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Publication of  the Results 
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Abstract 

DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA 

screening, we identified kinases involved in the accumulation of phosphohistone 2AX 

(γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest 

reduction of phosphohistone 2AX followed knockdown of the MAP kinase-activated 

protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. 

Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, 

and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation. 

Moreover, MK2 activity was required for damage response, accumulation of ssDNA, and 

decreased survival when cells were treated with the nucleoside analogue gemcitabine or 

when the checkpoint kinase Chk1 was antagonized. By using DNA fiber assays, we found 

that MK2 inhibition or knockdown rescued DNA replication impaired by gemcitabine or 

by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In 

conclusion, instead of being an unavoidable consequence of DNA damage, alterations of 

replication speed and origin firing depend on MK2-mediated signaling. 
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Screening analysis of ubiquitin ligases reveals G2E3 as a potential target for 

chemosensitizing cancer cells 
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Abstract 

Cisplatin is widely used against various tumors, but resistance is commonly encountered. 

By inducing DNA crosslinks, cisplatin triggers DNA damage response (DDR) and cell 

death. However, the molecular determinants of how cells respond to cisplatin are 

incompletely understood. Since ubiquitination plays a major role in DDR, we performed a 

high-content siRNA screen targeting 327 human ubiquitin ligases and 92 deubiquitinating 

enzymes in U2OS cells, interrogating the response to cisplatin. We quantified γH2AX by 

immunofluorescence and image analysis as a read-out for DNA damage. Among known 

mediators of DDR, the screen identified the ubiquitin ligase G2E3 as a new player in the 

response to cisplatin. G2E3 depletion led to decreased γH2AX levels and decreased 

phosphorylation of the checkpoint kinase 1 (Chk1) upon cisplatin. Moreover, loss of G2E3 

triggered apoptosis and decreased proliferation of cancer cells. Treating cells with the 

nucleoside analogue gemcitabine led to increased accumulation of single-stranded DNA 

upon G2E3 depletion, pointing to a defect in replication. Furthermore, we show that 

endogenous G2E3 levels in cancer cells were down-regulated upon chemotherapeutic 

treatment. Taken together, our results suggest that G2E3 is a molecular determinant of the 

DDR and cell survival, and that its loss sensitizes tumor cells towards DNA-damaging 

treatment. 
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1 Introduction 

1.1 DNA damage and its role in cancer 

The genomic information contained in every living cell is a highly protected good that is 

given from one generation of cells to the next and whose integrity is a requirement for the 

healthy formation of tissues, organs and organisms. But even under normal circumstances, 

every cell is constantly subjected to DNA damage. The main part of this damage is 

endogenous in nature, so originating from within the cell itself. Most frequently, it is due to 

Reactive Oxygen Species (ROS) that are constantly generated as a by-product of a cell’s 

metabolism (Bont and Larebeke 2004). Opposed to this, exogenous damage stems from a 

source outside of the cell. Examples include ultraviolet or ionising irradiation, chemicals 

such as formaldehyde or chemotherapeutic drugs. For them the induction of DNA damage 

is the very principle of their therapeutic effect. Of course, this damage needs to be sensed 

and somehow responded to by the cell. A signalling cascade termed the DNA damage 

response (DDR) does exactly this sensing and there are several repair mechanisms to 

rectify DNA damage once it is done. However, sometimes damage can be very severe or 

the sensing and repair mechanisms can fail. In these cases, either apoptosis, programmed 

cell death, is induced (Norbury and Zhivotovsky 2004) or the cell starts to accumulate 

damage in form of mutations and even passes it on to daughter cells resulting in genomic 

instability and eventually leading to the development of cancer. 

1.1.1 The principle of chemotherapy 

Chemotherapy together with surgery, radiotherapy and more recently emerging targeted 

approaches is one of the cornerstones of cancer therapy. It was first introduced in the 

middle of the 20th century and remains to be of enormous clinical significance (DeVita and 

Chu 2008). Nowadays, there are several different chemotherapeutics which can be divided 

into categories based on their chemical structure and mechanism of action and include, but 

are not limited to alkylating agents, topoisomerase inhibitors and antimetabolites or 

nucleoside analogues (Helleday et al. 2008). Most of these groups have in common that 

they somehow interfere with the normal replication of a cell; others possess direct toxic 

activity. Cancer cells are especially susceptible to perturbed replication; firstly because of 

their high replicational activity and secondly because they are genetically instable, 

particularly in the advanced stages of cancer, and have already accumulated mutations that 

impair the sensing and repair mechanisms employed by healthy cells (Kotsantis et al. 2015). 

Therefore, treatment with chemotherapeutics will lead to the death of a cell or the 

induction of cell cycle arrest in a higher percentage of cancer cells than it does in normal 

cells. 
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1.1.2 Nucleoside analogues and antimetabolites 

Antimetabolites are drugs that interfere with other naturally occurring substances that are 

generated and used in the normal metabolism of a cell. Often, but not always, 

antimetabolites closely resemble the metabolite with which they are interfering. A subgroup 

of antimetabolites are nucleoside analogues that resemble either pyrimidines or purines and 

can be incorporated into the DNA in their place. Nucleoside analogues are S-phase-specific 

drugs as they only work on cells that are currently replicating their DNA (Ewald et al. 

2008).  

Other antimetabolites inhibit enzymes that are responsible for the generation of 

deoxyribonucleotides (dNTPs). Often targeted enzymes are dihydrofolate reductase or 

ribonucleotide reductase (RNR). Their inhibition results in imbalances within the dNTP 

pool of a cell and can for example lead to a shortage of nucleotides (Helleday et al. 2008). 

One example used in this study is hydroxyurea (HU) that is an antimetabolite but not a 

nucleoside analogue and acts as an inhibitor of RNR (Krakoff et al. 1968). Although, there 

are hints that HU may also interfere with later processes during DNA replication as cells 

seem to accumulate in early S phase and not at the G1/S boundary as one would assume 

(Wawra and Wintersberger 1983). 

1.1.2.1 Gemcitabine  

Gemcitabine or 2’,2’-difluoro 2’-deoxycytidine is an analogue of deoxycytidine which is 

incorporated into the DNA during replication leading to chain termination one nucleotide 

after the incorporation side. Its structure is depicted in Figure 1. Gemcitabine is a prodrug, 

in order to be incorporated into the DNA, it needs to be phosphorylated by 

deoxycytidinkinase thrice to its triphosphate form. Once gemcitabine is incorporated, the 

DNA polymerase adds one more nucleotide to the nascent strand but then fails to elongate 

it any further because of the steric deformation of the strand which does no longer fit into 

the polymerase’s catalytic site (Konerding et al. 2002). This process is called masked chain 

termination and gemcitabine’s penultimate position in the DNA strand prevents the 

immediate correction by the polymerase’s attached exonuclease and also hinders correction 

by other DNA repair mechanisms (Schy et al. 1993; Crul et al. 2003). Additionally, 

gemcitabine inhibits the enzyme ribonucleotide reductase (RNR) (Huang et al. 1991; Mini 

et al. 2006), further increasing its cytotoxic potential by causing a decrease in the number of 

available deoxynucleotides. This in turn leads to a shift within the available supply of 

deoxycytidine and gemcitabine, shifting the balance more towards the drug and allowing 

more gemcitabine to be incorporated, a process called self-potentiation (Ewald et al. 2008). 

Gemcitabine is most importantly used in pancreatic cancer (Burris et al. 1997) but is also a 

part of treatment protocols for advanced cases of non small cell lung cancer (NSCLC), 

bladder cancer and breast cancer (Ewald et al. 2008). 
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Figure 1: Structure of gemcitabine as opposed to deoxycytidine 

Gemcitabine differs from deoxycytidine in its two fluorine substituents on position 2’ of 

the furanose ring and leads to masked chain termination once it is incorporated into the 

DNA. 

1.1.3 Sensitizing cancer cells for chemotherapy 

Cancer cells are characterised by genomic instability, activation of oncogenes and 

inactivation of tumour suppressors, increasing for example proliferation rates but at the 

same time leading to an attenuated response and ability to sense and repair DNA damage. 

On the one hand, this favours a higher mutation rate, further increasing their malignancy; 

on the other hand, it abrogates sensing and repair pathways that are especially important 

for survival if cells are treated with chemotherapy. Therefore, cancer cells often 

compensate this loss by using alternative sensing and repair pathways to avoid cell death. 

Consequently, the externally driven disruption of other pathways in addition to standard 

chemotherapy can lead to a much higher percentage of cells that are no longer able to 

adequately react to DNA damage and are driven towards cell death, while non-cancerous 

cells still have alternative mechanism to avoid severe damage (Helleday et al. 2008; Tian et 

al. 2015). This principle is known as chemosensitisation. Promising targets for 

chemosensitisation are proteins involved in DNA repair or in checkpoint signalling like 

ATM, ATR, Chk1 and Chk2 (see 1.2.2 and 1.2.3). For two different inhibitors of Chk1 

(one of them UCN-01 which was also used in this study) there are already clinical trials in 

patients with advanced stages of cancer (Welch et al. 2007; Helleday et al. 2008; 

Dobbelstein and Sørensen 2015). 

1.2 Replicative stress and the DNA damage response 

Replicative stress is a loosely defined term used to describe DNA damage that interferes 

with on-going replication, thus impeding correct and timely completion of S phase (see 

1.2.5 and 1.2.6 for details). A characteristic of replicative stress is the formation of stalled 

and collapsed replication forks (Dobbelstein and Sørensen 2015). Sources of replicative 
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stress can be DNA lesions, ribonucleotides that have been incorporated instead of 

desoxyribonucleotides, imbalances in the dNTP pool of a cell, repetitive DNA structures, 

oncogene induced stress and several others. So, the obstacles posed to replication can be of 

various nature but all result in the inability of the replisome (see 1.2.1) to move further 

along the DNA strand, thus causing what is called a stalled replication fork. This stalled 

fork can be restarted once the obstacle, e.g. a chemically modified base, is removed but if 

this is not achieved in a timely manner, the replisome can dissociate from the DNA strand 

or be no longer functional, giving rise to a collapsed replication fork. Collapsed forks 

cannot be restarted even if the damage that caused them is repaired later on (Zeman and 

Cimprich 2014). Cells have developed several mechanisms to cope with replicative stress 

and in principle, three different outcomes are possible: Repair of the damaged DNA and 

completion of replication, cell cycle arrest or the induction of apoptosis (see Figure 2 for a 

schematic overview). 

 

Figure 2: Sources and consequences of replicative stress 

Various occurrences can pose obstacles to on-going replication, leading to fork stalling. A 

stalled fork can either be restarted or collapses after a short period of time. Once collapsed 

the DNA damage response comes into action and can lead to either DNA repair, induction 

of cell cycle arrest or programmed cell death. Blue ovals depict parts of the replication 

machinery. 
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To understand the causes and consequences of replicative stress, it is necessary to first look 

at how DNA replication is normally organised and regulated and then focus on the 

response to disturbances during this process. The following sections will provide a brief 

overview of these topics. 

1.2.1 Regulation of DNA replication 

In eukaryotic cells, as opposed to prokaryotes, replication does not start at a predefined 

point of the genome, but at several different and seemingly randomly distributed 

replication origins. Before S phase, these origins need to be licensed, which means that 

several proteins including the minichromosome maintenance2-7 (MCM2-7) helicase 

complex are recruited that together form the pre-Replicative Complex (pre-RC), basically a 

still inactive replication machinery. Upon the onset of S phase, a small portion of 

approximately 10 % of these origins are fired, meaning that MCM2-7 is phosphorylated 

and several proteins including DNA-polymerase primase α are recruited to the now active 

origin. The firing of an origin results in the formation of a bidirectional replication bubble 

with two replisomes moving away from their origin (Masai et al. 2010). 

If replication at one of these forks comes to a halt and cannot be resumed, this gives rise to 

a collapsed replication fork. A possibility to ensure complete replication in this case is the 

firing of one of the previously unfired, so-called dormant origins on the other side of the 

lesion. The mechanisms behind this are still not completely understood and it remains 

unclear whether firing of dormant origins in response to replicative stress is a purely 

stochastic process or occurs in a regulated manner (McIntosh and Blow 2012). 

1.2.2 A response to ssDNA: ATR Chk1 pathway 

Upon stalling of a replication fork, helicase continues to unwind the DNA but the 

polymerase fails to elongate the nascent strand any further, thereby creating stretches of 

single-stranded DNA (as shown in Figure 5). The ssDNA is quickly coated with replication 

protein A (RPA) that further recruits ATR-interacting-protein (ATRIP) to these sites (Zou 

and Elledge 2003). ATRIP then serves as a binding partner for ATR (ATM (ataxia 

teleangiectasia mutated)-and-Rad3-related) (Branzei and Foiani 2009). ATR, together with 

ATM (discussed in detail in 1.2.3) and DNA-dependent protein-kinase (DNA-PK) is one 

of the key kinases of the DNA damage response. All three are serin/threonine kinases and 

belong to the family of nuclear phosphatidylinositol-3-kinase-related-kinases serin/threonin 

kinases (PIKK-family); ATM mainly mediates the response to DNA double-strand breaks 

and is discussed in detail below. An overview of ATR as well as ATM signalling can be 

found in Figure 3. 

Once ATR is recruited to ssDNA it phosphorylates a wide range of substrates, one of the 

most important ones being checkpoint-kinase 1 (Chk1) (Zhao and Piwnica-Worms 2001). 

Chk1 is mostly present in S and G2 phase and even in the absence of DNA damage it is 
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active at a low level (Lukas et al. 2001; Bartek and Lukas 2003). ATR is the main activator 

of Chk1 but Chk1 can also be phosphorylated by ATM and possibly other kinases in a 

process known as crosstalk (Gatei et al. 2003). Chk1 then goes on to phosphorylate a 

plethora of substrates thereby distributing and amplifying the transduced signal. Apoptosis, 

chromatin remodelling, progression through the cell cycle, DNA repair and stabilisation of 

stalled replication forks are all subject to regulation via the ATR/Chk1 pathway. Both 

ATR, as well as Chk1 are essential for mammalian development and their complete loss 

results in early embryonic lethality in mice (Brown and Baltimore 2000; de Klein et al. 2000; 

Takai et al. 2000). The constant low-level activation of the ATR-Chk1 pathway seems to be 

necessary to suppress excessive origin firing during normal S phase (Shechter et al. 2004). If 

completely activated at a stalled fork, ATR-Chk1 signalling stabilises the stalled fork and 

allows a cell to repair the DNA damage and eventually restart the stalled fork by halting the 

cell’s progression through the cell cycle. This function is part of the intra-S phase 

checkpoint and will be discussed in more detail below (1.2.6). 

 

Figure 3: Schematic depiction of major signalling pathways in the DNA damage response 

The ATR/Chk1 pathway mainly responds to the exposure of ssDNA at stalled replication 

forks, the ATM/Chk2 pathway is activated upon the detection of DNA double strand 

breaks. Both Chk1 and Chk2 phosphorylate a great number of targets. Their signalling can 

lead to apoptosis, DNA repair, the activation of cell cycle checkpoints and chromatin 

remodelling, depending on the type and severity of damage. Both pathways can activate 

and influence each other at different stages of the signalling process. 
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1.2.3 A response to DSBs: ATM Chk2 pathway 

ATM, as already introduced above, is mainly activated upon DNA double strand breaks 

that can also be the product of collapsed replication forks following replicative stress 

(Hanada et al. 2007) but mostly occur after treatment with DNA damaging agents like 

topoisomerase II inhibitors or irradiation. ATM in its inactive form is a dimer that upon 

autophosphorylation dissociates into two active monomers and locates to the sites of DSB 

with the help of several adaptor proteins (Bakkenist and Kastan 2003). One protein 

phosphorylated by ATM is Checkpoint kinase 2 (Chk2) that largely functions in parallel to 

Chk1 and phosphorylates substrates like p53 and others known to be essential for cell cycle 

control and the induction of apoptosis. ATM itself also targets p53 via its negative 

regulator Mouse double minute 2 homologue (Mdm2) and further controls two pathways 

needed for the repair of DSBs – non-homologous end joining (NHEJ) and homologous 

recombination (HR) (Ciccia and Elledge 2010). 

The tumour suppressor p53 has a central role in the response to DNA damage and also to 

more general sources of cellular stress. This key function is further illustrated by the finding 

that p53 is mutated in approximately 50 % of all human malignancies (Hollstein et al. 

1991). It belongs to a protein family together with p73 and p63 and serves as a 

transcription factor for genes involved in cell-cycle-arrest, apoptosis and DNA repair 

(Menendez et al. 2009). P53 is always present in a cell but is normally kept at relatively low 

levels via ubiquitination and consequent proteosomal degradation. Upon phosphorylation 

by for example ATM, ATR, Chk1 or Chk2 it is stabilised and accumulates, forming a 

tetramer that then serves as the active transcription factor (Oren 2003). 

1.2.4 Phosphorylation of H2AX 

In every cell the DNA is wound around histones and thusly organised into structures that 

we call nucleosomes. But histones do not only package DNA, they also influence its 

accessibility for other proteins. Histone 2AX (H2AX) is a histone variant that is 

phosphorylated upon DNA damage and plays a role in the recruitment of proteins like 

those involved in DSB repair by homologous recombination and non homologous end-

joining to the site of damage (Hartlerode and Scully 2009). The phosphorylation occurs 

specifically at Serine 139 of H2AX that is called γ-H2AX in its phospho-form. All three 

major sensing-kinases of the DNA damage response ATM, ATR and DNA-PK are shown 

to catalyse this posttranslational modification (Burma et al. 2001; Stiff et al. 2004; Ward et 

al. 2004). The phosphorylation of H2AX spreads along the DNA strand and serves as a 

signal amplifier for the DDR. Especially ATM is recruited to sites of γ-H2AX and further 

activated (Stucki and Jackson 2006; Cimprich and Cortez 2008). Due to these properties 

and easy staining in immunofluorescence, γ-H2AX is a well established and much used 

marker for DNA damage in general. 
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1.2.5 The cell cycle and its regulation 

Most cells follow a regular and tightly controlled life cycle leading to replication of their 

DNA and subsequent cell division. To ensure that no vital errors occur during the process, 

this cell cycle includes several checkpoints that can, in case of problems, halt a cell’s 

progression through the cell cycle and allow time for repair. A normal cell cycle consists of 

Gap 1 (G1) phase where cells grow and prepare for replication, S phase during which the 

DNA is replicated, Gap2 (G2) phase that is characterised by further cell growth and M 

phase or mitosis where the cell divides into two daughter cells. There are three major 

checkpoints that can be activated as a consequence of DNA damage: the G1/S, the intra-S 

phase and the G2/M checkpoint (Morgan 2006). The underlying principle of regulation for 

all the checkpoints is the same. In order to progress, a kinase of the so-called cyclin 

dependant kinases (CDKs) is needed to phosphorylate effector proteins. As suggested by 

their name, CDKs need cyclins to be active and transcription of cyclins is tightly controlled 

and only occurs during certain phases of the cell cycle and once certain requirements are 

met. Once CDKs and Cyclins form a complex, it needs to be phosphorylated in order to 

be fully active and to allow the cell to progress further through the cell cycle. 

The G1/S as well as the G2/M checkpoints are mainly p53 dependant. As described above 

(see 1.2.3), p53 is stabilised as a consequence of DNA damage signalling for example via 

the ATR or ATM pathway. Upon accumulation of p53 it induces transcription of p21 and 

others that in turn inhibit Cyclin/CDK complexes thus hindering entry into the next cell 

cycle phase (el-Deiry et al. 1993; Harper et al. 1993). 

1.2.6 The intra-S phase checkpoint 

The intra-S phase checkpoint is crucial for maintaining genomic stability under conditions 

of replicative stress. As detailed above (1.2.2), ATR and Chk1 will be activated upon DNA 

damage that interferes with replication and leads to stalled replication forks. Chk1 

phosphorylates and inactivates Cdc25 phosphatases and activates Wee1 leading to cell cycle 

arrest by blocking CDK1/2 (Kang et al. 2008; Reinhardt and Yaffe 2009). In addition, it 

also influences the stabilisation of stalled forks and origin firing. It was shown in budding 

yeast that mutation of mec1, the budding yeast analogue of ATR, leads to the loss of the 

helicase from the stalled fork thus giving rise to a collapsed replication fork that cannot be 

restarted (Cobb et al. 2003). The mechanisms behind restarting stalled forks are not 

completely understood but it is clear that in order to restart them, they first need to be 

stabilised and this stabilisation seems to be under the control of ATR and Chk1 (Lopes et 

al. 2001; Durkin et al. 2006; Sørensen and Syljuåsen 2012). In addition to fork stabilisation 

and delayed mitotic entry, the intra-S phase checkpoint also inhibits late origin firing and 

slows replication forks that are working on DNA templates that have been damaged 

(Lambert and Carr 2005). 
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1.2.7 Induction of apoptosis 

Apoptosis is a form of cell death chosen by a cell upon intrinsic or extrinsic signals of 

extreme stress or damage beyond repair. As opposed to necrosis, apoptosis is characterised 

by cleavage of a cells components, resulting in fragmentation of the DNA, membrane 

blebbing, chromatin condensation and shrinking of the cell leading to the subsequent 

formation of apoptotic bodies that can be cleared by phagocytic cells without causing a 

spill-over and hence inflammation in the surrounding environment (Kerr et al. 1972).  

There are two major ways to initiate apoptosis, an extrinsic and an intrinsic one. Both lead 

to the activation of caspases (cysteine aspartases), proteases with a cysteine at their active 

centre that cut proteins specifically at sites containing aspartic acid. An active caspase will 

also cleave and activate other caspases, thus increasing the apoptotic signal and reaching a 

point of no return. Many proteins contained in a cell are subject to caspase cleavage, 

including lamins that are essential for the integrity of the nuclear envelope, inhibitor 

proteins for DNA endonucleases, which in turn are released upon degradation of the 

inhibitor and cut the DNA into little pieces and PARP (poly-ADP-ribose-polymerase 1), a 

protein involved in DNA repair that is inactive once cleaved and was, in its cleaved form, 

used in this study as a marker for apoptosis in western blots (Kaufmann et al. 1993). 

The extrinsic apoptotic pathway is triggered when an extracellular molecule, for example 

Tumour necrosis factor alpha or Fas (first apoptotic signal), binds to so-called death 

receptors. Death receptors consist of an extracellular ligand binding site, a transmembrane 

domain and intracellular death domains that recruit initiator procaspases and further 

proteins which can then activate executioner procaspases and spread the death signal 

within in the cell (reviewed in Elmore 2007). 

For this study the intrinsic pathway is of more interest since it can be activated as a 

consequence of replicative stress and DNA damage. Normally there is a balance of pro- 

and anti-apoptotic stimuli within a cell. Upon certain events this balance can be shifted 

towards either end mostly by withdrawal of either pro- or anti-apoptotic factors. Most of 

these factors belong to the Bcl-2 family and are directly or indirectly controlled by p53 

although the exact mechanisms of this regulation are still a matter of debate. However, if 

the balance of these factors is shifted towards the pro-apoptotic ones this always results in 

the permeabilisation of the outer mitochondrial membrane and the release of 

mitochondrial proteins like cytochrome c and others (Kluck et al. 2000; Saelens et al. 2004). 

Cytochrome c binds procaspase 9 and other proteins forming a structure called 

apoptosome (reviewed by Chinnaiyan 1999), leading to the activation of caspase 9 and 

therefore pulling the trigger for programmed cell death. 
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1.3 The G2 specific E3 ligase (G2E3) 

G2E3, as already suggested by its name, belongs to the family of E3 ubiquitin ligases and is 

mainly expressed in G2 and M phase. It was first described in 2001 as a protein with 

maximum expression levels in G2/M and an observed down-regulation after ionizing 

irradiation (Crawford and Piwnica-Worms 2001). As to now, relatively little is known about 

G2E3 but there are strong hints that it is involved in the response to DNA damage and in 

the regulation of apoptosis. In this study we provide evidence that G2E3 plays a role in a 

cell’s response to replicative stress and acts as a regulator of Chk1. 

G2E3 was found to contain a HECT-domain (homologous to E6-associated protein) 

suggesting it might serve as an ubiquitin ligase. However, this HECT domain proved to be 

catalytically inactive but instead seems to control the subcellular localisation of G2E3. 

Nevertheless, G2E3 showed ubiquitin ligase activities in an in vitro assay but this activity 

seems to be mediated by its three PHD/RING-domains (plant homeodomain/really 

interesting new gene) (Brooks et al. 2008). The structure of G2E3 as described by Brooks 

et al. is shown in Figure 4. G2E3 is normally localised in the cell’s nucleus (shown for 

HeLA, Cos-7, SiHa and BSC-40). It was shown that in HeLa cells G2E3 is present in the 

nucleolus and relocates to the nucleoplasm after DNA damage (Brooks et al. 2007). These 

data already suggest that G2E3 could play a role in maintaining genome stability and the 

DDR. But in addition, G2E3 also impacts the induction of apoptosis. It was shown that 

knockout of G2E3 in mice leads to early embryonic lethality mediated by massive 

apoptosis at the blastocyst stage. Heterozygous mice however are phenotypically normal 

and mainly express G2E3 in the central nervous system and limb buds (Brooks et al. 2008). 

Until today it is unclear how exactly these functions are achieved. It is highly likely that 

G2E3 indeed acts as an ubiquitin ligase but its natural substrates remain to be found.  

Ubiquitination in general is a posttranslational modification that often serves as a signal for 

proteasomal degradation but also plays a role in regulating the localisation and activity of 

proteins (Komander and Rape 2012; Swatek and Komander 2016). Ubiquitin is a small 

protein that is covalently bound to a target protein most often by E3 ubiquitin ligases, 

although there are two other protein families known to catalyse this reaction. The ubiquitin 

ligase attaches one (monoubiquitination) to several ubiquitin molecules (polyubiquitination) 

to a target protein thus most often tagging it for proteasomal degradation. The 26S 

proteasome system recognises ubiquitin tagged proteins and subsequently degrades them. 

For example, p53, one of the key factors of the DDR, is normally kept at low levels by 

ubiquitination through its negative regulator Mdm2 and subsequent proteasomal 

degradation. The role of ubiquitin ligases in the development of cancer was reviewed by 

Nakayama and Nakayama in 2006 (Nakayama and Nakayama 2006). In addition to 

proteasomal degradation, ubiquitination is also known to influence chromatin remodelling 

by attaching ubiquitin to histones (Musselman and Kutateladze 2011). Like for example 

phosphorylation, ubiquitination is not an irreversible step. There are several 
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deubiquitinating enzymes that are able to cleave the bond between a protein and its 

attached ubiquitin. 

 

 

Figure 4: Domain structure of G2E3 

G2E3 consists of three PHD/RING domains that possess in vitro ubiquitin ligase activity 

and are located at the N-terminal half and a HECT domain at the C-terminus that seems to 

control subcellular localisation (Brooks et al. 2007). Also located near the N-terminus are 

three alleged nuclear localisation signals (NLSs), depicted as orange bars. 

1.4 The MAPKAP Kinase MK2 

Mitogen-activated protein kinase-activated protein kinase 2 or short MK2 has for the last 

several years been an emerging research interest regarding its role during such fundamental 

processes like genome maintenance, cell proliferation, cellular stress, gene expression 

regulation and inflammation. MK2 has two structurally related siblings, MK3 and MK5 

that together form the subfamily of MAPK-activated protein kinases. Most importantly for 

this study, MK2 is part of a newly identified non canonical pathway that seems to function 

in parallel to the Chk1 and Chk2 DDR-pathways (Bulavin et al. 2001; Manke et al. 2005; 

Reinhardt et al. 2007). This pathway is activated in response to general stress within a cell, 

including replicative stress. A kinase called p38/MAPK is activated and goes on to 

phosphorylate downstream proteins including p53 and MK2. In its dephosphorylated 

form, MK2 forms a heterodimer together with p38/MAPK within the nucleus. Upon 

phosphorylation, a change in conformation occurs, exposing both the catalytically active 

site and an export signal, leading to MK2’s activation and relocalisation to the cytoplasm 

(Engel et al. 1998; Meng et al. 2002). MK2 itself phosphorylates a wide range of substrates, 

the most notable ones being hsp27 (heat shock protein 27) and Cdc25 phosphatases (see 

1.2.6). Through the inhibition of Cdc25, MK2 activation leads to a cell cycle arrest during S 

phase or at the G2/M boundary. In this respect, MK2 functions similarly to Chk1 and 

Chk2 which is the reason why it is sometimes referred to as Chk3. Interestingly, MK2 also 

shares its minimal phosphorylation motif with Chk1 and Chk2, further supporting the 

theory that it could act as a third checkpoint kinase (Bulavin et al. 2001; Xiao et al. 2006). 

In summary, MK2 is known to be involved in cell-cycle regulation mainly via the intra-S 

phase checkpoint and the G2/M-checkpoint but there are also strong hints that MK2 has 
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further functions in the DNA damage response and replicative stress. This study aims to 

contribute to further understanding these functions. 

1.5 Aims of  this study 

As detailed above, it is known that upon stalling of a replication fork ssDNA is formed 

which leads to the recruitment of various proteins involved in the DNA damage response. 

This study aims to use a new staining method for ssDNA as a read-out for replicative stress 

in order to identify proteins involved in the cellular response to replication fork stalling and 

collapse and to further elucidate their role and regulation. This will on the one hand side 

contribute to our general understanding of a cell’s response to DNA damage and on the 

other hand side help to identify proteins that could in the long run be candidates for 

chemosensitisation, meaning that by inhibiting them with a drug administered to patients 

the effects of chemotherapy on cancer cells could be intensified while simultaneously 

sparing healthy cells from too severe side-effects. In order to achieve these goals, the study 

was subdivided into the following three parts, each one relying on the one before: 

1. Establish the BrdU assay for ssDNA in a large, semi-automated setup as a new method 

to assess replicative stress. 

2. Identify candidates involved in replicative stress via literature search and include them in 

a miniscreen using the BrdU assay for ssDNA. 

3. Pick one or two candidates and investigate their role in replicative stress closer, e.g. find 

out more about their place in the DNA damage response and possible up- and downstream 

regulators and whether they could be candidates for chemosensitisation. 



2 Materials and Methods 13 

2 Materials and Methods 

2.1 Materials 

2.1.1 Buffers and Solutions 

Table 1: Buffers and Solutions 

Blocking solutions 

Western blot 5 % Milk powder in TBST 

Western blot for phospho-antibodies 5 % BSA in TBST 

Immunofluorescence 10 % FCS in PBS 

BrdU Assay for ssDNA 3% BSA, 0.3 % Triton X in PBS 

6x Laemmli buffer 

Tris pH 6.8 0.35 M 

Glycerin 30 % 

SDS 10 % 

Dithiotreitol 9.3 % 

Bromophenol blue 0.02 % 

Cell lysis buffer 

Urea 2 M 

Pefabloc 10 µM 

Pepstatin A 1 µg/ml 

Leupeptin/Aprotinin 1 µg/ml 

dissolved in RIPA 

10x PBS, pH 7.5 

NaCl 239.9 mM 

KCl 2.7 mM 

Na2HPO4 x 2 H2O 8.1 mM 

KH2PO4 1.5 mM 
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1x Pre-extraction buffer, pH 7.5 

Triton X-100 0.5 % 

HEPES 20 mM 

Sucrose 300 mM 

NaCl 50 mM 

MgCl2 x 6 H2O 3 mM 

Ponceau S solution 

Ponceau S 0.5 % 

Glacial acetic acid 1 % 

Ponceau S 0.5 % 

RIPA, pH 7.5 

Triton-X 100 1 % 

Sodium deoxycholate 1 % 

SDS 0.1 % 

NaCl 150 mM 

EDTA 3.722 g 

Tris-HCl pH 7.5 20 mM 

Trasylol 100000 KIE/ l 

SDS-PAGE running buffer 

Tris 25 mM 

Glycin 86.1 mM 

SDS 3.5 mM 

10x TBS, pH 7.4 

Tris-HCl 0.5 M 

NaCl 1.5 M 

1x TBS-T, pH 7.4 

Tween 20 0.1 % 
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Dissolved in 1x TBS 

10x Western salts pH 8.3 

Tris 250 mM 

Glycin 1.92 M 

SDS 0.02 % 

If not explicitly mentioned otherwise, all buffers and solutions are dissolved in H2O. 

2.1.2 Chemotherapeutics and Inhibitors 

Table 2: Chemotherapeutics and Inhibitors 

Name Target Company 

Cisplatin  Cis-Gry, Teva Germany 

Cycloheximide Ribosomes Thermo Scientific 

Gemcitabine  Eli Lilly, Indianapolis, United States 

Hydroxyurea  Sigma Aldrich 

MK III MK2 Calbiochem, Merck 

SB218078 Chk1 Calbiochem, Merck 

UCN-01 Chk1 Sigma-Aldrich 

TRAIL Death-receptors Sigma-Aldrich 

Z-VAD Caspases Sigma-Aldrich 

 

Table 3: Chemicals 

Name Company 

BrdU solution BD Pharmingen 

DMSO AppliChem 
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2.1.3 Kits 

Table 4: Kits 

Name Company 

Click-iT EdU Alexa Fluor High-throughput Imaging assay Invitrogen, Life Technologies 

Immobilion Western HRP Substrate Peroxide Solution Millipore, Merck 

Pierce, BCA Protein Assay Kit Thermo Scientific 

SuperSignal West Femto Maximum Sensitivity Substrate Thermo Scientific 

 

2.1.4 Small interfering RNAs 

Table 5: Small interfering RNAs 

Target ID Type 

control siRNA 1 (scrambled) 4390844 not disclosed 

control siRNA 2 (scrambled) 4390847 not disclosed 

G2E3-A 
s31128 sense 5’GAUGGUAAAUCUACAACAAtt3’ 

antisense 5’UUGUUGUAGAUUUACCAUCtt3’ 

G2E3-B 
s31129 sense 5’GAAGGGUCCUUGUCAAAGAtt3’ 

antisense 5’UCUUUGACAAGGACCCCUUCaa3’ 

G2E3-C 
s31130 sense 5’GGAUGUCUCAGACUUAUAAtt3’ 

antisense 5’UUAUAAGUCUGAGACAUCCaa3’ 

hnRNP-1 s21544  

hnRNP-2 s21545  

p53-1 s605  

p53-2 s607  

p73-1 s14320  

p73-2 s14321  

p73-3 s14321  

All siRNAs are silencer select siRNAs obtained from Ambion/Life Technologies. 
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2.1.5 Antibodies 

Table 6: Primary antibodies used in western blots 

Target Company Cat. No. Organism Dilution 

Chk1 Cell Signaling 2360 mouse 1:1000 

Chk2 Calbiochem CC44 mouse 1:300 

hsc-70 Santa Cruz sc-7298 rabbit 1:15000 

hsp27 pS82 Cell Signaling 2401 rabbit 1:1000 

MK2 pT334 Cell Signaling 3007 rabbit 1:1000 

p21 Calbiochem Op64 mouse 1:200 

p53 Santa Cruz sc-126 mouse 1:1000 

phospho-Chk1 (S317) Cell Signaling 2344 rabbit 1:1000 

phospho-Chk2 (T68) Cell Signaling 2661 rabbit 1:1000 

γ-H2AX pS139 Millipore 05-636 mouse 1:4000 

All primary antibodies for western blots are diluted in western blot blocking solution (5% 

milk powder), antibodies targeting phosphorylated Chk1 or phosphorylated Chk2 are 

diluted in western blot blocking solution for phospho-antibodies (5% BSA). 

Table 7: Primary antibodies used in immunofluorescence 

Target Company Cat. No.  Dilution 

BrdU 
Amersham/ GE 

Healthcare 

RPN20AB mouse 
1:300 

BrdU Abcam #Ab 8039 mouse different 

BrdU ABD Serotec MCA260 rat different 

γ-H2AX pS139 Millipore 05-636 mouse 1:2000 

γ-H2AX pS139 Cell Signaling #20E3 rat 1:1000 

The γ-H2AX antibody is diluted in normal IF blocking solution (5% FCS), the BrdU 

antibody, used in the BrdU assay for ssDNA is diluted in 3 % BSA in PBS. 
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Table 8: Secondary antibodies used in western blots 

Target Company Cat. No. Dilution 

HRP-coupled AffiniPure 

F(ab)2, fragment, anti mouse 

IgG 

Jackson 

Immunoresearch 

711-036-152 1:10000 

HRP-coupled AffiniPure 

F(ab)2 fragment, anti rabbit 

IgG 

Jackson 

Immunoresearch 

715-036-150 1:10000 

All Secondary antibodies for western blots are diluted in western blot blocking solution 

(5% milk powder), if the primary antibody targets a phosphorylated structure (e.g. 

phospho-Chk1 or phospho-Chk1), secondary antibodies are diluted in western blot 

blocking solution for phospho-antibodies (5% BSA). 

Table 9: Secondary antibodies used in immunofluorescence 

Target Company Cat. No. Dilution 

Alexa Fluor-488 goat anti 

rabbit 

Invitrogen/ Life 

Technologies 

A-11034 1:1000 

Alexa Fluor-488 goat anti 

mouse 

Invitrogen/ Life 

Technologies 

A-11017 1:1000 

Alexa Fluor-546 goat anti 

rabbit 

Invitrogen/ Life 

Technologies 

A-10040 1:1000 

Alexa Fluor 646 goat anti 

mouse 

Invitrogen/ Life 

Technologies 

A-11003 1:1000 

All secondary antibodies for immunofluorescence are diluted in IF blocking solution (5% 

FCS). 

2.1.6 Cell culture 

Table 10: Cell lines 

Cell line Origin Cultured in 

U2OS human osteosarcoma DMEM 

HCT116 p53 +/+  human colon carcinoma McCoy’s Medium 

HCT116 p53 -/- 
human colon carcinoma, p53 

deficient 

McCoy’s Medium 
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If not explicitly mentioned otherwise, all cell lines are cultured in media with supplements. 

Table 11: Media for cell culture 

Dulbecco’s Modified Eagle’s Medium (DMEM) 

DMEM powder 10 g/l 

NaHCO3 3.7 g/l 

HEPES 5,96 g/l 

DMEM with supplements 

DMEM  

FCS 10 % 

Penicillin/Streptomycin 50 U/ml 

L-Glutamine 200 µM  

Ciprofloxacin 10 µg/ml 

Tetracycline 2 µg/ml 

McCoy’s Medium with supplements 

McCoy’s Medium  

FCS 10 % 

Penicillin/Streptomycin 50 U/l 

L-Glutamine 200 µM 

All reagents are dissolved in H2O. 

2.2 Methods 

2.2.1 Human cell culture 

Human cell lines were used for all experiments, for a list of all cell lines, see Table 10. The 

cells were cultured at 37 °C under 5 % CO2 in Dulbecco’s Modified Eagle Medium 

(DMEM), or McCoy’s Medium, both with supplements (see Table 11). All cell culture work 

was carried out under sterile conditions and with pre-warmed (37 °C) media and reagents. 

Cells were split approximately three times per week with dilutions between 1:2 and 1:10 

depending on the cell line and density of cells. For splitting and experimental use, cells 

were washed with PBS and detached from their dish by incubating them with 0.1% 

Trypsin/EDTA for a couple of minutes at 37 °C. In order to stop the enzymatic activity of 

trypsin, cell culture medium with FCS was added and the cells were diluted and reseeded. 
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For experimental use, cells were seeded onto 6-, 12- or 96 well plates with a fixed amount 

of cells per well. To achieve this, cells were counted in a Neubauer counting chamber and 

diluted accordingly. 

2.2.1.1 Transient transfection with siRNAs 

In order to perform a selective knockdown of target proteins, such as G2E3, cells were 

transiently reverse transfected with siRNAs. As a transfection reagent, Lipofectamine 2000 

was used and the final concentration of siRNA was 10 nM. For preparation of the 

transfection reagent, the required amount of Lipofectamine 2000 (see Table 12) was added 

to medium without supplements, vortexed and incubated for 5 min at room temperature. 

For U2OS, DMEM was used and for HCT116 McCoy’s Medium. In parallel, a suitable 

amount of siRNA (see Table 12) was also diluted in medium without supplements and 

vortexed. These two solutions were hereafter combined, gently mixed and left to incubate 

for 20 min at room temperature. This mix was then given into the wells of a cell culture 

plate and a fixed amount of cells in medium with supplements was added. The plates were 

incubated for 24 h at 37 °C before the medium was first changed. A list of all siRNAs that 

were used in this work can be found in Table 5. 

Table 12: Preparation of transfection mix and cell numbers for transient transfection with 

siRNAs 

96 well plates 

Cell number U2OS 8000 

siRNA mix 25 µl medium + 1.5 pmol siRNA 

Transfection mix 14.75 µl medium + 0.25 µl LF2000 

12 well plates 

Cell number U2OS 100000 

Cell number HCT116 180000 

siRNA mix 67.5 µl medium + 15 pmol siRNA 

Transfection mix 28.65 µl medium + 1.35 µl LF2000 

6 well plates 

Cell number U2OS 160000 – 22000 depending on the experiment 

Cell number HCT116 360000 

siRNA mix 135 µl medium + 30 pmol siRNA 

Transfection mix 57.3 µl medium + 2.7 µl LF2000 
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2.2.1.2 Treating cells with chemotherapeutics or other chemicals 

All drugs were pre-dissolved in their respective solvent and then added to pre-warmed cell 

culture medium. Controls were treated with an equivalent amount of DMSO or H2O. If 

different amounts of DMSO or Ethanol had to be used for different inhibitors in one 

experiment, controls and all other treatments were adjusted to also contain the highest 

DMSO or Ethanol concentration. 

Table 13: Concentrations of drugs and chemicals for cell treatment 

Chemical or drug Concentration Solvent 

Chk1 Inh. UCN-01 300 nM DMSO 

Chk1 Inh. SB218078 5 µM DMSO 

Cycloheximide 5 µg/ml Ethanol 

Gemcitabine  different H2O 

Hydroxyurea 2 mM H2O 

MK2 Inh 10 µM DMSO 

TRAIL 75 ng/ml Ethanol 

Z-VAD 50 µM DMSO 

 

2.2.1.3 Generation of cell lysates for SDS-PAGE 

To prepare cell lysates for SDS polyacrylamide gel electrophoresis (SDS-PAGE), cells were 

grown and treated in 12 well plates and scraped off. The scraping as well as all other steps 

were performed on ice to hinder the degradation of proteins. After scraping the cells off in 

their medium, they were collected and centrifuged for 5 min at 845 g. The resulting pellet 

was washed with PBS, centrifuged again for 5 min at 845 g and then lysed in cell lysis 

buffer (see Table 1). The Pierce® BCA Protein Assay Kit was used to determine and then 

adjust the protein concentration of all samples to equal amounts by diluting them with 

RIPA buffer. These samples were then either stored at -80 °C or directly used for SDS-

PAGE by adding 6x Laemmli buffer, and boiling them for 5 min at 95 °C while shaking at 

1400 rpm. Before loading them onto the gel, samples were shaken with 1400 rpm for 30 

min at 4 °C to shear the DNA. 
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2.2.2 Western blot 

2.2.2.1 SDS-PAGE 

SDS-PAGE is a method to separate proteins by their molecular weight and mobility in an 

electrophoretic field using a polyacrylamide gel. It was developed and first described by 

Laemmli (Laemmli 1970). The protein-samples are denatured in the presence of Laemmli 

buffer that contains sodium dodecyl sulphate (SDS) which is a detergent and binds to the 

proteins in a stoichiometric way. This leads to the proteins being negatively charged 

proportionally to their molecular weight. If an electric field is now applied to the gel 

containing the proteins, they will travel towards the anode with larger proteins moving 

more slowly through the pores of the resolving gel and smaller proteins moving faster. For 

SDS-PAGE the gel is composed of two parts, the stacking gel and the resolving gel. The 

stacking gel is used to focus the samples. Therefore, it contains only 5 % Polyacrylamide at 

a pH of 6.8. The running buffer contains chloride and glycine ions with the chloride being 

charged negatively due to the low pH in the stacking gel and the glycine being a zwitterion. 

Between these two fronts of ions, a partial electrical field is generated in which the original 

sample is situated and therefore focused by being repelled by both negatively charged 

fronts. The sample then enters the resolving gel, which was cast using 12 % or 15 % 

polyacrylamide and buffered to a pH of 8.8. Under these conditions glycine is now 

deprotonated and moves faster than the protein sample itself, therefore no partial electric 

field is generated anymore and the sample separates according to the molecular weight of 

the different proteins. The exact composition of the gels can be found in Table 14. The 

resolving gel was cast first in a glass chamber and covered with isopropanol to achieve an 

even surface. The isopropanol was removed after polymerisation, the stacking gel was cast 

on top of the resolving gel and a comb was inserted. 

Table 14: Gels for SDS-PAGE 

Reagent 5 % stacking gel 12 % resolving gel 15 % resolving gel 

Acrylamide-

bisacrylamide 

5% 12% 15% 

Tris, pH 6.8 (1 M) 126 mM - - 

Tris, pH 8.8 (1.5 M) - 375 mM 375 mM 

SDS 0.1 % 0.1 % 0.1 % 

APS 0.1 % 0.1 % 0.1 % 

TEMED 0.3 % 0.4 % 0.4 % 

Dissolved in H2O 

The prepared cell lysates (see 2.2.1.3) were loaded onto the gel, in the first pocket of each 
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gel a pre-stained protein ladder was loaded. Gels were run at 80 V for the stacking gel and 

130 V for the resolving gel in SDS running buffer (see Table 1).  

2.2.2.2 Immunoblotting and immunostaining 

Immunoblotting or western blotting is a method that allows assessment of protein levels 

and post-translational modifications such as phosphorylation (Renart et al. 1979; Towbin et 

al. 1979). The method allows a transfer of the proteins from the gel onto a membrane 

where they can be detected by an antibody directed against a surface epitope. A secondary 

antibody, which is coupled to horseradish peroxidase (HRP), is directed against the first 

antibody’s constant region. By applying luminol, the oxidisation of the substrate can be 

detected by measuring luminescence.  

After the protein samples were separated by SDS-PAGE, the samples were transferred 

onto a nitrocellulose membrane by wet electroblotting (Bittner et al. 1980). In order to do 

so, the gel was put into a stack with two sponges and three Whatman papers on the 

cathode side, followed by the gel, the nitrocellulose membrane, three Whatman papers and 

a sponge on the anode side. This stack was placed in a plastic holder and put into a blotting 

chamber that was subsequently filled up with blotting buffer (see Table 1). An electric field 

with 90 V for 90 min at 4 °C was applied to achieve the transfer. As a quality control and 

to verify the equal transfer of proteins, membranes were stained with Ponceau S solution 

prior to staining them with antibodies. The membrane was then blocked in 5% milk or in 

the case of phospho-antibodies in 5% BSA (see Table 1) for 1 h and subsequently 

incubated with respective antibodies dissolved in milk or BSA for 2 h at room temperature 

or overnight at 4 °C. All primary antibodies used in western blots are listed in Table 6. 

Afterwards, the membrane was washed in TBST three times for 5 min. The secondary 

antibody in blocking solution was added for 1 h, followed again by three times washing in 

TBST. To visualize the bands Immobilion Western HRP Substrate Peroxide Solution (Millipore) 

or SuperSignal West Femto Maximum Sensitivity Substrate (Pierce) was added, followed by the 

detection of luminescence using the Intas ChemoStar Imager Software. 

2.2.3 High content immunofluorescence microscopy 

Immunofluorescence makes it possible to visualize proteins by targeting them with 

fluorophores coupled to antibodies. As in immunostaining, a primary antibody, directed 

against the protein of interest, is used together with a secondary antibody targeting the 

first’s constant region. This secondary antibody carries a fluorescent dye. Upon excitation, 

the emitted fluorescence can be detected using a fluorescence microscope. Using different 

fluorophores, emitting different wavelengths, makes it possible to stain more than one 

protein per sample.  

In this study, phosphorylation of H2AX was measured by high content 

immunofluorescence microscopy. For this purpose, 96 well plates were used to grow the 
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cells and each treatment was carried out in triplicates. For staining, the medium was 

removed and the cells were fixed with 4% Paraformaldehyd dissolved in PBS for 20 min at 

room temperature, rinsed twice in PBS and permeabilised with 0.5% Triton-X dissolved in 

PBS for 10 min at room temperature. After rinsing them again four times in PBS, blocking 

solution (10 % FCS) was added for 10 minutes. Hereafter, the cells were stained with the 

primary antibody, dissolved in blocking solution, for 1 h at room temperature or overnight 

at 4 °C. The primary antibody was then removed, the cells washed again three times with 

PBS and the secondary antibody was added and left to incubate for 45 min at room 

temperature. Together with the secondary antibody, 0.5 µg/ml Hoechst 33342 (Molecular 

Probes, Cat. No. H3570) were added to stain the cell nuclei. Afterwards, the cells were 

washed twice with PBS and either directly used for fluorescence microscopy or stored at 

4 °C. All work involving the secondary antibody was, as far as possible, carried out in the 

dark to protect the fluorophores from light. A list of primary and secondary antibodies can 

be found in Table 7 and Table 9. Per well, nine microscopic pictures with a 10x 

magnification were taken automatically using the BD pathway 855 system. With the 

AttoVision software, regions of interest (ROI) were defined by using the Hoechst channel 

as a mask. Since Hoechst selectively stains DNA (Latt et al. 1975) the ROIs contained only 

cell nuclei. Within these ROIs the nuclear fluorescence intensity of the γ-H2AX channel 

was quantified and a mean value per well was calculated. The data were further processed 

using R: A language and environment for statistical computing, Microsoft Access and GraphPad Prism 

version 5 and 7, GraphPad Software, San Diego California USA. 

2.2.4 BrdU assay for ssDNA 

The BrdU assay for single stranded DNA was employed to assess the amount of single 

stranded DNA per cell. The method was modified, based on a protocol published by 

Syljuåsen and colleagues (Syljuåsen et al. 2005). Our group published this modified 

protocol in 2013 (Köpper et al. 2013). Cells were exposed to 10 µM BrdU for 24 h prior to 

treatment; the treatment was then carried out under continued presence of BrdU. BrdU is 

incorporated during replication into the DNA double strand instead of thymidine. 

Normally, BrdU labelling is used to look at replicational activity of cells. In order to make 

the BrdU accessible for an antibody, the DNA double strand is normally broken down into 

single strands by the opening of chromatin using for example HCl, leading to a BrdU signal 

at all incorporation sites. Opposed to this, the BrdU assay for ssDNA only detects the 

BrdU at sites where the DNA itself formed single strands during the carried out treatment. 

To this end, no denaturation or opening of chromatin was done at any point during the 

staining procedure. Therefore, the antibody can only recognise the BrdU at sites of ssDNA 

that occur naturally for example at stalled replication forks. Therefore the BrdU assay 

provides additional information about the amount and specific kind of DNA damage that 

accumulated during the treatment. This can be combined with a parallel staining for 

γH2AX. 
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For use in the BrdU assay, two different workflows were established. Cells were either 

grown on coverslips in a 6 well plate for use with a confocal microscope or in 96 well 

plates for high content immunofluorescence microscopy. The staining procedure is similar 

for both. All steps were carried out on ice. After removal of the medium, cells were pre-

extracted with cold (4 °C) pre-extraction buffer (see Table 1) for 5 min. They were then 

rinsed twice in PBS and fixed with 4 % formaldehyde in PBS for 10 min. After washing 

them again two times in PBS, the samples were blocked and permeabilised with 3 % BSA 

and 0.3 % Triton X in PBS for 30 min. The BrdU antibody was then diluted in 3 % BSA in 

PBS and added for 1 h at room temperature or overnight at 4 °C. Afterwards, cells were 

washed twice in PBS again and incubated with the secondary antibodies dissolved in 3 % 

BSA in PBS for 1 h at room temperature followed by washing them three times and using 

them either for confocal microscopy or high content immunofluorescence microscopy. For 

cells grown on cover slips, the cover slips were transferred into a wet-chamber after 

fixation and stained therein. After the staining was completed, they were briefly dried and 

mounted with DAPI on glass slides by placing the cover slips face down on 4 µl drops of 

DAPI mounting medium. Excessive mounting medium was then removed and the cover 

slips fixed with nail polish. A Zeiss Confocal LSM 510 meta microscope was used to obtain 

pictures of the cells. Fiji was used for further image processing. For cells grown in 96 well 

plates, 0.5 µg/ml Hoechst 33342 were added together with the secondary antibody. The 

plates were used for high content immunofluorescence microscopy as described above. 

Again the Hoechst channel was used to define ROIs wherein the BrdU signal was then 

quantified. 

2.2.5 Statistical analysis 

Statistical analysis was done in Microsoft Excel and GraphPad Prism version 5 and 7. To test 

whether the difference between two groups was significant, an unpaired two-tailed 

student’s t-test was used. Variances were assessed using an F-Test, if needed variances were 

corrected using Welch’s correction. Differences between two sets of data were considered 

statistically significant if p<0.05. In figures asterisks indicate the following levels of 

significance: * p<0.05, ** p<0.01, *** p<0.001. 
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3 Results 

3.1 The BrdU assay detects ssDNA 

In order to use ssDNA as a read-out for replicative stress, a method to reliably detect it 

needed to be established. Therefore, a pre-existing method (Syljuåsen et al. 2005) was 

modified as described in the Materials and Methods part of this thesis (2.2.4). The 

underlying principle of the staining procedure is depicted in Figure 5. Furthermore, Figure 

6 shows a comparison between the newly established BrdU assay for ssDNA and the 

routine method of using BrdU incorporation for an assessment of replicational activity. 

The Chk1 inhibitor UCN-01 was used as a positive control. UCN-01 was also used by 

Syljuåsen et al. and leads to a reliable, high signal in U2OS and HCT116 cells. Treatment 

with hydroxyurea for 4 h can also be used as a positive control (see Figure 7 and Figure 8). 

For the antibody test, staining with only the secondary antibody was used as a negative 

control, for all other experiments cells that were not treated with BrdU were employed as a 

negative control. 

 

Figure 5: Schematic depiction of the BrdU assay for ssDNA 

(A) During normal replication, helicase unwinds the DNA creating a replication fork, the 

leading strand is replicated continuously from 5’ to 3’, the lagging strand’s replication is 

uncontinuously with Okazaki fragments being generated and later fused together. (B) Upon 

DNA damage, as indicated by the bolt, the DNA polymerase may stop replicating the 

DNA but the helicase continues unwinding it leading to the exposure of ssDNA which is 

then accessible for an antibody; in order to label the cells with BrdU they were incubated 

with 10 µM BrdU for 24 h prior to treatment, so the BrdU is incorporated in the S phase 

preceding the one during which the treatment is carried out; the BrdU is then detected by 

an antibody; detection is only possible if the DNA is single stranded e.g. at a stalled or 

collapsed replication fork. 
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Figure 6: Comparison between BrdU assay for ssDNA and BrdU incorporation for 

replicational activity 

(A) BrdU is incorporated into the DNA one S Phase prior to treatment; cells are incubated 

with 10 µM BrdU for 24 h; afterwards, the treatment is carried out under continued 

presence of BrdU; a pre-extraction is done during the fixation and no denaturation of the 

DNA is carried out, leaving only ssDNA accessible for an antibody. (B) Labelling with 

BrdU and treatment are done simultaneously to assess how the treatment interferes with 

replicational activity; after fixation the DNA is denatured to make all the BrdU accessible 

for an antibody. 

3.1.1 Only one antibody to BrdU reliably detects its epitope upon replicative 

stress in a high-content semi-automated setup 

Different antibodies were tested for use in the BrdU assay for ssDNA. The aim was to find 

an antibody that reliably detects the BrdU, can be used for costaining with γ-H2AX and 

works well in the automated microscopy setting. Three different antibodies were tested, 

two of them have a mouse constant region, one a rat constant region. For γ-H2AX there 

were already two antibodies that work very well, one derived from rat and one from mouse 

so that the desired costaining with γ-H2AX is possible by using the one with the respective 

other constant region. For use with the BD pathway system for high-content 

immunofluorescence, the staining needs to be very homogenous in terms of background 

signal and maximum signal per well so that the same exposure time can be used for all 96 

wells on the plate in order to afterwards quantify and compare the fluorescence intensities 

within the different wells. It can be seen in Figure 7 that not all of the tested antibodies are 

suitable for the BrdU assay for ssDNA. #Ab 8039 produces a very high background signal 

since the specific signal within the nucleus is so weak that the exposure time during which 

the fluorescence dye is excited needed to be set to 0.77 s in the 1:100 dilution. For 

comparison, the final antibody RPN 20AB (Figure 8) needs an exposure time of 0.2 s for 

the 1:300 dilution. Another tested antibody, MCA260 also shows a weak staining within the 

nucleus, background signal in the cytoplasm and precipitates. These aggregates of antibody 

lead to a very high maximum signal intensity which makes it complicated to find the right 

exposure time for the much weaker fluorescence signal emitted by the antibodies bound 

within the cells’ nuclei. Only the RPN 20AB exhibits a specific signal within the nucleus 
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with no high background (see Figure 8). As a result, it was decided to use the RPN 20AB in 

a dilution of 1:300 from here on. 

 

Figure 7: Not all BrdU antibodies can be used in the BrdU assay for ssDNA 

Two different antibodies were tested with the established workflow for the BrdU assay for 

ssDNA; after incubating U2OS-cells with 10 µM BrdU for 24 h, cells were treated with 

2mM hydroxyurea for 4 h under continued presence of BrdU, blue is the Hoechst signal, 

green the BrdU signal for ssDNA; (A) #Ab 8039 – detection of a specific BrdU signal 

within the nucleus only in a dilution of 1:50, higher dilutions preclude BrdU detection and 

overexposure only allows for the detection of a non-specific signal. (B) MCA260 – no 

specific BrdU signal can be detected as can be seen in the comparison between the samples 

stained with the primary antibody and the sample stained only with the secondary antibody; 

the antibody aggregates and forms precipitates, thereby impeding the setting of the right 

exposure time within the automated microscopy workflow. (A+B) pictures with 10x 

magnification, obtained using the BD pathway system 
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Figure 8: Staining with RPN 20AB produces a specific and selective signal within the 

nucleus 

(A) Good staining for BrdU could be achieved at all tested dilutions; U2OS cells were 

labelled with 10 µM BrdU for 24 h and treated with 1 µM gemcitabine for 4 h, blue: 

Hoechst, green: BrdU signal for ssDNA; pictures with 10 x magnification, obtained using 

the BD pathway system. (B) Staining occurs selectively and with a high spatial resolution 

within the nucleus; an exemplary picture of U2OS cells treated with hydroxyurea for 4 h 

after labelling them with 10 µM BrdU for 24 h, blue: DAPI, green: BrdU signal for ssDNA; 

picture with 63x magnification, obtained using a Zeiss Confocal LSM 510 meta microscope 

3.1.2 ssDNA is not mainly generated as a result of increased apoptosis 

The aim of this study is to use the accumulation of ssDNA as a readout for replicative 

stress occurring in tumour cells and to apply this method, once established, to gain more 

knowledge about different enzymes known or suspected to be involved in replicative stress 

and the DNA damage response. However, following DNA damage, tumour cells can also 

undergo apoptosis if damage is too severe to be repaired by the cell’s repair mechanisms. 

Therefore, it was necessary to make sure that the accumulation of ssDNA observed with 

the BrdU assay is really a function of replicative stress and not mainly due to the release of 

endonucelases during apoptosis (Zhang and Xu 2000). To achieve this, cells were 

intentionally driven towards apoptosis and stained for ssDNA. For the initiation of 
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apoptosis, cells were incubated with TRAIL or TRAIL in combination with 

Cycloheximide. TRAIL binds to the death receptors of a cell thereby inducing programmed 

cell death (Wiley et al. 1995). Cycloheximide inhibits protein biosynthesis, providing an 

additional stimulus for apoptosis. Figure 9 depicts the results of these experiments. A 1.2 

fold increase in BrdU intensity for cells treated with TRAIL compared to the control and a 

1.3 fold increase for cells treated with TRAIL and Cycloheximide can be observed. 

Regarding γ-H2AX intensities, the data show a very slight (1.09 fold) increase after 

treatment with TRAIL and a 1.7 fold increase after treatment with TRAIL and 

Cycloheximide. This leads to the conclusion that although some ssDNA seems to be 

generated when a cell induces apoptosis the main amount of ssDNA does not accumulate 

via this pathway. Hence the BrdU assay is suitable to provide an additional read-out for 

replicative stress and is not significantly confounded via apoptosis. 

 

Figure 9: An increased signal for ssDNA in the BrdU assay and for γ-H2AX in 

immunofluorescence is not mainly mediated via apoptosis 

U2OS cells were treated with 75 ng/ml TRAIL, 75 ng/ml TRAIL and 5 µg/ml 

Cycloheximide (CHX) or Ethanol as a negative control for 5.5 h (A, B). Only a slight 

induction of BrdU-signal as a read-out for ssDNA or γ-H2AX-signal upon apoptosis can 

be detected; Boxplots show the median, 25th and 75th percentile, whiskers indicate 5th and 

95th percentile (C). As a control for the induction of programmed cell death, the number of 

ROIs, corresponding to the number of nuclei, is shown; indicated are mean value and 

SEM. 

3.1.3 The BrdU signal correlates with γ-H2AX  

Upon DNA damage the histone-variant H2AX is phosphorylated on Serine 139 by ATM, 

ATR and DNA-PK (Burma et al. 2001) and then called γ-H2AX (see also 1.2.4). As          

γ-H2AX is an established hallmark of the DNA damage response (Stucki and Jackson 

2006) and also occurs after the exposure of ssDNA (Kinner et al. 2008) it is a good 

validation of the BrdU assay for ssDNA to test whether the BrdU signal correlates with the    

γ-H2AX signal. Indeed, there is a high correlation between the BrdU signal for ssDNA and 

γ-H2AX as can be seen in Figure 10. In addition, it was previously shown that the signal 

generated by the BrdU assay also colocalises with RPA that is recruited to stretches of 

ssDNA (Syljuåsen et al. 2005). 
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In summary, all the data show that the BrdU assay for ssDNA provides a reliable read-out 

for replicative stress that is not mediated via apoptosis and correlates with well established 

other markers of the DNA damage response. It was concluded that the BrdU assay for 

ssDNA is a useful tool to shed more light on the accumulation of ssDNA and its 

regulation after DNA damage. 

 

Figure 10: Accumulation of ssDNA correlates with phosphorylation of H2AX 

BrdU labelled U2OS cells were used for the BrdU assay for ssDNA and simultaneously 

stained for γ-H2AX; fluorescence intensity of γ-H2AX is plotted against the respective 

BrdU intensity of the same ROI; the correlation coefficient r is given. (A) Cells were 

treated with hydroxyurea for 4 h after labelling them, r= 0.8699, p <0.001. (B) Cells were 

treated with Chk1 inhibitor UCN-01 for 4 h after labelling, r = 0.8704, p <0.001. 

3.2 The ubiquitin ligase G2E3 plays a role in replicative stress 

The intent of this study is to identify possible targets for chemosensitisation by using the 

accumulation of ssDNA as a read-out and to gain more insight in the mechanisms involved 

in replicative stress and mainly the generation of ssDNA. Therefore, the BrdU assay 

together with a costaining for γ-H2AX was employed for a mini-screen, which included 

proteins known to be involved in the DNA damage response and replicative stress. 

Gemcitabine was used to induce DNA damage as it is incorporated into the nascent DNA 

strand, leading to replication fork stalling and replicative stress (see 1.1.2.1). The proteins 

included were p53 as one of the most essential tumour suppressor genes, its homologue 

p73 (see 1.2.3), the Ubiquitin Ligase G2E3 (see 1.3) and hnRNP A.0, a member of the 

hnRNP A/B subfamily (Myer and Steitz 1995) which is known to be involved in the 

binding of pre m-RNA and found to induce γ-H2AX in a genome-wide siRNA screen 

(Paulsen et al. 2009). The results of this mini-screen are shown in Figure 11. Interestingly 

the knockdown of p53 or p73 did not lead to a relevant induction of ssDNA. The used 

siRNAs for p73 knock down all isoforms of p73 including the one lacking the 

transactivation domain. It would therefore be possible that by knocking down all p73 

isoforms regardless of their activity, more promoters are freed and hence could lead to an 

induction of p53, which would be able to rescue the initial effects that may have been there 
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from the p73 knockdown. To exclude this possibility a double knockdown of p53 and p73 

was performed which, although statistically significant showed just a slight additional 

accumulation of ssDNA, see Figure 12. This suggests that the accumulation of ssDNA 

mainly occurs in a p53 and p73 independent manner. For hnRNP the results were 

inconclusive between the two siRNAs used and therefore interpreted as most likely being 

off-target effects. Opposed to this, the knockdown of G2E3 led to a strong induction of 

ssDNA and this effect was consistent between two different siRNAs with a 4.02 fold 

increase for siRNA G2E3 A and a 3.84 fold increase for siRNA G2E3 C. G2E3 was 

heretofore investigated in our group in terms of its role during apoptosis, cell proliferation 

and the DDR upon cisplatin-treatment. As a result of the mini-screen G2E3 was identified 

as a potential regulator of stalled replication forks and single strand breaks which can lead 

to the exposure of ssDNA. 

 

Figure 11: Knockdown of G2E3 shows the strongest ssDNA-induction of all tested DDR 

components 

To identify components of the DNA damage response that influence the formation of 

ssDNA, a mini-screen in U2OS cells including p53, p73, hnRNP A and G2E3 was 

performed, each protein was targeted by at least two different siRNAs to minimise off-

target effects, cells were labelled with 10 µM BrdU for 24 h and treated with either 300 nM 

gemcitabine for 24 h under continued presence of BrdU (A) or H2O as a negative control 

(B). Boxplots show the median, 25th and 75th percentile, whiskers indicate 5th and 95th 

percentile. (A+B): A baseline increase of 2.01 fold after 24 h gemcitabine treatment for the 

siRNA Control (Ctrl 2) is observed and a 4.02 fold increase after 24 h gemcitabine for 

G2E3 knockdown with G2E3 A and 3.84 fold increase after 24 h gemcitabine for G2E3 

knockdown with G2E3 C. 
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Figure 12: Double knockdown of p53 and p73 does not lead to an increase in ssDNA 

In U2OS cells a knockdown of p53, p73 and a double-knockdown of both proteins was 

performed, followed by labelling the cells with BrdU for 24 h and treating them with       

300 nM gemcitabine for further 24 h under continued BrdU presence. The Chk1 inhibitor 

UCN-01 was included as a positive control; boxplots show the median, 25th and 75th 

percentile, whiskers indicate 5th and 95th percentile. Neither knockdown of p53 nor p73 

leads to a significant induction of ssDNA. Double-knockdown of p53 and p73 leads to a 

very slight, although statistically significant 1.13 fold increase of ssDNA as opposed to the 

gemcitabine treated control. 

3.2.1 Knockdown of G2E3 leads to an accumulation of ssDNA  

As found in the mini-screen knockdown of G2E3 leads to an increased signal in the BrdU 

assay. This finding was consistent and reproducible throughout a series of experiments. To 

further clarify at which stage of DNA damage the ssDNA was generated the temporal 

resolution of the observed phenomenon needed to be determined. To do so, cells in which 

G2E3 was temporarily knocked down via siRNA were treated with gemcitabine for only 4 

h in addition for the previously used 24 h. Strikingly after 4 h gemcitabine treatment, this 

led to the reduction of γ-H2AX and only a very slight increase in ssDNA. The data is 

shown in Figure 13. 
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Figure 13: Gemcitabine induces strong induction of ssDNA and γ-H2AX in G2E3 

knockdown cells after 24 h but only a slight, non-significant increase in ssDNA and even a 

reduction of γ-H2AX after 4 h 

U2OS cells were transfected with two different siRNAs against G2E3 and treated with 300 

nM gemcitabine for 24 h or 1 µM gemcitabine for 4 h after labelling them with 10 µM 

BrdU for 24 h; boxplots show the median, 25th and 75th percentile, whiskers indicate 5th and 

95th percentile. After 24 h both siRNAs targeting G2E3 lead to a highly significant 

induction of ssDNA as observed in the BrdU assay as well as an induction of γ-H2AX. 

After 4 hours of gemcitabine treatment with a high dose, no significant change in the 

amount of ssDNA is detected although the data clearly show that some cells seem to 

accumulate a high degree of ssDNA as expressed by the increased outliers and high 

fluorescence intensities after G2E3 knockdown; for γ-H2AX treatment with a high dose of 

gemcitabine even leads to a highly significant reduction of γ-H2AX. 

A possible explanation for the increase in ssDNA and γ-H2AX after 24 h but the decrease 

after 4 h could be that the knockdown of G2E3 together with gemcitabine treatment 

induces apoptosis. If this were true, G2E3 knockdown could first prevent an adequate 

response to DNA damage generated by gemcitabine and indicated by the decrease in 

ssDNA and γ-H2AX after 4 h but then lead to such a high amount of unaddressed damage 

that the cell induces apoptosis within 24 h thusly leading to an increase in ssDNA and      

γ-H2AX. Although normally ssDNA is not generated as a result of apoptosis (see 3.1.2) 

this could still be true for γ-H2AX and could also not generally be excluded for ssDNA in 

cells with knocked down G2E3. To clarify this, an experiment was conducted during which 

cells with knocked down G2E3 were treated with gemcitabine and Z-VAD an inhibitor of 

caspases to prevent apoptosis. No difference between the cells treated with Z-VAD and 

the control was found. Therefore, it was concluded that the decrease is not due to 

apoptosis.  
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Figure 14: G2E3 knockdown in combination with gemcitabine treatment induces ssDNA 

and γ-H2AX independent of apoptosis 

U2OS cells were transiently transfected with siRNA against G2E3, labelled with 10 µm 

BrdU for 24 h and treated with 300 nM gemcitabine for 24 h and either 50 µM Z-VAD or 

DMSO as control under continued presence of BrdU; after fixation, cells were processed 

for use in the BrdU assay for ssDNA and co-stained for γ-H2AX; boxplots show the 

median, 25th and 75th percentile, whiskers indicate 5th and 95th percentile. There is no 

significant difference in either ssDNA accumulation or γ-H2AX levels if apoptosis is 

inhibited via Z-VAD. The numbers of ROIs are included as a control and show that upon 

Z-VAD treatment indeed apoptosis seems to be inhibited as more cells survived treatment. 

3.2.2 Knockdown of G2E3 decreases levels of phosphorylated Chk1 

Having found out that G2E3 plays a role in replicative stress and impacts the accumulation 

of ssDNA as well as the generation of γ-H2AX the question arose whether this could be 

due to a process occurring in direct proximity to the replicating strand of DNA. It was 

therefore investigated whether G2E3 also influences the signalling cascade known as the 

DNA damage response and if so at which point during the cascade does this interference 
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occur? To this end, a series of western blot experiments were conducted to assess protein 

levels of key players involved in the DDR. As a cellular system U2OS cells were used to 

start with, since they are well established in cancer research and have been used for all 

previous BrdU assay experiments during this study. Another treatment duration of 6 h in 

addition to the normally used 24 h was included because preliminary work in our lab 

showed the strongest pChk1 signal upon gemcitabine treatment to occur after 5 – 6 h. The 

results of these experiments can be found in Figure 15. In the control cells, treatment with 

gemcitabine induces phosphorylation of Chk1 to pChk1 after 6 h and 24 h with no 

apparent difference regarding the signal intensity between these two time points. An 

induction of p53 can also be observed as well as a signal increase for γ-H2AX after 24 h. 

For both samples in which two different siRNAs were used to knockdown G2E3 there is a 

reduction in phosphorylated Chk1 after 6 h and 24 h gemcitabine treatment which is 

especially strong after 6 h, suggesting that G2E3 is not only involved in the early response 

to DNA damage but also directly or indirectly regulates the phosphorylation and hence 

activation of Chk1 one of the most important regulators of the DDR after single-strand 

breaks. Furthermore the western blots confirmed previous findings from 

immunofluorescence that knockdown of G2E3 leads to an increase in γ-H2AX after 

gemcitabine treatment. Previous experiments in our lab showed that G2E3 negatively 

regulates p53 (Schmidt et al. 2015). This leads to the question if G2E3’s effect on pChk1 

could somehow be mediated or influenced via p53. Consequently the immunoblot 

experiments were repeated in a system well suited to answer this question: a colorectal 

cancer cell line that exists in two forms, one possessing two copies of p53 (HCT116 

p53+/+) and one possessing none of them (HCT116 p53-/-). The results of these 

experiments are again depicted in Figure 15. In both cell lines, the transient knockdown of 

G2E3 leads to a reduction of pChk1 after 6 h and 24 h; again this effect is stronger after 6 

h. However, total levels of Chk1 in its dephosphorylated form remain unchanged and as in 

U2OS cells, an induction of p53 upon gemcitabine treatment, unchanged by G2E3 

knockdown, can be seen in the HCT116 p53+/+. Taken together, these results strongly 

support the hypothesis that G2E3 is an early regulator of pChk1 in a p53 independent 

manner and make G2E3 a potential candidate for sensitising cancer cells towards 

chemotherapy by alleviating a cell’s response to DNA damaging agents such as 

chemotherapy, thus making DNA repair less likely to occur and shifting the balance more 

towards apoptosis. 
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Figure 15: Phospo-Chk1 levels decrease after knockdown of G2E3 and gemcitabine 

treatment 

U2OS (A), HCT116 p53+/+(B) and HCT116 p53-/-(C) were transiently transfected with two 

different siRNAs against G2E3 or a control siRNA, then treated with 300 nM gemcitabine 

for either 6 h or 24 h and processed for western blot analysis. Hsc70 staining was included 

as a loading control. 

3.3 MK2 inhibition rescues accumulation of  ssDNA and γ-H2AX 

upon gemcitabine treatment 

Previous work in our group (mainly conducted by Frederik Köpper and Cathrin Bierwirth) 

provided evidence for a direct impact of the p38/MK2 pathway on a cell’s response to 

replicative stress. The results of this work as well as results acquired as part of this thesis 

were published in 2013 in PNAS (Köpper et al. 2013), where it was shown that MK2 

promotes the stalling of replication forks upon DNA damage. After inhibition or siRNA 

knockdown of MK2 and treatment with gemcitabine the normally observed induction of  

γ-H2AX and decreased cell-survival is rescued. DNA fiber assays showed that MK2 is 

required for two key features of replicative stress, namely the slow-down of fork speed and 

the increase in late origin firing. These effects were dependent on translesion synthesis, a 

mechanism where cells use another polymerase that has a lower fidelity and is more error-

prone but able to continue synthesising if there are obstacles within the DNA strand that 

lead to fork stalling (Köpper et al. 2013). One of the main polymerases involved in 

translesion synthesis is polymerase η. 

Based on these results, we were interested if this function of MK2 could also be observed 

when using the accumulation of ssDNA as an indirect measure of stalled replication forks. 

Following this idea, a series of experiments was conducted were we indeed found that the 
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inhibition of MK2 leads to a significant reduction of both ssDNA and γ-H2AX in U2OS 

cells treated with gemcitabine for 24 (see Figure 16). Interestingly, when we used 

hydroxyurea as a chemotherapeutic drug instead of gemcitabine and conducted the same 

experiment, the inhibition of MK2 had no effect at all. The results of these experiments are 

shown in Figure 16. 
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Figure 16: Inhibition of MK2 rescues ssDNA and γ-H2AX after gemcitabine treatment but 

not after hydroxyurea treatment 

(A)-(E): Cells were labelled with 10 µM BrdU for 24 h and then treated with 300 µM 

gemcitabine or 2 mM hydroxyurea together with either MK2 inhibitor or DMSO as control 

for 24 hours. Cells were then harvested and co-stained for BrdU and γ-H2AX. For 

gemcitabine treatment, the inhibition of MK2 leads to a significant decrease in the amount 

of ssDNA as well as γ-H2AX as opposed to DMSO. In case of hydroxyurea the inhibition 

of MK2 does not significantly change the amount of ssDNA or BrdU. (F)-(G): All these 

effects could also be observed after 4 hours of gemcitabine or hydroxyurea treatment. 

A possible explanation for this phenomenon lies in the different mechanisms of action 

used by hydroxyurea and gemcitabine. Hydroxyurea inhibits ribonucleotide reductase, 

thereby leading to an imbalance and most importantly shortage of available nucleotides. 

While gemcitabine also to a small degree inhibits RNR, it is a nucleoside analogue that first 

and foremost leads to misincorporation and chaintermination without influencing 

nucleotide pools as much (see 1.1.2). As it has previously been shown that polymerase η 

depends on high nucleotide levels (Washington et al. 2003), we hypothesise that the 

shortage of nucleotides caused by hydroxyurea impedes translesion synthesis as much as it 

impedes normal DNA replication and therefore abolishes the target via which MK2 exerts 

its effect (Köpper et al. 2013). 

Nevertheless, the fact that the presence of MK2 together with gemcitabine treatment 

promotes replication fork stalling and accumulation of γ-H2AX makes it an interesting 

candidate to investigate in terms of resistance to chemotherapy. 
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4 Discussion 

The stalling of replication forks and slow-down of replication itself is one of the key 

features of replicative stress and can pose great obstacles that need to be overcome in order 

to maintain genome integrity and prevent malignant transformation of cells. In case of 

tumour cells that already underwent malignant transformation, the induction of replicative 

stress is one of the very principles of chemo- and radiotherapy. The process of replicating 

DNA is the most vulnerable phase during the cell cycle and the importance, implications 

and extent of replicative stress have only started to be acknowledged and understood 

during recent years. 

In this context, the work presented in this study aims to contribute to our understanding of 

the cellular processes that occur in times of replicative stress by establishing and refining a 

staining method for ssDNA in a large semi-automated setting that can also be used for 

screening analysis. This method was then employed to identify proteins that interfere with 

the accumulation of ssDNA and further investigate them. The two proteins picked were 

G2E3 and MK2. Both seem to be involved in signalling upon replicative stress but in a 

very different manner. 

We found that the knockdown of the ubiquitin ligase G2E3 leads to a much higher 

accumulation of ssDNA upon treatment with the nucleoside analogue gemcitabine. 

Moreover G2E3 seems to be a regulator of one of the most important kinases involved in 

the DNA damage response, namely Chk1. Knockdown of G2E3 reduces the 

phosphorylation and hence activation of Chk1 upon gemcitabine treatment. We also 

provide evidence that this regulation occurs in a p53 independent manner. 

We also investigated the effects of the inhibition of MK2, a kinase known to be involved in 

p38 signalling and an increasingly recognised regulator of replicative stress, on the 

accumulation of ssDNA. Inhibition of MK2 rescues the accumulation of ssDNA and       

γ-H2AX that is normally observed after treatment with gemcitabine. These results provide 

further evidence that MK2 positively regulates replication fork stalling. 

4.1 The BrdU assay as a method to assess replicative stress 

At the core of this study stands a further development of the BrdU assay for ssDNA that 

was in its first basic form originally described in 2005 (Syljuåsen et al. 2005). We could 

show that our refinements make it a suitable and relatively easy method to detect ssDNA at 

sites of replication fork stalling even in a high-content, semi-automated setup. 

Due to its characteristics the BrdU assay for ssDNA stands between the 

immunofluorescence-based detection of indirect markers of replicative stress like γ-H2AX 
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that are often used for screening analysis because of the relatively easy staining method that 

can be applied to a large sample sizes and more in-depth tools like DNA fiber-assays that 

are much more complicated and time consuming and are therefore more useful for 

investigating proteins that are already known to be involved in processes surrounding the 

replication fork. In this study we introduced the BrdU assay in a refined form, making it 

possible to be applied in a high-content, semi-automated setup for the first time (see 3.1). 

This makes it a new and very useful tool to get a more direct readout regarding the amount 

of stalled replication forks already as part of the screening process. Additionally, it can 

easily be combined with a co-staining for γ-H2AX on the same plate. We could show that 

the BrdU signal correlates well with γ-H2AX as an established but less specific marker of 

DNA damage (Figure 10). 

It is conceivable that the induction of apoptosis could also induce an accumulation of 

ssDNA and therefore produce false positive results in the BrdU assay as apoptosis leads to 

the release of endonucleases that cut the DNA into oligonucleotide sized pieces. Apoptosis 

can be triggered from within a cell as a consequence of replicative stress or more general 

DNA damage; this makes it difficult to differentiate between accumulation of ssDNA 

caused by stalled replication forks and possible accumulation caused by apoptosis. But 

apoptosis can also be triggered via the extrinsic pathway without any form of DNA 

damaging treatment, thereby avoiding the difficulties in differentiating a signal caused by 

replicative stress from one possibly caused by apoptosis. We therefore induced apoptosis in 

U2OS cells via stimulation of their death receptors and processed them for use in the BrdU 

assay. As Figure 9 shows there is no significant increase in BrdU intensities. Beyond that, 

cells were also treated with TRAIL to stimulate death receptors and Cycloheximide to 

inhibit protein biosynthesis in parallel to intensify apoptotic stimulation. Following this 

treatment we could observe a very slight but statistically significant increase in ssDNA 

accumulation (see Figure 9). Based on these results it can be said that a small amount of 

ssDNA seems to accumulate following massive induction of apoptosis but this does not 

relevantly confound the results of the BrdU assay as it only accounts for a very minor part 

of the observed signal intensities and only occurred after massive induction of apoptosis 

and not after sole stimulation of the death receptors using TRAIL. To make sure that 

assumption is still correct in the case of G2E3 knockdown cells, we treated cells as 

normally with gemcitabine and half of them additionally with Z-VAD, an inhibitor of 

caspases to suppress apoptosis (see Figure 14). There was no significant difference between 

the cells treated with Z-VAD and the control. It can be concluded that massive apoptosis 

in general may lead to a slight increase in ssDNA as detected with the BrdU assay but 

under normal circumstances and also in the case of G2E3 this does not significantly 

confound the results. Rather, the observed accumulation of ssDNA seems for the very 

major part due to replicative stress resulting in stalled or even collapsed replication forks. 
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4.1.1 Limitations and outlook 

In order to lead to a positive signal in the BrdU assay, there need to be high enough levels 

of ssDNA. However, the assumption that replicative stress always causes enough ssDNA 

to be detectable may not be true and also the comparison with γ-H2AX levels does not 

eliminate this problem because for the phosphorylation of γ-H2AX a global response in 

the cell is necessary which may not be there but the cell may just react locally to a low level 

of replicative stress (Zeman and Cimprich 2014). Therefore, we cannot exclude that low 

levels of replicative stress may lead to too few stalled replication forks to be detectable. 

Nevertheless, this limitation is true for nearly all immunofluorescence-based assays 

regardless which target structure is stained and looked at. 

In this study, we always quantified the BrdU intensities by defining ROIs comprised of the 

cells’ nuclei, assessing intensities within them and then calculating a mean intensity per well. 

It should also be possible to actually count the number of BrdU spots within a nucleus as 

opposed to looking at intensities. This will most probably not be possible in the automated 

setting, as it requires high-resolution confocal images. Before we adapted the BrdU assay 

for use in high-content immunofluorescence, we conducted studies using cells grown on 

cover slips and stained as normal for microscopy with a Zeiss Confocal LSM 510 meta 

microscope using 63x magnification (see Figure 8 for an example picture). With these 

microscopic pictures or even higher magnification and resolution it should technically be 

possibly to segment the pictures and count individual BrdU spots that exceed a certain 

threshold signal intensity. This could provide a read-out that could allow for an even more 

direct assessment of stalled replication forks by actually counting them. 

4.2 G2E3 in the response to DNA damage 

Our results strongly suggest that G2E3 plays a role in the regulation of the ATR/Chk1 

pathway. Depletion of G2E3 via siRNA mediated knockdown leads to reduced 

phosphorylation and hence activation of Chk1 in response to replicative stress induced by 

treatment with gemcitabine. Another study conducted by Franziska Schmidt in our group, 

also found this effect after treatment with the chemotherapeutic drug cisplatin (Schmidt et 

al. 2015). To this point, the mechanism how G2E3 influences pChk1 levels remains 

unclear. It is possible that G2E3 influences upstream regulators of the ATR/Chk1 pathway 

or ATR itself but further research is needed to unveil the exact mechanism. Based on the 

results obtained so far, we propose that G2E3 normally sustains the ATR/Chk1 pathway, 

thereby avoiding replicative stress and promoting the stabilisation and restart of stalled 

replication forks, see Figure 17 for a schematic depiction. After gemcitabine or cisplatin 

treatment, G2E3 mRNA-levels significantly decrease, suggesting a down-regulation of 

G2E3 following replicative stress (Schmidt et al. 2015). This down-regulation could then 

tip the balance more towards a decrease in proliferation or even apoptosis instead of 

stabilising stalled forks, halting the cell cycle and trying to repair the damage, thereby 
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possibly generating mutations. This fits well together with the findings that G2E3 plays a 

role in cell survival and G2E3 knockout leads to early embryonic lethality based on massive 

apoptosis at the blastocyst stage in mice (see 1.3) (Brooks et al. 2008; Schmidt et al. 2015). 

 

Figure 17: Proposed model of G2E3 action in the context of replicative stress 

G2E3 normally sustains ATR/Chk1 signalling, thereby promoting stabilisation of stalled 

replication forks and halting the cell cycle in order to give the cell time to repair the damage 

and finish replication without accumulating too many mutations. Upon severe DNA 

damage though, G2E3 is downregulated and no longer positively influences ATR/Chk1 

signalling, leading to more collapsed replication forks and DNA damage in general and 

possibly shifting the balance more towards apoptosis. 

This model also explains the increased levels of ssDNA as observed in the BrdU assay. 

Chk1 is an important factor involved in the DNA damage response and also in the intra-S 

phase checkpoint. It is known that abrogation of Chk1 function leads to a massive 

accumulation of ssDNA, increased DNA synthesis that is at least partially mediated by 

increased origin firing and breakage of the DNA (Feijoo et al. 2001; Syljuåsen et al. 2005). 

This is fully compatibly with our results that G2E3 knockdown induces stalled replication 

forks upon gemcitabine treatment and also promotes phosphorylation of H2AX. 

4.2.1 G2E3 as a potential target for chemosensitisation 

Despite advancements in cancer therapy that were made during the last years, 

chemotherapy is still a key treatment for most malignancies. One way to further strengthen 

the effect of chemotherapy while simultaneously sparing healthy cells from too severe side 

effects is chemosensitisation. There are already clinical trials investigating the possibility of 

inhibiting Chk1 itself or its regulators like for example ATR in combination with 

chemotherapy (McNeely et al. 2014; Sausville et al. 2014; Daud et al. 2015; Morgan and 

Lawrence 2015). Often, these studies use gemcitabine as part of the chemotherapeutic 
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regime, the same drug that was used in this study. The fact that G2E3 knockdown leads to 

increased accumulation of ssDNA and γ-H2AX and lowers the level of phospho-Chk1 

makes it a promising target for chemosensitisation. If G2E3 is inhibited, cells accumulate 

more damage and are less likely to survive treatment. 

4.2.2 Open questions and outlook 

Based on our findings in the BrdU assay that knockdown of G2E3 in U2OS cells lead to 

an increase in ssDNA and γ-H2AX we conducted western blot experiments that showed 

the same effect for γ-H2AX. To assess the p53 dependence of this process we repeated 

these western blots in a cell-line called HCT116 that exists in a p53+/+ and a p53-/- form. 

Again, we observed an increase in γ-H2AX in G2E3 knockdown cells after treatment with 

gemcitabine, see Figure 15 for details. This is a strong hint that also the accumulation of 

ssDNA that, as we show in Figure 10, highly correlates with γ-H2AX, is not dependant on 

p53. In this context it would be very interesting to perform the BrdU assay in HCT116 

cells. Unfortunately, this was technically not possible due to the morphology of HCT116 

cells. The cell line is derived from colorectal cancer cells and the cells are very small and 

round and not very well attached to the surface they are growing on. All these features 

make them difficult to use in the BrdU assay since they are easily washed away during the 

staining procedure and the few cells that survive are so small that it is technically very 

difficult to reliably segment them and define ROIs in an automated manner. We tried 

HCT116 cells for the BrdU assay but finally could not get technically satisfying results. A 

compromise for further experiments could be to perform a double knockdown of G2E3 

and p53 in U2OS cells and assess BrdU levels there. 

We hypothesise that G2E3 influences pChk1 levels via regulation of ATR or its upstream 

regulators. To validate this assumption it will be beneficial to conduct western blot analyses 

including a staining for ATR-substrates. Antibodies that bind to ATR’s phosphorylation 

motif are commercially available and could be used additionally to pChk1 and γ-H2AX. If 

our hypothesis is correct, we would expect a decrease in phosphorylated ATR substrates 

following G2E3 knockdown and DNA damaging treatment. These studies could also help 

in the goal of finding G2E3’s natural substrates that to this point remain unknown. It is for 

example conceivable that G2E3 ubiquitinates a yet to be identified negative regulator of 

ATR that is subsequently degraded. But as of now, this remains speculation. 

Another interesting question is whether G2E3 influences progression through the cell 

cycle. It is known that depletion of G2E3 leads to a slower replication rate (Schmidt et al. 

2015) and G2E3 itself is expressed in a cell-cycle dependent manner (Crawford and 

Piwnica-Worms 2001). If G2E3 does indeed lead to a slow-down or even arrest of the cell-

cycle, this could explain the only slight induction of ssDNA and even decrease in γ-H2AX 

levels in G2E3 knockdown cells after 4 h of gemcitabine but strong increase after 24 h of 

treatment (see Figure 13). 
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4.3 MK2 and chemoresistance 

Replicative stress can lead to stalling and eventually collapse of replication forks but this 

process is not only a result of replicative stress but also tightly regulated itself. The data 

presented in this study, as well as further work conducted in our group by Frederik Köpper 

and Cathrin Bierwirth, suggest that MK2 positively regulates replication fork stalling, 

meaning that the presence of MK2 leads to a higher number of stalled forks, resulting in 

fork collapse and subsequent strand breaks, see Figure 16. Therefore, it was suggested that 

MK2 favours stalling and possible repair and restart of forks under low levels of replicative 

stress and is down regulated after DNA damage tipping the balance more towards 

translesion synthesis, thereby introducing replication errors and making it more likely for a 

cell to gain mutations (Köpper et al. 2013). The results obtained in this study further 

support this hypothesis as we could show that inhibition of MK2 rescues the normally 

observed accumulation of ssDNA as well as γ-H2AX after gemcitabine treatment. 

However, this is not true for treatment with hydroxyurea. We suggest that this is due to the 

different mechanism of action used by both drugs. Hydroxyurea leads to imbalances and 

shortages in the dNTP pool by inhibiting RNR and this likely impairs translesion synthesis, 

the very mechanism that the rescue of fork stalling upon MK2 inhibition relies on (see 3.3). 

In this context, MK2 could be a potential factor in the resistance to chemotherapy. It is 

known that tumours treated with chemotherapy often already accumulated mutations, or 

continue to do so during therapy, that impede the effect of chemotherapy. Gemcitabine, 

the drug used in this study, is part of treatment protocols for advanced solid tumours, 

especially pancreatic tumours. But even with chemotherapy the clinical outcome with these 

malignancies is poor. For pancreatic cancer, over 75 % of patients show no or only a very 

slight response with the commonly used treatment protocols and nearly all patients with 

pancreatic cancer eventually develop metastases letting the mean 5-year survival rate drop 

below 5 % (Li et al. 2004; Dhayat et al. 2011). There is already extensive research regarding 

resistance mechanisms to gemcitabine and a multitude of proteins and microRNAs 

involved in the DDR, apoptotic signalling and cell growth have been identified to play a 

role in this context. Hence, loss of MK2 could be another factor how resistance to 

gemcitabine is achieved. At least within our cell culture model the effects are highly 

significant. But more research is needed to determine whether this is also true in a more 

clinical setting. 
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5 Abstract 

Cells are constantly subjected to DNA damaging agents like reactive oxygen species, UV 

light or, in the case of cancer cells, chemotherapeutic drugs. All these agents can lead to 

replicative stress, meaning that the most sensitive part of the cell cycle, namely S phase 

where cells replicate their DNA, is compromised. Cells developed several mechanisms to 

respond to replicative stress. One of the most prominent is the stalling of replication forks. 

Stalled forks can either be rapidly stabilised and eventually restarted or they collapse, 

leaving behind unfinished sites of replication that later on need to be dealt with. The 

stalling of forks leads to the exposure of stretches of single-stranded DNA (ssDNA). In 

this study we use a new DNA staining method to detect these stretches of ssDNA and 

refine it for use in a high-content, semi-automated setup. With this method we then 

conduct a mini-screen including proteins known to be involved in the DNA damage 

response and identify two candidates that are investigated further. Knockdown of G2E3, 

an E3 ubiquitin ligase, together with gemcitabine treatment leads to much higher levels of 

ssDNA as a read-out for stalled replication forks and γ-H2AX, a well established marker of 

DNA damage. We further provide evidence that G2E3 is a novel regulator of ATR/Chk1 

signalling as it inhibits the phosphorylation and hence activation of Chk1, one of the key 

kinases of the DNA damage response. Based on these results, G2E3 is a potential new 

drug target for sensitising cancer cells for chemotherapy. The second protein investigated is 

MK2, a kinase known to be involved in signalling following DNA damage. We show that 

inhibition of MK2 rescues the normally observed induction of stalled forks and γ-H2AX 

accumulation upon gemcitabine treatment defining it as a regulator of replication fork 

stalling during replicative stress. 
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