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1 GENERAL INTRODUCTION 

 With the development of various advanced physical methods such as electronic absorption, 

resonance Raman (rR) and electron paramagnetic resonance (EPR) spectroscopy, the field of 

bioinorganic chemistry became an independent and highly interdisciplinary research area in the last 60 

years.1 The word “bioinorganic” is related to the fact that approximately 40% of the to date known 

enzymes contain one or multiple metal atoms in their active sites that play a key role in the enzyme’s 

activity.1,2 These metalloenzymes combine catalytic power with a high degree of specificity, enabling a 

huge number of different substrate conversions at mild reaction conditions.3,4 The role of the 

bioinorganic coordination chemist is now to understand this interplay of organic framework and metal 

ion in order to design synthetic model complexes that help to understand the mechanisms of action of 

such active sites, and to develop bioinspired catalysts.1 

Next to the elements iron (Fe) and zinc (Zn), the late transition metal copper (Cu) is one of the most 

important metal atoms incorporated in metalloenzymes and is mainly functioning as the CuI/CuII redox 

couple that enables various processes such as metal ion uptake, electron transfer, O2-transport and 

catalysis.5,6,7,8 Presently, seven classes of copper containing enzymes are known, whereat the class of 

type III copper active sites is the most extensively studied.7  

The following sections will focus on a selected number of these active sites and will further introduce 

the reader to the main issues of this thesis. 
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2 NATURAL COPPER SITES 

2.1 Type I and Type II Active Sites 

 The family of type I actives sites, most commonly known as blue copper proteins, enables the long 

range transfer of electrons in biological systems.9,10 The name “blue copper site” is thereby related to 

the intense blue color of the oxidized form, originating from a ligand to metal charge transfer transition 

(LMCT) from a cysteine sulfur atom to the CuII ion.9,11 X-ray crystallographic analyses show the central 

atom to feature a strongly distorted tetrahedral geometry which is believed to accelerate the electron 

transfer due to a lower reorganization energy of the active site.12,13 The coordination sphere is provided 

by two nitrogen donor atoms (histidine), one cysteine ligand and by one methionine sulfur donor in 

case of Plastocyanin (see Figure 1, left).14,10 The most common representatives of type I copper sites are 

Plastocyanin, Azurin and Amicyanin.12,7,15 

 

Figure 1. Molecular structures of the reduced Plastocyanin active site (left) and of Galactose oxidase in its oxidized form 
(right); L = water (pH = 7) or acetate (pH = 4.5).12,7,16 

The class of type II active sites, also known as “normal” copper proteins, is represented by Galactose 

oxidase (see Figure 1, right) and Copper-zinc superoxide dismutase (SOD).7,11 Both mononuclear copper 

sites contain nitrogen and oxygen donor atoms in a distorted tetragonal or square planar geometry and 

show EPR features similar to common copper(II) complexes, containing an N,O chromophore with a 

tetragonal geometry.7,10 Their slightly blue color in the oxidized form origins from d―d transitions and 

does not arise from ligand to metal charge transfer processes as in type I active sites.17,7 The active site 

of Galactose oxidase combines the type II copper(II) metal center with a coordinated tyrosyl radical.7 

This metalloradical complex functions as a two electron redox unit at which the overall catalysis is 

divided into two half-reactions – the oxidation of a primary alcohol and the reduction of molecular 

oxygen to hydrogen peroxide.18,19 
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2.2 Type III Active Sites 

 The family of type III active sites is represented by the three proteins Tyrosinase, Catechol oxidase 

and Hemocyanin.7 Whereas Tyrosinase and Catechol oxidase catalyze substrate conversion, 

Hemocyanin is an oxygen-transport protein that can be isolated from mollusks and arthropods.20,21,22,23 

All three enzymes are featuring the same active site. The major difference between the catalytically 

active proteins and Hemocyanin is the access of the potential substrate to the dicopper core.8 Whereas 

the substrate binding pockets in Tyrosinase and Catechol oxidase are accessible for the corresponding 

substrates, the binding site in Hemocyanin is shielded by a phenylalanine residue of the protein 

framework, and consequently the exclusive role of Hemocyanin is dioxygen binding and transport.23,24  

In Hemocyanin as well as in Tyrosinase and Catechol oxidase, three histidine nitrogen atoms are 

coordinating each copper ion (see Scheme 1).25 The Cu-Cu distance in the reduced form of Hemocyanin 

(deoxy form) was determined to 3.5 – 4.6 Å, where the copper atoms exhibit a distorted trigonal planar 

geometry.26,27 Upon dioxygen binding the two CuI ions are oxidized, resulting in two strongly 

antiferromagnetically coupled CuI ions, featuring a total S = 0 ground state.7 The central atoms were 

found to have a square pyramidal coordination geometry with a Cu-Cu distance of ca. 3.6 Å.26 The 

enzyme which is colorless in the reduced form, changes color to intense blue in the oxy form, and in 

doing so, two characteristic absorption maxima at 345 (ε = 19 mM-1 cm-1) and at 600 nm (ε = 1000 M-1 

cm-1) emerge, which are related to O2
2- → CuII charge transfer transitions (see Section 3 for details).28  

 

 

Scheme 1. Reversible dioxygen uptake by the Hemocyanin active site.25 
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2.2.1 The Mechanism of Dioxygen Activation in Type III Active Sites 

 The mechanism of dioxygen binding at type III active sites is still a subject of ongoing debate. Since 

dioxygen features a triplet ground state, the two-electron reduction at the diamagnetic active site is 

principally spin forbidden.29,26,30 Detailed computational calculations on the basis of molecular 

structures of the oxy and deoxy form of Hemocyanin assume the dioxygen molecule to interact in a 

certain way with the enzymes active site, in overcoming the spin forbidden nature of this reaction.26,31 

At early stages of O2-reduction, the molecule approaches the bimetallic copper(I) site and 

simultaneously interacts with both of its perpendicular π*-orbitals with the dicopper site (see Scheme 

2).26,32 

 

Scheme 2. Proposed mechanism of O2 reduction at type III copper sites.26 

One of the oxygen π* orbitals exclusively interacts with one of the CuI ions , whereat the perpendicular 

oxygen π* orbital simultaneously interacts with the other copper site, in lowering the energy difference 

between triplet and singlet state of the system (see Scheme 2).33 Finally, two electrons of the same spin 

are synchronously transferred from the copper atoms into the two oxygen centered π*-orbitals, 

resulting in two ferromagnetically coupled CuII ions.31,26 The butterfly structure then progresses into a 

more planar geometry, where a superexchange pathway between the two CuII ions via the peroxide 

molecule is observed.33,31 This pathway is stabilizing the overall singlet state of the system, enabling the 

inter system crossing (ISC) to the experimentally observed S = 0 ground state.26 This mechanism 

involves a CP Cu2/O2 binding mode (see Scheme 2). Recently, two synthetic examples have been 

published, supporting the above described trajectory of dioxygen activation at type III active sites (see 

Section 5 for details).31,34 
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2.3 Type IV Active Sites 

 Another family of copper containing proteins is represented by type IV copper active sites, which 

combine a type III and a type II active site in forming a triangular shaped trinuclear cluster.35,36,11 

Multicopper oxidases additionally contain at least one type I copper ion, in order to couple the 

reduction of dioxygen to water with the oxidation of selected substrates (see Scheme 3).37 In the 

enzyme’s resting state, all four copper atoms are featuring the oxidation states +II.35,36 Finally, all 

copper ions are reduced to the oxidation state +I upon substrate conversion.35,36 The fully reduced 

tetranuclear copper site then transfers in total four electrons on the dioxygen molecule, whereat the 

actual mechanism of action is still under debate.33  

The coordination environment of the type III subsite in its reduced form is similar to that found in 

Hemocyanin (see Section 2.2), but changes in the resting state, with an additional hydroxide ligand 

bridging the two antiferromagnetically coupled CuII ions.37  

 

Scheme 3. Schematic representation of substrate conversion at multi copper oxidase active site.33 

Several groups studied the nature of resting and reduced states of the trinuclear copper site, in which 

open coordination positions have been identified in the center of the cluster.33 These vacant 

coordination positions are believed to be relevant during the mechanism of dioxygen binding.33 The 

mechanistic details of dioxygen reduction at multicopper oxidases are still under debate, but various 

experiments suggest a sequence of two concerted steps to occur.33 The initial stage is assumed to be a 

two electron reduction of dioxygen to a peroxide at the trinuclear cluster. The resulting intermediate 

would then be a trinuclear copper peroxo core, featuring two copper ions in the +II oxidation and one 

copper atom in the +I oxidation state.33 Interestingly, dioxygen is not reduced at a type II site depleted 

form, pointing at a remarkable difference of the type III site in multicopper oxidases compared to that 

in Hemocyanin.38,33 However, dioxygen reduction still takes place when the type I active site is replaced 

instead of the type II site.33 This experiment shows the initial step in the four electron reduction of 

dioxygen to water to be the two electron reduction at the trinuclear cluster. This reaction is 

independent of the presence of the type I site, but requires the triangular arrangement.33 However, the 
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resulting peroxo species shows different spectroscopic features than the side-on peroxo species in 

Hemocyanin, which is due to the presence of the type II site in multicopper oxidases that additionally 

interacts with the peroxide, in affecting both binding geometry and electronic structure (see Scheme 

4).33,39,40 The postulated next step in full O2 reduction is the one-electron transfer from the type I site to 

the trinuclear cluster, in forming a trinuclear Cu-peroxo core with two Cu atoms in the +I oxidation 

state.41,33 Detailed computational calculations underline the importance of this unusual trinuclear 

copper-peroxide core, where two Cu ions exist in the +I oxidation state.40 This arrangement is believed 

to enable the final two electron reduction of the peroxide with a low energy barrier, with the CuII bound 

peroxide acting as a Lewis acid.33 This interaction is believed to lowers the O2
2- σ* orbital in energy, thus 

enabling the final concerted 2e- transfer from both CuI ions.33,39,41 Besides two electrons, also a proton 

is postulated to be transferred in this final reduction.40 This partial proton coupled electron transfer 

(PCET) gives rise to intermediate iii that subsequently reacts into the enzymes resting state (see 

Scheme 4).40 

 

Scheme 4. Schematic representation of postulated mechanism of reductive O-O bond cleavage of peroxo intermediate i 
at multicopper oxidase active site.33,40 

This unique example shows that the trinuclear copper core in multicopper oxidases combines the redox 

activity of the CuI/CuII couple with an additional structural relevance of one of the copper ions, in 

functioning as a Lewis acid.33,39,41 This abnormal behavior allows the enzyme to fine tune the redox 

potential of the final concerted two electron reduction of the peroxo intermediate.33 A synthetic model 

complex, describing the unique intermediate i has however not been isolated to date but is a topic of 

recent studies (see Section 6.7). 
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3 SYNTHETIC COPPER COMPLEXES 

 Within the last 60 years of research in the field of bioinorganic chemistry, the synthesis of copper 

containing model complexes has been extensively studied, since a huge number of metalloenzymes 

contain the CuI/CuII redox couple, which enables i.a. substrate conversion and O2 transport (see 

Sections 2.1 - 2.3).6,7,42 Although copper containing enzymes show highly diverse reactivity, most of the 

to date known species are postulated to form different reactive copper oxygen intermediates, being 

involved in the enzymes mechanism of action.43 These natural archetypes are extensively studied for 

already half a century and a huge number of ligand systems has been employed.42,6 Next to 

mononuclear copper complexes with mainly two, three and four nitrogen donor atoms coordinating 

the copper ion, also dinucleating ligand systems have been developed (see Figure 2).42 

 

Figure 2. Different nitrogen donor ligands for mono- and dinuclear copper complexes.42 

Upon reaction of the copper(I) precursor complexes with dioxygen, a variety of copper oxygen 

intermediates has been isolated, of which most of them are currently discussed to be also relevant in 

natural copper active sites (see Figure 3).42,44 The nature of these copper oxygen species is mainly 

defined by the special ligand design being applied, which enables both steric and/or electronic 

control.44 However, TOLMAN et al. showed that also the solvent has an influence on the nature of the 

copper oxygen binding mode.45,46  
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Figure 3. Overview of structurally characterized copper oxygen species.44,31,47 

The in Figure 3 depicted copper oxygen binding motifs all show characteristic spectroscopic features, 

reflecting the different electronic structures of these copper oxygen cores.44,31,47 In the following, a 

principal description of such interactions will be provided with respect to molecular orbital (MO) 

theory. A general MO diagram of a mononuclear CuII η1-peroxo complex is depicted in Figure 4.33,44 This 

binding mode represents a simplified interaction of copper- and oxygen-centered orbitals and will be 

considered first, although this species has not been characterized structurally. Upon binding of the 

peroxide end-on to the CuII ion, one of the oxygen-centered π* orbitals is stabilized by a σ-interaction 

with the copper(II) magnetic dx
2-y

2 orbital which is in turn destabilized.48,33 

 

Figure 4. Approximate MO diagrams of different possible copper oxygen intermediates, the η
1
-peroxo intermediate has not 

been isolated until now and is only shown for demonstrative reasons; the copper-centered orbitals are drawn at same 
energy.

33,44
 

This interaction can be monitored via UV/vis absorption spectroscopy, since it produces a characteristic 

in-plane O2
2- 𝜋𝜎

∗  → CuII charge transfer (CT) transition in the visible region.49,33,11 The intensity as well as 

the relative energy of this CT transition generally quantify the magnitude of the peroxide donor 

interaction with the CuII ion (see Section 4.1 for further details).33,50 With respect to MO theory, a 

diminished overlap of copper- and oxygen-centered orbitals is directly related to the decreased 
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intensity of the corresponding CT transition, since the probability of this excitation to occur is a direct 

function of orbital overlap.50 The intensity of a CT transition additionally depends on the temperature 

and on the solvent, but this aspect will be discussed in Section 4.1.51 If the magnitude of overlap 

between copper- and oxygen-centered orbitals is reconsidered, this interaction is additionally reflected 

in the relative energy of the corresponding CT transition, since also the energy splitting between oxygen 

π* and the copper-centered magnetic orbital is a function of orbital overlap.50 

If a second CuII ion is involved in this type of interaction, different binding modes such as the TP or SP 

structures can be obtained (see Figure 3).44,31,47 In TP systems, the two oxygen π* orbitals can be 

differentiated in σ- and π-bonding orbitals when interacting with the copper centered orbitals.44 One of 

the two peroxide π* orbitals interacts with the symmetric combination of the two copper magnetic 

orbitals in a σ bonding interaction, in splitting the two copper centered orbitals in energy.33 If the 

resulting energy difference between the two copper-centered magnetic orbitals is large enough to 

overcome electron-electron repulsion, both copper centered electrons will couple their spin and a 

singlet ground state will be observed.52,33 The bridging peroxide then provides a so-called 

superexchange pathway that is the reason for antiferromagnetically coupled binuclear copper sites (see 

Section 6.1.5 for a detailed description).53,54 The σ bonding interaction again is the origin of an in-plane 

O2
2- 𝜋𝜎

∗  → CuII CT transition that now arises at dual intensity compared to the mononuclear η1-peroxo 

complex.33 The simultaneous interaction of the peroxide with two copper atoms doubles the probability 

of an electronic transition to occur, with respect to the overlap integral of excited and ground state 

wave functions (see Section 4.1).33 Next to this CT transition, a second but less intense absorption 

maximum at lower energy can be found in the UV/vis absorption spectra of both mononuclear and 

dinuclear peroxo complexes.44 This absorption band results from another CT transition from the second 

peroxide π* orbital, which is vertical to the copper oxygen plane.33 This out-of-plane 𝜋𝑣
∗ -> CuII CT 

transition is much less intense than the in-plane CT transition, which is due to a diminished overlap of 

copper and oxygen centered orbitals.42  

If the MO diagram of this TP binding motif is compared with that of the SP motif, significant differences 

can be observed which are also reflected by the UV/vis absorption spectra.55 In SP systems, the peroxo 

ligand is bound side-on (-2:2) to both copper ions, with one of the two oxygen π* orbitals strongly 

overlapping with the symmetric combination of the copper dx
2

-y
2 orbitals in a σ-bonding interaction.56 

The peroxide has now four donor interactions with the two copper atoms, indicated by a two times 

more intense in-plane CT transition compared to TP species.33 The two copper ions are strongly 

antiferromagnetically coupled (-2J ≥ 600 cm-1), substantiating the intense donor interaction between 

the copper and oxygen atoms.57 The splitting of both formerly degenerated copper magnetic orbitals is 

further enlarged by an additional interaction that only occurs in SP species due to the specific geometry 

of the copper oxygen core.33 The O2
2- σ* orbital overlaps with the copper centered HOMO and a 
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significant amount of electron density is donated via this back bonding interaction into the oxygen 

centered σ* orbital.33,55 This interaction is significantly weakening the peroxide bond since, with respect 

to the O-O bond, an antibonding orbital is populated.33,44 On the contrary, the aforementioned 

interactions describe the donation of electron density from the antibonding oxygen centered π* 

orbitals, in stabilizing the O-O bond.33 

Although these considerations are rather qualitative, they enable a fundamental understanding of the 

electronic structure of copper oxygen motifs. A more detailed discussion with respect to the interplay 

of orbital overlap and the corresponding electronic structure in dinuclear Cu2/O2 complexes will be 

provided in Sections 6.1.5 and 6.2.3.  
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3.1 TP complexes  

 Although the TP motif has only been isolated from synthetic copper complexes, its relevance for 

understanding the mechanism of action in natural copper sites cannot be excluded.31,44 The first 

synthetic TP complex that was also crystallographically characterized, has been published in the early 

90s and is a dimer of two mononuclear copper(II) complexes, being stabilized by tetradentate nitrogen 

donor ligands (see Figure 5, complex x).58,59 Next to this original example, several other TP complexes 

were characterized, all showing similar spectroscopic features.60,44 Two selected TP complexes are 

depicted in Figure 5.60,58 Both complexes are dimers of monomeric copper(II) complexes, being bridged 

by the peroxo ligand. 

 

Figure 5. Structurally characterized TP complex x and proposed structure of TP species xi.60,58 

The purple color of these complexes origins from two CT transitions (see Section 3) and the 

corresponding resonance Raman (rR) spectra (for more details concerning rR spectroscopy see 

Section 4.2) consistently show two oxygen isotope sensitive features at ca 830 cm-1 and at ca. 

550 cm-1.61,60 The band at higher energy attributes to the O-O stretching vibration, whereas the signal at 

ca. 550 cm-1 can be assigned to a Cu-O stretch.44 Although all proposed TP complexes are extensively 

studied via UV/vis absorption and rR spectroscopy, only few examples are also magnetically 

characterized, which is due to a pronounced instability of these species.44 All magnetically characterized 

examples feature a S = 0 ground state with a singlet-triplet splitting of -2J ≥ 600 cm-1, reflecting the 

strong bonding interaction of copper and oxygen atoms.62,43 
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3.2 SP Complexes 

 Within the last three decades several synthetic SP complexes were synthesized.44 The different 

model compounds all show similar spectroscopic features which are similar to those obtained for the 

oxy form of Hemocyanin, supporting the proposed SP motif for this copper site.44 The UV/vis absorption 

spectra are dominated by two CT transitions (see Section 3) at ca. 345 nm (ε = 21 mM-1 cm-1) and at ca. 

540 nm (ε = 800 M-1 cm-1).44 The corresponding rR spectra show oxygen isotope sensitive O-O stretching 

vibrations at ca. 745 cm-1.26,44 The molecular structures of the two synthetic compounds xii and xiii 

show the desired SP motif (see Figure 6).63,64 The O-O bond lengths were determined to ca. 1.4 Å, which 

is typical for a peroxo species.64,63 The CuII ions are coordinated by three nitrogen donor atoms and two 

peroxide oxygen atoms in a distorted square pyramidal geometry.64,63 These structural parameters 

correlate with those of the solid state structure of oxy Hemocyanin, isolated from Limulus 

Polyphemus65,66 and Octopus dofleini67, confirming the proposed SP binding mode in these enzymes.  

 

Figure 6. Selected examples of structurally characterized SP complexes.63,64 

The electronic structure of both synthetic and natural SP compounds has been also investigated via DFT 

calculations, revealing the strong bonding interactions of copper and oxygen atoms.63,52 The good 

overlap of copper- and oxygen-centered orbitals is thereby reflected by the intense UV/vis absorption 

spectra, and consequently the CuII ions in SP complexes are strongly antiferromagnetically coupled.44 

The singlet-triplet splitting (for more details regarding the magnetism in dinuclear copper-oxygen 

complexes see Section 6.1.5) in oxy Hemocyanin was determined to  -2J > 600 cm-1 and could also be 

confirmed by its synthetic counterparts.57,26,68,62  
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3.3 Hydroperoxo Complexes 

 Besides few examples,47,69,70 most of the to date known synthetic mono- and dinuclear copper 

hydroperoxo complexes are formed by the reaction of copper(II) precursors with H2O2.
71,72,73 With one 

exception74 all of these complexes are highly thermally instable, making a full spectroscopic and 

structural characterization difficult.47,69,70 To date only two fully characterized examples are known (see 

Figure 7).74,47 Although such motifs have not been isolated from natural copper sites, certain relevance 

is discussed in dopamine β-monooxygenase (DβM) and galactose oxidase.75,74 Figure 7 shows a 

summary of the to date structurally characterized synthetic hydroperoxo sites, which have been 

published over a period of almost 20 years, highlighting the rareness of these compounds.74,47 In 

contrast to the mononuclear hydroperoxide xiv, complex xv can be reversibly generated from a peroxo 

precursor by addition of 2,6-lutidinium triflate. A pKa value of approximately 22.2 (MeCN, T = -20 °C) 

was determined via UV/vis back titration experiments of xv with 1,1,3,3-Tetramethylguanidine (TMG, 

pKa = 23.3 (MeCN, T = 25 °C)).47 

 

Figure 7. To date structurally characterized mono- and dinuclear copper hydroperoxo complexes.
74,47

 

The UV/vis absorption spectrum of xv shows an intense band at ca. 420 nm (ε = 5700 M-1 cm-1) and a 

much weaker feature at ca. 600 nm (ε = 300 M-1 cm-1). These two absorption maxima are characteristic 

for hydroperoxo complexes and can be also found in their mononuclear counterparts.69,74 Resonance 

Raman data of the structurally characterized complexes xiv and xv show one oxygen isotope sensitive 

band at ca. 860 cm-1 (Δ(16O2-
18O2) = ca. 46 cm-1), which is at almost the same energy as the O-O 

stretching vibration of free H2O2 (ca. 870 cm-1; Δ(16O2-
18O2) = 40 cm-1).74,47 The EPR spectrum of complex 

xiv is typical for a trigonal bipyramidal mononuclear copper(II) complex, whereat complex xv is EPR 

silent.74,47 The two CuII ions in xv were found to be strongly antiferromagnetically coupled (-

2J = 1076 cm-1) with the hydroperoxide providing an efficient superexchange pathway.74,47  
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3.4 Superoxo Complexes 

 In contrast to dinuclear copper(II) peroxo complexes, which are intensively described in the 

literature (see Sections 3.1 and 3.2), the one-electron reduction of O2 to the corresponding superoxo 

complex at mono- or at dinuclear synthetic copper sites is rarely observed.76,77,78 However, synthesis 

and a detailed spectroscopic characterization of such compounds are of high interest, since 

mononuclear superoxo intermediates are being discussed as relevant in several natural copper sites 

such as peptidylglycine α-hydroxylating monooxygenase (PHM) and dopamine β-monooxygenase 

(DβM).77,79,80 Mononuclear copper(II) superoxo complexes are postulated to be usually formed as an 

intermediate during the synthesis of dinuclear peroxo/oxo systems by reacting mononuclear copper(I) 

precursors with dioxygen (see Scheme 5).44,81,82,83 Detailed kinetic investigations based on low 

temperature stopped-flow UV/vis absorption experiments support the in Scheme 5 proposed 

mechanism, but until to date definite structural evidence of the mononuclear cupric superoxo 

intermediate xvii is still lacking.44,82,83 

 

Scheme 5. Proposed mechanism of O2 reduction by mononuclear copper(I) sites via superoxo intermediate xvii.83 

However, several mononuclear copper(II) superoxo complexes have been synthesized by introducing 

sterically demanding ligands that prevent the mononuclear copper(II) superoxo complex from reacting 

with a second equivalent of the copper(I) complex.44 Figure 8 summarizes all to date structurally 

characterized examples of mononuclear copper superoxo sites. The superoxide was found to either 

bind in an end-on (ES) or in a side-on (SS) fashion to the copper ion.84,85,80,86,87,88 

 

Figure 8. Summary of structurally characterized synthetic mononuclear copper superoxo complexes.
45,84,88
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Whereas SS complexes are diamagnetic due to a singlet ground state, ES complexes feature a triplet 

ground state.89,80,45 These differences become obvious if the principle MO diagrams of SS and ES motifs 

are studied (see Figure 9).80,76 

 

Figure 9. Approximate MO diagrams of paramagnetic ES and diamagnetic SS motifs; copper and oxygen centered orbitals 
are drawn at same energy.76,80 

The superoxide delivers in total three electrons in the doubly degenerate π*-orbitals of which one 

π*-orbital is interacting in a sigma fashion (𝜋𝜎
∗ ) with the metal centered magnetic orbital.80 The second 

oxygen π* orbital is vertical to the copper superoxo plane (𝜋𝑣
∗) and consequently non-bonding.80 The 

magnitude of energy difference ΔE (see Figure 9) between 𝜋𝑣
∗  and the copper centered orbital 

principally defines the magnetic ground state of the mononuclear superoxo species.76,80 In SS complexes 

the copper oxygen bond has a highly covalent character, resulting in a ΔE that is large enough to 

overcome the spin pairing energy of both formerly unpaired electrons and consequently SS complexes 

are diamagnetic.76 In ES complexes the superoxide is bound end-on to the copper atom, leading to a 

different bonding geometry compared to SS sites.88 DFT calculations predict a significantly smaller 

overlap of copper- and oxygen-centered orbitals.80 With respect to Figure 9, the corresponding ΔE is 

smaller compared to SS complexes. Thus, ES complexes are paramagnetic compounds that feature a S = 

1 ground state.88,80 This discussion is indeed rather qualitative but reliably describes the magnetic 

properties of both independent binding motifs. Whereat ES complexes show a characteristic EPR 

spectrum, SS compounds were found to be EPR silent without exception.80,88,76  

The different electronic structures of SS and ES systems can be further monitored via UV/vis absorption 

spectroscopy. The aforementioned interaction of copper- and oxygen-centered orbitals in SS systems is 

found to have a strong covalent character, consequently splitting oxygen centered 𝜋𝜎
∗  and copper 



 

 
16 

 

centered orbitals stronger in energy compared to the ES motif (see Figure 9).76,80 Thus, ES species exhibit 

an intense CT transitions at ca. 400 nm (O2
2- 𝜋𝜎

∗  → CuII, ε = 3000-8000 M-1 cm-1), which is shifted towards 

higher energies for SS complexes (λmax = ca. 300 nm).44 The corresponding rR spectra of SS and ES sites 

show a characteristic O-O stretching vibration at ca. 970 – 1100 cm-1, which is at a typical energy for 

superoxo complexes.88,78,44  

However, this section only deals with mononuclear copper superoxo complexes, although also 

synthetic dinuclear copper superoxo analogs are postulated.77,90 Till this date no structural evidence of 

such a species has been published. Nevertheless, the first structurally characterized dinuclear superoxo 

complex will be exclusively introduced in this thesis (see Section 6.4).  
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4 PHYSICAL METHODS IN BIOINORGANIC CHEMISTRY 

4.1 UV/vis Absorption Spectroscopy 

 UV/vis absorption spectroscopy is one of the most frequently applied spectroscopic methods in 

probing electronic structure.91 The relevance of this field of molecular spectroscopy is discussed in 

Section 3, and also major experimental parts of this thesis are based on this method. In general, UV/vis 

absorption spectroscopy deals with the interaction of molecules with electromagnetic radiation, 

inducing a transition from one stationary electronic energy level into another.91 The excitation from a 

stationary energy level Em into an energetically higher state En however only is observed if a significant 

number of particles is located at the energy level Em.51 The number of particles Ni being located at 

energy level Ei is thereby described by the Boltzmann equation:51 

1) 𝑁𝑖 ∝ 𝑁𝑒−𝐸𝑖/𝑘𝑇 

Consequently, the population of an energy level Ei increases with decreasing energy of the state Ei and 

increasing temperature T. The interaction of a molecule with an incident photon is described by the 

transition moment, 𝑅⃗ 𝑚𝑛:51  

2) 𝑅⃗ 𝑚𝑛 = ∫𝜓𝑚
∗ (𝑥)µ⃗ ̂𝜓𝑛(𝑥)𝑑𝑥 

One fundamental requirement of an interaction of the molecule with the electric light wave is the 

oscillation of an electric dipole within the molecule, since otherwise the transition moment would be 

zero.91 Apart from the classical approach, quantum theory predicts a change in charge distribution 

during the absorption process to be the fundamental requirement for the excitation to occur.92 The 

transition moment further contains the wave functions of ground and excited energy states, which 

leads to the selection rule of symmetry.93 Since the dipole operator is an ungerade component, only 

transitions between wave functions of different symmetry (i.e. of gerade and ungerade symmetry) are 

allowed.91 However, energy transfer only occurs if the molecule can resonate with the electric field of 

the light wave.94,51 

3) 𝐸𝑛 − 𝐸𝑚 ≈ ℎ𝑣 

The energy difference between the two states, being involved in the electronic transition, must equal 

the energy of the incident photon.94,95 Commonly, electronic transitions occur in a wide range from 120 

to 1300 nm (8000 – 80000 cm-1).95 Consequently, electronic transitions are accompanied by vibronic 

and rotational transitions, which is the reason for usually broad absorption spectra.91 If the electronic 

absorption spectrum of sodium is considered, straight lines are observed due to the absence of 

rotational and vibrational degrees of freedom.95 Electronic transitions, being accompanied by vibronic 

and rotational transitions, are described by the Franck-Condon-principle.91,95 
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4.1.1 Franck-Condon-Principle 

 Electronic transitions are generally coupled to vibronic and rotational transitions, which is one 

reason for usually broad electronic absorption spectra.91,95 The intensity of such transitions is described 

by the Franck-Condon-principle which defines the intensity of an electronic transition to depend on the 

overlap of ground and excited state wave functions.92 Both ground state and electronically excited state 

can be described with a Morse potential (for a detailed description see Section 4.2.1), featuring the 

equilibrium bond distance re.
91,96 The excited state equilibrium bond distance can be equal to that of the 

electronic ground state (see Figure 10-a), or it may be larger (and in principle also smaller) than the 

ground state equilibrium bond distance (see Figure 10-b).91,95  

 

Figure 10. Schematic illustration of Franck-Condon-principle: Excitation from electronic ground state into electronically 
excited state under a): maintaining of the equilibrium bond distance and under b): elongating of the equilibrium bond 

distance re.
95 

In general, the molecule can be excited into different vibrionic energy levels of the excited state, but 

not all of these transition occur with the same intensity.95 In Figure 10-a, the transition into the first 

vibronic energy level of the electronically excited state occurs with the highest intensity, since the 

overlap of both wave functions is maximal in this case.95 The transitions into the states corresponding 

to v’ = 1 and v’ = 2 are also observed, but with significantly lower intensity.95 However, if the 

equilibrium bond distance is elongated within the excited state (see Figure 10-b), the transition into the 

vibronic state corresponding to v’ = 0 is not the most intense anymore. With respect to Figure 10-b the 
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transition into the vibronic state corresponding to v’ = 1 becomes the most intense, due to maximal 

overlap of ground and excited state wave functions.91,95 

Since each vibronic state further contains several rotational energy levels, ideal absorption spectra 

typically show a broad profile, whereat the maximum of an absorption band (referred to as λmax) 

corresponds to the most probable excitation with respect to the Franck-Condon-principle.94 

4.1.2 Vibronic Coupling 

 According to equation 4), an electronic transition is only allowed if the integral of the type 

4) ⟨𝜓𝑚|𝑑|𝜓𝑛⟩ 

is nonzero, with d representing one part of the dipole operator.91 If equation 4) does not contain the 

totally symmetric representation, the transition becomes orbitally forbidden and will not be observed 

within the absorption profile.91 However, electronic transitions are generally coupled to vibronic 

transitions, leading to an elimination of the above-mentioned symmetry constraint.91,93 If an 

electronically forbidden transition from ground state ψ0 to excited state ψ1 is considered, this transition 

may gain intensity from the electronically allowed transition from ground state ψ0 to e.g. excited state 

ψ2 by vibronic coupling.91 This mechanism requires the symmetry of ψ1 to change due to displacement 

along the vibrational coordinate, in which ψ1 is mixing with ψ2.
91 One prominent example is the closed 

shell complex [PtCl4]
2-, which is featuring a square planar geometry.91 The excitation of an electron from 

the 𝑑𝑧2  orbital into the dxy orbital is principally Laporte forbidden, due to the gerade-gerade character 

of ground state and excited state wave functions.91 However, this excitation becomes vibronically 

allowed if it occurs in conjunction with a vibration, distorting the center of symmetry.91 
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4.2 Resonance Raman Spectroscopy 

 In previous sections, several natural and synthetic mono- and dinuclear copper oxygen sites have 

been introduced, most of which are intensively colored due to mainly electric dipole allowed LMCT 

transitions from the dioxygen ligand to the metal center(s). A detailed understanding of both nature 

and origin of these transitions not only allows an insight into the general structure of the corresponding 

copper oxygen motif, but also can deliver detailed information about the excited state geometry.96 For 

that purpose, a laser can be tuned to the wavelength of such an electric dipole allowed CT transition. 

With this setup certain vibrational modes, imaging the excited state distortion, can be selectively 

enhanced and the position of these Raman bands can be used to illustrate the electronic structure 

within the copper oxygen core.96 The following section will focus on the principles of infrared and 

Raman spectroscopy. Finally, the mechanism of resonance enhancement will be introduced and its 

relevance in the field of bioinorganic chemistry will be pointed out. 

4.2.1 Physical Principles of Raman and Infrared Spectroscopy 

 Although different physical mechanism are involved, both infrared (IR) and Raman processes 

describe the excitation of molecular vibrations within chemical compounds and provide valuable 

chemical information in using relatively simple experimental setups.96 If a simple diatomic molecule is 

considered, the frequency of vibration is described as:97 

5) 𝑣0 = 
1

2𝜋
√

𝑘

𝜇
 

Since equation 5) reflects the vibration of a diatomic molecule, the vibration of two individual masses is 

replaced by the vibration of one reduced mass μ.96 The frequency additionally depends on the 

magnitude of force constant k, which is also called “spring constant”.97 The classical vibration of a 

diatomic molecule is described by the harmonic oscillator (see Figure 11), which contains stationary 

states of certain energy.97 The spacing between two different energy levels corresponds to the amount 

of energy that is required to enable this transition.96 Each stationary state is described by a 

corresponding eigenvalue of energy:97 

6) 𝐸(𝑣) = ℎ𝑣0(𝑣 + 
1

2
 ) 

However, the harmonic oscillator only roughly describes the vibration of a diatomic molecule, since this 

simple model neglects the experimentally observed dissociation of the molecule at high displacement 

from the equilibrium distance re.
96 Additionally, the harmonic oscillator underrates the Coulomb 

repulsion between both atoms and even allows a negative bond distance at high oscillating 

amplitudes.97 The empiric Morse potential (see Figure 11) provides a much more realistic description in 
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incorporating both coulomb interaction and dissociation limit.96 The potential energy of the Morse 

potential thus is defined as:97,96 

7) 𝑉 =  𝐷𝑒[1 − 𝑒𝛽(𝑟−𝑟𝑒)]
2
 

The parameter 𝛽  contains the reduced mass μ, the dissociation energy De and further physical 

constants and was found empirically.97,96 In contrast to the harmonic oscillator, the different energy 

levels of the Morse potential are not equally spaced.97 

 

Figure 11. Potential curves of harmonic oscillator (grey curve) and of Morse potential (black curve).
96

 

With the basic theoretical background in hand, the different selection rules in IR and Raman 

spectroscopy will be introduced. Homonuclear diatomic molecules feature no permanent dipole 

moment and are IR inactive since the transition moment is zero (see Section 4.1 for details).96,98 

However, in the 1920s RAMAN discovered a phenomenon that enabled a novel method of vibrational 

spectroscopy - Raman spectroscopy.98 This method empowers spectroscopists to collect vibrational 

data of IR inactive compounds and is based on the so called Raman-effect.98 In IR spectroscopy an 

excitation of a molecular vibration requires a change of the dipole moment μ with respect to the 

vibrational coordinate, Q.96 

8) 𝐼𝐼𝑅 ∝ (𝜕𝜇/𝜕𝑄)2 

On the contrary, the Raman-effect deals with the fluctuating dipole moment P, which is induced by the 

incident photon.96  

9) 𝐼𝑅 ∝ 𝑃2 = (𝛼′𝐸)2;   𝛼′ = (𝜕𝛼/𝜕𝑄)0𝑄 
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A fluctuating dipole moment is only induced, if a change in the molecule’s polarizability (denoted as α’) 

occurs with respect to the vibrational coordinate.96  

Whereas in IR spectroscopy a transition to a vibrationally excited state requires the direct absorption of 

a photon providing the exact energy difference of ground and excited state (see Section 4.1, equation 

3) for details), the Raman process describes the same transition accessed via inelastic scattering of a 

photon.96,98 The scattered photon then emerges with different energy. If the energy of the photon is 

reduced, the process is referred to as Stokes radiation.96 Alternatively, the same transition can be 

induced by a photon being scattered at the corresponding vibrationally excited state, which is referred 

to as Anti-Stokes radiation.96 The Raman-effect however is only weakly observed and the corresponding 

vibrations are in principal less intense compared those studied by IR spectroscopy (one exception is 

resonance Raman spectroscopy, see Section 4.2.2).96 This effect is due to the phenomenon of 

Rayleigh-scattering, since only a small fraction of the incident photons is interacting with the 

molecule.98 Of this small fraction again only a certain portion is being inelastically scattered, giving rise 

to the corresponding Raman spectrum.98 
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4.2.2 Resonance Enhancement 

 In Section 3 different copper oxygen binding motifs are discussed, which have been isolated from 

synthetic and also partly from natural copper sites. All of these complexes are featuring intense CT 

transitions, which have been identified to originate from the peroxide ligands.44 In general, CT 

transitions additionally enhance stretching modes within the metal-ligand framework, of which the O-O 

stretching vibration for instance is IR inactive.96 However, especially the relative energy of the O-O 

stretch contains valuable chemical information concerning the electronic structure within the copper 

oxygen core.6 Thus, the method of resonance Raman spectroscopy is applied in order to collect 

chemical information of the molecule’s electronically excited state. 

Since the intense CT transitions in Type III active sites arise from the peroxo ligand, especially the O-O 

stretch is enhanced within this transfer. Consequently, the polarizability of this bond changes within 

this electronic transition, inducing a fluctuating dipole moment within the molecule.96,98 If now a laser is 

tuned to the resonance conditions of this electric dipole allowed CT transition, the Raman active O-O 

vibration is strongly enhanced.96 All other Raman active modes that are not directly related to this 

electronic transition are not significantly intensified.96,98 This method allows bioinorganic chemists to 

analyze samples of much lower concentrations as required for normal Raman experiments and enables 

an insight into the molecule’s excited state geometry.96 The to date well established SP binding mode in 

oxy Hemocyanin for instance has been intensively studied via UV/vis absorption and rR spectroscopy, 

since these methods require relatively low sample concentrations. The combination of rR spectroscopy 

and DFT calculations predicted the presence of a peroxide ligand within oxy Hemocyanin, long before a 

molecular structure of this active site finally revealed the SP motif.52 
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5 MOTIVATION OF THE PRESENT WORK 

 The specific design of ligand HL1 was established in prior studies (see Scheme 6).99,31,32 The fusion of 

a central pyrazole unit with two triazacyclononane (TACN) side arms via a methylene spacer enables 

the synthesis of the corresponding dicopper(I) compound. This complex is featuring a particular binding 

pocket, to subsequently bind dioxygen in a distinct motif (see Scheme 6). The anticipated binding mode 

may be best described as µ-1,2-cis peroxo dicopper(II) site, and is believed to be a possible key step in 

understanding the mechanism of dioxygen activation in natural type III active sites such as Tyrosinase 

and Hemocyanin (see Section 2.2.1 for details).31,100,26 However, the synthesis of single crystalline and 

consequently clean material of the dicopper(I) precursor was a major challenge and has been quite 

recently developed.10 When unpurified material of this complex is exposed to dioxygen the formation 

of the desired cis-µ-η1:η1-peroxo species (CP) is anyhow observed. The solid state structure of this 

compound is the first example of this unique binding mode and additionally contains a sodium ion, 

interacting with the peroxide. The sodium ion thereby originates from the synthesis of the Cu(I) 

precursor.31  

 

Scheme 6. Structurally characterized Cu2/O2 complexes of relevance for this work.31,34 

Next to this remarkable interaction, which was also quantified in solution via UV/vis titration 

experiments, the complex was found to exhibit a singlet ground state but with a reduced 

antiferromagnetic coupling of -2J = 144 cm-1.31 The relatively weak antiferromagnetic coupling 

compared to all synthetic TP species (-2J ≥ 600 cm-1) was mainly attributed to the Cu-O-O-Cu torsion 

angle of 65°, accounting for a diminished overlap of oxygen- and copper-centered orbitals in partly 

suppressing the superexchange pathway between both copper atoms.31,101,62 This superexchange 

pathway is believed to break down at a Cu-O-O-Cu torsion angle close to 90° (see Section 6.1.5) and 
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consequently the concept of intentional ligand design was again applied to synthesize a ligand that 

promotes such coordination chemistry.34 The methylene spacer in HL1 was exchanged by an ethylene 

unit to form ligand HL2.34 The additional CH2-group was introduced to shorten the Cu···Cu distance of 

the corresponding peroxodicopper(II) complex, in order to enable a higher Cu-O-O-Cu torsion angle.34 

The molecular structure of the isolated peroxo compound 3 indeed shows a significantly higher 

Cu-O-O-Cu torsion angle of 104°. Both copper ions are ferromagnetically coupled (-2J = -140 cm-1).34 

Since the structure of the Cu2/O2 core lies close to the midpoint between the planar CP (e.g. 

ɸ(Cu2O2) = 0°) and TP (e.g. ɸ(Cu2O2) = 180°) binding modes, this motif is referred to as 

orthogonal-μ-η1:η1-peroxo binding mode, OP. 

However, complex 2+Na+ differs from 3 in that a sodium ion is interacting with the peroxo moiety, 

raising the question of how this cation affects the electronic structure of this CP species. The interaction 

of Lewis acidic metal ions with metal-oxo and metal-peroxo complexes is a topic of recent studies.102 A 

non-haem iron(III) peroxo complex was reported to interact with several redox-inert metal ions such as 

Ca2+ and Sc3+, giving insight into the role of Ca2+ in the function of the oxygen evolving complex in 

photosystem II.102,103 Since not only Ca2+ but also the alkali metal ion Na+ is ubiquitous and abundant in 

the natural environment, the influence of the Na+ ion on the nature of the copper-oxygen core in 2+Na+ 

is of considerable interest. This thesis therefore focuses on the synthesis and on the characterization of 

the parent CP complex 2 (see Scheme 7), followed by a controlled reaction with the alkali metal ions Li+, 

Na+ and K+.  

 

Scheme 7. Synthesis of complex 2 and controlled formation of corresponding alkali meatal adducts 2+M+. 

The influence of the alkali metal ions on the electronic structure of the copper oxygen core will be 

discussed. Further investigations towards the redox chemistry of these unique peroxo alkali metal ion 

adducts as well as relevant conclusions concerning the relevance of such interactions for synthetic and 

natural copper oxygen intermediates will be drawn. 
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6 RESULTS AND DISCUSSION 

6.1 A Dicopper(II) Peroxo Intermediate 

 The following chapter will focus on the synthesis as well as on the spectroscopic characterization of 

peroxo complex 2, featuring a CP binding mode. The unusual geometry of the copper oxygen core is 

thereby induced by the specific ligand design (see Section 5). The electronic structure of this species will 

be discussed in both solid and solution state and further investigated with the support of DFT 

calculations. The effect of structural parameters such as Cu-O-O-Cu torsion angle ɸ on the magnitude 

of magnetic exchange coupling between the CuII ions and on the nature of the corresponding electronic 

absorption spectrum of this complex will be presented. Finally, a comparison with the structurally 

related peroxo complex 334 will be drawn and the interplay of Cu-O-O-Cu torsion angle ɸ and magnetic 

ground state will be discussed in providing relevant information for the proposed trajectory of 

O2-binding in type III active sites. 

6.1.1 Formation in solution 

 In previous work,10 a synthetic route for generating single crystalline material of the dinuclear 

copper(I) precursor 1 has been developed. Generally, ca. 200 mg of ligand HL1 have been reacted with 

NaOtBu, [Cu(MeCN)4]ClO4 and NaBPh4. The desired complex was isolated after carrying out Et2O 

diffusion into a concentrated solution of acetone in moderate yields (see Section 7.13.1). Complex 1 

readily reacts with molecular dioxygen in e.g. MeCN by forming an intense purple solution, which was 

observed to be stable on the UV/vis timescale at temperatures below 250 K (Scheme 8).  

 

Scheme 8. Schematic presentation of reaction of precursor 1 with O2 in forming CP species 2. 

The corresponding UV/vis absorption spectrum (see Figure 12) shows two maxima in absorbance at 

527 nm (ε = 5.0 mM-1 cm-1) and at 648 nm (ε = 3.9 M-1 cm-1) and a shoulder at 456 nm (ε = 

2.6 M-1 cm -1).10 The electronic absorption spectrum thereby looks very similar to that of related trans-

peroxo systems, whose electronic structure has been investigated in detail via computational 

studies.82,104,50 However, the spectrum of 2 is two times less intense than the electronic absorption 

spectra of related TP complexes, reflecting the unique bonding situation in this CP species (this outcome 
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will be discussed in more detail in Section 6.2.3).44 The major transition at 527 nm arises from one of 

the two peroxide π* orbitals, interacting with the Cu-centered magnetic orbitals via a σ-interaction 

(π*σ) (see Figure 12). The second CT transition at 648 nm arises from the other peroxide π* orbital that 

shows no significant overlap with the Cu-centered orbitals. With respect to a planar arrangement of the 

Cu2/O2 core, this π* orbital would be vertical to the Cu2/O2 plane and is thus denoted to as 𝜋𝑣
∗. It should 

be noted that complex 2 is featuring a significant torsion of the Cu2/O2 core (see Section 6.1.2) and thus 

no planar arrangement of the Cu2/O2 moiety is observed. However, this electronic transition appears 

with lower intensity compared to the former due to a minor overlap with the copper- and oxygen-

centered orbitals and will still be denoted as O2
2- 𝜋𝑣

∗ → CuII CT.50 

 

Figure 12. UV/vis absorption spectrum of complex 2 (MeCN, T = -40 °C). 

The origin of the broad shoulder at 456 nm cannot be assigned clearly. The corresponding TD-DFT 

singlet-to-singlet calculations (see Section 6.1.7), exclusively predict the experimentally observed CT 

transitions at 527 and 648 nm. This indicates spin-forbidden character of the transition at 456 nm for 

which full-scale spin-orbit TD-DFT would be needed. However, this method is technically not possible at 

the moment, since 2 is featuring a antiferromagnetically coupled ground state (for more details see 

Section 6.1.7).105  

The corresponding solution state rR spectrum (EtCN, T = -30 °C, λexc = 633 nm) shows two intensive 

oxygen isotope sensitive signals at 784 cm-1 and 809 cm-1, collapsing into one signal upon labeling with 

18O2 (𝑣̃18O−18O
 = 760 cm-1).32,10 The origin of this doublet may be explained with the Fermi resonance 

phenomenon, which is described in more detail in Section 6.1.3. Nevertheless, the O-O stretch is at 

typical energy for a μ-1,2 peroxide, supporting the assumed formation of a dicopper peroxo species.44 
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6.1.2 Solid State Structure 

 A major challenge was the isolation of single crystalline material of compound 2. Whereas the 

structurally related complexes 2+M+ (see Section 6.2.3) could be isolated within a few months by 

selectively testing multiple crystallization conditions, complex 2 has been isolated after more than one 

year of intensive screening. Many different solvents such as MeCN, EtCN or Acetone, combined with 

diffusion and layering techniques (Et2O or MTBE) have been applied at variable temperatures 

(T = -26, -36, -80 °C). Finally, single crystalline material of 2 was obtained after Et2O diffusion into a 

solution of the oxygenated complex in a mixture of acetone and Et2O at -26 °C. Since 2 has been 

observed to slowly decompose during the crystallization process, the solubility of 2 was decreased in 

using a mixture of acetone and Et2O. This procedure enabled the isolation of single crystalline material 

within two weeks of Et2O diffusion. However, single crystals were only obtained from quite diluted 

solutions of complex 2 (see Section 7.13.2). The solid state structure of the oxygen adduct 2 is depicted 

in Figure 13. 

 

Figure 13. Molecular structure of 2 with thermal displacement ellipsoids given at 30% probability. Hydrogen atoms, 
counterion BPh4

-, and additional solvent molecules are omitted for clarity; for selected bond lengths and angles see 
Section 7.7. 

The molecular structure of 2 shows two CuII ions in a distorted trigonal bipyramidal coordination 

environment (τ(Cu1) = 0.63, τ(Cu2) = 0.60)106, provided by four nitrogen donor atoms of TACN side arm 

and the pyrazolate unit, and by one oxygen atom of the peroxo ligand. The Cu-pyrazolate bond lengths 

are substantially shorter (Cu1-N1 = 1.91 Å, Cu2-N2 = 1.90 Å) than those of the copper atoms to the 

TACN side arm nitrogen donor atoms (Cu1-N3,4,5 = 2.18-2.26 Å). The Cu···Cu separation decreased to 

3.74 Å upon O2 binding (complex 1: d(Cu-Cu) = 4.15 Å). The O-O bond length was determined to 1.44 Å, 

which is typical for TP and CP complexes.44,34 The Cu2/O2 core is featuring a CP geometry with a 

Cu-O-O-Cu torsion angle of 55.3°, which is by 10.1° smaller compared to that of the previously reported 

sodium ion adduct, 2+Na+ (this outcome will be discussed in Section 6.2.3). A space-filling model of 

compound 2 is depicted in Figure 14, highlighting the easy accessibility of the peroxide. In comparison 
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to the structurally related CP complex 334 (see Section 5), the peroxide is not fully shielded by the iPr 

groups of the TACN side arms. This unique cavity enables subsequent interaction of the peroxo moiety 

with e.g. alkali metal ions such as Na+ (see Section 6.2) and explains why this peroxide has been initially 

isolated as the sodium adduct, 2+Na+. The corresponding precursor contained sodium ions from the 

previous synthesis, which can easily access the peroxo moiety in forming the corresponding alkali metal 

adduct (see Section 5). Since now clean starting material of 1 is available, the interaction of the peroxo 

moiety with e.g. Na+ can be selectively studied which will be demonstrated in Section 6.2. 

 

Figure 14. Space-filling model of complex 2. 
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6.1.3 Solid State Resonance Raman and UV/vis Reflectance Spectroscopy 

 The single crystalline material of complex 2 was further analyzed via solid state UV/vis and solid 

state rR spectroscopy. The corresponding UV/vis reflectance spectrum (see Figure 15, for experimental 

details see Section 7.2) matches with the UV/vis absorption spectrum of this species in solution, 

demonstrating that the molecular structure determined crystallographically is largely preserved in 

solution. However, a more detailed discussion of the solid and solution state UV/vis spectra of 2 and of 

its alkali metal adducts 2+M+ is provided in Section 6.2.4.  

 

 

Figure 15. Solid state UV/vis spectrum of crystalline material of 2. 

The rR spectrum of crystalline material of 2 (see Figure 16) is also similar to that recorded in solution, 

further reflecting the comparable electronic structures in both solid and solution state. The spectrum 

shows two oxygen isotope sensitive features at 780 cm-1 and at 805 cm-1 (solution: 784 cm-1, 809 cm-1), 

collapsing into one signal upon labeling with 18O2 (𝑣̃18O−18O
 = 760 cm-1). The origin of this doublet may 

be explained with the Fermi resonance phenomenon, which describes the mixing of two vibrational 

levels of same symmetry and of almost same energy in combining the two vibrational wave functions 

(in this case the O-O stretching vibration and another, not clearly assignable vibration).107,108 Due to the 

quantum mechanistical mixing of both modes, the higher energy mode shifts to higher and the lower 

energy mode shifts to lower energy, which makes the exact determination of the 16O-16O stretching 

vibration energy difficult.108,109 Upon labeling with 18O2, the 18O-18O stretching vibration in 2 shifts to 

lower energy compared to the 16O2 normal mode. Consequently, the energy difference between 18O2 

normal mode and the second mode that would form the Fermi doublet increases (it is assumed that the 

unassigned mode, being resonance enhanced within the Fermi doublet, is not as much affected by the 

18O2 labeling as the O-O normal mode). As a result of an increasing energy difference between 18O2 
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labeled normal mode and the second mode, both vibrations are not anymore resonance enhanced 

together and the observed doublet collapses into a singlet that accounts for the pure 18O-18O stretching 

vibration.107 This observation has been furthermore made for related TP systems, where the proposed 

Fermi doublet is also collapsing into one band upon labeling with 18O2.
78,109  

A second but much less intense oxygen isotope sensitive feature can be found at 415 cm-1 that can be 

assigned to a Cu-O stretching vibration, shifting to higher energy upon labeling with 18O2 (𝑣̃Cu-O = 

439 cm-1). The same trend can be also seen in the solution state rR spectra and is further predicted by 

DFT calculations (see Section 6.2.7). However, the origin of this unusual behavior is still a subject of 

ongoing discussion. Besides these oxygen isotope sensitive stretches, other features at ca. 270, 330, 

350 and at 1002 cm-1 can be found, presumably corresponding to the counterion BPh4
-, the Cu-N 

stretches of the central pyrazole unit and of the TACN sides arms.109,50 

 

Figure 16. Solid state resonance Raman spectrum of 
18

O labeled (red line) and unlabeled (black line) single crystalline material 
of complex 2, λexc = 633 nm. 
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6.1.4 Elemental Analysis 

 In order to verify the proper chemical composition of complex 2, single crystalline material of this 

compound has been studied via elemental analysis (EA). Based on the crystal structure, the unit cell is 

known to further contain two different solvent molecules (acetone and Et2O), which originate from the 

crystallization process (see Section 7.13.2 for details).  

Complex 2 has been prepared freshly (see Section 7.13.2 for instructions) and was directly submitted to 

the EA. Furthermore, the unit cell parameters of one selected crystal have been determined prior to the 

measurement. The unit cell parameters were found to match with those of the crystal structure of 2 

(see Figure 13 for molecular structure). The isolated crystalline material was split into two samples, of 

which two independent measurements have been performed. The first measurement already shows 

significant deviations from the expected composition (see Table 1). The second measurement, which 

was performed a few minutes after the first one, shows even larger differences. One explanation may 

be the loss of solvent molecules, being partly replaced by water. Table 1 shows the data obtained from 

the two independent measurements and in addition the corresponding calculated chemical 

compositions of complex 2 and of possible analogs, where the solvent molecules have been partly 

replaced by water. However, this comparison is only qualitative, since a definite reason for the 

deviation of experimental and calculated chemical composition cannot be assigned. Another possibility 

may be an additional decomposition of the peroxo moiety, in gradually releasing solvent molecules 

from the single crystal. However, the EA experiments demonstrate the single crystals of complex 2 to 

be much more sensitive towards external influences then crystalline material of its structural related 

alkali metal adducts (see Section 6.2), which may also be due to a shielding of the peroxide unit by the 

different alkali metal ions. 

Table 1. Results of EA of one selected batch of single crystalline material of complex 2. The second measurement was 
performed subsequent to the first one. The calculated possible chemical compositions are depicted below the 

experimental values. 

 C [%] H [%] N [%] 

 
   

Found during 1. measurement 61.34 7.79 10.76 

Found during 2. Measurement 
 

60.73 7.60 10.62 

Calculated for 2: [L1Cu2O2]BPh4 · Et2O, 0.5 acetone 63.92 8.25 10.19 

Calculated for [L1Cu2O2]BPh4 · Et2O, H2O 62.91 8.24 10.30 

Calculated for [L1Cu2O2]BPh4 · 0.5 acetone, H2O 62,75 7.92 10.74 

Calculated for [L1Cu2O2]BPh4 · 2H2O 61.67 7.91 10.86 

Calculated for [L1Cu2O2]BPh4 63.9 7.79 11.25 
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6.1.5 Magnetism 

 The magnetic properties of compound 2 have been intensively studied via SQUID magnetometry (for 

representative example see Figure 17). 

 

Figure 17. Temperature dependence of χMT of complex 2 in the range between 295 K and 2 K. The red line represents 
the best fit (see Section 7.3 for details). Parameters obtained: J = -53.7 cm-1, g = 1.81, PI = 10.0 %, 

TIP = 510 × 10-6 cm3 mol-1. 

The samples have been prepared from freshly isolated single crystalline material (see Section 7.13.2 for 

instructions), of which the unit cell parameters have been determined via X-ray diffraction before each 

magnetic measurement. The cell parameters of the crystals were always found to coincide with those 

obtained during prior analysis and thus the magnetic data can be related to the derived structural 

parameters such as Cu-O-O-Cu torsion angle ɸ and the coordination geometry of the CuII ions (the 

influence of the coordination geometry on the magnitude of magnetic exchange coupling will be 

discussed in Section 6.2.6). However, the single crystalline material of 2 was observed to be much more 

sensitive than that of its structural analogues 2+M+ (see Section 6.1.4). Hence, magnetic data have been 

determined in multiple experiments from independently synthesized batches of single crystalline 

material of complex 2. All experiments consistently show the same magnetic parameters, of which 

especially the g-value of g = 1.8 is rather unusual. From previous work10, amorphous material of 

complex 2 is known to partly release dioxygen from the surface under vacuum, in forming the 

diamagnetic dicopper(I) complex 1. Although single crystalline material of 2 was used during the 

magnetic measurements, this behavior would explain the observed g-value, since the SQUID 

measurement is performed under vacuum. However, the single crystalline material of complex 2 would 

only release dioxygen at the surface, which is small compared to the overall volume of the single 

crystals. In order to verify this hypothesis, a SQUID measurement of single crystalline material of 2 has 

been performed under He-atmosphere. Nevertheless, a g-value of ca. 1.8 has been determined again, 
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disproving the above-mentioned hypothesis. The abnormally low g-value must therefore originate from 

another diamagnetic impurity, which has not been determined until to date.  

The magnetic susceptibility data (see Figure 17) predict a S = 0 ground state with a low singlet-triplet 

splitting of -2J = 107 cm-1, which is even lower than the singlet-triplet splitting of the already 

characterized sodium adduct 2+Na+ (this outcome will be reconsidered in Section 6.2.6).31 For better 

understanding of the magnetic properties of complex 2, the theory of exchange coupling in dinuclear 

complexes will be introduced. The two CuII ions in 2, both having an independent set of d-orbitals, are 

featuring a d9-configuration and thus one of the five d-orbitals is singly occupied. These singly occupied 

magnetic orbitals, denoted as SOMOs (Singly Occupied Molecular Orbitals), will magnetically exchange 

couple via the peroxide and the pyrazolate bridges.110 For reasons of clarity, only the interaction via the 

peroxo moiety will be considered at first.  

The principal interaction of copper- and oxygen-centered orbitals in dinuclear copper-oxygen 

complexes has been introduced in Section 3 and will be exclusively discussed for CP complexes in 

Section 6.1.7. However, regardless of which dinuclear peroxo dicopper species is considered, this 

interaction gives rise to a molecular spin singlet (S = 0) and a molecular spin triplet (S = 1).111 The energy 

difference between singlet and triplet state thereby is a function of overlap of copper- and oxygen-

centered orbitals and is conventionally denoted by 2J.111,112,110 The interaction is defined to be 

antiferromagnetic, if the ground state is the singlet state (2J < 0).111 The interaction is considered to be 

ferromagnetic if a triplet ground state is observed (2J > 0).111 However, the energy difference 2J always 

has a ferromagnetic (JF) and an antiferromagnetic (JAF) contribution:110 

10) 𝐽 = 𝐽F + 𝐽AF 

The ferromagnetic contribution can be approximately described as the Coulomb repulsion of the two 

electrons, favoring the high spin state.111 JF is thus counteracting JAF that depends on the overlap 

integral of the magnetic orbitals with the bridging peroxo moiety.111 If positive and negative zones of 

the overlap density exactly compensate each other, then the overlap integral becomes zero and J 

exclusively contains the ferromagnetic contribution, JF.
111,112 Since in dinuclear copper(II) peroxo 

complexes the two copper atoms are bridged via a peroxo moiety, the copper SOMOs are delocalized 

over the whole peroxide. Consequently, the overlap integral depends on the Cu-O-O-Cu torsion angle 

ɸ.6,101,111 If the copper oxygen core is planar, the overlap of copper- and oxygen-centered orbitals is 

large, with JAF representing the dominating contribution and thus both CuII ions are 

antiferromagnetically coupled. The related TP systems show such a planar arrangement of the copper 

oxygen core. As a result, both CuII ions are strongly antiferromagnetically coupled (-2J ≥ 600 cm-1).57,26,68 

In contrast to the planar TP systems, the copper oxygen core in complex 2 is not planar but features a 

Cu-O-O-Cu torsion angle of 55°. Due to this non-planar arrangement, the overlap of copper- and 

oxygen-centered orbitals is significantly diminished in compound 2, giving rise to a much smaller 
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antiferromagnetic contribution compared to the related TP systems. Thus, the two CuII ions in 2 are 

much weaker antiferromagnetically coupled (-2J = 107 cm-1) than in other dinuclear copper oxygen 

sites.44 The above-mentioned theory of exchange coupling predicts the magnetic ground state of 

complex 2 to change from S = 0 to S = 1, if the Cu-O-O-Cu dihedral angle would approach 90°.113,114,6,101 

Next to complex 2, a second CP moiety has been recently published prior to this work, featuring a 

Cu-O-O-Cu torsion angle of 104° (see Figure 18).34 This complex is structurally similar to compound 2 

(see Section 5) and the dihedral angle is imposed by the specific ligand design applied.34 Complex 3 is 

indeed featuring a S = 1 ground state (-2J = -140 cm-1).34 With the magnetic data of both complexes in 

hand, the interplay of Cu-O-O-Cu dihedral angle ɸ and magnetic ground state is illustrated, supporting 

the theoretical description of this superexchange mechanism. However, this discussion is rather 

qualitative and will be further continued on the basis of DFT calculations on compound 2 and the alkali 

metal adducts 2+M+ in Section 6.2.7.  

 

Figure 18. Comparison of the core structures of complexes 2 (left) and 3 (right); The Cu-O-O-Cu torsion angle is 
presented in looking down the O-O bond.34 

The peroxo moiety in complexes 2 and 3 is not the only pathway, mediating superexchange between 

the two copper(II) ions. The pyrazolate bridges in 2 and 3 are also providing a possible superexchange 

pathway between the two metal ions, and thus the corresponding Cu-N-N-Cu torsion angle has to be 

considered additionally. However, if both pyrazolate and peroxide mediated exchange pathways are 

compared, the contribution of the magnetic coupling via the peroxide bridge is reported to be 

predominant, whereas dinuclear copper complexes with a pyrazolate ligand, representing the only 

bridging unit, show only weak magnetic coupling (-2J = 30-70 cm-1).44,115,116 The contribution of the 

pyrazolate bridge to the overall observed magnetic interaction is therefore neglected in this discussion.  
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6.1.6 Electron Paramagnetic Resonance Spectroscopy 

 The magnetic properties of 2 have been studied via SQUID magnetometry and are presented in the 

previous section. The two CuII ions are weakly antiferromagnetically coupled (-2J = 107 cm-1) and 

complex 2 features a S = 0 ground state. However, the singlet-triplet splitting is rather small compared 

to other dinuclear peroxo sites and the energetically higher S = 1 spin state is thus considerably 

populated even at 140 K (see Figure 19).6,57,32  

 

Figure 19. Boltzmann population of S = 1 excited state of peroxo complex 2; ΔE = │2J│ (J = -54 cm-1). 

According to the temperature dependence of the Boltzmann population of the S = 1 excited state 

depicted in Figure 19, 2 is expected to show an EPR spectrum at e.g. 140 K, although it might be weak. 

With respect to this assumption, the properties of 2 have been further investigated via EPR 

spectroscopy. Figure 20 shows one representative example of a frozen solution of 2, which has been 

recorded at 143 K. The different samples have been prepared freshly (see Section 7.8 for instructions) 

from independent batches of single crystalline material of precursor 1. All spectra consistently show the 

same signal pattern. One selected sample additionally has been stored over several weeks at -80 °C and 

was again measured in yielding the same spectrum as obtained during the first experiment. Thus, the 

samples of complex 2 are assumed to exclusively contain this species, since a contamination with 

decomposition products or other impurities would result in at least slightly different EPR spectra. 
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Figure 20. X-band EPR spectrum (black line) and corresponding simulation117 (red line) of 0.01 M frozen solution of 2 in 
MeCN recorded at 143 K. 

The EPR spectrum of complex 2 was recorded in a solution of frozen MeCN at 143 K. The corresponding 

g-values (g1 = 2.22, g2 = 2.12, g3 = 2.01) can be simulated with the software package easyspin117, 

running under Matlab®. The simulated spectrum (S = 1, g-strains were applied) matches with the 

experimental data. Possible zero field splitting was not included into the simulation. The experimental 

spectrum furthermore shows a weak half-field signal at ca. 161 mT, which is not considered during the 

simulation (see Figure 21, left).  

  

Figure 21. Left: ERP spectrum of frozen 0.01 M solution of 2 in MeCN recorded at 143 K in the range of 100 – 450 mT 
(inset shows half-filed signal at ca.161 mT); right: close-up view of experimental and simulated117 spectra (a1 = 80 G, a2 = 

130 G, a3 = 440 G). 

The experimentally observed half-field signal at 161 mT supports the thermal population of the S = 1 

state depicted in Figure 19. Since the experimental spectrum matches with the simulation, the half-field 
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signal at 161 mT is attributed to complex 2, of which a small amount exists in the S = 1 excited state. 

Thus, the EPR experiment supports the magnetic susceptibility data presented in Section 6.1.5, 

predicting a weakly antiferromagnetically coupled dicopper site. 
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6.1.7 DFT calculations 

 With the structural data of complex 2 in hand, density functional theory (DFT) calculations were 

carried out in cooperation with the working group of SWART
118 on both the optimized geometry as well 

as on the molecular structure determined via X-ray crystallography. A more detailed discussion of the 

corresponding results including those of the structurally related alkali metal adducts 2+M+ is provided 

in Section 6.2.7, while this chapter will exclusively focus on a computational description of the bonding 

between copper atoms and peroxide in 2. On the basis of the optimized structure (BP86 

functional119,120, including dispersion corrections according to GRIMME
121 (DFT-D3), TDZP basis set122)118, 

a MO diagram for 2 could be developed (see Figure 22, for more computational details see ref.105). It 

should be noted that the results presented in this Section are only preliminary.  

 

Figure 22. Experimental electronic absorption spectrum (left) and calculated MO diagram including corresponding 
α-spin MOs obtained from geometry optimized data of complex 2 (right).118 

The major transition of the experimental spectrum at 527 nm thereby arises from HOMO-3, the 

peroxide π* orbital that interacts with the Cu-centered orbitals via a σ-interaction (π*σ) to the LUMO 

which is located mainly on the peroxide and on the ligand. The transition at 648 nm arises from a 

second peroxide π* orbital that is denoted as HOMO-1 (denoted as 𝜋𝑣
∗ in Section 6.1.1). The broad 

shoulder at 465 nm is not observable in the TD-DFT singlet-to-singlet spectrum, but it is however 

noticed in the experimental data. This most likely indicates spin-forbidden character for which full-scale 

spin-orbit TD-DFT would be needed, which is at the moment technically impossible in ADF (Amsterdam 

Density Functional) due to the antiferromagnetically coupled open-shell ground state.123,124 

However, next to TD-DFT calculations based on the optimized geometry of 2, a second approach based 

on X-ray constrained geometries which were performed under the unrestricted formalism for open-

shell singlet and triplet states except for the excitation energies, for which only singlet states were 

considered.118 The corresponding calculated MO diagram is depicted in Figure 23, b). The MO diagram 

thereby looks similar to that obtained from the first approach (see Figure 23, a)), although all CT 
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transitions are shifted to lower energy compared to the calculations based on the fully optimized 

geometries (see Table 2 for details). 

 

Figure 23. Calculated MO diagrams and corresponding α-spin MOs based on a): optimized geometry and from b): X-ray 
constrained point coordinates of complex 2. 

 
 

Table 2. Summary of TD-DFT-calculated excitation energies and dominant transitions obtained from 1): geometry 
optimized structural coordinates and 2): from single point optimized coordinates.118 

approach  energy [nm] oscillator strength [f] transition (to LUMO)c 

1) geometry optimizationa 497 0.047 HOMO-4 

 520 0.042 HOMO-3 

 581 0.054 HOMO-1 

2) single point calculationsb  560 0.045 HOMO-5 

 595 0.092 HOMO-4 

 636 0.051 HOMO-1 

ageometry optimization: BP86 functional119,120, inclusion of Grimme’s121 dispersion energy (DFT-D3), TDZP basis set122; 

excitation energies were calculated by using the S12g functional125 in conjunction with a TZ2P basis set (S12g/TZ2P); 

single point final energies were calculated by using different XC functionals (see ref.
105

 for more details). Calculations 

were performed under the unrestricted formalism for open-shell singlet and triplet states (except for the excitation 

energies, here only singlet states were considered). bmolecular structure determined by X-ray diffraction was optimized 

with constraints in order to locate hydrogen atoms; for computational details see: ageometry optimization. cOnly the 

dominating transition is reported here, for more details see Section 6.2.7, Table 11 and ref.
105

. 

 

In summary, the DFT calculations show that the electronic structure of the copper oxygen core in 2 is 

principally similar to that of the structurally related TP systems.44 Two main interactions are giving rise 

to a characteristic electronic absorption spectrum, while a most likely spin forbidden transition is the 

origin of the experimentally observed shoulder at 465 nm.  
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Consequently, this work delivers a first preliminary computational description of this unique CP binding 

mode obtained from synthetic copper complexes and may also deliver important results for further 

investigations of the relevance of this binding mode during the mechanism of dioxygen activation at 

type III active copper sites. 
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6.1.8 Summary and Conclusion 

 The selective synthesis of peroxo complex 2 was presented in this chapter. In screening various 

crystallization conditions, single crystalline material was obtained and a molecular structure of this CP 

species could be determined. The solid state structure of 2 highlights the easy accessibility of the 

copper oxygen core, which is induced by the specific ligand design. This cavity enables the peroxo 

moiety to interact with e.g. alkali metal ions, which will be discussed in Section 6.2. 

The spectroscopic properties of 2 have been studied in both solution and solid state. The solid and 

solution state UV/vis and rR data were found to agree and thus the structural parameters such as 

Cu-O-O-Cu torsion angle ɸ were also used to interpret the electronic structure of the CP species in 

solution.  

The magnetic properties of 2 have been intensively analyzed by SQUID magnetometry, highlighting the 

unique bonding situation of the copper oxygen core. 2 is featuring a S = 0 ground state, whereas the 

weak antiferromagnetic coupling (-2J = 107 cm-1) between the CuII ions is attributed to a diminished 

overlap of copper- and oxygen-centered orbitals, which is induced by a Cu-O-O-Cu torsion angle of 55°. 

The weak antiferromagnetic coupling in 2 was additionally demonstrated via EPR spectroscopy, 

showing weak signals corresponding to a thermal population of the energetically higher S = 1 state.  

The magnetic properties of 2 have been furthermore compared to those of the structurally related OP 

species, 3. Complex 3 is thereby featuring a S = 1 ground state, promoted by a Cu-O-O-Cu dihedral angle 

of 104°. With these two complexes in hand, the interplay of Cu-O-O-Cu torsion angle ɸ and magnetic 

ground state could be demonstrated. Thus, complex 2 represents a snapshot of the discussed trajectory 

of dioxygen binding in type III active sites and delivers valuable insight into the mechanism of O2 

activation. 

First preliminary DFT calculations were performed105 in order to analyze the unique bonding situation in 

complex 2. While the origin of the two CT transitions in the electronic absorption spectrum of 2 could 

be identified, the origin of the experimentally observed shoulder at 456 nm is still unclear. The shoulder 

most likely origins from a spin forbidden transition. However, this thesis provides first computational 

insight into the bonding in CP complexes which is another milestone towards the understanding of the 

mechanism of dioxygen activation at type III active copper sites. 
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6.2 Interaction with Alkali Metal Ions 

6.2.1 Adduct formation in Solution 

 With clean material of 1 in hand, peroxo complex 2 can be selectively synthesized (see Section 6.1) 

and the corresponding alkali metal ion adducts 2+M+ (M = Li, Na, K) can be directly generated in situ, 

while monitoring the formation of these adducts via e.g. UV/vis absorption spectroscopy. Compound 

2+Na+ has been isolated already prior to this work under different starting conditions (see Section 5). 

Since a selective generation from clean starting material is now possible, the formation of 2+Na+ has 

been examined once again in this work.31 The nature of the adducts 2+K+ and 2+Li+ has been studied in 

detail via various spectroscopic methods and will be compared with the data obtained for 2+Na+. 

Additionally, the solid state structures of all three adducts will be discussed (Section 6.2.3), highlighting 

the in all three cases very similar binding motifs that however do not reflect the differences monitored 

by especially solution and solid state UV/vis spectroscopy. Consequently, DFT calculations have been 

performed in order to quantify the influence of the different alkali metal ions on the electronic 

structure of the copper oxygen core (see Section 6.2.7). Figure 24 shows the formation of adduct 2+Li+ 

monitored by UV/vis absorption spectroscopy. In this titration experiment a solution of LiOTf has been 

added in substoichiometric amounts (in steps of 0.05 eq. with overall 2.00 eq. being added) to a 

solution of 2 in MeCN at -40 °C. An isosbestic point at 487 nm indicates a clean conversion. 

 

Figure 24. Titration of complex 2 with LiOTf in steps of 0.05 eq., with overall 2.00 eq. of titrant being added. The 
isosbestic point at 487 nm indicates a clean conversion (MeCN, T = -40 °C). 

Whereat the absorption maxima of 2 at 527 and at ca. 650 nm simultaneously decrease during the 

addition of the first 0.80 equivalents of LiOTf, the stepwise addition of further LiOTf induces only minor 

conversion of 2 into the lithium adduct 2+Li+, which has two absorption maxima at 456 nm (ε = 3.9 mM-

1 cm-1) and at 595 nm (ε = 0.7 mM-1 cm-1). Complex 2 can be described as a host complex, forming the 



 

 
44 

 

corresponding host-guest complex 2+Li+ (see Scheme 9).126,127 The formation of 2+Li+ can be described 

with an binding constant Kb: 

11) 𝐾b =
[𝟐+𝐋𝐢+]𝑐0

[𝟐][𝐋𝐢+]
;  𝑐0 = 1 mol ∙ L−1 

 

 

Scheme 9. Host-guest complex formation monitored via UV/vis absorption spectroscopy. 

The 1:1 stoichiometry of host and guest has been determined via the mole ratio method (see Figure 25) 

and is further supported by the structural data determined via X-ray diffraction for complex 2+Li+ (see 

Section 6.2.3 for details).128 The equilibrium between host, guest and host-guest complex has been 

analyzed by a software package provided by THORDARSON
128 (see Section 7.2.2 for further details), in 

fitting Kb by correlating changes in the absorbance of 2 with a substoichiometric addition of LiOTf, until 

no further significant change in absorbance of the final spectrum was observed (see Figure 26). With 

this procedure, the association constants for 2+Na+ and for 2+K+ have been determined as well (see 

Table 3).  

 

Figure 25. Selected example of determination of host-guest stoichiometry via mole ratio method.128 A [Li+]0/[2]0 
stoichiometric ratio of ca. 0.9  was determined which by approximation corresponds to a 1:1 host-guest stoichiometry; 

[2]0 = 58 μM.128 
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Figure 26. Changes in Absorbance of two selected wavelengths during a titration experiment of 2 with LiOTf used for 
determination of Kb. LiOTf has been added stepwise in different concentrations. At first LiOTf was added in steps of 0.05 

eq. (from 0 - 0.65 eq.), followed by steps of 0.025 eq. (from 0.65 - 1.25 eq.), followed by steps of 0.5 eq. (from 
1.25 - 6.25 eq.); (MeCN, T = -40 °C). 

 

Table 3. Association constants of all three adducts determined via UV/vis titration experiments.128 

complex eq. of MOTf added Kb 

2+K+ 48.0 64 ± 5.6% 

2+Na+ 15.0 70 × 101 ± 6.2% 

2+Li+ 6.25 69 × 104 ± 23% 

 

A clear trend can be observed when the association constants and the required total equivalents of 

alkali metal ion, which have been added to complex 2 during the titration experiment, are compared. 

The total amount of alkali metal ion, being required for an almost complete conversion of 2 into the 

desired host-guest complex, increases from LiOTf (ca. 2 eq.) over NaOTf (ca. 14 eq.) to KOTf (ca. 50 eq.). 

Since Lewis acidic alkali metal ions interact with the Lewis basic peroxo unit, a decreasing strength of 

this interaction is expected from Li+ over Na+ to K+ in terms of the HSAB concept (Hard and Soft (Lewis) 

Acids and Bases).129 Consequently, a higher amount of e.g. Na+ compared to Li+ is required to convert 2 

into the respective alkali metal adduct (see Figure 26 and Figure 27). The obtained association 

constants (see Table 3) indeed agree with the HSAB concept. The binding constant for the formation of 

2+K+ is by far the smallest (64 (± 6%)), whereas the adduct 2+Li+ is formed with an association constant 

of Kb > 105. 
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Figure 27. Left: titration of complex 2 with NaOTf in steps of 0.5 eq., with overall 15.0 eq. added. The isosbestic point at 
511 nm indicates a clean conversion. Right: changes in absorbance during titration experiment used for determination 

of the association constant. 

However, this derived sequence only reflects a rough trend since the different solvation energies of the 

alkali metal ions in MeCN are not considered within the fitting procedure.130 The solvation of Li+ in e.g. 

MeOH is significantly stronger than the solvation of Na+ and K+.130,131 The association constants 

describing the aforementioned adduct formation are thus also affected by the different solvation 

energies of the alkali metal ions.127  

If the three association constants are further compared, the exceptionally high error for the binding 

constant of 2+Li+ becomes apparent. In general, larger errors are involved within the determination of 

binding constants > 105 in contrast to association constants in the range of 102 - 104.128 However, the 

association constant determined for 2+Li+ is by three orders of magnitude larger than the binding 

constant for e.g. 2+Na+. In order to verify the derived association constant for 2+Li+, a solution of 

complex 2 has been titrated with a solution of the 15-crown-5 adduct of Li+ (see Figure 28), which has a 

comparable binding constant in MeCN (103.8 - 105.3, T = 25 °C) (see Scheme 10).132,133,134 Since the 

association constant for 2+Li+ is higher than that of the corresponding 15-crown-5 adduct of Li+, 2 

should abstract the Li+ ion from 15-crown-5. 
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Figure 28. Left: Titration of 2 with a solution of Li+·15-crown-5 in steps of 0.45 eq. (MeCN, T = -40 °C); the isosbestic 
point at 489 nm indicates a clean conversion. Right: Changes in Absorbance at two selected wavelength during the 

titration experiment. 

 

 

Scheme 10. a): formation of 2+Li
+
 and experimentally derived association constant Kb_1 (denoted as Kb in Table 3); b): control 

experiment of titration of 2 with Li
+
·15-crown-5 and corresponding association constant Kb_2; c): formation of adduct 

Li
+
·15-crown-5 and corresponding association constant Kb_3.  

Complex 2 was indeed found to abstract the Li+ cation from the corresponding 15-crown-5 adduct and 

an association constant of Kb_2 = 103,5 (± 10%) has been determined with the THORDARSON software 

package.128 This experiment qualitatively confirms the magnitude of the derived association constant 

for 2+Li+, since complex 2 binds the Li+ cation with a higher affinity than 15-crown-5 and thus Kb_1 > Kb_3.  

However, the alkali metal ions not only form the corresponding host-guest complexes in different 

strength, but also affect the electronic structure of the peroxo dicopper core. This outcome will be 

discussed in detail in Sections 6.2.3 and 6.2.7, while this chapter will primarily focus on a qualitative 

description of this phenomenon. Within stepwise addition of substoichiometric amounts of the 

different alkali metal ions to the peroxo unit, the two maxima of 2 (referred to as λmax_1 and λmax_2; see 

Table 4 for details) undergo a significant blue-shift (see Figure 29).  
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Figure 29. UV/vis absorption spectra of complex 2 and of corresponding alkali metal adducts 2+M+. All complexes have 
been prepared from the same stock solution of precursor 1, to enable comparable conditions (MeCN, T = -40 °C). 

The absolute blue-shift of both maxima increases from 2+K+ over 2+Na+ to 2+Li+ (see Table 4), which 

goes along with a decrease of their intensities (see Table 4). Interestingly, the intensity of the 

absorption maximum λmax_2 of 2 is much more affected during the host-guest complex formation, but 

this outcome will be discussed in Section 6.2.5. 

Table 4. Summary of characteristic data of complex 2 and its alkali metal ion adducts 2+M+, obtained from the titration 
experiments. 

complex max_1,2 [nm]  (@max_1,2)[%] Kb 

2 527, 649 - - 

2+K+ 515, 624 -3, -30 64 ± 5.6% 

2+Na+ 497, 612 -5, -56 70 × 101 ± 6.2% 

2+Li+ 456, 595 -21, -81 69 × 104 ± 23% 
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6.2.2 Solution State Resonance Raman Spectroscopy 

 The in Section 6.2.1 described UV/vis spectra of the different CP species show two main maxima in 

absorbance, denoted as λmax_1 and λmax_2. If the solution state sample of e.g. 2+Li+ is irradiated by a 

He:Ne-laser (λexc = 633 nm, λmax_2 (2+Li+) = 595 nm), an oxygen isotope sensitive feature corresponding 

to the O-O stretching vibration of the peroxide is observed (see Figure 30). A summary of the rR data 

regarding the O-O stretching vibration of 2 and of its corresponding alkali metal adducts 2+M+ is listed 

in Table 5. Of all species both solid and solution state rR spectra have been recorded, whereat the solid 

state rR spectra will be discussed in detail in Section 6.2.5. The solution state spectra of 2, 2+Na+ and 

2+K+ have been already collected in previous work.10,32 The corresponding rR spectrum of 2+Li+ looks 

similar to those of the other alkali metal adducts and is depicted in Figure 30. Except for 2+Li+, an 

accurate determination of the O-O stretching frequencies is hampered due to Fermi resonance (see 

Section 6.1.3 for detailed description) and thus the average frequency of the Fermi doublet is shown in 

Table 5. Interestingly, excitation with a diode-laser (λexc = 457 nm), did not result in any resonance 

enhancement for any of the three adducts. Even for 2+Li+ which is featuring an intense absorption 

maximum at 456 nm, no oxygen isotope sensitive vibration is observed (this outcome will be discussed 

in Section 6.2.5).  

 

Figure 30. Solution state resonance Raman spectrum of 2+Li+ in EtCN at -30 °C (c = 1 × 10-2 M, exc = 633 nm). 

If the solution state rR spectra of all CP complexes are compared, several trends can be observed which 

will be discussed in the following. The O-O stretching vibration of 2 has been detected at 797 cm-1 (see 

Section 6.1.1 for details), and is shifting towards lower energies in the series of alkali metal adducts 

from 2+K+ to 2+Li+, albeit marginally. The absolute shifts for 2+K+ and for 2+Na+ are almost identical 

(𝛥ʋ̃𝑂−𝑂(2 - 2+M+) = 1 cm-1 (M = K), 2 cm-1 (M = Na)). The absolute shift of the O–O stretch in the rR 

spectrum of 2+Li+ is only slightly different (𝛥ʋ̃O−O(2 - 2+Li+) = 6 cm-1).  
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Table 5. Comparison of O-O stretching frequencies of the CP complexes, observed during the solution state rR 
experiments (λexc =633 nm, T = -30 °C, c = 1 × 10-2 M, EtCN). 

complex ʋ̃O−O [cm
-1
] 

2 797* (Δ16O2−
18O2 = 39) 

2+K
+ 796* (Δ16O2−

18O2 = 40) 

2+Na
+ 795* (Δ16O2−

18O2 = 41) 

2+Li
+ 791 (Δ16O2−

18O2 = 35) 

*exact determination of the O-O stretching frequency is complicated due to Fermi resonance. 

 

However, the exact shifts in 2+K+ and in 2+Na+ are hard to determine in comparison to compound 2 due 

to the Fermi resonance phenomenon, which does not occur in 2+Li+ (this trend becomes even more 

apparent in the solid state spectra, see Section 6.2.5). The absence of a Fermi doublet in 2+Li+ may be 

explained with a lower energy of the O-O stretch compared to the other CP species, since the Fermi 

resonance phenomenon describes the mixing of two vibrational state wave functions of i.a. similar 

energy.108,107 With respect to the other CP complexes the wave function expressing the O-O stretch and 

the wave function of another, but unknown stretching mode, are mixing. This condition may not be 

fulfilled in 2+Li+ anymore since the O-O stretch is shifted to lower wavenumbers, while the energy of 

the other vibrational mode is retained (for more details concerning Fermi resonance see Section 

6.1.3).108,107 Interestingly, the only minor differences in O-O stretching frequencies between 2 and its 

alkali metal adducts do not reflect the drastic changes of the UV/vis absorption spectrum of 2, observed 

during alkali metal adduct formation. Figure 31 shows an overview of all solution state rR spectra, 

which have been recorded in EtCN at identical complex concentrations.32 Parts of the in Figure 31 

shown results have already been collected prior to this work.32 Each spectrum has been referenced 

relative to the solvent signals of EtCN and thus the intensity of e.g. the O-O stretch of complex 2 can be 

directly contrasted with those of the alkali metal adducts. All oxygen isotope sensitive features are 

marked with an asterisk. If the O-O stretching vibrations at ca 800 cm-1 are compared, a drastic loss of 

intensity is observed from 2 over 2+K+ to finally 2+Li+. This sequence is further underlined by the 

overtone of the O-O stretch at ca. 1600 cm-1, which is quite intense for 2, but could not be detected for 

2+Li+. With respect to the mechanism of resonance enhancement (see Section 4.2.2 for details), this 

observation can be qualitatively interpreted. The absorption maximum λmax_2 of 2 at ca. 650 nm 

corresponds to the O2
2- 𝜋𝑣

∗ -> CuII charge transfer transition (see Sections 6.1.1 and 6.1.7 for details). If 

now a significant distortion of the O-O bond is involved with this electronic transition, the sample can 

be irradiated with a laser of adequate wavelength (λexc = 633 nm) and the O-O stretch can be selectively 

enhanced within the rR experiment.96,98  
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The solution state rR spectrum of complex 2 shows an intense oxygen isotope sensitive feature (see 

Figure 31) corresponding to the O-O stretch, which is at typical energy for a peroxo motif.44 The 

intensity of the O-O stretch is high compared to the other observed stretching modes. According to the 

mechanism of resonance enhancement, the absorption maximum λmax_2 is therefore coupled to 

significant distortion of the O-O bond. When comparing 2 with its alkali metal adducts 2+M+, the 

absorption maximum of 2 at ca. 650 nm is blue-shifted (e.g. 624 nm for 2+K+) and is simultaneously 

drastically losing intensity (see Section 6.2.1, Table 4). DFT calculations for the alkali metal adducts 

2+M+ thereby revealed these bands to also correspond to a O2
2- 𝜋𝑣

∗  -> CuII CT transitions (see 

Section 6.2.7). However, the laser excitation wavelength is retained at λexc = 633 nm in all experiments. 

Since the resonance enhancement of the O-O stretch is coupled to the intensity of the O2
2- 𝜋𝑣

∗ -> CuII CT 

transition (see Section 4.2 for details), the trend observed in the different UV/vis absorption spectra is 

also reproduced in the rR experiments.96 This tendency is furthermore valid for the corresponding 

overtone, which is not detected for 2+Li+. 

 

Figure 31. Resonance Raman spectra of 2+M+ in EtCN at -30 °C (c = 1 × 10-2 M, exc = 633 nm). 18O sensitive signals are 
labeled (*); the spectra have been scaled relative to the solvent signal at 840 cm-1.32 

Next to the O-O stretch and its corresponding overtone, a third oxygen isotope sensitive feature at ca. 

450 cm-1 is observed for all CP complexes. The relatively weak signal corresponds to a Cu-O stretch, 

which is also coupled to the excited state distortion of the O-O bond.96 However, an accurate 

determination of the Cu–O stretching frequencies is complicated due to a broad line shape and a low 

intensity. A more detailed discussion of Cu-O stretches is provided in Section 6.2.7. Besides these 

oxygen isotope sensitive stretches, other features at ca. 270, ca. 330 and at ca 350 cm-1 can be found, 

which also lose intensity in the above-mentioned order. These signals presumably correspond to Cu-N 

stretches of the central pyrazole unit and of the TACN side arms (see Section 6.2.7 for details).50,109 
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6.2.3 Solid State Structures 

 The molecular structures of the alkali metal adducts 2+M+ consistently feature a CP motif, with slight 

variations in O-O bond length, Cu-O-O-Cu torsion angle ɸ and coordination environment of the CuII ions 

(see Table 6). In this chapter, the structural differences of all three adducts will be discussed and further 

compared to the parameters obtained from the molecular structure of complex 2. This chapter will 

additionally provide a qualitative basis for the computational investigation of the influence of the alkali 

metal ions on the electronic structure of the copper oxygen core, discussed in Section 6.2.7. 

The complexes 2+K+ and 2+Li+ have been crystallized under quite similar conditions from acetone and 

Et2O at -26 °C (see Sections 7.13.3 and 7.13.4). The molecular structures of 2+K+ and of 2+Na+ have 

already been reported previously.31,32 However, most of the spectroscopic data of 2+K+ have not been 

collected during the pioneering work due to low yields and impurities of the isolated crystalline 

material.32 Since in this work single crystalline material of precursor 1 was available, 2+K+ has been 

selectively generated in high yields and high purity (see Section 7.13.4 for details). Although more than 

50 equivalents of KOTf are necessary to almost quantitatively generate 2+K+ from its precursor 2 in 

solution (see Section 6.2.1), only 1.5 equivalents of KOTf a required to crystallize 2+K+ in 90% yield from 

acetone/Et2O. A solid state structure of 2+K+ has been determined and matches with the previously 

reported one.32 

Figure 32 shows the molecular structure of 2+Li+ which is a centrosymmetric dimer of two CP units. Each 

Cu2/O2 site binds a Li+ which is bridged to the neighboring Li+ via two triflate ions. This packing is 

similarly observed in the other adducts 2+K+ and 2+Na+.32,31 

 

Figure 32. Molecular structure of 2+Li+ with thermal displacement ellipsoids given at 30% probability. Hydrogen atoms, 
counterion BPh4

-, and additional solvent molecules are omitted for clarity; for selected bond lengths and angles see 
Section 7.7. 
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The coordination sphere of each CuII ion lies between an ideal square pyramidal and trigonal 

bipyramidal geometry (𝜏(Cu1) = 0.57; 𝜏(Cu2) = 0.54) and is provided by four nitrogen donor atoms of a 

TACN side arm and the pyrazolate unit, and by one oxygen atom of the peroxo ligand. The 

Cu-pyrazolate bond lengths are substantially shorter (Cu1-N1 = 1.92 Å, Cu2-N2 = 1.93 Å) than those of 

the TACN side arm nitrogen donor atoms (2.12-2.21 Å). The Cu···Cu bond distance is 3.86 Å and is 

similar to those in the other alkali metal adducts (see Table 6). The O-O bond length in 2+Li+ was 

determined to 1.497 Å and is quite long compared to other literature known peroxide O–O bond 

distances.44 Furthermore, the lithium cation is located in close proximity to the peroxide (Li1-O1 = 

1.87 Å, Li1-O2 = 1.89 Å). The Li-O distances in 2+Li+ are much shorter than those in Li2O2 (1.94-

2.14 Å),135,136 emphasizing the interaction of lithium cation and peroxo moiety in the solid state. The 

same trend was also observed in the molecular structures of the alkali metal adducts 2+K+ and 2+Na+.32 

Whereat the alkali metal ions in 2+K+ and 2+Na+ are five coordinated by oxygen donor atoms of the 

triflate ions, the peroxo ligand and one additional acetone molecule, the Li+ cation in 2+Li+ is only 

fourfold coordinated. This effect is due to the much larger ionic radii of Na+ and of K+, enabling the 

coordination of a fifth oxygen donor ligand.137 However, the different coordination numbers of the 

alkali meatal ions have an effect on the crystal packing and thus may influence the structural 

parameters discussed in this section such as the Cu-O-O-Cu dihedral angle.  

Table 6. Selected parameters of 2 and of alkali metal adducts 2+M+ obtained from the molecular structures.31 

 d O-O [Å] d O-M [Å]a ɸ Cu-O-O-Cu [°] d Cu-Cu [Å] 𝜏(Cu1), 𝜏(Cu2) 

2 1.441(2) - 55.3(2) 3.7413(5) 0.63, 0.60 

2+K+ 1.483(4) 2.63(3) 66.8(2) 3.7894(7) 0.57, 0.54 

2+Na+ 1.498(7) 2.30(7) 65.2(5) 3.7966(12) 0.59, 0.57 

2+Li+ 1.497(3) 1.88(5) 71.1(2) 3.8562(9) 0.57, 0.54 

aThe average of both M-O distances is shown. 

 

With the molecular parameters determined via X-ray crystallography of all alkali metal adducts in hand, 

the influence of the different redox inert cations on the structural parameters of the Cu2/O2 core will be 

quantified in comparison to complex 2. Furthermore, an introduction into a qualitative discussion with 

respect to the changes in O-O bond lengths and Cu-O-O-Cu dihedral angles ɸ and the potential effects 

of the alkali metal ions on the electronic structure of the copper oxygen core will be provided. The 

interplay of Cu–O–O–Cu torsion angle and electronic structure of the copper oxygen unit will be in 

detail discussed in Sections 6.2.6 and 6.2.7.  

The alkali metal ions are assumed to strongly interact with the peroxo moiety as indicated by the 

aforementioned short M-O distances (see Table 6). This kind of interaction will result in a withdrawal of 
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electron density from the oxygen centered π* orbitals in stabilizing the O-O bond.138 However, not only 

the alkali metal ions are affecting the electronic structure of the peroxide since this ligand is 

simultaneously interacting with the two CuII ions, which in turn also has an impact on the electronic 

structure of the peroxo moiety.50 First evidence with respect to the electronic structure of the peroxide 

is provided by the O-O distances. The O-O bond lengths increase from 1.44 Å in 2 to 1.50 Å in 2+Li+, but 

do not significantly differ between the alkali metal adducts (see Table 6). These results already suggest 

the actual mechanism behind this interaction to be quite complex since an exclusive interplay of 

peroxide and alkali metal ions would stabilize and thus shorten the O-O bond. However, besides the 

O-O bond distance also the Cu-O-O-Cu torsion angle as well as the coordination environment of the CuII 

ions is affected upon alkali metal binding. Generally, the dihedral angle increases from 55° in 2 to 71° in 

2+Li+ (see Figure 33). With respect to MO theory the influence of the Cu–O–O–Cu torsion angle on the 

magnitude of interaction of copper- and oxygen-centered orbitals can be qualitatively explained. The 

Cu-O-O-Cu torsion angle in 2 is thereby induced by the specific ligand design applied (see Section 5) and 

increases in the presence of an alkali metal ion. However, the interplay of redox inert metal ion and 

peroxo moiety, in affecting the value of the Cu–O–O–Cu dihedral angle, is still unclear and could also 

not be explained even with the support of DFT calculations (see Section 6.2.7).  

 

Figure 33. Copper oxygen cores of 2 and of 2+Li+; the different Cu–O–O–Cu dihedral angels become apparent by looking 
down the O–O bond; the nitrogen donor atoms N5 and N7 are omitted for clarity in both structures. 

Irrespective of the different torsion angles, all complexes are featuring a CP binding mode. A significant 

torsion of the Cu2/O2 plane is as well observed for complex 3, featuring a Cu-O-O-Cu dihedral angle of 

104° (see Sections 5 and 6.1.5).34 Such a torsion of the copper oxygen core does not occur at the 

structurally related TP systems, all showing a planar arrangement (i.e. ɸ (Cu-O-O-Cu) = 180°).34,139,140 

Since the overlap of copper- and oxygen-centered orbitals strongly depends on the Cu-O-O-Cu dihedral 

angle, the extent of interaction between the CuII ions and the peroxide varies in 2 and its related 

adducts 2+M+, as well as in 2 and the structurally related complex 3.31,111 The overlap of copper- and 

oxygen-centered orbitals in these complexes on the other hand must significantly deviate from that in 
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the planar TP systems. For reasons of clarity this discussion will primarily focus on the contrasting 

juxtaposition of complex 2 and selected TP species and will be finally transferred on the alkali metal 

adducts 2+M+. 

Although this discussion is rather qualitative, several spectroscopic differences in TP, CP and OP 

complexes can be determined, which are a function of the aforementioned orbital overlap. Indeed also 

the ligand design has an effect on the spectroscopic characteristics of the copper oxygen core.44 The 

described CP and TP systems are all based on nitrogen donor ligands (see Table 7).141,142,82,140,50 Although 

neutral as well as anionic ligands are applied, the effect of the ligand design on the electronic structure 

of the copper oxygen core will be neglected in the following section.  

Table 7. Selected structural and spectroscopic parameters of TP, CP and OP complexes.  

Liganda mode d O-O [Å] ɸ Cu-O-O-Cu [°] λmax [nm] ε [mM-1 cm-1] ref. 

L1 CP 1.44 55 527, 648 5.0, 3.9 this work 

L2 OP 1.46 104 506, 600 4.8, 2.8 34 

Bz3tren TP 1.45 180 518 14.9 141,142 

Me6tren TP 1.37 180 552, 600 13.5, 9 82,140 

TMPA TP 1.43 180 524, 615 11.3, 5.8 50 

aBz3tren = tris[2-(benzylamino)ethyl]amine, Me6tren = tris(2-dimethylaminoethyl)amine, TMPA = 
tris(2-methylpyridyl)amine. 

 

The UV/vis absorption spectra of TP, CP and OP species look quite similar, featuring two main CT 

transitions.34,44 These CT transitions can be identified as O2
2- 𝜋𝜎

∗  → CuII and O2
2- 𝜋𝑣

∗ → CuII transitions 

(see Sections 3 and 6.2.7 for details). However, the absorption maxima of the TP species are twice as 

intense than the corresponding maxima of the two literature known complexes 2 and 3 (see Table 

7).34,44 Consequently, the principal fashion of orbital interaction in e.g. CP and TP motifs is identical but 

the magnitude of overlap of copper- and oxygen-centered orbitals must be different. This assumption is 

further supported by DFT calculations and will be discussed in Section 6.2.7. Since the CP and OP 

compounds show a significant Cu-O-O-Cu torsion angle which is not the case for the TP species, this 

aforementioned deviation is assumed to be the source of the different intensities in absorption. Due to 

a planar arrangement of the copper oxygen core in TP complexes, the overlap of copper- and 

oxygen-centered orbitals is larger. The good overlap of copper- and oxygen-centered orbitals is 

reflected by the intense UV/vis absorption spectra, since the intensity of an electronic transition is, 

among other things, a function of overlap of electronic ground and excited state wave function (see 

Section 4.1).91,95 The CP and OP complexes show similar interactions of copper- and oxygen-centered 

orbitals but are featuring a significant torsion angle along the Cu-O-O-Cu axis. This unusual 

arrangement diminishes the overlap of copper- and oxygen-centered orbitals and consequently the 
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absorption maxima are less intense compared to those of the TP species (see Table 7). This trend is 

further observed in comparing 2 and its alkali metal adducts. The Cu–O–O-Cu dihedral angle is 

increasing from 55° in 2 to over 71° in 2+Li+ and the intensities of the corresponding CT transitions are 

decreasing in the same sequence. However, DFT calculations indicate the orbital interactions in the 

alkali metal adducts to slightly deviate from those in complex 2 and thus this comparison is rather 

qualitative (see Section 6.2.7). The absorption maxima of complex 2 are further shifting upon adduct 

formation, but also this outcome will be discussed in Section 6.2.7. The Cu-O-O-Cu dihedral angle is 

furthermore affecting the magnitude of magnetic exchange coupling of the two CuII ions, which is 

discussed in Sections 6.1.3 and 6.2.6.  

In comparing the molecular structures of complex 2 and its alkali metal adducts 2+M+ not only the 

Cu-O–O–Cu torsion angles but also the coordination environments of the CuII ions are different. 

Whereat the τ factors of the CuII ions in the alkali metal adducts lie in the range of 0.54-0.59, the 

coordination environment of the CuII ions in 2 is even more distorted towards a trigonal bipyramidal 

geometry (𝜏(Cu1, Cu2) = 0.63, 0.60). The distortion of the copper(II) coordination geometry from square 

pyramidal towards trigonal bipyramidal results in mixing of other d orbital character into the copper 

SOMOs.32,112,111 The different orbital contributions change the overlap of magnetic copper atomic 

orbitals and the peroxide- and pyrazolate-centered orbitals, affecting the intensity of magnetic 

exchange coupling between both copper(II) units (see Section 6.2.6 for a detailed discussion).111 If the 

overlap of copper- and oxygen-centered orbitals is generally diminished in going from a square 

pyramidal to a trigonal bipyramidal geometry, this interplay as well affects the intensities of the 

aforementioned CT transitions. However, this discussion is rather qualitative and will be continued in 

Section 6.2.7. 

This discussion demonstrates the actual mechanism of action of the alkali metal ions and the peroxo 

moiety in affecting the electronic structure within the copper oxygen core to be quite complex. On the 

one hand the redox inert metal ions interact with the peroxide in stabilizing the O-O bond. On the other 

hand the peroxide is simultaneously interacting with the CuII ions, which also has an influence on the 

electronic structure of the peroxide. Additionally, the molecular parameters such as Cu –O –O –Cu 

torsion angle and the coordination environment of the CuII ions are changing upon adduct formation, 

complicating this discussion even more. A comparison of complex 2 with the structurally related TP 

systems demonstrates the influence of the Cu –O –O –Cu dihedral angle on the intensities of the 

corresponding CT transitions observed during UV/vis absorption spectroscopy. This trend is 

furthermore observed in the alkali metal adducts 2+M+. 

However, the O-O bond lengths are similar in all three adducts although the electronic absorption 

spectra are drastically changing in going from 2+K+ to 2+Li+. So far the structural parameters of the CP 

sites have been compared with the data obtained from solution state UV/vis spectroscopy, raising the 
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question to what extent the solid state structures represent the electronic structures of these species in 

solution. Thus, solid state UV/vis reflectance spectra of single crystalline material of the alkali metal 

adducts were recorded, which will be discussed in the following section. 
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6.2.4 Solid State UV/vis Spectroscopy 

 Although the molecular structures of the alkali metal adducts consistently show a CP motif, with only 

slight differences in Cu-O-O-Cu torsion angle, O-O bond length and coordination environment of the 

Cu(II) ions, the solution state UV/vis absorption spectrum of 2+Li+ significantly differs from those of 

2+K+ and of 2+Na+. Since the molecular structures of these species only reflect their structure in the 

solid state, a different structural motif in the solution state could be possible, which would explain the 

very different UV/vis absorption spectrum of 2+Li+. From previous work31, the solid state UV/vis 

spectrum of 2+Na+ is known (see Figure 34), which shows the same absorption maxima as the solution 

state UV/vis absorption spectrum (see Table 8). Consequently, the molecular and electronic structure of 

2+Na+ is similar in both solid and solution state and the molecular structure determined via X-ray 

diffraction can be assumed to approximately reflect the structure of this CP motif in solution.  

  

Figure 34. Solid state UV/vis spectra of 2+Na+ (left) and of 2+K+ (right).31 

In order to shine light on the nature of especially 2+Li+, solid state UV/vis spectra of crystalline material 

of 2+Li+ and of 2+K+ have been recorded (see Section 7.2 for details). The spectrum of 2+Li+ (see Figure 

35) shows two minima in reflectance at ca. 460 nm and at ca. 600 nm, which are similar to the 

absorption maxima of this species in solution.  

Table 8. UV/vis absorption maxima of all CP complexes determined in solution and solid state. The solid state UV/vis 
spectra are quite broad, which makes an accurate assignment of the maxima difficult.31 

complex Solution: max_1,2 [nm] Solid: max_1,2 [nm] 

2 527, 649 529, 663 

2+K
+
 515, 624 511, 615 

2+Na
+
 497, 612 500, 609 

2+Li
+
 456, 595 463, 604 
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Figure 35. Solid state reflectance spectrum of 2+Li+. 

Consequently, the molecular and electronic structure of this species is comparable in both solid and 

solution state. Also the solid state reflectance UV/vis spectrum of 2+K+ matches with the data derived 

from the solution state (see Table 8). Since the K+ ion is observed to only weakly bind to the peroxo 

moiety in solution (see Section 6.2.1), the solid state UV/vis spectrum allows a conclusion of how the 

solution state UV/vis spectrum of the completely associated adduct would look like. The differences in 

both solution and solid state spectra are small and comparable to those of the other CP complexes, 

confirming a nearly complete formation of the alkali metal adduct within the UV/vis titration 

experiment. However, the reflectance spectra of all CP species are quite broad, complicating an 

accurate assignment of the minima in reflectance. 
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6.2.5 Solid State Resonance Raman Spectroscopy 

 Figure 33 shows the solid state rR spectra of the alkali metal adducts 2+K+ and 2+Li+ both showing an 

oxygen isotope sensitive feature at ca. 800 cm-1, which corresponds to the O-O stretching vibration of 

the peroxo moiety (see Table 9). All spectra have been recorded with laser excitation at 633 nm. 

Table 9. Comparison of O-O stretching frequencies of the CP complexes observed during the solid state rR experiments 
(λexc =633 nm). 

complex 𝑣̃O−O [cm-1] 

2 793 (Δ16O2−
18O2 = 41) 

2+K
+ 790 (Δ16O2−

18O2 = 46) 

2+Na
+ 789 (Δ16O2−

18O2 = 42) 

2+Li
+ 790 (Δ16O2−

18O2 = 36) 

 

In general, the solid state rR spectra of the alkali metal adducts are similar to those recorded in solution 

(see Section 6.2.2), confirming identical molecular and electronic structures of these species in solution 

and solid state as already discussed in Section 6.2.4. The O-O stretching vibration is shifting slightly to 

lower wavenumbers with alkali metal ion binding, which matches with an increasing O-O bond length 

upon adduct formation. The absolute shifts for all three adducts are similar (𝛥𝑣̃O−O(2 - 2+M+) = 

3 cm-1 (M = K, Li), 4 cm-1 (M = Na)), which coincides with nearly identical O-O bond lengths determined 

from the solid state structures.  

  

Figure 36. Solid state rR spectra of 2+K+ (left) and of 2+Li+ (right),exc = 633 nm. 

The rR spectra of 2+K+ and of 2+Na+ (the spectrum of 2+Na+ has been recorded in previous work32) are 

rather complex due to Fermi resonance. The spectrum of 2+Li+ shows the O-O stretching vibration as a 

single band at 790 cm-1. In contrast to the solution state spectrum where the O-O stretch is only weakly 

observed, the solid state spectrum of 2+Li+ reveals an intensive signal. This effect can be explained with 
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the use of crystalline material in such as the concentration of 2+Li+ is much higher during the 

measurement, compared to the spectrum recorded in solution.  

If the corresponding solid or solution state UV/vis spectra of 2+Li+ are considered, the use of a laser 

excitation wavelength of 633 nm seems counterintuitive (see Figure 37). With respect to the 

mechanism of resonance enhancement an excitation with a diode-laser (λexc = 457 nm) should be 

preferred since the corresponding UV/vis spectrum of 2+Li+ shows an intense maximum in absorbance 

at 456 nm, whereas an excitation at 633 nm only involves a weak intensity in absorbance. The 

absorption maximum at 456 nm corresponds to a O2
2- 𝜋𝜎

∗  → CuII CT transition whereat a O2
2- 𝜋𝑣

∗ → CuII 

CT transitions is the origin of the band at ca 600 nm (see Section 6.2.7 for details). Consequently both 

transitions involve charge transfer from the peroxide and should provide suitable conditions for a rR 

experiment. Nevertheless, the O2
2- 𝜋𝜎

∗  → CuII CT transition occurs with much higher probability and 

should be the preferred transition for the rR experiment. 

 

Figure 37. Solution state UV/vis absorption spectra of complex 2 and of its corresponding alkali metal adducts, 2+M+; 
the two different available excitation wavelengths are drawn with blue and red arrows. 

However, if solution or solid state samples of 2+Li+ are irradiated with the diode-laser no oxygen 

isotope sensitive feature is observed. The same results have furthermore been observed for the other 

alkali metal adducts as well as for complex 2 which also shows oxygen isotope sensitive features only if 

the He:Ne-laser (λexc = 633 nm) is used for excitation. In order to understand this observation, the 

mechanism of resonance enhancement will be reconsidered (for further details concerning resonance 

enhancement see Section 4.2.2). The intensity of the enhanced Raman active O-O stretching mode is 

proportional to the excited state distortion along the normal mode, as well as to the intensity of the 

corresponding electronic transition.50,143,96 The ground state O2
2- 𝜋𝜎

∗  orbital donates a significant 
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amount of electron density into the copper-oxygen bond and it consequently has less electron density 

with antibonding character in the intraperoxide region than the O2
2- 𝜋𝑣

∗ orbital, which in turn donates 

significantly less electron density into the Cu-O bond (see Figure 38).50 Thus, the O2
2- 𝜋𝑣

∗ orbital has 

more electron density with antibonding character in the intraperoxide region and consequently the O2
2- 

𝜋𝑣
∗ → CuII CT transitions results in a greater distortion of the O-O bond and greater resonance 

enhancement of the O-O stretch relative to the low absorption intensity is observed.50 This mechanism 

qualitatively explains why excitation with the He:Ne-laser gives rise the aforementioned rR spectra, 

while excitation with the diode-laser does not lead to any resonance enhancement of the O-O stretch. 

 

Figure 38. Qualitative MO diagram of CP motif. 
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6.2.6 Magnetism 

 The magnetic properties of all three alkali metal adducts were intensively studied by SQUID 

magnetometry, whereat the magnetism of complex 2+Na+ has been investigated prior to this work.31 

The samples of 2+K+ and of 2+Li+ were prepared from freshly isolated single crystalline material, of 

which the unit cell dimensions have been determined via X-ray diffraction before the magnetic 

measurements. The cell parameters of the crystals were consistently found to coincide with those 

obtained during prior analysis and thus the magnetic data can be related to the derived structural 

parameters such as Cu-O-O-Cu torsion angle ɸ and the coordination geometry of the CuII ions. Figure 39 

shows the temperature dependence of χMT of complex 2+K+. 

 

Figure 39. Temperature dependence of χMT of complex 2+K+ in the range between 295 K and 2 K. The red line 
represents the best fit (see Section 7.3 for details). Parameters obtained: J = -77.2 cm-1, g = 2.06, PI = 5.0 %, 

TIP = 0.7 × 10-4 cm3 mol-1. 

The CuII ions were found to be weakly antiferromagnetically coupled (-2J = 154 cm-1). If the adducts 

2+K+ and 2+Na+ are compared, both complexes are featuring similar magnetic properties with the CuII 

ions in 2+K+ being slightly more antiferromagnetically coupled (see Table 10). 

Table 10. Summary of relevant magnetic and structural parameters of complex 2 and of the alkali metal adducts 2+M+.31 

complex J [cm-1] g ɸ Cu-O-O-Cu [°] τ(Cu) 

2 -54 1.81 55.3(2) 0.62 

2+K+ -77 2.06 66.8(2) 0.56 

2+Na+ -72 2.00 (fixed) 65.2(5) 0.58 

2+Li+ -40 2.00 71.1(2) 0.56 
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The differences in magnetic coupling of both complexes are quite small and lie within the error of the 

experiment. However, antiferromagnetic coupling in 2+K+ should be weaker if one the Cu–O–O–Cu 

torsion angle, which is assumed to significantly affect the magnitude of magnetic exchange coupling 

(see Section 6.1.5 for a detailed description).31,111 The Cu–O–O–Cu dihedral angle in 2+K+ is closer to the 

90° arrangement (see Table 10), where the superexchange pathway between the two copper atoms is 

proposed to break down.110,111 Since the observed dihedral angles only differ by 1.6°, this discussion is 

of course rather qualitative. 

In the case of the adduct 2+Li+, the corresponding Cu–O–O–Cu torsion angle was determined to 71°, 

which is significantly larger compared to the other alkali metal adducts. The temperature dependence 

of χMT of complex 2+Li+ is shown in Figure 40. 

 

Figure 40. Temperature dependence of χMT of complex 2+Li+ in the range between 295 K and 2 K. The red line 
represents the best fit (see Section 7.3 for details). Parameters obtained: J = -40.2 cm-1, g = 2.00, PI = 9.0 %, 

TIP = 3.1 × 10-4 cm3 mol-1. 

The antiferromagnetic coupling of the two CuII ions in 2+Li+ is significantly weaker (-2J = 80 cm-1) than in 

2+K+ and 2+Na+, illustrating the interplay of Cu–O–O–Cu dihedral angle and magnetic coupling of the 

CuII ions. However, next to the Cu–O–O–Cu torsion angle also the coordination environment of the 

copper ions as well as the contribution of the pyrazolate bridge to the magnetic exchange coupling has 

to be considered. In Section 6.1.5 the effect of the pyrazolate bridge to the observed magnetic 

exchange coupling in complex 2 has been neglected, since these ligands only mediate weak magnetic 

exchange coupling.44,115,116 The contribution of the pyrazolate ligands to the magnetic coupling in the 

alkali metal adducts will therefore also be neglected in this discussion. 

Another structural parameter that influences the orbital overlap is the distortion of the copper(II) 

coordination geometry from square pyramidal towards trigonal bipyramidal. A progressive distortion 

from an ideal square pyramidal (τ = 0) towards a trigonal bipyramidal coordination environment (τ = 1) 



 

 
65 

 

will mix the dx
2-y

2 and dz
2 magnetic orbitals of both idealized geometries.111 A major distortion from a 

square pyramidal to a trigonal bipyramidal geometry consequently will diminish the overlap of the 

magnetic copper orbitals via the peroxide and pyrazolate centered orbitals, weakening the 

superexchange interaction.144,145  

The coordination environment of the CuII ions is identical in 2+K+ and 2+Li+ and is increased towards a 

more trigonal bipyramidal geometry in complex 2 (see Table 10). Since both Cu-O-O-Cu torsion angle ɸ 

and coordination geometry τ are influencing the magnitude of magnetic exchange coupling, a direct 

comparison of the magnetic properties of 2 and of the alkali metal adducts 2+M+ is thus difficult.144,145 

However, the τ factors of the CuII ions in 2+K+ and 2+Li+ are identical and the contribution of the 

coordination geometry to the overall amount of exchange coupling is consequently not relevant 

compared to the Cu-O-O-Cu-dihedral angle. The Cu–O–O–Cu torsion angle ɸ then remains as the only 

parameter determining the molecules singlet-triplet splitting. With respect to the structural and 

magnetic data of the alkali metal adducts 2+K+ and 2+Li+, the interplay of Cu–O–O–Cu dihedral angle ɸ 

and magnetic properties can then be confirmed. The Cu-O-O-Cu dihedral angle in 2+Li+ is closer to the 

90° arrangement and thus the two CuII ions are more weakly antiferromagnetically coupled than in 

2+K+. 

With this knowledge in hand, the magnetic properties of the complexes 2+K+ and 2+Na+ will be 

reconsidered. The two CuII ions in 2+K+ are slightly more antiferromagnetically coupled than the CuII 

ions in compound 2+Na+, although the Cu–O–O–Cu torsion angle in 2+K+ is larger by 1.6°. With respect 

to the torsion angle ɸ, the opposite magnetic behavior would be expected. However, the coordination 

environment of the CuII ions in 2+Na+ is more distorted towards trigonal bipyramidal geometry (see 

Table 10) and thus the overlap of copper- and oxygen-centered orbitals in 2+Na+ is smaller than that in 

2+K+. Consequently the magnetic exchange coupling in 2+Na+ is diminished with respect to 

coordination geometry of the CuII ions. This deviation may explain the opposite behavior with respect 

to the magnetism in these two adducts and also correlates with the magnetic properties observed for 

complex 2.  

Although the Cu-O-O-Cu torsion angle is the smallest in 2, the two CuII ions are more weakly 

antiferromagnetically coupled than in 2+K+ and 2+Na+. With respect to the dihedral angle ɸ, the 

antiferromagnetic coupling of the copper atoms should be the strongest in 2. However, the 

coordination geometry in 2 is more distorted towards a trigonal bipyramidal environment (see Table 

10), thus diminishing the overlap of copper- and oxygen-centered orbitals, thus decreasing the 

corresponding superexchange interaction. This discussion is indeed rather qualitative, but is principally 

supported by DFT calculations performed on the molecular structures of 2 and its alkali metal adducts 

determined via X-ray diffraction (see Section 6.2.7). However, it should be noted that the absolute 
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differences in magnetic coupling of all complexes are quite small, which poses a challenge to the 

computational description of this interaction (see Section 6.2.7). 

This discussion shows the magnetic properties of complex 2 and of its corresponding alkali metal 

adducts 2+M+ do not exclusively depend on the Cu–O–O–Cu dihedral angle. Furthermore, the 

coordination environment of the copper ions has to be considered, which complicates a quantitative 

evaluation of any magnetostructural correlation. Nevertheless, this section provides an insight into the 

magnetic properties of the different alkali metal adducts. The singlet-triplet splitting observed for 

peroxo complex 2 can be generally modified in adding different alkali metal ions. Such correlations have 

not yet been described for any other synthetic copper oxygen complex, raising the question if such 

interactions have to be also considered in understanding the mechanism of action of natural copper 

sites. With respect to the complexes 2+K+ and 2+Li+, exclusively the Cu–O–O–Cu torsion angle is 

changing upon replacement of K+ by Li+. As a result, the molecular triplet state in 2+Li+ becomes more 

populated compared to that in 2+K+ at e.g. physiological conditions. Since molecular spin states can be 

directly correlated to reactivity, the possible regulation of reactivity in natural copper sites by redox 

inert metal ions such as Na+ or Ca2+ has to be considered in future investigations.146,147 
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6.2.7 DFT Calculations 

 In order to elucidate the effect of alkali metal binding on the electronic structure of the copper 

oxygen core, DFT calculations were performed in cooperation with D’AMORE and SWART
118 on both the 

optimized geometries as well as on the molecular structures determined via X-ray crystallography of 

the adducts 2+M+ (for computational details see Section 6.1.7 and ref.105). This section will further 

compare the computational results for the alkali metal adducts to those obtained for complex 2. The 

correlation between Cu-O-O-Cu torsion angle and magnitude of magnetic exchange coupling, which has 

been discussed in detail in Sections 6.1.5 and 6.2.6, will be further investigated. It however shall be 

noted that the absolute differences in antiferromagnetic coupling in the adducts are small and thus a 

computational description of the spin state splitting in the alkali metal adducts is ambiguous. It should 

be noted that the results presented in this Section are only preliminary. 

In general, the DFT calculations reproduce the experimental data. In Section 6.2.1 the experimental 

solution state electronic absorption spectra of the alkali metal adducts 2+M+ were compared to the 

spectrum of peroxo complex 2. The two main CT transitions were observed to undergo a blue-shift 

upon alkali metal binding. The absolute blue-shift of both maxima increases from 2+K+ over 2+Na+ to 

2+Li+, which goes along with a significant decrease in intensity, especially of the second transition. This 

trend is also qualitatively predicted by the corresponding TD-DFT calculations, with a decrease 

observed for the secondary transition in general agreement with the experimental findings (see Table 

11 and Figure 41; for computational details see ref.105). 

Table 11. Summary of TD-DFT-calculated excitation energies and dominant transitions (TD-DFT calculations are based 
on optimized geometries); oscillator strength is only reported for most dominant transitions.118 

complex energy [nm] oscillator strength [f] dominant transitions (to LUMO) 

2 

497 0.047 HOMO-4(85%)+ HOMO-1(6%)+ HOMO-3(3%) 

520 0.042 HOMO-3(76%)+ HOMO-4(9%)+ HOMO-1(8%) 

581 0.054 HOMO-1(62%)+ HOMO-2(10%)+ HOMO-3(15%) 

    

2+K+ 

508 0.041 HOMO-4(74%)+ HOMO-1(2%)+ HOMO-2(1%) 

585 0.028 HOMO-3(76%)+ HOMO-2(14%)+ HOMO-1(6%) 

613 0.037 HOMO-2(62%)+ HOMO-3(19%)+ HOMO-2(13%) 

    

2+Na+ 
503 0.057 HOMO-4(93%)+ HOMO-2(2%)+ HOMO-1(1%) 

597 0.036 HOMO-3(53%)+ HOMO-2(34%)+ HOMO-1(9%) 

    

2+Li+ 
485 0.055 HOMO-4(95%)+ HOMO-2(2%) 

610 0.034 HOMO-2(85%)+ HOMO-3(7%)+ HOMO-1(3%) 
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Figure 41. TD-DFT calculated MO diagram (based on fully optimized geometrie) of the adducts 2+M+ and corresponding 
α–spin MOs.118 

If the CT transition corresponding to the longest wavelength for all alkali adducts is considered (e.g. the 

transition from HOMO-2  LUMO for 2+Li+), the calculated intensities of these CT transitions are 

considerably lower compared to the calculated intensity of the equivalent CT calculated for complex 2 

(see Table 11). These findings are in agreement with the experimental results (see Section 6.2.1, Table 4 

and Table 11 for details). Thus, in going from 2 to the corresponding adducts more electron density 

with antibonding character remains in the intraperoxide region, progressively weakening the O-O bond 

in the aforementioned order. These computational findings explain the experimentally observed 

differences in the rR spectra for 2 and the alkali metal adducts. The O-O stretch was experimentally 

observed to shift to lower wavenumbers upon alkali metal ion binding in both solid and solution state, 

which is furthermore supported by the computed frequencies (see Table 12, for computational details 

see ref.105). A shift of the O-O stretch to lower wavenumbers corresponds to a weakening of the O-O 

bond upon alkali metal binding. However, if only the pure interaction of peroxide and alkali metal ion is 

considered, this kind of adduct formation will lead to a withdrawal of electron density from the 

peroxide π* orbitals, consequently stabilizing the O-O bond (see Section 6.2.3). Nevertheless, the 

peroxide is additionally interacting with the copper atoms and the DFT calculations in combination with 

the experimental rR data show that this interaction is predominant. In summary, the interaction of the 



 

 
69 

 

peroxo moiety with alkali metal ions leads to an increasing electron density at the peroxide due to 

diminished donor interactions of peroxide and copper atoms. 

The DFT calculations additionally predict the intensity of the O-O stretch to drastically decrease in the 

order from 2 to 2+Li+, which has also been observed experimentally (see Table 12). A detailed 

evaluation of this trend is provided in Sections 6.2.2 and 6.2.5, whereas the computational findings 

support this discussion. 

Table 12. Summary of experimental (solid state, λexc =633 nm) and calculated geometry optimized O-O stretching 
frequencies.118 

complex exp. 𝑣̃O−O [cm-1] calc.a 𝑣̃O−O [cm-1] intensity [km mol-1] 

2 793 890 82 

2+K+ 790 796 34 

2+Na+ 789 764 32 

2+Li+ 790 755 26 

afrequency calculations were performed at the BP86-D3/TZ2P level of theory.148 

 

Moreover, the computational results will be used to reinvestigate the Cu-O stretches, which are only 

weakly observed in the experimental rR spectra. An exact determination is complicated due to low 

intensity and thus only the solid state rR spectra allow a rough estimation of the exact Cu-O stretching 

frequencies (see Table 13). Interestingly, the DFT calculations predict two Cu-O stretching modes for 

2+Li+, of which one originates from coupling to a Li-O stretch. This coupling is enabled by the specific 

Li-O bond distance in 2+Li+, which is significantly shorter than the corresponding alkali-O distances in 

the other adducts (see Table 14). Although this stretching mode is predicted to have high intensity, no 

experimental evidence could be found in the solid state rR spectrum. Nevertheless, if the corresponding 

18O labeled solution state spectrum is considered, an oxygen isotope sensitive signal at 504 cm-1 is 

observed. Since both 16O and 18O labeled spectra are featuring a solvent signal at 546 cm-1, the coupled 

Cu-O stretch lies beneath this band in the 16O labeled sample and only appears as weak shoulder at ca. 

530 cm-1 (see Figure 42). However, the second Cu-O stretch which is computationally predicted to lie in 

the region of 430 cm-1 could not be identified in the solution state rR spectrum. One reason may be the 

presence of a broad solvent signal at 385 cm-1, superimposing with the weak Cu-O stretch. In summary, 

the experimental as well as the calculated Cu-O stretching frequencies shift to higher wavenumbers 

upon alkali metal binding, reflecting an increasing covalent character of the Cu-O bond. Since the 

electron density at the peroxide was observed to increase upon alkali metal binding, these findings are 

reasonable. 
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Table 13. Summary of experimental (solid state, λexc =633 nm) and calculated geometry optimized Cu-O stretching 
frequencies.118 

complex exp. 𝑣̃Cu−O [cm-1] calc.a 𝑣̃Cu−O [cm-1] intensity [km mol-1] 

2 415 464 44 

2+K+ 455 488 18 

2+Na+ 448 519 85 

2+Li+ 430 424 19 

 - 579b 196 

afrequency calculations were performed at the BP86-D3/TZ2P level of theory;148 bthe Cu-O mode is predicted to be 
coupled to a Li-O stretch.  

 

 

 

Figure 42. Solution state resonance Raman spectrum of 2+Li+ in EtCN at -30 °C in the range of 450 – 650 cm-1 

(c = 1 × 10-2 M, exc = 633 nm). 

If the structural parameters such as O-O bond distance and average M-O bond length are compared to 

the data obtained from geometry optimization, these parameters are well described (see Table 14). 

However, by looking at the Cu-O-O-Cu torsion angles ɸ, significant deviations between experimental 

and geometry optimized data are observed. While for 2 an experimental dihedral angle of 55.3° is 

determined, the corresponding geometry optimization predicts 62.4°. The calculated Cu-O-O-Cu torsion 

angle than progressively increases from 2 to 2+Na+ and finally reaches 65.7° for 2+Li+ (see Table 14).  
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Table 14. Summary of selected structural parameters obtained from molecular structures and from corresponding fully 
optimized geometries (BP86 functional119,120, inclusion of Grimme’s121 dispersion energy (DFT-D3), TDZP basis set122).118 

complex d (O-O) [Å]; exp./calc. d (M-O)a [Å]; exp./calc. ɸ Cu-O-O-Cu [°]; exp./calc. 

2 1.44/1.41 - 55.3/62.4 

2+K+ 1.48/1.46 2.63/2.60 66.8/63.5 

2+Na+ 1.50/1.48 2.30/2.24 65.2/64.7 

2+Li+ 1.50/1.50 1.88/1.88 71.1/65.7 

aThe average of both M-O distances is shown. 

 

The absolute differences between experimentally and computationally determined dihedral angles for 

2 and 2+Li+ are 15.8° and 3.3°, respectively (see Table 14). This deviation consequently raises the 

question to which extend the Cu-O-O-Cu dihedral angle in the alkali metal adducts is induced by e.g. 

crystal packing rather than by the interaction of the cation with the peroxo moiety. Nevertheless, the 

DFT calculations predict an increasing dihedral angle from 2 to 2+Li+, which is also observed 

experimentally. Since especially the Cu-O-O-Cu torsion angle affects the magnitude of overlap of copper 

magnetic and peroxide π* orbitals, defining the antiferromagnetic contribution to the overall magnetic 

exchange coupling (see Section 6.1.5), a detailed comparison of experimentally and computationally 

determined singlet-triplet splitting is ambiguous.110  

With this information in hand, the computationally predicted data for the magnetic ground state of the 

different CP complexes will be compared with the experimental results (see Table 15). It shall be noted 

that the experimentally determined absolute differences in magnetic exchange coupling in all 

complexes are minor. The complexes 2 and 2+K+ for instance are both antiferromagnetically coupled, 

but the singlet-triplet splitting only varies by 46 cm-1. The error within the DFT calculation for e.g. 2+K+ 

however lies in the region of 1000 cm-1. Consequently, the DFT calculations do not allow an adequate 

description of the correlation of Cu-O-O-Cu torsion angle and magnitude of antiferromagnetic coupling, 

and the computational results can only be compared relative to each other. The DFT calculations in 

general show good agreement with the experimental results concerning the small singlet-triplet 

splitting for the alkali metal adducts 2+M+ (see Table 15). For complex 2 on the other hand all applied 

XC functionals consistently predict a much larger splitting as observed experimentally. Indeed, the 

experimental value found for 2 is expected to be larger, based on to a Cu-O-O-Cu torsion angle of 55°. 

One reason for this small value may be the distortion of the coordination environment of the CuII ions 

towards a more trigonal bipyramidal geometry compared to the alkali metal adducts (see Section 6.2.6 

for details). Nevertheless, a computationally predicted singlet-triplet splitting of e.g. -546 cm-1 (mPWxPc 

XC functional) is definitely too large in view of a calculated Cu-O-O-Cu dihedral angle of 62.4°. If this 

splitting is compared to that calculated for 2+K+, where a geometry optimized torsion angle of 63.5° 
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was found, the singlet-splitting is five times larger although the torsion angle only changes by 1°. Since 

all different exchange (XC) functionals lead to similar results, the singlet-triplet splitting for 2 is 

systematically overrated. This discussion shows that a computational description of the correlation of 

Cu-O-O-Cu torsion angle and the magnitude of magnetic exchange coupling is difficult. 

Table 15. Summary of experimentally and computationally determined spin state spliting for complexes 2 and 2+M+.118 

 2J [cm-1]  

complex 2 2+K+ 2+Na+ 2+Li+ 

exp. data -108 -154 -144 -80 

 

XC functional 

    

S12g125 -402 -24 -38 49 

mPWxPc149,150 -546 -98 -133 -70 

PW86xPc150,151 -598 -119 -147 -17 
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6.2.8 Summary and Conclusion 

 This section for the first time described the modification of the electronic structure of synthetic 

copper oxygen complexes. Starting from peroxide 2, the different alkali metal adducts can be generated 

upon addition of the corresponding alkali triflate salts. The electronic structure of the copper oxygen 

core was observed to significantly change upon adduct formation in both solid and solution state. The 

alkali metal ions thereby affect the interaction of copper and oxygen atoms, giving rise to significant 

differences observed via e.g. UV/vis absorption spectroscopy. The magnetic exchange coupling of the 

CuII ions was demonstrated to depend on the Cu-O-O-Cu torsion angle ɸ, which is changing upon 

adduct formation. The magnitude of exchange interaction was furthermore observed to depend on the 

coordination geometry of the CuII ions. While the adducts 2+M+ are featuring similar coordination 

geometry at the CuII ions, the CuII ions in 2 are coordinated in a more trigonal bipyramidal arrangement. 

However, the actual mechanism of action of how the alkali metal ions affect the Cu-O-O-Cu torsion 

angle is still unclear. DFT calculations in general support the experimental results and further underline 

the complexity of this interplay. While trends in electronic absorption and rR spectra could be 

simulated, absolute values of the experimentally observed singlet-triplet splitting cannot be reproduced 

reliably. However, the correlation of Cu-O-O-Cu dihedral angle and magnetic ground state could be 

shown for the adducts 2+M+. These findings are essential towards a more detailed understanding of the 

actual mechanism of O2 activation at type III active sites, where an S=1 intermediate Cu2/O2 species is 

postulated to interconvert into the antiferromagnetically coupled SP binding mode. 

A modification of the electronic structure of the Cu2/O2 core at synthetic copper complexes by 

interaction with Lewis acidic metal ions has been unpresented until to date. This work delivers valuable 

information of how electronic structure and thus reactivity may be tuned at other synthetic copper 

oxygen complexes. With respect to the mechanisms of action at natural copper sites, the influence of 

redox inert alkali metal ions has not been considered until today. However, this work shows that such 

interactions are also of considerable interest concerning natural copper sites. Thus, this chapter 

provides valuable information in understanding the mechanism of action at natural and synthetic 

copper active sites.  
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6.3 A Dinuclear Cupric Hydroperoxo Complex 

6.3.1 Formation and pKa Determination 

 Complex 2 was observed to interact with different alkali metal ions and the influence of this 

interaction on the electronic structure of the copper oxygen core has been described (see Section 6.2). 

The extent of adduct formation of the Lewis basic peroxo moiety and Lewis acidic alkali metal ions was 

shown to increase from potassium to lithium as predicted by HSAB theory. In following the HSAB 

principle, this sequence has been completed by the H+ cation (see Scheme 11).  

 

Scheme 11. Schematic presentation of protonation of 2; the molecular structure of 2+H+ is unknown until to date. 

Complex 2 can be protonated by addition of 2,6-lutidinium triflate. Figure 43 shows the corresponding 

UV/vis titration experiment recorded at -40 °C in MeCN. Upon stepwise addition of substoichiometric 

amounts of acid complex 2 is converted into a new species, 2+H+. An isosbestic point at 466 nm 

indicates a clean conversion, which is complete with 1.0 equivalent of acid being added (see Figure 43, 

right). 

  

Figure 43. UV/vis titration of complex 2 with 2,6-lutidinium triflate (MeCN, T = -40 °C), an isosbestic point at 466 nm indicates a 
clean conversion; 2,6-lutidinium triflate was added in steps of 0.12 eq. (from 0 – 1.02 eq.) and in steps of 0.06 eq. (from 

1.02 - 1.20 eq.). 

The addition of an excess of 2,6-lutidinium triflate does not induce further spectral changes and thus no 

hydrogen peroxide is released as reported for other hydroperoxo complexes.69 2+H+ features two 



 

 
75 

 

intense maxima in absorbance at 374 nm ( = 3900 M-1 cm-1) and at 435 nm ( = 6000 M-1 cm-1) and a 

weak ligand field transition at ca. 620 nm ( = 600 M-1 cm-1). The bands at 435 and at 620 nm lie in the 

same region as those of already reported hydroperoxo systems, while the feature at 374 nm is 

exclusively observed for 2+H+.47,69,74 On the basis of the optical transitions as well as on the 

stoichiometry, the formation of a hydroperoxide is assumed.  

Since only one equivalent of 2,6-lutidinium triflate is required to fully convert 2 into 2+H+, the affinity of 

the peroxide towards H+ is even higher then towards Li+ and consequently 2+Li+ should react to give 

2+H+ upon addition of 2,6-lutidinium triflate. Figure 44 shows such an UV/vis titration experiment, 

where at first 2 has been converted to 2+Li+ by adding in total 2.0 eq. of LiOTf in steps of 0.2 

equivalents. Afterwards 2+Li+ was transformed into 2+H+ via addition of in total 1.4 eq. of 

2,6-lutidinium triflate in steps of 0.2 equivalents. This experiment shows that the affinity of the peroxo 

moiety is higher towards H+, which is in accordance with the HSAB principle. 

 

Figure 44. UV/vis titration experiment showing stepwise transformation of 2 into 2+Li+ (black lines) (2.0 eq. of LiOTf 
were in total added, in steps of 0.2 eq.; isosbestic point at 486 nm), followed by stepwise transformation of 2+Li+ into 

2+H+ (blue lines) (1.4 eq. of 2,6-lutidinium triflate have been in total added, in steps of 0.2 eq.; isosbestic point at 
447 nm) (MeCN, T = -40 °C). 

Further analytical data, enabling a more detailed characterization of the presumed hydroperoxo motif, 

are lacking. Several solution state rR experiments have been performed at different complex 

concentrations in either MeCN or EtCN. However, no oxygen isotope sensitive feature has been 

observed independent of the applied laser excitation wavelength (λexc = 457 or λexc = 633 nm). Although 
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various solvent combinations and diffusion/layering techniques have been applied, no crystalline 

material suitable for X-ray diffraction could be isolated. Next to acetone, MeCN and EtCN also other 

nitriles such as iPrCN, nBuCN and nPrCN have been unsuccessfully tested. This may also be due to the 

high sensitivity of this species in rapidly forming a stable decomposition product, which preferentially 

crystallizes at all tested crystallization conditions (this outcome will be discussed in Section 6.5.1). Even 

at -80 °C the formation of this undesired species has been observed over time, although the 

decomposition process was significantly slowed down. 

Nevertheless, the UV/vis absorption spectrum of 2+H+ looks quite similar to that of the only to date 

structurally characterized dinuclear copper hydroperoxo complex, 3+H+ (denoted as xv in Section 3.3).47 

This species has been reversibly generated from the corresponding peroxo precursor 3 (see Section 5) 

by addition of one equivalent of 2,6-lutidinium triflate. A pKa value of 22.2 (MeCN, T = -20 °C) was 

determined via UV/vis back titration experiments of 3+H+ with 1,1,3,3-tetramethylguanidine (TMG).47 

However, complex 3+H+ is much more stable compared to other reported hydroperoxo complexes and 

could be isolated as single crystalline material at -30 °C.47,69,74 The relatively high stability of 3+H+ 

compared to 2+H+ may be explained with the specific ligand design of complex 3+H+, but this outcome 

will be discussed in Section 6.5.1. The similar optical spectra of both species as well as the 

stoichiometry support the formation of a hydroperoxide such as 2+H+, although the molecular structure 

remains undefined.47  

 

Scheme 12. Hydroperoxo complexes 2+H+ and 3+H+; the molecular structure of 2+H+ is unknown.47 

The protonation of complex 2 was furthermore reversible and a corresponding pKa value of 21.8 has 

been obtained (MeCN, T = -40 °C). In contrast to the pKa determination for 3+H+,47 the experiments with 

2+H+ were more challenging due to the open cavity of the copper oxygen core in 2 and the resulting 

higher reactivity. Complex 2, which is formed as conjugate base during the deprotonation of 2+H+, was 

observed to form weak adducts with the protonated forms of the introduced bases, thus complicating 

the data interpretation. Finally, the pKa value of 2+H+ has been determined in titrating 2+H+ with 

complex 3, where no side reactions were observed. The determination of the pKa value will be 

described chronologically in the following. 
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In order to determine a pKa value of complex 2, different bases such as DBU 

(DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene) and TMG have been added to a preformed solution of 2+H+ 

and the changes in absorbance were monitored via UV/vis absorption spectroscopy (see Figure 45). All 

measurements have been recorded in MeCN at -40 °C. 

  

Figure 45. UV/vis titration of complex 2+H
+
 with 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) in steps of 0.15 eq. (MeCN, 

T = -40 °C). The first 0.2 eq. of DBU are required to neutralize the excess of 2,6-lutidinium triflate that origins from the previous 
protonation of complex 2 (see Figure 43). 

When a solution of DBU (pKa (MeCN) = 24.3, T = 25 °C)152 is titrated to a solution of 2+H+, the 

hydroperoxide is continuously deprotonated. After the addition of 1.20 eq. of base no further changes 

in absorbance are observed. Since 2+H+ has been previously generated from complex 2 upon titration 

with overall 1.20 eq. of 2,6-lutidinium triflate, the first 0.20 eq. of base are required to neutralize the 

excess of acid. Since the titration is actually complete within the addition of 1.0 eq. of DBU, this base is 

much stronger then peroxo complex 2. Thus, DBU cannot be used to determine the desired pKa value 

because the equilibrium conditions are not suitable (see Section 7.2.1 for details).152,153,154 However, 

another species than complex 2 is formed during deprotonation, featuring slightly different maxima in 

absorbance (see Figure 46, left). The new species has two main transitions at 521 nm and at 637 nm, 

while 2 shows two maxima in absorbance at 527 nm and 649 nm. In Section 6.2 complex 2 was 

described to interact with redox inert alkali metal ions in forming the corresponding alkali metal 

adduct, 2+M+. During the titration of 2+H+ with DBU, depicted in Figure 45, the protonated species 

DBU·H+ is formed. This species principally may act as hydrogen bond donor in forming a weak adduct 

with 2 (see Scheme 13). This possible adduct formation would explain the observed slight shifts in 

absorbance monitored during the titration of 2+H+ with DBU.  
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Scheme 13. Proposed equilibrium conditions, complicating an exact pKa determination 

In order to investigate the proposed adduct formation between complex 2 and DBU·H+, a solution of 2 

has been titrated with DBU·H+ at -40 °C in MeCN (see Figure 46, left). Within stepwise addition of 

DBU·H+ the initial maxima of 2 at 527 nm (ε = 5300 M-1 cm-1) and 649 nm (ε = 4100 M-1 cm-1) undergo a 

slight blue-shift and are simultaneously losing intensity, whereat the band at 640 nm is much more 

affected. The final product shows two bands at 521 nm (ε = 5200 M-1 cm-1) and at 639 nm 

(ε = 3500 M-1 cm-1). This trend has also been observed during the alkali metal adduct formation of 2 (see 

Section 6.2.1), whereas the titration of 2 with DBU·H+ looks nearly identical to the UV/vis titration of 2 

with K+ (see Figure 46, right). If DBU·H+ is assumed to function as Lewis acid, a similar trend as observed 

during the titration of 2 with K+ is reasonable, since both cations are rather soft Lewis acids as predicted 

by HSAB principle.129  

In summary, the titration of 2+H+ results in the formation of a weak adduct of peroxo complex 2 and 

DBU·H+, which is denoted as 2+DBU·H+. This example shows that a reliable pKa determination regarding 

2+H+ is not possible by using DBU. On the one hand, the pKa value of DBU is too large and consequently 

no suitable equilibrium conditions exist.152,153,154 On the other hand, the protonated form DBU·H+ and 

complex 2 are forming the weak adduct 2+DBU·H+. This adduct formation is simultaneously affecting 

the pre-equilibrium which is used during the pKa determination. 

  

Figure 46. Left: UV/vis titration of complex 2 with DBU+H
+
 in steps of 0.15 eq. and 2.1 eq. totally added (MeCN, T = -40 °C); 

right: UV/vis titration of 2 with KOTf in steps of 1.0 eq., with overall 48.0 eq. added (MeCN, T = -40 °C). 

In another titration experiment, a solution of 1,1,3,3-tetramethylguanidine (TMG) has been added in 

steps of 0.15 eq. to a solution of 2 (see Figure 48). TMG is a weaker base then DBU, featuring a pKa 
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value of 23.3 (MeCN, T = 25 °C).155 Upon stepwise addition of TMG to hydroperoxide 2+H+, complex 2 is 

directly formed. After the titration of 1.20 eq. of TMG no further changes in absorbance are observed. 

Since 2+H+ has been generated from 2 and 1.20 eq. of 2,6-lutidinium triflate added prior to the 

deprotonation, the first 0.2 eq. of TMG are required to neutralize the excess of acid. Since the titration 

is actually complete within the addition of 1.0 eq. of TMG, this base is much stronger then peroxo 

complex 2. However, the final spectrum shows an additional band at 449 nm and only 80% of complex 

2 are regained. Interestingly, the same observation was made in a completely independent titration of 

2+H+ with the base (phenylimino)tripyrrolidinophosphorane (denoted as PhNPpyr3, see Figure 47) (pKa 

(MeCN) = 22.3, T = 25 °C)152. After the addition of 1.4 eq. of base no further spectral changes are 

observed, even when a huge excess of base was added (see Figure 49). Again only 80% of peroxo 

complex 2 have been recovered and an additional band at 449 nm is observed. 

 

Figure 47. Different bases and corresponding pKa values (MeCN, T = 25 °C).152,155 

 

 

Figure 48. UV/vis titration of 2+H+ with TMG in steps of 0.15 eq., no further changes in absorbance are observed after 
addition of 1.20 eq. (MeCN, T = -40 °C). 

The origin of the band at 449 nm could not be determined. One explanation may be the formation of 

the same type of side product in both titrations. However, both bases have been purified before use via 
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distillation or by recrystallization in the case of PhNPpyr3. While for TMG a potential side product is 

formed during the titration, no side reaction occurs in using DBU, which has not been further purified 

prior to use. One possible side product may be superoxide 4, which is formed from peroxo complex 2 

via one-electron oxidation (see Section 6.4). However, neither TMG and its protonated form, nor 

PhNPpyr3 and its protonated counterpart are known to function as oxidants or H-atom abstracting 

reagents, explaining the formation of a superoxide from 2 or 2+H+, respectively. The solvent was not 

contaminated with impurities inducing the oxidation of 2, since the same batch of solvent has been 

used for all titration experiments. Otherwise also the titration with DBU should show the corresponding 

side reaction. 

  

Figure 49. Titration of 2+H+ with PhNPpyr3 in steps of 0.2 eq., no further changes in absorbance are observed after 
addition of 1.40 eq. of base (MeCN, T = -40 °C). 

If the titration of 2+H+ with DBU is reconsidered, the protonated form of DBU, DBU·H+, was observed to 

form a weak adduct with peroxo complex 2. However, such an adduct formation is not observed during 

the titration with TMG or PhNPpyr3, since the bands corresponding to complex 2 are not shifted as in 

the titration with DBU. Nevertheless, the protonated form of TMG, TMG·H+, should also interact with 

the peroxo moiety. The adduct formation must be even stronger, since TMG·H+ is smaller and a 

stronger acid than DBU·H+ and thus TMG·H+ should bind with a higher affinity to complex 2. Since this 

adduct formation is not observed, TMG·H+ may interact with another species in solution. One 

possibility may be the interaction of TMG·H+ with hydroperoxide 2+H+ in forming a new species which is 

even stable at an excess of base. 

In summary none of the bases, depicted in Figure 47, enabled the determination of a pKa value for 2. 

While in the case of DBU the pKa determination was not possible due to an adduct formation of DBU·H+ 

and complex 2, the titration with the bases TMG and PhNPpyr3 involves either the formation of a side 

product or an interaction of the protonated forms of the bases with complex 2+H+. However, with 

respect to the aforementioned adduct formation, a sterically more demanding base is required that 

additionally features a pKa value that suitable for establishing a proper equilibrium. For this purpose the 
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dinuclear peroxo complex 3 was used as a base (see Scheme 14). Compound 3 is structurally related to 

complex 2 and also forms a dinuclear hydroperoxo complex, for which a pKa value of 22.2 (MeCN, 

T = -20 °C) has been determined (see Section 3.3 for details).47 The pKa value of 2 is assumed to be of 

similar magnitude as that of 3, since both complexes are featuring a similar ligand design (see Section 5 

for details). 

 

Scheme 14. Top: structurally related peroxo complex 3 and corresponding hydroperoxo complex 3+H+ (denoted as 
compound xv in Section 3.3). Bottom: schematic representation of equilibrium between structurally related peroxo and 

hydroperoxo complexes, all of which are featuring characteristic UV/vis absorption spectra.34,47 

Consequently, 2+H+ has been titrated with a solution of complex 3, which was found to be more basic 

then its structural relative, 2 (see Figure 50). Besides 2 and 2+H+, also the related complexes 3 and 3+H+ 

are featuring characteristic UV/vis absorption spectra. Thus, the in Scheme 14 depicted UV/vis titration 

experiment involves four individually colored species, which makes an accurate determination of the 

corresponding complex concentrations during the titration experiment challenging. Nevertheless, 

global analysis software packages such as SPECFIT/32 are capable of fitting such equilibria, but require 

highly accurate experimental data sets (see Section 7.2.1 for details). Figure 50 shows the titration of 

hydroperoxide 2+H+ with complex 3. However, before the global analysis with SPECFIT/32 is explained, 

the UV/vis experiment will be described qualitatively first: 

The titration starts from a solution of complex 2+H+, featuring a main CT transition at 435 nm (see 

Figure 50). During the experiment complex 3 is added in steps of 0.2 equivalents. This species has a 

maximum in absorbance at 506 nm. Both complexes are transformed into the corresponding 
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deprotonated/protonated analogs, 2 and 3+H+ (see Scheme 14). 2 shows a main CT transition at 

527 nm, while complex 3+H+ has a maximum in absorbance at 416 nm. 

 

Figure 50. UV/vis titration of 2+H+ with 3. Complex 3 was added in steps of 0.2 eq. (MeCN, T = -40 °C); the initial 
spectrum is marked with an asterisk. 

With these different maxima in hand, the titration depicted in Figure 50, can be qualitatively 

interpreted. During the addition of substoichiometric amounts of 3 (0.2 eq., overall 4.0 eq. have been 

added), the initial maximum characteristic for 2+H+ at 435 nm is continuously shifting. After the 

addition of 1.0 eq. of base, this maximum is located at 421 nm (see Figure 51, left). During the titration 

of 1.0 – 1.8 eq. of base, the absorption maximum is no further shifting. However, in adding more excess 

of 3 (from 1.8 – 4.0 eq.), the aforementioned blue-shift is reversed and the maximum is finally found at 

429 nm. To further understand this trend, the corresponding changes in intensity will be consulted (see 

Figure 51, right). If the absorbance at e.g. λ = 424 nm is considered, the intensity at this wavelength is 

observed to significantly change during the titration of the first 1.8 eq. of 3 (see red curve in Figure 51, 

right). Afterwards, the intensity equidistantly changes during the addition of another 2.2 eq. of 3, as the 

linear regression in Figure 51, right illustrates. If a solution of any colored compound is titrated in 

equimolar steps into e.g. pure MeCN, the corresponding absorbance is also monitored to change 

linearly, since the compound concentration linearly increases. If this correlation is transferred to the 

titration of 2+H+ with 3, the deprotonation of 2+H+ is almost completed after the addition of 1.8 eq. of 

3. Further addition of 3 consequently induces only equidistant changes in absorbance.  

The same trend can be seen in Figure 51, left. During the titration of 1.0 eq. of 3, the initial maximum at 

435 nm is shifting to 421 nm. Complex 2+H+ is continuously deprotonated, in forming 3+H+ which has a 

maximum at 416 nm. From the titration of 1.0 – 1.8 eq. of 3, the maximum is retained at 421 nm. At 

this stage, 2+H+ is further deprotonated but now also a significant amount of 3 is present in solution. It 

again shall be noted that 3 is featuring a maximum in absorbance at 506 nm. The interplay of gradually 
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lower formation of 3+H+ and hence progressive enrichment of 3 causes the observed trend. Upon 

addition of 1.8 – 4.0 eq. of 3, 3 is enriched in solution and thus the maximum at 421 nm progressively 

undergoes a red-shift. This evaluation is of course rather qualitative, but it clearly shows that this 

titration experiment can be analyzed with the help of professional software packages, such as 

SPECFIT/32. 

  

Figure 51. Left: changes of initial maximum corresponding to 2+H+ during titration; right: changes in absorbance at 
424 nm during titration. 

In order to fit this equilibrium, SPECFIT/32 was used to determine the corresponding component 

concentrations during the titration experiment. The deprotonation of 2+H+ yields the complexes 2 and 

3+H+ in equimolar concentrations, both featuring independent UV/vis absorption spectra. Due to 

limitations of the software package, these two individual species are expressed as one single species, C 

(see Figure 52). Consequently, C is featuring a combined UV/vis absorption spectrum (see Figure 54, 

black line.). In addition to component concentrations, the software furthermore calculates the 

individual UV/vis spectra of each component. If the corresponding fit is of adequate quality, the 

calculated UV/vis absorption spectra match with the real ones. 

 

Figure 52. Equilibrium conditions used for determination of individual component concentration with SPECFIT/32. 

Figure 53 shows the results of the fit of the aforementioned titration. After the addition of 2.0 eq. of 

base, more than 90% of 2+H+ are already deprotonated and the concentration of 3 linearly increases 
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with subsequent titration (see Figure 53, right). This observation has also been made during the 

qualitative analysis of this experiment (see Figure 51, right).  

 
 

Figure 53. Left: UV/vis titration of 2+H+ with 3, added in steps of 0.2 eq. with 4.0 eq. finally added (MeCN, T = -40 °C); 
initial spectrum is marked with an asterisk. Right: change of component concentrations during titration derived from 

global analysis with the software package SPECFIT/32 (black: 2+H+ (A); red: 3 (B); blue: 2 + 3+H+ (C)). 

Figure 54 shows a comparison of the calculated spectrum of compound C with an overlay of both 

experimental spectra of 2 and 3+H+. The simulated spectrum matches with the experimental data. Both 

simulated and experimental spectra show maxima in absorbance at 527 and 644 nm. The calculated 

maximum at 420 nm for complex C is only slightly shifted to 422 nm in the overlay of the corresponding 

experimental spectra. Even the small shoulder belonging to complex 3+H+ at ca. 375 nm is present in 

the calculated spectrum. SPECFIT/32 further calculated the UV/vis absorption spectrum of complex 3, 

which perfectly matches with the experimental one. From the comparison of calculated and 

experimentally obtained spectra a possible side reaction, as it is observed during the titration of 2+H+ 

with e.g. TMG (see Figure 48), can be excluded. The formation of such a side product would significantly 

affect the corresponding UV/vis absorption spectrum and then the simulated spectra would drastically 

deviate from the overlay of the experimentally determined spectra of 2 and 3+H+. 
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Figure 54. Red curve: spectrum corresponding to complex C simulated by SPECFIT/32. Black curve: overlay of individual 
spectra of products 3+H+ and 2, defined as component C for fitting procedure with SPECFIT/32.  

In summary, 3 was observed to be more basic than complex 2. With the help of the global analysis 

software SPECFIT/32, the concentrations of all four colored species could be determined for the 

titration (see Figure 53, right). With the individual concentrations of all compounds in hand, the 

corresponding pKa value for 2+H+ can be determined. The in Figure 52 depicted equilibrium can be 

described with equilibrium constant Ke:  

12) 𝐾e =
[𝟐][𝟑+𝐇+]

[𝟐+𝐇+][𝟑]
 

The relative basicity of the proton is defined as:152 

13) ∆p𝐾a = p𝐾𝑎(𝟑 + 𝐇+) − p𝐾a(𝟐 + 𝐇+) = log
[𝟐][𝟑+𝐇+]

[𝟐+𝐇+][𝟑]
 

 

14) p𝐾a(𝟐 + 𝐇+) =  p𝐾a(𝟑 + 𝐇+) − log
[𝟐][𝟑+𝐇+]

[𝟐+𝐇+][𝟑]
 

Since the complexes 2 and 3+H+ are formed in equimolar amounts, equation 14) can be simplified to: 

15) p𝐾a(𝟐 + 𝐇+) =  p𝐾a(𝟑 + 𝐇+) − log
[𝟑+𝐇+]2

[𝟐+𝐇+][𝟑]
;    log

[𝟑+𝐇+]2

[𝟐+𝐇+][𝟑]
= log (𝐾e) 

Consequently, a plot of [3+H+]2/[2+H+] versus [3] yields the equilibrium constant Ke, which can be used 

to calculate the relative pKa value of complex 2+H+.152 The corresponding plot is shown in Figure 55. 
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Figure 55. Plot of [3+H+]2/[2+H+] versus [3] (fixed intersection with y- axis at y = 0, R2 = 0.996). The concentrations are 
derived from global analysis of the titration experiment depicted in Figure 50. The slope gives equilibrium constant Ke, 

which is used to determine the pKa value of 2+H+. 

The linear fit of [3+H+]2/[2+H+] versus [3] yields a Ke of 2.40 ± 0.03 which leads to a value for pKa(2+H+) 

of 21.8. In order to support this results, complex 2 has been titrated with [HNEt3]Cl which has a pKa 

value of 18.8 (MeCN, T = 25 °C). The corresponding UV/vis titration is depicted in Figure 56. 

  

Figure 56. Titration of 2 with solution of [HNEt3]Cl in steps of 0.2 eq., with finally 2.8 eq. added (MeCN, T = -40 °C). 

Upon stepwise addition of [HNEt3]Cl, complex 2+H+ is formed. After the titration of ca. 1.0 eq. of acid, 

no further changes in absorbance are observed (see Figure 56, right). However, the final UV/vis 

absorption spectrum of 2+H+ is different from the corresponding spectrum of a titration of 2 with e.g. 

2,6-lutidinium triflate (see Figure 43 for comparison). The main transitions of 2+H+ are expected at 

significantly higher intensity ( = 5.0 – 6.0 mM-1 cm-1 instead of 3.5 mM-1 cm-1, see Figure 43). 

Furthermore, no clean isosbestic point is observed during the titration. This observation can be 

explained with a side reaction. Although [HNEt3]Cl has been thoroughly dried prior to use, the acid was 

contaminated with traces of water. Complex 2+H+ thereby easily forms the decomposition product 5 in 
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the presence of water (this topic is in detail discussed in Section 6.5.1). The decomposition of 2+H+ in 

the presence of water further explains the decrease in intensity of the corresponding maximum at 

435 nm upon addition of an excess of [HNEt3]Cl (1.2 –2.8 eq., see Figure 56, right). With further 

titration of [HNEt3]Cl even more traces of water are added, inducing the decomposition of 2+H+, as 

indicated by the decrease of the main CT band. Thus, the in Figure 56 depicted titration is affected by 

the decomposition of complex 2+H+, in consequently falsifying the pre-equilibrium. One further 

possibility may be the formation of an adduct of 2+H+ and NEt3. However, this titration shows that 

peroxo complex 2 is much more basic than NEt3, since the titration of 2+H+ with [HNEt3]Cl is already 

completed after the addition of 1.0 eq. of acid. 

In summary, the determination of the actual pKa value for complex 2+H+ is complicated due to adduct 

formation of complex 2 and the corresponding protonated bases. Furthermore, side reactions such as 

the formation of decomposition product 5 or of superoxide 4 may occur during the titration of 2+H+ 

with TMG or PhNPpyr3. However, a titration of complex 2+H+ with the structurally related complex 3 

(pKa = 22.2) revealed that the peroxide in 3 is more basic than the peroxo moiety of complex 2. On the 

basis of this UV/vis titration, a pKa value for 2+H+ of 21.8 has been determined. A titration of 2 with 

[HNEt3]Cl (pKa = 18.8) has shown that 2 is more basic than the corresponding base NEt3, although the 

titration is most likely compromised by the formation of a decomposition product. Thus, the magnitude 

of the pKa value determined for 2+H+ is correct. 
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6.3.2 Summary and Conclusion 

 This chapter demonstrated that peroxo complex 2 can be reversibly protonated in forming 

hydroperoxo species 2+H+ (see Scheme 15). The affinity of the peroxo moiety for H+ is even higher than 

for Li+ as demonstrated via a competition experiment, where 2+Li+ was quantitatively transformed into 

2+H+. A pKa value of 21.8 (MeCN, T = -40 °C) has been determined by UV/vis titration experiments of 

2+H+ with the structurally related peroxo complex 3. The pKa determination with other bases such as 

DBU or TMG was complicated due to adduct formation of complex 2 with the corresponding 

protonated bases, as well as due to side reactions.  

 

Scheme 15. Protonation of peroxo complex 2 in forming hydroperoxide 2+H+. 

The desired molecular structure determination of the hydroperoxo complex 2+H+ has not been 

successful so far, although numerous crystallization conditions have been screened. One reason may be 

the pronounced instability of 2+H+ in forming a decomposition product that quantitatively crystallizes at 

all applied crystallization conditions. The decomposition of 2+H+ is assumed to be promoted by the 

species structure of the hydroperoxide, which will be in detail discussed in Section 6.5.  
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6.4 A Dinuclear Cupric Superoxo Complex 

 Dicopper peroxo complex 2 was found to interact with different alkali metal ions that affect the 

electronic structure of this cis-peroxo species (see Section 6.2). These findings raise the question, if 

such weak interactions also play a role in natural metal oxygen intermediates, and further 

investigations may help to selectively control spin states, redox potentials and thus the reactivity of 

synthetic copper oxygen species.147 The role of Ca2+ in the oxygen evolving complex for instance is still 

under debate and is discussed to have an essential effect during the formation and release of 

dioxygen.102,156,157 NAM and co-workers recently published a mononuclear iron peroxo complex that 

interacts with different redox inert metal ions such as Ca2+ and Sc3+ (see Figure 57).102 Whereas the 

peroxo-Ca2+ adduct can be oxidized with the release of dioxygen, the peroxo-Sc3+ adduct cannot be 

oxidized with O2-release. Since the Sc3+ ion is much more Lewis acidic than the Ca2+ ion, the following 

oxidation of the peroxo moiety is shifted towards higher potential in the Sc3+-adduct and is not 

observed under the applied conditions.102,158 This work shows that the electronic structure of - in that 

case - iron peroxo complexes can be modified by introducing different redox inert metal ions. 

Consequently, the alkali metal adducts of dicopper peroxo complex 2, discussed in this thesis, have 

been studied in the same context. The following section will introduce superoxo complex 4, which can 

be selectively generated from peroxo complex 2. The spectroscopic features as well as selected 

substrate reactivity of this species will be presented. Finally, the electrochemical properties of the alkali 

metal adducts will be discussed. The interaction of Lewis acidic alkali metal ions with peroxo complex 2 

indeed was observed to affect the redox potential of the corresponding oxidation to complex 4 and 

provides insight into the possible role of redox inert metal ions in modulating reactivity at natural 

copper active sites. 

 

Figure 57. Schematic representation of interaction of mononuclear iron(III) peroxo complex (not structurally 
characterized) and of dinuclear copper(II) peroxo complex with redox inert metal ions.102 
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6.4.1 Electrochemical and Chemical Generation 

 At first, electrochemical studies (for experimental details see Section 7.5) have been performed on 

complex 2, finally revealing the generation of a dicopper superoxo species, which is denoted as complex 

4 (see Scheme 16).  

 

Scheme 16. Electrochemically reversible generation of dicopper superoxo complex 4. 

The corresponding cyclic voltammogram (see Figure 58) shows two oxidation events of which the first 

oxidation at E1/2 = -0.58 V (vs. Fc/Fc+, MeCN, T = 0 °C) is reversible (see Figure 59, right). The second 

oxidation at Epa = 0.59 V is not reversible and is assigned to the release of molecular dioxygen (this 

outcome will be discussed later). 

 

Figure 58. Cyclic voltammogram spectrum of 2.8 mM solution of 2 at 100 mV/s scan rate (0.1 M solution of NBu4PF6 as 
supporting electrolyte, T = 0 °C). 

In order to get further insight into the oxidation event at E1/2 = -0.58 V, complex 2 has also been 

oxidized chemically and the formation of a new species was followed via UV/vis absorption 

spectroscopy (see Figure 60). Therefore, a solution of AgSbF6 (E
0 = 0.04 V vs. Fc/Fc+, MeCN, T = 25 °C)159 

was added stepwise in substoichiometric amounts to a solution of preformed peroxo complex 2 at -

40 °C. The titration was complete with the addition of approximately 1.0 eq. of oxidant, showing that 2 
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is oxidized by one electron. An isosbestic point at 485 nm indicates a clean conversion. The new species 

was found to be stable event at 0 °C and has a half-life time of ca. 8 h at 20 °C. A rR spectrum of this 

compound was recorded in solution at 22 °C and shows one oxygen isotope sensitive feature at 

1073 cm-1 (∆(16O-18O) = 60 cm-1), which is at typical energy for a superoxide O-O stretching vibration 

(see Figure 60, right).82,76 

  

Figure 59. Left: Cyclic voltammograms of 3.0 mM solution of complex 2 at different scan rates (0.1 M solution of 
NBu4PF6 as supporting electrolyte, T = 0 °C); right: plot of anodic peak current Ip versus square root of scan rate; R2 = 

0.997. 

 

  

Figure 60. Left: Generation of superoxo complex 4 by addition of substoichiometric amounts of AgSbF6 to complex 2 in 
steps of 0.11 eq. with finally 1.10 eq. added; After the addition of 0.99 eq. of oxidant, no further change in absorbance 

was observed; (MeCN) T = -40 °C, isosbestic point at 485 nm; right: rR spectrum of 1.4 mM solution of 4 with laser 
excitation at 457 nm (MeCN, T = 22 °C).  

Besides AgSbF6 as chemical oxidant, also Cu(OTf)2 and [(iPr3TACN)Cu(CH3CN)2][(SbF6)2])
160 have been 

used during the UV/vis titration experiments. The resulting spectra, corresponding to cupric superoxide 

4, are identical and show that the electronic absorption spectra of 4 are independent from the 

introduced oxidant. The chemical oxidation of complex 2 was furthermore demonstrated to be 
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reversible. For that purpose, complex 2 has been oxidized with Cu(OTf)2 and subsequently a solution of 

the disodium salt of N,N’-bis(salicylidene)ethylenediamine (Na2salen) was added. The addition of 

Na2salen immediately induced the reduction of 4 in forming sodium adduct 2+Na+ and CuII(salen) (see 

Scheme 17 and Figure 61). The back reactions driving force is the formation of CuII(salen) that is 

preferably formed under these conditions (E°(CuI/CuII)= -1.66 V vs. Fc/Fc+, MeCN, T = 25 °C).161 The one 

electron that is needed to reduce 4 back to the peroxo level is delivered from the CuI cation that in 

return is oxidized into CuII in forming the corresponding CuII(salen)-complex. 

 

Scheme 17. Schematic representation of chemically reversible generation of complex 4 in using the CuII/CuI redox 
couple. 

 

Figure 61. Electronic absorption spectra of precursor 2, superoxo complex 4 (after addition of 1.1 eq. of Cu(OTf)2 to 
complex 2) and of 2+Na+ after the addition of 5.0 eq. of Na2(salen). 

In order to combine the aforementioned electrochemical oxidation of complex 2 with UV/vis 

absorption spectroscopy, the redox chemistry of complex 2 was also investigated by spectro-

electrochemistry. Figure 62 shows the oxidation of 2 (for details see Section 7.6) via controlled 

potential electrolysis at -0.2 V (vs. Fc/Fc+, MeCN, T = -15 °C) for 20 minutes. The measurement shows 

the progressive formation of complex 4, featuring the same maximum in absorbance as during a 

chemical generation from precursor 2. The isosbestic point at 486 nm matches with that determined 

during the UV/vis titration experiment. Since complex 2 is oxidized electrochemically, the in Figure 62 
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depicted electronic absorption spectra exclusively correspond to the species 2 and 4. Consequently, the 

nature of the UV/vis absorption spectrum shown in Figure 60 is not affected by the introduced oxidant, 

AgSbF6 or by colloidal silver particles. 

 

Figure 62. Spectro-electrochemistry of 600 µM solution of 2 in MeCN at -15 °C. Complex 2 is oxidized to superoxo 
species 4 (see Figure 60 for comparison) via controlled potential electrolysis at -0.2 V versus Fc/Fc+ for 20 minutes. After 

20 minutes, no significant changes in the UV/vis spectrum can be observed; isosbestic point at 486 nm. 
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6.4.2 First Solid State Structure of a Dinuclear Copper(II) Superoxo Complex 

 Next to a detailed spectroscopic characterization of this cupric superoxo complex, also a solid state 

structure could be determined (see Figure 63). Crystalline material was obtained via Et2O diffusion into 

a concentrated solution of complex 4 in MeCN at -36 °C, with [(iPr3TACN)Cu(CH3CN)2][(SbF6)2] used as 

oxidant. Next to this unusual oxidant also AgSbF6 and AgBF4 have been used, but no crystalline material 

was isolated.  

 

Figure 63. Molecular structure of 4 with thermal displacement ellipsoids given at 30% probability. Hydrogen atoms, 
counterion SbF6

-, and additional solvent molecules are omitted for clarity; for selected bond lengths and angles see 
Section 7.7. 

The solid state structure represents the first structural evidence of a dinuclear copper superoxo 

complex. The superoxo moiety shows the same cis-geometry of the copper oxygen core as observed for 

peroxo complex 2. However, the O-O bond length was found to decrease from 1.44 Å in 2 to 1.33 Å in 4, 

which reflects the one-electron oxidation to occur at the peroxide with strengthening of the O-O bond. 

The Cu-O-O-Cu torsion angle in 4 was determined to 75.4° and is significantly larger than in complex 2 

(ɸ = 55.3°). The Cu···Cu distance was determined to 3.82 Å. The Cu-pyrazolate bond lengths are 

substantially shorter (Cu1-N1 = 1.90 Å, Cu2-N2 = 1.89 Å) than those of the CuII ions to the TACN side 

arm nitrogen donor atoms (2.07-2.16 Å). The coordination environment of one of the two CuII ions is 

nearly ideal square pyramidal (τ(Cu2) = 0.08) in contrast to that of the second CuII ions (τ(Cu1) = 0.63), 

indicating a distorted trigonal bipyramidal coordination environment. The different coordination 

geometries at the CuII ions as well as the Cu-O-O-Cu torsion angle of 75° may affect the overlap of 

copper- and oxygen-centered orbitals, but this outcome is discussed in Section 6.4.3.   
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6.4.3 DFT Calculations 

 Preliminary DFT calculations have been performed based on the crystallographic data of complex 4, 

using the ORCA software package.162 Spin unrestricted structure optimizations were conducted using 

the BP86 functional in combination with a def2-TZVP basis set.163,164 The influence of solvent (MeCN) 

was considered using the COSMO method.165,166 A comparison of calculated and experimental structural 

parameters is listed in Table 16. 

Table 16. Selected distances and angles of experimental and calculated structures of 4. 

 d (O-O) [Å] d (Cu-Cu) [Å] ɸ (Cu-O-O-Cu) [°] 

exp.: [L1Cu2(μ-O2)] (S = 0.5) 1.33 3.82 75.4 

calc.: [L1Cu2(μ-O2)] (S = 0.5) 1.32 3.81 65.6 

calc.: [L1Cu2(μ-O2)] (S = 0.5), MeCN 1.33 3.80 66.2 

calc.: [L1Cu2(μ-O2)] (S = 1.5) 1.32 3.89 32.2 

 

The calculations for the doublet ground state revealed no significant differences irrespective of solvent 

influences being included or not (see Table 16, third and fourth line). The calculated distances match 

with those determined experimentally. Only the predicted Cu-O-O-Cu torsion angles deviate by 

approximately 10° from the experimental value. However, if the calculated parameters of the 

corresponding quartet ground state are considered (Table 16, line five), a Cu-O-O-Cu dihedral angle of 

32° is predicted, which significantly deviates from the experimental value of 75°. Additionally, the 

calculated Cu-Cu distance is not supported by the experimentally determined parameters.  

In order to verify the magnetic ground state of complex 4, spin unrestricted single point calculations 

have been performed using a B3LYP functional and a def2-TZVP basis set (RIJCOSX approximation in 

combination with auxiliary def2- TZVP/J basis set; D3 dispersion correction with zero damping).167 The 

calculations predict a quartet ground state. The S = 0.5 state was calculated to be 4.6 kcal mol-1 higher 

in energy. This outcome however is contrary to the aforementioned geometry optimization, favoring a 

doublet ground state.  

To gain insight into the magnitude of magnetic coupling between the copper atoms and superoxide, 

spin unrestricted broken symmetry calculations have been performed (functional: B3LYP, def2- TZVP 

basis set, RIJCOSX approximation in combination with auxiliary def2- TZVP/J basis set). The calculations 

started from a quartet state of which the spin of the unpaired electron of e.g. Cu1 has been flipped, 

resulting in an overall doublet state. The magnetic coupling between Cu1 and the superoxide then was 

investigated. This procedure was as well applied on Cu2. The corresponding magnetic orbitals are 

depicted in Figure 64. 
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Figure 64. Corresponding magnetic orbitals of broken symmetry calculations after flipping the spin of a): Cu1 (left: 
orbital 178α, right: orbital 178β); and after flipping the spin of b): Cu2 (left: orbital 178α, right: orbital 178β). 

The magnetic coupling between Cu and oxygen atoms is a function of overlap of the magnetic 

orbitals.111 The magnetic coupling constant J has been calculated according to equation 16): 

16) 𝐽 =
EHS−EBS

〈Sorb
2 〉HS−〈Sorb

2 〉BS
 

Sorb represents the overlap of the involved magnetic orbitals.168 Sorb = 0 corresponds to no overlap (full 

overlap is observed for Sorb = 1) and thus no magnetic coupling would be observed. The overlap of the 

magnetic orbital pairs was calculated to be 0.45 (O1Cu1) and 0.40 (O2Cu2), resulting in magnetic 

coupling constants of J(O1Cu1) = -480 cm-1 and J(O2Cu2) = -475 cm-1, respectively. This outcome 

demonstrates that copper and oxygen atoms in 4 magnetically interact, but show significant lower 

magnetic coupling than other literature known dinuclear superoxo complexes, featuring a doublet 

ground state (see ref.90 J(O1Cu1) = -1066 cm-1; J(O2Cu2) = -1057 cm-1). Figure 65 shows the calculated 

spin density after flipping the spin of Cu1 and Cu2, respectively. A significant amount of spin density is 

observed on the copper and oxygen atoms. 
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Figure 65. Corresponding spin density after flipping the spin of Cu1 (left) and Cu2 (right); Mulliken spin population left: 
Cu1 = -0.51, Cu2 = 0.54, O1 = 0.37, O2 = 0.55; right: Cu1 = 0.53, Cu2 = -0.51, O1 = 0.59, O2 = 0.39. 

In summary, the structural parameters obtained from fully optimized geometries favor a doublet 

ground state, while spin unrestricted single point calculations predict a quartet state to be lowest in 

energy. Spin unrestricted broken symmetry calculations show the magnitude of magnetic coupling in 

complex 4 to be relatively weak due to small overlap of copper- and oxygen-centered orbitals, thus 

supporting the assumed quartet ground state. The weak magnetic coupling between copper and 

oxygen atoms may be induced by the Cu-O-O-Cu torsion of 75° angle as well as by the more trigonal 

bipyramidal coordination geometry of one of the CuII ions (see Section 6.4.2).  
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6.4.4 EPR Spectroscopy and SQUID Magnetometry 

 In order to verify the spin ground state of superoxo complex 4, EPR spectroscopy of frozen MeCN 

solution state samples was performed. Several independent spectra have been recorded, of which one 

sample was prepared from crystalline material of complex 4, while other samples were obtained from 

reacting complex 2 with AgSbF6 in situ (see Section 7.8 for experimental details). All experiments 

independently show the same signal pattern. In Section 6.4.1, complex 4 was demonstrated to be 

selectively synthesized from precursor 2 and various oxidants. No side reactions were observed and 4 is 

stable for several hours even at 0 °C. Thus, the corresponding EPR samples are assumed to exclusively 

contain complex 4. However, before the results for superoxide 4 are presented, the EPR spectra of the 

literature known dinuclear superoxo complexes 6, 7a and 7b will be discussed (see Scheme 18).77,90 It 

should be however noted that no structural information exist for any of these complexes.  

 

Scheme 18. Discussed dinuclear superoxo complexes, all of which are showing different EPR spectra due to a specific 
geometry of the corresponding copper oxygen cores (UN-OH = 2-(bis(2-(pyridin-2-yl)ethyl)amino)-6-((bis(2-(pyridin-2-

yl)ethyl)amino)- methyl)phenol).77,90 Only complex 4 is structurally characterized.  

The complexes 6 and 7a exhibit significant structural differences, which are reflected by the 

corresponding EPR spectra.77,90 In complex 7a, the superoxide shows a μ-1,1 binding mode.77 7a has 

been proposed to be in a fast equilibrium with complex 7b, where the copper oxygen core is featuring a 

cis-geometry (μ-1,2 O2
·- binding mode).77 Irrespective of the superoxide binding motif, a doublet ground 

state was predicted for both complexes by DFT calculations.77 In complex 6 on the other hand, only a μ-

1,2 binding mode is observed.90 DFT calculations also predict a doublet ground state. 90 The two 

completely different superoxide binding modes in 6 and 7a are giving rise to characteristic EPR 

spectra.77,90 In complex 7a the two CuII ions are strongly antiferromagnetically coupled via the bridging 

oxygen atom, resulting in one unpaired electron located on the superoxide.77 The corresponding EPR 

spectrum shows one characteristic nearly isotropic signal, featuring a g-value of approximately 2.0, 

which is typical for an organic radical.77 However, since 7a is in equilibrium with 7b, the corresponding 

EPR spectrum is a mixture of both species and additionally shows some fine structure, which could not 

be resolved.77 No coupling to copper atoms is assumed to take place.77 Consequently, both species are 

featuring the same spin ground state with the unpaired electron located on the superoxide. However, 
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the authors did not specify the actual ratio of the complexes 7a and 7b in solution and thus the 

interpretation of the EPR spectrum is only qualitative. If for instance 7a represents the main species, 

complex 7b only marginally contributes to the mixed EPR spectrum. The unpaired electron in 7b could 

then also be located on a CuII ion and the corresponding total EPR spectrum would still show a roughly 

isotropic signal at g ≈ 2 with no significant contribution of a CuII signal. The experimentally observed but 

only poorly resolved postulated fine structure then would correspond to complex 7b, with the unpaired 

electron being located on a CuII ion.  

The spectrum of compound 6 on the other hand shows a typical axial signal pattern of a copper(II) 

complex.90 DFT calculations predict a doublet ground state for complex 6.90 In contrast to 7a, the 

unpaired electron is located on a CuII ion.90 The strong antiferromagnetic coupling of the superoxide to 

one of the CuII ions can be rationalized by the computationally predicted Cu-O-O-Cu torsion angle of 

approximately 103° in 6. Due to this arrangement, each of the superoxide π* orbitals is interacting with 

only one of the CuII ions. No superexchange of the copper-centered unpaired electrons via the 

superoxide bridge is possible, as observed for complex 7a.77 Nevertheless also this interpretation is only 

qualitative, since no structural evidence for the proposed μ-1,2 binding mode is available and the Cu-O-

O-Cu torsion angle of 103° is only predicted by DFT calculations. However, comparison of complexes 6 

and 7a shows that structural differences in the superoxide binding mode can be visualized by EPR 

spectroscopy. 

With this knowledge in hand, the structural properties of superoxo complex 4 will be reconsidered. The 

molecular structure of 4 revealed a μ-1,2 binding mode, which is also assumed for the complexes 6 and 

7b. In contrast to compound 6, a Cu-O-O-Cu torsion angle of 75° is observed in complex 4, providing a 

possible superexchange pathway for antiferromagnetic coupling of the CuII ions via the superoxide 

bridge. However, DFT calculations predict a S = 1.5 ground state in ruling out an effective 

superexchange of the CuII ions via the superoxide (see also Section 6.4.3). Nevertheless, the calculated 

Cu-O-O-Cu dihedral angle for the quartet ground state (ɸcalc.
𝑆=1.5 = 32°) significantly deviates for the 

experimentally observed torsion angle, whereas the computationally predicted parameters of the 

corresponding doublet ground state (ɸcalc.
𝑆=0.5 = 66°) are similar to the structural values. In summary, the 

computationally predicted S = 1.5 ground state is counterintuitive, since the associated computationally 

predicted Cu-O-O-Cu torsion angle of 32° would provide a superexchange pathway via the superoxo 

moiety. The CuII ions would then be antiferromagnetically coupled, resulting in an overall doublet 

ground state. However, the magnitude of magnetic exchange interactions of the two copper atoms via 

the superoxide bridge is furthermore affected by the geometry at the CuII ions.145 The corresponding 

molecular structure of 4 revealed a square pyramidal coordination geometry of one CuII ion (τ(Cu2) = 

0.08)), whereas the second CuII ion is coordinated in a trigonal bipyramidal fashion (τ(Cu1) = 0.63). 
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These large differences indeed may affect the superexchange pathway via the superoxide bridge due to 

significantly different coordination geometries of the two CuII ions.  

In order to verify the actual magnetic ground state of complex 4 experimentally, SQUID magnetic 

measurements were carried out with solution state samples (for experimental details see Section 7.3). 

Until to date not enough crystalline material of complex 4 could be grown and thus only solution state 

data are available for this species. Figure 66 shows one representative example of a 16 mM solution of 

4. The molar magnetization 𝑀𝑚 of complex 4 is thereby described as:169 

17) 𝑀𝑚 = 𝑁𝐴𝑔𝜇𝐵𝑆𝐵𝑠(𝑥);    𝑥 =  
𝑔𝜇𝐵𝐵

𝑘𝑇
 

For large values of 𝑥, the Brillouin-function 𝐵𝑠(𝑥) becomes 1 and equation 17) simplifies to:169 

18) 𝑀𝑚 = 𝑁𝐴𝑔𝜇𝐵𝑆 

Consequently, the total spin S of the system can be determined via a plot of Mm/NAgμB versus μBB/kT. 

The saturation of the curve, depicted in Figure 66, corresponds to the total spin of complex 4, which 

was determined to S = 0.5 (T = 2 K). 

 

Figure 66. Plot of Mm/NAgμB versus μBB/kT; from the saturation the spin ground state is determined to S = 0.5 (T = 2K, 
B = 5 T, g = 2.00 (fixed)). 

With the actual spin ground state of superoxide 4 in hand, the corresponding EPR spectrum can be 

interpreted. Figure 67 shows an axial CuII X-band EPR spectrum of a frozen MeCN solution of complex 4 

recorded at 161 K. The spectrum was simulated as S = 0.5 system with the software package easyspin, 

reproducing the experimental data (g-strains were applied).117 Three g-values of gx = 2.01, gy = 2.06, 

gz = 2.23 were simulated (a1 = 10 G, a2 = 70 G, a3 = 225 G). In comparison to the X-band EPR spectrum of 

complex 6, significant line broadening is observed. Since the sample was prepared in a glove box with 

<0.1 ppm O2, line broadening due to a contamination with O2 can be excluded. One further possibility 

may be the presence of a second superoxo species as observed for the complexes 7a and 7b, featuring 

a slightly different electronic structure. However, the simulated g-values of 4 and 6 are nearly identical 
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(6: gx = 2.02, gy = 2.05, gz = 2.22; a1 = 10 G, a2 = 30 G, a3 = 165 G), pointing at similar geometries of the 

copper oxygen cores in both complexes.  

 

Figure 67. X-band EPR spectrum (black line) and corresponding simulation117 (red line) of 0.01 M frozen solution of 4 in 
MeCN recorded at 161 K. 

In summary, the magnetic properties of complex 4 were investigated. While preliminary DFT 

calculations do not allow any definite assignment of the magnetic ground state, SQUID magnetometric 

measurements in solution revealed a doublet ground state. With respect to EPR spectroscopy, the 

unpaired electron may be located on one of the two CuII ions while the other CuII ion 

antiferromagnetically couples with the superoxide. However, these findings are not supported by the 

DFT calculations. With respect to the molecular structure of complex 4, the coordination environment 

of one of the CuII ions is more square pyramidal while the coordination environment of the other CuII 

ion is significantly distorted towards a trigonal bipyramidal geometry. With respect to an effective 

antiferromagnetic coupling of superoxide and CuII ion, the more square pyramidal coordination 

environment of one of the CuII ions corresponds to a good overlap of copper-and oxygen-centered 

orbitals, while a distortion towards a more trigonal bipyramidal environments diminishes such an 

interaction. However, only solution state magnetic data are available which cannot be directly related 

to the structural parameters, and thus magnetic data obtained from solid state samples of 4 are of 

considerable future interest. 
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6.4.5 Substrate Reactivity 

 The to date limited number of cupric superoxo complexes, of which only a few mononuclear 

examples are structurally characterized,76,84 has been mainly tested towards phenolic O-H bond 

cleavage reactions.170,79,146 The working groups of ITOH
87 and KARLIN

78 recently reported mononuclear 

copper superoxo complexes that mediate also benzylic C-H bond oxygenation, providing mechanistic 

insight into the biological processes of peptidylglycine α-hydroxylating monooxygenase (PHM) and of 

dopamine β-monooxygenase (DβM), which have been proposed to involve reactive copper oxygen 

species during substrate conversion.87,171,43  

Since complex 4 represents the first structurally characterized dinuclear cupric superoxo complex, its 

reactivity has been tested towards various O-H and C-H bond substrates. Substrate reactivity was 

monitored by UV/vis absorption spectroscopy in the temperature range from 0 to -40 °C in MeCN. 

Complex 4 is unreactive towards various C-H substrates, such as 1,4-Cyclohexadiene, 

9,10-Dihydroanthracene and Thioxanthene. Also O-H substrates such as the phenol derivatives 2,4-di-

tert-butylphenol and 4-(dimethylamino)phenol have been tested without observing any reactivity.  

However, when TEMPO-H is used as substrate (BDFE = 66.5 kcal mol-1, BDE = 69.6 kcal mol-1 in 

MeCN)172,173 kinetic data could be obtained (for experimental details see Section 7.12). Complex 4 

thereby cleanly reacts with TEMPO-H in forming hydroperoxide 2+H+ (see Scheme 19).  

 

Scheme 19. Reaction of 4 with TEMPO-H in forming hydroperoxide 2+H
+
. 

Before the kinetic data of this reaction will be discussed in detail, a thermodynamic square scheme for 

the transformation of 4 into 2+H+ will be introduced (see Scheme 20).174 Since the thermodynamic 

parameters for the reaction of 2+H+ to 2 as well as for the oxidation of 2 into superoxide 4 are available 

(see Step1 and Step2 in Scheme 20), the strength of the O-H bond in 2+H+ can be calculated according 

to Hess’ Law.174 The corresponding bond dissociation free energy (BDFE) can be derived as follows:174 

19) BDFEsol(OOH) = 1.37p𝐾a(𝑇 = 25 °C) + 23.06𝐸0 + 𝐶𝐺,sol 

Where CG,sol includes the free energy of formation of H
·
, the free energy for solvation of H

·
 and the 

nature of the used reference elctrode.174 However, the pKa of 2+H+ has been determined at -40 °C, 
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which will be used instead of the pKa value at T = 25 °C. Furthermore, E1/2 is assumed to be a good 

approximation of E0 and thus equation 19) is changed to:174 

20) BDFEsol(OOH) = 1.37p𝐾a(𝑇 =  −40 °C) + 23.06𝐸1

2

+ 𝐶𝐺,sol = 71.4 ± 0.3 kcal mol−1 

With pKa(2+H+) = 21.8 (MeCN, T = -40 °C), E1/2 = -0.58 V (versus Fc/Fc+, MeCN, T = 0 °C) and CG,sol = 

54.9 kcal mol-1 (MeCN, T = 25 °C)174, a BDFE of 71.4 ± 0.3 kcal mol-1 could be determined. In order to 

substantiate this calculation, different reagents were tested to bracket the relevant BDFE range. Since 

complex 4 cleanly reacts with TEMPO-H (BDFE = 66.5 kcal mol-1)174, but does not react with 

4-(Dimethylamino)phenol (BDFE = 72.4 kcal mol-1)175, the BDFE must fall within the mentioned limits. 

Thus, the calculated BDFE of 71.4 kcal mol-1 for complex 2+H+ is in good agreement with the observed 

chemical behavior (see Table 17 for BDFEs of all studied substrates).  

 

Scheme 20. Thermodynamic square scheme for reaction of 4 to 2+H+. No experimental evidence for [2+H+]+ could be 
found.174 

Nevertheless, the reaction of 4 to 2+H+ could occur via one concerted kinetic step (concerted 

proton-electron transfer (CPET) or H-atom transfer (HAT)) or via two sequential steps such as electron 

transfer (ET) in forming complex 2, followed by subsequent proton transfer (PT) (see Scheme 20). Since 

a hydrogen atom is transferred to the superoxide during the concerted process, this reaction is denoted 

as HAT rather than CPET. A two-step reaction starting with the protonation of 4 in forming an oxidized 
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hydroperoxide (denoted as [2+H+]+ in Scheme 20) followed by successive reduction is ruled out. A 

corresponding control experiment showed that 4 cannot be protonated with e.g. 2,6-lutidinium triflate. 

In order to verify if the H-atom transfer from TEMPO-H on superoxo complex 4 occurs via one 

concerted step or by two sequential steps starting with ET on superoxide 4, the thermodynamic 

parameters for both possible mechanisms will be compared. Since 4 readily reacts with TEMPO-H, 

ΔG0
HAT can be derived as follows:174 

21) ∆𝐺HAT
0 = BDFE(TEMPO-H) − BDFE(𝟐 + 𝐇+) = −4.9 ± 0.3 kcal mol−1 

The free energy for the ET (4 → 2) can be calculated according to:174 

22) ∆𝐺ET
0 = −𝑧𝐹∆𝐸0 = −(23.06 kcal mol−1 V−1)∆𝐸0 = 29.7 ± 0.2 kcal mol−1 

, where R represents the gas constant and F the Faraday constant; E0 (TEMPO-H/TEMPO-H·+) = 0.71 V.176 

The free energy for the ET is rather high and thus two steps initiated by an ET are unlikely. However, a 

more detailed discussion is provided later, when the free energy for the ET will be compared to the 

actual activation energy of this reaction obtained from kinetic studies. 

Table 17. Substrates tested during substrate reactivity with 4. 

substrate BDFE reactionc 

2,4-Di-tert-butylphenol 78.9a,175 no 

9,10-Dihydroanthracene 75.0174 no 

Thioxanthene 73.7b,90 no 

1,4-Cyclohexadiene 72.9b,174 no 

4-(Dimethylamino)phenol 72.3a,175 no 

TEMPO-H 66.5174 yes 

aBDFEs have been calculated from corresponding BDEs according to: BDFEsol(O-H) = BDEsol(O-H) – (CH,sol – CG,sol); CH,sol = 

59.4 kcal mol-1, CG,sol = 54.9 kcal mol-1.174 bBDFEs were calculated from gas phase BDFEs according to: BDFEsolv(X-H) = 

BDFEgas(XH) + ΔGsolv
0(H·) + ΔGsolv

0(X·) - ΔGsolv
0(XH); the free energies of XH and X· were assumed to be of same dimension 

(ΔGsolv
0(X·) - ΔGsolv

0(XH) = 0) and thus BDFEsolv(X-H) = BDFEgas(XH) + ΔGsolv
0(H·).174 cT = -40 °C, MeCN. 

 

With the BDFE of complex 2+H+ in hand, the reaction of 4 with TEMPO-H will be reconsidered. If 

TEMPO-H is added to the preformed superoxo complex (generated from complex 2 and AgSbF6), the 

complex rapidly forms complex 2+H+ (see Figure 68 and Figure 69). Isosbestic points at 290, 362 and 

380 nm indicate a clean conversion. 
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Figure 68. Reaction of complex 4 with 1.5 eq. of TEMPO-H; (MeCN, T = -40 °C); isosbestic points at 290, 362 and 380 nm. 

 

 

 

Figure 69. UV/vis spectra of complex 4 (red line), its precursor 2 (black line) and the product after addition of 1.5 eq. of 
TEMPO-H (blue line).  

The conversion of 4 into 2+H+ is not only clean but also quantitative, as control experiments prove. To 

that end, a solution of precursor 2 was reacted with a solution of 2,6-lutidinium triflate in MeCN in 

forming 2+H+ (see Section 6.3 for details concerning protonation of 2), which is used as reference 

spectrum (Figure 70, black line). Then, equimolar solutions of precursor 2 were oxidized into cupric 

superoxo complex 4 and subsequently 3.0 eq. (Figure 70, red line) and in another experiment 18.0 eq. 

(Figure 70, blue line) of TEMPO-H were added. The dilution of the precursor concentration during the 

addition of oxidant and substrate was minimal. 
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Figure 70. UV/vis absorption spectra of 2+H+ generated from titration of 2 with 2,6-lutidinium triflate (black line) and of 
the product of the reaction of 4 with different excess of TEMPO-H (red and blue line). The concentration of precursor 2 

was 74 µM in all three experiments, showing that 4 quantitatively reacts with TEMPO-H under exclusion of side 
reactions. 

Both product UV/vis absorption spectra are identical and match with the reference spectrum of 2+H+. 

The maximum at 372 nm of both product spectra is slightly more intense and blue-shifted compared to 

that of the reference, which is due to the presence of TEMPO radical after the reaction. The TEMPO 

radical has an absorption maximum in the near UV region that adds to the maximum of 2+H+ and 

induces the observed blue-shift of the band at 372 nm.  

From previous experiments (see Section 6.3 for details), complex 2+H+ is known to be reversibly formed 

from 2 and 2,6-lutidinium triflate. Consequently, 2+H+ has also been deprotonated under the 

aforementioned substrate reactivity conditions. Figure 71 shows the corresponding UV/vis absorption 

spectrum after addition of 2.0 eq. of DBU to the product of the reaction of 4 with TEMPO-H, 2+H+. The 

spectrum is identical to the electronic absorption spectrum of the “usual” deprotonation of 2+H+ with 

DBU (see Section 6.3), highlighting the overall clean conversion of e.g. 4 into 2+H+. It should be noted 

that peroxo complex 2 forms a weak adduct with the protonated form of DBU. Thus, the in Figure 71 

depicted electronic absorption spectra are slightly varying (see Section 6.3 for details).  



 

 
107 

 

 

Figure 71. Electronic absorption spectra of complex 2 before its oxidation to complex 4 (black line) and after the 
reaction of 4 with TEMPO-H to 2+H+, which then has been deprotonated with DBU (red line). 

Upon reaction of 4 with TEMPO-H, one proton and one electron are transferred from the substrate on 

the superoxide. In theory different mechanisms can be proposed for this type of reaction.177 The most 

common reaction is the hydrogen atom transfer (HAT), where a proton and an electron are 

simultaneously transferred in one kinetic step.177 The classical HAT mechanism starts with an organic 

radical that abstracts the hydrogen atom from the corresponding substrate, whereas transition metal 

complexes, acting as the H-atom acceptor, usually contain high valent metal centers.177,178 During this 

mechanism the metal center accepts the electron, while the proton is taken up by a basic ligand. 

Consequently, this reaction is better described as proton coupled electron transfer (PCET). The PCET 

usually proceeds via one concerted kinetic step and therefore is denoted as concerted proton-electron 

transfer (CPET).177,178 However, both mechanisms start with the formation of a so called precursor 

complex (pc) followed by e.g. subsequent HAT in forming a so-called successor complex (sc) that 

dissociates into the reaction products (see Scheme 21). The formation of the pc is mainly defined by the 

extent of steric interaction between the two reactants and can be the limiting step in HAT reactions, if 

the steric demand of one of the reactants is too high.177,179,180 The rate of the successive HAT is then 

determined by the magnitude of the reaction barrier, ∆Gǂ, which can be described by Marcus Theory.177 

The adiabatic form of the Marcus equation (see equation 23)) contains the reaction free energy ∆G0 as 

well as the reorganization energy λ, which is the energy that is required to reorganize the system from 

initial to final product coordinates.181,182,177  

23) ∆𝐺ǂ =  
(∆𝐺0+ 𝜆)2

4𝜆
 

The higher the reorganization energy is, i.e. the more pronounced the structural changes between 

complex 4 and 2+H+, the larger the reaction barrier will be and the more unlikely the HAT will occur. 
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Since the actual molecular structure of 2+H+ is unknown, no further conclusion concerning the 

reorganization energy for the reaction of 4 to 2+H+ can be made. 

 

Scheme 21. Schematic product formation via HAT from pc.177 

The formation of 2+H+ from superoxide 4 and TEMPO-H formally occurs via the transfer of a hydrogen 

atom on the superoxide and the reaction is assumed to follow the HAT mechanism (this outcome will 

be discussed later). With respect to the formation of the corresponding pc, the molecular structure of 4 

will be reconsidered. The solid state structure of complex 4 is similar to that of peroxo complex 2, 

where the peroxo unit is known to interact with different Lewis acids such as Li+. Even the protonated 

form of DBU, DBU·H+, was observed to form a weak adduct with 2 (see Section 6.3). The space-filling 

models of 2 and of 4 are depicted in Figure 72 and demonstrate that an easy access to the superoxo 

core for potential O-H substrates such as TEMPO-H is possible (this outcome will be discussed later). 

Consequently, the formation of the pc should easily occur in enabling subsequent HAT. 
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Figure 72. Space-filling models of peroxo complex 2 (left) and of superoxo complex 4 (right). 

By monitoring the reaction of complex 4 with TEMPO-H via UV/vis absorption spectroscopy, only a 

global rate constant can be determined (denoted as k in Scheme 21) that will be defined by the rate 

determining step. The global rate expression for the formation of 2+H+ from 4 and TEMPO-H is defined 

as: 

24) 𝑣 =  
d[𝟐+𝐇+]

dt
= 𝑘[𝟒]a[TEMPO-H]b 

Since the reaction of 4 and TEMPO-H occurs quantitatively and cleanly, the concentrations of 4 and of 

TEMPO-H can be determined at any time during the reaction and kinetic data have been obtained by 

monitoring the reaction progress at  = 550 nm over the whole course of the transformation (see 

Figure 73).183,184  

  

Figure 73. Left: formation of reaction product 2+H+ versus time at 1.28 mM excess of TEMPO-H (c (2+H+) = 70 μM); 
(right) calculated reaction rate for product formation versus time. 

The kinetic data have been obtained under substrate excess conditions (0.8 - 2.0 mM) at -40 °C. For 

linear regression methods, data have been used between 20 and 80% of complex conversion.185 The 
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overall rate was found to be first order in [4] (see Figure 74, right) and of first order in [TEMPO-H] (see 

Figure 74, left). The overall second order rate constant was determined at four different substrate 

excess conditions (see Figure 75 and Table 18), all showing similar values for k. An average rate 

constant of kav = 93 M-1 s-1 (T = -40 °C, substrate excess = 0.8 – 2.0 mM) could be determined, which will 

be used in the following discussion. At lower substrate excess conditions (0.07 mM, 0.15 mM) the 

overall rate constant was found to be of more complex order and no further investigations have been 

pursued. 

  

Figure 74. Left: Plot of reaction rate versus [4] at 1.28 mM excess of substrate. The reaction exhibits first order kinetics 
in the concentration of TEMPO-H; Right: Plot of reaction rate versus [TEMPO-H] at 1.28 mM excess of substrate. The 

reaction exhibits first order kinetics in the concentration of 4. 

 

 

Figure 75. Linear fit (data were used between 20 – 80% of complex conversion)185 of reaction rate 𝑣 versus 
[4]·[TEMPO-H] at 1.28 mM excess of substrate. The slope represents the overall second order rate constant (MeCN, 

T = -40°C). 
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Table 18. Second order rate constants determined for 4 at different TEMPO-H excess conditions (MeCN, T = -40 °C); an 
average second order rate constant of kav = 93 M

-1
 s

-1
 was determined. 

substrate excess [mM] k [M-1 s-1] 

0.82 95.6 

1.16 95.5 

1.28 88.5 

2.04 94.9 

 

Interestingly, kav is much larger compared to the second order rate constants determined for other 

mononuclear and dinuclear superoxo complexes, also performing O-H bond cleavage with 

TEMPO-H.186,90 The however not crystallographically characterized dinuclear superoxo complex 6 (see 

Scheme 22) for instance shows a corresponding second order rate constant of 0.08 M-1 s-1 (T = -25 °C), 

which is three orders of magnitude smaller than kav(4).90 One explanation for the comparably large rate 

constant may be an easy access to the superoxo core. The corresponding space-filling model for 4 was 

discussed previously (see Figure 72). 

 

Scheme 22. Substrate reactivity of complexes 4 and 6 with TEMPO-H and corresponding second order rate constants. 

To gain deeper insight into the reaction mechanism, kinetic isotope labeling studies with TEMPO-D 

have been performed at -40 °C. A kinetic isotope effect (KIE) of 3.5 has been determined, suggesting 

the HAT to be the rate determining step of the reaction. Thermodynamic data concerning the transition 

state of this reaction have been determined via an Eyring plot183 (see Figure 76, Hǂ = 16.0 ± 

0.8 kJ mol-1; Sǂ = -137 ± 3 J mol-1 K-1;Gǂ = 47.9 ± 0.7 kJ mol-1 (T = 233 K)). The negative transition state 

entropy of Sǂ = -137 J mol-1 K-1 points at an associative mechanism being part of the transition state 

that may be the HAT from the substrate on the cupric superoxo complex.  
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Figure 76. Eyring plot correlating rate constant k and temperature T. 

The activation energy ofGǂ = 47.9 kJ mol-1 (T = 233 K) is considerably smaller compared to that 

determined for the reaction of the structurally related complex 6 with TEMPO-H (Gǂ = 63.9 kJ mol-1, 

T = 233 K).90 These findings are in agreement with a significantly smaller second order rate constant 

determined during reactivity studies of 6 with TEMPO-H.90 

With the thermodynamic data of the corresponding transition state in hand, the previously discussed 

possible mechanisms will be reconsidered. The transfer of proton and electron from TEMPO-H on 

complex 4 may occur via one concerted step (HAT) or via two isolated steps (ET followed by PT). The 

corresponding free energy of the ET has been previously calculated to ∆𝐺ET
0  = 29.7 kcal mol-1. Since the 

activation free energy for the observed reaction has been determined to Gǂ = 13.8 kcal mol-1 

(T = 298 K), the stepwise pathway can be excluded (∆𝐺ET
0  is much larger than the free activation 

energy). Consequently, the H-atom transfer most likely occurs via one concerted step. 

Since 4 quantitatively reacts with TEMPO-H in forming hydroperoxide 2+H+, this reaction should 

furthermore be reversible. Consequently, the 2,4,6-tri-tert-butyl-phenoxy radical, tBu3PhO· (BDFE 

(tBu3PhOH) = 77.1 kcal mol-1, MeCN)187 was added stepwise in substoichiometric amounts to a solution 

of 2+H+, which has been freshly generated from compound 2 and 2,6-lutidinium triflate (see Section 6.3 

for details). The reaction was monitored by UV/vis absorption spectroscopy at -40 °C (see Figure 77). 

The initial absorption maxima of 2+H+ were found to decrease, simultaneously forming the 

corresponding superoxo complex, 4. After the addition of in total 1.02 equivalents of the radical, no 

further changes in absorbance are observed (see Figure 78, right). Next to complex 4, also minor parts 

of unreacted radical are present, giving rise to the absorption bands at ca. 380 and 410 nm. However, 

tBu3PhO· as well as tBu3PhOH are non-absorbing in the region of 450 nm and thus the maximum in 

intensity at 445 nm exclusively originates from complex 4. This fact can also be seen in Figure 78, right 

since the intensity of the maximum of 4 is not changing upon addition of excess of radical. 
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Figure 77. UV/vis titration of 2+H
+
 with 

t
Bu3PhO·, forming superoxo complex 4. 

t
Bu3PhO· was added stepwise in different 

concentrations. At first the radical was titrated in steps of 0.15 eq. (from 0 - 0.6 eq.), followed by steps of 0.075 eq. (from 0.6 -
 1.05 eq.). Isosbestic points at 363 nm and 380 nm indicate a clean conversion (MeCN, T = -40 °C). 

 

 

  

Figure 78. Left: UV/vis titration of 2+H+ with tBu3PhO·. tBu3PhO· was added stepwise in different concentrations. At first 
the radical was titrated in steps of 0.15 eq. (from 0 - 0.6 eq.), followed by steps of 0.075 eq. (from 0.6 - 1.5 eq.). Right: 

plot of extinction coefficient at λmax = 444 nm versus added amount of tBu3PhO·; the titration is completed after addition 
of 1.02 eq. of radical (MeCN, T = -40 °C). 

With this background in hand, one further possibility to quantify the completeness of the titration will 

be introduced, which will become essential in Section 6.5.1. For this purpose, the UV/vis absorption 

spectrum of product 4 will be compared with the corresponding spectrum of peroxo complex 2, from 

which 2+H+ has been generated prior to the reaction with tBu3PhO·. 

Superoxide 4 can also be quantitatively generated from complex 2, no side reactions are observed (see 

Section 6.3 for details). If the molar extinction coefficients of the maximum of 4 at 445 nm and of the 

maximum of 2 at 527 nm are compared, the absorption maximum of complex 4 is observed to be more 

intense by a factor of ca. 2.0. The same ratio is observed for the above-mentioned titration of 2+H+ with 
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tBu3PhO·, where complex 4 is formed (2+H+ has been generated from 2 previously, see Section 6.3 for 

preparation). Consequently, 2+H+ is quantitatively transformed into compound 4 upon addition of 

tBu3PhO·. Although this evaluation is quite trivial, this method will become essential in Section 6.5.1. 
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6.4.6 Modulation of the Redox Potential via Interaction with Alkali Metal Ions 

 Complex 2 can be reversibly oxidized in forming superoxo complex 4. This species represents the 

first fully characterized dinuclear superoxo moiety, which has been in detail introduced in 

Sections 6.4.1 - 6.4.5. With this background in hand, the electrochemical properties of the alkali metal 

adducts of 2 have been investigated (see Scheme 23).  

 

Scheme 23. Schematic representation of electrochemical oxidation of alkali metal adducts into superoxo complex 4. 

The alkali metal adducts 2+M+ were generated from complex 2 and the corresponding alkali metal 

triflate salt. This equilibrium is described by an association constant, Ka. The different binding constants 

have been determined via UV/vis titration experiments (see Section 6.2). While 2+Li+ is almost 

quantitatively formed within the addition of approximately 5 eq. of LiOTf, more than 50 eq. of KOTf are 

required for a nearly complete transformation of 2 into 2+K+. Since the electrochemical properties of 

exclusively the alkali metal adducts should be investigated, a huge excess of the corresponding alkali 

metal triflate salts has been used during the experiments (Li+: excess = 19 eq.; Na+: excess = 39 eq.; K+: 

excess = 119 eq.). Figure 79 shows a comparison of the cyclic voltammograms of 2 and 2+Li+, recorded 

at 0 °C in MeCN.  

  

Figure 79. Cyclic voltammograms of 2 (c = 2.8 mM) and of 2+Li+ (c = 2.7 mM; excess of Li+: 51.3 mM) recorded at 
100 mV/s scan rate (T = 0 °C, MeCN, 0.1 M solution of NBu4PF6 as supporting electrolyte). 

Both spectra show the same irreversible oxidation event at Epa,2 = 0.59 V, while the first oxidation at 

Epa,1 is shifted from -0.52 V in 2 to 0.23 V in 2+Li+. The corresponding reduction for 2 at Epc = -0.63 V is 
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only slightly shifted for 2+Li+ (Epc = -0.58 V). Since the oxidation of 2 to superoxide 4 occurs at the 

peroxo unit, this trend can be qualitatively explained. In 2+Li+, the Li+ ion is assumed to abstract 

electron density from the peroxide, as indicated by the short Li-O distances obtained from the 

molecular structure (see Section 6.2.3). Thus, the corresponding oxidation is shifted to higher potential 

in 2+Li+ in finally leaving complex 4 and a Li+ cation at the electrode. A subsequent reduction of 4 back 

to the peroxo level occurs at nearly same potential (Epc,1 (2+Li+) = -0.58 V) as observed in the absence of 

Li+ (Epc,1 (2) = -0.63 V, see Table 19). This may be due to no significant interaction of the Li+ cation and 

superoxo moiety 4. Indeed, a UV/vis titration of 4 with up to 100 eq. of LiOTf revealed no changes in 

absorbance and thus 4 is not interacting with Li+ as observed for complex 2 (see Section 6.2). Figure 80 

shows a summary of the cyclic voltammograms of 2 and the alkali metal adducts.  

 

Figure 80. Cyclic voltammograms of complexes 2 and 2+M+ at 100 mV/s scan rate. Complex concentration: 2: 3.02 mM; 
2+K+: 2.67 mM (excess of K+: 318 mM); 2+Na+: 2.26 mM (excess of Na+: 88.1 mM); 2+Li+: 2.69 mM (excess of Li+: 

51.3 mM) (T = 0 °C, 0.1 M solution of NBu4PF6 as supporting electrolyte). The anodic peak potential shifts towards higher 
potential in the presence of M+. The total shift increases from 2+K+ to 2+Li+ and reflects the in Section 6.2 demonstrated 

strength of Lewis acid and Lewis base interaction. 

The anodic peak potential of the first oxidation event of 2 at -0.52 V shifts to higher potential upon 

formation of the corresponding alkali metal adducts (see also Table 19). The absolute shift in potential 

clearly is a function of Lewis acidity of the coordinating alkali metal ion. A quantitative determination of 

the Lewis acidity of metal ions, however, is difficult.188 The Lewis acidity of a metal ion generally 

depends on the ratio of charge and ion radius.158 If the single positively charged alkali metal ions are 

considered, the Lewis acidity decreases from Li+ to K+ since the ionic radii increase in the same 

direction. Figure 81, left shows a plot of Epa,1 versus the reciprocal ion radius of the alkali metal ions. 

The observed correlation of peak potential and reciprocal ion radii shows that the anodic peak potential 

of the first oxidation event linearly depends on the Lewis acidity of the coordinating cation. Another 

possibility is a plot of Epa,1 versus the relative Lewis acidity (see Figure 81, right). The relative Lewis 
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acidity of the cations Li+ and Na+ was taken from the literature where it has been determined via EPR 

spectroscopy in comparing the binding energies of different metal ions with O2
·- evaluated from 

deviation of the gzz value from the free spin value.158,188 Again a linear correlation can be found, 

confirming the linear correlation of anodic peak potential and Lewis acidity of the coordinating alkali 

metal ion.  

Table 19. Anodic peak potentials of first and of second oxidation of 2 and of alkali metal adducts 2+M+ versus Fc/Fc+. 

complex Epa,1 [V] Epc,1 [V] Epa,2 [V] 

2 -0.52 -0.63 0.59 

2+K+ -0.45 -0.57 0.61 

2+Na+ -0.07 -0.63 0.64 

2+Li+ 0.23 -0.58 0.61 

 

  

Figure 81. Left: Plot of anodic peak potential of first oxidation versus reciprocal ion radii of the alkali metal ions.189 Right: 
Plot of anodic peak potential of first oxidation versus relative Lewis acidity of the alkali metal ions Na+ and Li+. The 

values are taken from literature, no value for K+ has been found.158,188 Relative Lewis acidity has been determined via 
EPR spectroscopy in comparing the binding energies of alkali metal ions with O2

·- evaluated from deviation of gzz value 
from the free spin value.158,188 

However, the observed trend is only qualitative, since especially the electrolyte concentration 

significantly varies in all four experiments. For 2+Li+ 20 eq. of LiOTf have been added, while for 2+K+ 

more than 100 eq. of KOTf were used. Additionally, background decay of especially 2+K+ was observed 

during the measurement, which is most likely due to minor impurities of KOTf. Nevertheless, the redox 

potential of the first oxidation event is observed to increase upon alkali metal binding. The same trend 

has been observed for the aforementioned mononuclear iron peroxo complex (see Section 6.4). 

However, the interaction of the iron peroxo core with the different redox inert metal ions is only 

predicted on the basis of DFT calculations, while the adduct formation of the alkali metal ions with 

complex 2 has also been confirmed spectroscopically. Thus, complex 2 represents the first reported 
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example, where the electronic structure of the metal oxygen core can be selectively modified by 

interaction with redox inert metal ions. Since especially Na+ and K+ are ubiquitary abundant, the 

function of these alkali metal ions in controlling reactivity in natural copper sites has to be investigated. 

The second oxidation event at ca. 0.6 V is not significantly affected by the presence of the different 

alkali metal ions (see Table 19). This oxidation may either correspond to the liberation of molecular 

dioxygen or to an oxidation of the ligand framework or of the CuII ions. If the cyclic voltammogram of 

complex 5 is considered (see Section 6.5), no oxidation event is observed at this potential. 5 thereby 

consist of the same ligand, with the peroxide being replaced by a water and a hydroxide molecule. An 

oxidation of the ligand framework or of the CuII ions should therefore not significantly deviate in 

potential from e.g. 2 and thus the oxidation event at 0.6 V may include the peroxide/superoxide bridge.  

Since the anodic peak potential for the oxidation of the peroxo moiety into the corresponding superoxo 

complex was observed to increase with the addition of LiOTf (Epa,1 = 0.23 V), a chemical oxidation of 

2+Li+ via Ag+ should not be possible (E0 = 0.04 V vs. Fc/Fc+ (MeCN))159. Figure 82 shows a UV/vis 

experiment where 1.6 eq. of AgSbF6 were added to a solution of 2+Li+ (2+Li+ has been previously 

synthesized from 2 and ca. 14 eq. of LiOTf).  

 

Figure 82. Reaction of 60 μM solution of 2+Li+ with AgSbF6 (1.6 eq.) in forming superoxide 4 over ca. 30 min (MeCN, 
T = -40 °C). 2+Li+ has been previously generated from complex 2 and ca. 14 eq. of LiOTf. 

However, the formation of 4 was observed over a period of 30 min. If this reaction is compared to the 

oxidation of 2 with AgSbF6, superoxide 4 is formed much slower (the oxidation of 2 into 4 with AgSbF6 is 

completed after few minutes). One explanation for the formation of 4 from complex 2+Li+ may be the 

equilibrium between 2+Li+ and peroxo complex 2. Although 2 binds the lithium ion with a high affinity 

(Kb = 6.9 × 105, see Section 6.2.1), still a minor amount of 2 is present in solution, which then is oxidized 

into complex 4. With respect to mass balance, 2 is subsequently formed from 2+Li+ and finally 2+Li+ is 

quantitatively oxidized to superoxide 4. 
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6.4.7 Summary and Conclusion 

 This chapter for the first time described the synthesis of a dinuclear copper(II) superoxo complex 

which could be characterized also crystallographically.  

Superoxide 4 can be generated from peroxo complex 2 both chemically as well as electrochemically, 

whereas both transformations are reversible. Since complex 2 represents the first ever reported 

example of a dicopper(II) peroxo complex, where the electronic structure of the Cu2/O2 core can be 

selectively modified by interaction with redox inert alkali metal ions (see Section 6.2), also the 

properties with respect to an oxidation to complex 4 were studied. The redox potential of the 

corresponding oxidation was thereby observed to increase upon alkali metal binding, whereas the total 

shift in redox potential significantly increases from 2+K+ to 2+Li+. Since especially Na+ and K+ are 

ubiquitary available, the function of these alkali metal ions in controlling reactivity in natural copper 

sites has to be investigated. 

Preliminary DFT calculations were performed on the molecular structure of 4, predicting a relatively 

weak magnetic coupling of CuII ions and superoxide due to a diminished overlap of copper- and 

oxygen-centered orbitals. However, the DFT calculations allow no absolutely clear assignment of the 

magnetic ground state. Nevertheless, with the help of solution state SQUID magnetometry, a S = 0.5 

ground state could be determined. The corresponding EPR spectrum shows an axial CuII line shape and 

thus the unpaired electron is located to a significant extent on one of the two CuII ions. 

Finally, kinetic investigations with complex 4 and TEMPO-H as substrate have been performed, 

revealing the selective formation of hydroperoxide 2+H+ in a concerted HAT process. A corresponding 

thermodynamic square scheme was developed and a BDFE of 71.4 kcal mol-1 could be determined for 

complex 2+H+. The second order rate constant determined for the reaction with TEMPO-H was found to 

be three orders of magnitude larger compared to that obtained for the structurally related superoxo 

complex 6.90 One explanation for these vast differences may be the open binding pocket of complex 4, 

enabling an easy access for potential substrates. With respect to future complex design for efficient 

substrate reactivity, this example shows that even small changes of the ligand scaffold strongly affect 

electronic and structural properties of reactive oxygen intermediates. 
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6.5 A Decomposition Product – Recycling and Formation 

 The aforementioned copper oxygen complexes 2, 2+M+ and 4 all decompose at temperatures above 

-25 °C with exception of 2+H+, which is only stable at temperatures below -80 °C. This species is 

furthermore highly sensitive towards traces of water, but this finding is discussed in Section 6.5.1. No 

matter which of these compounds is considered, all are forming the same decomposition product over 

time, which is denoted as complex 5. Until to date this species has been discarded when formed which 

is rather unsatisfactory, since ligand HL1 is generated in a multi-step synthesis under a high 

consumption of resources (see Section 7.13). With respect to “green chemistry” a possible “recycling” 

of 5 via e.g. generating the dinuclear copper(I) complex 1, which again can be selectively reacted into 

the corresponding dioxygen complexes, is of high interest (see Scheme 24).190,191 The following section 

will thus focus on the selective recycling of complex 5 and will further introduce Section 6.6, dealing 

with electrolytic water oxidation starting from compound 5.  

 

Scheme 24. Targeted recycling of hydroxo complex 5. 

Figure 83 shows the molecular structure of hydroxo complex 5, which has already been isolated in 

previous work.32,99 The CuII ions are coordinated in a distorted trigonal bipyramidal geometry (𝜏(Cu1) = 

0.44; 𝜏(Cu2) = 0.45) by four nitrogen donor atoms and by one additional oxygen atom of one water or 

of one hydroxide ligand, respectively.  

 

Figure 83. Solid state structure of complex 5 with thermal displacement ellipsoids given at 30% probability. Hydrogen 
atoms (except those of the H3O2 bridge), counterion ClO4

-, and additional solvent molecules are omitted for clarity; for 
selected bond lengths and angles see Section 7.7. 

 



 

 
121 

 

The two CuII ions are bridged by a hydroxide and an additional water molecule (denoted as H3O2 

bridge). The observed H3O2 bridge is facilitated by the given design of ligand HL1, inducing a constrained 

Cu-Cu separation (d(Cu-Cu) = 4.38 Å) which is too large for a monoatomic bridging unit such as a 

hydroxide.32 Consequently, the hydroxide is not solely bridging the two CuII ions in 5. A genuine 

hydroxide bridge is indeed observed for complex 7 (see Figure 84).34 This species is the decomposition 

product of peroxo moiety 3, which is structurally related to complex 2 (see Section 5).34  

 

Figure 84. Schematic representation of hydroxo complexes 5 and 7. Complex 7 is the decomposition product of peroxo 
compound 3.34 

The Cu···Cu distance in 7 was determined to 3.41 Å which is significantly shorter than the metal-metal 

separation in 5, enabling the hydroxide to bridge the two metal centers.34 This example again 

demonstrates the concept of intentional ligand design (see Section 5), to selectively determine 

geometry and consequently also reactivity of the corresponding metal site. While this section will 

demonstrate i.a. the selective transformation of 5 into the corresponding hydroperoxo and superoxo 

complexes 2+H+ and 4, complex 7 does not exhibit such chemistry.192 This effect is most likely due to a 

better accessibility of the binding pocket in complex 5, as can be seen by comparing the space-filling 

models of both complexes (see Figure 85). 

  

Figure 85. Space-filling models of hydroxo complexes 5 (left) and 7 (right).34 
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First studies focused on the electrochemical recycling of complex 5. Figure 86 shows selected cyclic 

voltammograms of 5 recorded under inert conditions at 100 mV/s scan rate. Mainly three irreversible 

waves at Epc,2 = -1.9 V, Epc,1 = -1.1 V and Epa,1 = 1.2 V are observed. With respect to a possible recycling of 

complex 5 the reductive wave at Epc,1 = -1.1 V is of considerable interest. Its origin may be a reduction of 

the ligand or a reduction of one or of both CuII ions.  

  

Figure 86. Cyclic voltammograms of complex 5 recorded under inert conditions at 100 mV/s scan rate (MeCN, c = 2.6 
mM, T = 23 °C); left: scan from -0.7 V to -2.0 V; right: scan from -0.1 V to 1.5 V;  

If the reduction event at ca. Epc,1 = -1.1 V corresponds to the formation of dinuclear copper(I) complex 1 

(see Scheme 23), this species should mainly remain located at the electrode within the scanning 

process and subsequently form peroxo complex 2 in the presence of molecular dioxygen. Consequently, 

dry dioxygen has been added to the CV cell and the experiment was repeated. Figure 87 shows two 

scans starting from -0.6 V (Figure 87, left) and from -0.9 V (Figure 87, right). The left spectrum looks 

similar to the experiment shown in Figure 86, which has been recorded under argon atmosphere. The 

right spectrum on the other hand starts from a potential of -0.9 V and shows a reversible wave at E1/2 = 

-0.56 V (vs. Fc/Fc+, MeCN, T = 23 °C). Subsequent experiments (see Figure 88 and Figure 89) confirmed 

this wave to correspond to the reversible oxidation of peroxo complex 2. Consequently, the irreversible 

wave in the cyclic voltammogram of complex 5 at approximately Epc,1 = -1.1 V can be assigned to the 

formation of dinuclear copper(I) complex 1. In the presence of molecular dioxygen, 1 reacts at the 

electrode to form complex 2. If the reductive scan starts from -0.6 V (see Figure 87, left), complex 1 is 

not present at the electrode and the corresponding cyclic voltammogram looks as that of complex 5 

recorded under inert conditions. 
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Figure 87. Cyclic voltammograms of complex 5 in the presence of dry dioxygen at 100 mV/s scan rate (MeCN, 
c = 2.6 mM, T = 23 °C); left: scan from -0.6 V to -2.0 V: right: scan from -0.9 V to -2.0 V. 

Figure 88 shows the cyclic voltammograms of a 2.6 mM solution of complex 5 recorded from -1.0 V 

to -0.3 V at different scan rates. Since dioxygen is present in solution, the formed copper(I) complex 

readily reacts to complex 2 which is then reversibly oxidized to superoxo compound 4 (E1/2 = -0.56 V (vs. 

Fc/Fc+, MeCN, T = 23 °C)). The reversible wave looks similar to that of a freshly prepared solution of 

complex 2 recorded at 0 °C (E1/2 = -0.58 V (vs. Fc/Fc+, MeCN); see Section 6.4.1, Figure 59 for details). 

The slight difference in potential is most likely due to different reaction conditions. 

  

Figure 88. Left: cyclic voltammograms of complex 5 under an atmosphere of dry dioxygen and argon at different scan 
rates from -1.0 V to -0.3 V (MeCN, c = 2.6 mM, T = 23 °C); right: plot of anodic current versus square root of scan rate; 

R2 = 0.993. 

These experiments show that complex 5 can be electrochemically recycled to form complex 1, which 

then can be selectively transformed into peroxo complex 2. The recycling of 5 can also be achieved 

chemically by using a reductant of suitable redox potential. Figure 89 shows the reaction of 5 with 

2.2 eq. of CoCp2, which has a redox potential of -1.34 V (vs. Fc/Fc+, MeCN, T = 25 °C).193 
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Figure 89. Black line: UV/vis absorption spectrum of 99 μM solution complex 5 (MeCN, T = -40 °C); red line: electronic 
absorption spectrum of complex 5 after the addition of 2.2 eq. of CoCp2; blue line: UV/vis spectrum after addition of 

dioxygen to mixture of complex 5 and CoCp2. 

The initial solution of complex 5 shows two maxima in absorbance at ca. 280 nm and at ca. 700 nm plus 

an additional weak shoulder at ca. 390 nm. The broad band at ca. 700 nm can be most likely attributed 

to a ligand field transition which vanishes upon addition of the reductant, CoCp2 (Figure 89, red line). 

Since the two CuI ions of the fully reduced complex have a d10 configuration no d-d transition is 

possible, explaining the absence of an absorption band in the region of 700 nm upon addition of the 

reductant. The intense band at ca. 320 nm as well as the shoulder at ca. 400 nm are attributed to the 

oxidized form of CoCp2, CoCp2
+.194,195 With subsequent addition of an excess of dry dioxygen, peroxo 

complex 2 is immediately formed (Figure 89, blue line). The spectrum shows the typical absorption 

pattern corresponding to CP species 2. The absorption bands of CoCp2
+ at 320 nm and at 400 nm 

additionally almost disappeared which may be explained by a decay of this species under the existing 

conditions. 

This method enables the selective chemical recycling of decomposition product 5. Peroxo complex 2 

can afterwards be selectively reacted to the corresponding alkali metal adducts as well as to superoxo 

complex 4 or to the hydroperoxide 2+H+ (see Sections 6.2 – 6.4 for details). However, with respect to 

“green chemistry” an electrochemical recycling of 5 should be preferred, since a chemical 

transformation requires stoichiometric amounts of reductant. 

Complex 5 can be furthermore directly transformed into hydroperoxide 2+H+ (see Figure 90). For this 

purpose a solution of hydrogen peroxide (35% in H2O) has been added to a solution of complex 5 

(MeCN, T = 1 °C). The initial bands of H3O2 bridged complex 5 immediately vanished by forming the 

corresponding hydroperoxo complex 2+H+. However, the formation of 2+H+ was only observed for a 

few seconds since this compound rapidly decomposes at such high temperatures and in the presence of 

an excess of water. Indeed, complex 2+H+ is known to be very sensitive towards traces of water and 
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rapidly decomposes at temperatures above -40 °C (see Sections 6.3). From previous work (see 

Section 6.4 for details) complex 2+H+ is known to be selectively transformed into superoxo complex 4 

via H-atom abstraction. The corresponding superoxide is much more stable towards traces of water and 

elevated temperatures. Thus, the reaction has been repeated with subsequent addition a solution of 

2,4,6-tri-tert-butyl-phenoxy radical (referred to as tBu3PhO·) to a solution of 5 and hydrogen peroxide 

(see Figure 90).  

 

Figure 90. a): Schematic representation of reaction of 5 to the corresponding hydroperoxo/superoxo complexes 2+H+/4; 
b): reaction of 130 μM solution of hydroxo complex 5 (black line) with I): 1.1 eq. of H2O2 in forming compound 2+H+ and 
II): 5.0 eq. of radical tBu3PhO in forming superoxo species 4 (MeCN, T = 1 °C); c): UV/vis absorption spectrum of 30 μM 

solution of radical tBu3PhO (MeCN, T = 1 °C). 

Within addition of 1.1 eq. of aqueous H2O2 to a solution of complex 5, hydroperoxo complex 2+H+ 

directly starts to form (see Figure 90, b)). Subsequently, a solution of tBu3PhO· has been added (5.0 eq.) 

and the formation of superoxo complex 4 was observed over ca. 5 min, after which time complex 4 

started to decompose. This experiment demonstrates that the decomposition product 5 can be 

chemically recycled by forming the complexes 2+H+ and 4. This reaction was also possible at room 

temperature, although the complexes 2+H+ and 4 were observed to rapidly decompose under these 

conditions.  
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In another experiment a solution of tBu3PhO· has been at first added to a solution of complex 5, 

followed by addition of different excess of hydrogen peroxide (see Figure 91). When the radical is 

added to decomposition product 5, no reaction is observed (Figure 91, red line) until aqueous H2O2 is 

injected, immediately initiating the formation of superoxide 4 (see Figure 91, blue line). However, when 

2.0 eq. of H2O2 are used instead of 1.1 eq., much less 4 is formed. An excess of H2O2 seems to promote 

the decay of complex 4. This may be due to the excess of hydrogen peroxide, initiating further side 

reactions or due to the excess of water accelerating the decay of complex 4. After complete 

decomposition, the solution has been again analyzed by means of UV/vis absorption spectroscopy. Next 

to complex 5 a colorless precipitate has been observed, which could not be identified. 

  

Figure 91. Reaction of 86 μM solution of complex 5 and tBu3PhO· with different excess of hydrogen peroxide.  
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6.5.1 Formation of 5 from Hydroperoxo Complex 2+H+ 

 The previous section described in detail the recycling of complex 5, which is similarly formed during 

the decomposition of the reactive species 2, 2+M+, 2+H+ and 4. However, the complexes 2, 2+M+ and 4 

are much more stable with respect to the formation of the H3O2 bridged decomposition product than 

hydroperoxide 2+H+ (see Sections 6.1 – 6.4). Thus, the formation of 5 from 2+H+ may occur via a 

different mechanism, which is potentially promoted by the special geometry of the copper oxygen core 

in 2+H+. The following section will present a possible mechanism for the decay of complex 2+H+, 

explaining conclusively the high instability of this species.  

Complex 5 was shown to partially react to hydroperoxo complex 2+H+ upon addition of aqueous 

hydrogen peroxide (see Section 6.5) and thus H2O2 may on the other hand be released during the 

decomposition of 2+H+ (see Scheme 25). The H3O2 bridge in complex 5 suggests that H2O may also be 

mechanistically involved in the decomposition of complex 2+H+. Indeed, 2+H+ was observed to be 

sensitive towards water, which will be discussed later. However, the actual molecular structure of the 

copper oxygen core of 2+H+ is still ambiguous and thus the following discussion is only of tentative 

character. The assumed μ-1,2 HO2
- binding mode in 2+H+ is rather unlikely in such as an additional 

water molecule may be involved in the actual complex. The additional water molecule may connect the 

hydroperoxide bound end-on to one of the copper ions with the second copper atom (see Scheme 25, 

Int. 1). However, for both 2+H+ and Int. 1 no structural evidence is available and thus the following 

discussion will deal with 2+H+ rather than Int. 1. 

 

Scheme 25. Possible mechanism of the decay of complex 2+H+; the actual structure of 2+H+ is unclear and may conform 
with that of Int. 1. 

The mechanistic considerations are based on different UV/vis experiments of which selected examples 

will be presented in the following. First of all, another experiment will be reconsidered which has been 

introduced previously. In Section 6.4.5, the quantitative transformation of 2+H+ into superoxide 4 upon 

addition of the H-atom abstracting reagent tBu3PhO· was demonstrated. 2+H+ thereby was synthesized 

from complex 2 and 2,6-lutidinium triflate. Peroxide 2 can be furthermore directly transformed into 

superoxide 4 via addition of various oxidants such as AgSbF6 and Cu(OTf)2 (see Section 6.4.1). 

Regardless of the different syntheses, all UV/vis absorption spectra of the final product 4 show the 
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same maxima in absorbance with similar intensity. The intensity of the main CT transition of 4 (λmax = 

445 nm, ε = 10 - 11 mM-1 cm-1) is around two times higher than the maximum of 2 (λmax = 527 nm, ε = 

5.1 - 6.0 mM-1 cm-1). A similar ratio is observed by comparing the maxima of 4 and 2+H+ (see Table 20).  

Table 20. Selected absorption maxima and corresponding intensities of relevant copper oxygen complexes. 

complex λmax [nm] ε [mM-1 cm-1] 

4 445 10 - 11 

2 527 5.1 - 6.0 

2+H+ 435 5.1 - 6.2 

 

With this knowledge in hand, the primarily mentioned sensitivity of 2+H+ towards H2O will be 

reconsidered. Figure 92 shows two independent titration experiments of precursor complex 2 with 

2,6-lutidinium triflate (MeCN, T =  -40 °C). The first experiment (Figure 92, left) was performed in MeCN, 

containing 3.5 ppm of water (determined via Karl-Fischer titration). The spectrum illustrates the already 

described formation of 2+H+ (see Section 6.3) which is completed after an addition of ca. 1.0 eq. of 

2,6-lutidinium triflate. The final absorption spectrum shows two maxima in absorbance at 372 nm and 

435 nm (ε = 3.7 and 6.2 mM-1 cm-1). 

 

 

Figure 92. UV/vis spectra of the titration of 2 with 2,6-lutidinium triflate in MeCN, containing different amount of water 
(left: 3.5 ppm; right: 15.6 ppm) (MeCN, T = -40 °C); the water content of the solvent was determined via Karl-Fischer 

titration. 

The second titration was carried out in another batch of MeCN, containing 15.6 ppm of water. The 

titration was also finished after the addition of ca. 1.0 eq. of 2,6-lutidinium triflate. However, 2+H+ is 

not cleanly formed under these conditions (see Figure 92, right). The final spectrum features a 

maximum in absorbance at 435 nm (ε = 2.6 mM-1 cm-1) and a shoulder at 364 nm (ε = ca. 2.5 mM-1 cm-1). 

In contrast to the first titration (see Figure 92, left), however, hydroperoxide 2+H+ was only formed in 

40% yield in the second experiment. Since both titrations have been performed under same conditions 

except of a different content of H2O in the solvent, the total concentration of water seems to influence 

the outcome. One explanation for this trend may be the formation of a weak adduct of complex 2+H+ 
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and water, which is formed to a greater extent during the second titration. Nevertheless, such an 

adduct formation should induce structural and thus electronic changes of the copper oxygen core, as 

observed during e.g. the alkali metal adduct formation of complex 2 described in Section 6.2. 

Consequently, the absorption maxima of the adduct of 2+H+ and water would shift in energy and the 

final spectra of both titration experiments should vary considerably. Since the main CT transition of 

2+H+ is found at λ = 435 nm in both experiments, an adduct formation between 2+H+ and H2O is rather 

unlikely and will be neglected in the following discussion.  

One further possibility may be the decomposition of 2+H+ in the presence of H2O in forming complex 5 

(see Scheme 26). The UV/vis absorption spectrum of 5 is thereby showing two main CT transitions at 

278 nm (ε = 9700 M-1 cm-1) and at 390 nm (ε = 4600 M-1 cm-1) and a ligand field transition at ca. 690 nm 

(ε = 800 M-1 cm-1). If the second titration is reconsidered (see Figure 92, right), the partial formation of 

decomposition product 5 may explain the shift of the shoulder of 2+H+ from 372 nm to 364 nm, since 

complex 5 is featuring an intense band at 278 nm. Indeed, hydroxide 5 was demonstrated to react to 

2+H+ in the presence of hydrogen peroxide in Section 6.5. A corresponding formation of 5 from 2+H+ by 

liberation of e.g. H2O2 is thus principally possible. With respect to the in Figure 92 depicted UV/vis 

experiments, the possible formation of 5 clearly depends on the concentration of H2O in the solvent. 

Consequently, H2O must be involved in the actual mechanism of decomposition. One possible 

mechanism may be a water-mediated liberation of H2O2 in forming decomposition product 5. The 

possible equilibrium of 2+H+, H2O, 5 and hydrogen peroxide is depicted in Scheme 26.  

 

Scheme 26. Proposed equilibrium between complexes 2+H+ and 5. 

Since 2+H+ is known to quantitatively react with the tBu3PhO· radical forming complex 4 (see 

Section 6.4.5), this reaction was used to probe the in Scheme 26 proposed equilibrium between 2+H+ 

and hydroxide 5. A successive addition of tBu3PhO· to complex 2+H+ will immediately induce the 

generation of superoxide 4 from hydroperoxide 2+H+. Consequently, 2+H+ is gradually formed from 5 

and hydrogen peroxide (see Scheme 27). The addition of tBu3PhO· should therefore quantitatively 

produce complex 4 from the proposed mixture of 2+H+ and 5 (see Scheme 27).  
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Scheme 27. Proposed equilibrium between complexes 2+H+ and 5 and reaction of 2+H+ with tBu3PhO·in forming 
superoxide 4. 

Figure 93 shows the titration of the assumed mixture of the complexes 2+H+ and 5 with tBu3PhO· 

depicted in Figure 92, right. Upon addition of substoichiometric amounts of tBu3PhO· (titration in steps 

of 0.065 eq., with overall 1.235 eq. added), complex 4 is gradually generated. After the addition of 

1.235 eq. of radical, no further changes in absorbance are observed.  

 

 

Figure 93. Left: UV/vis titration of mixture of 2+H+ and 5 with tBu3PhO· in steps of 0.065 equivalents. The mixture of 
2+H+ and 5 has been previously generated from complex 2 and 2,6-lutidinium triflate (with the solvent containing 

15.6 ppm of water, T = -40 °C (see Figure 92, right for corresponding titration)). After addition of in total 1.235 eq. of 
radical, no further changes in absorbance are observed. Right: UV/vis absorption spectra of precursor 2 (black line); of 
mixture of complexes 2+H+ and 5, synthesized from precursor 2 and 2,6-lutidinium triflate (red line); and of superoxide 
4, generated from titration of the mixture with tBu3PhO·. With respect to the intensities of the maxima of complexes 2 

and 4, the mixture of 2+H+ and 5 has been transformed quantitatively into superoxide 4 (see Table 20).  

When comparing the intensities of the maxima in absorbance of superoxide 4 and of precursor 2, a 

ratio of ca. 2:1 is observed. With respect to peroxide 2, complex 4 has thus been quantitatively 

synthesized from the mixture of 2+H+ and 5 (see Table 20). This experiment shows that complex 2+H+ 

may be in equilibrium with hydroxide 5. The stepwise generation of 4 induces the formation of 2+H+ 

from 5 in the presence of H2O2. If on the other hand tBu3PhO· is added to a solution exclusively 

containing complex 5, no reaction is observed, neither in the presence of dioxygen and/or water. This 

experiment shows that most likely hydrogen peroxide is reversibly released during the decomposition 

of complex 2+H+. In another experiment, complex 2+H+ has been freshly generated form 2 and 

2,6-lutidinium triflate (see Figure 94, left). The water content of the solvent was determined to ca. 
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4 ppm. Afterwards, H2O was added stepwise (H2O was dissolved in MeCN, approximately 2 eq. of water 

were added per addition) to complex 2+H+ and the changes in absorbance were monitored (see Figure 

94, right). Upon stepwise addition of H2O, the initial maxima of 2+H+ at 435 nm and 372 nm rapidly 

decreased. Between each addition, an equilibration time of several minutes was given, where no 

further significant changes in absorbance were observed, until another 2 eq. of H2O were added. While 

the maximum at 435 nm is not shifting during the experiment, the weaker band at 372 nm is slightly 

blue-shifted to a final value of 365 nm. This trend has already been observed (see Figure 92, right). 

Consequently, the experiment shown in Figure 94 represents a combination of the two previously 

discussed titrations (see Figure 92). At first, 2+H+ is generated under “dry” conditions and the spectrum 

depicted in Figure 94, left is observed, which is identical to that shown in Figure 92, left. Then, H2O is 

successively added and 2+H+ is partially transformed into complex 5, which corresponds to the 

experiment depicted in Figure 92, right. Subsequent addition of tBu3PhO· to the mixture of 2+H+ and 5 

leads to a quantitative formation of superoxide 4 from 2+H+ and 5, as already demonstrated previously.  

In summary, the ratio of 2+H+ and 5 clearly depends on the concentration of H2O in the corresponding 

solvent. In the presence of H2O2, however, addition of the tBu3PhO· radical induces quantitative 

formation of 4. Consequently, the gradual formation of 5 from 2+H+ and water is reversible. Most likely, 

hydrogen peroxide is released during the decomposition of 2+H+.  

  

Figure 94. Left: UV/vis spectra of precursor 2 (black line) and of 2+H+ (red line). Right: UV/vis titration of 2+H+ with H2O 
in steps of ca. 2 eq. (mixture of H2O and MeCN, T = -40 °C); a formation of hydroxide 5 is observed upon addition of H2O. 

Complex 2+H+ was demonstrated to easily form hydroxide 5. Due to the equilibrium between these two 

species always small amounts of 5 are present in solution, since it is de facto not possible to work under 

absolutely water free conditions. The equilibrium between 2+H+ and 5 may thereby be one essential 

reason, why so far no molecular structure of 2+H+ could be determined. Since hydroxide 5 preferably 

crystallizes under all so far tested crystallization conditions, this species is permanently formed from 

2+H+. Finally, complex 5 quantitatively crystallized although this species was only present in small 

amounts in solution.  
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6.5.2 Summary and Conclusion 

 This section exclusively focused on the recycling of decomposition product 5, which can be 

selectively reduced to give complex 1 both chemically and electrochemically. Complex 1 has been 

subsequently treated with dioxygen to form peroxo complex 2, which can be furthermore transformed 

to the corresponding superoxo or hydroperoxo species (see Scheme 28). Complex 5 has also been 

directly transformed into complex 2+H+ by using hydrogen peroxide. Subsequent treatment with 

tBu3PhO· further enables the synthesis of superoxo complex 4. Thus, by starting from decomposition 

product 5 the complexes 2, 2+H+ and 4 can be selectively recovered.  

 

Scheme 28. Synthesis of oxygen complexes 2, 2+H+ and 4 starting from decomposition product 5. 
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Hydroxo complexes such as 5 and 7 are usually formed during the decomposition of synthetic dicopper 

oxygen complexes and have been discarded until to date. This approach is rather unsatisfactory since 

the ligand systems HL1 and HL2 as well as the corresponding copper(I) complexes are generated in a 

time consuming multi-step synthesis under a high consumption of resources.32,34 With respect to 

potential substrate conversion performed by reactive copper oxygen species such as the complexes 2, 

2+H+ or 4, complex 5 will be unavoidably formed as decomposition product over time. Until today the 

mechanistic understanding of substrate conversion performed by reactive oxygen complexes is 

intensively focused, while the development of sustainable systems of the type of 2, 2+H+ or 4 is 

unrepresented. A specific recycling of 5 to the corresponding copper oxygen complexes is thus of 

considerable interest, since the efficiency of possible substrate conversion promoted by such reactive 

oxygen species could be increased drastically. This work therefore presents unique approaches of how 

biomimetic copper oxygen complexes could become efficient catalysts.  

However, only complex 5 can be chemically recycled, while 7 is inert towards this kind of chemistry. The 

structural differences of these quite similar complexes were discussed and provide important 

information for the synthesis of other copper complexes. With respect to a chemical recycling, the 

access of the substrate binding pocket of the corresponding copper complex is of major relevance. 

While the copper site in 7 is less accessible due to the specific ligand design, 5 features an open binding 

pocket which most likely is the main reason for the possible chemical recycling. 

With respect to “green chemistry”, especially the electrochemical generation of 1 may be of future 

interest, since no chemical reagent is required for this transformation. This observation suggests 

further investigations towards a possible application of complex 5 or of structurally related systems for 

electro-catalytic substrate conversion.  

Next to a selective recycling of complex 5, this chapter further investigated the low stability of 

hydroperoxide 2+H+. UV/vis spectroscopic studies revealed a water-dependent equilibrium between 

2+H+ and 5. Hydroperoxide 2+H+ was thereby observed to be sensitive towards traces of water and 

most likely, hydrogen peroxide is released during the decomposition of 2+H+ under aqueous conditions. 

However, the mechanistic details of especially the transformation of complex 5 into hydroperoxide 

2+H+ are not clear until to date and require further investigations. A molecular structure of 2+H+ is thus 

of considerable interest, although a successful crystallization of this species is challenging due to the 

equilibrium with 5, which preferably crystallizes under all tested conditions. 
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6.6 Electrocatalytic Water Oxidation  

 Electrocatalytic water oxidation has become a topic of intensive studies within the last decade, since 

a sustainable production of clean energy is one of the main scientific challenges of this century.196,197,198 

The pioneering investigations are thereby inspired by Photosystem II, where water is split into protons, 

O2 and electrons (2H2O  O2 + 4H+ + 4e-).199 The actual oxidation of water occurs at the oxygen evolving 

complex (OEC), where four manganese and one calcium atom are held together by bridging oxo and 

hydroxo ligands in a cubic structure.196 The specific mimicking of this unique reactivity implies a 

significant mechanistic challenge, since water is split in protons and electrons in breaking four O-H 

bonds under subsequent O-O bond formation.199,200 Since a high thermodynamic potential of 1.23 V (vs 

NHE at pH 0.0) is required for this process, oxidatively robust ligand systems have to be developed that 

additionally enable the synthesis of water soluble metal complexes.200 The most intensively studied 

synthetic metal sites are based on ruthenium (Ru) and iridium (Ir), whereat earth abundant first row 

transition metals such as iron and copper are recently gaining increasing interest.196 In contrast to Ru 

and Ir the first row transition metals are attractive because of their low costs.201 Additionally, iron and 

copper are promising candidates for artificial water oxidation due to a wide scope of biomimetic oxygen 

complexes (see Sections 2 and 3).201,44,202 However, the actual mechanism of action at synthetic model 

complexes is still under debate, whereat mainly two different mechanisms have been proposed (see 

Scheme 29).203 

 

Scheme 29. Schematic representation of I2M and WNA mechanisms.203 

The water nucleophilic attack (WNA) mechanism involves the nucleophilic attack of one external water 

molecule on a high valent metal oxo compound, forming a metal peroxo intermediate.196,203 The metal 

oxidation state is thereby reduced by two units. The I2M mechanism on the other hand describes the 

coupling of two formal oxyl radicals.203 The oxidation state of the metal centers is not changed during 

this process. However, both mechanisms involve high valent metal oxo compounds (the I2M 
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mechanism describes two metal oxo species that hold radical character) which is the reason for a 

usually short lifetime of the catalyst due to self-oxidation of the ligand framework.196 Thus, the 

synthesis of oxidatively robust ligand systems is one fundamental requirement in water oxidation 

catalysis.204 Most of the Ru and Ir based water oxidation catalysts were found to follow one of these 

two aforementioned pathways.196 Nevertheless the mechanism of action of first row transition metal 

complexes is mostly unknown. Recently, a third mechanism has been proposed for mononuclear 

copper and ruthenium complexes, which is referred to as single electron transfer water nucleophilic 

attack (SET-WNA).203 The SET-WNA is a combination of WNA and I2M since it most likely proceeds 

either from a metal oxo or from the corresponding metal oxyl moiety.203 In the SET-WNA mechanisms 

the external oxygen atom does not transfer two electrons in one concerted step as during the WNA 

attack.203 Instead, two single electron transfers are observed. The first SET involves a (O···OH)·- 

fragment, where both oxygen atoms are featuring a formal oxidation state of -1.5 (see Scheme 30, 

intermediate xxii-iii).203 The second SET occurs in forming a hydroperoxo complex (see Scheme 30, 

intermediate xxii-vi), from which dioxygen is finally released.203 Thus, the SET-WNA mechanism requires 

the formation of a stable (O···OH)·- intermediate.203 This mechanism shows that water oxidation 

especially at early transition metal complexes may occur without the formation of high valent metal 

oxo species. With this knowledge in hand, new early transition metal complexes may be designed, 

enabling water oxidation at lower overpotential.203 Consequently, the lifetime of the corresponding 

catalyst may be increased due to less favored self-oxidation of the ligand. 

 

Scheme 30. Postulated catalytic cycle for SET-WNA attack mechanism.203  

Recently, a dinuclear copper complex has been published that performs water oxidation at neutral 

aqueous conditions.205 The postulated mechanism involves an intramolecular O-O bond formation by 

avoiding high valent Cu(IV) oxo sites (see Scheme 31).205 The actual catalyst is assumed to consist of a 

water and an additional hydroxide molecule, the latter bridging the two Cu(II) atoms (see Scheme 31, 
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xxiii-i).205 At first, two protons and two electrons are released in two independent steps from the water 

and hydroxide ligands. The corresponding intermediate xxiii-ii is featuring two Cu(III) ions, most likely 

being bridged by an oxo moiety. Subsequently, an oxo bridge and an additional hydroxo ligand are 

forming the O-O bond whereat a pyridyl donor site serves as proton acceptor (Scheme 31, xxiii-iii).205 

The resulting peroxo species then is oxidized by one electron to the corresponding superoxo complex, 

xxiii-iv. Finally, molecular dioxygen is released and the catalyst is retained.205 However, this mechanism 

is exclusively based on DFT calculations and none of the postulated intermediates has been isolated or 

spectroscopically characterized.  

 

Scheme 31. Postulated water oxidation mechanism for dinuclear complex [Cu(BPMAN)(μ-OH)]3+ BPMAN = 2,7-[bis(2-
pyridylmethyl)aminomethyl]-1,8-naphthyridine.205 

In summary, different mechanisms for water oxidation at mid and late transition metal complexes are 

postulated, which are mainly supported by DFT calculations. In this thesis complex 5 has been 

introduced, which can be selectively transformed into the reactive Cu2/O2 species 2, 2+H+ and 4 at 

ambient conditions (see Section 6.5). With respect to the mechanism depicted in Scheme 31, all of 

these Cu2/O2 species are potential intermediates during water oxidation at dinuclear copper complexes. 

Thus, 5 is a valuable candidate for studying electrolytic water oxidation. The following section will focus 

on electrolytic water oxidation starting from complex 5 and will further introduce Section 6.6.2, dealing 

with a computational consideration of this topic. 
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6.6.1 Towards Electrocatalytic Water Oxidation 

 The formation of complex 5 during decomposition of e.g. peroxo complex 2 and hydroperoxo 

complex 2+H+ has been described in previous sections. However, for electrocatalytic water oxidation 

complex 5 has been synthesized directly from ligand HL1 and Cu(ClO4)2 (see Section 7.13.6 for 

instructions). Single crystalline material was obtained via Et2O diffusion into concentrated solutions of 

CHCl3/MeCN. Elemental analysis revealed the presence of complex 5 in high purity. An ESI mass 

spectrum was recorded and exclusively shows complex 5 as product (see Section 7.13.6). 

In order to investigate the properties of 5 towards electrolytic water oxidation, the water solubility of 

this species has been tested at first. Figure 95 shows the UV/vis absorption spectrum of 5 recorded at 

22 °C (MeCN, c = 99 μM). Two absorption maxima at 281 nm and 690 nm and a shoulder at 386 nm are 

observed. When 100 μL of demineralized water were added, the shoulder at 390 nm vanished and the 

maximum at 281 shifted to 278 nm (see Figure 95, blue line).  

 

Figure 95. UV/vis absorption spectra of 5 dissolved in MeCN (black line) and after addition of 100 μL of demineralized water 
(blue line) (T = 22 °C). No further spectral changes were observed during addition of more water. 

Further addition of water induced neither spectral changes, nor precipitation of 5 was observed. If on 

the other hand a solution of 5 in MeCN (V = 20 μL, c = 0.01 M) is added to 2.5 mL of demineralized 

water (pH 6.5), the same electronic absorption spectrum is monitored, which does not change during 

storage at RT over month. However, complex 5 is only water soluble in the presence of MeCN, although 

the overall amount of organic solvent can be small. With respect to electrolytic water oxidation, 5 

needs to be stable in e.g. phosphate buffer, since the pH value must be hold constant especially during 

long term electrolysis. For this purpose, a solution of 5 in MeCN was mixed with water (pH 13, 0.1 M 

ionic strength phosphate buffer) and the corresponding electronic absorption spectrum was recorded. 

The spectrum looks similar to that recorded at pH 6.5, with the main CT transition located at 275 nm 

(see Figure 96, left). The same solution was recorded after two weeks of storage at RT, showing no 
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differences in absorption. Thus, complex 5 is stable under these conditions, while the mononuclear 

copper-bipyridine system capable of electrolytic water oxidation established by MAYER
201 was observed 

to decompose at pH 12.5 (0.1 M NaOAc, T = 22 °C) within 24 h.206 Since the electronic absorption 

spectrum of complex 5 recorded in phosphate buffer looks exactly like the spectrum recorded in 

demineralized water, phosphate is not interacting with the copper core by e.g. binding to the metal 

centers. Additionally, the H3O2-bridge is not deprotonated at e.g. pH 13, which would significantly 

change the electronic absorption spectrum. However, in order to further study a possible 

deprotonation of the bound water molecule at basic conditions, complex 5 has been analyzed via 

UV/vis absorption spectroscopy from pH 8 – pH 13 (see Figure 96). Indeed, all electronic absorption 

spectra show the same maxima in absorbance from pH 8 to pH 13 (T = 23 °C, 0.1 M phosphate buffer). 

Consequently, the nature of the H3O2 bridge is not changed in that pH range, since any protonation or 

deprotonation equilibria would induce significant spectral changes. However, spectral changes were 

observed at lower pH. When a 1 mM solution of complex 5 was adjusted to e.g. pH 4 (100 μM solution 

of H2SO4) two new bands at 380 nm and 450 nm are observed which may be due to a protonation of 

the hydroxide. Since the here presented water oxidation will not take place at such low pH, no further 

investigations were carried out. 

  

Figure 96. Electronic absorption spectra of ca. 1 mM solution of complex 5 at different pH (pH 8, pH13: 0.1 M phosphate 
buffer; pH 4: 100 μM solution of H2SO4). 

With this background in hand, first electrochemical studies were performed at different pH (for 

experimental details see Section 7.5). Figure 97 shows two cyclic voltammograms of complex 5 

recorded at pH 10 and pH 13 in 0.1 M ionic strength phosphate buffer (V (electrolyte) = 2.5 mL, V 

(MeCN) = 20 μL). While the cyclic voltammogram at pH 10 is almost identical to the corresponding 

blank measurement (see Figure 97, blue and purple lines), the spectrum recorded at pH 13 looks 

significantly different. In contrast to the blank measurement, a large irreversible oxidative wave is 

observed starting at approximately 1.0 V (vs. normal hydrogen electrode (NHE)). This behavior has also 

been reported for other copper complexes.196,201 The mononuclear copper-bipyridine system developed 
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by MAYER for instance shows similar cyclic voltammograms starting from pH 11, while at pH 10 no such 

oxidative waves are observed.201 The cyclic voltammogram of 5 recorded at pH 13 (see Figure 96) can 

still be reproduced from the same solution, which has been stored for several months at ambient 

conditions. Furthermore, successive scanning for more than 30 times did not change the original cyclic 

voltammogram. 

 

Figure 97. Cyclic voltammograms of 1.0 mM solution of complex 5 at different pH (0.1 M ionic strength phosphate 
buffer, T = 22 °C, 100 mV/s scan rate). The corresponding blank spectra were recorded under the same conditions. 

Irrespective of a potential water oxidation, these experiments confirm the high stability of 5 which has 

been already demonstrated via UV/vis absorption spectroscopy. With respect to possible water 

oxidation, the electrochemical properties of complex 5 were investigated in detail from pH 11 to pH 13 

(see Figure 98). 

 

Figure 98. Cyclic voltammograms of 1.0 mM solution of complex 5 at different pH (0.1 M ionic strength phosphate 
buffer, T = 22 °C, 100 mV/s scan rate); a solution of 5 in 20 μL of MeCN was mixed with 2.0 mL of electrolyte for each 

measurement. 
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While the oxidation event is only slightly observed at pH 11, the current of this wave significantly 

increases from pH 11 to pH 13. Additionally, the oxidative wave is shifting to lower potential with 

increasing pH. Figure 99 shows a plot of pH versus the corresponding potential of the oxidation event.  

 

Figure 99. Investigated pH dependence of possible water oxidation with 5; the first inflection point of the catalytic wave 
is used for determination of Ecat. 

Since no clear maximum of the oxidative wave is observed, the first inflection point of the oxidation 

event was determined for each pH value (determination from 2nd derivative of plot of current vs. 

potential). The corresponding potential linearly changes with pH (slope = 71 mV) and clearly illustrates 

the pH dependence of this process. Consequently, further investigations towards electrolytic water 

oxidation were conducted. Figure 100 shows a plot of different complex concentrations versus the 

corresponding current at E = 1.3 V (vs. NHE).  

  

Figure 100. Left: cyclic voltammograms of 5 at pH 13 at different complex concentrations (0.1 M ionic strength 
phosphate buffer, T = 22 °C, 100 mV/s scan rate); right: plot of catalytic current at 1.3 V versus complex concentration 

(R2 = 0.996). 
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The current was observed to linearly increase with complex concentration. This behavior has also been 

observed for other copper complexes and shows that the formation of solid material on the electrode 

such as copper oxides is rather unlikely.200,207 However, one further possibility may be a complete 

dissociation of complex 5 in 0.1 M phosphate buffer, by liberating CuII ions performing the actual water 

oxidation. Thus, the electrochemical properties of a 2 mM solution of Cu(ClO4)2 were monitored under 

the same experiment conditions, which are applied for complex 5. A comparison of the cyclic 

voltammograms of a 1 mM solution of 5 and a 2 mM solution of Cu(ClO4)2 is depicted in Figure 101. The 

cyclic voltammogram of the 2 mM solution of Cu(ClO4)2 shows no oxidation event and thus the 

oxidation event observed for 5 is not induced by free CuII ions. However, one further possibility may be 

the deposition of e.g. copper oxides on the working electrode over time. Consequently, the oxidative 

wave would not correspond to homogeneous water oxidation but rather be induced by copper oxides, 

deposited on the electrode. This effect has often been observed for other copper or cobalt 

complexes.196,208 

 

Figure 101. Cyclic voltammograms of 1.0 mM solution of 5 (black line) and of 2.0 mM solution of Cu(ClO4)2 at pH 13 
(0.1 M ionic strength phosphate buffer, T = 22 °C, 100 mV/s scan rate); during the experiment with Cu(ClO4)2, 

precipitation of bluish material was observed which most likely corresponds to copper hydroxide. 

In order to investigate a possible deposition of solid material on the glassy carbon (GC) working 

electrode, controlled potential coulometry was performed with a 1 mM solution of complex 5 (E = 

1.15 V vs. NHE, t = 4 h, pH 13, 0.1 M ionic strength phosphate buffer, T = 22 °C). The GC working 

electrode (GC disc, A = 0.07 cm2) was afterwards scanned in blank electrolyte. The cyclic voltammogram 

looks nearly identical to that of the GC working electrode recorded after electrolysis in pure electrolyte 

(see Figure 102). Since both cyclic voltammograms look similar, no catalytically active material is 

deposited on the electrode during long term electrolysis with complex 5 under the aforementioned 

conditions.201 Nevertheless, long term electrolysis at higher potential (E = 1.25 V vs. NHE, t = 4 h) with a 
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1 mM solution of complex 5 revealed the deposition of solid material on the GC working electrode 

which goes in hand with a decomposition of 5. Since the GC disc working electrode only provides a 

small electrode surface, which would lead to even longer reaction times in order to produce a 

significant amount of molecular dioxygen, the experimental setup was changed for further 

investigations. Consequently, no further investigations concerning the decomposition of complex 5 

during long term electrolysis at the GC disc were performed were conducted at this stage. 

 

Figure 102. Cyclic voltammograms of GC working electrode (disc, A = 0.07 cm2) after 4 h of controlled potential 
coulometry in blank electrolyte (black line, E = 1.354 V vs. NHE, pH 13, 0.1 M ionic strength phosphate buffer, T = 22 °C) 

and after 4 h of controlled potential coulometry with 5 (red line). No deposition of copper oxides is observed. 

Instead, the GC disc was replaced by a GC rod of 0.7 cm diameter, providing a much larger electrode 

surface quantified by the actual contact area with electrolyte (rod: A = 0.4 - 0.6 cm2; disc: A = 0.07 cm2). 

In order to further study the assumed water oxidation performed by complex 5, the O2 evolution during 

controlled potential coulometry was investigated. Formation of molecular dioxygen was therefore 

quantified via gas chromatography coupled to a thermal conductivity detector (GC-TCD, see 

Section 7.5.2 for details), for which a calibration curve has been determined (see Figure 103).209 
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Figure 103. Calibration curve for quantification of O2 evolution via GC-TCD; R2 = 0.998.209 

For this purpose, the amount of molecular dioxygen in the cell has been quantified relative to a 

constant amount of methane, which was added as internal standard. With this calibration curve in hand 

the amount of molecular dioxygen formed during the electrolysis can be calculated.  

Figure 104, left shows one selected example of a controlled potential coulometry experiment of a 

0.5 mM solution of complex 5 at pH 13 (0.1 M ionic strength phosphate buffer, E = 1.45 V vs. NHE, T = 

22 °C, t = 20 min). A rinse test of the working electrode after the coulometry was negative and thus 

deposition of copper oxides on the electrode can be excluded (see Figure 104, right). The cyclic 

voltammograms of the complex solution as well as the corresponding UV/vis absorption spectra (see 

Figure 104, right) before and after the electrolysis are identical. Consequently, complex 5 is still intact 

after the electrolysis with no decay being observed. Additionally, the pH value of the solution 

decreased from 13.04 to 12.92 over the 20 min of electrolysis, indicating the formation of H+ ions 

during the experiment. With respect to the blank measurement, a total charge of 5.3 C was 

transported. With respect to potential water oxidation performed by complex 5, this corresponds to a 

turn over number (TON) of ca. 3.4. It should be noted that this value has limited meaning since it 

relates to the total number of molecules of 5 in solution while only catalyst molecules close to the 

electrode surface mediate the reaction. 
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Figure 104. Left: Controlled potential coulometry with 0.5 mM solution of complex 5 (pH 13, 0.1 M ionic strength 
phosphate buffer, T = 22 °C, E = 1.45 V vs. NHE); right: UV/vis absorption spectra before (black line) and after (red line) 

coulometry and rinse test of GC working electrode before (black line) and after the experiment (red line). 

From analysis of the gas phase, the formation of molecular dioxygen could be confirmed. After 

background correction, the formation of 79 μL of molecular dioxygen was calculated, corresponding to 

a Faraday-efficiency of 24%. In another experiment performed under the same conditions but with 

different batches of complex and electrolyte, O2 production could be reproduced although the 

determined Faraday-efficiency was even lower (V (O2 = 50 μL), Faraday-efficiency = 15%). Since the 

cyclic voltammograms of the complex solution as well as the corresponding electronic absorption 

spectra are identical before and after the coulometry, 5 is still intact after the measurement. The 

solution has furthermore been tested for hydrogen peroxide with a solution of potassium iodide and 

starch but this test was negative. Nevertheless, no experimental evidence explaining the low 

Faraday-efficiency could be found. The literature known bipyridine system investigated by MAYER on the 

other hand shows a Faraday-efficiency of 35 – 45% at GC working electrode, which is significantly 

higher.201 One possible explanation for the low Faraday-efficiency may be a reaction of a reactive 

oxygen intermediate with e.g. traces of MeCN, which are necessary to dissolve complex 5 in the 

electrolyte. Consequently, a solution of 5 was titrated with MeCN and the corresponding cyclic 

voltammograms were recorded (see Figure 105). The observed catalytic current indeed is increasing 

with increasing concentration of MeCN and thus the organic solvent may act as substrate which would 

explain the observed low Faraday-efficiency. However, traces of MeCN are absolutely necessary to 

dissolve complex 5 in the electrolyte. With respect to a better Faraday-efficiency, further investigations 

towards this possible off-cycle reaction and a replacement of MeCN by an inert solvent need to be 

carried out. Additionally, investigations towards electrolytic water oxidation at lower potential than the 

applied 1.45 V vs. NHE have to be performed. First experiments point at O2 evolution also at 1.35 V vs. 

NHE while at 1.25 V vs. NHE no O2 production could be detected. 
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Figure 105. Titration of 0.5 mM solution of complex 5 (prepared from 8 mL of 0.1 M ionic strength phosphate buffer and 
40 μL) 

In summary, the properties of complex 5 towards electrolytic water oxidation from pH 11 to pH 13 

were investigated. Hydroxide 5 was found to be stable in phosphate buffer, with no decay being 

observed over months even at pH 13. Controlled potential coulometry at E = 1.45 V (vs. NHE) revealed 

the formation of molecular dioxygen with a Faraday-efficiency of 15 - 24%. One reason for the low 

Faraday-efficiency may be an off-cycle reaction of traces of MeCN with reactive oxygen intermediates, 

and thus further investigations need to be carried out. However, no decomposition of 5 was observed 

during controlled potential coulometry and the deposition of solid material on the electrode could be 

excluded. These findings make complex 5 a potential candidate for further investigations for electrolytic 

water oxidation although MeCN needs to be replaced by an inert solvent prior to continuing studies.  

Since complex 5 was demonstrated to react to hydroperoxide 2+H+ in the previous section, the 

formation of this species during water oxidation is possible. The corresponding water oxidation 

mechanism thus may proceed via the intermediates 2+H+, 2 and 4 by avoiding the formation of high 

valent CuIV oxo species, as proposed for other synthetic copper sites.196 Complex 5 consequently may 

deliver important information for the targeted synthesis of dinuclear copper water oxidation catalysts 

and an understanding of the mechanism of action of this process is of considerable interest. 
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6.6.2 DFT Calculations 

 The previous section in detail discussed electrolytic water oxidation starting from hydroxo complex 

5. Since 5 can be chemically transformed into the reactive Cu2/O2 species 2+H+, 2 and 4 (see Section 

6.5), these complexes may also be involved in the actual mechanism of water oxidation. The formation 

of peroxo and superoxo species during electrolytic water oxidation with a dinuclear copper complex has 

indeed been proposed based on DFT calculations by ZHANG and co-workers (see Section 6.6, Scheme 

31), although no spectroscopic evidences were found.205 However, such proposed intermediates could 

be isolated and fully characterized in this work (see Sections 6 and 6.4). By starting from complex 5, in 

principal two electrons and two protons need to be released to form hydroperoxo complex 2+H+ (see 

Scheme 32). 

 

Scheme 32. Possible mechanism of water oxidation involving the oxygen intermediates 2+H+, 2 and 4. 

Since the water oxidation is performed at pH 13, 2+H+ will immediately deprotonate by forming 

peroxide 2 which can be easily oxidized to superoxide 4 (see Section 6.4.1). Finally, molecular dioxygen 

and one further electron are released and 5 is recovered (see Scheme 32). In order to get insight into 

the actual mechanism, DFT calculations were performed by ROY.210 First preliminary results of these 

calculations indeed predict a mechanism that involves the complexes 2+H+, 2 and 4. At first one 

electron and one proton are released in two steps from precursor 5, then giving rise to intermediate 5b, 

where one CuII ion is oxidized to the +III oxidation state (see Scheme 33). Afterwards a second sequence 
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of coupled electron and proton transfer is predicted, forming intermediate 5d. Intermediate 5d then is 

converted via transition state TS1 into 2+H+ (see Figure 106).  

Interestingly, the abstraction of two protons and two electrons from 5 does not proceed via high valent 

copper(IV) oxo species as predicted for other first row transition metal complexes.196 Instead, one 

electron is delivered from a copper bound hydroxide by forming a hydroxyl radical (see Scheme 33, 

intermediated 5c).  

 

Scheme 33. Proposed intermediates for electrochemical formation of hydroperoxide 2+H+ from precursor 5. 

However, these are only preliminary results. After the O-O bond formation, both oxygen atoms feature 

a -I oxidation state. Consequently, in going from 5 to 2+H+, the first two protons and electrons of the 

water oxidation process result from the copper bound hydroxide and water molecule.  

After the formation of hydroperoxide 2+H+, complex 2 is formed under release of one proton (see 

Scheme 34). The corresponding pKa value of 2+H+ could not be calculated until to date but is known 

from experiments from MeCN solution (see Section 6.3.1). The corresponding peroxide is then 

subsequently oxidized to superoxide 4 which finally reacts to complex 5 under release of molecular 

dioxygen and one additional electron. The final release of molecular dioxygen thereby most likely 

occurs via a second transition state, which however could not be calculated until to date. 



 

 
148 

 

 

Figure 106. calculated O-O bond formation via TS1. 

However, the mechanistic findings for the formation of hydroperoxide 2+H+ from 5 are similar to the 

SET-WNA mechanism, recently published by LLOBET and MASERAS (see Section 6.6, Scheme 30).203 The 

major difference between both scenarios is the formation of the (O···OH)·- fragment (intermediate 5d in 

Scheme 33 and intermediate xxii-iii in Scheme 30). Whereas xxii-iii is formed via WNA from an external 

hydroxide molecule on an oxyl radical, this transformation starts from intermediate 5c for the 

mechanism proposed here. 5c contains a hydroxyl radical, which reacts with the neighboring hydroxide 

under release of one proton.203 This sequence is promoted by the specific design of complex 5, enabling 

the coordination of two OH moieties in close proximity to the copper atoms, whereas the mononuclear 

complexes studied by LLOBET and MASERAS require an external hydroxide molecule for this 

transformation.203

 

Scheme 34. Computationally predicted transformation of 2+H+ into 5; missing information is marked with an asterisk. 
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6.6.3 Summary and Conclusion 

 The properties of hydroxide 5 towards electrocatalytic water oxidation were investigated. Upon 

applying a potential of 1.45 V vs. NHE the formation of molecular dioxygen could be shown with the 

help of GC-TCD measurements although the observed Faraday-efficiency is rather low. One reason for 

the low Faraday-efficiency might be an off-cycle reaction with traces of MeCN which is necessary to 

dissolve complex 5 in the electrolyte. Thus, further investigations towards replacement of MeCN by an 

inert solvent need to be conducted.  

However, a deposition of copper oxides on the GC rod during controlled potential coulometry was not 

observed. No decay of 5 was monitored during controlled potential coulometry, as proven by electronic 

absorption spectroscopy and cyclic voltammetry. Thus, complex 5 is a potential candidate for 

homogeneous water oxidation, although MeCN needs to be replaced by an inert solvent prior to 

further studies.  

Since 5 can be chemically transformed into the reactive oxygen intermediates 2+H+, 2 and 4 (see 

Section 6.5), the water oxidation is assumed to also proceed via these intermediates. Preliminary 

computational studies indeed predict the formation of these species. Thus, this work presents the first 

synthetic copper catalyst, where likely intermediates of the water oxidation process could be isolated. 

A more detailed computational investigation of this mechanism is in progress, which may enable the 

development of more efficient first row transition meatal complexes for water oxidation catalysis. 
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6.7 Towards a Synthetic Type IV Copper Active Site 

 Since peroxo complex 2 features a constrained binding pocket that enables the interaction of the 

peroxide with e.g. redox inert alkali metal ions (see Section 6.2), this sequence has been further 

extended by the CuI/CuII redox couple. The corresponding trinuclear copper peroxo motif would be a 

synthetic model complex for the biologically relevant intermediate i, which is believed to be of 

relevance in the mechanism of action of type IV active sites (see Section 2.3 and Scheme 35). Until to 

date, no model complex for this biologically relevant intermediate could be isolated. A possible adduct 

formation of peroxo complex 2 with CuI or CuII ions is thus of considerably interest. For this purpose the 

interaction of 2 with different copper(I/II) complexes was monitored via UV/vis absorption 

spectroscopy.  

 

Scheme 35. Desired generation of synthetic trinuclear copper peroxo complex from precursor 2 and different 
copper(I/II) sources and proposed natural intermediate, i.33,40 

Since the CuI ion is only a weak and soft Lewis acid, the interaction of the dicopper peroxo core at first 

has been studied with different copper(II) complexes. However, peroxide 2 has a low redox potential, 

easily forming superoxide 4 (E1/2 = -0.58 V (vs. Fc/Fc+, MeCN, T = 0 °C)). If for instance one equivalent of 

Cu(OTf)2 is added to complex 2, the quantitative formation of superoxide 4 is immediately observed, 

with the CuII source serving as one-electron oxidant (see Section 6.4.1 for details). The same reaction 

was furthermore observed with other copper(II) complexes such as [CuII(N-Me4Cyclam][ClO4]2 or 

[CuII(iPr3TACN)(CH3CN)2][SbF6]2. However, the formation of superoxide 4 can be reversed. For this 

purpose a solution of the disodium salt of N,N’-bis(salicylidene)ethylenediamine (Na2(salen)) has been 

subsequently added to superoxide 4, which was quantitatively reduced back to the peroxo level. 

Complex 2 thereby forms the structurally related sodium adduct, 2+Na+ (see Scheme 36 and 

Section 6.4.1 for further details). Next to the alkali metal adduct 2+Na+, CuII(salen) was formed during 

this reaction which can be explained with the low redox potential of the CuI/CuII redox couple in 

CuII(salen) (E°(CuI/CuII)= -1.66 V (vs. Fc/Fc+, MeCN, T = 25 °C)).161 The one electron needed to reduce 4 

back to the peroxo level is delivered from the free Cu+ cation that in return is oxidized to Cu2+ in forming 

the corresponding CuII(salen) complex. 
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Scheme 36. Schematic representation of chemically reversible generation of complex 4 in using the CuII/CuI redox 
couple. 

Consequently, a solution of CuII(salen) was added in substoichiometric amounts to peroxo complex 2 (in 

steps of 0.3 eq.), since no redox chemistry is expected. Indeed, no formation of superoxide 4 was 

detected (see Figure 107, left). The increase in intensity of the initial maxima of complex 2 at 527 nm 

and 648 nm and of the shoulder at 460 nm is due to the purple color of CuII(salen), which is successively 

added during the titration (see Figure 107, right). Thus, an adduct formation of peroxo complex 2 and 

CuII(salen) was not observed, which most likely is due to the high steric demand of the neutral 

CuII(salen) complex. The solubility of CuII(salen) in e.g. MeCN or acetone is furthermore rather low, 

hence crystallization attempts were also not successful.  

  

Figure 107. Left: UV/vis titration of complex 2 with CuII(salen) in steps of 0.3 eq.(overall 3.0 eq. were added). Right: 
UV/vis absorption spectrum of 130 μM solution of CuII(salen) (MeCN, T = -40 °C). 

If on the other hand copper(I) complexes are used as potential Lewis acids, the corresponding solution 

of peroxo complex 2 and CuI source has to be absolutely free of molecular dioxygen, since the copper(I) 

complexes themselves react with dioxygen in forming reactive copper oxygen intermediates. Although 

various copper(I) complexes were tested (see Scheme 37), no adduct formation was observed. Figure 

108 shows the UV/vis titration of complex 2 with [CuI(Me3TACN)(CH3CN)][BPh4] in steps of 1.0 

equivalents. Overall 20 eq. of 8 have been added, but no changes in absorbance were observed. The 

minor decrease in intensity is due to gradual dilution during the titration. Although no adduct formation 

is observed for complex 8, various crystallization attempts in different solvent combinations were 
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performed since the corresponding alkali metal adduct of 2, 2+K+ can be crystallized in 90% yield from 

only 1.5 eq. of KOTf, although more than 50 equivalents of KOTf are necessary to almost quantitatively 

generate 2+K+ from its precursor 2 in solution (see Section 6.2.1). Thus solutions of complex 2 and 

approximately 2.0 eq. of 8 in MeCN, EtCN or acetone were stored at -26 °C for Et2O diffusion. However, 

the decomposition of the initially purple solutions was observed within a few days. 

 

Scheme 37. Summary of tested Cu(I) complexes.211,160,212 

Next to the titration with 8, the corresponding measurement with compound 9 also showed no 

interaction of the peroxo moiety with the copper(I) complex and will not be further discussed here. In 

another experiment, a solution of complex 11 in MeCN was added to complex 2. Although the steric 

demand of the MeCN molecules in 11 is much lower compared to the TACN derivative in 8, no adduct 

formation was observed neither. 

 

Figure 108. UV/vis titration of peroxide 2 with complex 8 in steps of 1.0 eq. (overall 20 eq. were added). The initial 
maxima of 2 are not shifting, but slightly lose intensity due to gradual dilution. 

If on the other hand compound 10 is added to a solution of complex 2, the rapid decay of 2 is observed. 

Most likely 10 abstracts the peroxide from 2 in forming a reactive oxygen species that subsequently 

decays under the present conditions. However, since no adduct formation was observed, this reaction 

was not further studied.  
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6.7.1 Summary and Conclusion 

 In summary, the synthesis of a trinuclear copper peroxo complex so far has not been possible by 

using the CuII ion as Lewis acid, since the low redox potential of complex 2 leads to a formation of 

superoxide 4 with the Cu2+ ion functioning as one-electron oxidant (see Scheme 38). Only if CuII(salen) is 

used as potential Lewis acid, no redox chemistry is observed. Nevertheless, CuII(salen) is not interacting 

with the peroxo moiety, most likely due to steric reasons in combination with the neutral charge of the 

complex. Crystallization attempts with CuII(salen) were not successful. 

Whereas the addition of copper(II) complexes induces the oxidation of peroxide 2, the copper(I) 

complexes 8 and 9 do not interact with the peroxo moiety due to a low Lewis acidity of the Cu+ ion in 

combination with a high steric demand of the surrounding ligand framework. However, also the 

addition of compound 11 did not lead to the formation of a corresponding adduct and thus no 

trinuclear copper oxygen complex could be synthesized, neither with copper(I) nor copper(II) 

complexes acting as potential Lewis acids.  

One possibility may be the synthesis of a new copper peroxo complex, featuring a similar but even 

more accessible binding pocket. Such a potential complex may enable the interaction of the peroxo 

moiety with sterically more demanding Lewis acids such as [CuI(Me3TACN)(CH3CN)][BPh4] and will be 

introduced in Section 6.8. 

 

Scheme 38. Summary of studied adduct formation of peroxo complex 2 with copper(I) and copper(II) complexes. 
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6.8 A Novel Dicopper(II)-Peroxo Adduct – First Results 

 The spectroscopic properties of peroxo complex 2 and the corresponding alkali metal ions 2+M+ 

have been discussed in detail in the previous sections. Neither complex 2 nor the alkali metal adduct 

2+Na+ thereby show any significant substrate reactivity.31,32 Also superoxide 4 is rather stable and only 

shows substrate reactivity with TEMPO-H, featuring a weak O-H bond (BDFE = 66.5 kcal mol-1, see 

Section 6.4.5 for details). However, the specific geometry of the copper oxygen core enables the 

interaction of this CP unit with alkali metal ions such as Li+, which modifies e.g. the redox potential of 

the copper oxygen core (see Section 6.4.6). With respect to possible substrate conversion performed by 

such peroxo complexes, a specific control of redox potential means controlling reactivity and thus is of 

high interest. Since the unique geometry of the copper oxygen core in complex 2 is induced by the 

specific ligand design, this concept is adapted for future complexes. One possibility in tuning the 

reactivity of complex 2 may be the substitution of the iPr-groups of the ligand framework by CH3-groups 

(see Scheme 39). The corresponding ligand HL3 was already applied in previous work for dinuclear iron 

complexes.213 However, the ligand synthesis has been slightly modified (see Section 7.13.7 for details).  

 

Scheme 39. Synthesis of new 
C
P complex for possible substrate reactivity. 

As already discussed in Section 5, the basis for dioxygen chemistry with dinuclear copper(I) complexes 

such as 1 and 12 is the availability of clean starting material. Thus, major efforts have been made in 

isolating crystalline material of dicopper(I) complex 12. Complex 12 therefore has been synthesized by 

adapting protocols developed for complex 1 (see Section 7.13.8). However, no crystalline material 

could be obtained, even though multiple crystallization conditions were applied. Even while standing in 

a glove box with <0.1 ppm O2, the initially colorless solutions of 12 were observed to turn brown within 

a few days. The origin of this decomposition reaction could not be verified. Finally, amorphous material 

of complex 12 could be isolated after two days of Et2O diffusion into a saturated solution of 12, 

dissolved in a mixture of acetone/Et2O. According to 1H-NMR spectroscopy, the amorphous material 

still contained ca. 15% of impurities. 

Although no clean material of complex 12 is available, primarily investigations toward possible dioxygen 

chemistry were made. Figure 109 shows the UV/vis absorption spectrum of the corresponding peroxo 

complex 13, which has been generated from 12 and an excess of molecular dioxygen at -40 °C. Two 

main maxima in absorbance at 513 nm and 615 nm can be observed, which are blue-shifted compared 
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to the maxima of the structurally related peroxo complex 2 (see Section 6.1.1 for details). However, the 

desired peroxo complex 13 was observed to rapidly decay in forming a new species, which is denoted 

as complex 14 (see Figure 110).  

 

Figure 109. UV/vis absorption spectrum of proposed peroxo species 13 (MeCN, T = -40 °C). Since precursor 12 contains 
impurities, the actual concentration of peroxo complex 13 is unclear. 

In order to isolate the decomposition product of peroxo complex 13, precursor 12 has been oxidized 

with dry dioxygen at -40 °C. Then the solution was stored at -26 °C, and it turned green overnight. 

Finally, complex 14 has been crystallized via Et2O diffusion into a concentrated solution of the products 

in acetone at ambient conditions. The molecular structure of 14 shows two CuII ions which are bridged 

by a formate anion (see Figure 110).  

 

Figure 110. Molecular structure of 14 with thermal displacement ellipsoids given at 30% probability. Hydrogen atoms and 
counterions are omitted for clarity; for selected bond lengths and angles see Section 7.7. 

The Cu···Cu distance was determined to 4.13 Å. Both CuII ions are coordinated in an almost ideal square 

pyramidal geometry (τ(Cu1, Cu1’) = 0.15) by four nitrogen donor atoms of TACN side arms and a 
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bridging pyrazole unit and by one oxygen donor atom of the formate anion. The copper-pyrazolate 

bond distances are significantly shorter (Cu1-N1 = Cu1’-N1’ = 1.945(3) Å) than those of the copper ions 

to the TACN side arm nitrogen donor atoms (2.06 – 2.21 Å).The formate ion is assumed to originate 

from residual MeOH solvent of the previous synthesis of the copper(I) precursor, which may have 

reacted with the corresponding peroxo complex, 13. The corresponding UV/vis absorption spectrum of 

the decomposition product 14 is depicted in Figure 111. Two main transitions at 373 nm and 612 nm 

can be observed while the latter most likely can be assigned to a d-d transition. 

 

Figure 111. UV/vis absorption spectrum of decomposition product 14 (MeCN, T = 22 °C).  
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6.8.1 Interaction with Alkali Metal Ions 

 In analogy to the interaction of peroxo complex 2 with alkali metal ions (see Section 6.2), a possible 

interaction of complex 13 with e.g. Li+ has been studied. However, no clean starting material of 

precursor 12 was available (see previous section) and thus the following results are rather qualitative.  

If a solution of LiOTf is added in substoichiometric amounts (ca. 1.0 eq. finally added in steps of ca. 

0.05 eq., an accurate determination of stoichiometry is difficult, since precursor 12 contains ca. 15% of 

impurities) to complex 13 at -40 °C, the initial maxima in absorbance of complex 13 were observed to 

continuously decrease (see Figure 112, left). A new species is simultaneously formed, showing two 

maxima in absorbance at ca. 380 nm and 617 nm. However, no adduct formation is observed, since the 

newly formed species was identified as decomposition product 14 or a related dicopper(II) complex 

(see Figure 112, right). Consequently, the addition of Li+ induced the decomposition of peroxo complex 

13. Since complex 13 is assumed to feature a similar geometry of the Cu2/O2 core than complex 2, Li+ 

most likely binds to the peroxide in inducing significant structural and electronic changes of the Cu2/O2 

core, which then rapidly decomposes. As mentioned before, this discussion is rather qualitative but the 

titration with LiOTf indicates that peroxo complex 13 is less stable than complex 2. With respect to 

substrate reactivity, peroxo complex 13 may be a promising candidate. Nevertheless, for substrate 

reactivity with complex 13 pure starting material of complex 12 is required and thus the synthesis of 

clean precursor is a basic prerequisite. 

  

Figure 112. Left: Titration of complex 13 with LiOTf in steps of ca. 0.05 eq., with overall ca. 1.0 eq. of titrant being added 
(MeCN, T = -40 °C). The formation of decomposition product 14 is observed. Right: UV/vis absorption spectra of 

complex 13 (black line), after the titration with Li+ (red line) and final spectrum observed after 1 h (blue line). The final 
spectrum thereby is attributed to a decomposition product, such as 14. 
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6.8.2 Summary and Conclusion 

 The synthesis of dicopper(I) complex 12 was presented in this section. Complex 12 is structurally 

related to complex 1 (see Section 6.1), with the iPr groups of the TACN side arms being replaced by CH3 

units. The corresponding peroxo complex 13 is assumed to show enhanced substrate reactivity 

compared to its structural analog, 2, since the Cu2/O2 core is less shielded by the CH3 groups. However, 

no clean material of 12 could be isolated. Nevertheless, first experiments showed that 12 reacts with 

molecular dioxygen in forming peroxo complex 13.  

A possible interaction of this copper peroxo site with Li+ has been studied, revealing accelerated 

decomposition of the peroxo complex upon addition of the redox inert alkali metal ion. Since the 

corresponding alkali metal adducts of the structurally related peroxo complex 2 were all observed to be 

more stable than the free peroxo complex, the addition of Li+ to complex 13 is assumed to induce 

significant structural changes of the Cu2/O2 core, promoting a subsequent decomposition. With respect 

to desired substrate reactivity starting from complex 13, a tunable stability of the peroxide may be of 

future interest. However, the main future goal is the isolation of clean starting material of complex 12, 

enabling the synthesis of pure peroxo complex for further reactivity studies. 
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7 EXPERIMENTAL SECTION 

7.1 General Synthetic Methods and Materials 

 Air sensitive reactions were carried out under an atmosphere of purified argon 5.0 or dinitrogen 5.0 

using standard Schlenk or glove box (M. BRAUN, LabMaster) techniques. All solvents were dried with 

standard methods214, degassed and furthermore freeze pump degassed for minimum three times. 

Reactions in the glove box were carried out with <0.1 ppm O2 and H2O. Used dioxygen gas was dried 

over P2O5. All used chemicals were purchased from standard suppliers (SIGMA ALDRICH, VWR, ABCR, 

DEUTERO, ACROS and MERCK) and not furthermore purified. 

7.2 UV/vis Spectroscopy 

 UV/vis experiments in solution were recorded in quartz cuvettes on an AGILENT Cary 60 or on an 

AGILENT Cary 8454, which are equipped with an UNISOKU cryostat (CoolSpek) for low temperature 

measurements, connected with a magnetic stirrer. Stock solutions of oxygen isotope sensitive 

compounds were freshly prepared in a glove box with <0.1 ppm O2 and H2O and transferred into glass 

cuvettes, which were sealed with a rubber septum. Usual concentrations of the studied complexes 

were 50 – 170 µM. Dioxygen chemistry was monitored at -40 °C with an excess of dry dioxygen being 

injected through the rubber septum via a gas-tight syringe. Excess of dioxygen was removed by 

bubbling dry argon 5.0 through the cuvette for minimum 15 minutes, at which no decay of the 

preformed oxygen-species was detected. Titration experiments were monitored at -40 °C by adding the 

titrant in substoichiometric amounts to the oxygenated species via a HAMILTON syringe. The 

corresponding stock solutions were freshly prepared in a glove box with <0.1 ppm O2 and H2O. 

UV/vis experiments in the solid state were performed on an AGILENT Cary 5000 UV/vis-NIR in a 

PRAYING MANTISTM high vacuum sample cell. The samples were prepared inside a glove box with 

<0.1 ppm O2 and H2O by mixing crystalline material of the corresponding compounds with dry KBr.  

7.2.1 pKa Determination via UV/vis Titration Experiments 

 The relative pKa value of compound 2+H+ was determined via UV/vis titration experiments by adding 

an appropriate base stepwise in substoichiometric amounts to a solution of 2+H+, which subsequently 

reacted to peroxo complex 2 (see Scheme 40). Since 2+H+ and 2 are featuring characteristic electronic 

absorption spectra, the concentration of both species can be determined during the experiment. For 

this purpose, the software package SPECFIT/32 was used.  
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25) 𝐾e  =  

[𝟐][𝐁+𝐇+]

[𝟐+𝐇+][𝐁]
 

Scheme 40. Equilibrium used to determine the relative pKa value of 2+H+. 

The in Scheme 40 depicted chemical equilibrium can be described with equilibrium constant Ke (see 

equation 25)). By assuming equal activity coefficients of all components, the relative basicity of the 

transferred proton is defined as:152 

26) Δp𝐾a =  p𝐾a(𝐁 + 𝐇+) − p𝐾a(𝟐 + 𝐇+) =   log
[𝟐][𝐁+𝐇+]

[𝟐+𝐇+][𝐁]
 

Since 2 and B+H+ are formed in equimolar amounts, equation 26) can be simplified to: 

27) p𝐾a(𝟐 + 𝐇+) =  p𝐾a(𝐁 + 𝐇+) − log
[𝟐]2

[𝟐+𝐇+][𝐁]
;    log

[𝟐]2

[𝟐+𝐇+][𝐁]
= log (𝐾e) 

Consequently, a plot of [2]2/[2+H+] versus [B] yields the equilibrium constant Ke, which can be used to 

calculate the relative pKa value of complex 2+H+.152 However, the pKa value of 2+H+ can only be 

determined roughly, since species of different ionic strength are involved.152 Furthermore, the pKa value 

of B+H+ has been determined likewise as in the abovementioned procedure, but at 25 °C. The titration 

of 2+H+ was performed at -40 °C due to thermal instability of the copper oxygen complexes. Since the 

pKa value of B+H+ has been determined at 25 °C, the titration of 2+H+ should have been carried out at 

the same temperature, to enable comparable conditions. 

7.2.2 Determination of Association Constants via UV/vis Titration Experiments 

 The association constants of the different alkali metal adducts (see Section 6.2.1) were calculated 

with the THORDARSON program128 running under Matlab® The software package assumes the formation 

of a 1:1 host-guest complex of peroxo moiety and Lewis acid: 

 

The equilibrium is described by an association constant, in which 2 represents the host (H) that forms 

together with the alkali metal ion (G) a host-guest complex (HG):128 

28) 𝐾𝑏  =  
[HG]𝑐0

[H][G]
;   𝑐0 = 1

mol

L
 

If the concentration of HG is known, the remaining concentrations of H and of G can determined as 

follows:128 

29) [H] = [H]0 − [HG] 30) [G] = [G]0 − [HG] 

If both equations are inserted into the mass balance, which then is expressed for [HG], equation 31) can 

be derived:128 

31) [HG] =  
1

2
([G]0 + [H]0 + 

1

𝐾b
) − (([G]0 + [H]0 + 

1

𝐾b
)
2

+  4[H]0[G]0)

1

2
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Since the concentration of HG complex is not known in this UV/vis titration experiment, its formation is 

assumed to correlate with a decrease of absorbance (ΔY) of the bands belonging to the host. The 

physical change Y can be described as the aggregate of the individual components as a function of 

concentration.128 

32) 𝑌 =  𝑦𝐻[H] + 𝑌𝐺[G] + 𝑌𝐻𝐺[HG] 

The guest in this experiment is non-absorbing and Y refers to absolute concentrations, and thus ΔY can 

be described as follows:128 

33) ∆𝑌 =  𝑌∆𝐻𝐺([HG]) 

The equations 31) and 33) will be used to fit the changes of absorbance at selected wavelength during a 

titration experiment from two known ([G]0 and [H]0) and two unknown (Kb and YΔHG) parameters. The 

parameters Kb and YΔHG are obtained by non-linear regression, at which the association constant is of 

final interest. The software Matlab® for instance, uses an algorithm to calculate the unknown 

parameters in varying Kb and YΔHG, until a good fit is obtained between equation 31) and the 

experimentally derived data.128 

7.3 Magnetic Measurements 

 Temperature dependent susceptibility measurements were performed on a QUANTUM DESIGN 

MPMS XL-5 SQUID magnetometer (5 T magnet). The samples were filled in a gelatin capsule and after 

the measurement the data was corrected for the magnetic contribution of the capsule. Solution state 

samples of 4 were prepared at a Schlenk line from precursor 2 and the oxidant AgBF4. The sample was 

freeze pump degassed for 10 times to remove excess O2 and filtered over a WHATMAN glass microfiber 

filter (minimum 8 layers) to remove the formed silver particles. The sample finally was encapsulated in 

a NMR tube. 

The simulation of the magnetic data was carried out with the program JulX215 by applying a fitting 

procedure to the spin Hamiltonian for isotropic exchange coupling and Zeeman splitting.  

34) Ĥ =  −2𝐽𝑆̂1𝑆̂2 + 𝑔𝜇𝐵𝐵⃗  (𝑆 1 + 𝑆 2) 

Paramagnetic impurities (PI) and temperature independent paramagnetism (TIP) were included 

according to: 

35) 𝜒calc = (1 − PI) ∙ 𝜒 +  PI ∙ 𝜒mono  +  TIP 

7.4 Resonance Raman Spectroscopy 

 Resonance Raman (rR) spectra were recorded with a HORIBA Scientific LabRAM HR 800 

spectrometer with an open-electrode CCD detector and a confocal pinhole with user controlled variable 
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aperture, in combination with a free space optical microscope. For excitation a He:Ne-laser (λexc = 

633 nm) or a diode-laser (λexc = 457 nm) were used. A KryoVac KONTI-Cryostat-Mikro cell cooled with 

liquid N2 was applied in solution state measurements at low temperatures. Measurements of solid 

material were performed under air, at which the sample was mounted on a glass slid. Selected data 

have been treated with the software LabSpec 5. 

7.5 Electrochemistry  

7.5.1 Cyclic voltammetry 

 Cyclic voltammetry measurements of sensitive oxygen complexes such as 2 and 2+M+ were carried 

out by using a METROHM Autolab potentiostat under inert conditions in a one-compartment gastight 

cell at 0 °C. Stock solutions were prepared freshly in MeCN (0.1 M nBu4NPF6) in a glove box with 

<0.1 ppm O2 and H2O. Compound 2 was generated from precursor 1 at -40 °C inside a Schlenk tube and 

the resulting solution was degassed with argon (for minimum 15 min) to remove excess O2 and 

transferred into the cell. Glassy carbon working electrode and platinum counter electrode were 

polished with 0.1 µm aluminum paste and rinsed with water and acetone prior to use. The Ag/AgNO3 

reference electrode (MeCN, 0.01 M AgNO3, 0.1 M nBu4NPF6) was prepared freshly and calibrated on the 

Fc/Fc+ redox couple after each measurement.  

With respect to water oxidation, cyclic voltammetry measurements have been performed at ambient 

conditions by using the aforementioned experimental setup. The Hg/HgSO4 reference electrode was 

calibrated on the Fc/Fc+ redox couple. Buffer solutions of 0.1 M ionic strength have been prepared 

according to literature known procedures.216 

7.5.2 Controlled Potential Coulometry 

 Controlled potential coulometry was performed by using a GAMRY Instruments Reference 600+ 

potentiostat. A glassy carbon rod of 7 mm diameter (length = 9 cm) was used in combination with a Pt 

spiral counter electrode. O2 evolution was quantified with a thermal conductivity detector. A calibration 

curve was determined previously.209 For this purpose, the amount of molecular dioxygen in the gastight 

cell has been quantified relative to a constant amount of methane, which was added as internal 

standard. The ratio of the signals of dioxygen and methane was observed to linearly correlate with 

different O2 concentrations. 

7.6 Spectro-Electrochemistry 

 Spectro-electrochemical measurements were recorded with a METROHM Autolab GTSTAT101 

connected with an AVANTES AvaSpec 2048×14 UV/vis-spectrometer, using a Ag/Ag+ (MeCN, 0.01 M 



 

 
163 

 

AgNO3, 0.1 M nBu4NPF6) reference electrode, glassy-carbon counter electrode and a Pt-net working 

electrode in a spectro-electrochemistry cuvette (optical pathway = 0.1 cm). All measurements were 

performed in a glove box (M. BRAUN, LabMaster) with <0.1 ppm O2 and <0.1 ppm H2O. 

Spectro-electrochemical studies of complex 2 were conducted with single crystalline material that was 

dissolved in MeCN before the measurement and immediately cooled down to -15 °C inside the 

spectro-electro cuvette. 

7.7 X-Ray Diffraction 

 X-ray data were collected on a STOE IPDS II diffractometer, equipped with a graphite 

monochromator (Mo-Kα radiation, λ = 0.71073 Å) by scanning at ca. 130 K. The structures were solved 

with SHELXT217 or SHELXS and refined on F2 with the software package SHELXL-2014 in using all 

reflections.218 All non-hydrogen atoms were refined anisotropically. SAME, SADI and ISOR restraints and 

EADP constraints were applied. Face-indexed absorption corrections were performed numerically with 

the program X-RED.219 

 

Figure 113. Molecular structure of 2 (thermal displacement ellipsoids given at 30% probability). Hydrogen atoms, 
counterion BPh4

- and additional solvent molecules are omitted for clarity. Selected bond lengths [Å] and angles [°]:Cu1-
Cu2 3.7413(5), O1-O2 1.4412(17), Cu1-O1 1.8900(13), Cu1-N1 1.8987(17), Cu1-N3 2.1737(16), Cu1-N5 2.1771(17), Cu1-
N4 2.2615(18), Cu2-O2 1.8971(14), Cu2-N2 1.9046(16), Cu2-N7 2.1341(16), Cu2-N6 2.2014(17), Cu2-N8 2.2493(17); O1-

Cu1-N1 100.40(6), O1-Cu1-N3 173.60(7), N1-Cu1-N3 80.03(7), O1-Cu1-N5 91.98(6), N1-Cu1-N5 135.90(7), N3-Cu1-N5 
83.44(6), O1-Cu1-N4 104.05(6), N1-Cu1-N4 132.95(7), N3-Cu1-N4 79.88(6), N5-Cu1-N4 82.80(6), O2-Cu2-N2, 100.76(6), 
O2-Cu2-N7, 92.41(6), N2-Cu2-N7, 137.68(7), O2-Cu2-N6, 173.80(7), N2-Cu2-N6 79.64(7), N7-Cu2-N6 83.33(6), O2-Cu2-

N8 104.59(6), N2-Cu2-N8 129.83(7), N7-Cu2-N8 83.69(6), N6-Cu2-N8 79.486, O2-O1-Cu1 121.23(10), O1-O2-Cu2 
122.09(10). 
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Table 21. Crystal data and refinement details for 2. 

Compound 2 

Empirical formula  C53H77BCu2N8O2 C5.5H13O1.5 

Formula weight [g/mol] 1099.27 

Temperature [K] 133(2) 

Wavelength MoKα [Å] 0.71073 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 13.5497(5) Å; α = 64.231(3)° 

b = 16.2465(6) Å; β = 88.701(3)° 
c = 165666(6) Å; γ = 65.676(3)° 

Volume [Å3] 2937.8(2) 

Z 2 

Density (calculated) [mg/m3] 1.243 

Absorption coefficient [mm
-1

] 0.774 

F(000) [mm-1] 1176 

Crystal size [mm3] 0.500 x 0.500 x 0.480 

Theta range for data collection 1.390 to 26.865° 

Index ranges -17<=h<=17, -20<=k<=20, -20<=l<=20 

Reflections collected 42453 

Independent reflections 12459 [R(int) = 0.0413] 

Completeness to theta = 25.242° 100.0 % 

Absorption correction Numerical 

Max. and min. transmission 0.7779 and 0.7155 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 12459 / 102 / 764 

Goodness-of-fit on F
2
 1.035 

Final R indices [I>2sigma(I)] R1 = 0.0370, wR2 = 0.0983 

R indices (all data) R1 = 0.0464, wR2 = 0.1024 

Extinction coefficient n/a 

Largest diff. peak and hole 0.468 and -0.531 e.Å
-3
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Figure 114. Solid state structure of 2+Li+. Thermal displacement ellipsoids given at 30% probability. The Hydrogen atoms 
and the counterion BPh4

- are omitted for clarity. Only one of the crystallographically independent molecules is shown 
(the second one shows a disorder of the O2 moiety). Symmetry transformation used to generate equivalent atoms: 

#1 -x+1, -y+1, -z+1. Selected bond lengths [Å] and bond angles [°]: Cu1-Cu2 3.8562(9), O1-O2 1.497(3), Cu1-O1 1.902(2), 
Cu1-N1 1.915(3), Cu1-N3 2.123(2), Cu1-N4 2.175(3), Cu1-N5 2.211(3), Cu2-O2 1.917(2), Cu2-N2 1.927(3), Cu2-N6 
2.143(3), Cu2-N7 2.173(3), Cu2-N8 2.220(3), Li1-O1 1.868(5), Li1-O2 1.893(5), O1-Cu1-N1, 95.63(10), O1-Cu1-N3 
170.39(9), N1-Cu1-N3 81.15(11), O1-Cu1-N4 105.66(9), N1-Cu1-N4 136.37(11), N3-Cu1-N4 82.59(10), O1-Cu1-N5 
93.08(9), N1-Cu1-N5 133.32(11), N3-Cu1-N5 82.79(10), N4-Cu1-N5 83.76(10), O2-Cu2-N2 96.16(10), O2-Cu2-N6 

169.91(10), N2-Cu2-N6 80.57(11), O2-Cu2-N7 92.67(9), N2-Cu2-N7 137.64(11), N6-Cu2-N7 83.61(11), O2-Cu2-N8 
107.25(9), N2-Cu2-N8 131.65(10), N6-Cu2-N8 81.73(10), N7-Cu2-N8 83.79(10), O1-Li1-O2 46.91(14), O2-O1-Cu1 

118.91(14), O1-O2-Cu2 118.39(13). 

 

Table 22. Crystal data and refinement details for 2+Li
+
. 

Compound 2+Li+ 

Empirical formula  C108H154B2Cu4F6Li2N16O10S2 

Formula weight [g/mol] 2304.24 

Temperature [K] 133(2) 

Wavelength MoKα [Å] 0.71073 

Crystal system  Monoclinic 

Space group  P 21/c 

Unit cell dimensions a = 33.1189(5) Å; α = 90° 

b = 33.1189(5) Å; β = 95.5650(10)° 
c = 20.9993(4) Å; γ = 90° 

Volume [Å3] 12841.5(4) 

Z 4 

Density (calculated) [mg/m3] 1.192 

Absorption coefficient [mm
-1

] 0.750 

F(000) [mm-1] 4848 
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Crystal size [mm3] 0.500 x 0.500 x 0.280 

Theta range for data collection 1.230 to 25.647° 

Index ranges -19<=h<=22, -40<=k<=40, -25<=l<=25 

Reflections collected 131775 

Independent reflections 24202 [R(int) = 0.0739] 

Completeness to theta = 25.242° 100.0 % 

Absorption correction Numerical 

Max. and min. transmission 0.8011 and 0.6172 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 24200 / 0 / 1386 

Goodness-of-fit on F
2
 1.025 

Final R indices [I>2sigma(I)] R1 = 0.0524, wR2 = 0.1233 

R indices (all data) R1 = 0.0715, wR2 = 0.1316 

Extinction coefficient n/a 

Largest diff. peak and hole 0.896 and -0.637 e.Å
-3

 

 

 

Figure 115. Molecular structure of 4. Thermal displacement ellipsoids given at 30% probability. The Hydrogen atoms, 
the counterions BPh4

- and SbF6
- are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: Cu1-Cu2 3.816, 

Cu1-N1 1.898(5), Cu1-O1 1.924(5), Cu1-N3 2.068(4), Cu1-N4 2.112(5), Cu1-N5 2.160(5), Cu2-N2 1.889(5), Cu2-O2 
1.940(5), Cu2-N8 2.044(6), Cu2-N6 2.090(5), Cu2-N7 2.242(6), O1-O2 1.329(7); N1-Cu1-O1 93.4(2), N1-Cu1-N3 

82.47(19), O1-Cu1-N3 175.8(2), N1-Cu1-N4 138.2(2), O1-Cu1-N4 98.3(2), N3-Cu1-N4 84.15(18), N1-Cu1-N5 130.8(2), O1-
Cu1-N5 97.8(2), N3-Cu1-N5 85.67(18), N4-Cu1-N5 87.18(18), N2-Cu2-O2 92.9(2), N2-Cu2-N8 160.9(2), O2-Cu2-N8 

95.2(2), N2-Cu2-N6 81.3(2), O2-Cu2-N6 165.7(2), N8-Cu2-N6 86.7(2), N2-Cu2-N7 108.2(2), O2-Cu2-N7 110.4(2), N8-Cu2-
N7 85.1(2), N6-Cu2-N7 83.9(2). 
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Table 23. Crystal data and refinement details for 4. 

Compound 4 

Empirical formula  C53H77BCu2F6N8O2Sb 

Formula weight [g/mol] 1231.86 

Temperature [K] 133(2) 

Wavelength MoKα [Å] 0.71073 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 14.4712(4) Å; α = 99.776(2)° 

b = 21.3029(6) Å; β = 94.380(2)° 
c = 21.9065(7) Å; γ = 90.158(2)° 

Volume [Å3] 6635.0(3) 

Z 4 

Density (calculated) [mg/m3] 1.233 

Absorption coefficient [mm
-1

] 1.096 

F(000) [mm-1] 2540 

Crystal size [mm3] 0.500 x 0.410 x 0.320 

Theta range for data collection 1.411 to 25.722° 

Index ranges -17<=h<=17, -25<=k<=25, -25<=l<=26 

Reflections collected 87543 

Independent reflections 25003 [R(int) = 0.0537] 

Completeness to theta = 25.242° 99.9 % 

Absorption correction Numerical 

Max. and min. transmission 0.7446 and 0.6346 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 25003 / 820 / 1501 

Goodness-of-fit on F
2
 1.034 

Final R indices [I>2sigma(I)] R1 = 0.0863, wR2 = 0.2364 

R indices (all data) R1 = 0.1137, wR2 = 0.2566 

Extinction coefficient n/a 

Largest diff. peak and hole 1.814 and -1.721 e.Å
-3
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Figure 116. Molecular structure of 8. Thermal displacement ellipsoids given at 30% probability. The Hydrogen atoms 
and counterions ClO4

- are omitted for clarity. Symmetry transformation used to generate equivalent atoms: #1 -x+1, -
y+2, z+0. Selected bond lengths [Å] and bond angles [°]:Cu1-N1 1.945(3), Cu1-O1 1.976(2), Cu1-N3 2.061(3), Cu1-N2 

2.063(3), Cu1-N4 2.208(2), N1-C2 1.346(4), N1-N1 1.347(5); N1-Cu1-O1 102.02(11), N1-Cu1-N3 164.58(11), O1-Cu1-N3 
91.43(10), N1-Cu1-N2 81.99(11), O1-Cu1-N2 173.66(10), N3-Cu1-N2 83.99(11), N1-Cu1-N4 101.66(11), O1-Cu1-N4 

98.33(11), N3-Cu1-N4 83.56(10), N2-Cu1-N4 5.54(11). 

 

Table 24. Crystal data and refinement details for 8. 

Compound 8 

Empirical formula  C22H42Cl2Cu2N8O10 

Formula weight [g/mol] 776.61 

Temperature [K] 133(2) 

Wavelength MoKα [Å] 0.71073 

Crystal system  Tetragonal 

Space group  I41cd 

Unit cell dimensions a = 15.5316(4) Å; α = 90° 

b = 15.5316(4) Å; β = 90° 
c = 25.3786(7) Å; γ = 90° 

Volume [Å3] 6122.1(4) 

Z 8 

Density (calculated) [mg/m3] 1.685 

Absorption coefficient [mm
-1

] 1.630 

F(000) [mm-1] 3216 

Crystal size [mm3] 0.500 x 0.160 x 0.140 

Theta range for data collection 2,453 to 26.769° 

Index ranges -19<=h<=19, -19<=k<=19, -28<=l<=32 

Reflections collected 34178 
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Independent reflections 3143 [R(int) = 0.0311] 

Completeness to theta = 25.242° 99.9 % 

Absorption correction Numerical 

Max. and min. transmission 0.8117 and 0.6841 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 3143 / 61/ 248 

Goodness-of-fit on F
2
 1.025 

Final R indices [I>2sigma(I)] R1 = 0.0227, wR2 = 0.0489 

R indices (all data) R1 = 0.0254, wR2 = 0.0496 

Extinction coefficient n/a 

Largest diff. peak and hole 0.259 and -0.188 e.Å
-3

 

 

7.8 EPR Spectroscopy 

 All samples have been prepared freshly in a glove box with <0.1 ppm O2 and H2O. Complex 2 has 

been generated at a Schlenk line, where dioxygen was added at -40 °C. The sample was afterwards 

freeze pump degassed for minimum three times. Superoxo complex 4 was generated from a solution of 

precursor 2 and AgSbF6. The brown solution was afterwards filtered through a WHATMAN glass 

microfiber filter (minimum 10 layers) to remove the formed silver particles. 

EPR spectra at approximately 140 K have been recorded on a BRUKER E500 ELESYS X-band machine, 

equipped with a standard cavity (ER4102ST, 9.5 GHz). The temperature was controlled by using an 

OXFORD helium flow cryostat (ESP810) in addition with an OXFORD temperature controller (ITC-4). 

Measurements at helium temperature were performed on a BRUKER ELESYS E500 T X-band 

spectrometer. All spectra have been simulated with the software package easyspin117, running under 

Matlab®. 

7.9 NMR Spectroscopy 

 NMR spectra were recorded on a BRUKER DRX 500 and on a BRUKER Avance 300 at 298 K. Chemical 

shifts (δ) are given in ppm and related to residual proton or carbon signals of the solvent ((CD3)2CO, 

δH = 2.05, 2.84, δC = 29.84, 206.26). Coupling constants are given in Hertz [Hz]. Abbreviations for 

observed signal multiplicities are: s = singlet, d = doublet, sep = septet, m = multiplet and br = broad. 

Spectra were interpreted with the software MestReNova NMR (version 8.0.0-10524; Co. MESTRELAB). 



 

 
170 

 

7.10 IR Spectroscopy 

 IR data of oxygen sensitive species were collected in a glove box (Co. M. BRAUN) on an AGILENT Cary 

630 FTIR with Diamond ATR attachment. Oscillation frequencies are reported in wave numbers [cm-1]. 

Intensities are specified with: very weak = vw, weak = w, medium = m, strong = s and very strong = vs.  

7.11 Elemental Analysis 

 Elemental analyses were carried out in a vario EL III (Co. ELEMENTAR). Oxygen sensitive species were 

sealed inside a glove box with <0.1 ppm O2 and H2O in an aluminum capsule. 

7.12 Substrate Reactivity 

 Screening for substrate reactivity of complex 4 was carried out in MeCN in the temperature range of 

0 °C to -40 °C by monitoring the spectral changes via UV/vis absorption spectroscopy. Kinetic data have 

been treated via Reaction Progress Kinetic Analysis (RPKA).184 

At first, a solution of complex 1 has been oxidized with molecular dioxygen at -40 °C. Then the excess of 

dioxygen has been removed in bubbling dry argon through the solution for minimum 15 min. No 

spectral changes were observed. Subsequently, 2 was oxidized with AgSbF6 in yielding complex 4. Then 

the corresponding substrate was added via a HAMILTON syringe and the spectral changes were 

collected. Substrate reactivity with TEMPO-H has also been performed in using 

[Cu(iPr3TACN)(MeCN)2][(SbF6)2] as oxidant for the previous synthesis of 4, but no different reactivity was 

observed. 
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7.13 Syntheses 

 Ligand HL1 was synthesized according to a modified previously reported route31, by reacting 

1,4-diisopropyl-1,4,7-triazacyclononane220 with 1H-pyrazole-3,5-dicarbonyl dichloride221 followed by 

reduction of the product with LiAlH4. The oxidant [Cu(iPr3TACN)(MeCN)2][(SbF6)2]
160, the Phosphonium 

base222,223 PhNPpyr3, as well as the mononuclear Copper complexes Cu(salen)161,224, 

[Cu(cyclam)][(ClO4)2]
225 and [Cu(cyclen)][(ClO4)2]

225 were synthesized according to literature known 

procedures. 

7.13.1 [L1Cu2]BPh4 (1) 

 Complex 1 has been synthesized according to a previously reported route.10 To a solution of HL1 

(197 mg, 380 µmol, 1.00 eq.) and NaOtBu (55.0 mg, 570 µmol, 1.50 eq.) in MeOH (1 mL), a solution of 

[Cu(MeCN)4]ClO4 (249 mg, 760 µmol, 2.00 eq.) in MeOH (3 mL) was added in one portion and the 

resulting yellow solution was stirred for 2 h at room temperature. Then a solution of NaBPh4 (195 mg, 

570 µmol, 1.50 eq.) in MeOH (1 mL) was added. Immediately white solid formed that was stirred for 30 

min, filtered off, washed with MeOH (1 mL), dried in vacuo and dissolved in acetone (0.5 mL). The 

slightly green solution was left for Et2O diffusion at room temperature. After 3 d, green oil was 

separated from a now colorless solution. The colorless solution was taken for a second run of Et2O 

diffusion, of which colorless crystals were obtained within a few days (168 mg, 174 µmol, 46%). 

1H-NMR (500 MHz, (CD3)2CO): δ (ppm) = 7.36-7.32 (m, 8H, o-BPh4), 6.94-6.91 (m, 8H, m-BPh4), 6.79-6-76 

(m, 4H, p-BPh4), 5.72 (s, 1H, PzH), 3.85 (s, 4H, Pz-CH2), 3.07 (sep, 3JH,H = 6.6 Hz, 4 H, iPrCH), 3.02-2.95 (m, 

8 H, TACNCH2), 2.92-2.85 (m, 4 H, TACNCH2), 2.82-2.77 (m, 4 H, TACNCH2), 2.74-2.66 (m, 8 H, TACNCH2), 1.42 (d, 

3JH,H = 6.6 Hz, 12 H, iPrCH3), 1.22 (d, 3JH,H = 6.4 Hz, 12 H, iPrCH3).  

13C{1H}-NMR (125 MHz, (CD3)2CO): δ (ppm) = 165.0 (q, 1JC,B = 49.6 Hz, i-BPhC), 151.3 (PzC), 137.0 (q, 2JC,B = 

1.4 Hz, o-BPhC), 126.0 (q, 3JC,B = 2.8 Hz, m-BPhC), 122.2 (p-BPhC), 98.4 (PzCH), 58.3 (iPrCH), 55.5 (Pz-CH2), 53.2 

(TACNCH2), 51.9 (TACNCH2), 50.1 (TACNCH2), 23.0 (iPrCH3), 19.3 (iPrCH3).  

UV/vis (CH3CN solution, T = 23 °C): λmax [nm] (ε [M-1 cm-1]) = 267 (13289), 274 (11192). 

7.13.2 [L1Cu2(O2)]BPh4 ·Et2O, 0.5 acetone (2) 

 Complex 1 (18.3 mg, 19.0 µmol, 1.00 eq.) was dissolved in acetone (1.8 mL) and in Et2O (2.4 mL) and 

the colorless solution was split into six equal parts and filled into six test tubes, which were placed in a 

Schlenk tube that was filled with Et2O (6.0 mL). Then the Schlenk tube was cooled down to -40 °C. The 

atmosphere was removed and subsequently dry dioxygen was added. Then the intense purple solution 

was left for Et2O diffusion at -26 °C. After approximately two weeks, the obtained crystalline material 

was washed with Et2O and stored over a mixture of dry argon/O2 at RT (9.5 mg, 9.5 µmol, 50%). 
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UV/vis (CH3CN solution, T = -40 °C): λmax [nm] (ε [M-1 cm-1]) = 456 (2615), 527 (4994), 648 (3903). 

UV/vis (solid): λmax [nm] (reflectance [%]) = 460 (75), 529 (70), 663 (72). 

rR (solution, λexc = 633 nm, T = -30 °C, c = 1 × 10-2 M, EtCN): 𝑣̃O−O [cm-1] = 797 (Δ16O2−
18O2 = 39). 

rR (solid, λexc = 633 nm): 𝑣̃O−O [cm-1] = 793 (Δ16O2−
18O2 = 41). 

7.13.3 [L1Cu2(O2)(LiOTf)]2(BPh4)2 (2+Li+) 

 Complex 1 (9.0 mg, 9.3 µmol, 1.0 eq.) was dissolved in a mixture of acetone (0.3 mL) and of Et2O (0.8 

mL) and the colorless solution was cooled down to -40 °C. The atmosphere in the headspace was 

replaced by dry dioxygen and a solution of LiOTf (3.0 mg, 19.2 µmol, 2.0 eq.) in acetone (0.3 mL) was 

added drop wise and the intense purple color of the solution changed to brown. The solution was left 

for Et2O diffusion at -26 °C. After approximately two weeks the obtained crystalline material was 

washed with Et2O and stored over dry argon (8.4 mg, 7.3 µmol, 78%).  

UV/vis (CH3CN solution, T = -40 °C): λmax [nm] (ε [M-1 cm-1]) = 456 (3951), 595 (724).  

UV/vis (solid): λmax [nm] (reflectance [%]) = 463 (65), 604 (85). 

rR (solution, λexc = 633 nm, T = -30 °C, c = 1 × 10-2 M, EtCN): 𝑣̃O−O [cm-1] = 791 (Δ16O2−
18O2 = 35). 

rR (solid, λexc = 633 nm): 𝑣̃O−O [cm-1] = 790 (Δ16O2−
18O2 = 36). 

7.13.4 [L1Cu2(O2)((CH3)2CO)(KOTf)]2(OTf)2·0.5 H2O (2+K+) 

 Precursor 1 (6.8 mg, 7.1 µmol, 1.0 eq.) was dissolved in a mixture of acetone (0.2 mL) and of Et2O 

(0.4 mL). The solution was cooled down to -40 °C and the headspace was replaced by dry dioxygen. 

Then a solution of KOTf (2.0 mg, 10.6 µmol, 1.5 eq.) in acetone (0.2 mL) was added dropwise at -40 °C, 

followed by Et2O diffusion at -26 °C. The resulting single crystalline material was washed with Et2O and 

stored under dry argon (7.2 mg, 3.3 µmol, 93%). 

UV/vis (CH3CN solution, T = -40 °C): λmax [nm] (ε [M-1 cm-1]) = 515 (4826), 624 (2738).  

UV/vis (solid): λmax [nm] (reflectance [%]) = 511 (60), 615 (65).  

rR (solution, λexc = 633 nm, T = -30 °C, c = 1 × 10-2 M, EtCN): 𝑣̃O−O [cm-1] = 796 (Δ16O2−
18O2 = 40). 

rR (solid, λexc = 633 nm): 𝑣̃O−O [cm-1] = 790 (Δ16O2−
18O2 = 46). 

EA (calculated, found for 2+K+): C (37.93, 38.75), H (5.94, 5.91) N (10.41, 10.33). 

7.13.5 [L1Cu2(O2)] [(BPh4)(SbF6)] (4) 

 A solution of 1 (6.5 mg, 6.7 µmol, 1.0 eq.) in acetone (0.4 mL) and in Et2O (1.0 mL) was cooled down 

to -40 °C and the atmosphere in the Schlenk tube was replaced by dry dioxygen. Then a solution of 

[(iPr3TACN)Cu(CH3CN)2][(SbF6)2] (7.0 mg, 8.0 µmol, 1.2eq.) in acetone (0.4 mL) was added dropwise to 
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the purple solution at -40 °C, which immediately turned brown. The solution was left for Et2O diffusion 

at -36 °C. Crystalline material was obtained within a few days (1.4 mg, 1.1 µmol, 17%).  

Besides [(iPr3TACN)Cu(CH3CN)2][(SbF6)2], other oxidants like Cu(OTf)2, AgX (X = SbF6
-, BF4

-) were tested 

towards the oxidation of complex 2. Although in all cases a successful oxidation was observed, no 

suitable crystalline material was obtained during Et2O diffusion. 

UV/vis (CH3CN solution, T = -40 °C): λmax [nm] (ε [M-1 cm-1]) = 444 (10100), 600 (2140). 

rR (solution, λexc = 457 nm, T = 22 °C, c = 1.4 × 10-3 M, MeCN): 𝑣̃O−O [cm-1] = 1073 (Δ16O2−
18O2 = 60). 

IR (ATR): 1595 (m), 1493 (m), 1458 (m), 1373 (m), 1350 (w), 1325 (m), 1293 (w), 1269 (w), 1174 (m), 

1138 (m), 1092 (w), 1070 (m), 1048 (m), 998 (w), 975 (w), 951 (m), 898 (vw), 874 (w), 830 (m), 792 (m), 

737 (m), 715 (m), 654 (s). 

7.13.6 [L1Cu2(OH)(H2O)](ClO4)2 (5) 

 To a solution of HL1 (500 mg, 964 μmol, 1.00 eq.) in MeCN/MeOH (3.0 mL MeCN, 2.0 mL MeOH) 

NaOtBu (130 mg, 1.35 mmol, 1.40 eq.) has been added in one portion at RT. Subsequently, a solution of 

Cu(ClO4)2·6H2O (710 mg, 1.92 mmol, 1.99 eq.) in MeCN (2.0 mL) was added. The green solution was 

stirred for 1 h at ambient temperature. The solvent has been removed under reduced pressure and 

water (150 mL) was added and the resulting mixture was kept in a supersonic bath for 4 h. Then the 

green solid was filtered off and washed with water (3 x 3.0 mL). The slightly bluish solution was 

discarded. The solid was dissolved in MeCN (2.0 mL) and a solution of 5 M NaOH (0.2 mL) was added. 

The bluish solution was stirred for 10 h at RT. Afterwards, the solvent has been removed under reduced 

pressure and the blue solid was washed with water (3 x 2.0 mL), dried in vacuo and subsequently 

dissolved in MeCN/CHCl3 (0.2 mL MeCN, 2.0 mL CHCl3). The blue solution was left for Et2O diffusion at 

RT. After a few days, blue crystals have been collected which were again crystalized from MeCN/CHCl3 

(340 mg, 369 μmol, 38%). 

UV/vis (CH3CN, T =  -40 °C): λmax [nm] (ε [M-1 cm-1]) = 281 (9700), 390 (4600), 690 (800). 

UV/vis (H2O, T = 22 °C): λmax [nm] (ε [M-1 cm-1]) = 278 (10000), 690 (800). 

MS (ESI+, MeCN): m/z = 330.2 [M –H2O]2+, 697.3 [M +OH-]+, 761.3 [M +ClO4
-]+. 

EA (calculated, found for 5): C (39.63, 39.62), H (6.88, 6.69), N (12.75, 13.19). 

7.13.7 Preparation of HL3 

 The synthesis of this ligand was reported previously213, but has been slightly modified. To a solution 

of 1,4-Dimethyl-1,4,7-triazonane (1.70 g, 10.8 mmol, 2.5 eq.) in THF (3.0 ml) and trimethylamine 

(1.96 g, 19.4 mmol, 4.5 eq.) a solution of 3,5-bis(chlorocarbonyl)-1H-pyrazole hydrochloride (0.99 g, 

4.31 mmol, 1.0 eq.) in THF (6.0 mL) was added at 0 °C. The mixture was stirred overnight at ambient 

temperature. Then the mixture was filtered and the residue was washed with THF. Then the solvent 
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was removed under reduced pressure and CHCl3 (10 mL) and a saturated Na2CO3 solution (5.0 mL) were 

added. The mixture was stirred for 20 h at RT. Then the organic layer was washed with water (2 x 5.0 

mL). The organic layer has been dried over MgSO4 and the solvent was removed under reduced 

pressure and THF (15 mL) was added. Then the solution was added to a suspension of LiAlH4 (500 mg, 

13.2 mmol, 3.1 eq.) in THF (15 mL) at 0 °C and the mixture was stirred for 20 h at 63 °C. Finally, the 

excess of LiAlH4 was quenched with water at 0 °C. Then the white solid was filtered off and washed with 

THF (3 x 5.0 mL). The solvent was removed under reduced pressure and CHCl3 (50 mL) was added. The 

organic layer was washed with water (2 x 15 mL) and afterwards dried over MgSO4. The resulting 

colorless oil was stored under argon for two days. Then hexane (5.0 mL) was added and the solution 

was filtered over celite. The solvent was removed under reduced pressure and the colorless oil was 

dried in vacuo (455 mg, 1.12 mmol, 26%). 

1H-NMR (300 MHz, MeOD): δ (ppm) = 6.19 (s, 1H, PzH), 3.68 (s, 4H, PzCH2), 2.82-2.86 (m, 8H, TACNCH2), 

2.73-2.69 (m, 16H, TACNCH2), 2.35 (s, 12H, CH3). 

7.13.8 [L3Cu2]BPh4 (12) 

 Complex 12 was synthesized according to a previously reported route.10 To a solution of HL3 

(257 mg, 633 μmol, 1.0 eq.) and NaOtBu (82.5 mg, 860 μmol, 1.4 eq.) in MeOH (1.0 mL), a solution of 

[Cu(MeCN)4]ClO4 (414 mg, 1.27 mmol, 2.00 eq.) in MeOH (12 mL) was added and the slightly yellow 

solution was stirred for 4 h at RT. Then a solution of NaBPh4 (220 mg, 639 μmol, 1.0 eq.) was added and 

the mixture was stirred for 1 h. Afterwards the white solid was filtered off and washed with MeOH 

(2 x 1.0 mL) and dried under reduced pressure. The solid was dissolved in acetone and was left for Et2O 

diffusion. After 1 d, green oil was separated from a now colorless solution. The colorless solution was 

taken for a second run of Et2O diffusion, of which slightly yellow precipitate was obtained after two 

days (44 mg, 52 μmol, 8%).  

Crystallization attempts have also been performed via Et2O diffusion into concentrated solution of 

MeCN, EtCN (@ RT and @ -34 °C) and THF. However, no crystalline material could be isolated. For all 

different crystallization conditions, a color change from slightly yellow to a deep brown was observed 

over time which is attributed to a decomposition of complex 6. The yellow precipitate obtained from 

Et2O diffusion into a concentrated acetone solution was analyzed via 1H-NMR. Next to complex 6 also 

unidentifiable impurities were observed (ca. 15%).  

1H-NMR (300 MHz, (CD3)2CO): δ (ppm) = 7.39-7.29 (m, 8H, o-BPh4), 6.96-6.88 (m, 8H, m-BPh4), 6.80-6.76 

(m, 4H, p-BPh4) 6.09 (s, 1H, PzH), 3.78 (s, 4H, PzCH2), 2.90-2.86 (m, 8H, TACNCH2), 2.83-2.79 (m, 8H, TACNCH2), 

2.71-2.69 (m, 8H, TACNCH2), 2.60 (s, 12H, CH3). 
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7.14 List of Complexes 
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CP Cis-peroxo dicopper (cis--1,2) 

CH3COOOH Peracetic acid 

°C degree Celsius 

CT Charge transfer 

Cu Copper 

d day 

δ chemical shift 

DMSO Dimethylsulfoxide 

EPR Electron Paramagnetic Resonance 

ESI-MS Electro Spray Ionization Mass Spectrometry  

EtCN Propionitrile 

Et2O Diethyl ether 

eq. equivalent 

Fe Iron 

g gram 

h hour 

HBr Hydrogen bromide  

HSAB principle of Hard and Soft Acids and Bases 

Hz Hertz 

IR Infrared Spectroscopy 

K Kelvin 

KBr Potassium bromide 

KOtBu Potassium tert-butoxide 

Li Lithium 

LMCT Ligand to Metal Charge Transfer 

MeCN acetonitrile 

MeOH methanol 
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MTBE Methyl-tert-butylether 

Na Sodium 

NaOtBu Sodium tert-butoxide 

NMR Nuclear Magnetic Resonance 

rR Resonance Raman 

s second 

SP Side-on peroxo dicopper (-2-2) 

SQUID Superconducting Quantum Interference Device 

tBuOOH Tert-butyl hydroperoxide 

TACN Triazacyclononane  

THF Tetrahydrofuran 
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TP Trans-peroxo dicopper (trans--1,2) 
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