as per releaseRead . However, if the reader is the last
thread (readers = 1) then the reader notifies a waiting writer2, as specified in
releaseReadAndNotify .

A request for write access will succeed immediately if the number of readers
and writers both equal 0 (requestWrite). A request for write access will wait
otherwise (waitForRequestWrite). When releasing write access, a thread always
notifies all other waiting threads (releaseWriteAndNotifyAll).

ReadersWriters
�(INIT , requestRead , releaseRead ,waitForRequestRead ,

releaseReadAndNotify , requestWrite, releaseWriteAndNotifyAll ,
waitForRequestWrite)

readers,writers : N

(readers = 0 ∨ writers = 0)
writers ≤ 1

INIT
readers = 0 ∧ writers = 0

requestRead
∆(readers)

¬ writers > 0
readers ′ = readers + 1

waitForRequestRead
writers > 0

releaseRead
∆(readers)

readers > 1
readers ′ = readers − 1

releaseReadAndNotify
∆(readers)

readers = 1
readers ′ = readers − 1

requestWrite
∆(writers)

writers = 0 ∧ readers = 0
writers ′ = writers + 1

releaseWriteAndNotifyAll
∆(writers)

writers ′ = writers − 1

waitForRequestWrite
writers > 0 ∨ readers > 0

2 It notifies any waiting thread but only writing threads will wait for a reader to
release.

518 L. Wildman, R. Duke, and P. Strooper

6.2 Step 2

Test templates are now generated for the application-specific viewpoint.
Many of the test templates correspond to the valid input space because the

preconditions are so simple. In the cases of requestRead and releaseRead we apply
a type-based strategy on the number of readers (0-1-many), and in the case of
waitForRequestWrite we apply domain partitioning to the top-level disjunction
and a type-based strategy; 11 base test templates are produced in this way.

6.3 Step 3

The application-specific viewpoint is now combined with the concurrency view-
point capturing thread suspension behaviour. The class ReadersWritersObject
describes the combination. It extends all ReadersWriters operations with the
appropriate concurrent behaviour. As operations requestRead , releaseRead , and
requestWrite all succeed immediately (without suspension) and do not notify
any other threads, they do not need to be combined with any synchronisa-
tion operations. Operations waitForRequestRead and waitForRequestWrite are
combined with askThreadToWait because they capture the waiting behaviour
for a read or write request. Operation releaseReadAndNotify is combined with
notifyThread because it captures the case when the last reading thread re-
leases the resource and must notify a waiting writer (if one exists). Similarly,
releaseWriteAndNotifyAll is combined with notifyAllThreads because all waiting
threads must be notified when a writer releases the resource.

ReadersWritersObject
�(requestRead ,waitForRequestRead , releaseRead , releaseReadAndNotify ,

requestWrite,waitForRequestWrite, releaseWriteAndNotifyAll)

ReadersWriters

UseObject

waitForRequestRead =̂ askThreadToWait
releaseReadAndNotify =̂ notifyThread
waitForRequestWrite =̂ askThreadToWait
releaseWriteAndNotifyAll =̂ notifyAllThreads

Combined TTH. Test templates for the combined operations are constructed
from the union of the test templates of the sub-operations. In the case of
requestRead and other operations inherited directly from ReaderWriters, the test
templates are just the ones inherited from the ReadersWriters test template hi-
erarchy. In the case of the combined waitForRequestRead , releaseReadAndNotify ,
waitForRequestWrite, and releaseWriteAndNotifyAll operations, the combined
test templates result from the union of test templates from the ReadersWriters
class and those from the UseObject class.

Viewpoint-Based Testing of Concurrent Components 519

6.4 Step 4

To further develop the test templates for the operations waitForRequestRead ,
releaseReadAndNotify , waitForRequestWrite, releaseWriteAndNotifyAll , we con-
sider 0, 1, or many reader and writer threads waiting. This allows us to test, for
instance, that all waiting threads are notified when releaseWrite is called.

7 Conclusion

While others have applied the Test Template Framework to interactive systems,
in this paper we apply it to concurrent components. We have focused on the Java
concurrency model but our approach could be generalised to other concurrency
models such as protected Ada Objects.

Our approach has been to separate out the application and underlying con-
currency mechanism into separate viewpoints and then to develop test hierar-
chies for them separately. We have then combined the test hiearchies for different
viewpoints taking into account the designed isolation of the concurrency mecha-
nism. This demonstrates a new approach to test template generation. In doing so
we have had to deal with multiple inheritance, a previously untreated aspect of
the application of the test template framework to object-oriented specifications.

Acknowledgments. This research is funded by an Australian Research Council
Discovery grant, DP0343877: Practical Tools and Techniques for the Testing of
Concurrent Software Components. This article has greatly benefited from proof-
reading by, and discussion with, Doug Goldson and Brad Long.

References

1. Bernhard K. Aichernig. Test-case calculation through abstraction. In Proceed-
ings of Formal Methods Europe 2001, FME 2001: Formal Methods for Increasing
Software Productivity, volume 2021 of Lecture Notes in Computer Science, pages
571–589. Springer-Verlag, 2001.

2. G. Andrews. Concurrent Programming: Principles and Practice. Addison Wesley,
1991.

3. H. Bowman, M.W.A. Steen, E.A. Boiten, and J. Derrick. A formal framework
for viewpoint consistency (full version). Computing Laboratory Technical Report
22-99, University of Kent at Canterbury, Canterbury, Kent, CT2 7NZ, December
1999.

4. Marius C. Bujorianu, Savi Maharaj, and Manuela Bujorianu. Towards a formal-
ization of viewpoints testing. In Robert M. Hierons and Thierry Jéron, editors,
Formal Approaches To Testing of Software 2002 (FATES’02), Research Report,
35042 Rennes, France, August 2002. INRIA. A satellite workshop of CONCUR’02.

5. David Carrington, Ian MacColl, Jason McDonald, Leesa Murray, and Paul
Strooper. From Object-Z Specifications to ClassBench Test Suites. Software Test-
ing, Verification and Reliability, 10(2):111–137, 2000.

520 L. Wildman, R. Duke, and P. Strooper

6. Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.
NUSMV: A new symbolic model checker. International Journal on Software Tools
for Technology Transfer, 2(4):410–425, 2000.

7. R. Duke and G. Rose. Formal Object-Oriented Specification Using Object-Z. Cor-
nerstones of Computing. Macmillan Press Limited, UK, 2000.

8. Roger Duke, Luke Wildman, and Brad Long. Modelling Java Concurrency with
Object-Z. In A. Cerone and P. Lindsay, editors, Software Engineering and Formal
Methods (SEFM’03), pages 173–181. IEEE Computer Society Press, 2003.

9. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison Wesley, 2nd edition, 2000. Also online at
http://java.sun.com/docs/books/jls/index.html as at Sep 2002.

10. Daniel Jackson. Structuring Z specifications with views. ACM Transactions on
Software Engineering and Methodology, 4(4):365–389, 1995.

11. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison
Wesley, 2nd edition, 1999.

12. Brad Long, Dan Hoffman, and Paul Strooper. Tool support for testing concurrent
Java components. IEEE Transactions of Software Engineering, 29(6):555–566,
June 2003.

13. Brad Long and Paul Strooper. A Classification of Concurrency Failures in Java
Components. In Proceedings of the 1st International Workshop on Parallel and
Distributed Systems: Testing and Debugging, April 2003.

14. I. MacColl and D. Carrington. Testing matis: A case study on specification-based
testing of interactive systems. In Formal Aspects of HCI (FAHCI98), pages 57–69,
1998.

15. Ian Dugald MacColl. Specification-Based Testing of Interactive systems. PhD the-
sis, Information Technology and Electrical Engineering, The University of Queens-
land, Feb 2003.

16. J. Magee and J. Kramer. Concurrency: State Models and Java Programs. John
Wiley & Sons, 1999.

17. L. Murray, D. Carrington, I. MacColl, and P. Strooper. Extending test templates
with inheritance. In Paul A. Bailes, editor, Proceedings of the Australian Soft-
ware Engineering Conference ASWEC’97, pages 80–87. IEEE Computer Society,
September 1997.

18. K. Periyasamy and V.S. Alagar. A rigorous method for test templates generation
from object-oriented specifications. Software Testing, Verification and Reliability,
11:3–37, 2001.

19. Phil Stocks and David Carrington. A framework for specification-based testing.
IEEE Transactions on software Engineering, 22(11):777–793, November 1996.

	Introduction
	Related Work
	Overview

	Java Concurrency
	 Object Class Test Cases
	Test Template Framework
	Process
	Object TTH

	 Concurrent Application Test Cases
	Application Specification
	Example: Buffer
	Buffer TTH

	A Concurrent Viewpoint of the Application
	Buffer Object
	Test Case Selection
	Restricted Object Viewpoint
	Application with UseObject

	Strategy
	Case Study: Readers-Writers
	Step 2
	Step 3
	Step 4

	Conclusion

