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“The best thing about being a statistician is that you get to play in everyone’s backyard.”
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Preface

In blind source separation (BSS) problems one observes M mixtures of m sources and aims

to recover the original sources from the available observations, where the blindness refers to

the fact that neither the sources nor the mixing weights are known. BSS appears in many

different applications and is a widely discussed topic in the signal processing, but also in the

statistics literature. A prominent example is the separation of a mixture of audio or speech

signals, which has been picked up by several microphones, simultaneously. In this case the

different speech signals correspond to the sources and the recordings of the microphones to

the mixture of signals with unknown mixing weights. From this mixture the individual sig-

nals have to be separated. To ensure identifiability various assumptions on the sources exist.

Among the most well known are stochastic independence, as in independent component anal-

ysis (Comon, 1994), non-negativity, as in non-negative matrix factorization (Lee and Seung,

1999), and sparsity of the signals (Li et al., 2006).

Fundamental to this thesis is a different assumption which has received relatively few attention

so far: It is assumed that the sources take only values in a known finite set, called the alphabet.

This is denoted as finite alphabet blind separation (FABS). FABS occurs in many applications,

for instance in digital communications with mixtures of multilevel pulse amplitude modulated

digital signals (Talwar et al., 1996; Sampath et al., 2001). The main motivation for this thesis,

however, comes from cancer genetics, where one aims to infer copy number aberrations of

different clones in a tumor (Liu et al., 2013).

The first part of this thesis in Chapter 2 provides identifiability conditions for FABS. In Chapter

3 FABS is considered in a statistical change-point regression setting for single mixtures (M =

1). Estimators for sources and mixing weights with almost optimal convergence rates and

confidence statements for all quantities are derived. Moreover, a consistent model selection

procedure and lower confidence bounds for the number of sources are proposed. For arbitrary

number of sources M (without a change-point regression structure) FABS can be reformulated

as a linear model where the design matrix is only known up to a selection matrix, a model

which recently has perceived great interest (Marques et al., 2009; Unnikrishnan et al., 2015;

Pananjady et al., 2016, 2017). When the number of sources m is fixed and both, number of

observations and mixtures M, tend to infinity, in Chapter 4 minimax prediction and estimation

rates are obtained. The theoretical results of this thesis are accompanied by algorithms in

Chapter 5, a simulation study in Chapter 6, and a real data example from cancer genetics in

Chapter 7. An outlook and discussion for further research is given in Chapter 8.
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CHAPTER 1
Introduction

This thesis provides statistical methodology for the Finite Alphabet Blind Separation (FABS)

problem, where one aims to recover the underlying unknown mixing weights and unknown

finite alphabet sources from a linear mixture. More precisely, for a given (ordered) set A =

{a1, . . . , ak} ⊂ R of distinctive values a1 < . . . < ak, denoted as the alphabet, we consider the

mixture structure

g = fω =

m∑
i=1

f iωi, (1.1)

with sources f = (f 1, . . . ,fm) ∈ An×m, which are known to take only values in the given

alphabet A. The mixing weights ω = (ω1, . . . ,ωm)> ∈ Rm×M are arbitrary numbers. Further,

n is the number of samples, m is the number of sources, and M is the number of mixtures. The

aim in FABS is to infer from (a possibly noisy version of) the mixture g and the alphabet A

1. the number of sources m,

2. the mixing weights ω = (ω1, . . . ,ωm)>,

3. and the sources f = (f 1, . . . ,fm).

Before introducing FABS further, including details on identifiability, statistical modeling, and

inference, we give some motivating examples.

1.1 Applications

FABS appears in many different areas, for instance in digital communications and multiuser

detection (Proakis, 2007; Talwar et al., 1996; Verdu, 1998; Zhang and Kassam, 2001; Sampath

et al., 2001). In wireless digital communication, several digital signals (e.g., binary signal with

A = {0, 1}) are modulated (e.g., with pulse amplitude modulation (PAM)), transmitted through

several wireless channels (each having different channel response), and received by (several)

antennas. In signal processing this is known as MIMO (multiple input multiple output) and (ig-

noring time shifts, i.e., considering instantaneous mixtures) can be described by FABS when

the channel response is unknown, see (Talwar et al., 1996; Love et al., 2008). Here, the m

sources correspond to m digital signals f 1, . . . ,fm and the M mixing vectors ω·1, . . . ,ω·M

correspond to the response of M different channels. The M mixture signals g·1, . . . , g·M corre-

spond to the received signals at M different antennas (usually corrupted by noise).
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Figure 1.1: Illustration of a FABS problem in cancer genetics.

The major motivation, however, for this thesis comes from a cooperation with the Wellcome

Trust Centre for Human Genetics at the University of Oxford in the field of cancer genetics,

namely, from assigning copy number aberrations (CNA’s) in cell samples taken from tumors to

its clones (Yau et al., 2011; Carter et al., 2012; Liu et al., 2013; Ha et al., 2014). In Chapter 7,

we decompose a cancer tumor into its clones with the proposed method.

CNA’s refer to stretches of DNA in the genome of cancer cells which are under copy number

(CN) variation, that is, some parts of the genome are either deleted or multiplied (relative to the

inherited germline state present in normal tissue). This is illustrated in Figure 1.1. The yellow

cartoon represents normal tissue (healthy cells). Each region of its DNA appears exactly twice,

as there are two copies of each chromosome. Hence, the green, red, and blue marked regions in

its DNA all have CN 2. The orange cartoon represents tumor cells with a duplication of the red

region. Hence, its red region has CN 3, while the blue and the green region have (normal) CN

2. The pink cartoon represents tumor cells with a deletion of the blue region in its DNA. Hence,

its blue region has CN 1, while the green and red region have CN 2. In total, the CN of a tumor

(that is the number of copies of DNA stretches at a certain locus) of a single clone’s genome

is a step function mapping chromosomal loci to a value i ∈ {0, 1, . . . , k} corresponding to i

copies of DNA at a locus, with reasonable biological knowledge of k. For instance, in the data

example which will be analyzed in Chapter 7 the maximal CN is k = 5. CNA’s are known to

be key drivers of tumor progression through the deletion of “tumor suppressing” genes and the

duplication of genes involved in processes such as cell signaling and division. Understanding

where, when and how CNA’s occur during tumorgenesis, and their consequences, is a highly

active and important area of cancer research, see e.g., (Beroukhim et al., 2010).

CNA’s can be measures with whole genome sequencing (WGS), where the DNA is fragmented

into pieces, the single pieces are sequenced using short “reads”, and the reads are aligned to

a reference genome by a computer. Thus, for example, in a region with CN 1 there are (on

average) only half as many reads aligned as in a region with CN 2 (see Figure 1.1 for an

illustration). Modern high-throughput technologies allow for routine WGS of cancer samples

and major international efforts are underway to characterize the genetic make up of all cancers,
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for example The Cancer Genome Atlas, http://cancergenome.nih.gov/.

A key component of complexity in cancer genetics is the “clonal” structure of many tumors

(heterogeneity), which relates to the fact that tumors usually contain distinct cell populations

of genetic sub-types (clones) each with a distinct CNA profile, see e.g., (Greaves and Maley,

2012; Shah et al., 2012). This is illustrated in Figure 1.1, where the tumor sample originates

from three different types of DNA: the normal tissue (represented by the yellow cartoon) and

two different cancer clones each with different CNA’s (represented by the orange and pink

cartoon). High-throughput sequencing technologies act by bulk measurement of large numbers

of pooled cells in a single sample, extracted by a micro-dissection biopsy (or blood sample for

hematological cancers). Hence, for WGS data of a heterogeneous tumor the number of reads at

a certain locus is proportional to the sum of the CN’s of the single clones at that locus weighted

by the relative proportion of each clone in the cell sample.

Summing up, with the notation of FABS in (1.1), in this example the number of sources m

corresponds to the number of clones (plus normal tissue), the source functions f i correspond

to the CN profile of the single clones (with CN’s only taking values in the finite alphabet

{0, 1, 2, . . . , k}), the mixing weights ωi correspond to the relative proportion of the clone in the

tumor, and the mixture g corresponds to the overall CN of the tumor. If a cell sample of a tumor

is taken at several locations or time points (each with a possibly different relative proportion of

the single clones), this correspond to FABS with several mixtures, where M is the number of

different probes.

The estimation of the mixed function g, i.e., estimating the locations of varying overall CN’s,

has perceived considerable interest in the past, see (Olshen et al., 2004; Zhang and Siegmund,

2007; Tibshirani and Wang, 2008; Jeng et al., 2010; Chen et al., 2011; Yau et al., 2011; Niu

and Zhang, 2012; Frick et al., 2014; Du et al., 2015). However, the corresponding demixing

problem, that is, jointly estimating the number of clones, their proportion, and their CNAs,

has been only recognized more recently as an important issue and hence received very little

attention in a statistical context so far and is a major motivation for this thesis.

We illustrate the ability of the procedure which will be proposed in this thesis (called SLAM)

to recover the number of clones, their relative proportion, and their CNA’s by utilizing it on

real genetic sequencing data (see Chapter 7). In collaboration with the University of Oxford,

we analyzed a data set from a colorectal cancer, which comes from two different clones and

normal tissue. The data has the special feature that sequencing data of the single clones is

available, something which is not the case for patient cancer samples. Figure 1.2 shows raw

data of chromosomes 4, 5, 6, 18 and 20. The x-axis represents the position on the chromosome

and the y-axis the number of reads at a certain position (recall the illustration in Figure 1.1).

The top row shows data which comes from normal tissue (germline) and the subsequent rows

show two different clones. As sequencing produces artifacts, we preprocess the data with a

smoothing filter and binning (see Chapter 7 for details). Dividing the data by the average num-

ber of reads per CN, which is 26 for normal tissue and 14 for the clones in this example, yields

baseline correction. The resulting data is displayed in Figure 1.3, where the first row shows

a mixture with mixing weights ω> = (ωNormal,ωClone1,ωClone2) = (0.2, 0.35, 0.45). Only the
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Figure 1.2: Raw WGS data from cell line LS411. Displayed are chromosomes 4,5,6,18, and
20. The x-axis represents the position on the chromosome and the y-axis the number of reads
at a certain position. Top row: germline data. Row 2 and 3: two different clones.

Figure 1.3: Preprocessed WGS data from Figure 1.2. Top row: total CN of the mixture
with ω> = (ωNormal,ωClone1,ωClone2) = (0.2, 0.35, 0.45). Second row: germline data. Row 3
and 4: two different clones. The red lines show SLAM’s estimates. Threshold parameters, as
explained in the following, were qn(α) = −0.15 (selected with MVT-method from Section 3.5)
and qn(β) = 20.

data in the first row of Figure 1.3 enters the estimation procedure, the data of the single clones

in subsequent rows serves as ground truth and is used for validation only. SLAM estimates the
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number of components m = 3 correctly, the mixing weights as ω̂ = (0.11, 0.36, 0.52), and the

CNA profile as the red lines in Figure 1.3. This shows that SLAM can provides accurate esti-

mates for the number of clonal components, their relative proportion, and their CNA profiles,

something which has not been obtainable prior to now.

1.2 Finite alphabet blind separation

In the following, we introduce FABS in more detail. In FABS the unknown weights ω and

unknown sources f are not identifiable from the mixture g, in general, even if the number

of sources m is known. Consequently, in order to to achieve the goals 1. - 3. the first major

task in FABS is to impose conditions on both, ω and f , which guarantee identifiability and

stable recovery, see Section 1.3.1 and Chapter 2. Motivated from the application in cancer

genetics, where ω corresponds to physical mixing proportions, we assume that the weights

ωi are positive and sum up to one. This assumption simplifies identifiability conditions to

decompose ω and f uniquely. Results for arbitrary weights are given in Section 2.4.1. More

precisely, for a given number of sources m and a given number of mixtures M, the set of

possible mixing weights ω is defined as

Ωm,M :=

ω ∈ Rm×M
+ : 0 < ‖ω1·‖ ≤ . . . ≤ ‖ωm·‖ ,

m∑
i=1

ωi j = 1 ∀ j = 1, ...,M

 . (1.2)

For a single mixture (M = 1) we define Ωm := Ωm,1. Note that a fixed ordering of the row-

sums is necessary as otherwise for any permutation matrix P one finds that g = fω = fPP−1ω

with ω and P−1ω both valid mixing weights. We address FABS for two statistical settings.

1. A univariate change-point (c.p.) regression setting with one mixture (M = 1). That is,

the weights ωi in (1.1) are one-dimensional such that a single mixture g of the sources

f 1, . . . ,fm is observed. In this setting, the sources f i and the mixture g are assumed

to be piecewise constant functions mapping from the interval [0, 1) to R. This allows

to allocate local information about the unknown weights ω and sources f from the step

function g. Such a setting appears, for instance, in the CNA-example explained in Sec-

tion 1.1, where a piecewise constant source function f i corresponds to the CNA profile

of a clone in some tumor, from which a single (M = 1) probe is available.

2. Multivariate FABS with several mixtures (M ≥ 1). That is, the weights ωi in (1.1) are M-

dimensional such that one observes M mixtures g·1, . . . , g·M of the sources f 1, . . . ,fm.

Here, f is regarded as an arbitrary matrix in An×m (without c.p. structure). Such a

setting appears, for instance, in wireless digital communications (recall Section 1.1),

where MIMO techniques use several antennas (M ≥ 1) to separate digital (A = {0, 1})

signals f i from m sources, each being an arbitrary sequence of 0’s and 1’s.
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Change-point regression setting The Statistical Blind Separation Regression (SBSR) model

assumes independent observations

Y j = g(x j) + ε j, j = 1, . . . , n, (1.3)

for fixed sampling points x j := ( j−1)/n and independent, identically distributed (i.i.d.), additive

Gaussian error terms (ε1, . . . , εn)> ∼ N(0, σ2In×n), with standard deviation σ > 0. The true

underlying regression function g is assumed to be of FABS mixture structure as in (1.1). The

m source functions f i, i = 1, . . . ,m, consist of arrays of constant segments, i.e., step functions

with unknown jump sizes, numbers, and locations of c.p.’s. More precisely, for an alphabet A

each source function is in the class of step functions on [0, 1)

S(A) :=


K∑

j=0

θ j1[τ j,τ j+1) : θ j ∈ A, 0 = τ0 < ... < τK < τK+1 = 1,K ∈ N

 . (1.4)

Note that this implies that for each source function the number K(f i) of c.p.’s is assumed to

be finite, possibly different, and unknown. We assume θ j , θ j+1 for j = 0, ...,K to ensure

identifiability of the c.p.’s τ j. Moreover, define the set of all possible (linear) mixtures with m

components each in S(A) as

Mm :=Mm(A) =

 fω =

m∑
i=1

ωi f i : ω ∈ Ωm and f ∈ S(A)m
 . (1.5)

For a set Ω̃ ⊂ Ωm we defineMm(A, Ω̃) analogously.

Figure 1.4: Mixture g = 0.11f 1 + 0.29f 2 + 0.6f 3 with observations Y (gray dots), and sources
f 1, f 2, f 3 from Example 1.2.1 (from top to bottom). A separable region is marked blue.

Example 1.2.1. In Figure 1.4 a mixture g with ω> = (0.11, 0.29, 0.6) of m = 3 sources f 1,

f 2, f 3, taking values in the alphabet A = {0, 1, 2}, is displayed. Normal noise with σ = 0.22

is added according to the SBSR model (1.3), n = 7680. The marked blue region shows a

separable region, which guarantees identifiability of ω from g (see Section 1.3.1).



1.3. Main results 7

In Chapter 3 for the SBSR model we will address estimation of

1. the number of source components m,

2. the weights ω = (ω1, . . . ,ωm)> and

3. the source functions f i, i = 1, . . . ,m, i.e. their

(a) number of c.p.’s K(f i),

(b) c.p. locations τi
j, j = 1, . . . ,K(f i), and

(c) function values f i(x) (∈ A) at locations x ∈ [0, 1).

In addition, we will construct

4. uniform lower confidence bounds for m,

5. uniform confidence regions C1−α for the weights ω, and

6. asymptotically uniform multivariate confidence bands for the sources f = (f 1, . . . ,fm).

Multivariate FABS FABS can be considered in a multivariate matrix factorization setting,

where the sources f are associated with an unknown matrix F ∈ An×m and the mixing weights

with an unknown matrix ω ∈ Ωm,M ⊂ R
m×M. In Multivariate finite Alphabet Blind Separation

(MABS) one models an observation matrix Y ∈ Rn×M as

Y = Fω + Z, (1.6)

with unknown source matrix F ∈ An×m, unknown weight matrix ω ∈ Ωm,M, and additive noise

matrix Z ∈ Rn×M, which in this work is assumed to be i.i.d. Gaussian, that is Zi j ∼ N(0, σ2)

for i = 1, . . . n, j = 1, . . . ,M. Note that this corresponds to a multivariate linear model with

design matrix F and parameter matrix ω, with the additional difficulty that the design matrix

F is not completely known. Namely, only a finite set of possible values (the alphabet) for the

entries of the design matrix F is given.

1.3 Main results

This section gives an overview of the main results of this thesis. Throughout the following

bold letters m,f (or F ), ω, g denote the underlying truth of the observations Y in (1.3) and

(1.6), respectively. For simplicity, we use the same notation in Chapter 2, where identifiability

of FABS is analyzed (independent of a specific data model as in (1.3) and (1.6)), to distinguish

between two different mixtures (f ,ω) and ( f , ω). Moreover, throughout the following, we

assume a fixed, given (ordered) alphabet A , where w.l.o.g. a1 = 0 and a2 = 1, that is

A = {0, 1, a3, . . . , ak} with 1 < a3 < . . . < ak. (1.7)
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Otherwise, one may instead consider the observations (Y j − a1)/(a2 − a1) with alphabet A =

{0, 1, a3−a1
a2−a1

, . . . , ak−a1
a2−a1

} in (1.3) and (1.6).

1.3.1 Identifiability

A minimal requirement underlying any recovery algorithm of m, f and ω from (a possibly

noisy version of) g in (1.1) to be valid is identifiability, that is, a unique decomposition of the

mixture g into finite alphabet sources f and weights ω. For illustration, consider a binary

alphabet A = {0, 1} with two sources m = 2 and a single mixture M = 1. The red line in Figure

1.5 shows an example of a possible mixture g. The question is as following: Is it possible to

uniquely recover the underlying weights ω and sources f from the mixture g = fω? Or may

there exist (ω, f ) , (ω,f ) such that g = fω = fω? In this example the answer is simple:

The smallest possible function value for g is 0, which corresponds to both sources taking the

smallest alphabet value f 1 = f 2 = 0. Analog, when f 1 = 0 and f 2 = 1, g takes the second

smallest possible value, namely ω1 (recall that 0 ≤ ω1 ≤ ω2 and ω1 + ω2 = 1). Similar, the

third smallest value for g equals ω2 with f 1 = 0,f 2 = 1 and the largest value equals 1 with

f 1 = f 2 = 1. Thus, one can (almost) always uniquely identify ω and f from g. There are just

two situations where this goes wrong:

1. If ω1 = ω2, one cannot distinguish from g whether f 1 = 0,f 2 = 1 or f 1 = 1,f 2 = 0.

2. If f 1 = f 2, one cannot obtain ω1,ω2.

Consequently, in order to guarantee identifiability (in this simple example), we have to assume

that these two situations do not occur. That is, we need to exclude from the parameter space

the single weight vector ω = (0.5, 0.5) (the only one with ω1 = ω2) and sources f = (f 1,f 2)

with equal components f 1 = f 2 (or equivalently ω1,ω2 < imag(g)). Clearly, this is not very

restrictive, in most situations.

Now we turn to the general case, of arbitrary A, m, and M. It turns out that identifiability has

a complete combinatorial characterization via the given alphabet, see Section 2.1.1 (Theorem

2.1.3), and that the above assumptions can be extended to a universal (for any A,m,M) simple

sufficient condition, called separability, which guarantees identifiability even when the number

of sources m is unknown (see Section 2.1.2, Theorem 2.1.5, Theorem 2.1.9).

First, we discuss conditions on ω. For fixed ω the mixture g can take any of at most km (recall

that the alphabet A has size k) values of the form eω =
∑m

i=1 eiωi with e = (e1, . . . , em) ∈ Am

(elements in Am are considered as row vectors). Clearly, if for any two e , e′ ∈ Am it holds

that eω = e′ω, then f is not identifiable as it cannot be distinguished from g whether f = e

or f = e′. For the situation where eω is corrupted by noise as in the SBSR (1.3) and MABS

model (1.6), it is important to understand stability when any two of these values are very close,

that is, ‖eω − e′ω‖ < δ for small δ > 0. We denote the minimal distance between any two of

these values, which depends on ω, as alphabet separation boundary (ASB),

AS B(ω) = AS B(ω,A) := min
e,e′∈Am

∥∥∥eω − e′ω
∥∥∥ . (1.8)
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smallest value = 0
(f1 = f2 = 0)

2nd smallest value = ω1
(f1 = 1, f2 = 0)

3rd smallest value = ω2
(f1 = 0, f2 = 1)

largest value = 1
(f1 = 1, f2 = 1)

Figure 1.5: Example of a mixture g (red line) from the SBSR model (1.3) with A = {0, 1},m =

2,M = 1. The ordering structure of the possible different function values of g is illustrated.

Note that for A = {0, 1},m = 2,M = 1 as in Figure 1.5 the condition AS B(ω) > 0 is equivalent

to ω1 , ω2. Further, note that in the c.p. setting of the SBSR model (1.3) AS B(ω) > 0 implies

that any jump in the source vector f (i.e., at least one source f i jumps) occurs as well in

the mixture g = fω and that AS B(ω) coincides with the minimal possible jump height of g.

Clearly, as m ↗ ∞ the ASB converges to 0, as it describes the minimal distance between km

values in the bounded set [0, ak]M (see Theorem 2.3.10). For instance, in SBSR with M = 1 this

gives AS B(ω) ≤ ak/(km−1), which corresponds to the minimal jump height and, hence, scales

with the standard deviation σ. Thus, no method can detect m signals when σ < O(k−m). This

shows that for practical applications of FABS the number of sources should be small (relative

to the noise variance with m . ln(1/σ)).

Second, we discuss conditions on f . In order to identify ω from g it is necessary that the

sources differ sufficiently much. For instance, if f 1 = . . . = fm then g = f 1 irrespective

of ω. The separability1 condition (see Section 2.1.2) provides a sufficient variability of f

which guarantees identifiability, in particular even when the number of sources m is unknown.

Separability guarantees that for each i = 1, . . . ,m there exists some j = 1, . . . , n where f i

takes the second smallest alphabet value and all other sources take the smallest alphabet value.

Note that, as the alphabet is of the form (1.7), this is equivalent to

ω1, . . . ,ωm ∈ {g1, . . . , gn} ⇔ e1, . . . , em ∈ {f1·, . . . ,fn·}, (1.9)

1The notation separable is borrowed from identifiability conditions for nonnegative matrix factorization
(Donoho and Stodden, 2004; Arora et al., 2012; Bittorf et al., 2012).
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where ei denotes the i-th unit vector. Note that this is analog to f 1 , f 2 for A = {0, 1},m =

2,M = 1 as in Figure 1.5. In Figure 1.4 a separable region is marked blue.

In summary, a pair (ω,f ) in FABS is denoted as δ-separable if AS B(ω) ≥ δ and (1.9) holds

for the sources f . In Section 2.2 we quantify how difficult it is to recover the sources f

in dependence on δ. It turns out that δ-separability regularizes FABS via the parameter δ

and yields exact recovery for the sources f (as well as for the number of sources m) in a

neighborhood of the mixture g, that is for (ω,f ), (ω, f ) both δ-separable

max
j=1,...,n

∥∥∥(fω) j· − ( fω) j·
∥∥∥ < c(δ) ⇒ f = f and max

i=1,...,m
‖ωi − ωi‖ < c(δ), (1.10)

where c(δ)→ 0 as δ→ 0, see Theorem 2.2.3 and 2.2.5.

Imposing δ-separability in FABS naturally leads to the question how restrictive this condition

is, which is the topic of Section 2.3. Clearly, this depends on the specific weights ω and sources

f . It turns out that in many practical situations it is not very restrictive. For instance, when f

is modeled as a Markov process, it is separable with probability converging exponentially fast

to one, see Theorem 2.3.1, and when ω is drawn uniformly, then AS B(ω) ≥ δ with probability

1 − O(δ), where the constant depends on the specific alphabet, see Theorem 2.3.4. Moreover,

this remains true even when m is unknown, see Theorem 2.3.12.

1.3.2 FABS for change-point regression

In the following, the main results of Chapter 3 on the SBSR model (1.3) are presented. In

a first step, it is assumed that the number of sources m in (1.1) is known and ω and f are

inferred conditioned on the correct model dimension m. In a second step, a model selector for

m is proposed (see Section 3.6). In order to guarantee identifiability, we employ δ-separability.

To regularize the separability condition on f in (1.9) we further introduce a minimal scale λ

(minimal interval length between successive jumps). Thus, for given δ, λ > 0, given standard

deviation σ, a given finite alphabet A as in (1.7), and given number of sources m ∈ N we

consider the SBSR model (1.3) with

g ∈ Mδ,λ
m :=

{
fω : f ∈ S(A)mλ , ω ∈ Ωm with AS B(ω) ≥ δ

}
, (1.11)

and

S(A)mλ :=
{ K∑

j=0

θ j1[τ j,τ j+1) : θ j ∈ A
m, τi+1 − τi ≥ λ,

τ0 = 0, τK+1 = 1, e1, . . . , em ∈ {θ0, . . . , θK},K ∈ N
}
.

(1.12)

Note that the condition e1, . . . , em ∈ {θ0, . . . , θK} in (1.12) coincides with separability in (1.9).
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Figure 1.6: Observations Y from Example 1.2.1 (gray dots), together with true underlying
mixture g (red line). The blue line shows the c.p. estimate from Frick et al. (2014), which
does not incorporate the mixture structure. The red line shows the estimate with the proposed
method (see Figure 1.9 for the estimate of f ). The blue areas display a region where g has a
small jump (red line), which is not detected by the c.p. estimator (Frick et al., 2014) (blue line),
but by the proposed method (black line). The bottom plots show a zoom in of the blue regions.

First attempts

In order to motivate the (quite involved) methodology to recover all quantities in (1.1) simulta-

neously, some attempts which may come to mind at first glance are briefly discussed. As a first

approach to estimate ω and f from the data Y in the SBSR model (1.3), one might pre-estimate

the mixture g with some standard c.p. procedure, ignoring its underlying mixture structure, and

then try to reconstruct ω and f afterwards. One problem is that the resulting step function can-

not be decomposed into weights ω ∈ Ωm and sources f ∈ Sm(A), in general, as the given

alphabet A leads to restrictions on the function values of g. But already for the initial step

of reconstructing the mixture g itself, a standard c.p. estimation procedure (which ignores the

mixture structure) is unfavorable as it discards important information on the possible function

values of g (induced by A). For example, if g has a small jump in some region, this might be

easily missed (see Figure 1.6 for an example). Consequently, subsequent estimation of f and

ω will fail as well. In contrast, a procedure which takes the mixture structure explicitly into

account right from its beginning is expected to have better detection power for a jump. As a

conclusion, considering SBSR as a standard c.p. problem discards important information and

does not allow for demixing, in general.

A second approach, which comes to mind, is to first use some clustering algorithm to pre-

estimate the function values of g, ignoring its serial c.p. structure, and infer the mixing weights

ω from this. This pre-clustering approach has been pursued in several papers (Diamantaras,

2006; Li et al., 2003; Gu et al., 2010) for the particular case of a binary alphabet, i.e., k = 2.

However, as the number of possible function values of g equals km (recall that k is the size
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Figure 1.7: Histogram of the data from Example 1.2.1 with 20, 100, and 200 equidistant bins,
respectively (from left to right). The vertical red lines indicate the true function values (modes)
of g which have to be identified.

of the alphabet), recovery of these values in a statistical context by clustering is a difficult task

in general, as it amounts to estimate the location of (at most) km modes correctly from the

marginal distributions of the observations Y j. In fact, this corresponds to mode hunting with

potentially large number of modes which is known to be a hard problem, see e.g., (Cheng and

Hall, 1999; Tibshirani et al., 2001; Dümbgen and Walther, 2008). We illustrate the difficulty of

this in Figure 1.7 employing histograms of the Y j’s in Example 1.2.1 with different bin widths.

From this, it becomes obvious that a pre-clustering approach is not feasible for the present data.

Summing up, ignoring either of both, the c.p. and the finite alphabet mixture structure, in a

first pre-estimation step discards important information, which is indispensable for statistically

efficient recovery. It should be emphasized that we are not aware of any existing method

taking both aspects into account, in contrast to the method presented in this thesis, called SLAM

(Separates Linear Alphabet Mixtures), which is briefly described now.

In a first step, a confidence region C1−α and an estimator for ω is constructed. This can be char-

acterized by the acceptance region of a specific multiscale test with test statistic Tn(Y, g), which

is particularly well suited to capture both, c.p. and mixture structure, of g. The confidence level

is determined by a threshold qn(α) such that for any g =
∑m

i=1 ωif
i ∈ M

δ,λ
m in (3.17)

{ω ∈ C1−α(Y)} ⊇ {Tn(Y, g) ≤ qn(α)}. (1.13)

In a second step, we estimate f based on a multiscale constraint again. In the following this

procedure is introduced in more detail. The multiscale approach underlying SLAM is crucial

as jumps of f potentially can occur at any location and scale (interval length).

Multiscale statistic and confidence boxes underlying SLAM

Recall that a reasonable estimator must explore both, the c.p. and the finite alphabet structure.

Roughly speaking, c.p. structure means that observations which are close to each other (on

the time scale) are more likely to share the same distribution than observations which are far

apart. To explore this structure, one has to allocate local information (on single intervals). As

the jump locations may occur at any place, it becomes necessary to do this in a multiscale
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Figure 1.8: Illustration of SLAM.

fashion, that is, allocating local information on all different intervals (scales) simultaneously,

see e.g., (Siegmund and Yakir, 2000; Dümbgen and Spokoiny, 2001; Davies and Kovac, 2001;

Dümbgen and Walther, 2008; Frick et al., 2014). This is illustrated in Figure 1.8.

Let g|[xi,x j] ≡ gi j denote that g is constant on some interval [xi, x j] with function value gi j. In

order to allocate local information on a single interval [xi, x j] ⊂ [0, 1), we consider for some

given (test) value gi j ∈ R the local hypothesis testing problem

H0 : g|[xi,x j] ≡ gi j vs. H1 : g|[xi,x j] . gi j. (1.14)

A natural test-statistic for this testing problem is the log-likelihood ratio test statistic

T j
i (Yi, . . . ,Y j, gi j) =

(
∑ j

l=i Yl − gi j)2

2σ2( j − i + 1)
. (1.15)

We then combine the local testing problems in (1.14) and define in our context the multiscale

statistic Tn for some candidate function g (which may depend on Y) as

Tn(Y, g) := max
1≤i≤ j≤n

g|[xi ,x j]≡gi j

|
∑ j

l=i Yl − gi j|

σ
√

j − i + 1
− pen( j − i + 1), (1.16)

with penalty terms pen( j − i + 1) :=
√

2 (ln (n/( j − i + 1)) + 1). The maximum in (1.16) is

understood to be taken only over those intervals [xi, x j] on which g is constant with value

gi j = g(xi). The calibration term pen(·) serves as a balancing of different scales in a way that

the maximum in (1.16) is equally likely attained on all scales, see (Dümbgen and Spokoiny,

2001; Frick et al., 2014). Other scale penalizations can be employed as well, see e.g. (Walther,

2010), but, for the ease of brevity, will not be discussed here. Note that, as the multiscale

statistic in (1.16) is defined as the maximum of the local test statistics in (1.15) (up to the

penalization term), a test function g is accepted (that is, Tn(Y, g) ≤ q for some threshold q

depending on the significance level) if and only if all local tests accept on intervals where g

is constant. The function values of g determine the local testing problems (the value gi j in
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(1.14)) on the single scales [xi, x j]. The penalization term adjusts the thresholds (levels) of the

different local tests.

Recall that a test can always be inverted into a confidence statement and vice versa. Thus,

the local tests of the multiscale test in (1.16) can be inverted into local confidence statements.

More precisely, with the notation Ȳ j
i :=

∑ j
l=i Yl/( j− i + 1), the statistic Tn(Y, g) in (1.16) has the

following geometric interpretation:

Tn(Y, g) ≤ q ⇔ gi j ∈ B(i, j) ∀1 ≤ i ≤ j ≤ n with g|[xi,x j] ≡ gi j, (1.17)

for q ∈ R, with intervals

B(i, j) :=
[
Y

j
i −

q + pen( j − i + 1)√
j − i + 1/σ

,Y
j
i +

q + pen( j − i + 1)√
j − i + 1/σ

]
. (1.18)

The boxes B(i, j) correspond to local confidence intervals for the underlying signal g|[xi,x j] on

the intervals [xi, x j]. This is illustrated in Figure 1.8, where the gray boxes in the zoom-in

correspond to confidence intervals B(i, j) on the interval [xi, x j]. For g to be accepted (that is

Tn(Y, g) ≤ q) it must be covered by [xi, x j] × B(i, j) whenever it is constant on [xi, x j].

In the following we will make use of the fact that the distribution of Tn(Y, g), with g the true

signal from the SBSR model (1.3), can be bounded from above with that of Tn := Tn(ε, 0),

with ε as in (1.3). It is known that Tn
D
⇒ L(B) < ∞ a.s. as n → ∞, a certain functional of

the Brownian motion B, see (Dümbgen and Spokoiny, 2001; Dümbgen et al., 2006). Note

that the distribution of Tn(ε, 0) does not depend on the (unknown) f and ω anymore. As this

distribution is not explicitly accessible and to be more accurate for small n (≤ 5000 say) the

finite sample distribution of Tn can be easily obtained by Monte Carlo simulations. From this

one obtains qn(α), α ∈ (0, 1), the (1 − α)-quantile of Tn. We then obtain

inf
g∈Mm

P (Tn(Y, g) ≤ qn(α)) ≥ 1 − α. (1.19)

Hence, for the intervals in (1.18) with q = qn(α) it follows that for all g ∈ Mm

P
(
gi j ∈ B(i, j) ∀1 ≤ i ≤ j ≤ n with g|[xi,x j] ≡ gi j

)
≥ 1 − α. (1.20)

We use the notation B(i, j) for both, the intervals in (1.18) and the boxes [i, j] × B(i, j).

Inference about the weights

We will now use the system of boxes B := {B(i, j) : 1 ≤ i ≤ j ≤ n} from (1.18) with q = qn(α)

as in (1.19) to construct a confidence region C1−α for ω such that (1.13) holds, which ensures

inf
g∈Mδ,λ

m

P (ω ∈ C1−α) ≥ 1 − α. (1.21)
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To this end, separability in (1.9) is crucial. It ensures that the weights ωi are present somewhere

in the signal g (see Figure 1.8). Thus, the boxes B capture (local) information about ωi.

More precisely, we will show that any B? ∈ Bm (denoted as the space of m-boxes) which

corresponds to a separable region directly provides a confidence set C?1−α = B? for ω. However,

as the underlying signal f is unknown and hence, it is unknown where exactly the signal is

separable, B? cannot be determined directly. Therefore, we will construct a coveringB? ⊂ Bm

with B? ∈ B? (conditioned on Tn(Y, g)) such that the resulting confidence set

C1−α :=
⋃

B∈B?
B (1.22)

has minimal volume (up to a log-factor) (see Section 3.4). The construction of B? is done by

applying certain reduction rules on the set Bm reducing it to a smaller set B? ⊂ Bm with

B? ∈ B?. This is summarized in the CRW (Confidence Region for the Weights) algorithm in

Figure 3.1, which constitutes the first part of SLAM. In Example 1.2.1 for α = 0.1 this gives

C0.9 = [0.00, 0.33]×[0.07, 0.41]×[0.39, 0.71] as a confidence box for ω = (ω1,ω2,ω3)> which

covers the true value ω = (0.11, 0.29, 0.60)> in this case. SLAM now estimates ω by

ω̂ := argmax
ω∈C1−α

AS B(ω). (1.23)

(1.23) can be computed with linear programming (see Theorem 5.1.1). Alternatively, for a

finite sample size n, as the boxes B(i, j) from (1.18) are constructed in a symmetric way, for

C1−α =: [ω1, ω1] × . . . × [ωm, ωm] one may as well simply estimate ω by

ω̂ :=
1∑m

i=1(ωi + ωi)
(ω1 + ω1, . . . , ωm + ωm). (1.24)

In Example 1.2.1 (1.24) gives for α = 0.1 ω̂ = (0.17, 0.25, 0.58)>.

On the one hand, when being interested in confidence statements, the threshold q in (1.17) and

(1.18), respectively, is chosen as the (1 − α)-quantile of the statistic Tn as in (1.19). On the

other hand, when being interested in estimation, q and α, respectively, can be seen as tuning

parameters. It turns out that specific (optimal) choices will lead to (almost) optimal estimation

rates. Thus, for all following considerations, define αn and βn via

αn := exp(−c1 ln2(n)), qn(βn) := c3 qn(αn) + c4, (1.25)

with qn(αn), qn(βn) the (1 − αn)- and (1 − βn)-quantiles of Tn as in (1.19), for some constants

c1 = c1(δ), c3, c4 = c4(λ), to be specified later in (3.13). Both, qn(αn) and qn(βn), grow with rate

O(δ ln(n)/σ) (see proof of Theorem 3.4.2). Then, in addition to uniform coverage in (1.21),

for α = αn in (1.25) we show in Corollary 3.4.3 that the confidence region C1−αn from (1.22)

covers the unknown weight vector ω with maximal distance shrinking of order ln(n)/
√

n with
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probability tending to one at a superpolynomial rate, that is

P
(
dist(ω,C1−αn(Y)) < c2

ln(n)
√

n

)
≥ 1 − exp(−c1 ln2(n))

for all n ≥ N?, for some constants c1 = c1(δ), c2 = c2(δ, λ) (see (3.13)) and some explicit

N? = N?(λ, δ) ∈ N (see (3.14) and (3.15)), where for D ⊂ Rm and d ∈ Rm

dist(d,D) := sup
d̃∈D

∥∥∥d − d̃
∥∥∥
∞
. (1.26)

Inference about the source functions

Once the mixing weights ω have been estimated by ω̂, SLAM estimates f in two steps. First,

the number of c.p.’s K(g) of g = fω ∈ Mδ,λ
m is estimated by solving the constrained optimiza-

tion problem

K̂ := min
g∈ Mm(A,ω̂)

K(g) s.t. Tn(Y, g) ≤ qn(β). (1.27)

This means that SLAM chooses f̂ as parsimonious as possible (with as few jumps as possible),

while still fulfilling the multiscale constraint Tn(Y, f̂ ω̂) ≤ qn(β). This multiscale constraint, on

the r.h.s. of (1.27), is the same as for C1−α(Y) in (1.22), but with a possibly different confidence

level 1 − β. Finally, we estimate f 1, . . . ,fm as the constrained maximum likelihood estimator

f̂ = ( f̂ 1, . . . , f̂ m)> := argmax
f∈H(β)

n∑
i=1

ln
(
φ f ω̂(xi)(Yi)

)
, (1.28)

where φµ denotes the density of the normal distribution with mean µ and variance σ2 and

H(β) :=
{
f ∈ S(A)m : Tn (Y, f ω̂) ≤ qn(β) and K ( f ω̂) = K̂

}
. (1.29)

Note that this procedure even increases the detection power for g itself as it explicitly takes

into account the finite alphabet for the estimation of the c.p.’s. This is illustrated in Figure

1.8. The zoom-in on the right shows a region where the true underlying signal has a small

jump. However, without the finite alphabet constraint, one can find a constant signal (the blue

line in the right version of the zoom-in) which is covered by all confidence boxes (for sake of

clarity only three of them are plotted). SLAM, however, explicitly takes into account the finite

alphabet, which implies that (after having estimated ω) only finitely many function values for

g are possible. As there is no constant signal, which only takes one of these values and is

covered by the confidence boxes B(i, j), SLAM detects this jump.

Again, choosing the confidence levels α and β in an optimal way, with α = αn and β = βn as in

(1.25), in Section 3.4 (see Theorem 3.4.2) we show that with probability at least 1 − αn, for n

large enough, the SLAM estimator f̂ in (1.28) estimates for all i = 1, . . . ,m

1. the respective number of c.p.’s K(f i) correctly,

2. all c.p. locations with rate ln2(n)/n simultaneously, and
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Figure 1.9: First row: g (red dotted line), ĝ (black line) with ω̂ = (0.11, 0.26, 0.63)>, and
data Y (gray) from Example 1.2.1. Subsequent rows: f i (red line) and SLAM’s estimate f̂ i

(gray/black line) for qn(α) = 0.2 and qn(β) = 2.1. Gray shades of f̂ i indicate the confidence for
the given segment (recall A = {0, 1, 2}): a maximal deviation of two (light gray), one (gray),
and no deviation (black) at confidence level β = 0.01. The blue area displays a constant region
of g where ĝ includes a (wrong) jump and its effect on estimation of the sources.

3. the function values of f i exactly (up to the uncertainty in the c.p. locations).

Obviously, the rate in 2. is optimal up to possible log-factors as the sampling rate is 1/n. From

Theorem 3.4.2 it follows further (see Remark 3.4.4) that the minimax detection rates are even

achieved (again up to possible log-factors) when δ, λ → 0 (as n → ∞). Further, in Theorem

3.3.1 we show that a slight modification H̃(β) of H(β) in (1.29) constitutes an asymptotically

uniform (for given ASB δ and minimal scale λ) multivariate confidence band for f .

To illustrate, Figure 1.9 depicts SLAM’s estimates of the mixture ĝ = f̂ ω̂, with ω̂ = (0.11, 0.26,

0.63)>, and the source functions f̂ 1, f̂ 2, f̂ 3 from (1.28) with Y as in Example 1.2.1, β = 0.01

(corresponding to qn(β) = 2.1), and an automatic choice of α, the Minial Valid Threshold

(MVT)-selection method explained in Section 3.5. In order to visualize H̃(β), we illustrate the

provided confidence in gray scale encoding the projections of H̃(β).

SLAM is also applicable in the non-blind case, where the mixing weights ω are known. Then,

the sources f may directly be estimated as in (1.27) and (1.28) with ω̂ replaced by ω. This

yields the same (almost) optimal estimation rates for the sources f , see Remark 3.4.5. Note
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that the non-blind setting is equivalent to estimation of step-functions for a known (finite) set

of possible function values. This is an interesting task on its own, which has received only few

attention in the literature so far and is covered by this thesis as well.

The performance of SLAM is investigated in a simulation study in Section 6.1. We first in-

vestigate accuracy of ω̂ and the confidence region C1−α(Y) as in (1.24) and (1.22). We found

always higher coverage of C1−α(Y) than the nominal confidence level 1 − α. In line with this,

ω̂ appeared to be very stable under the choice of α. Second, we investigate SLAM’s estimate

f̂ . A major conclusion is that if g is not well estimated in a certain region, this typically will

influence the quality of the estimates of f i in this region but not beyond (see the marked light-

blue region in Figure 1.9 where the estimator ĝ includes a wrong jump in a constant region of

g but this error does not propagate serially). This may be explained by the flexible c.p. model

Mm together with the multiscale nature of SLAM, which locally “repairs” estimation errors.

Model selection

When the number of source components m is known the multiscale method SLAM, as intro-

duced above, is able to recover ω and f at optimal (up to log-factors) rate of convergence.

However, in many practical situations m is unknown or only approximately known. In the

following, we introduce a selection procedure for m.

Example 1.3.1. Figure 1.10 shows realizations of the SBSR model for a binary alphabet A =

{0, 1}, n = 1, 421, and standard deviation σ = 0.06. The left part of Figure 1.10 shows an

example with m = 3 source functions f 1,f 2,f 3 and mixing weights ω = (0.08, 0.12, 0.8)>

and the right part with m = 2 and ω = (0.15, 0.85)>. The aim is to reconstruct from the

observations Y (displayed as gray dots in top row) the unknown number of sources m and

based on this the unknown source functions f i (displayed as red solid lines in row 2) and their

corresponding mixing weights ω. Note that the true underlying regression functions (red lines

in top row), with m = 3 (left) and m = 2 (right), respectively, are very similar in this example.

The proposed selector m̂ is based on the same multiscale statistic Tn (1.16) as in SLAM. For

given m = m SLAM yields conditional confidence sets Cm
1−α for ω. Increasing m, increases

the number of model parameters and yields a better data fit. Thus, for a fixed confidence level

α we propose to select the smallest m such that the corresponding confidence set Cm
1−α from

SLAM is non-empty, that is, the multiscale constraint can be fulfilled with just m sources.

This procedure automatically yields lower confidence bounds for m (see Theorem 3.6.4), i.e.,

statistical error guarantees for the minimal “model dimension”, a task which is in general dif-

ficult to obtain. For instance, in the example of the right part of Figure 1.10, even if the signif-

icance level α is chosen as small as 1%, the lower confidence bound equals the true number of

sources m̂0.99 = 2, which means that with 99% confidence the observations Y (gray dots in first

line of Figure 1.10 (right)) come from at least two sources. In the example from the left part of

Figure 1.10, where the underlying mixture g with m = 3 is very close to the one from the right

side which comes from just two sources, one finds that m̂0.9 = 2. This means that with 90%

confidence it can only be guaranteed that the mixture comes from at least two sources (although
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Figure 1.10: Observations Y (gray dots in top rows) according to SBSR model (1.3), σ = 0.06,
n = 1, 421, with true signal g (solid red line in top rows). Separable regions (see (1.9)) are
marked blue. Left: m = 3, ω = (0.08, 0.12, 0.8)>, and f = (f 1,f 2,f 3) (solid red lines in row
2). The estimator from Theorem 3.6.11 yields m̂ = 3, ω̂ = (0.08, 0.11, 0.81)>, and the black
lines for sources (row 3) and mixture (top row). With m̂0.9 = 2 the corresponding estimate is
shown as blue line for sources (row 4) and mixture (top row) with ω̂ = (0.16, 0.84)>. Right:
m = 2, ω = (0.15, 0.85)>, and f = (f 1,f 2) (solid red lines in row 2). The estimator from
Theorem 3.6.11 yields m̂ = 2, ω̂ = (0.16, 0.84)>, and the black lines for sources (row 3) and
mixture (top row). With m̂ = 3 the corresponding estimate is shown as blue line for sources
(row 4) and mixture (top row) with ω̂ = (0.09, 0.12, 0.79)>.

it actually comes from three). Similar as for SLAM, if the confidence level 1 − α = 1 − αn is

chosen appropriately, with q(αn) = c(λ, δ, σ)
√

n as in Definition 3.6.8, the proposed selector

m̂ = m̂1−αn converges exponentially fast to the true m, see Theorem 3.6.9. For this estimator, in

both examples of Figure 1.10, the true number of sources is estimated correctly. Based on this

selection procedure we derive asymptotically optimal (up to log-factors) estimation procedures

and confidence statements for ω and f when m is unknown, using m̂ as a plug-in estimator for

SLAM (see Theorem 3.6.11 and 3.6.12).

In the left example of Figure 1.10 the corresponding estimate yields ω̂ = (0.08, 0.11, 0.81)>

and the black lines in row 3 for the sources. One can see that the sources are recovered

very accurately, only missing a small jump in the beginning of the signal. The correspond-

ing estimates for number of sources equal to the 90% lower confidence bound m̂0.9 = 2 yields

ω̂ = (0.16, 0.84)> and the blue lines in row 4. This estimate is still very reasonable, in the

sense that it combines the first two sources to a single source function, similar as in the right
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example of Figure 1.10. To compensate for the misspecified number of sources, the estimator

introduces some additional wrong jumps. Analogously in the right example of Figure 1.10

(with m = 2), if the number of sources is misspecified as m̂ = 3 SLAM (blue lines in row 4)

inserts additional wrong jumps. In Section 6.2 we report on simulation results for the SLAM

selector. They indicate that it outperforms standard methods like the AIC and BIC procedure,

which, in contrast to our method, do not give any statistical guarantees.

1.3.3 Multivariate FABS

For the MABS model (1.6) the main contribution of this thesis is to derive an estimator which

(almost) attains minimax prediction and estimation rates, where we assume the number of

sources m, the alphabet A, and the noise variance σ2 to be fixed. The aim is to study the in-

fluence of all quantities on recovery as n,M → ∞. Again, in order to guarantee identifiability

δ-separability is employed. Note that increasing M makes inference on F in (1.6) easier (we

observe more mixtures of the same sources) while inference on ω more difficult (the dimen-

sion of ω and thus the number of parameters to be estimated increases with M). In contrast,

increasing n makes inference on F more difficult (the dimension of F and thus the number

of parameters to be estimated increases with n) while inference on ω easier (we observe more

samples from the the same mixture matrix ω). In Corollary 4.1.4 we show that the minimax

rate for the prediction error is of the form

σ2m
n

+
σe−c M

σ2

n
√

M
. inf

θ̂
sup
F ,ω

EFω


∥∥∥θ̂ − Fω

∥∥∥2

nM

 . σ2m
n

+
σe−c′ M

σ2

n
√

M
, (1.30)

whenever ln(n)/M → 0, M/n → 0, and that the least squares estimator (LSE) achieves this

rate. Here . and & denote inequalities up to a universal constant which does not depend on

any model parameters and c, c′ = c′(m,A) > 0 are positive constants. A major consequence

of (1.30) is that when M � ln(n) the unknown design matrix F in the linear model (1.6)

does not play much of a role for the prediction error. Exact recovery results as in (1.10) al-

low to relate the prediction error
∥∥∥θ̂ − Fω

∥∥∥ in (1.30) to the estimation error via the metric

d ((F ,ω), (F, ω)) = (
√

M/m) 1F,F + maxi=1,...,m ‖ωi − ωi‖. In Theorem 4.2.3 we show that

σ2c1 +
σ
√

M
c2e−c M

σ2 . inf
F̂,ω̂

sup
F ,ω

EFω

d
(
(F ,ω), (F̂, ω̂)

)2

M

 . σ2c′1 +
σ
√

M
c′2e−c′ M

σ2 , (1.31)

whenever ln(n)/M → 0, M/n → 0, with c1 = c1(m, n,A), c2 = c2(m, n,A), c′1 = c′1(m,A), c′2 =

c′2(m,A) > 0 positive constants (and c1, c2 ∈ o(1) as n → ∞), and this rate is achieved by

the LSE. A major consequence of (1.31) is that also for the estimation error if M � ln(n) the

unknown F in (1.6) does not play much of a role.

Our theoretical findings show that the LSE achieves optimal rates, both for the prediction error

and for the estimation error. Unfortunately, we are not aware of any polynomial time algorithm

for exact computation of the LSE. Pananjady et al. (2016) have shown that the LSE for a similar
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al <- c(0,1)

sources <- rbind(rep(al, each = 100), rep(al[2:1], each = 100))

omega <- c(0.2, 0.8)

y <- as.numeric(omega %*% sources + 0.5 * rnorm(dim(sources)[2]))

estimate <- slamSelect(y, al, lambda = 0.2, delta = 0.1)

confBound <- slamSelect(y, al, lambda = 0.2, delta = 0.1, alpha = 0.1)

est <- slamR(y = y, al = al, m = length(omega), lambda = 0.2, confreg =

TRUE, confband = TRUE, alpha = 0.1, beta = 0.01)

confReg <- attr(est, "confReg")

confBand <- attr(est, "confBand")

Figure 1.11: Illustration of function slamSelect and slamR in R-package slamR.

problem (see Section 5.2 for details) is NP-hard to compute. We conjecture that this is the case

here, too. In Section 5.2 we propose a simple iterative Lloyd’s algorithm to approximate the

LSE. Simulations in Section 6.3 suggest similar rates as for the LSE.

1.4 Algorithms and implementation

SLAM For given number of sources m, SLAM’s estimate for ω as in the SBSR model (1.3)

can be computed with polynomial complexity O(n2m+1), see (1.23) and Algorithm CRW in

Figure 3.1. Using dynamic programming, the final estimate of sources f as in (1.3) can then be

computed with a complexity ranging from O(n) and O(n2) depending on the final solution. The

SLAM selector for the number of sources m can be computed in O(n2m̂+1) time. As m̂ ≤m in

most simulations (see Section 6.2), in practice, the overall complexity of SLAM does usually

not increase when m is unknown. Details are given in Section 5.1. An R-package including an

implementation of SLAM is available2. Its two main functions are slamSelect and slamR.

The former performs model selection for the number of sources m with the estimator m̂ (see

Definition 3.6.8) and, given an (estimated) number of sources, the latter estimates the mixing

weights ω and the sources f with the SLAM procedure. slamSelect takes as input the nu-

meric observations y, the alphabet al, a minimal scale lambda, and a minimal ASB delta.

If, in addition, a confidence level α is specified, the corresponding 1 − α lower confidence

bound is computed. An example is given in Figure 1.11. slamR takes as input the numeric

observations y, the alphabet al, the true or estimated (with slamSelect) number of sources m,

and a minimal scale lambda. The threshold parameter q(α) for estimating the mixing weights

is chosen according to the MVT-selection method explained in Section 3.5. If confreg ==

TRUE and alpha is specified, the 1−α confidence region C1−α in (1.22) for the mixing weights

ω is computed. If confband == TRUE and beta is specified, the 1 − β confidence band H̃(β)

in (1.29) for the sources f is computed. An example is given in Figure 1.11.

2R package available at http://www.stochastik.math.uni-goettingen.de/slamR
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Clustering algorithm In Section 5.2 a clustering algorithm (see Figure 5.1) which approxi-

mates the LSE in the MABS model (1.6) is proposed. It successively updates an estimate for

matrices F and ω. Given an estimate F̂ the LS solution for ω can be formulated as a convex

optimization problem, where standard solvers exist. On the other hand, given an estimate ω̂,

the LS solution for F can be obtained by clustering with given centers {eω̂ : e ∈ Am}. We

found that the algorithm terminates very quickly, usually after less than 10 iterations.

1.5 Literature survey: contrasted and compared

Finite alphabet blind separation A rigorous statistical modeling, methodology, and theory

for the FABS problem was entirely lacking, to best of our knowledge, prior to this work. We

are not aware of any other work which provides a characterization of identifiability for FABS

and estimates (and confidence statements) in the SBSR and MABS model, respectively, in

such a rigorous and general way. However, some specific instances of FABS have been con-

sidered. For the binary alphabet A = {−1, 1} FABS has been considered in (Talwar et al., 1996;

Pajunen, 1997; Diamantaras and Chassioti, 2000; Diamantaras, 2006; Gu et al., 2010). Dia-

mantaras (2006) also considers a general finite alphabet but only for complex weights. Thus,

he only works with a two-dimensional signal. The separability condition (1.9) (see Section

2.1.2) is mainly motivated by results of Diamantaras (2006). Equally spaced alphabets, i.e.,

{a1, . . . , ak} = {a0, a0 + T, a0 + 2T, . . . , a0 + kT } are considered in (Diamantaras and Papadim-

itriou, 2009; Rostami et al., 2011). Diamantaras (2008) only considers the case m = 2. Here

we treat arbitrary alphabets A = {a1, . . . , ak} ⊂ R and number of sources m ∈ N. Moreover,

some authors (Pajunen, 1997; Diamantaras and Papadimitriou, 2009; Rostami et al., 2011) as-

sume a specific distribution on the alphabet, e.g., uniform. Separability only assumes some spe-

cific combinations of alphabet values (which are minimal conditions in a sense) to be present

in the signal, hence such a specific distribution is not needed.

A related problem is non-negative matrix factorization (NMF) (Lee and Seung, 1999; Donoho

and Stodden, 2004; Arora et al., 2012; Bittorf et al., 2012), where one assumes a multivariate

signal Y = Fω + Z ∈ Rn×M as in (1.6), but with F and ω both non-negative (without any

alphabet restriction on the sources). In contrast to NMF, the additional finite alphabet restriction

imposed here, leads to a model structure more related to a classification problem. NMF with

both F and ω (and possibly also Y) having entries in a known finite set has been considered

for example in (Li, 2005). While NMF shares a structural similarity with the MABS model in

(1.6), it is fundamentally different to the SBSR model (1.3). A crucial assumption in NMF is

that m � min(n,M), which obviously does not hold in the SBSR model where M = 1. Indeed,

techniques and algorithms for NMF are very different from the ones derived here for the SBSR

model, as our multiscale methodology explicitly takes advantage of the one dimensional (i.e.,

ordered) c.p. structure under the finite alphabet assumption.

The δ-separability condition from Section 1.3.1 is similar in nature to identifiability conditions

for NMF (Donoho and Stodden, 2004; Arora et al., 2012), from where the notation separable

originates. However, proofs are very different. Whereas in NMF they are build on geometrical
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considerations, in FABS they are build on combinatorics. In order to ensure identifiability in

NMF, the “α-robust simplicial” condition on the mixing matrix ω ∈ Rm×M
+ (see e.g., (Bittorf

et al., 2012, Definition 2.1)) and the “separability” condition on the source matrix F ∈ Rn×m
+

(see e.g. (Bittorf et al., 2012, Definition 2.2)) are well established. There, the “δ-robust sim-

plicial” condition assumes that the mixing vectors ω1·, . . . ,ωm· ∈ R
M
+ constitute vertices of an

m-simplex with minimal diameter (distance between any vertex and the convex hull of the re-

maining vertices) δ. This means that different source values Fi· ∈ R
m are mapped to different

mixture values Fi·ω ∈ R
M
+ by the mixing matrix ω ∈ Rm×M

+ . This condition is analog to the

condition AS B(ω) ≥ δ in (1.8), which ensures that different source values e ∈ Am are mapped

to different mixture values eω ∈ R via the mixing weights ω ∈ Ωm, with minimal distance δ

between different mixture values. The “separability” condition in NMF is essentially the same

as in (1.9). In both models (NMF and FABS) separability ensures a certain variability of the

sources in order to guarantee identifiability of the mixing matrix and vector, respectively, from

their mixture. However, whereas in NMF separability only yields identifiability if M ≥ m, in

FABS separability always yields identifiability even for a single linear mixtures (M = 1), as it

explicitly explores the finite alphabet.

Another related problem is Independent Component Analysis (ICA) (see e.g., (Comon, 1994;

Belkin et al., 2013; Arora et al., 2015)), which is based on the stochastic independence of the

different sources (assumed to be random). Here we do not make any independence assumption

on the different sources. We rather treat them as deterministic and fixed, making ICA not

accessible to our problem. Moreover, in contrast to the SBSR model, ICA is not applicable for

single linear mixtures (M = 1), as the error terms of the single sources then sum up to a single

error term and ICA would treat this as one observation. ICA for underdetermined multiple

linear mixture models, i.e., 1 <m < M, is treated in (Lee et al., 1999).

Some BSS methods assume second-order stationary (SOS) processes for the sources, see (Tong

et al., 1991; Belouchrani et al., 1997). Other BSS methods assume a certain sparsity of the

mixing matrix (Spielman et al., 2012) or sparse representations (SR) (Abrard et al., 2001; Bofill

and Zibulevsky, 2001; Yilmaz and Rickard, 2004; Li et al., 2006). We stress, that FABS does

not make any sparsity assumption in the usual sense, where many coefficients are assumed to

be zero. Conceptually related is blind deconvolution (see e.g., (Yellin and Porat, 1993; Li et al.,

2003; Diamantaras and Papadimitriou, 2011)), however, the convolution model makes analysis

and identifiability severely different. Also related is statistical seriation where F in (1.6) is a

permutation matrix which needs to be estimated, see (Flammarion et al., 2016).

Change point regression The estimation of step functions, with unknown number and loca-

tion of c.p.’s is a widely discussed problems, see e.g., (Tukey, 1961; Carlstein et al., 1994;

Olshen et al., 2004; Fearnhead, 2006; Friedrich et al., 2008; Tibshirani and Wang, 2008;

Spokoiny, 2009; Harchaoui and Lévy-Leduc, 2010; Jeng et al., 2010; Killick et al., 2012; Zhang

and Siegmund, 2012; Niu and Zhang, 2012; Siegmund, 2013; Frick et al., 2014; Matteson and

James, 2014; Fryzlewicz, 2014; Du et al., 2015). However, to best of our knowledge the com-

bination with a BSS problem as in the SBSR model (1.3) has not been considered before.
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Minimization of the `0 norm using dynamic programming, which has a long history in c.p.

analysis (see e.g., (Bai and Perron, 1998; Fearnhead, 2006; Friedrich et al., 2008; Killick et al.,

2012)), for segment estimation under a multiscale constraint has been introduced in (Boysen

et al., 2009) (see also (Davies et al., 2012) and (Frick et al., 2014)) and here we extend this to

mixtures of segment signals and in particular to a finite alphabet restriction.

To best of our knowledge, the way the problem of clonal separation is treated here is new, see,

however, (Yau et al., 2011; Carter et al., 2012; Liu et al., 2013; Roth et al., 2014; Ha et al.,

2014; Ding et al., 2014). Methods suggested there all rely on specific prior information about

the sources f and cannot be applied to the general SBSR model. Moreover, most of them treat

the problem from a Bayesian perspective.

Model selection Estimation of m in the SBSR model can be considered as a model-selection

problem, for which many well established procedures exist, in general. The most popular ones

include the Akaike Information Criterion (AIC) (Akaike, 1974) and the Bayesian Information

Criterion (BIC) (Schwarz, 1978). For a discussion of other criteria see e.g., (Claeskens and

Hjort, 2008). However, the regularity conditions (which allow a Taylor expansion of the like-

lihood) needed for the theoretical justification of the BIC and AIC criterion (see (Schwarz,

1978; Burnham, 2004)) are not satisfied in the SBSR model (see Section 6.2.1 for details and

simulations). Moreover, these procedures do not explore the specific structure of FABS and,

in particular, they do not provide any statistical guarantees for the selected number of compo-

nents. Note that already for m = 1 this becomes apparent as then the problem boils down to

c.p. estimation, where determining the number of jumps is also recognized as a model selection

step and these criteria are well known to fail, see (Zhang and Siegmund, 2007, 2012).

Model selection for the number of sources, as it is considered in this thesis for the SBSR model,

has also been considered for other BSS problems. A maximum likelihood procedure for esti-

mating the number of sources in ICA is, for instance, considered in (Penny et al., 2001). They

argue that, whereas usually model selection with maximum likelihood leads to an overesti-

mation of model parameters (i.e. overestimation of m), this is not the case for ICA. This is

because for ICA adding more sources will at some point decrease the likelihood as the inde-

pendence condition will be violated if too many sources are added. Such an approach cannot

be transferred to the SBSR model as no probabilistic assumption is made on the sources, in par-

ticular no independence assumption. Heuristic approachs for estimating the number of sources

in NMF are given in (Brunet et al., 2004; Kim and Park, 2008). As they use a randomized

initialization in their iterative NMF algorithm, each run will result in a different factorization.

They propose to compute for different number of sources several realizations and choose the m

where the factorizations were most stable. As SLAM does not include a random component,

this heuristic approach cannot be used for estimating m in this context. A Bayesian approach

for estimating the number of sources in NMF is considered in (Schmidt et al., 2009). There

are also some heuristic approaches for estimating the number of sources for methods which

are build on sparse representations (SR), see e.g., (Bofill and Zibulevsky, 2001; Yilmaz and

Rickard, 2004; Li et al., 2006). However, all these approaches explore the particular sparseness



1.5. Literature survey: contrasted and compared 25

assumption and the fact that several mixtures are observed, which is both not the case in the

SBSR model.

Linear models with unknown design Most related to the work on the multivariate linear

model (1.6) in this thesis is (Pananjady et al., 2017), who consider model (1.6) with F being

unknown up to a permutation matrix. They derive minimax prediction rates for this model and

show that the LSE obtains the optimal rates (up to log-factors). They also consider the case

where F is unknown up to a selection matrix (i.e. not every row of F necessarily appears in

the data Y and some rows might be selected several times). One can rewrite (1.6) in an analog

way, to obtain a MABS model as in (1.6) where the design matrix equals F = ΠA, with Π

an unknown selection matrix and A being the matrix where the rows constitute of all different

combinations of alphabet values. Thus, one can consider (1.6) as a special case of the model

considered in (Pananjady et al., 2017). Pananjady et al. (2017) derive minimax prediction rates

of the form

inf
θ̂

sup
ΠAω

EΠAω

(
1

nM

∥∥∥θ̂ −ΠAω
∥∥∥2

)
≈
σ2m

n
+
σ2 (ln(n))

M
, (1.32)

where the log-term only appears in their upper bound. In our situation, where we assume a

specific finite alphabet for the design matrix, thus a specific matrix A, the second term in the

minimax rate becomes exponential in M instead of parametric. The rate (1.32) is obtained

in (Pananjady et al., 2017) by treating the whole matrix ΠA as unknown. Here we explicitly

exploit a specific structure of A and thus obtain a faster rate. Note that, just as in our setting

(see (1.30)), Pananjady et al. (2017) obtain with (1.32) that whenever ln(n) � M the unknown

permutation Π does not play much of a role for the prediction error. Another major difference is

that Pananjady et al. (2017) do not impose any identifiability conditions on F = ΠA and ω in

(1.6). Thus, in contrast to results of this thesis, they do not obtain any bounds for the estimation

error. By regularizing the model in an appropriate way, we obtain the minimax estimation rate

for M → ∞ for F and ω up to constants and show that it is achieved by the LSE.

Pananjady et al. (2016) already considered a similar problem as Pananjady et al. (2017) but

with M = 1 (not general M ≥ 1 as in (1.6)) and for permutation matrices Π only (not for

selection matrices as in MABS). There they assumed a random design A with Gaussian entries,

in contrast to MABS where A is a specific fixed matrix. They focus on the estimation of the

unknown permutation Π (and not on joint estimation of ω and Π as in this work) and give

a sharp condition on the signal to noise ratio ‖ω‖ /σ and the number of observations n under

which it is possible to exactly recover the permutation Π and they show that the LSE recovers

Π whenever this is possible. Marques et al. (2009) consider a similar model as Pananjady

et al. (2017) in the context of object recognition, where m = 3 and M = 2. There m = 3

corresponds to the dimension of an object, M = 2 to the dimension of a photo of this object,

and the unknown mixture matrix ω to an unknown camera perspective. They also focus on

recovery of the unknown permutation Π. Their results basically require that sufficiently many

of the n permutations are known in advance. Unnikrishnan et al. (2015) study a similar model

as Pananjady et al. (2016) but mainly focus on the noiseless case. They also consider a random
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design for A (in contrast to MABS) with i.i.d. entries drawn from a continuous distribution.

They focus on recovery of ω (not on Π) and show that whenever n > 2m with probability one

ω can be recovered from the (noiseless) observations Y .

1.6 Summary

The following summarizes the main contributions of this thesis.

• We introduce statistical models for Finite Alphabet Blind Separation (FABS). A

problem, which appears in many different areas, like digital communications and cancer

genetics, but for which rigorous theory was almost entirely lacking prior to this work.

• We are the first to provide a complete characterization of identifiability for FABS, also

for the case where the number of source components m is unknown.

• In a c.p. regression setting, as, e.g., in cancer genetics, we obtain confidence statements

and the SLAM-estimators with (up to log-factors) optimal rates for all quantities.

• In particular, we show with a data example from cancer genetics that SLAM provides

accurately estimates for the number of clonal components, their relative proportion, and

their CNA profiles, something which has not been obtainable prior to now.

• We provide software, the R package slamR, with an efficient implementation of SLAM.

• We study multivariate FABS, as, e.g., in digital communications. We derive minimax
rates when number of observations (length of signal) n and mixtures (receivers) M tend

to infinity. This reveals that signals are recovered exactly by an order of ln(n) receivers.

• In a broader sense, this thesis reveals that finite alphabet structures can significantly im-

prove statistical efficiency and recoverability and may be seen as a new type of sparsity.



CHAPTER 2

Identifiability and model-regularization

2.1 Identifiability

In the following we analyze identifiability of the weights ω and the sources f from the mixture

g in FABS (1.1). First, we consider the situation where the number of source components m is

given. Second, the case where m is unknown is treated. To this end, note that a serial structure

of sources f , e.g., a c.p.-structure as in the SBSR model, is irrelevant for identifiability. Thus, in

this chapter the sources f are w.l.o.g. considered as a matrix with elements in the finite alphabet

A. Moreover, note that multiple observed values leave the identification problem invariant,

i.e., do not contribute further to identifiability. Hence, w.l.o.g. all observations g1, . . . , gn are

assumed to be pairwise different. Note, that this implies n ≤ km = |Am|.

Definition 2.1.1 (Identifiable mixtures). Consider the FABS model (1.1) with M mixtures, n

observations, and a given number of source components m. A pair (ω,f ) of weights ω ∈

Ωm,M and sources f ∈ An×m is identifiable from its mixture g := fω, if there exists exactly

one (ω, f ) ∈ Ωm,M × A
n×m such that g = fω.

Example 2.1.2. To illustrate the problem and notation, consider a simple example of FABS,

where m = 2, M = 1, and the alphabet is binary with A = {0, 1}. That means we consider

mixing vectors ω = (ω1,ω2) with ω1,ω2 ∈ R+ and ω1+ω2 = 1 and two different sources f·1 =

(f11, . . . ,fn1), f·2 = (f12, . . . ,fn2) with fi j ∈ {0, 1} for i = 1, 2 and j = 1, . . . , n. The question

we would like to answer is, under which conditions on ω and f is (ω,f ) uniquely determined

via g := fω. For a given observation g j the underlying source vector f j· = (f j1,f j2) equals

one of the four different values

(0, 0), (1, 0), (0, 1), (1, 1) (2.1)

and hence,

g j ∈ {0,ω1,ω2, 1}. (2.2)

Clearly, if any two of the four values in the set on the r.h.s. of (2.2) coincide, then two different

source values in (2.1) lead to the same mixture value for g j and hence the sources are not identi-

fiable, i.e., they cannot be distinguished. Consequently, a necessary condition for identifiability
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is that all values in the r.h.s. of (2.2) are different, which is equivalent to

ω1 , ω2 and 0 < ω1,ω2 < 1. (2.3)

In other words, it is necessary that the alphabet values in Am are well separated via the mixing

weights ω. For arbitrary alphabets and number of sources this is characterized by the necessary

condition that AS B(ω) = AS B(ω,A) > 0 as in (1.8). Further, we may assume w.l.o.g. that

ω1 < ω2, i.e., we denote that source as f1· which comes with the smaller weight. (2.3) alone,

however, is necessary but not sufficient for identifiability. For instance, if f·1 = f·2 then g j ∈

{0, 1} and hence, ω is not identifiable from g. In this simple example, it is easy to check that

a necessary and sufficient variability of f·1 and f·1 is that f either takes the value (1, 0) (i.e.,

g j = ω1 for some j = 1, . . . , n) or (0, 1) (i.e., g j = ω2 for some j = 1, . . . , n) as by (2.3) and

ω1 + ω2 = 1 it always follows that 0 < ω1 < 1/2 < ω2 = 1 − ω1 < 1. In other words, it is

necessary and sufficient that ωi ∈ imag(g), which coincides with separability in (1.9).

2.1.1 Combinatorial characterisation of identifiability

The following theorem characterized identifiability in the FABS as a purely combinatorial is-

sue. To this end, let S n
m be the collection of injective maps from {1, . . . ,m} to {1, . . . , n}, i.e.,

for ρ ∈ S n
m the vector (gρ(1), . . . , gρ(m)) corresponds to a selection of elements from {g1, . . . , gn}

(recall that they are assumed to be pairwise different).

Theorem 2.1.3. Consider the FABS model (1.1) for M mixtures, n observations, and given

number of source components m, with g = (g1, . . . , gn)> = fω and (ω,f ) ∈ Ωm,M × A
n×m.

Let E ∈ Am×m be an arbitrary but fixed invertible m ×m matrix with elements in A. Assume

that AS B(ω) > 0 and

A 1. there exists ρ ∈ S n
m such that (fρ(r)1, . . . ,fρ(r)m)>1≤r≤m = E.

Then (ω,f ) is identifiable if and only if

A 2. there exists exactly one σ ∈ S n
m such that for ω := E−1(gσ(1), . . . , gσ(m))>

ω ∈ Ωm,M and {g1, . . . , gn} ∈ {aω : a ∈ Am}, (2.4)

i.e., ω is a valid mixing weight and can reproduce all observations.

Theorem 2.1.3 yields that, for a fixed invertible matrix E ∈ Am×m, if the sources f are re-

stricted to those where the rows of E appear somewhere in the rows of f , i.e., E1·, . . . , Em· ∈

imag(f ), then identifiability reduced to the combinatorial issue A2. Put it differently, if one

restricts to the submodel invoked by A1 (where the submodel depends on the matrix E), iden-

tifiability can be easily determined via checking for all different collections σ ∈ Sn
m whether

the corresponding rows of g can be assigned to rows of E in a unique way as in A2.

Note that A1 can easily be simplified to the assumption that f has full rank, that is rank(f ) =

m. To see this, note that there are only finitely many invertible matrices E ∈ An×m. Thus,
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in order to check identifiability under assumption rank(f ) = m, one can check A2 for any

invertible E ∈ An×m. Indeed, rank(f ) = m is an almost minimal condition for identifiability.

By simple linear algebra, it is easy to check that rank(f ) < dim(span(Ωm,1)) = m − 1 implies

that for any ω ∈ Ωm,M exists an ω , ω ∈ Ωm,M such that ωf = ωf , i.e., (ω,f ) is not

identifiable. For arbitrary mixing weights (see Section 2.4.1), which not necessarily sum up to

one, rank(f ) = m is even necessary. Further, note that if all km possible different values are

observed, that is imag(g) = {g1, . . . , gn} = {eω : e ∈ Am}, A1 holds for any E ∈ An×m.

Theorem 2.1.3 yields that if, for a specific matrix E ∈ An×m, A2 always holds, then A1 (for

this specific E) provides a sufficient identifiability condition. It turns out (see Section 2.1.2)

that this is the case when E is the identity matrix. Then, A1 equals separability as in (1.9).

The following example shows that this is not true in general. That is, not for any choice of

E A2 always holds and thus, not for all E A1 is sufficient for identifiability. In particular, the

following example shows that rank(f ) = m is not sufficient for identifiability.

Example 2.1.4. With the notation of Theorem 2.1.3 let n = m = 3, M = 1, and A ={
0, 1, 21/(6 +

√
15), 6

}
. Consider mixing weights ω> =

(
(6 −

√
15)/30, (6 +

√
15)/30, 0.6

)
and sources f = E = diag(6, 21/(6 +

√
15), 1). Then ρ in A1 is the identity map and g = fω =(

(6 −
√

15)/5, 0.7, 0.6
)>
. For σ : (1, 2, 3) 7→ (3, 1, 2) we find that E−1 (

gσ(1), gσ(2), gσ(3)
)>

=

(0.1, 0.2, 0.7)> =: ω̃, which is a valid mixing weight. Hence, (ω,f ) is not identifiable.

2.1.2 Separability

The following theorem shows that separability, that is, A1 with E the identity matrix, is suffi-

cient for identifiability. Moreover, the proof gives an explicit construction of the unique (ω,f )

from g in O(n) time (see Figure 2.2).

Theorem 2.1.5 (Separability). Consider the FABS model (1.1) for M mixtures, n observations,

and given number of source components m, with g = (g1, . . . , gn)> = fω and (ω,f ) ∈

Ωm,M × A
n×m. Furthermore, assume that AS B(ω) > 0 and

A 3. there exists ρ ∈ S n
m such that(

fρ(r)1, . . . ,fρ(r)m
)
1≤r≤m

= Im×m,

where Im×m denotes the m ×m identity matrix.

Then (ω,f ) is identifiable.

Note that separability in A3 only requires that the unit vectors are attained somewhere by the

sources f = (f1·, . . . ,fn·)> (or equivalently that the mixing weights ωi appear somewhere in the

mixture g = (g1, . . . , gn)>) and does not specify the location. Figure 2.1 summarizes relations

between A1 - A3 in a diagram.

Remark 2.1.6 (Relaxing separability).

a) Note that A3 is equivalent to ω1, . . . ,ωm ∈ imag(g) as in (1.9). As the mixing weights

sum up to one, i.e.,
∑m

i=1 ωi = 1, when the number of sources is m is known, A3 can be
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A3

A1 (A2 ⇔ Identifiability)

T
heorem

2.1.5

Theorem 2.1.3

Figure 2.1: Relation between A1, A2, and A3 of Theorem 2.1.3 and 2.1.5.

replaced by the weaker condition ω1, . . . ,ωm−1 ∈ imag(g). This is not true when m is

unknown.

b) In A3 the entries 0 and 1 of the identity matrix correspond to the smallest and second

smallest alphabet value, respectively (recall A = {0, 1, a3, . . . , ak} as in (1.7)). It is easy to

check that 0 can be replaces by the largest alphabet value ak and 1 by the second largest

alphabet value ak−1.

Remark 2.1.7 (Separability is almost necessary). For arbitrary alphabets A and number of

sources m, Theorem 2.1.5 yields that separability in A3 (together with the necessary con-

dition AS B(ω) > 0) is sufficient for identifiability in FABS (1.1). Moreover, for the binary

alphabet A = {0, 1} and m = 2 sources, separability is necessary for identifiability (recall Ex-

ample 2.1.2). In that sense, without specifying alphabet and number of sources, separability is

sufficient and necessary for identifiability.

Input: g1, . . . , gn and A
r = 1
G← {g1, . . . , gn} \ {(0, . . . , 0)}
ω1 ← argmin{‖x‖ : x ∈ G}
G← G \ {a(ω1, 1 − ω1)> : a ∈ A2}

while G , ∅ do
r = r + 1
ωr ← argmin{‖x‖ : x ∈ G}
G← G \ {a(ω1, . . . ,ωr, 1 − ω1 − . . . − ωr)> : a ∈ Ar+1}

end while
m← r
return m and ω1, . . . ,ωm

Figure 2.2: Algorithm for weight identification in FABS (1.1), with A as in (1.7), under
separability assumptions A3 and AS B(ω) > 0.

A formal proof of Theorem 2.1.5 is given in Section A.1. In the following the idea of the

proof is illustrated via an explicit recovery algorithm for ω. This generalizes an algorithm

of Diamantaras and Chassioti (2000) for the binary alphabet Ω = {−1, 1} to a general finite

alphabet. For simplicity, assume that M = 1. As A3 is equivalent to (1.9), in order to identify

ω from g it suffices to determine those observations g j which correspond to mixing weights
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ωi. To this end, consider the ordered observations g(1) < . . . < g(n). As AS B(ω) > 0, each

observation g j corresponds to a unique vector in Am with

{ω1, . . . ,ωm} ⊂ {g1, . . . , gn} ⊂ {eω : e ∈ Am}. (2.5)

Clearly, the smallest possible value in the set on the r.h.s. of (2.5) is 0, which corresponds

to e = (0, . . . , 0), where all sources take the smallest alphabet value, 0. Similar, the second

smallest value in the set on the r.h.s. of (2.5) is ω1, which corresponds to e = (1, 0, . . . , 0),

where all sources take the smallest alphabet value, 0, but only the source with the smallest

mixing weight f 1 takes the second smallest alphabet value, 1. Thus, ω1 is identified as

ω1 =

g(2) if g(1) = 0

g(1) oterweise
. (2.6)

With ω1 the set {e(ω1, 1−ω1)> : e ∈ A2} can be computed. As the weights sum up to one, this

is a subset of {eω : e ∈ Am} and the smallest value in {eω : e ∈ Am}\{e(ω1, 1−ω1)> : e ∈ A2}

equals ω2. Thus, it follows from (2.5) that

ω2 = min
(
{g1, . . . , gn} \

{
e(ω1, 1 − ω1)> : e ∈ A2

})
. (2.7)

That way, all ωi’s can successively be identified and, as AS B(ω) > 0 , f can be identified. This

algorithm is summarized in Figure 2.2.

Unknown number of source components

Note that the algorithm in Figure 2.2 does not require m to be known. Indeed, Theorem 2.1.5

still holds when m is unknown, which is a direct consequence of its proof.

Definition 2.1.8 (Identifiable mixtures for unknown m). Consider the FABS model (1.1) with

M mixtures and n observations. A pair (ω,f ) ∈
⋃

m≥2 Ωm,M × A
n×m is identifiable from its

mixture g := fω, if there exists exactly one (ω, f ) ∈
⋃

m≥2 Ωm,M × A
n×m such that g = fω.

Theorem 2.1.9. Consider the FABS model (1.1) for M mixtures and n observations, with

(ω,f ) ∈
⋃

m≥2 Ωm,M × A
n×m. If AS B(ω) > 0 and f is separable as in A3, then (ω,f ) is

identifiable.

Theorem 2.1.9 yields that for

M0
m :=

{
fω : ω ∈ Ωm,M, AS B(ω) > 0 and f ∈ An×m separable

}
(2.8)

the following mapping is well defined

m :
⋃
m≥2

M0
m → N s.t. m(g) = m ⇐⇒ g ∈ M0

m. (2.9)
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2.2 Exact and stable recovery

Recall that in Ωm,M (see (1.2)) the row-ordering is fixed via ‖ω1·‖ < . . . < ‖ωm·‖. To regu-

larize this condition, for ω ∈ Ωm,M define analog to the ASB in (1.8) the weights separation

boundary

WS B(ω) = WS B(ω,A) :=
1 + mak

2
min

i=2,...,m
(‖ωi·‖ − ‖ωi−1·‖) . (2.10)

Definition 2.2.1 (δ-separable). Consider FABS (1.1) with M mixtures and n observations. A

pair (ω,f ) ∈
⋃

m≥2 Ωm,M × A
n×m is δ-separable if

1. AS B(ω),WS B(ω) ≥ δ as in (1.8) and (2.10) and

2. f fulfills the separability condition A3.

For the following considerations we define the space of δ-separable mixing weights as

Ωδ
m,M :=

{
ω ∈ Ωm,M : AS B(ω),WS B(ω) ≥ δ

}
and Ωδ

m := Ωδ
m,1. (2.11)

Remark 2.2.2 (WSB). Note that for all ω ∈ Ωm,M in (1.2) it holds that WS B(ω) > 0. Note fur-

ther that for a single mixture M = 1 it holds that AS B(ω) < WS B(ω) and hence, in Definition

2.2.1 and (2.11) the condition WS B(ω) ≥ δ can be dropped whenever M = 1.

The following theorem goes beyond identifiability. It shows how the parameter δ in (2.11)

regularizes FABS. Again, first the results for known number of sources m is given.

Theorem 2.2.3 (Exact recovery). Consider the FABS model (1.1) for M mixtures, n obser-

vations, and given number of sources m. Let ε, δ > 0 be such that ε < δ/(1 + mak) and

(ω,f ), (ω, f ) ∈ Ωm,M × A
n×m both δ-separable as in Definition 2.2.1 with

max
j=1,...,n

∥∥∥(fω) j· − ( fω) j·
∥∥∥ < ε,

1. then maxi=1,...,m ‖ωi· − ωi·‖ < ε and

2. f = f .

In words, whenever two δ-separable mixtures are close, then the corresponding sources are

equal and the corresponding mixing weights are also close.

Remark 2.2.4 (Converse exact recovery). Note that the converse direction of Theorem 2.2.3

also holds up to a mak factor. More precisely, for any ε > 0 and (ω,f ), (ω, f ) ∈ Ωm,M×A
n×m,

if maxi=1,...,m ‖ωi· − ωi·‖ < ε and f = f , then max j=1,...,n
∥∥∥(fω) j· − ( fω) j·

∥∥∥ < makε. This

follows directly from the triangle inequality.

Next, an exact recovery result for unknown number of sources m is given. In particular, this

shows exact recovery of m(fω) in an ε-neighborhood of fω when (f ,ω) is δ-separable. The

theorem considers the case M = 1 as in the SBSR model (1.3). When M > 1, one can adapt

the proof of Theorem 2.2.5 accordingly, however, at the price of being less sharp for the case

M = 1 (see Remark 2.3.11).



2.2. Exact and stable recovery 33

Theorem 2.2.5 (Exact recovery for unknown m). Consider the FABS model (1.1) for a single

mixtures M = 1 and n observations. Let ε, δ > 0 be such that 0 < ε < δ3/2 / (
√

3ak) and

(ω,f ), (ω, f ) ∈
⋃

m≥2 Ωm × A
n×m both δ-separable as in Definition 2.2.1 with

max
j=1,...,n

∣∣∣(fω) j − ( fω) j
∣∣∣ < ε, (2.12)

1. then m(fω) = m( fω),

2. maxi=1,...,m |ωi − ωi| < ε, and

3. f = f .

Theorem 2.2.5 yields that as soon as two δ-separable mixtures fω, fω, each having arbitrary

number of sources m(fω) and m( fω), respectively, are closer than δ3/2/(
√

3ak) in sup norm,

their underlying sources (including the number of sources) equal. In particular, the threshold

value δ3/2/(
√

3ak) only depends on δ but not on the true number of sources of fω and fω.

This is in contrast to the corresponding exact recovery result for known number of sources

m(fω) = m( fω) = m in Theorem 2.2.3, where the corresponding threshold is δ/(1 + mak).

Remark 2.2.6. The condition on the mixtures fω and fω in Theorem 2.2.5, where the number

of sources is unknown, is strictly stronger than in Theorem 2.2.3, where the number of sources

m is known. It is shown later in Theorem 2.3.10 that whenever Ωδ
m in (2.11) is non-empty,

then δ ≤ 2/(m(m + 1)). Thus, as ak ≥ 1 and m ≥ 2 (when m = 1 the result is trivial),

δ3/2
√

3ak
≤ δ

√
2

3a2
km(m + 1)

≤
δ

1 + mak

√
2(1 + m)2

3m(m + 1)
≤

δ

1 + mak
. (2.13)

In summary, the price to pay for m not known is an additional shrinkage of the order
√
δ in

which g can be perturbed while f and m remain exactly recoverable and ω within an δ3/2-

neighborhood.

Example 2.2.7 (Exact recovery). Consider FABS for a single mixture M = 1 and a bi-

nary alphabet A = {0, 1}, where one wants to guarantee exact recovery of sources in an ε-

neighborhood, i.e., that for two mixtures g = fω, g = fω

max
j=1,...,n

∣∣∣g j − g j
∣∣∣ ≤ ε ⇒ f = f . (2.14)

First, consider the situation where the number of sources is known and fixed, say m(g) =

m(g) = m. Then, Theorem 2.2.3 yields that for (2.14) to hold it suffices that (ω,f ) and (ω, f )

are (1 + m)ε-separable, meaning that f ,f are separable as in A3 and AS B(ω), AS B(ω) ≥

(1 + m)ε as in (1.8), that is, ω,ω ∈ Ω
(1+m)ε
m as in (2.11). Figure 2.3 illustrates the space Ω

(1+m)ε
m

for two sources (m = 2) Ω3ε
2 (the union of the red and blue area in the left figure) and for three

sources (m = 3) Ω4ε
3 (the union of the red and blue area in the right figure) for ε = 0.0074.

Note that as
∑m

i=1 ωi = 1 we consider Ωm as a subset of Rm−1. The black lines in Figure 2.3

display non-identifiable ω in Ω2 and Ω3 as in (1.2), that is where AS B(ω) = 0. In Ω
(1+m)ε
m
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Figure 2.3: Space of possible mixing weights for two Ω2 (left) and three Ω3 (right) sources.
For a binary alphabet A = {0, 1} the black lines indicate the non-identifiable region, where
AS B(ω) = 0, i.e., ω < ∪δ>0Ωδ. The blue region shows the set of mixing weights Ω0.05 which
fulfill (2.14) for ε = 0.0074 when the number of sources is unknown and arbitrary. The union
of the red and the blue region shows the set of mixing weights Ω0.02

2 (left) and Ω0.03
3 (right)

which fulfill (2.14) for ε = 0.0074 when m = 2 (left) and m = 3 (right), respectively, is known
and fixed.

a (1 + m)ε neighborhood of these non-identifiable regions is removed, illustrated in as gray

regions in Figure 2.3. In particular, as m gets larger, the diameter of the gray area in Figure

2.3 increases, reflecting the higher complexity introduced by additional sources. If m gets too

large (for fixed ε) the gray region covers all possible mixing weights in Ωm meaning that (2.14)

cannot be guaranteed for any mixing weights.

Second, consider the situation where the number of sources is unknown and arbitrary. Then

Theorem 2.2.5 yields that for (2.14) to hold it suffices that (ω,f ) and (ω, f ) are (
√

3ε)2/3-

separable, meaning that f ,f are separable as in A3 and AS B(ω), AS B(ω) ≥ (
√

3ε)2/3 as in

(1.8), that is, ω,ω ∈ Ω
(
√

3ε)2/3

m as in (2.11). Figure 2.3 illustrates the space Ω
(
√

3ε)2/3

2 ∪ Ω
(
√

3ε)2/3

3

(the blue area in Figure 2.3) for ε = 0.0074. Note that it is completely surrounded by the red

region, meaning that if the number of sources is unknown, the conditions on the parameter

space for (2.14) to hold become more restrictive. As the number of sources increases, the

difference between the blue and the red area in Figure 2.3 gets smaller. The red region in

Figure 2.3 precisely shows those mixing weights for which (2.14) fails when the number of

sources is unknown.

2.3 Restrictiveness of separability

In all following considerations, δ-separability in Definition 2.2.1 is fundamental for inferring

m, ω, and f from noisy observations in the SBSR model (1.3) and MABS model (1.6), respec-

tively. In the following restrictiveness of this assumption is discussed. To this end, a specific

stochastic model for ω,f has to be considered. Here, the mixing weights ω are considered

as uniformly distributed on Ωm,M (for known number of sources) and
⋃

m≥2 Ωm (for unknown

number of sources), respectively. See Remark 2.3.13 for a specification of the latter. For the
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sources f Markov processes, including iid sequences, are considered, as e.g., in (Diamantaras

and Papadimitriou, 2009; Yau et al., 2011; Rostami et al., 2011).

2.3.1 Separability of stochastic processes

In this subsection it is shortly discuss how likely it is for the separability condition A3 to be

satisfied when (f j1, . . . ,f jm) j is a stochastic process. Therefore, define the hitting times

T
r := min

{
j ∈ N :

(
f j1, . . . ,f jm

)
= er

}
, (2.15)

for r = 1, . . . ,m with er the r-th unit vector, and stopping time T := maxr=1,...,m T
r. Then it

follows that

P
(
f is separable

)
= P

(
∃ ρ ∈ S n

m :
(
fρ(r)1, . . . ,fρ(r)m

)
= er, r = 1, . . . ,m

)
= P (T ≤ n) ≥ 1 −

m∑
r=1

P
(
T

r > n
)
.

(2.16)

Note that this bound only depends on the distributions of the hitting times Tr, which are often

explicitly known or good estimates exist. The following theorem shows that the probability in

(2.16) converges exponentially fast to one, when f constitutes a Markov process.

Theorem 2.3.1. Consider the FABS model (1.1) for M mixtures, n observations, and given

number of sources m. Assume that the source signals (f j1, . . . ,f jm) j constitute an irreducible

Markov process on the finite state space Am, with transition matrix P = (pi j)1≤i, j≤km , where

we identify the first m states of Am with the unit vectors e1, . . . , em ∈ Rm. Let N ∈ N be such

that PN > 0, Qr := (pi j)1≤i, j,r≤km for r = 1, . . . ,m, and c := max1≤r≤m
∥∥∥QN

r 1
∥∥∥
∞

. Then c < 1

and

P (f is separable) ≥ 1 −mcb
n
N c ≥ 1 −mc

n−N
N . (2.17)

Example 2.3.2 (Bernoulli Model). Consider FABS with a binary alphabet A = {0, 1} and two

sources m = 2. If the two sources f j1 and f j2 are independent and identically distributed

for all j = 1, . . . , n with P(f ji = 0) = p ∈ (0, 1) and P(f ji = 1) = 1 − p =: q for i = 1, 2

and j = 1, . . . , n, then (f j1,f j2) j constitutes an irreducible Markov process on the state space

{(1, 0), (0, 1), (0, 0), (1, 1)}. Hence, in Theorem 2.3.1

P =


pq pq p2 q2

pq pq p2 q2

pq pq p2 q2

pq pq p2 q2

 > 0, Q1 = Q2 =


pq p2 q2

pq p2 q2

pq p2 q2

 ,

with N = 1, and c = qp + p2 + q2 = 1 − pq. Thus, Theorem 2.3.1 yields P(f is separable) ≥

1 − 2(1 − pq)n.
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2.3.2 Alphabet separation boundary

Next, the condition AS B(ω) ≥ δ in Definition 2.2.1 is considered. To this end, define for the

given alphabet A in (1.7) and m ∈ N the first and second alphabet differences as

∆Am :=
{
e1 − e2 : e1 , e2 ∈ A

m}
, ∆2

A
m :=

{
e1 − e2 : e1 , e2 ∈ ∆Am}

(2.18)

and note that

AS B(ω) = 0 ⇔ ω ∈
⋃

d∈∆Am

d⊥, (2.19)

where d⊥ denotes the kernel of the map d : Rm×M → RM, x 7→ dx. d⊥ is an M(m − 1)-

dimensional linear subspace of Rm×M and Ωm,M is a subset of the affine subspace



1 0 . . . 0 0

0 1 . . . 0 0
. . .

0 0 . . . 1 0

0 0 . . . 0 1


+



1 1 . . . 1 1

1 1 . . . 1 1
. . .

1 1 . . . 1 1

1 1 . . . 1 1



⊥

. (2.20)

Therefore, d⊥ and Ωm,M are either disjoint or they intersect in a subset of dimension M(m− 2),

implying that ⋃
δ>0

Ωδ
m,M = {ω ∈ Ωm,M : AS B(ω) > 0}

has Lebesgue measure one, where Ωm,M is considered as a subset of R(m−1)×M (recall that∑m
i=1 ωi j = 1 in Ωm,M for all j = 1, . . . ,M). This yields the following theorem. To this end, we

denote ω as uniformly distributed on Ωm,M if for the Lebesgue measure λ on R(m−1)×M and a

Borel set A ⊂ Ωm,M ⊂ R
(m−1)×M it holds that P(ω ∈ A) = λ(A)/λ(Ωm,M).

Theorem 2.3.3. If ω is uniformly distributed on the simplex Ωm,M in (1.2), then for any finite

alphabet A

P(AS B(ω) > 0) = P

ω ∈⋃
δ>0

Ωδ
m,M

 = 1.

In particular, Theorem 2.3.3 shows that, for separable sources f , (ω,f ) is identifiable with

probability one. In the statistical settings of the SBSR model (1.3) and the MABS model (1.6)

δ-separability is required, for a fixed δ > 0. The following theorem considers the case M = 1

and shows that δ-separability is not very restrictive when δ is small. To this end define

∆Amin := min
x∈∆A1

|x| , ∆2
Amin := min

x∈∆2A1
|x| . (2.21)

For example, for an equidistant alphabet A = {0, 1, . . . , k} it holds that ∆Amin = ∆2Amin = 1.
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Theorem 2.3.4. If ω is uniformly distributed on Ωm in (1.2) and A, 0 < δ < ∆Amin, then

P(AS B(ω) ≥ δ) = P(ω ∈ Ωδ
m) ≥ 1 −

k2m m2(m − 1)
√

2 ∆2Amin
δ.

Theorem 2.3.4 is stated for single mixtures (M = 1). It is easy to check that AS B(ω) for

ω uniformly distributed on Ωm,M is monotone increasing in M, in the sense that for a fixed

x > 0 it holds that P(AS B(ω) > x) increases with M. Thus, Theorem 2.3.4 also holds when

M > 1. However, when M increases the bound on the r.h.s. of Theorem 2.3.4 becomes less

sharp. The following theorem shows that AS B(ω) increases with rate
√

M. To this end, define

the constants (for fixed alphabet A and number of sources m)

c = c(m,A) :=

√
2 ∆2Amin

√
3k2m m2(m − 1)

, C = C(m,A) :=

√
2(1 + mak)
√

m(m − 1)
. (2.22)

Theorem 2.3.5. If ω is uniformly distributed on Ωm,M in (1.2), then for c,C as in (2.22) it

holds almost surely that

c < lim inf
M→∞

AS B(ω)
√

M
≤ lim sup

M→∞

AS B(ω)
√

M
< C.

Theorem 2.3.4 shows that for uniformly distributed ω ∈ Ωm the probability of AS B(ω) ≥ δ

is at least of order 1 − O(δ). The following theorem shows that P(AS B(ω) < δ) is, indeed, a

polynomial in δ of order m − 1.

Theorem 2.3.6. If ω is uniformly distributed on Ωm in (1.2), then there exist constants ci =

ci(A,m), i = 1, . . . ,m − 1, such that

P(AS B(ω) < δ) = c1δ + c2δ
2 + . . . + cm−1δ

m−1.

In the following, the constants c1, . . . , cm−1 in Theorem 2.3.6 are computed explicitly for some

examples and sharpness of the bound in Theorem 2.3.4 is explored.

Example 2.3.7 (Binary alphabet and two sources). Consider FABS for a binary A = {0, 1}, a

single mixture M = 1, and m = 2 sources. For ω ∈ Ω2

AS B(ω) = min(ω1,ω2 − ω1) = min(ω1, 1 − 2ω1).

Hence, Ω2 corresponds to the interval [0, 1/2] and Ωδ
2 to [δ, (1 − δ)/2] (cf. Figure 2.3, left) ,

which implies

P(AS B(ω) ≥ δ) = (1 − 3δ)+,

where (x)+ := max(x, 0). The bound in Theorem 2.3.4 for k = 2, m = 2, and ∆2Amin = 1 only

yields P(AS B(ω) ≥ δ) ≥ 1 − 45.3δ. One reason for this gap is that in the proof of Theorem

2.3.4 the number of hyperplanes d⊥ with d ∈ ∆Am as in (2.19) which intersect Ωm is bounded

by half the number of elements in ∆Am, namely k2m/2. In this example k2m/2 = 8. However,
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the actual number of intersecting hyperplanes is just 2.

Example 2.3.8 (Binary alphabet and three sources). Consider FABS for a binary A = {0, 1}, a

single mixture M = 1, and m = 3 sources. For ω ∈ Ω3

AS B(ω) = min(ω1,ω2 − ω1,ω3 − ω2, |ω3 − ω1 − ω2|)

= min(ω1,ω2 − ω1, 1 − ω1 − 2ω2, |1 − 2ω1 − 2ω2|).

Hence, Ω3 and Ωδ
3 correspond to the two dimensional sets in Figure 2.3 (right). Let λ denote

the Lebesgue measure in R2, then from Figure 2.3 (right) it follows that λ(Ω3) = 1
12 and

λ(Ωδ
3) =

∫ 1−3δ
4

δ

∫ 1−δ−2ω1
2

ω1+δ
dω2dω1 +

∫ 1−δ
4

2δ

∫ 1−δ−ω1
2

1+δ−2ω1
2

dω2dω1 +

∫ 1−3δ
3

1−δ
4

∫ 1−δ−ω1
2

ω1+δ
dω2dω1


+

=

(
1
12
−

5
4
δ +

11
4
δ2

)
+

.

Thus, if ω is uniformly distributed on Ω3

P(AS B(ω) > δ) = (1 − 15δ + 33δ2)+.

For k = 2, m = 3, and ∆2Amin = 1, as in this example, Theorem 2.3.4 only yields P(AS B(ω) >

δ) ≥ 1−814.6δ. As in example Example 2.3.7, replacing k2m/2 = 32 in the bound of Theorem

2.3.4 by the actual number of intersecting hyperplanes (which in this case is 4) results in a

sharper bound.

Example 2.3.7 and 2.3.8 motivate to further bound the number of d ∈ ∆Am such that d⊥∩Ωm ,

∅, which is done in the following example for an equidistant alphabet.

Example 2.3.9 (General equidistant alphabets). Assume an equidistant alphabet A = {0, 1, . . . ,

k − 1}. Then in (2.21)

∆Am = {−(k − 1), . . . ,−1, 0, 1, . . . , (k − 1)}m\{(0, . . . , 0)>},

and in particular #∆Am = (2k − 1)m − 1. Further, for all ω ∈ Ωm and d ∈ ∆Am such that

d1, . . . , dm−1 ≥ 0 and dm > 0 (or d1, . . . , dm−1 ≤ 0 and dm < 0) it follows that |〈ω, d〉| > 1/m,

which implies that ω < d⊥. Consequently,

#{d ∈ ∆Am : d⊥ ∩Ωm , ∅} ≤ (2k − 1)m − 1 − 2km−1(k − 1).

Thus, it follows from (the proof of) Theorem 2.3.4 that if ω is uniformly distributed on Ωm,

then for any δ < 1

P(AS B(ω) > δ) ≥ 1 −

(
(2k − 1)m − 1 − 2km−1(k − 1)

)
m2(m − 1)

√
2

δ.

For the setting of Example 2.3.7 with k = 2 and m = 2 this gives P(AS B(ω) > δ) ≥ 1 − 11.3 δ
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and for the setting of Example 2.3.8 with k = 2 and m = 3 this gives P(AS B(ω) > δ) ≥

1 − 229 δ, which both improve the bound from Theorem 2.3.4 for general alphabets.

2.3.3 Known vs. unknown number of sources

In Section 2.3.1 and 2.3.2 restrictiveness of δ-separability in FABS was considered for known

number of sources m. This subsection considers unknown m. We restrict to single mixtures

M = 1 as in the SBSR model (1.3).

First, note that in the definition of Ωδ
m in (2.11) m and δ are related. On the one hand, for given

δ > 0, Ωδ
m is nonempty (i.e., there exist ω ∈ Ωm with AS B(ω) ≥ δ) only up to a certain maximal

m ∈ N and, on the other hand, for given m ∈ N, δ must be chosen sufficiently small for Ωδ
m to

be nonempty. Put it differently, the ASB δ implicitly gives a bound on the maximal number of

source components which can be identified. An explicit bound is given as follows.

Theorem 2.3.10. For any alphabet A as in (1.7) and m ∈ N it holds that

max
ω∈Ωm

AS B(ω) ≤ min
(
2 min j=1,...,k−1(a j+1 − a j)

m(m + 1)
,

ak

km − 1

)
≤ min

(
2

m(m + 1)
,

ak

km − 1

)
.

Remark 2.3.11 (ASB-bound for general M). In Lemma A.1.2 in the appendix we derive the

bound

max
ω∈Ωm,M

AS B(ω) ≤

√
M(1 + mak)
√

2m(m + 1)
,

which is valid for any number of mixtures M (not just for M = 1 as in Theorem 2.3.10).

However, whereas the bound in Theorem 2.3.10 decreases with m, the general bound in Lemma

A.1.2 is (for large m) constant in m and thus, for the specific case of a single linear mixture

M = 1 trivial. However, this is not true when M gets large. For instance, in Lemma A.1.4 we

show that for the special case where M/m ∈ N

max
ω∈Ωm,M

AS B(ω) ≥ 0.2∆Amin
√

M/m,

which shows that for general M the maximal ASB decreases with m at most of order 1/
√

m

and not of order 1/m2 as in Theorem 2.3.10 for M = 1.

Note that in Theorem 2.3.10 it depends on the specific alphabet and the number of sources m

which of the two terms in the minimum on the right hand side is attained. While the second

term, which is exponential in m, depends on the diameter of the alphabet, the first term, which

is quadratic in m, is independent of the specific alphabet A. For a given alphabet A and a

given number of sources m one can compute maxω∈Ωm AS B(ω) with linear programming (see

Section 5.1). Figure 2.4 shows maxω∈Ωm AS B(ω,A) and the upper bound from Theorem 2.3.10

for different alphabets and number of sources. It shows that for equidistant alphabet A =

{0, 1, . . . , k} the bound in Theorem 2.3.10 is sharp. However, for non-equidistant alphabet, e.g.,

A = {0, 1, 1.1, 1.5, ak}, for ak = 2, . . . , 10 as in Figure 2.4, it is not sharp, in general.

In particular, Theorem 2.3.10 shows that if ω is uniformly distributed on Ωm then for any δ > 0
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Figure 2.4: Exact value for maxω∈Ωm AS B(ω,A) (cirels) and upper bound from Theorem 2.3.10
(crosses). Left: A = {0, 1} (black) and A = {0, 1, 2} (red), for m = 2, . . . , 5. Middel: m = 2
(black) and m = 3 (red), with A = {0, 1, . . . , k − 1}, for k = 2, . . . , 5. Left: m = 2 (black) and
m = 3 (red), with A = {0, 1, 1.1, 1.5, ak}, for ak = 2, . . . , 10.

it holds true that P(AS B(ω) ≥ δ) → 0 as m → ∞. So in particular, when m is unknown, in

order to achieve identifiability, it is necessary that m is reasonably small with high probability.

The following theorem shows that if ω is distributed on Ω =
⋃∞

m=2 Ωm such that P(m = m) is

proportional to the relative size of Ωm ⊂ R
m−1 and ω|{m = m} is uniformly distributed on Ωm,

then P (AS B(ω) ≥ δ) =
∑∞

m=2 P (AS B(ω) ≥ δ|m = m) P (m = m) is of order 1 − O(δ).

Theorem 2.3.12. If ω is uniformly distributed on Ω =
⋃∞

m=2 Ωm in (1.2), as in Remark 2.3.13,

and 0 < δ < ∆Amin, then

P(AS B(ω) ≥ δ) ≥ 1 −
k3
√

2∆2A

2I1(2k) + kI2(2k)
I1(2) − 1

δ,

where I1(·) and I2(·) denote the modified Bessel functions of the first and second kind.

The terms I1(2k) and I2(2k) in the constant of the lower bound in Theorem 2.3.12 increase

exponentially in k. Thus, analog as for m itself, in order to achieve identifiability for unknown

m, the size of the alphabet k should be small (relative to the noise variance with k . ln(1/σ)).

Remark 2.3.13 (Uniform distribution on Ω). The uniform distribution on the disjoint union

Ω =
⋃∞

m=2 Ωm in Theorem 2.3.12 is to be understood as follows. S ⊂ Ω is measurable if and

only if S ∩ Ωm is Borel measurable in Rm−1 for all m ≥ 2, where Ωm is considered as a subset

of Rm−1. Let λm be the Lebesgue measure on Rm, then, as
∑∞

m=2 λ
m−1(Ωm) < ∞ (see proof of

Theorem 2.3.12), one can define a uniform distribution on Ω as

µ(S ) :=
∑∞

m=2 λ
m−1(S ∩Ωm)∑∞

m=2 λ
m−1(Ωm)

for any measurable S ⊂ Ω.

Finally, we can combine Theorem 2.3.12, 2.3.10, and 2.3.1 to get the following corollary.

Corollary 2.3.14 (Probability of δ-separability). For a given alphabet A let 0 < δ < ∆Amin. If
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ω is uniformly distributed on Ω =
⋃∞

m=2 Ωm and {f j} j=1,...,n constitute an irreducible Markov

process independent of ω, then there exists a constant c = c(δ) < 1 and N = N(δ) ∈ N, which

both only depend on the transition probabilities of f , such that

P ((ω,f ) is δ-separable ) ≥ 1 −

√
2
δ

c
n−N

N −
k3
√

2∆2A

2I1(2k) + kI2(2k)
I1(2) − 1

δ.

2.4 Extensions

In the following a few extensions of identifiability for FABS are considered.

2.4.1 Arbitrary mixing weights

So far, we assumed the mixing weights to be positive and to sum up to one. This assumption

is motivated from the application in cancer genetics, where the mixing weights correspond

to physical mixing proportions. However, in some other applications this assumption is not

satisfied. For instance, in digital communications the mixing weights correspond to the channel

response which can be negative (see e.g., (Proakis, 2007)). In the following separability is

extended for arbitrary mixing weights and single mixtures M = 1.

To this end, note that if the alphabet A = {a1, a2, . . . , ak−1, ak} with a1 < a2 < . . . < ak−1 < ak

is symmetric, i.e., al+1 − al = ak−l+1 − ak−l for l = 1, . . . , k − 1, then w.l.o.g. one can rescale the

alphabet such that

A =

{−ak? , . . . ,−a1, a1, . . . , ak?}, k? := k/2 if k even

{−ak? , . . . ,−a1, 0, a1, . . . , ak?}, k? := (k − 1)/2 if k odd
.

In particular, f i ∈ An implies −f i ∈ An and thus, for arbitrary (possibly negative) mixing

weights and sources f ∈ An×m

m∑
i=1

f iωi =

m∑
i=1
ωi>0

f 1 |ωi| +

m∑
i=1
ωi<0

−f 1 |ωi| =

m∑
i=1

f i |ωi|

with f i = f i if ωi > 0, f i = −f i if ωi ≤ 0, and f ∈ An×m. Consequently, for symmetric

alphabets, one can restrict to positive weights (as in Theorem 2.1.5). Therefore, in the following

theorem, we only consider non-symmetric alphabet with a2 − a1 , ak − ak−1.1 For given

1In (Behr and Munk, 2017a, Theorem 7.1) this assumption was missing.
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m, s ∈ N with s ≤ m and a, b, c ∈ R define the matrix

As(a, b, c) :=



b b b . . . b c c . . . c

a b b . . . b c c . . . c

b a b . . . b c c . . . c
. . .

...

b b b . . . a c c . . . c

c c c . . . c a b . . . b

c c c . . . c b a . . . b
...

. . .

c c c . . . c b b . . . a



∈ R(m+1)×m, (2.23)

with

(As(a, b, c))i j =


a if i = j

c if i ≤ s < j or j ≤ s < i

b otherwise

.

Theorem 2.4.1 (Separability for arbitrary mixing weights). Consider the FABS model (1.1)

for a single mixtures M = 1, n observations, and given number of sources m, with general

mixing weights ω ∈ {x ∈ Rm : x1 < . . . < xm} and sources f ∈ An×m for the finite alphabet

A = {a1, a2, . . . , ak−1, ak} with a1 < . . . < ak and a2 − a1 , ak − ak−1.

Assume that AS B(ω) > 0 and let s ∈ {0, . . . ,m} be such that ωs ≤ 0 < ωs+1 (with ω0 := 0 and

ωm+1 := 1). If there exists ρ ∈ S n
2(m+1) such that

(
fρ(r)1, . . . ,fρ(r)m

)
1≤r≤2(m+1)

=

 As(a2, a1, ak)

As(ak−1, ak, a1)

 (2.24)

then (ω,f ) is identifiable.

Recall that for positive mixing weights the separability condition A3 in Theorem 2.1.5 had a

very simple interpretation, namely, that each of the single mixing weights ωi appears some-

where in the mixture g, see (1.9). The interpretation of (2.24) is somewhat more difficult, but

similar. In the case of probability mixing weights ω ∈ Ωm as in (1.2) both, the sum and the

absolute sum of the mixing weights are fixed via
∑m

i=1 ωi =
∑m

i=1 |ωi| = 1 and this determines

the scaling factor of the mixing weights in the mixture g. Now, for general mixing weights

ω ∈ {x ∈ Rm : x1 < . . . < xm} as in Theorem 2.4.1 both, the sum and the absolute sum

(or equivalently the sum of the negative mixing weights and the sum of the positive mixing

weights) are unknown and thus, additional conditions to determined these unknown scaling pa-

rameters are needed. These correspond to the first rows of As(a2, a1, ak) and As(ak−1, ak, a1) in

(2.23), respectively. They ensure that the smallest possible mixture value (which corresponds to

the first row of As(a2, a1, ak)) and the largest possible mixture value (which corresponds to the
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first row of As(ak−1, ak, a1)) are observed and thus determine these scaling factors. Analog to

the identity matrix in A3 of Theorem 2.1.5, the last m rows of As(a2, a1, ak) and As(ak−1, ak, a1)

in (2.23) ensure that the mixing weights ωi appear somewhere in the mixture g without the in-

fluence of the others. However, the unknown sign of ωi yields the additional unambiguity

of a mixture value being increased either by increasing a source with a positive weight or by

decreasing a source with a negative weight.

Note that from Theorem 2.4.1 it follows directly that Theorem 2.3.1 holds with m replaced by

2m + 2, when we allow for arbitrary mixing weights.

2.4.2 Unknown alphabet

The fundamental assumption in FABS is the given finite alphabet A for the sources f , which

allows to explore the combinatorial structure to identify ω and f from its mixture. The fol-

lowing theorem shows that for m = 2 and M = 1 knowledge of existence of a finite source

alphabet can still yield identifiability even if the alphabet is unknown.

To this end, for a set A := {a1, . . . , ak} ⊂ R with a1 < . . . < ak define the odds separation

boundary

OS B(A) := min
2≤l,l′≤k−1

∣∣∣∣∣ a2 − a1

ak − ak−1
−

al+1 − a1

ak − ak−l′

∣∣∣∣∣ , (2.25)

with the convention that min (∅) = ∞, and the matrix

A(A) :=

a1 a1 a1 . . . a1 a2 a3 . . . ak

a1 a2 a3 . . . ak ak ak . . . ak

> . (2.26)

Theorem 2.4.2 (Identifiability for unknown alphabet). For n ∈ N let ω ∈ Ω2 and f ∈ R2×n.

Define A = {a1, a2, . . . , ak} := {fi j : i = 1, 2 j = 1, . . . , n} with a1 < . . . < ak.

If AS B(ω,A) > 0 in (1.8), OS B(A) > 0 in (2.25), and there exists ρ ∈ S n
2k−1 such that(

fρ(r)1,fρ(r)2
)
1≤r≤(2k−1)

= A(A), (2.27)

then (ω,f ) is identifiable from g = fω.

The identifiability conditions in Theorem 2.4.2 are analog to separability in Theorem 2.1.5.

The condition AS B(ω,A) > 0 ensures that, once the alphabet A and the mixing weights ω are

identified, f is identifiable from g, i.e., it ensures that different source values lead to different

mixtures values, which is necessary for identifiability. The second condition, OS B(A) > 0, is a

condition on the (unknown) alphabet A. It ensures that A does not exhibit a certain symmetry

such that the order statistic of g j allows to reconstruct the weights ω without knowledge of A.

For instance, for any equidistant alphabet A = {a0 + L, a0 + 2L, . . . , a0 + kL} with diameter L of

size k ≥ 3 it holds that OS B(A) = 0. On the other hand, if the alphabet is drawn uniformly on

some bounded subset of Rk, then OS B(A) > 0 almost surely. Condition (2.24) is analog to A3

(and (2.24)) as it requires some specific alphabet values to appear somewhere in the sources f .

Remark 2.4.3. The condition OS B(A) > 0 in Theorem 2.4.2 can be replaced by the weaker
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condition that for every 2 ≤ l, l′ ≤ k − 1 at least one of the following holds∣∣∣∣∣ a2 − a1

ak − ak−1
−

al+1 − a1

ak − ak−l′

∣∣∣∣∣ > 0, max
(
ak − ak−l′

ak − ak−1
,

al+1 − a1

a2 − a1

)
>

1 − ω1

ω1
.

Remark 2.4.4 (Infinite alphabets). Another direction to relax the assumption of a known finite

alphabet in FABS, is to assume a known, but infinite alphabet. Clearly, AS B(ω) > 0 remains

necessary for identifiability. This condition, however, becomes significantly more restrictive

when the size of the alphabet increases. For example, for any infinite alphabet with a limit

point, in particular, any bounded infinite alphabet, it follows immediately that AS B(ω) = 0 for

any ω ∈ Ω . But also for the unbounded infinite alphabet A = N there exists no ω ∈ Ω with

AS B(ω) > 0. To see this, fix some m ≥ 2 and ω ∈ Ωm and w.l.o.g. assume that ω1 ∈ Q, i.e.,

ω1 = n/d with n, d ∈ N and d > n. Then, d̃ := (d − n)d ∈ N, n · d ∈ N, and

AS B(ω) ≤
∣∣∣∣(d̃ω1 + 0 · (1 − ω1)

)
− (0 · ω1 + nd (1 − ω1))

∣∣∣∣ = 0.

Hence, finiteness of the alphabet A is somewhat fundamental for identifiability in FABS.



CHAPTER 3

Multiscale segmentation of single mixtures

In this chapter the SBSR model (1.3) is considered with underlying separable mixture g ∈ Mδ,λ
m

as in (1.11) for given minimal ASB δ > 0 and minimal scale1 λ ≥ 1/n. First, a known number

of sources m is assumed. Model selection for unknown m is considered in Section 3.6.

For simplicity, in (1.3) it is assumed that g is sampled equidistantly at x j = ( j − 1)/n, j =

1, . . . , n and that all functions are defined on the domain [0, 1). Extensions to more general

domains ⊆ R and sampling designs are straightforward under suitable assumptions (see e.g.,

(Boysen et al., 2009)) but will be suppressed to ease notation. Further, for sake of brevity,

in (1.3) it is assumed that the variance σ2 is known, otherwise one may pre-estimate it
√

n-

consistently by standard methods, see e.g., (Müller and Stadtmüller, 1987; Hall et al., 1990;

Dette et al., 1998; Davies and Kovac, 2001).

3.1 Confidence region for the weights

Let Y and g = fω ∈ Mδ,λ
m be as in the SBSR model (1.3). Our starting point for the recovery

of the weights ω and the sources f is the construction of proper confidence sets for ω which

is also of statistical relevance by its own as the source functions are unknown which hinders

direct inversion of a confidence set for g. Consider the system of boxesB = Bλ = {B(i, j) : 1 ≤

i ≤ j ≤ n, j − i + 1 ≥ nλ} from (1.18) with q = qn(α) as in (1.19) for some given α ∈ (0, 1), as

described in Section 1.3. As the underlying sources f are assumed to be separable (see (1.12))

there exist intervals [xi?r , x j?r ] ⊂ (0, 1] with x j?r − xi?r ≥ λ, for r = 1, . . . ,m, such that

f |[xi?r
,x j?r

] ≡ er, (3.1)

with er the r-th unit vector. Assume for the moment that these intervals would be known and let

B? := B(i?1 , j?1 )×. . .×B(i?m, j?m) ∈ Bm be the corresponding m-box. Then a (1−α)-confidence

region for ω is given as

C1−α(i?1 , j?1 , ..., i
?
m, j?m) := B?. (3.2)

1The assumption λ ≥ 1/n ensures that each function value of g is represented by at least one sampling point
g(x j). This is necessary for separability of (f (x1), . . . ,f (xn))>.
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To see that (3.2) is, indeed, a (1 − α)-confidence region for ω, note that{
ω ∈ C1−α(i?1 , j?1 , ..., i

?
m, j?m)

}
⊃

⋂
1≤r≤m

{
g|[xi?r

,x j?r
] ≡ ωr ∈ B(i?r , j?r )

}
and

{Tn(Y, g) ≤ qn(α)} =
⋂

1≤i≤ j≤n
g|[xi ,x j]≡gi j

{
gi j ∈ B(i, j)

}
.

This implies that {
ω ∈ C1−α(i?1 , j?1 , ..., i

?
m, j?m)

}
⊃ {Tn(Y, g) ≤ qn(α)} (3.3)

and therefore it holds uniformly in g ∈ Mδ,λ
m that

P
(
ω ∈ C1−α(i?1 , j?1 , ..., i

?
m, j?m)

)
≥ P (Tn(Y, g) ≤ qn(α)) ≥ 1 − α. (3.4)

Of course, as the source functions f are unknown, intervals [xi?r , x j?r ] which satisfy (3.1) are not

available immediately and thus, one cannot construct the m-box B? required for (3.2) directly.

For this reason, we will describe a strategy to obtain a sub-system of m-boxes, i.e., a subset

B? ⊂ Bm, which covers B? conditioned on {Tn(Y, g) ≤ qn(α)} almost surely. To this end,

observe that for any random set C?(Y) ⊂ Rm with

P
(
C?(Y) ⊃ C1−α(i?1 , j?1 , . . . , i

?
m, j?m)

∣∣∣Tn(Y, g) ≤ qn(α)
)

= 1 (3.5)

(3.3) and (3.4) imply P(ω ∈ C?(Y)) ≥ 1− α. We then define C1−α as in (1.22). To this end, B?

is constructed such that the diameter of the resulting C1−α is of order ln(n)/
√

n (see Corollary

3.4.3). The construction will be done explicitly by an algorithm which relies on the application

of certain reduction rules (R1, R2, R3) to Bm to be described in the following.

Let projr : Bm → B, for r = 1, . . . ,m, denote the r-th projection (i.e., projr(B1×. . .×Bm) :=

Br) and define the set of boxes on which any signal fulfilling the multiscale constraint is non

constant (nc) as

Bnc := {B(i, j) ∈ B : ∃[s, t], [u, v] ⊂ [i, j] with B(s, t) ∩ B(u, v) = ∅} . (3.6)

R 1. Delete B ∈ Bm if there exists an r ∈ {1, . . . ,m} such that projr(B) ∈ Bnc as in (3.6).

The reasoning behind R1 is as follows. g|[xi?r
,x j?r

] is constant for r = 1, . . . ,m as f 1, . . . ,fm

are constant on [xi?r , x j?r ]. Consequently, all m-boxes that include a box B(i, j) ∈ B such that

g cannot be constant on [xi, x j] (conditioned on Tn(Y, g) ≤ qn(α)) can be deleted in order to

preserve coverage of B?. Let [xi, x j] be an interval on which g is constant (say g|[xi,x j] ≡ c)

and assume that there exist intervals [s, t], [u, v] ⊂ [i, j] such that B(s, t) ∩ B(u, v) = ∅. Then

by construction of the boxes B(s, t) and B(u, v), Tn(Y, g) ≤ qn(α) implies that c ∈ B(s, t) and

c ∈ B(u, v), which contradicts B(s, t) ∩ B(u, v) = ∅. In other words, Bnc (nc =̂ non constant )
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in (3.6) includes all boxes B(i, j) such that all function g ∈ Mδ,λ
m which fulfill the multiscale

constraint Tn(Y, g) ≤ qn(α) cannot be constant on [xi, x j].

R 2. Delete B ∈ Bm, with [br, br] := projr(B) if at least one of the following holds true.

1. b1 ≤ 0 or b1 ≥
1
m ,

2. br ≤ br−1 or br ≥ (1 −
∑r−1

i=1 bi)/(m − r + 1) for any r = 2, . . . ,m,

3.
∑m

r=1 br < 1.

R2 1. comes from the fact that 0 < ω1 < 1/m, R2 2. from ωr−1 < ωr < (1 −
∑r−1

i=1 ωi)/(m −

r + 1), and R2 3. from
∑m

j=1 ωi = 1.

In what follows, define for k = 1, . . . , n

Jk = Jλ
k := {[i, j] : k ∈ [i, j], j − i + 1 ≥ nλ, and B(i, j) < Bnc}. (3.7)

R 3. Delete B ∈ Bm, if there exists a k ∈ {1, . . . , n} such that for all [i, j] ∈ Jk[
max

i≤u≤v≤ j
buv, min

i≤u≤v≤ j
buv

]
∩

{
eω : e ∈ Am and ω ∈ B

}
(3.8)

is empty, with [buv, buv] := B(u, v) ∈ B0.

Conditioning on Tn(Y, g) ≤ qn(α) implies ω ∈ B?, and, in particular, that there exists an

ω ∈ B? such that imag(g) := {g(x1), . . . , g(xn)} ⊂ {eω : e ∈ Am}. Moreover, for every

k ∈ {1, . . . , n} there exists an interval [xi, x j] where g is constant with g|[xi,x j] ≡ g(xk) ∈ imag(g)

and x j − xi ≥ λ. So, Tn(Y, g) ≤ qn(α) implies g(xk) ∈ B(u, v) for all [u, v] ⊂ [i, j] and, therefore,

for B = B? (3.8) is not empty (conditioned on Tn(Y, g) ≤ qn(α)).

R1 - R3 is summarized in Algorithm CRW (Confidence Region for the Weights) in Figure 3.1.

Input: Y , m, A, α, λ
1: B← {B(i, j) ∈ B \Bnc : j − i + 1 ≥ λn} . see R1
2: B? ← {[b, b] ∈ B : b > 0 and b < 1/m} . see R2
3: for i=2. . . m do
4: B? ←

{
[b1, b1]× ...× [bi, bi] ∈ B? ×B : bi > bi−1 and bi < (1 −

∑i−1
r=1 br)/(m − i + 1)

}
5: end for
6: B? ←

{
[b1, b1] × ... × [bm, bm] ∈ B? :

∑
r b j ≥ 1

}
7: B? ← R3 applied to B?

8: return C1−α :=
⋃

B∈B? B

Figure 3.1: Algorithm CRW for construction of confidence regions for the mixing weights ω
in the SBSR model.

Remark 3.1.1 (Noninformative m-box). If B? = ∅, we formally may set C1−α := Ωm, the

trivial confidence region. As {B? = ∅} ⊂ {Tn(Y, g) > qn(α)}, the probability that this happens

can be bounded from above by α. This is, in general, only a very rough bound. Simulations

show that B? = ∅ is hardly ever the case when α is reasonably small. For instance, in 10, 000
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simulations of Example 1.2.1 with n = 1280, σ = 0.1, α = 0.1 it did not happen once. Of

course, when α ↗ 1 (for fixed sample size n), B? = ∅ finally, as no mixture g can fulfill the

multiscale constrained Tn(Y, g) ≤ q for arbitrarily small q.

Remark 3.1.2 (Shape of C1−α). The previous construction of the confidence set C1−α does not

ensure that the confidence set is of m-box form

[ω1, ω1] × . . . × [ωm, ωm]. (3.9)

In general it is a union of m-boxes. However, we can always take the smallest covering m-box

of C1−α, given by  inf
ω̃∈C1−α

ω̃1, sup
ω̃∈C1−α

ω̃1

 × . . . ×  inf
ω̃∈C1−α

ω̃m, sup
ω̃∈C1−α

ω̃m

 , (3.10)

in order to get a confidence set as in (3.9). Note that dist(ω,C1−α) =: d remains the same when

we replace C1−α by (3.10). To see this, consider Ĉ := ω+ [−d, d]m, which is a covering m-box

of C1−α, so in particular Ĉ covers (3.10), with dist(ω, Ĉ) = d.

Summing up, we have now constructed a confidence set C1−α for the mixing vector ω in the

SBSR model. Given C1−α SLAM estimates ω as in (1.23). From this, in the next section we

derive estimators for the sources f 1, . . . ,fm.

3.2 Estimation of source functions

SLAM estimates f = (f 1, . . . ,fm) by solving the constraint optimization problem (1.28),

which admits a solution if and only if

min
f∈S(A)m

Tn(Y, f ω̂(α)) ≤ qn(β). (3.11)

(3.11) cannot be guaranteed in general, but the following theorem shows that if α, β are chosen

as in (1.25) it holds asymptotically with probability one, independently of the specific choice

of ω̂ ∈ C1−α(Y) in (1.23) or (1.24).

Theorem 3.2.1. Consider the SBSR model with g ∈ Mδ,λ
m . For α ∈ (0, 1) let C1−α(Y) be as in

(1.22). Then for any estimator ω̂ = ω̂(Y) ∈ C1−α(Y) and c3, c4 as in (3.13)

P
 min

f∈S(A)m
λ/3

Tn(Y, f ω̂) ≤ c3 qn(α) + c4

∣∣∣∣∣∣∣ Tn(Y, g) ≤ qn(α)

 = 1.

For finite n simulations show that violation of (3.11) is hardly ever the case. For instance, in

10, 000 simulation runs of Example 1.2.1 with α = β = 0.1 it did not happen once. Therefore,

in practice, failure of (3.11) might rather indicate that the model assumption is not correct (e.g.,

due to outliers) and could be treated by preprocessing of the data. Another strategy can be to

decrease β and hence the constraint in (3.11) as for β > β′ it holds that qn(β′) > qn(β).
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Remark 3.2.2 (Incorporating identifiability conditions in SLAM). The separability condition

e1, . . . , em ∈ {f (x1), . . . ,f (xn)} in (1.12) could be incorporated in the estimator (1.28), which

provides a further restriction on H(β) in (1.29). This may yield a finite sample improvement

of SLAM, however, at the expense of being less robust if separability is violated (see Section

6.1.5 for a simulation study of SLAM when separability is violated).

3.3 Confidence bands for the source functions

The SLAM estimation procedure in (1.28) leads to asymptotically uniform confidence bands

for the source functions f 1, . . . ,fm. To this end, let T̃n be as in (1.16), but with pen( j − i + 1)

replaced by

pen( j − i + 1) + c2

√
( j − i + 1) ln(n)2

σ2n
, (3.12)

with c2 as in (3.13), and let H̃(β) be as in (1.29) but with Tn replaced by T̃n. Then H̃(β)

constitutes an asymptotically uniform confidence band as the following theorem shows.

Theorem 3.3.1. Consider the SBSR model and let ω̂ be the SLAM estimator from (1.23) for

α = αn as in (1.25). Then H̃(β) as in (1.29) with Tn replaced by T̃n provides an asymptotically

uniform confidence region for the sources f ,

lim
n−→∞

inf
g∈Mδ,λ

m

P
(
(f 1, ...,fm) ∈ H̃(β)

)
≥ 1 − β.

Remark 3.3.2. The additional term in the penalty in (3.12) accounts for the estimation error of

ω̂ and enlarges the confidence bands H̃(β). Note that at first glance it seems counter intuitive

that decreasing δ decreases this term (see the dependence of c2 on δ in (3.13)) and hence,

makes the confidence band smaller. However, note that just as in Theorem 2.2.3, the smaller

δ, the smaller the bound ε on the approximation error of g. This approximation error directly

relates to the approximation error of ω, for which the additional term in (3.12) accounts for.

Thus, the influence of increasing δ is hidden in the limit n → ∞. As a consequence, the

size of the confidence band is mainly influenced by the minimal scale λ, its dependence on

δ is negligible. We stress, however, that a small AS B(ω) with δ ≤ AS B(ω) will, of course,

lead to wider confidence bands, as confidence bands for f are in one-to-one correspondence to

confidence bands for g and a small AS B(ω) ∼ AS B(ω̂) allows for a larger variation of f within

a neighborhood of g.

3.4 Consistency and rates

In the following, we investigate further theoretical properties of SLAM. As in Theorem 3.3.1

our results will be stated uniformly over the space Mδ,λ
m in (1.11), i.e., for a given minimal
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length λ of the constant parts of the mixture g and a given minimal ASB δ. Define the constants

c1 :=
δ2

2312 σ2m2a2
k

, c2 :=
8/3δ + 24

√
2σ2 ln(9e/λ)
√
λ

,

c3 := 1 +

√
4
3
mak, c4 :=

√
4
3
mak

√
2 ln(e/λ).

(3.13)

Further, let N? ∈ N be the smallest integer, s.t.

δ
√

ln(N?) ≥max
(

27σ2mak
√

2 ln(e/λ)
√

ln(N?)(
√

N?λ −mσak)
, 8σ

√
2 ln(eN?/ ln(N?)2)

ln(N?)
,

60
√

3σmak
√

2 ln(2/λ)
√

ln(N?)

) (3.14)

and

λ
N?

ln(N?)2 ≥ max
(
mak(3 + 68

σ

δ

√
ln(9e/λ)),

27ak

δ + 9σ
√

2 ln(9e/λ)

)2

. (3.15)

Remark 3.4.1 (Behavior of N?). Note that the left-hand side in (3.14) and (3.15) is increasing

and the right-hand side decreasing (or constant) in N?. For fixed λ and δ↘ 0, (3.14) dominates

the behavior of N? as it is essentially of the form δ
√

ln(N?) ≥ c, whereas (3.15) is of the form

δ
√

N?/ ln(N?) ≥ c. Conversely, for fixed δ and λ ↘ 0, (3.15) dominates the behavior of

N? as it is essentially of the form λN?/(ln(λ−1) ln(N?)2) ≥ c whereas (3.14) is of the form

λN? ln(N?)2/ ln(λ−1) ≥ c.

Theorem 3.4.2. Consider the SBSR model with g ∈ Mδ,λ
m . Let ω̂ and f̂ = ( f̂ 1, . . . , f̂m) be

the SLAM estimators from (1.23) and (1.28), respectively, with α = αn and β = βn as in

(1.25). Further, let τ̂i and τi be the vectors of all c.p. locations of f̂ i and f i, respectively, for

i = 1, . . . ,m. Then for all n > N? in (3.14) and (3.15) and for all i = 1, . . . ,m

1. K( f̂ i) = K(f i) ,

2. max j |τ̂
i
j − τ

i
j| ≤ 2 ln2(n)

n ,

3. max j

∣∣∣∣ f̂ i|[τ̂ j,τ̂ j+1) − f
i|[τ j,τ j+1)

∣∣∣∣ = 0, and

4. |ω̂i − ωi| ≤ c2
ln(n)
√

n

with probability at least 1 − exp(−c1 ln2(n)), with c1 and c2 as in (3.13).

From the proof of Theorem 3.4.2 it also follows that assertions 1. - 4. hold for any ω̂ ∈

C1−α(Y) ∩Ωδ
m and we obtain the following.

Corollary 3.4.3. Consider the SBSR model with g ∈ Mδ,λ
m . Let C1−α(Y) be as in (1.22) and αn

as in (1.25). Further, let dist be is as in (1.26). Then for all n > N? in (3.14) and (3.15)

dist(ω,C1−αn(Y) ∩Ωδ
m) < c2

ln(n)
√

n
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with probability at least 1 − exp(−c1 ln2(n)), with c1 and c2 as in (3.13).

Remark 3.4.4 (SLAM (almost) attains minimax rates).

a) (c.p. locations) Theorem 3.4.2 states that we can recover the c.p. locations of f i in probabil-

ity with rate ln2(n)/n. Obviously, the estimation rate of the c.p. locations is bounded from

below by the sampling rate 1/n. Consequently, the rate of Theorem 3.4.2 differs from the

optimal rate only by a ln2(n) factor.

b) (Weights) By the one-to-one correspondence between the weights and the function values

of g the weights’ detection rate ln(n)/
√

n immediately follows from the box height in (1.18)

with qn(αn) ∈ O(ln(n)) and coincides with the optimal rate O(1/
√

n) up to a ln(n) term.

c) (Dependence on λ) The minimal scale λ in Theorem 3.4.2 may depend on n, i.e., λ = λn.

In order to ensure consistency of SLAM’s estimates ω̂ and ( f̂ 1, . . . , f̂ m), Theorem 3.4.2

requires that (3.14) and (3.15) holds (for a sufficiently large N?) and that c2 ln(n)/
√

n→ 0,

as n → ∞. By Remark 3.4.1 this is fulfilled whenever λ−1 ln(λ−1) ∈ O(n/ ln2(n)). This

means that the statements 1. - 4. in Theorem 3.4.2 hold true asymptotically with probability

one as the minimal scale λn of successive jumps in a sequence of mixtures gn does not

asymptotically vanish as fast as of order ln3(n)/n. We stress that no method can recover

finer details of a bump signal (including the mixture g) below its detection boundary which

is of the order ln(n)/n, i.e., SLAM achieves this minimax detection rate up to a ln2(n) factor,

see (Dümbgen and Walther, 2008; Frick et al., 2014).

d) (Dependence on δ) Just as the minimal scale λ, the minimal ASB δ in Theorem 3.4.2 may

depend on n as well, i.e., δ = δn. SLAM’s estimates remain consistent whenever δ−1 ∈

O

(√
ln(n)

)
, i.e., the statements 1. - 4. in Theorem 3.4.2 hold true asymptotically with

probability one if the minimal ASB δn in a sequence of mixtures gn does not decrease as

fast as of order 1/
√

ln(n). We stress that no method can recover smaller jump heights of

the mixture g below its minimax detection rate, which is 1/ ln(n). To see this, note that

statement 2. in Theorem 3.4.2 provides asymptotic detection power one for 2 ln(n)2 i.i.d.

observations with mean δn (recall that the ASB corresponds to the minimal possible jump

height of the mixture g). Hence, SLAM achieves the minimax rate up to a
√

ln(n) factor.

Remark 3.4.5 (SLAM for known ω). If ω is known in the SBSR model, the second part of

SLAM can be used separately. We may then directly solve (1.27) without pre-estimating ω,

i.e. we simply replace ω̂ by ω. Then, Theorem 3.3.1 is still valid for H̃(β) replaced by H(β).

Further, a careful modification of the proof of Theorem 3.4.2 shows that the assertions in The-

orem 3.4.2 hold for a possibly smaller N? in (3.14) and (3.15) and for αn = exp(−c1 ln(n)2)

replaced by βn (recall that qn(βn) > qn(αn) in (1.25) and hence, βn < αn). We stress that

the finite alphabet assumption is still required and the corresponding identifiability assumption

AS B(ω) ≥ δ must be valid.



52 Multiscale segmentation of single mixtures

3.5 Selection of the threshold parameter

On the one hand, for given α and β SLAM yields confidence statements for the weights ω and

the source functions f at level 1 − α and 1 − β, respectively. This suggests the choice of these

parameters as confidence levels. On the other hand, when estimation of ω and f is targeted

qn(α) and qn(β) can be seen as tuning parameters for the estimates ω̂ and f̂ . In particular,

Theorem 3.4.2 yields that the particular choice qn(α) = qn(αn) and qn(β) = qn(βn) as in (1.25)

lead to asymptotically optimal rate of convergence. Although, simulations in Section 6.1.3

suggest that SLAM’s estimates are quite stable for a range of α’s and β’s, for finite sample size

n, a fine tuning of these parameters improves estimation accuracy, of course. In the following,

a possible strategy for this is suggested. First, qn(α) for tuning the estimate ω̂q := ω̂(Y, q) is

discussed. Recall that for estimating ω, qn(β) is not required.

Theorem 3.4.2 yields ln(n)/
√

n-consistency of ω̂ when qn(α) = qn(αn) with αn as in (1.25),

independently of the specific choice of ω̂ ∈ C1−αn ∩ Ωδ
m. Further, for α′ (and qn(α′), re-

spectively) with α′ ≥ αn (and qn(α′) ≤ qn(αn) , respectively) C1−α′ ⊆ C1−αn whenever

B? = B?qn(α′) , ∅ in (1.22). Thus, choosing the threshold q, for a sufficiently rich discrete

set Q = {q1, q2, . . . , qN = qn(αn)}, as the minimal valid threshold (MVT)

q? := min

q ∈ Q :
⋃

B∈B?q

B ∩Ωδ
m , ∅


guarantees the convergence rates of Theorem 3.4.2 for the corresponding estimate ω̂(Y, q?). In

practice, Q = {−1.0,−0.9, ..., 1.9, 2.0} was found to be a sufficiently rich candidate set.

It remains to select qn(β) (and β, respectively), which is required additionally for f̂ , recall

(1.28) and (1.29). Theorem 3.4.2 suggests to choose qn(β) = qn(βn) with βn as in (1.25), i.e.,

qn(β) → ∞ with rate O(log(n)). For finite n, there exist several methods for selection of qn(β)

in c.p. regression (see e.g., (Zhang and Siegmund, 2007)), which might be used here as well.

However, due to the high stability of f̂ in q (see Section 6.1.3) we simply suggest to choose

β = 0.1, which we have used here for our data analysis. This choice controls the probability of

overestimating the number of jumps in g, P(K(ĝ) > K(g)) ≤ 0.1 asymptotically. In general, it

depends on the application. A large qn(β) (hence small β) has been selected in the application

example in Chapter 7 to remove spurious changes in the signal which appear biologically not

as of much relevance.

3.6 Model selection

So far, we have assumed that the number of sources m in the SBSR model (1.3) is given. In

the following, we want to study the situation where m is unknown, i.e., we consider model

selection for the SBSR model. To this end, define

M :=
∞⋃

m=1

Mm. (3.16)



3.6. Model selection 53

Theorem 2.2.5 shows that δ-separability guarantees identifiability and regularizes the SBSR

model via the parameter δ, even when the number of sources is unknown. Therefore, we define

the set of δ-separable mixtures with minimal scale λ and arbitrary number of components as

Mδ,λ :=
⋃
m∈N

Mδ,λ
m , (3.17)

withMδ,λ
m as in (1.11). Note that, Theorem 2.3.10 implies

Mδ,λ =

mmax⋃
m=1

Mδ,λ
m

in (3.17) with mmax = mmax(δ) < min
(√

2/δ, ln(ak/δ + 1)/ ln(k)
)
. Thus, although in principle

we allow for an arbitrary number of source components m ∈ N, a fixed minimal ASB δ > 0

implicitly restricts to finitely many models m ∈ {1, . . . ,mmax(δ)}, where mmax(δ)↗ ∞ as δ↘ 0.

Similar, separability for a minimal scale λ yields an upper bound on m, namely m ≤ λ−1, as A3

requires at least m regions each of minimal size λ with specific distinct values for g and f .

In the following, we will introduce a selection procedure for m based on the confidence sets

C1−α(Y) = C1−α(Y,m, λ) for ω from Section 3.1 (see Algorithm CRW in Figure 3.1). Recall

that we can associate each significant level α with the corresponding quantile of Tn as in (1.16)

and thus we use the notation Cq(Y,m, λ) := C1−α(q)(Y,m, λ). Recall that Cq(Y,m, λ) was

constructed in such a way that whenever there exists a g = fω ∈ Mδ,λ
m such that Tn(Y, g) ≤ q,

thenω ∈ Cq(Y,m, λ)∩Ωδ
m (recall (1.13)) and, simultaneously, wheneverω ∈ Cq(Y,m, λ)∩Ωδ

m

(and the true underlying mixture g fulfills Tn(Y, g) ≤ q), then there exists a g ∈ Mλ/3
m (ω) such

that Tn(Y, g) ≤ c3q + c4 (recall Theorem 3.2.1). More precisely, for given λ, δ > 0 and m ≥ 2

define

Cm
q = Cm

q (λ, δ) := Cq(Y,m, λ) ∩Ωδ
m, (3.18)

with Cq(Y,m, λ) as in Algorithm CRW in Figure 3.1 and Ωδ
m as in (2.11). Then it follows from

(1.13) that for every fixed ω ∈ Ωδ
m⋃

g∈Mδ,λ
m (ω)

{Tn(Y, g) ≤ q} ⊂ {ω ∈ Cm
q } (3.19)

and from Theorem 3.2.1 that

{ω ∈ Cm
q } ∩ {Tn(Y, g) ≤ q} ⊂

⋃
g∈Mδ,λ/3

m (ω)

{Tn(Y, g) ≤ q′}, (3.20)

with q′ := c3q + c4 and c3, c4 as in (3.13).

Remark 3.6.1. For m = 1 it is easy to check that

C1
q(Y) :=

{1} if inf f∈S(A)λ Tn(Y, f ) ≤ q

∅ otherwise
(3.21)
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satisfies (3.19) and (3.20).

Note that, without any prior information on both, λ and δ, if a given ω explains the data Y at

a certain confidence level, one can always increase the number of sources m by either adding

arbitrarily small additional weights or by splitting up weights while choosing the corresponding

source function arbitrarily similar, in order to get mixing weights of higher dimension which

still explain Y equally well. Therefore, we estimate the number of source functions as the

smallest number m, such that there exist mixing weights (and, hence, corresponding source

functions) of dimension m which can explain the data Y at a prespecified confidence level.

This procedure automatically bounds the probability of underestimating the number of source

components. The following definition specifies this estimator more formally.

Definition 3.6.2. For given λ, δ > 0 let {Cm
q (Y)}m∈N = {Cm

q (Y, λ, δ)}m∈N be as in (3.18) for

m ≥ 2 and as in Remark 3.6.1 for m = 1. Define the estimator for the number of sources as

m̂(q) = m̂(q, λ, δ) := min
(
m ≥ 1 s.t. Cm

q , ∅
)
, (3.22)

with the convention that min(∅) = ∞.

Remark 3.6.3 (Dependence on λ and δ). The estimator m̂(q) in Definition 3.6.2 depends on

both, a minimal scale λ and ASB δ. To remove this dependence, one may as well consider the

estimator limδ↘0 m̂(q, 1/n, δ). Note that a minimal scale of 1/n, i.e., for each constant piece

of g there is at least one observation, is necessary, as otherwise separability as in A3 is not

guaranteed for the underlying signal of Y . We will see in the following (see Theorem 3.6.4) that

in order to bound the probability of overestimation preknowledge on λ and δ is not necessary.

However, to bound the probability of underestimation, and hence, to obtain consistency, (for

any estimator) prior information on λ and δ is necessarily required, as argued above.

3.6.1 Lower confidence bounds for m

Note that (3.19) implies

{m̂(q) >m} = {Cmq = ∅} ⊂ {ω < Cmq } ⊂ {Tn(Y, g) > q}. (3.23)

From (3.23) it follows directly that when q is chosen to be the (1 − α)-quantile q1−α of the

statistic Tn in (1.16) then

m̂1−α := m̂(q1−α) (3.24)

in (3.22) constitutes a 1 − α lower confidence bound for the underlying number of source

components m.

Theorem 3.6.4. Assume the SBSR model (1.3). Then for α ∈ (0, 1) and m̂1−α as in (3.24)

inf
λ≥1/n,δ>0

inf
g∈Mδ,λ

P(m̂1−α ≤m) ≥ 1 − α.
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Remark 3.6.5. For fixed sample size n, (3.19) implies limq→∞ m̂(q) = 1. This is in accordance

with Theorem 3.6.4, where for α → 0 the corresponding quantile q1−α of Tn tends to infinity

and, hence, m̂1−α → 1 as α→ 0.

3.6.2 Model selection consistency

In Section 3.6.1 we have seen that condition (3.19) yields a bound for the error to overestimate

m. Analogously, condition (3.20) yields a bound for the underestimation error. Combing both,

leads to an explicit exponential bound (which depends on q) for the probability that m̂(q) ,m.

This bound is fundamental for the following results.

Theorem 3.6.6. For λ, δ > 0 assume the SBSR model (1.3) with g ∈ Mδ,λ. Then for m̂(q) as in

(3.22)

P (m̂(q) ,m) ≤ αn(q) + βn(q), (3.25)

with αn(q) := P (Tn(Y, g) > q) and

βn(q) := 1 −

1 − 4 exp

− ( √
nλ/12δ3/2
√

6akσ
−

1
√

2

(
c3q + c4 +

√
2 ln(12e/λ

))2

+

12/λ

.

Theorem 3.6.6 yields consistency of m̂(q) for a wide range of q = qn ↗ ∞, as the following

theorem shows.

Theorem 3.6.7. For given λ, δ > 0 assume the SBSR model (1.3) with g ∈ Mλ,δ. If qn → ∞ and

lim sup qn/
√

n ≤
√
λδ2/(24

√
2a2

kσ) for n → ∞, then m̂(qn) in (3.22) is uniformly consistent

overMδ,λ, that is,

inf
g∈Mδ,λ

P (m̂(qn) = m)→ 1, for n→ ∞.

Moreover, for a specific (optimal) choice of q this gives an exponential rate of convergence for

m̂(q) in (3.22).

Definition 3.6.8. For given λ, δ > 0 let m̂(q) be as in (3.22), qmin := min{q ∈ R : m̂(q) < ∞},

and qn = qn(λ, δ) := max
(
qmin, c

√
n
)
, with c = c(λ, δ, σ) :=

√
λδ2/(24

√
2a2

kσ). Define the

SLAM selector

m̂ := m̂(qn).

Theorem 3.6.9. For given λ, δ > 0 assume the SBSR model (1.3), with g ∈ Mδ,λ. Then for m̂

and c as in Definition 3.6.8

P (m̂(qn) = m) ≥ 1 − exp
(
−c2n/8

)
+ O

(
exp

(
−4c2n

))
.

Remark 3.6.10 (Dependence on λ and δ (continued)). When the minimal scale λ and the min-

imal ASB δ in Theorem 3.6.9 depend on n, i.e., λ = λn and δ = δn, in order to provide model

selection consistency as λn, δn ↘ 0, the proof of Theorem 3.6.9 yields

λnδ
3
n

σ2 n −
1
δn

ln(λ−1
n )→ ∞ and

λnδ
4
n

σ2 n→ ∞, with n→ ∞. (3.26)
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For fixed δ this is fulfilled when λ−1
n ∈ O (n/ ln(n)). This means that the estimator m̂ in Theorem

3.6.9 is even consistent when the minimal scale λn of successive jumps in a sequence of mix-

tures gn does not asymptotically vanish as fast as of order ln(n)/n, which equals the minimax

detection rate (Dümbgen and Walther, 2008; Frick et al., 2014) (recall Remark 3.4.4) .

For fixed λ (3.26) is fulfilled when δ−1
n ∈ o

(
n1/4

)
. This means that the estimator m̂ in Theorem

3.6.9 is consistent when the minimal ASB δn in a sequence of mixtures gn does not asymp-

totically vanish as fast as of order n−1/4. Partly, this rate arises from the exact recovery bound

given in Theorem 2.2.5, which differs from the corresponding bound for known m of Theorem

2.2.3 by a
√
δ-factor. i.e., compared to the case where m is known, one has to improve the

approximation of g by a
√
δ-factor in order to get exact recovery of f . It is an open issue

whether this bound in Theorem 2.2.5 is sharp, i.e., whether there exist sequences of mixtures

g, g̃ ∈ Mδn with ‖g − g̃‖∞ ∈ O
(
δ3/2

n

)
and m(g) , m(g̃). Note that this may even depend on the

specific alphabet. The remaining
√
δ-factor arises from a possible increase of the multiscale

statistic for ω̂ ∈ C1−α by an m-factor, see Theorem 3.2.1 and the dependence of c3 on m.

When m is fixed and known, this only appears in the constants for δn → 0. However, when m

is unknown, it may, increase with n, i.e., m = mn → ∞ as δn → 0, with mn ≤
√

1/δn (see

Theorem 2.3.10). This results in a decrease of the maximal δ−1
n -rate by an additional

√
n-factor.

3.6.3 Inference on ω and f for unknown m

To estimate ω and f in the SBSR model (1.3) when the number of sources m is unknown, one

can replace the true number of sources m in the SLAM estimates ω̂ and f̂ from Section 3.1

and 3.2 with the estimate m̂ from Definition 3.6.8. Combining Theorem 3.4.2 and Theorem

3.6.9 yields that this does change the estimation precision by such a small amount that this will

only enter the constants of its risk but not its rate of convergence. More precisely, we get the

following theorem.

Theorem 3.6.11. For given λ, δ > 0 assume the SBSR model (1.3) with g ∈ Mδ,λ. Let ω̂(m) and

f̂ (m) be the SLAM estimators as in Theorem 3.4.2, m̂ the SLAM model selector as in Definition

3.6.8, and ω̂ = ω̂(m̂), f̂ = f̂ (m̂). Further, let τ̂i and τi be the vectors of all c.p. locations of f̂ i

and f i, respectively. Then with probability at least

1 − exp(−c1 ln2(n)) + O

(
exp

(
−

c2

8
n
))
,

1. m̂ = m(g)

and for all i = 1, . . . , m̂

2. K( f̂ i) = K(f i) ,

3. max j |τ̂
i
j − τ

i
j| ≤ 2 ln2(n)

n ,

4. max j
∣∣∣ f̂ i|[τ̂ j,τ̂ j+1) − f

i|[τ j,τ j+1)
∣∣∣ = 0, and

5. |ω̂i − ωi| ≤ c2
ln(n)
√

n
,
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with c1, c2 as in (3.13) and c as in Definition 3.6.8.

Comparing Theorem 3.4.2 and 3.6.11 shows that inferring ω and f does not become signifi-

cantly more difficult when m is unknown. The probability that ω and f are estimated with an

optimal rate (up to log-factors) increases for unknown m only by an additional O
(
exp

(
− c2

8 n
))

term, with c as in Definition 3.6.8, and thus the overall rate of convergence remains the same.

The only difference appears in the constants. Whereas the dependence on λ is unchanged and

still optimal (up to log-factors), the dependence on δ becomes more restrictive.

Analog to Theorem 3.6.11 one can use the SLAM selector m̂ from Definition 3.6.8 in order to

derive asymptotically uniform (for given λ and δ) confidence statements for ω and f .

Theorem 3.6.12. For given λ, δ > 0 assume the SBSR model (1.3) with g ∈ Mδ,λ. Let

{C1−α(Y, λ,m)}m∈N be the SLAM confidence sets for ω from Section 3.1, H̃(β) = H̃(β,Y,m)

the confidence regions for f as in Theorem 3.3.1, and m̂ as in Definition 3.6.8. Then for any

α, β ∈ (0, 1) and αn as in (1.25) it holds that

1. limn→∞ infg∈Mδ,λ P(ω ∈ C1−α(Y, λ, m̂) ≥ 1 − α,

2. infg∈Mδ,λ P
(
supω̃∈C1−αn (Y,λ,m̂)∩Ωδ

m̂
‖ω − ω̃‖∞ ≥ c2

ln(n)
√

n

)
≤ exp(−c1 ln2(n))+O

(
exp

(
− c2

8 n
))
,

3. limn→∞ infg∈Mδ,λ P(f ∈ H̃(β,Y, m̂)) ≥ 1 − β,

with c1, c2 as in (3.13) and c as in Definition 3.6.8.
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CHAPTER 4

Minimax rates for multiple mixtures

In the following the MABS model (1.6) is considered and minimax rates for fixed number

of sources m = m and both, the sample size n and the number of mixtures M, tending to

infinity are derived. To this end, the unknown finite alphabet design matrix F ∈ An×m in (1.6)

is rewritten as a product of an unknown selection matrix Π and a known design matrix A with

rows consisting of all different alphabet combinations in Am. This highlights the combinatorial

structure of estimating F in (1.6). Fix a finite alphabet A = {0, 1, a3, . . . , ak} as in (1.7) and

n,m,M ∈ N with K := km. Then the MABS model (1.6) is equivalent to

Y = ΠAω + Z, (4.1)

with an unknown selection matrix

Π ∈ {0, 1}n×K ,

n∑
j=1

Πi j = 1 ∀i = 1, . . . , n, (4.2)

and known finite alphabet design matrix

A :=



0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 1

0 0 0 . . . 0 0 a3
...

0 0 0 . . . 0 0 ak

0 0 0 . . . 0 1 0
...

ak ak ak . . . ak ak ak



∈ {0, 1, a3, . . . , ak}
K×m, (4.3)

where the rows of A constitute all different vectors in Am = {0, 1, a3, . . . , ak}
m. Further, the

mixing matrix ω ∈ Ωm,M is unknown as well and we assume i.i.d. normal noise Zi j ∼ N(0, σ2),

i = 1, . . . , n, j = 1, . . . ,M, with known variance σ2. As before, δ-separability from Definition

2.2.1 is assumed to regularize the model (4.1). Here, (Π,ω) in (4.1) is denoted as δ-separable, if

(ΠA,ω) is δ-separable as in Definition 2.2.1. Further, analog to λ in (1.12), a second parameter

which regularizes separability of Π is introduced. To this end, ΠA is denoted as Λ-separable,
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if the i-th unit vector ei appears in ΠA at least Λ times for each i = 1, . . . ,m. That is

#
{
j ∈ {1, . . . , n} : (ΠA) j· = ei

}
≥ Λ for all i = 1, . . . ,m. (4.4)

In summary, for A as in (4.3) we consider the parameter space

Nδ,Λ = N
δ,Λ
n,M,m :=

{
ΠAω : ω ∈ Ωδ

m,M, Π as in (4.2) and (4.4)
}
.

4.1 Minimax rates for prediction error

The following theorem gives a lower bound on the minimax prediction error in the MABS

model (4.1).

Theorem 4.1.1 (Lower bound). Consider the MABS model (4.1) with parameter space Nδ,Λ.

Further, assume that M/m, n/m ∈ N and σ/
√

8 < δ ≤
√

M(∆Amin)2(45akm)−1 and Λ ≤ n/m.

Then

inf
θ̂

sup
ΠAω∈Nδ,Λ

EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2

)
≥ 0.4M

 1
(m − 1)σ2 +

72m5a2
k

(∆Amin)2n

−1

+
1
2
σδe−

δ2

8σ2 .

The next theorem gives an upper bound on the minimax prediction error. If δ and Λ are chosen

appropriately, it almost (up to the dependency on m and A in the exponential term) coincides

with the lower bound from Theorem 4.1.1 (see Corollary 4.1.4). This upper bound is achieved

by the LSE θ̂ ∈ argminθ̃∈Nδ,Λ

∥∥∥Y − θ̃
∥∥∥2.

Remark 4.1.2 (LSE).

a) (Existence) The LSE θ̂ exists, that is the minimum in minθ̃∈Nδ,Λ

∥∥∥Y − θ̃
∥∥∥2 is attained. To see

this, note that

Nδ,Λ =
⋃

Π Λ-separable

{
ΠAω : ω ∈ Ωδ

m,M

}
(4.5)

is a finite union of closed, bounded in [0, ak]n×M, hence, compact sets.

b) (Uniqueness) θ̂ is not always unique, but the upper bound in Theorem 4.1.3 holds for any

minimizer. A counterexample is the following. Let n = m = 2, M = 1, Λ = 1, A = {0, 1, 2},

and δ = 0.01. By separability, Π̂A is restricted to the identity matrix. Thus

argmin
θ̃∈Nδ,Λ

∥∥∥Y − θ̃
∥∥∥2

= argmin
ω∈Ωδ

2,1

‖Y − ω‖2 = argmin
ω∈Ωδ

2,1

ω2
1 − (1 + Y1 + Y2)ω1,

with ω1 = 1 − ω2. Simple calculations give that Ωδ
2,1 = {(ω1, 1 − ω1)> : ω1 ∈ [0.1, 3/10] ∪

[11/30, 0.45]}. If the observations Y1,Y2 are such that (1 + Y1 + Y2)/2 = 1/3, it is easy to

check that argminω∈Ωδ
2,1
ω2

1 − (1 + Y1 + Y2)ω1 = {(3/10, 7/10)>, (11/30, 19/30)>}.
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c) (Computation) We are not aware of an efficient implementation of the LSE and we speculate

that this is an NP-hard problem in general (see the discussion in Section 5.2). In Section

5.2 an iterative Lloyd’s algorithm for its approximation is proposed.

Theorem 4.1.3 (Upper bound). Let Y = ΠAω+Z with ΠAω ∈ Nδ,Λ be as in the MABS model

(4.1) and let θ̂ ∈ argminθ̃∈Nδ,Λ

∥∥∥Y − θ̃
∥∥∥2

be the LSE. Then

sup
ΠAω∈Nδ

EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2

)
≤ 4σ2mM + 12σn2kmm7/2a3

k
M5/2
√

Λδ
e
− Λδ2

8(mM+1)(1+mak )2σ2 .

Let throughout the following & and . denote inequalities up to a universal constant which does

not depend on any model parameters. Further, for some constants c1, c2 > 0 as in Corollary

4.1.4 assume that

M ≥
144σ2m3a3

k

c2c2
1

(
2 ln(n) + 2 ln(M) + ln

(
a3

km7/3km
))

and n ≥ min

 m6a2
kσ

2

(∆Amin)2 , c2mM

 . (4.6)

Note that (4.6) holds finally whenever ln(n)/M → 0 and M/n→ 0.

Corollary 4.1.4 (Minimax prediction rate). For some constants c1, c2 > 0 consider the MABS

model (4.1) with parameter space Nδ,Λ for δ = c1
√

M and Λ = c2M. Further, assume that

σ/
√

8M < c1 < (∆Amin)2(45akm)−1 and c2 ≥ 1/M. Then whenever (4.6) holds

inf
θ̂

sup
ΠAω∈Nδ,Λ

EΠAω

(
1

nM

∥∥∥θ̂ −ΠAω
∥∥∥2

)
&
σ2m

n
+

σc1

n
√

M
e−

c2
1
8

M
σ2 ,

inf
θ̂

sup
ΠAω∈Nδ,Λ

EΠAω

(
1

nM

∥∥∥θ̂ −ΠAω
∥∥∥2

)
.
σ2m

n
+

σ
√

c2c1n
√

M
e
−

c2c2
1

16m3(1+ak )2
M
σ2

and the LSE achieves the second inequality.

Remark 4.1.5. Note that the assumption δ = c1
√

M and Λ = c2M for some constants c1, c2 in

Corollary 4.1.4 is not very restrictive. When ω is uniformly distributed, Theorem 2.3.5 yields

for δ = AS B(ω) that δ/
√

M ≥ c1 for some constant c1 asymptotically with probability one as

M → ∞. Further, by Theorem 2.3.1, when ΠA is chosen uniformly, for Λ as in (4.4) Λ/M ≥ c2

for any c2 > 0 asymptotically with probability one as n/M → ∞.

Corollary 4.1.4 nicely shows the specific tradeoff between n and M regarding the prediction

error of ΠAω. The dependence on M vanishes exponentially fast (as long as ln(n)/M → 0 and

M/n → 0). For sufficiently large M the prediction rate is dominated by its first term, which is

parametric in n. Thus, as long as ln(n)/M → 0 and M/n → 0 the unknown permutation Π in

the linear model (4.1) does not play much of a role.

4.2 Estimation error

The proof of Theorem 4.1.3 yields as a corollary the following upper bound on the maximal

classification error P
(
Π̂ , Π

)
for the LSE.
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Corollary 4.2.1 (Upper bound on classification error). For some constants c1, c2 > 0 con-

sider the MABS model (4.1) with parameter space Nδ,Λ for δ = c1
√

M and Λ = c2M. Fur-

ther, assume that σ/
√

8M < c1 < (∆Amin)2(45akm)−1 and c2 ≥ 1/M. Let θ̂ = Π̂Aω̂ ∈

argminθ̃∈Nδ,Λ

∥∥∥Y − θ̃
∥∥∥2

be the LSE. Then whenever (4.6) holds

sup
ΠAω∈Nδ,Λ

PΠAω
(
Π̂ , Π

)
.

σ
√

c2c1n
√

M
e
−

c2c2
1

16m3(1+ak )2
M
σ2 . (4.7)

In order to derive lower bounds for the maximal estimation error, one can combine Corollary

4.1.4 with Theorem 2.2.3. To this end, for (Π,ω) and (Π, ω) as in (4.1) define the metric

d ((Π,ω), (Π, ω)) =

√
M

m
1Π,Π + max

i=1,...,m
‖ωi − ωi‖ . (4.8)

The metric in (4.8) combines the classification error of Π̂ , Π with the estimation error

‖ωi − ω̂i‖. Note that the scaling factor
√

M naturally arises from the dimensionality of ‖ωi − ω̂i‖.

The metrics d ((Π,ω), (Π, ω)) and ‖ΠAω − ΠAω‖ are locally equivalent on Nδ as the follow-

ing theorem shows.

Theorem 4.2.2. Let ΠAω,Π′Aω′ ∈ Nδ then

1. d ((Π, ω), (Π′, ω′)) ≥ ‖ΠAω − Π′Aω′‖/(
√

nmak) and

2. if ‖ΠAω − Π′Aω′‖ ≤ δ/(1 + mak), then d ((Π, ω), (Π′, ω′)) ≤ ‖ΠAω − Π′Aω′‖ .

The following theorem shows that the LSE is not only asymptotically minimax rate optimal

for the prediction error as in Corollary 4.1.4, but also asymptotically for M → ∞ minimax rate

optimal for the estimation error in terms of the metric d in (4.8) .

Theorem 4.2.3 (Minimax estimation rate). For some constants c1, c2 > 0 consider the MABS

model (4.1) with parameter space Nδ,Λ for δ = c1
√

M and Λ = c2M. Further, assume that

σ/
√

8M < c1 < (∆Amin)2(45akm)−1 and c2 ≥ 1/M. Then whenever (4.6) holds

inf
Π̂,ω̂

sup
Π,ω

EΠAω

(
d
(
(Π,ω), (Π̂, ω̂)

)2
)
& σ2M

1
nma2

k

+ σ
√

M
c1

nm2a2
k

e−
c2
1
8

M
σ2 ,

inf
Π̂,ω̂

sup
Π,ω

EΠAω

(
d
(
(Π,ω), (Π̂, ω̂)

)2
)
. σ2M

m3a2
k

c2
1

+ σ
√

M
m2a2

k
√

c2c3
1

e
−

c2c2
1

16m3(1+ak )2
M
σ2

and the LSE achieves the second inequality.

Again, Theorem 4.2.3 shows that when M is sufficiently large, increasing M further does not

influence the estimation rate in terms of d(·, ·)2/M. Moreover, for M large enough, the minimax

estimation rate of d(·, ·)2/M does not increase with n, although the dimension of Π and Π̂,

respectively, increase with n. Thus, if ln(n) � M the unknown permutation Π in the linear

model (4.1) does not play much of a role for the estimation rate.



CHAPTER 5

Implementation

5.1 Multiscale methods

The SLAM estimators and confidence statements for given number of sources m from Chapter

3 are implemented in two steps. In the first step, for a given α ∈ (0, 1) a confidence region for

the mixing weights ω is computed as in Algorithm CRW (see Figure 3.1). To this end, each of

the n2m m-boxes in Bm = {B(i, j) : 1 ≤ i ≤ j ≤ n}m needs to be examined with the reduction

rules R1 - R3 for validity as a candidate box for the intervals [i?1 , j?1 ] × . . . × [i?m, j?m]. The

reduction rule R1 can be applied to all the n2 boxes in B separately, which, using dynamic

programming, amounts to a total complexity of O(n2). For a single candidate box in Bm the

complexity of applying reduction rule R2 is O(1) and of R3 is O(n). For the latter, note that a

candidate box B ∈ Bm is accepted by R3, if the O(n) intervals {[i, j] ∈ Jλ
k : j − i + 1 = nλ}

for which
[

maxi≤u≤v≤ j buv,mini≤u≤v≤ j buv
]
∩

{
eω : e ∈ Am and ω ∈ B

}
is non-empty cover all

points 1, . . . , n. This yields the overall complexity O
(
n2m+1

)
1. There are, however, important

pruning steps, which can lead to a considerably smaller complexity.

First, note that it suffices to consider m-boxes which are maximal elements with respect to the

partial order of inclusion, i.e., for B1 = [b1
1, b

1
1]× . . .× [b1

m, b
1
m], B2 = [b2

1, b
2
1]× . . .× [b2

m, b
2
m]

B1 4 B2 ⇔ [b1
i , b

1
i ] ⊆ [b2

i , b
2
i ] for all i = 1, . . . ,m,

where an element a of a partially ordered set P is maximal if there is no element b in P such

that b > a. To see this, assume that an m-box B is not deleted by the reduction rule R3 in the

second last line of Algorithm CRW, then an m-box B′ ∈ Bm with B′ ≺ B does not influence

the confidence region C1−α (see last line of Algorithm CRW), as A−1B′ ⊂ A−1B. Conversely, if

an m-box B is deleted by the reduction rule R3 in the second last line of Algorithm CRW, then

an m-box B′ ∈ Bm with B′ ≺ B will be deleted by R3 as well, such that B′ does not need to

be considered either.

Second, note that the parameter ω which is inferred in Algorithm CRW is global and hence,

one can restrict to observations on a subinterval [xi, x j] ⊂ [0, 1) as long as g|[xi,x j] is δ-separable.

The explicit complexity of Algorithm CRW depends on the finial solution f̂ itself. Depending

on the final f̂ , the above mentioned pruning steps yield a complexity between O(nm+1) and

1In (Behr et al., 2017) the additional n-factor from applying reduction rule R3 was missing.
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O(n2m+1). With linear programming (see Theorem 5.1.1), ω̂ is then computed as in (1.23).

In the second step, for a given β ∈ (0, 1) and given ω̂ SLAM solves the constrained optimization

problem (1.28). Note that f̂ 1, . . . , f̂m are the unique functions such that
∑m

i=1 ω̂i f̂ i = ĝ for

ĝ := argmax
g̃∈H(β)

n∑
i=1

φg̃(xi)(Yi), (5.1)

with

H(β) :=
{
g̃ ∈ S

(
{eω̂ : e ∈ Am}

)
: Tn (Y, g̃) ≤ qn(β) and K (g̃) = K̂

}
(5.2)

and K̂ as in (1.27). Frick et al. (2014) provide a pruned dynamic programming algorithm to

efficiently solve (5.1) without the restriction that ĝ can only attain values in {eω̂ : e ∈ Am}

as it is the case here. To extend their algorithm to this case, it is necessary for a finite set

L = {l1, . . . , lk} of possible function values to check finiteness of their minimal cost d?[i, j] =

minθ∈R d[i, j] (see (Frick et al., 2014, eq. 30)) with R replaced by L. In (Frick et al., 2014)

finiteness of d?[i, j] = minθ∈R d[i, j] is examined by the relation

min
θ∈R

d[i, j] = ∞ ⇔ max
i≤u≤v≤ j

buv > min
i≤u≤v≤ j

buv, (5.3)

with {B(i, j) = [bi j, bi j] : 1 ≤ i ≤ j ≤ n} as in (1.18). Let L be any number such that L > max(L)

and define Q(i, j) =

[
q

i j
, qi j

]
:=


[
max(L ∩ B(i, j)),min(L ∩ B(i, j))

]
if L ∩ B(i, j) , ∅,

[L, L] else.
(5.4)

Then as in (5.3) it holds that

min
θ∈L

d[i, j] = ∞ ⇔ max
i≤u≤v≤ j

q
uv
> min

i≤u≤v≤ j
quv, (5.5)

which allows to adapt the dynamic program from Frick et al. (2014). This modifications,

however, do not change the complexity of their algorithm, which depends on the final solution

ĝ and is between O(n) and O(n2). Here, significant speed up can be achieved by restricting the

system of intervals in Tn and B, respectively, to a smaller subsystem, e.g. intervals of dyadic

length, which for example reveals the complexity of the dynamic program as O(n ln(n)).

SLAM selector In the following we discuss computational issues of the estimator m̂(q) in

(3.22). In order to compute m̂(q) one has to compute successively C1
q,C

2
q, . . . until one of the

sets Cm
q is nonempty, where Cm

q = Cq(Y, λ,m)∩Ωδ
m with Cq(Y, λ,m) the confidence sets for ω for

given number of sources from Section 3.1. As discussed above, the computation of Cq(Y, λ,m)

has a complexity between O
(
nm+1

)
and O

(
n2m+1

)
depending on the true underlying signal.

Thus, the overall complexity of the computation of Cq(Y, λ, 1),Cq(Y, λ, 2), . . . ,Cq(Y, λ, m̂) can

be done in O
(
n2m̂(q)+1

)
time. As the computation cost of intersecting Cq(Y, λ,m) and Ωδ

m does

not depend on n and as m̂(q) hardly ever overestimated m (see Section 6.2) the overall com-
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plexity for the computation of m̂(q) is, in practice, between O
(
nm+1

)
and O

(
n2m+1

)
. Checking

emptiness of Cq(Y, λ,m) ∩ Ωδ
m can be done with a mixed-integer linear program (MILP) as the

following theorem shows. To this end, note that

Cq,λ ∩Ωδ
m , ∅ ⇔ max

ω∈Cq,λ∩Ωm
AS B(ω) ≥ δ.

Theorem 5.1.1. The optimization problem

max
ω∈Ωm

ai≤ωi≤bi for i=1,...,m

AS B(ω,A), (5.6)

with constants a1 ≤ b1, . . . , am ≤ bm can be formulated as a MILP

max c>x s.t.

Ax ≥ b,

int xi i = m + 2, . . . ,m + D + 1,

(5.7)

with vector of variables x = (ω, δ, B) ∈ Rm+1 × {0, 1}D, objective function coefficients c =

(0, . . . , 0, 1, 0, . . . , 0) ∈ Rm+1×{0, 1}D, a matrix of constraint coefficients A ∈ R(3(D+m)+2)×(D+m+1),

and a vector of values for the right-hand sides of the constraints b ∈ R(3(D+m)+2).

Remark 5.1.2 (Minimization). By definition of the ASB, clearly, minω∈Ωm AS B(ω,A) = 0

for all finite alphabets A and number of source components m. With additional boundary

restrictions, i.e.,

min
ω∈Ωm

ai≤ωi≤bi for i=1,...,m

AS B(ω,A) (5.8)

this does not hold in general. It is clear from the proof of Theorem 5.1.1 that (5.8) is solved by

the same MILP as (5.6) with max replaced by min.

5.2 Clustering based algorithm

In Chapter 4 we have seen that the LSE attains (almost) optimal rates for both, the maximal

prediction error and the maximal estimation error (in terms of the metric d in (4.8)). Unfortu-

nately, we are not aware of any polynomial time algorithm for its exact computation. To this

end, note that in (4.5) for Π , Π′, both Λ-separable, Theorem 2.2.3 implies that the corre-

sponding two sets in the union in (4.5) are disjoint. Thus, computation of the LSE amounts to

minimization over exponentially many (in n) disjoint, compact sets. Pananjady et al. (2016)

have shown that exact computation of the LSE is NP-hard in general, for the MABS model

(4.1) with M = 1, but for arbitrary design A (not the specific form in (4.3)) and restricted to

permutation matrices Π (not the bigger class of selection matrices). Although, their results do

not directly apply to our setting, it is near at hand that exact computation of the LSE for the

MABS model (4.1) is also not feasible.
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Input: Y , A, t, m
ω̂1 ← uniform random choice
Π̂ j·A← argmina∈Am

∥∥∥Y j − aω̂1
∥∥∥ for j = 1, . . . , n

ω̂2 ← argminω
∥∥∥Y − Π̂Aω

∥∥∥2

while max1≤i≤m, 1≤ j≤n

∣∣∣∣ω̂1
i j − ω̂

2
i j

∣∣∣∣ > t do
ω̂1 ← ω̂2

Π̂ j·A← argmina∈Am

∥∥∥Y j − aω̂2
∥∥∥ for j = 1, . . . , n

ω̂2 ← argminω
∥∥∥Y − Π̂Aω

∥∥∥2

end while
Return: ω̂1 and Π̂.

Figure 5.1: Lloyd’s algorithm for approximation of the LSE in the ABSS model.

Therefore, in the following a Lloyd’s algorithm for its approximation is proposed. To ensure

minimax optimality in Nδ,Λ the LSE depends on the regularization parameters (δ,Λ). For

computational purposes consider now the unrestricted case δ = Λ = 0. Then, on the one hand,

given the selection Π computation of the unrestricted LSE corresponds to a convex optimization

problem, which can be solved easily with standard techniques, see e.g. (Van den Meersche

et al., 2009). Note that the condition 0 < ‖ω1·‖ < . . . < ‖ωm·‖ in (1.2) can be neglected in this

optimization step, as for any permutation matrix P it holds that ‖Y − ΠAω‖ =
∥∥∥Y − ΠAP−1Pω

∥∥∥
and hence, one can reorder the columns of ω̂ and the rows of Π̂A subsequently. On the other

hand, given the mixture matrixω computation of the LSE corresponds to a simple LS clustering

with known centers Aω ∈ RK×M. Therefore, an iterative Lloyd’s algorithm (see e.g., (Lu and

Zhou, 2016)) which starts with a random ω̂ and successively updates Π̂ and ω̂ can be employed,

see Figure 5.1 for details. Note that this algorithm may as well be applied to the more general

setting of an arbitrary design A with unknown selection matrix Π as in (Pananjady et al., 2017).

Clearly, in each step of the Lloyd’s algorithm
∥∥∥Y − Π̂Aω̂

∥∥∥2
decreases and thus, converges to a

local minimum of (ω,Π) 7→ ‖Y − ΠAω‖2. In order to reach the global minimum, we propose

to compute K realizations of the algorithm in Figure 5.1 (for several random initial values for

ω̂) and chose the one which minimizes (ω,Π) 7→ ‖Y − ΠAω‖2. In practice, t = 0.001 (see

Figure 5.1) and K = 3 worked well, usually terminating within 10 iterations. For instance,

computation in R for n = M = 1, 000, m = 3, A = {0, 1} takes about 5 seconds on a desktop

computer with intel core i7 processor.



CHAPTER 6

Simulations

6.1 SLAM

In the following, the influence of all parameters and the underlying signal on the performance

of the SLAM estimator for known number of sources m from Chapter 3 is investigated em-

pirically. Performance measures are the mean absolute error, MAE, for ω̂ and the mean abso-

lute integrated error, MIAE, for f̂ . Further, we report the centered mean, Mean(K̂) − K, the

centered median, Med(K̂) − K, of the number of c.p.’s of f̂ , the frequency of correctly esti-

mated number of c.p.’s for the single source functions f i, Mean(K̂ = K)i, and for the whole

source function vector f , Mean(K̂ = K). To investigate the accuracy of the c.p. locations of

the single estimated source functions f̂ 1, . . . , f̂ m we report the mean of maxi min j
∣∣∣τi − τ̂ j

∣∣∣ and

max j mini
∣∣∣τi − τ̂ j

∣∣∣, where τ and τ̂ denotes the vector of c.p. locations of the true signal and

the estimate, respectively. Furthermore, we report common segmentation evaluation measures

for the single estimated source functions f̂ 1, . . . , f̂ m, namely the entropy-based V-measure, V1,

with balancing parameter 1 of Rosenberg and Hirschberg (2007) and the false positive sensitive

location error, FPSLE, and the false negative sensitive location error, FNSLE, of Futschik et al.

(2014). The V-measure, taking values in [0, 1], measures whether given clusters include the

correct data points of the corresponding class. Larger values indicate higher accuracy, 1 corre-

sponding to a perfect segmentation. The FPSLE and the FNSLE capture the average distance

between true and estimated segmentation boundaries, with FPSLE being larger if a spurious

split is included, while FNSLE getting larger if a true boundary is not detected (see (Futschik

et al., 2014) for details). To investigate the performance of the confidence region C1−α for

ω we use dist(ω,C1−α) from (1.26), the mean coverage Mean(ω ∈ C1−α), and the diameters

ωi − ωi, where C1−α = [ω1,ω1] × . . . × [ωm,ωm]. Further, we report the mean coverage

of the confidence band H̃(β), i.e. Mean(f ∈ H̃(β)). In order to reduce computation time, we

only considered intervals of dyadic length as explained in Section 5.1, possibly at expense of

detection power. Simulation runs were always 10, 000.

6.1.1 Number of source functions m

In order to illustrate the influence of the number of source functions m on the performance of

SLAM we vary m = 2, . . . , 5 while keeping the other parameters in the SBSR model fixed. We

investigate a binary alphabet A = {0, 1} and set f i = 1[(i−1)/5,i/5) for i = 1, . . . , 5, simple bump
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functions (see Figure 6.3). For each m ∈ {2, 3, 4, 5} ω is chosen such that AS B(ω) = 0.02 in

(1.8) (see Table 6.1). For σ = δ = 0.02, n = 1, 000, and α = β = 0.1 ω̂, C0.9, f̂ 1, . . . , f̂ m, and

H̃(0.1) are computed for each m ∈ {2, 3, 4, 5}, incorporating prior knowledge λ ≥ 0.025 (see

Algorithm CRW in Figure 3.1), with true minimal scale λ = 0.05. The results are displayed

in Table 6.2. A major finding is that as the number of possible mixture values equals km,

the complexity of the SBSR model grows exponentially in m such that demixing becomes

substantially more difficult with increasing m.

m = 2 m = 3 m = 4 m = 5
ω (0.02, 0.98) (0.02, 0.04, 0.94) (0.04, 0.06, 0.12, 0.78) (0.06, 0.08, 0.12, 0.16, 0.58)

Table 6.1: Weight vector ω for m = 2, 3, 4, 5 such that the AS B(ω) = 0.02.

m = 2 m = 3 m = 4 m = 5
MAE(ω̂) [10−4] (1, 1) (11, 18, 24) (90, 154, 62, 69) (91, 68, 81, 196, 54)

dist(ω,C1−α) [10−3] 11 23 63 54
Mean(ω ∈ C1−α) [%] 100 99.99 99.96 100

ωi −ωi [10−3] (21, 21) (37, 33, 23) (68, 93, 35, 23) (40, 55, 84, 63, 23)
MIAE( f̂ i) [10−3] (0.2, 0.0) (26, 9, 0.0) (115, 103, 67, 0.0) (315, 317, 49, 183, 0.0)

Mean(K̂) − K (0, 0) (0.22,−0.03, 0) (3.7, 2.6,−0.6, 0) (2.75, 2.28, 0.75,−1.61, 0)
Med(K̂) − K (0, 0) (0, 0, 0) (4, 2, 0, 0) (2, 2, 0,−2, 0)

Mean(K̂ = K)i [%] (99.8, 99.8) (88.5, 98, 100) (15.9, 31, 69.4, 100) (7.1, 30.4, 63.8, 12, 99.9)
Mean(K̂ = K) [%] 99.8 87.2 15.8 1
maxi min j

∣∣∣τi − τ̂ j
∣∣∣ (0.37, 0.02) (33.82, 4.77, 0.00) (245.49, 95.75, 2.52, 0.00) (374.38, 208.32, 40.12, 7.41, 0.02)

max j mini
∣∣∣τi − τ̂ j

∣∣∣ (0.03, 0.00) (18.59, 12.53, 0.000) (9.61, 18.66, 126.33, 0.00) (83.09, 117.17, 61.13, 348.89, 0.00)
V1 [%] (99.9, 100) (88.3, 96.2, 100) (60.9, 83.4, 68.6, 100) (37.5, 54.1, 82.8, 12.6, 100)
FPSLE (0.07, 0.00) (8.98, 6.05, 0.00) (51.52, 21.36, 78.23, 0.00) (110.3, 92.21, 34.98, 216.82, 0.00)
FNSLE (0.3, 0.02) (24.04, 3.22, 0.00) (168.04, 45.09, 62.15, 0.00) (205.75, 137.64, 41.29, 90.02, 0.02)

Mean(f ∈ H̃(β)) [%] 99.93 99.49 98.77 91.08

Table 6.2: Performance of SLAM for m ∈ {2, . . . , 5}, for a binary alphabet A = {0, 1}, sources
f i = 1[(i−1)/5,i/5) for i = 1, . . . , 5, and ω as in Table 6.1.

6.1.2 Number of alphabet values k

To illustrate the influence of the number of alphabet values k we consider three different alpha-

bets Ak = {0, . . . , k} for k = 2, 3, 4. For m = 2 we set

f 1 =

15∑
i=0

(i mod k)1[i,i+1)/16, f 2 =

[15/k]∑
i=0

(i mod k)1k[i,i+1)/16, (6.1)

step functions taking successively every alphabet value in A2 (see Figure 6.1). Further, we set

ω = (0.02, 0.98) such that AS B(ω) = 0.02 for k = 2, 3, 4. For σ = 0.05, n = 1, 056, and

α = β = 0.1 we compute ω̂, C0.9, f̂ 1, . . . , f̂ m, and H̃(0.1) for each k = 2, 3, 4, incorporating

prior knowledge λ ≥ 1/32, with truth λ = 1/16. The results are displayed in Table 6.3. From

this we find that an increasing k does not influence SLAM’s performance for ω̂ and C1−α too

much. However, the model complexity km increases polynomially (for m = 2 as in Table

6.3 quadratically) in k, reflected in a decrease of SLAM’s performance for the estimate of the

source functions f̂ .
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Figure 6.1: f 1 and f 2 from (6.1) for A = {0, 1}, {0, 1, 2}, and {0, 1, 2, 3} (from top to bottom).

k = 2 k = 3 k = 4
MAE(ω̂) [10−3] (19, 12) (18, 12) (15, 11)

dist(ω,C1−α) [10−3] 51 51 47
Mean(ω ∈ C1−α) [%] 100 100 100

ωi − ωi [10−3] (71, 71) (71, 71) (67, 67)
MIAE( f̂ i) [10−2] (29, 0) (49, 0) (60, 0)

Mean(K̂) − K (−6.65, 0) (−7.42, 0) (−7.04, 0)
Med(K̂) − K (−6, 0) (−7, 0) (−7, 0)

Mean(K̂ = K)i [%] (0.39, 99.99) (0, 100) (0, 100)
Mean(K̂ = K) [%] 0.39 0 0
maxi min j

∣∣∣τi − τ̂ j
∣∣∣ (17.5, 0.0) (22.0, 0.0) (23.31, 0.00)

max j mini
∣∣∣τi − τ̂ j

∣∣∣ (96.0, 0.0) (134.4, 0.0) (79.8, 0.0)
V1 [%] (81.7, 100) (78, 100) (81.5, 100)
FPSLE (0.4, 0.0) (58.3, 0.0) (37.2, 0.0)
FNSLE (25.7, 0.0) (29.3, 0.0) (25.2, 0.0)

Mean( f ∈ H̃(β)) [%] 94.60 98.49 98.60

Table 6.3: Performance of SLAM for A = {0, . . . , k}, k = 2, . . . , 4, for two sources m = 2 as
in Figure 6.1 and ω = (0.02, 0.98).
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6.1.3 Confidence levels α and β

We illustrate the influence of the confidence levels α and β on SLAM’s performance with f

and ω as in Example 1.2.1, i.e. m = 3, A = {0, 1, 2}, ω = (0.11, 0.29, 0.6), and f as displayed

in Figure 1.4. For σ = 0.02, 0.05, 0.1 and n = 1, 280 we compute ω̂, C1−α, f̂ 1, . . . , f̂ m, and

H̃(β) for each (α, β) ∈ {0.01, 0.05, 0.1}2, incorporating prior knowledge λ ≥ 0.025 with truth

λ = 0.05. Results are displayed in Table 6.4 and Table 6.5.

σ = 0.02
α = 0.01 α = 0.05 α = 0.1

MAE(ω̂) [10−3] (2, 2, 2) (1, 1, 1) (1, 1, 1)
dist(ω,C1−α) [10−3] 29 25 24
Mean(ω ∈ C1−α) [%] 100 100 100

ωi − ωi [10−3] (48, 46, 44) (43, 42, 42) (42, 42, 42)
σ = 0.05

α = 0.01 α = 0.05 α = 0.1
MAE(ω̂) [10−3] (22, 7, 16) (23, 7, 16) (22, 7, 16)

dist(ω,C1−α) [10−3] 109 105 102
Mean(ω ∈ C1−α) [%] 100 100 99

ωi − ωi [10−3] (168, 123, 115) (160, 112, 106) (155, 107, 102)
σ = 0.1

α = 0.01 α = 0.05 α = 0.1
MAE(ω̂) [10−3] (59, 51, 13) (45, 48, 13) (32, 43, 18)

dist(ω,C1−α) [10−3] 231 218 210
Mean(ω ∈ C1−α) [%] 100 100 100

ωi − ωi [10−3] (329, 344, 282) (305, 323, 226) (276, 312, 212)

Table 6.4: Performance of SLAM’s confidence set C1−α and estimate ω̂ for the mixing ω as in
Example 1.2.1 with σ = 0.02, 0.05, 0.1 and n = 1, 280 for α = 0.01, 0.05, 0.1.

These illustrate that SLAM’s estimate ω̂ for the mixing weights is very stable under the choice

of α. The diameters dist(ω,C1−α) and ωi − ωi, respectively decrease slightly with increasing

α, as expected. Further, we found that the coverage Mean(ω ∈ C1−α) is always bigger than

the nominal coverage 1 − α indicating the conservative nature of the first inequality in (3.4).

With increasing β the multiscale constraint in (1.27) becomes stricter leading to an increase of

K̂. However, as Table 6.5 illustrates, this effect is remarkably small, resulting also in a high

stability of f̂ with respect to α and β. In contrast to the uniform coverage of the confidence

region C1−α for ω for finite n (recall (1.21)), this holds only asymptotically for the confidence

band H̃(β) (see Theorem 3.3.1). This is reflected in Table 6.5, where with increasing σ the

coverage Mean(f ∈ H̃(β)) can be smaller than the nominal 1 − β. Nevertheless, the coverage

of the single source functions remains reasonably high even for large σ (see Table 6.5). In

summary, we draw from Table 6.4 and 6.5 a high stability of SLAM in the tuning parameters

α and β, for both, the estimation error and the confidence statements, respectively.
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σ = 0.02
f 1 f 2 f 3

MIAE( f̂ i) [10−4]

0 2 10
0 2 10
0 2 10


 6 3 11

9 5 12
11 7 13


3 1 4
5 2 4
6 3 5


Med(K̂) − K

0 0 0
0 0 0
0 0 0


0 0 0
0 0 0
0 0 0


0 0 0
0 0 0
0 0 0


Mean(K̂ = K)i [%]

100 100 100
100 100 100
100 100 100


98 100 100
97 99 99
96 98 99


99 100 100
98 99 99
97 99 99


Mean(K̂ = K) [%]

98 99 100
97 99 99
96 98 99


V1 [%]

100 100 100
100 100 100
100 100 100


100 100 100
100 100 100
100 100 100


100 100 100
100 100 100
100 100 100


Mean(f ∈ H̃(β)) [%]

95.8 93.3 92.3
99.0 97.7 97.0
99.2 98.6 98.1


Mean(f i ∈ H̃(β)i) [%]

99.90 99.74 99.34
99.94 99.78 99.64
99.90 99.70 99.68


99.84 99.60 99.38
99.92 99.84 99.74
99.90 99.82 99.74


96.68 95.46 94.92
99.18 98.34 98.10
99.42 99.02 98.64


σ = 0.05

f 1 f 2 f 3

MIAE( f̂ i) [10−3]

6 7 8
6 8 9
6 8 9


160 161 160
164 165 164
160 161 161


80 80 80
82 83 82
80 80 80


Med(K̂) − K

0 0 0
0 0 0
0 0 0


2 2 2
2 2 2
2 2 2


−2 −2 −2
−2 −2 −2
−2 −2 −2


Mean(K̂ = K)i [%]

96 90 85
93 86 80
93 85 80


21 19 17
19 16 15
21 19 17


24 25 27
21 23 24
24 25 26


Mean(K̂ = K) [%]

19 16 14
17 14 12
19 16 14


V1 [%]

99 99 99
99 99 99
99 99 99


92 92 92
92 92 92
92 92 92


91 91 91
91 91 91
91 91 91


Mean(f ∈ H̃(β)) [%]

83.1 76.7 74.0
81.3 75.6 73.4
81.7 76.4 74.5


Mean(f i ∈ H̃(β)i) [%]

100 100 100
100 100 99.98
100 100 99.98


89.34 84.78 82.82
86.60 83.04 83.18
87.24 84.16 83.18


85.80 80.56 78.34
83.14 78.48 77.14
83.58 79.48 78.16


σ = 0.1

f 1 f 2 f 3

MIAE( f̂ i) [10−3]

327 327 327
297 296 296
255 254 253


245 246 246
233 234 234
231 232 232


90 91 91
67 68 68
75 76 76


Med(K̂) − K

2 3 3
1 2 2
1 1 1


1 1 1
0 0 0
0 0 0


0 0 0
0 0 0
0 0 0


Mean(K̂ = K)i [%]

12 9 7
22 19 17
36 32 29


15 12 11
24 22 21
35 33 32


44 37 34
62 53 49
59 52 48


Mean(K̂ = K) [%]

4 2 1
7 5 4
8 7 6


V1 [%]

85 85 85
86 86 86
88 87 87


74 74 75
73 74 74
75 76 76


95 95 95
97 97 97
96 96 96


Mean(f ∈ H̃(β)) [%]

60.7 58.6 55.7
71.0 63.5 63.2
80.2 71.0 66.9


Mean(f i ∈ H̃(β)i) [%]

90.4 89.6 89.3
99.0 98.8 98.8
99.7 99.6 99.6


96.7 91.5 86.0
97.8 95.0 94.3
97.9 95.2 92.9


72.8 74.6 77.0
83.5 80.2 79.4
90.1 86.2 85.6


Table 6.5: Performance of SLAM’s confidence region H̃(β) and estimate f̂ for sources f as
in Example 1.2.1 with σ = 0.02, 0.05, 0.1 and n = 1, 280 for (α, β) ∈ {0.01, 0.05, 0.1}2. In the
displayed matrices α increases within a column and β increases within a row.
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6.1.4 Prior information on minimal scale λ

In the previous simulations we always included prior information on the minimal scale λ

(see Algorithm CRW in Figure 3.1). In the following we demonstrate the influence of this

prior information on SLAM’s performance in Example 1.2.1, i.e. m = 3, A = {0, 1, 2},

ω = (0.11, 0.29, 0.6), and f as displayed in Figure 1.4. For σ = 0.02, n = 1, 280, and

α = β = 0.1 we compute ω̂, C0.9, f̂ 1, . . . , f̂ m, and H̃(0.1) under prior knowledge λ ≥ 0.05,

0.04, 0.025, 0.015, 0.005 (with truth λ = 0.05). The results in Table 6.6 in the supplement

show a certain stability for a wide range of prior information on λ. Only when the prior as-

sumptions on λ is of order 0.1λ (or smaller) SLAM’s performance gets significantly worse.

Prior knowledge λ ≥ 0.05 0.04 0.025 0.015 0.005
MAE(ω̂) [10−3] (6, 5, 3) (2, 2, 1) (2, 2, 1) (5, 5, 6) (159, 126, 186)

dist(ω,C1−α) [10−3] 17 23 23 37 123
Mean(ω ∈ C1−α) [%] 100 100 100 100 100

ωi −ωi [10−3] (24, 25, 25) (42, 42, 42) (42, 42, 42) (65, 64, 63) (183, 171, 144)
MIAE( f̂ i) [10−3] (3, 13, 6) (1, 4, 2) (1, 4, 2) (1, 23, 11) (40, 175, 88)

Mean(K̂) − K (0.1, 0.2, 0.0) (0.1, 0.1, 0.0) (0.1, 0.1, 0.0) (0.0, 0.3,−0.1) (2.4, 2.5,−0.2)
Med(K̂) − K (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0,−2,−2)

Mean(K̂ = K)i [%] (99, 93, 97) (100, 98, 99) (100, 98, 99) (99, 87, 93) (54, 24, 16)
Mean(K̂ = K) [%] 93 98 98 86 6

maxi min j
∣∣∣τi − τ̂ j

∣∣∣ [10−1] (13, 148, 4) (6, 40, 2) (6, 40, 2) (7, 299, 9) (508, 1794, 122)
max j mini

∣∣∣τi − τ̂ j
∣∣∣ [10−1] (2, 41, 50) (1, 11, 15) (1, 11, 15) (1, 45, 91) (223, 331, 1343)

V1 [%] (100, 99, 100) (100, 100, 100) (100, 100, 100) (100, 98, 99) (96, 89, 91)
FPSLE [10−2] (16, 246, 167) (8, 67, 51) (8, 67, 51) (5, 398, 304) (708, 1994, 4491)
FNSLE [10−2] (34, 407, 41) (17, 113, 14) (17, 113, 14) (16, 785, 71) (1610, 5786, 1168)

Mean(f ∈ H̃(β)) [%] 96.01 98.96 98.95 94.78 56.65

Table 6.6: Performance of SLAM for weights ω and sources f as in Example 1.2.1 with
σ = 0.02, 0.05, 0.1 and n = 1, 280 with prior knowledge λ ≥ 0.05, 0.04, 0.025, 0.015, 0.005.

6.1.5 Robustness of SLAM

Finally, SLAM’s robustness against violations of model assumptions is analyzed.

Robustness against non-identifiability

Throughout this work, we assume δ-separability of the underlying parameters (ω,f ), i.e.,

AS B(ω) ≥ δ and f separable as in A3, in order to ensure identifiability. In the following

we briefly investigate SLAM’s behavior if these conditions are close to be, or even violated.

Alphabet separation boundary δ We start with the identifiability condition on ω, namely

AS B(ω) ≥ δ (1.8). We reconsider Example 1.2.1, i.e. m = 3, A = {0, 1, 2}, and f as dis-

played in Figure 1.4, but with ω chosen randomly, uniformly distributed on Ω3. For σ = 0.05,

n = 1, 280, and α = β = 0.1 we compute ω̂, C1−α, f̂ 1, f̂ 2, f̂ 3, and H̃(β), incorporating prior

knowledge λ ≥ 0.025, with truth λ = 0.05. Consequently, for each run we get a different ω and

AS B(ω), respectively. We found that SLAM’s performance of ω̂ and C1−α, respectively, is not

much influenced by AS B(ω) (see Table 6.7, where the average mean squared error of ω̂ and

dist(ω,C1−α) remain stable when AS B(ω) becomes small). The situation changes of course,

when it comes to estimation of f itself. AS B(ω) = 0 in (1.8) implies non-identifiability of f ,
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i.e., it is not possible to recover f uniquely. Therefore, it is expected that small AS B(ω) will

lead to a bad performance of any estimator of f . This is also reflected in Theorem 3.4.2 where

δ, with AS B(ω) ≥ δ, appears as a “conditioning number” of the SBSR model. The results in

Table 6.8 confirm the strong influence of AS B(ω) on the performance of SLAM’s estimate for

f . However, as SLAM does not only give an estimate of f but also a confidence band H̃(β)

this (unavoidable) uncertainty is also reflected in its coverage. To illustrate this define a local

version of AS B(ω) as

AS Bx(ω) := min
e,f (x)∈Am

|eω − f (x)ω| . (6.2)

Intuitively, AS Bx(ω) determines the difficulty to discriminate between the source functions at

a certain location x ∈ [0, 1). Now, define the local size of H̃(β) as |H̃x(β)| := #{e ∈ Am :

∃f ∈ H̃(β) s.t. f (x) = e}. Table 6.8 shows that the uncertainty in |H̃x(β)| increases in non-

identifiable regions, i.e., when AS Bx(ω) is small.

MAE(ω̂) [10−3] dist(ω,C1−α) [10−3]
0 ≤ AS B ≤ 0.0001 (6, 4, 5) 29

0.0001 ≤ AS B ≤ 0.01 (7, 4, 7) 34
0.01 ≤ AS B ≤ 0.02 (4, 4, 4) 30
0.02 ≤ AS B ≤ 0.03 (4, 4, 4) 29
0.03 ≤ AS B ≤ 0.04 (4, 3, 4) 31
0.04 ≤ AS B ≤ 0.05 (4, 3, 4) 31
0.05 ≤ AS B ≤ 0.06 (4, 3, 5) 31
0.06 ≤ AS B ≤ 0.07 (3, 3, 4) 31

Table 6.7: Performance of SLAM for sources f as in Example 1.2.1 with σ = 0.05, n = 1, 280
for ω uniformly distributed on Ω3 conditioned on different ranges for the ASB (2.19).

MIAE( f̂ i) [10−4] |H̃x(0.1)|
mean median

0 ≤ AS B ≤ 0.0001 (1916, 1067, 483) 2.71 3 0 ≤ AS Bx ≤ 0.001
0.0001 ≤ AS B ≤ 0.01 (1536, 923, 354) 2.68 3 0.001 ≤ AS Bx ≤ 0.01
0.01 ≤ AS B ≤ 0.02 (671, 474, 147) 2.67 3 0.01 ≤ AS Bx ≤ 0.02
0.02 ≤ AS B ≤ 0.03 (236, 164, 40) 2.66 3 0.02 ≤ AS Bx ≤ 0.03
0.03 ≤ AS B ≤ 0.04 (96, 37, 7) 2.53 2 0.03 ≤ AS Bx ≤ 0.04
0.04 ≤ AS B ≤ 0.05 (100, 7, 2) 2.49 2 0.04 ≤ AS Bx ≤ 0.05
0.05 ≤ AS B ≤ 0.06 (42, 1, 0) 2.36 2 0.05 ≤ AS Bx ≤ 0.1
0.06 ≤ AS B ≤ 0.07 (16, 4, 0) 1.97 1 0.1 ≤ AS Bx

Table 6.8: Performance of SLAM for sources f as in Example 1.2.1 with σ = 0.05, n = 1, 280
for ω uniformly distributed on Ω3 conditioned on different ranges AS B (left) and AS Bx (right)
as in (1.8) and (6.2), respectively.

Violation of separability condition Next, we consider the separability condition in A3. We

consider a modification of Example 1.2.1, i.e. m = 3, A = {0, 1, 2}, where we modified the

source function f 1 in such a way, that it violates the separability condition in A3, see Figure

6.2. For σ = 0.05, n = 1, 280, and α = β = 0.1 we compute ω̂ and f̂ 1, f̂ 2, f̂ 3 incorporating
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Figure 6.2: Source functions f from Example 1.2.1, where f 1 is modified such that f violates
the separability condition A3. The dashed lines indicate the removed jumps.

(1) (2) (3)
MAE(ω̂) [10−3] (73, 36, 39) (43, 58, 16) (42, 59, 17)
MIAE( f̂ i) [10−3] (123, 181, 84) (447, 435, 137) (563, 279, 99)

Med(K̂) − K (−4, 2, 0) (4, 1,−2) (11, 4,−2)
Mean(K̂ = K)i [%] (10, 10, 19) (5, 0, 33) (2, 1, 4)

V1 [%] (71, 85, 96) (84, 72, 88) (78, 82, 89)

Table 6.9: Performance of SLAM when model assumptions are violated. (1): Setting as in
Example 1.2.1 but with f modified such that it violates the separability condition A3 as in
Figure 6.2, for σ = 0.05, n = 1, 280, and α = β = 0.1. (2): Setting as in Example 1.2.1,
but with t-distributed errors with 3 degrees of freedom, re-scaled to a standard deviation of
σ = 0.05, for n = 1, 280, α = 0.1, and q(β) = 13.03. (3): Setting as in Example 1.2.1, but with
χ2-distributed errors with 3 degrees of freedom, re-scaled to a standard deviation of σ = 0.05,
for n = 1, 280, α = 0.1, and q(β) = 3.73.

prior knowledge λ ≥ 0.025 with truth λ = 0.05. The results are shown in Table 6.9. The

violation of the separability condition A3 leads to non-identifiability of ω, which is naturally

reflected in a worse performance of SLAM’s estimate of ω. As the condition is violated for f 1

(i.e., ω1 < imag(g) as in (1.9)) this has a particular impact on ω̂1. The same holds true for f̂

itself, where the estimation error of ω̂1 propagates to a certain degree to the estimation of f̂ 1.

The performance of f̂ 2 and f̂ 3, however, is not much influenced.

Violation of normality assumption

In the SBSR model the error distribution is assumed to be Gaussian. In the following, SLAM’s

performance for t-(heavy tails) and χ2-(skewed) distributed errors is studied. Again, Example

1.2.1, i.e. m = 3, A = {0, 1, 2}, and f as displayed in Figure 1.4 is considered. We add to g

now t-distributed and χ2-distributed errors, respectively, with 3 degrees of freedom, re-scaled

to a standard deviation of σ = 0.05. For n = 1, 280 and α = 0.1 we compute ω̂ and f̂ 1, f̂ 2, f̂ 3,

incorporating prior knowledge λ ≥ 0.025, with truth λ = 0.05. We simulated the statistic Tn

for t- and χ2- distributed errors, respectively, and choose q(β) to be the corresponding 90%
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quantile. For t-distributed errors this gave q(β) = 13.03 and for χ2-distributed errors q(β) =

3.73. The results in Table 6.9 indicate a certain robustness to misspecification of the error

distribution, provided the quantiles for Tn are adjusted accordingly.

6.2 SLAM-selector

We consider mixtures of m = 1, 2, 3, 4, 5 simple bump functions (see Figure 6.3)

f i = 1[(i−1)/5,i/5), for i = 1, . . . , 5 (6.3)

with value in the binary alphabet A = {0, 1}, i.e., k = 2 and a2 = 1, with λ = 1/5. We choose ω

such that δ = 0.02 as in Table 6.1, the number of observations is n = 1, 000, with Gaussian error

terms ε j ∼ N(0, σ2) in (1.3) with standard deviations σ = 0.01, 0.02, 0.05, 0.1, respectively.

Figure 6.3 show examples for (true) m = 4, σ = 0.05 and m = 3, σ = 0.01, respectively. Note

that as ASB(ω) = 0.02 is fixed, the standard deviation corresponds to the minimal signal to

noise ratio (SNR). Each simulation experiment has been repeated 1, 000 times.

Figure 6.3: Observations Y (gray dots) according to the SBSR model (1.3) for Gaussian noise
with σ = 0.01 (left) and σ = 0.05 (right), n = 1, 000, with true underlying signal g (solid
line in top row) for m = 4 (left) and m = 4 (right), ω = (0.02, 0.04, 0.94) (left) and ω =

(0.04, 0.06, 0.12, 0.78) (right), and f (row 2-5) as in (6.3).

6.2.1 Comparision with AIC, BIC, and LRM

For the SLAM selector of Definition 3.6.8 the first row in Figure 6.4 shows histograms of m̂

for σ = 0.01 (for σ = 0.02, 0.05, 0.1 see Figure B.2, B.1, and B.3 in the appendix). It shows

that the SLAM selector m̂ estimates the number of sources m very accurately for reasonable

SNR. In particular, m̂ rarely overestimates m, even when the noise level is very high and

m is large. Notably, if m̂ underestimates m (because of the high noise level or because m

is very large), it rarely underestimates m by more than one. In particular, as discussed in
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the following, the SLAM selector performs significantly better than standard methods as the

Bayesian information criterion (BIC), Akaike information criterion (AIC), or the local residual

method (LRM).

Figure 6.4: Histogram of SLAM selector m̂ as in Definition 3.6.8 (top row), m̂BIC (second row),
m̂AIC (third row) as in (6.6), and m̂LRM as in (6.7) for ω as in Table 6.1 and f = (f 1, . . . ,fm)
as in (6.3), with standard deviation σ = 0.01, n = 1, 000, for m = 1, 2, 3, 4, 5 (from left to
right). The red vertical line indicates the true number of source functions m.

Bayesian and Akaike Information Criterion Considering estimation of m as a model se-

lection problem, the most prominent selectors are the BIC and the AIC

BIC := −2 ln(L̂) + p ln(n), AIC := −2 ln(L̂) + 2p,

where L̂ denotes the maximized value of the likelihood function and p the dimension of the

free parameters to be estimated, in order to select m. Among a finite set of models the model

with the lowest BIC and AIC, respectively, is preferred.

For models which satisfy certain regularity conditions the BIC criterion was theoretically jus-

tified by Schwarz (1978) via asymptotic expansion of the log-posterior probability. More pre-

cisely, Schwarz (1978) showed that for n i.i.d. observations Y from an exponential family with

parameter θ belonging to one of a finite set of models Θ1, . . . ,ΘM, where each model is a linear
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submanifold of dimension mi of an Euclidean space, the logarithm of the posterior probability

satisfies

ln
(
P

(
θ ∈ Θ j

∣∣∣Y))
= ln

(
θ̂ j

)
−

1
2

m j ln(n) + O(1),

as n → ∞, where ln denotes the log-likelihood function and θ̂ j the maximum likelihood es-

timator under Θ j. Note that this result is obtained under very weak assumptions on the prior

distribution, whose specific form is hidden in the O(1) remainder term. The crucial assump-

tion in the proof of this result is that the log-likelihood function is twice differentiable w.r.t.

the parameter θ around θ̂ j. This assumption, however, is heavily violated in the SBSR model

through the discrete nature of the sources f 1, . . . , f m. More precisely, in the SBSR model for

fixed number of sources m the parameter space is a disjoint union of several (m − 1)-simplices

Ωm, which is not a linear submanifold of an Euclidean space. Consequently, we stress that

there is no theoretical justification to use the BIC criterion for model selection in the SBSR

model. This has been already observed for c.p. regression, see (Zhang and Siegmund, 2007,

2012). However, as the BIC (and AIC) criterion is widely used (often also in situations where

the required regularity assumptions are not fulfilled), we will, in the following, compare it with

the proposed methods in a simulation study.

As the maximum likelihood estimator (which equals the least squares estimator for Gaussian

error) in the modelMm is not available in general (see Section 5.2), we use SLAM to approx-

imate it. As the observations in the SBSR model are Gaussian and as the mixing weights sum

up to one, implying that the number of free parameters corresponds to m−1, the BIC and AIC,

respectively, in the SBSR model become

BIC = BIC(Mm) =

∑n
j=1

(
y j − ĝm(x j)

)2

σ2 + (m − 1) ln(n), (6.4)

AIC = AIC(Mm) =

∑n
j=1

(
y j − ĝm(x j)

)2

σ2 + 2(m − 1). (6.5)

Thus, the selected number of source functions is

m̂BIC = argmin
1≤m̃≤mmax

BIC(Mm̃), m̂AIC = argmin
1≤m̃≤mmax

AIC(Mm̃). (6.6)

For f as in (6.3), ω as in Table 6.1, and Gaussian error terms ε j ∼ N(0, σ2) in (1.3) with

standard deviation σ = 0.01, 0.02, 0.05, 0.1 we compute the BIC and AIC for m = 1, 2, 3, 4, 5

and mmax = 8. The second and third rows in Figure 6.4 shows the histogram of m̂BIC and m̂AIC

for σ = 0.01 (for σ = 0.02, 0.05, 0.1 see Figure B.2, B.1, and B.3 in the appendix). Comparing

the different rows in Figure 6.4 (and Figure B.2, B.1, and B.1 in the appendix) indicates that

the SLAM selector m̂ from Definition 3.6.8 outperforms both the BIC and the AIC. While

the SLAM selector m̂ from Definition 3.6.8 rarely overestimate the number of sources, m̂BIC

and m̂AIC often largely overestimate m. Moreover, the variance of m̂BIC and m̂AIC seems to be

much higher than the variance of m̂. In particular, when the noise level becomes large m̂BIC and

m̂AIC can produce very unreliable results. This is in contrast to m̂, which, even when the noise
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level is high and m is large, rarely misspecifies m by more than one. Note, moreover, that the

AIC and BIC criterion do not give any statistical guarantees on m̂AIC and m̂BIC, in contrast to

the SLAM selector (recall Theorem 3.6.4).

Local residual method Another simple model selection method, which is often applied in

practice, is a LRM. The idea is that for a reasonable estimator ĝ in the correct model the residual

sum
∑n

j=1

(
y j − ĝ(x j)

)2
/n is a good estimate of the varianceσ2, which can be estimated very ac-

curately (with
√

n-rate) via local differences estimators, e.g.,
∑n

j=2

(
y j − y j−1

)2
/(2n). More pre-

cisely, let ĝm be the SLAM estimate in modelMm. Then, for a set of models {M1, . . . ,Mmmax}

with mmax ∈ N the LRM selectMm̂LRM with

m̂LRM := argmin
1≤m̃≤mmax

∣∣∣∣∣∣∣∣2
n∑

j=1

(
y j − ĝm̃(x j)

)2
−

n∑
j=2

(
y j − y j−1

)2

∣∣∣∣∣∣∣∣ . (6.7)

For f as in (6.3), ω as in Table 6.1, and Gaussian error terms ε j ∼ N(0, σ2) in (1.3) with

standard deviation σ = 0.01, 0.02, 0.05, 0.1 we compute the LRM for m = 1, 2, 3, 4, 5 and

mmax = 8. The bottom row in Figure 6.4 shows the histogram of m̂LRM for σ = 0.01 (for

σ = 0.02, 0.05, 0.1 see Figure B.2, B.1, and B.3 in the appendix). It shows that m̂LRM performs

poorly and especially much worse than the SLAM selector.

6.2.2 Lower Confidence Bounds

Theorem 3.6.4 yields that m̂1−α constitutes a (1 − α) lower confidence bound for the number

of source components m. Figure 6.5 shows histograms of m̂1−α for Gaussian error terms

ε j ∼ N(0, σ2) in (1.3) with standard deviation σ = 0.05 (for σ = 0.01, 0.02, 0.1 see Figure

B.4, B.5, and B.6 in the appendix). The results indicate that the actual coverage of m̂1−α

is even higher than the nominal 1 − α. In fact, for σ = 0.01 in our simulations it did not

happen once that m̂1−α > m for α = 0.05, 0.1, 0.25, i.e., we obtained an empirical coverage

of 100% for α = 0.05, 0.1, 0.25. For σ = 0.02, 0.05, 0.1 the coverage is shown in Table 6.10,

showing that also when the variance gets larger the empirical coverage is almost 100% for

α = 0.05, 0.1, 0.25. Even for α = 0.25 the coverage was always higher than 99.4%. Still, m̂1−α

for α = 0.05, 0.1, 0.25 was close to the true underlying number of components m (see Figure

6.5). Also for the SLAM selector m̂ as in Definition 3.6.8 we obtained a very high coverage as

displayed Table 6.11. This shows that the SLAM selector is parsimonious (i.e., avoids to many

components), in general, and, at the same time, powerful to recover sources very accurately. In

practice, this means that one can be very sure that detected components are present in the signal.

This can be driven by the overestimation probability α, a small α leads to a more parsimonious

result. In practical purposes, one can use it as a screening parameter (see (Frick et al., 2014)).

In other words, the parameter q in the estimate m̂(q) enables in applications a trade off between

detection power of sources (small q) and control of the overestimation error (large q), where a

specific q translates to a bound for the overestimation probability.
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Figure 6.5: Histogram of m̂0.95, m̂0.9, m̂0.75 as in Definition 3.6.4 (from top to bottom), for ω as
in Table 6.1 and f = (f 1, . . . ,fm) as in (6.3), with standard deviation σ = 0.05, n = 1, 000, for
m = 1, 2, 3, 4, 5 (from left to right). The red vertical line indicates the true number of source
functions m.

σ 0.02 0.05 0.1
P(m̂0.95 >m) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)
P(m̂0.90 >m) (0.001, 0, 0, 0, 0) (0.001, 0, 0, 0, 0) (0, 0, 0, 0, 0)
P(m̂0.75 >m) (0.005, 0, 0, 0, 0) (0.002, 0.001, 0, 0, 0) (0.006, 0, 0, 0, 0)

Table 6.10: Overestimation probability for m = (1, . . . , 5) of SLAM selector m̂1−α in (3.24)
for ω as in Table 6.1 and f as in (6.3) with n = 1, 000.

σ 0.01 0.02 0.05 0.1
P(m̂ >m) (0, 0, 0, 0, 0) (0.07, 0, 0, 0.004, 0) (0.079, 0, 0, 0, 0) (0.088, 0, 0, 0, 0)

Table 6.11: Overestimation probability for m = (1, . . . , 5) of SLAM selector m̂ in Definition
3.6.8 for ω as in Table 6.1 and f as in (6.3) with n = 1, 000.

6.3 LS approximation

In the following, the Lloyd’s algorithm from Figure 5.1 is explored in a simulation study. In

particular, we want to compare its performance with the theoretical findings for the LSE from

Chapter 4, which cannot be computed efficiently (see Section 5.2). Corollary 4.1.4 yields that

the LSE achieves optimal rates for the maximal prediction error. The maximal prediction error

cannot be simulated efficiently, as the maximum may be attained at any (ω,Π). Instead, we

simulate the Bayes risk with uniform priors for ω and Π, respectively. As discussed in Remark

4.1.5, this ensures that AS B(ω) ≥ c1
√

M and Π is c2M-separable, for some constant c1, c2 > 0
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Figure 6.6: Left: Normalized MSE E
(∥∥∥θ̂ − ΠAω

∥∥∥2
)
/M for the estimator θ̂ = Π̂Aω̂ of Figure

5.1 for m = 3 sources, a binary alphabet A = {0, 1}, and n = 500 observations, for M ∈

{1, . . . , 1000} and σ = 0.2, 0.5, 1 (lightgray, darkgray, and black line). Top right: MSE on a

logarithmic scale. Bottom right: E
(∥∥∥θ̂ − ΠAω

∥∥∥2
)
/(Mσ2).

asymptotically almost surely1. We simulate the estimator θ̂ = Π̂Aω̂ of Lloyd’s algorithm from

Figure 5.1 (see Section 5.2) for m = 2, 3, 4 number of sources, alphabets A = {0, 1}, {0, 1, 2, 3},

n = 500, 1000 number of observations, for M ∈ {1, . . . , 1000}, and standard deviation σ =

0.2, 0.5, 1. Simulation runs were always 100, 000.

Dependence on σ We simulated the mean squared error (MSE) for the estimator θ̂ = Π̂Aω̂

of Lloyd’s algorithm from Figure 5.1 for three sources m = 3, a binary alphabet A = {0, 1},

n = 500 observations, for M ∈ {1, . . . , 1000} and σ = 0.2, 0.5, 1. The results are shown in

Figure 6.6. For larger variances (σ = 1, 0.5) the top left plot of Figure 6.6 shows a peak

at M = 3 and for M > 3 an exponential decay to some limiting value. For small variance

σ = 0.2 the exponential decay starts already at M = 1. The peak can be explained as follows:

When the variance is large, i.e., the signal to noise ratio is small (recall that the alphabet A =

{0, 1} is fixed), the observations Y in (4.1) are likely to lie outside of the parameter space

N ⊂ [0, 1]n×M. Thus, the Lloyd’s algorithm prefers parameters in N which are close to the

boundary of [0, 1]n×M. This corresponds to mixing matrices ω with columns equal to unit

vectors, which in general are not close to the true underlying mixing matrix and hence, lead to

a larger MSE. However, if M < m such ω have zero alphabet separation boundary AS B(ω) = 0

and in particular, small number of possible mixture values. More precisely, for M < m when

1A uniform prior for ω does not guarantee WS B(ω) ≥ c1
√

M asymptotically almost surely. However, this
is more of a technical issue, as one can always consider estimation up to permutation matrices P (recall that
F PP−1ω = Fω), that is, one considers the equivalence class (F ,ω) ∼ (F P, P−1ω) for any permutation P.
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Figure 6.7: Left: Normalized MSE E
(∥∥∥θ̂ − ΠAω

∥∥∥2
)
/M for the estimator θ̂ = Π̂Aω̂ of Lloyd’s

algorithm from Figure 5.1 for m = 3 sources, a binary alphabet A = {0, 1}, for M ∈

{1, . . . , 1000} and n = 1000, 500 (solied and dashed line) observations with σ = 0.2, 0.5 (gray

and black line). Top right: MSE on a logarithmic scale. Bottom right: E
(∥∥∥θ̂ − ΠAω

∥∥∥2
)
/(Mσ2).

the columns of ω are unit vectors and ω̃ is a different mixing matrix with AS B(ω̃) > 0 then

#
{
eω : e ∈ Am}

≤ kM < km = #
{
eω̃ : e ∈ Am}

.

Consequently, when M < m mixing matrices ω with columns being unit vectors are not

(wrongly) selected by the Lloyd’s algorithm and hence, the estimate fits the true underlying

parameters better. On the other hand, as the (maximal) number of mixture values km does not

grow with M, when M � m choosing the columns of ω as unit vectors only explores certain

small (relatively decreasing with M) areas of the boundary of the parameter space N and thus

does not lead to a better fit of the data, in general. The peak in the MSE at M = m can be

misleading: One might think that for M ≈ m estimating each column of ω separately from the

corresponding column of the data matrix Y leads to a smaller MSE than estimating the whole

matrix ω at once from the whole data Y . This is not true in general, which can be seen by

the following example. When M = 1 estimation of ω ∈ Rm×1 reduces to estimation of its

entries ω11, . . . , ωm1, as their ordering is determined via the relation ω11 < . . . < ωm1. How-

ever, when M = 2 estimating its entries ωi j does not determine ω uniquely from the relation

‖ω1·‖ < . . . < ‖ωm·‖. In particular, combining estimates of single columns of ω is not feasible.

The top right plot of Figure 6.6 shows the MSE on a logarithmic scale (where we subtracted the

limiting value limM→∞ E
(∥∥∥θ̂ − ΠAω

∥∥∥2
)
/M). Its linearity suggests an exponential decay con-

firming the bounds in Corollary 4.1.4. As in Corollary 4.1.4 the slope in Figure 6.6 (top right)

decreases with σ2 and the intercept does not depend on σ2. The bottom left plot of Figure 6.6
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Figure 6.8: Left: Normalized MSE E
(∥∥∥θ̂ − ΠAω

∥∥∥2
)
/M for the estimator θ̂ = Π̂Aω̂ of Lloyd’s

algorithm from Figure 5.1 for a binary alphabet A = {0, 1}, with n = 500 observations for M ∈
{1, . . . , 1000} and m = 2, 3, 4 (dotted, dashed, and solid line) for σ = 0.2, 0.5 (gray and black

line). Top right: MSE on a logarithmic scale. Bottom right: E
(∥∥∥θ̂ − ΠAω

∥∥∥2
)
/(Mσ2(m − 1)).

shows the limiting value of the MSE. In the bottom right plot of Figure 6.6 one observes that,

just as in Corollary 4.1.4, it scales with σ2.

Dependence on n We simulated the MSE for the estimator θ̂ = Π̂Aω̂ of Lloyd’s algorithm

from Figure 5.1 for three sources m = 3, a binary alphabet A = {0, 1}, for M ∈ {1, . . . , 1000}

and n = 500, 1000 (and σ = 0.2, 0.5). The results are shown in Figure 6.7. The top right plot of

Figure 6.7 shows the MSE on a logarithmic scale (where we subtracted the limiting value). It

clearly shows an exponential decay. As in Corollary 4.1.4 the slope in Figure 6.7 top right does

not depend on n and the intercept increases with n. The bottom left plot of Figure 6.7 shows

the limiting value of the MSE, just as in Corollary 4.1.4 it does not depend on n.

Dependence on m We simulated the MSE for the estimator θ̂ = Π̂Aω̂ of Lloyd’s algo-

rithm from Figure 5.1 for a binary alphabet A = {0, 1}, with n = 500 observations for M ∈

{1, . . . , 1000} and m = 2, 3, 4 (and σ = 0.2, 0.5). The results are shown in Figure 6.8. The

top right plot of Figure 6.8 shows the MSE on a logarithmic scale (where we subtracted the

limiting value). It clearly shows an exponential decay. As in the upper bound of Corollary

4.1.4 the slope in Figure 6.8 top right decreases with m and the intercept does not depend on

m. The bottom left plot of Figure 6.8 shows the limiting value of the MSE, just as in Corollary

4.1.4 it increases with m (scaling with m−1). This is in accordance with Corollary 4.1.4 which

suggests a limiting constant proportional to m.
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Figure 6.9: Left: Normalized MSE E
(∥∥∥θ̂ − ΠAω

∥∥∥2
)
/M for the estimator θ̂ = Π̂Aω̂ of Lloyd’s

algorithm from Figure 5.1 for m = 3 sources with n = 500 observations for M ∈ {1, . . . , 1000}
and alphabets A = {0, 1}, {0, 1, 2, 3} (dashed and solid line) for σ = 0.2, 0.5 (gray and black

line). Top right: MSE on a logarithmic scale. Bottom right: E
(∥∥∥θ̂ − ΠAω

∥∥∥2
)
/(Mσ2m).

Dependence on A We simulated the MSE for the estimator θ̂ = Π̂Aω̂ of Lloyd’s algorithm

from Figure 5.1 for m = 3 sources with n = 500 observations for M ∈ {1, . . . , 1000} and

alphabets A = {0, 1}, {0, 1, 2, 3} (and σ = 0.2, 0.5). The results are shown in Figure 6.9. The

top right plot of Figure 6.9 shows the MSE on a logarithmic scale (where we subtracted the

limiting value). It clearly shows an exponential decay. The slope in Figure 6.9 top right does

not depend on the alphabet. This suggests that in Corollary 4.1.4 the additional (1+ mak)2 term

in the upper bound is not necessary. The intercept in Figure 6.9 top right increases with ak as

in Corollary 4.1.4. The bottom left plot of Figure 6.9 shows the limiting value of the MSE. Just

as in Corollary 4.1.4 it does not depend on the alphabet A.

Estimation error Figure 6.10 shows the simulation results for the estimation error of the es-

timator θ̂ = Π̂Aω̂ of Lloyd’s algorithm from Figure 5.1 for the setting of Figure 6.6, i.e., for m =

3 sources, a binary alphabet A = {0, 1}, and n = 500 observations, for M ∈ {1, . . . , 1000} and

σ = 0.2, 0.5, 1. Again an exponential decay to some limiting value for E
(
d((Π̂, ω̂), (Π, ω))2

)
/M,

P
(
Π , Π̂

)
, E

(
maxi=1,...,m ‖ωi· − ω̂i·‖

2
)
/M and E

(∥∥∥ΠA − Π̂A
∥∥∥2

2

)
as M → ∞ is observed. Whereas

P
(
Π , Π̂

)
→ 0 as M → ∞, the limiting value of E

(
maxi=1,...,m ‖ωi· − ω̂i·‖

2
)
/M and, thus, also

of E
(
d((Π̂, ω̂), (Π, ω))2

)
/M, scales with σ2, which is in accordance with Theorem 4.2.3.
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Figure 6.10: From top to bottom: E
(
d((Π̂, ω̂), (Π,ω))2

)
/M from (4.8); exact recovery prob-

ability P
(
Π , Π̂

)
(left) and E

(∥∥∥ΠA − Π̂A
∥∥∥2

2

)
(right); and E

(
maxi=1,...,m ‖ωi − ω̂i‖

2
)
/M for the

estimator θ̂ = Π̂Aω̂ of Lloyd’s algorithm from Figure 5.1 for m = 3 sources, a binary alphabet
A = {0, 1}, and n = 500 observations, for M ∈ {1, . . . , 1000} and σ = 0.2, 0.5, 1 (lightgray,
darkgray, and black line).



CHAPTER 7
Applications in cancer genetics

In the following we want to apply the SLAM procedure from Chapter 3 to some real genetic

sequencing data from a cancer tumor. Recall from Section 1.1 that a cancer tumor often con-

sists of a few distinct sub-populations , so called clones, of DNA with distinct CN profiles

arising from duplication and deletion of genetic material groups. The CN profiles of the un-

derlying clones in a sample measurement correspond to the functions f 1, . . . ,fm, the weights

ω1, . . . ,ωm correspond to their proportion in the tumor, and the measurements correspond to

observations Y as in the SBSR model (1.3).

The most common method for tumor DNA profiling is via WGS, which roughly involves the

following steps:

1. Tumor cells are isolated, and the pooled DNA is extracted, amplified and fragmented

through shearing into single-strand pieces.

2. Sequencing of the single pieces takes place using short “reads” (at time of writing of

around 102 base-pairs long).

3. Reads are aligned and mapped to a reference genome (or the patient germline genome if

available) with the help of a computer.

Although, the observed total reads are discrete (each observation corresponds to an integer

number of reads at a certain locus), for a sufficiently high sequencing coverage, as it is the

case in our example with around 55 average stretches of DNA mapped to a locus, it is well

established to approximate this binomial by a normal variate, see e.g., (Liu et al., 2013).

In the following, SLAM is applied to the cell line LS411, which comes from colorectal can-

cer and a paired lymphoblastoid cell line. Sequencing was done through a collaboration of

Complete Genomics with the Wellcome Trust Center for Human Genetics at the University

of Oxford. This data has the special feature of being generated under a designed experiment

using radiation of the cell line (“in vitro”), designed to produce CNAs that mimic real world

CN events. In this case therefore, the mixing weights and sequencing data for the individual

clones are known, allowing for validation of SLAM’s results, something that is not feasible for

patient cancer samples.

The data comes from a mixture of three different types of DNA, relating to a normal (germline)

DNA and two different clones. Tumor samples, even from micro-dissection, often contain high

proportion of normal cells, which for our purposes are a nuisance, this is known as “stromal
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Figure 7.1: As Figure 1.3, but with qn(β) = 2.2 corresponding to β = 0.01.

contamination” of germline genomes in the cancer literature. The true mixing weights in our

sample are ω> = (ωNormal,ωClone1,ωClone2) = (0.2, 0.35, 0.45).

SLAM will be, in the following, applied only to the mixture data without knowledge of ω and

the sequenced individual clones and germline. The latter (which serve as ground truth) will

then be used only for validation of SLAM’s reconstruction. We restricted attention to regions

of chromosome 4, 5, 6, 18 and 20, as detailed below. Figure 1.2 shows the raw data. Sequencing

produces some spatial artifacts in the data, and waviness related to the sequencing chemistry

and local GC-content, corresponding to the relative frequency of the DNA bases {C, G} relative

to {A, T}. This violates the modeling assumptions. To alleviate this we preprocess the data with

a smoothing filter using local polynomial kernel regression on normal data, baseline correction,

and binning. We used the local polynomial kernel estimator from the R package KernSmooth,

with bandwidth chosen by visual inspection. We selected the chromosomal regions above as

those showing reasonable denoising, and take the average of every 10th data point to make

the computation manageable resulting in n = 7, 480 data points spanning the genome. The

resulting data is displayed in Figure 1.3, where we can see that the data is much cleaned in

comparison with Figure 1.2 although clearly some artefacts and local drift of the signal remain.

For the SLAM procedure we incorporated prior knowledge of constant CN 2 for the normal

cells and considered the following separable regions in Algorithm CRW in Figure 3.1: to infer

ωNormal we searched for regions where fNormal = 2 and fClone1 = fClone2 = 3 and to infer

ωClone1 we search for regions where fClone1 = 3 and fClone2 = fNormal = 2. ωClone2 was

indirectly inferred via ωClone2 = 1 − ωClone1 − ωNormal.

With σ = 0.21 pre-estimated as in (Davies and Kovac, 2001), SLAM yields the confidence

region for α = 0.1 C0.9 = [0.00, 0.23]× [0.30, 0.44]× [0.37, 0.70]. With qn(α) = −0.15 selected

with the MVT-method from Section 3.5 we obtain ω̂ = (0.11, 0.36, 0.52). Figure 7.1 shows

SLAM’s estimates for qn(β) = 2.2 (which corresponds to β = 0.01). The top row shows

the estimate for total CN
∑

j ω̂ j f̂ j and rows 2-4 show f̂ 1, f̂ 2, and f̂ 3. We stress that the data

for the single clones are only used for validation purposes and do not enter the estimation

process. Inspection of Figure 7.1 shows that artifacts and local drifts of the signal result in an

overestimation of the number of jumps. However, the overall appearance of the estimated CNA
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Figure 7.2: Estimated number of source components m̂(q) (y-axis) as in Definition 3.6.2 for
different values of q (x-axis), for the WGS-data from Figure 1.3 with true number of source
components m = 3 (red horizontal line). The blue dot shows the SLAM selector m̂ as in
Definition 3.6.8.

profile remains quite accurate. This over-fitting effect caused by these artifacts can be avoided

by increasing SLAM’s tuning parameter qn(β) at the (unavoidable) cost of loosing detection

power on small scales (see Figure 1.3, which shows SLAM’s estimate for qn(β) = 20). In

summary, Figure 1.3 and 7.1 show that SLAM can yield highly accurate estimation of the total

CNA profile in this example, as well as reasonable CNA profiles and their mixing proportions

for the clones.

Estimating the number of clonal components Recall from Section 1.1 that usually in can-

cer genetics the number of clones is unknown. Therefore, we apply the SLAM selector m̂(q)

from Definition 3.6.2 to estimate the number of clonal components in this data example, where

m = 3. Figure 7.2 displays m̂(q1−α) in dependence of the threshold q1−α and the probability α,

which corresponds to the error to overestimate m, see Theorem 3.6.4. Larger q1−α and hence,

smaller α, provide a stronger guarantee in accordance with Figure 7.2. Remarkably, the estima-

tor m̂(q1−α) = 3 is stable over the range α ∈ (0.001, 0.999). This corresponds to the threshold

q ∈ (−0.2, 3.8) in Definition 3.6.2. Finally, the SLAM selector m̂ from Definition 3.6.8 yields

the correct number of sources m̂ = m = 3 in this example (see blue dot in Figure 7.2). The

BIC and the AIC criterion, however, overestimate the number of sources in this example with

m̂BIC, m̂AIC = 7, in accordance to our simulation results in Section 6.2.1. As Figure 7.3 shows,

misspecifying the number of clones as m̂ = 2, leads to artificial jumps in the sources and mix-

ture, respectively (recall Example 1.3.1). However, the estimate still remains quite reasonable

in the sense that it tries to combine the two different clones into a single one.
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Figure 7.3: As Figure 1.3, but with m̂ = 2 in SLAM.



CHAPTER 8

Outlook and discussion

This thesis considered a unifying treatment of finite alphabet blind separation (FABS) prob-

lems, which, to the best of our knowledge, have not been analyzed in this general and compre-

hensive form, so far.

In a first step, the identifiability issue was characterized. Separability was introduced and found

to regularize FABS via the minimal ASB δ. In particular, it ensures identifiability for arbitrary

alphabets A, number of mixtures M, and number of sources m, including the situation where

m is unknown.

In a statistical setting, we first considered c.p. regression in the SBSR model (1.3). The mul-

tiscale procedure SLAM which estimates the mixing weights ω and the sources f (including

the number of sources components m) at (almost) optimal rate of convergence was introduced.

Moreover, this procedure yields (asymptotically) honest confidence statements for all quantities

(including lower confidence bounds for m). Theoretical optimality results were accompanied

by a simulation study and a real data example from cancer genetics.

Second, the statistical setting of a multivariate linear model with unknown finite alphabet de-

sign was considered. Lower and upper bounds for both, the minimax prediction rate and the

minimax estimation rate (in terms of the metric d in (4.8)), were derived. Both are attained

by the LSE. In particular, the results reveal that the unknown design does not influence the

minimax rates when the number of mixtures M is at least of order ln(n), where n is the num-

ber of observations. This is in strict contrast to the computational issue. Whereas for known

design computation of the LSE amounts to a convex optimization problem, for unknown finite

alphabet design as in (1.6) it seems to be not feasible, as it amounts to minimization over a dis-

joint union of exponentially many (in n) (convex) sets. Therefore, we propose a simple Lloyd’s

algorithm for its approximation. Simulations indicate similar convergence properties as in the

theoretical results for the LSE.

In the following we discuss further possible research directions in FABS.

Bayesian FABS This thesis considers FABS in a frequentist setting, where the data Y , in

(1.3) and (1.6), has underlying true fixed and deterministic mixing weights ω and sources f .

Alternatively, one may consider FABS in a Bayesian setting, where ω and f are themselves

random variables. For any Bayesian procedure a prior distribution of the underlying parameters

is fundamental. A natural prior distribution for ω in this setting is a uniform distribution on
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Ωm (for known m) and Ω (for unknown m), which has been studied in Section 2.3.2 and

2.3.3, respectively. For the sources f a reasonable prior is a Markov process (including i.i.d.

sequences), which has been studied in Section 2.3.1. These may be used as a starting point for

Bayesian FABS.

SLAM for general error distributions Although, we obtained a certain robustness of SLAM

to misspecification of the error distribution in our simulation studies, it is natural to ask how

the results of this work can be extended to other types of error distributions than the Gaussian

distribution. A natural extension of the Gaussian are sub-Gaussian distributions, where ε is

sub-Gaussian with scale parameter σ > 0 if

E
(
etε

)
≤ eσ

2t2/2, ∀t ∈ R. (8.1)

The consistency results for SLAM in Theorem 3.4.2 and 3.6.9 rely on a tail bound for the

multiscale statistic Tn in (1.16). For the Gaussian case (Sieling, 2013, Corollary 4) yields that

for all n ∈ N and q > C, for some universal constant C < ∞, P(Tn > q) ≤ exp(−q2/8). When

the error terms ε j in (1.3) are only sub-Gaussian with mean zero and variance σ2, one can use

strong Gaussian approximation results (Sakhanenko, 1985) to derive a similar bound.

Theorem 8.0.1. Let g ∈ Mδ,λ
m for some δ, λ > 0 and m ∈ N and consider observations

Y j = g(x j) + ε j, j = 1, . . . , n, from the SBSR model (1.3), but with ε j i.i.d. sub-Gaussian as

in (8.1) with mean 0 and variance σ2. Let Tn(Y, g) be as in (1.16). Then, for some universal

constants 0 < C,C1,C2 < ∞ it follows for all q > C that

P(Tn(Y, g) > q) ≤ exp(−q2/32) + (1 + C2
√

n) exp(−C1q
√

nλ/4).

With Theorem 8.0.1 one can adapt the consistency results for SLAM in Theorem 3.4.2 for the

sub-Gaussian case. Defining qn(αn) := δ/(17makσ) ln(n) explicitly as in (A.43) one obtains

that the assertions of Theorem 3.4.2 still hold true for sub-Gaussian noise, but with probability

decreased to 1 − exp(−qn(αn)2/32) − (1 + C2
√

n) exp(−C1qn(αn)
√

nλ/4) (compared to 1 −

exp(−qn(αn)2/8) in the Gaussian case). Note that this still converges superpolynomially fast

to one. Analog, the consistency rates for the SLAM selector in Theorem 3.6.9 can be adapted

for the sub-Gaussian case, where now P(m̂ ,m) is of rate O
(√

n exp(−c(λ, δ) n)
)

(instead of

O
(
exp(−c(λ, δ) n)

)
as in the Gaussian case).

A different extension of a Gaussian error distribution is to consider general one-dimensional

exponential families. That is, the observations Y j in (1.3) are assumed to be independently

distributed with ν-density hg(x j)(z) := exp
(
g(x j)z − Ψ

(
g(x j)

))
, for some σ-finite measure ν

on the Borel sets on R and a cumulant transform Ψ, with the natural parameter space Θ ={
θ ∈ R :

∫
R

exp(θz)dν(z) < ∞
}
. Analog to T j

i in (1.15) one can consider for the local hypothe-
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sis testing problems in (1.14) the log-likelihood ratio statistic

T j
i (Y, gi j) := log

supθ∈Θ Π
j
l=ihθ(Yl)

Π
j
l=ihgi j(Yl)

 . (8.2)

Combining the local statistics in (8.2) in the same way as in (1.16) yields a corresponding

multiscale statistic Tn(Y, g). Dümbgen and Spokoiny (2001); Dümbgen et al. (2006); Frick

et al. (2014) give several results about this multiscale statistic, its limit distribution, and its

geometric interpretation, which leads to the definition of boxes B as in (1.18). Combining this

with the results of this work yields an extension of SLAM for such distributions. Especially

for the case of Poisson and negative binomial distributed Y in (1.3) this might be of particular

interest in the context of cancer genetics, as these distributions are often used to model the noise

of sequencing data (see (Liu et al., 2013) and references there). Proving consistency results as

in Theorem 3.4.2 (and 3.6.11) for general exponential families basically involves three major

steps. First, a modulus of continuity for the multiscale statistic Tn(Y, g) (as a function of g) is

needed, which boils down to a modulus of continuity of the corresponding cumulant transform

Ψ. With this at hand, one can adapt Theorem 3.2.1 which quantifies how the estimation error

of ω̂ increases the multiscale statistic Tn and hence, translate an upper bound for qn(βn) to an

upper bound for qn(αn). Second, one has to determine the diameters of the boxes in B, which,

in contrast to the Gaussian case, may not always have a closed expression. Finally, a tail bound

for the finite sample distribution of Tn is needed, as in Theorem 8.0.1 for the sub-Gaussian

case. This gives an explicit upper bound for P(Tn(Y, g) > qn(αn)), which translates to a lower

bound for the probability that the assertions 1.- 4. in Theorem 3.4.2 hold.

SLAM for median regression Another possible extension of SLAM, without any parametric

assumptions on the distribution of Y in (1.3), is to consider median, instead of mean, regression.

If in (1.3) the observations Y j are assumed to be independent with a piecewise constant median

Med(Y j) =
∑m

i=1 ωif
i(x j), by transforming the problem into a Binomial regression setting (see

(Sieling, 2013)), one can derive a multiscale procedure, analog to SLAM, for estimating ω and

f without a specific parametric model.

SLAM for multiple mixtures A natural question to ask is, whether the c.p. regression pro-

cedure of SLAM can also be extend for general number of mixtures M (not just for M = 1 as

in (1.3)). Then, the underlying regression function is a multivariate step function, where in the

single components the locations of c.p.’s are the same (because each component comes from

the same sources) but the jump sizes can be different (because each component has possibly

different mixing weights). It turns out that, while extending the theoretical results for SLAM

for arbitrary M is rather straight forward, computationally the problem becomes infeasible

when we allow for more than one mixture. The reason for this is that in higher dimensions

inversion of the local-log likelihood ratio statistics T j
i in (1.15) does not result in simple confi-

dence intervals [bi j, bi j], but rather in high dimensional ellipsoids. For computation of SLAM,

with dynamic programming, intersecting local confidence regions efficiently is essential. For
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ellipsoids this is computationally not feasible.

SLAM for non-linear mixtures FABS in (1.1) considers linear finite alphabet mixtures.

One may as well consider non-linear mixtures. Extensions of SLAM would mainly rely on

corresponding identifiability results for this case. An example from cancer genetics, where

non-linear mixtures of piecewise constant finite alphabet sources occur, is to consider allele

frequencies instead of total counts in Chapter 7.

Model selection for multiple mixtures In contrast to the SBSR model for single mixtures

M = 1, in the MABS model, with arbitrary M, we did not propose a model selection procedure

for the number of sources m. Note that when M ≥ m, separability implies rank(ΠAω) = m

and thus, in the noiseless case the number of sources is given by the rank of the mixture.

However, this is not the case in a noisy setting, where rank(Y) = min(M, n) almost surely.

Here, one may employ standard model selection techniques like AIC and BIC to estimate

m. However, just as in the SBSR model, it might be favorable to derive a refined selection

procedure in the MABS model (1.6) which explicitly exploits the finite alphabet structure.

Dependence on m and A in minimax rates In the MABS model (1.6) we have considered

the minimax rate for fixed number of sources m, fixed alphabet A and n,M → ∞. The de-

rived lower and upper bounds on the minimax prediction risk in Corollary 4.1.4 coincide up to

constants which depend on both, A and m. If exact constants (depending on m and A) in the

minimax rates were obtained, it could be quantified to which extend one can let m and k grow

when compensating with additional mixtures M and observations n.

Estimating weights and sources separately For future research it would also be interesting

to study the estimation errors of the mixing matrix ω and the sources f separately. So far,

we have focused on estimating them jointly as in Theorem 3.4.2 for the SBSR model (1.3)

and in Corollary 4.1.4 and Theorem 4.2.3 for the MABS model (1.6). It might be possible to

estimate one of them while estimation of the other is not feasible. An example where such a

situation occurs is multi-reference alignment, see (Bandeira et al., 2017). There, one observes

Yi = Riθ + σ2Zi, where θ ∈ Rd is an unknown parameter, Ri are unknown cyclic shifts, Zi,

i = 1, . . . , n, is i.i.d. standard Gaussian noise, and σ2 is a known variance. In this setting it is

shown in (Bandeira et al., 2017) that the parameter θ can be estimated consistently from Y even

when the noise level is so high that it is not possible to estimate the shifts Ri. Analogously, it

might be possible to estimate ω from Y in (1.3) and (1.6), respectively, without estimating f .

Statistical guarantees for the Lloyd’s algorithm In Chapter 4 it was shown that the LSE is

(almost) minimax optimal for the MABS model (4.1). As we cannot compute the LSE exactly

in polynomial time, we proposed a Lloyd’s algorithm as in Figure 5.1 for its approximation.

Simulations indicate a similar performance as the LSE. Recently, Lu and Zhou (2016) gave

statistical guarantees for various Lloyd’s algorithms. They showed that for sub-Gaussian data
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the clustering error becomes exponentially small after an order of log(n) iterations, with n being

the sample size, provided the labels are initialized appropriately. Their results may be applied

to our setting to derive theoretical results on the performance of the algorithm in Figure 5.1.

Minimax rates over polynomial time algorithms for MABS A different research direction

for the problem that, although, the LSE is (almost) minimax optimal, we cannot compute it

efficiently, is to consider the minimax risk restricted to the set of polynomial time estimators,

that is

inf
θ̂∈P

sup
ΠAω

E
(∥∥∥θ̂ −ΠAω

∥∥∥2
)
,

with P := {estimators which can be computed in polynomial time}. Examples where it has

been shown that the minimax rate over polynomial time estimators differs from the minimax

rate over all estimators are sparse linear regression (see (Zhang et al., 2014)), sparse principal

component analysis (see (Berthet and Rigollet, 2013; Wang et al., 2016)), and pairwise com-

parison (see (Shah et al., 2016)). It would be interesting to study whether such a gap between

polynomial and optimal algorithms exists for the MABS model, too.



94 Outlook and discussion



APPENDIX A

Proofs

A.1 Proofs of Chapter 2

A.1.1 Proofs of Section 2.1

Proof of Theorem 2.1.3. For σ ∈ S n
m we define gσ := (gσ(1), . . . , gσ(m)).

“⇐ ”

By assumption A1 gρ = ωE, i.e., gρE−1 = ω and, consequently,

gρE−1 ∈ Ωm,M and {g1, ..., gn} ∈
{
(gρE−1)a : a ∈ Am

}
,

which, by assumption A2, is not fulfilled for any other σ ∈ S n
m. Thus, ω is uniquely deter-

mined. Moreover, as AS B(ω) > 0, f is uniquely determined as well.

“⇒ ”

Assume A2 does not hold, i.e., there exists σ , ρ ∈ S n
m such that ω := gσE−1 fulfills

ω ∈ Ωm,M and {g1, ..., gn} ∈
{
ωa : a ∈ Am

}
.

As we assume all observations to be pairwise different, ω , ω and ω with the corresponding f

leads to the same observations g1, . . . , gn. Therefore, (ω,f ) is not identifiable. �

Proof of Theorem 2.1.5. First, note that by the separability assumption A3

{ω1, . . . ,ωm} ⊂ {g1, . . . , gn} ⊂
{
eω : e ∈ Am

}
. (A.1)

Define for r = 1, . . . ,m − 1

Er := {e ∈ Am : er+1 = . . . = em = 0}

and notice that for any e ∈ Am\Er

‖eω‖2 − ‖ωr·‖
2 =

M∑
j=1


 m∑

i=1

eiωi j

2

− ω2
r j

 .
If er+1 = 0, then, as e ∈ Am\Er, there exists an i? > r + 1 such that ai? ≥ 1 (recall that we
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assume an alphabet as in (1.7)) and hence for any j = 1, . . . ,M
(∑m

i=1 eiωi j
)2
≥ ωi? j. On the

other hand, if er+1 > 0, then for any j = 1, . . . ,M
(∑m

i=1 eiωi j
)2
≥ ωr+1 j and consequently,

‖eω‖2 − ‖ωr·‖
2 ≥ min

i≥r+1
‖ωi·‖

2 − ‖ωr·‖
2 > 0.

Thus, we can identify ω1 as

ω1 = argmin{‖x‖ : x ∈ {g1, . . . , gn}\(0, . . . , 0)}

and, once we have identified ω1, . . . ,ωr for some r ≥ 1, we can identify

ωr+1 = argmin

‖x‖ : x ∈ {g1, . . . , gn} \

 r∑
i=1

eiωi : e ∈ Er


 .

Thus, with

m = min

r : {g1, . . . , gn} \

 r∑
i=1

eiωi : e ∈ Ar

 = ∅


we have identified ω = (ω1, . . . ,ωm) and identifiability of f follows from AS B(ω) > 0. �

A.1.2 Proofs of Section 2.2

Proof of Theorem 2.2.3. The separability condition implies that there exists ei, ẽi ∈ Am for

i = 1, . . . ,m such that ∥∥∥ωi· − ẽiω
∥∥∥ < ε,∥∥∥ωi· − eiω
∥∥∥ < ε. (A.2)

We start with proving the first assertion by induction for i = 1, . . . ,m. If either e1 or ẽ1 equals

the unit vector (1, 0, . . . , 0) ∈ Rm, (A.2) yields

‖ω1· − ω1·‖ < ε. (A.3)

If e1 or ẽ1 equals the zero vector (0, . . . , 0) ∈ Rm, then AS B(ω), AS B(ω) ≥ δ and (A.2)

contradict. So assume that e1 and ẽ1 both neither equal the first unit vector nor the zero vector

and, in particular,

e1
1 ≤ 1⇒

m∑
i=2

e1
i ≥ 1 (A.4)

and analog for ẽ1. W.l.o.g. assume that ‖ω1·‖ ≥ ‖ω1·‖. Then

∥∥∥e1ω
∥∥∥2

=

M∑
j=1

 m∑
i=1

e1
i ωi j

2

≥ min
(
a2

2 ‖ω1·‖
2 , ‖ω2·‖

2
)
, (A.5)
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where the inequality follows from separating into the following cases. If e1
1 ≥ a2 > 1, then

 m∑
i=1

e1
i ωi j

2

≥ (e1
1)2ω2

1 j ≥ a2
2ω

2
1 j.

If e1
1 ≤ 1, then by (A.4)

∑m
i=2 e1

i ≥ 1, that is, ∃r > 1 such that e1
r ≥ 1, and

 m∑
i=1

e1
i ωi j

2

≥ (e1
r )2ω2

r j ≥ ω2
r j. (A.6)

In particular, (A.5) gives∥∥∥e1ω
∥∥∥ − ‖ω1·‖ ≥ min (a2 ‖ω1·‖ − ‖ω1·‖ , ‖ω2·‖ − ‖ω1·‖)

= min (‖(a2 − 1, 0, . . . , 0)ω‖ , ‖ω2·‖ − ‖ω1·‖) ≥
2δ

(1 + mak)
> ε

(A.7)

and (A.2) gives ∥∥∥e1ω
∥∥∥ − ‖ω1·‖ ≤

∥∥∥e1ω
∥∥∥ − ‖ω1·‖ ≤

∥∥∥e1ω − ω1·
∥∥∥ < ε. (A.8)

(A.7) and (A.8) contradict, which shows (A.3).

Now assume that

‖ωi· − ωi·‖ < ε for i = 1, . . . , r − 1 (A.9)

and w.l.o.g. assume that

‖ωr·‖ ≥ ‖ωr·‖ . (A.10)

First, assume that
∑m

i=r+1 er
i ≥ 1. Then it follows from (A.2) that

‖ωr·‖ =
∥∥∥ωr· − erω + erω

∥∥∥ ≥ ∥∥∥erω
∥∥∥ − ∥∥∥ωr· − erω

∥∥∥ ≥ ∥∥∥erω
∥∥∥ − ε

≥ ‖ωr+1·‖ − ε ≥ ‖ωr·‖ + 2δ/(1 + mak) − ε > ‖ωr·‖ ,
(A.11)

where for the third inequality we used an analog argument as in (A.6). (A.11) contradicts

(A.10). Thus, it follows that

er
r+1 = . . . = er

m = 0. (A.12)

Further, if er
r = 0, then∥∥∥ωr· − erω
∥∥∥ ≤ ∥∥∥ωr· − erω

∥∥∥ +
∥∥∥erω − erω

∥∥∥ ≤ ∥∥∥ωr· − erω
∥∥∥ + (r − 1)akε ≤ (1 + (r − 1)ak)ε < δ,

(A.13)

where the second inequality follows from (A.9) and third inequality from (A.2). ( A.13) and

AS B(ω) ≥ δ contradict. Thus, it follows that

er
r ≥ 1. (A.14)
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Note that (A.12), (A.14) and (A.2) imply that

ε >
∥∥∥ωr· − erω

∥∥∥
=

∥∥∥∥∥∥∥ωr· −

ωr· −

(er
r − 1)ωr· +

r−1∑
i=1

er
iωi·



∥∥∥∥∥∥∥ ≥ ‖ωr· − (ωr· − x)‖ ,

(A.15)

with

x j =


(
(er

r − 1)ωr· +
∑r−1

i=1 er
iωi·

)
j

if
(
(er

r − 1)ωr· +
∑r−1

i=1 er
iωi·

)
j
≤ ωr j,

ωr j otherwise.

As x, ωr, and ωr − x have non-negative entries, it also follows that

‖ωr‖ ≥ ‖ωr − x‖ . (A.16)

Now, assume that
∑r−1

i=1 er
i ≥ 1. If

∑m
i=r+1 ẽr

i ≥ 1 then it follows from (A.2), (A.15), and (A.16)

that

‖ωr+1‖ − ‖ωr‖ ≤
∥∥∥ẽrω

∥∥∥ − ‖ωr − x‖

≤
∥∥∥(ẽrω − ωr

)
+ (ωr − (ωr − x))

∥∥∥ ≤ 2ε < 2/(1 + mak)δ,

which contradicts WS B(ω) ≥ δ and hence, it follows that ẽr
r+1 = . . . = ẽr

m = 0. Further, if

ẽr
r = 0, then ẽr

rω =
∑r−1

i=1 ẽr
iωi· and

∥∥∥ωr − ẽrω
∥∥∥ ≤ ∥∥∥ωr − ẽrω

∥∥∥ +
∥∥∥ẽrω − ẽrω

∥∥∥ ≤ ε + (r − 1)akε < δ, (A.17)

where for the second inequality we used (A.2) and (A.9). (A.17) and AS B(ω) ≥ δ contradict.

Thus it follows that ẽr
r ≥ 1. However, this implies that

∥∥∥ωr − ẽrω
∥∥∥ ≥ ∥∥∥∥∥∥∥

r−1∑
i=1

ẽr
iωi +

r−1∑
i=1

er
iωi + (er

r − 1)ωr + (ẽr
r − 1)ωr

∥∥∥∥∥∥∥ − ∥∥∥ωr − erω
∥∥∥

≥

∥∥∥∥∥∥∥
r−1∑
i=1

er
iωi

∥∥∥∥∥∥∥ − ε ≥ δ − ε > ε,
which contradicts (A.2). Hence, it follows that

er
1 = . . . = er

r−1 = er
r+1 = . . . = er

m = 0 and er
r ≥ 1. (A.18)

Thus, by (A.10) and (A.2) it follows that

‖ωr − ωr‖ ≤
∥∥∥er

rωr − ωr
∥∥∥ = ‖erω − ωr‖ ≤ ε, (A.19)

where for the first inequality we used the fact that for two vectors a, b with ‖a‖ ≥ ‖b‖ and a
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constant c ≥ 1 it follows that ‖ca − b‖ ≥ ‖a − b‖. Thus, the first assertion follows by induction.

To show the second assertion, assume the contrary, i.e., that there exists e , e′ ∈ Am such that

ε >
∥∥∥eω − e′ω

∥∥∥ ≥ ∥∥∥eω − e′ω
∥∥∥ − ∥∥∥e′ω − e′ω

∥∥∥ . (A.20)

As AS B(ω) ≥ δ, it follows that ‖eω − e′ω‖ ≥ δ and by the first assertion of the theorem,

it follows that ‖e′ω − e′ω‖ ≤ makε. Therefore (A.20) implies ε > δ − makε, which is a

contradiction. �

Proof of Theorem 2.2.5. W.l.o.g. assume that m := m( fω) ≤ m(fω) := m. It follows from

Theorem 2.3.10 (see Remark 2.2.6) that

δ3/2
√

3ak
≤

δ

1 + mak
(A.21)

and thus, one can deduce just as in the proof of Theorem 2.2.3 that

|ωi − ωi| < ε <
δ3/2
√

3ak
for all i = 1, . . . ,m. (A.22)

If m <m, then

1 =

m∑
i=1

ωi ≤

m∑
i=1

ωi + m
δ3/2
√

3ak
≤ 1 − ωm + m

δ3/2
√

3ak

≤ 1 −
1
m

+ m
δ3/2
√

3ak
≤ 1 −

1
m

+
23/2
√

3

m − 1
(m(m + 1))3/2 < 1,

which is a contradiction. Thus, together with (A.22) the first two assertions follow. The last

assertion then follows directly from Theorem 2.2.3.

�

A.1.3 Proofs of Section 2.3

Proof of Theorem 2.3.1. Let Tr be as in (2.15) and let p0 be the initial distribution of (f j·) j.

Define the stopped process

f̃ r
j :=

(f j1, . . . ,f jm) if j < Tr

er otherwise,

for r = 1, . . . ,m, which is a Markov process as well (see e.g., (Kolokoltsov, 2011, Proposition

4.11.1.)). It is obvious that for the Markov process (f̃ r
j ) j the state er is absorbing and all other

states are transient. Moreover, when we reorder the states in Am such that er is the first state,
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the transition matrix of (f̃ r
j ) j is given by

P̃r =


1 0 . . . 0

p2r

Qr

pNr

 .

The distribution ofTr is a discrete phase type distribution (see e.g., (Neuts, 1981, Section 2.2.)),

i.e.,

P(Tr > n) = p0Qn
r 1 ≤

∥∥∥Qn
r 1

∥∥∥
∞
. (A.23)

As PN > 0

P̃N
r =


1 0 . . . 0

s2r
... QN

smr


with s2r, . . . , smr > 0 for r = 1, . . . ,m. Consequently, all row sums of QN

r are smaller than 1,

i.e.,

cr :=
∥∥∥QN

r 1
∥∥∥
∞
< 1 (A.24)

and hence c = max1≤r≤m cr < 1.

Next, we show by induction that
∥∥∥Qn

r 1
∥∥∥
∞
≤ cbn/Ncr for all n ≥ N. For n = N this holds by

definition. So assume that
∥∥∥Ql

r1
∥∥∥
∞
≤ cbl/Ncr for all N ≤ l ≤ n and define A = (ai j)i j := Qn

r , i.e.,

max
i

∑
j

ai j ≤ cbn/Ncr .

If b n
N c = b n+1

N c, then

∥∥∥Qn+1
r 1

∥∥∥
∞

= ‖AQr1‖∞ = max
i

∑
j

∑
k

aikqk j = max
i

∑
k

aik

∑
j

qk j ≤ c
b n

N c
r = c

b n+1
N c

r ,

as maxi
∑

k aik ≤ c
b n

N c
r and

∑
j qk j ≤ 1. If b n

N c , b
n+1
N c, then b n

N c + 1 = b n+1
N c and n + 1 =

N
⌊

n
N

⌋
+ N, with Nb n

N c =: l ∈ {N, . . . , n}. Therefore,

∥∥∥Qn+1
r 1

∥∥∥
∞

=
∥∥∥Ql

rQN
r 1

∥∥∥
∞
≤ c
b l

N c+1
r = c

b n+1
N c

r .

With (A.23) and (2.16) it follows that

1 − P((ω,f ) is identifiable) ≤mcb
n
. Nc

Finally, the assertion follows from mcb
n
N c/(c

n
N ) ≤m/c < ∞. �

Proof of Theorem 2.3.4. In order to proof Theorem 2.3.4, we need to approximate for given
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δ > 0 and m ∈ N the size of the sets Ωm,Ω
δ
m ⊂ R

m. As both have Lebesgue measure zero, we

consider the corresponding (m − 1)-simplex in Rm−1

Ω̃m :=
{
ω ∈ Rm−1 : 0 ≤ ω1 ≤ . . . ≤ ωm−1 ≤ 1 − ‖ω‖1

}
, (A.25)

with vertices

ṽ0 =


0

0
...

0


, ṽ1 =


0

0
...

1/2


, . . . , ṽm−2 =


0

1/(m − 1)
...

1/(m − 1)


, ṽm−1 =


1/m

1/m
...

1/m


and

Ω̃δ
m :=

{
ω ∈ Ω̃m : AS B(ω1, . . . , ωm−1, 1 − ‖ω‖1) ≥ δ

}
.

The Lebesgue measure of the simplex Ω̃m is (see e.g., (Stein, 1966))

λ(Ω̃m) =

∣∣∣∣∣∣∣ 1
(m − 1)!

det

ṽ1 . . . ṽm

1 . . . 1


∣∣∣∣∣∣∣ =

1
m!(m − 1)!

. (A.26)

The following lemma gives a bound on the Lebesgue measure of Ω̃δ
m.

Lemma A.1.1. For a given finite alphabet A let δ < ∆Amin. Then

λ(Ω̃m\Ω̃
δ
m) ≤

k2mm
√

2 ∆2Amin (m − 1)!(m − 2)!
δ,

with λ = λm−1 the Lebesgue measure on Rm−1.

Proof of Lemma A.1.1. Note that

Ω̃m\Ω̃
δ
m =

{
ω ∈ Ω̃m : AS B(ω) ≤ δ

}
=

⋃
d∈∆Am

wd,

with

wd :=
{
ω ∈ Ω̃m : |〈(ω1, . . . , ωm−1, 1 − ‖ω‖1), d〉| ≤ δ

}
=

{
ω ∈ Ω̃m : −δ − dm ≤ 〈ω, d̃〉 ≤ δ − dm

}
,

and d̃ = (d1−dm, . . . , dm−1−dm). If d̃ ≡ 0, |dm| > ∆Amin > δ implies λm−1 (wd) = 0. Otherwise,
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let R be the rotation matrix which maps d̃ to (
∥∥∥d̃

∥∥∥ , 0, . . . , 0). Then

λm−1(wd) = λm−1(Rwd) = λm−1
({
ω ∈ RΩ̃m : −δ − dm ≤ 〈R−1ω, d̃〉 ≤ δ − dm

})
= λm−1

({
ω ∈ RΩ̃m : −δ − dm ≤ 〈ω,Rd̃〉 ≤ δ − dm

})
= λm−1

({
ω ∈ RΩ̃m : −δ − dm ≤

∥∥∥d̃
∥∥∥ω1 ≤ δ − dm

})
= λm−1

RΩ̃m

⋂ {
ω ∈ Rm−1 :

−δ − dm∥∥∥d̃
∥∥∥ ≤ ω1 ≤

δ − dm∥∥∥d̃
∥∥∥

}
≤ λm−2

(
proj1(RΩ̃m)

) 2δ∥∥∥d̃
∥∥∥ ≤ λm−2

(
∆(RΩ̃m)

) 2δ∥∥∥d̃
∥∥∥

= λm−2
(
∆Ω̃m

) 2δ∥∥∥d̃
∥∥∥ ≤ λm−2

(
∆Ω̃m

) 2δ
∆2Amin

,

where proj1 denotes the orthogonal projection onto (1, 0, . . . , 0)⊥, i.e., proj1((x1, . . . , xm−1)>) =

(x2, . . . , xm−1)> and ∆(RΩ̃m) denotes the surface area of RΩ̃m. The first inequality follows from

Cavalieri’s principle and the fact that the intersection of a convex set with a hyperplane is

smaller than its projection onto the same hyperplane. The second inequality follows from the

fact that the orthogonal projection is a contraction and the last inequality follows directly from

the definition of ∆2Amin in (2.21).

It remains to find an upper bound for the Lebesgue measure λm−2
(
∆Ω̃m

)
of the surface area

of the m − 1 - simplex Ω̃m, which is the union of its facets. To this end, let Vi for i =

0, . . . ,m − 1 denote the Lebesgue measure of the i-th facet of Ω̃m, the m − 2 - simplex with

vertices ṽ0, . . . , ṽi−1, ṽi+1, . . . , ṽm−1. Further, let G denote the Gramian matrix of ṽ1, . . . , ṽm−1

with entries

(G)i j = 〈ṽi, ṽ j〉 =

(
min(i, j)

(i + 1)( j + 1)

)
i j
, i, j = 1, . . . ,m − 1

and let Gkl denote the matrix G with k-th row and l-th column deleted. Then it follows from

(Dörband, 1970) that

((m − 2)!V0)2 =

m−1∑
k=1

m−1∑
l=1

(−1)k+l det(Gkl),

((m − 2)!Vk)2 = det(Gkk), for k = 1, . . . ,m − 1.

(A.27)

We have that

det(Gkl) = det

( min(i, j)
(i + 1)( j + 1)

)
1≤i,k≤m−1
1≤i,l≤m−1

 =
k

m!
l

m!
det

(
(min(i, j))1≤i,k≤m−1

1≤i,l≤m−1

)
. (A.28)

Next, we show that

det
(
(min(i, j))1≤i,k≤m−1

1≤i,l≤m−1

)
=

2 if k = l

1 if k , l
. (A.29)
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First, consider the case k = l. Then

det
(
(min(i, j))1≤i, j,k≤m−2

)
= det





1 1 1 . . . 1

1 2 2 . . . 2
. . .

1 2 . . . k − 1 k − 1 . . . k − 1

1 2 . . . k − 1 k + 1 . . . k + 1
...

1 2 . . . k − 1 k + 1 . . . m − 1





= det





1 0 0 . . . 0

1 1 0 . . . 0
. . .

1 1 . . . 1 0 . . . 0

1 1 . . . 1 2 . . . 0
...

1 1 . . . 1 2 . . . 1




= 2,

where for the second equality we subtracted the i-th column from the i + 1-th column for

i = 1, . . . ,m − 2.

Second, consider the case k , l. For m = 2 (A.29) holds trivially. So assume that (A.29) holds

for all 1 ≤ k, l ≤ m − 1 for some m ≥ 2 and let k , l be fixed. As the determinant is invariant

under transposition, we can assume w.l.o.g. that k < l and, hence, l > 1. Then

det
(
(min(i, j))1≤i,k≤m

1≤i,l≤m

)
= det(11≤i,k≤m,min(2, i)1≤i,k≤m,

...,min(l − 1, i)1≤i,k≤m,min(l + 1, i)1≤i,k≤m, ...,min(m, i)1≤i,k≤m)

= det(10≤i,k−1≤m−1,min(1, i)0≤i,k−1≤m−1,

...,min(l − 2, i)0≤i,k−1≤m−1,min(l, i)0≤i,k−1≤m−1, ...,min(m − 1, i)0≤i,k−1≤m−1)

= det(min(1, i)1≤i,k−1≤m−1,

...,min(l − 2, i)1≤i,k−1≤m−1,min(l, i)1≤i,k−1≤m−1, ...,min(m − 1, i)1≤i,k−1≤m−1)

= det
(
(min(i, j))1≤i,k≤m−1

1≤i,l≤m−1

)
= 1,

where for the second equality we subtracted the first column from the others and for the third

equality we evaluate the determinant by its first row, and hence (A.29) follows.

From (A.28) and (A.29) we deduce that

det(Gkl) =

2
(

k
m!

)2
if k = l

k
m!

l
m! if k , l
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and from (A.27) that

((m − 2)! V0)2 ≤


√

2
m!

m−1∑
k=1

(−1)kk


2

≤

(
1

√
2(m − 1)!

)2

,

((m − 2)! V j)2 = 2
( j
m!

)2
, for j = 1, . . . ,m − 1

and consequently,

λm−2
(
∆Ω̃m

)
=

m−1∑
i=0

Vi ≤
1

√
2(m − 1)!(m − 2)!

+

√
2

(m − 2)!m!

m−1∑
j=1

j =
m

√
2(m − 1)!(m − 2)!

and

λm−1(wd) ≤
m
√

2
∆2Amin(m − 1)!(m − 2)!

δ.

Finally, as wd = w−d and #∆Am ≤ k2m, the assertion follows from

λ(Ω̃m\Ω̃
δ
m) ≤

∑
d∈∆Am

λm−1(wd)
2

≤
k2m λm−1(wd)

2
.

�

From Lemma A.1.1 and (A.26) we deduce that

P(ω ∈ Ωδ
m) = 1 −

λ(Ω̃m\Ω̃
δ
m)

λ(Ω̃m)
≥ 1 −

k2m m2(m − 1)
√

2 ∆2Amin
δ,

which shows the assertion. �

Proof of Theorem 2.3.5. From Lemma A.1.2 it follows surely that AS B(ω)/
√

M is bounded

from above by (1 + mak)/
√

2(m(m − 1)), which shows the inequality on the right hand side.

If M = 1 and ω is drawn uniformly, then by Theorem 2.3.4 P(AS B(ω) > δ) ≥ 1− d δ with d =

k2mm2(m − 1)/(
√

2∆2Amin). For arbitrary M ∈ N, if ω is drawn uniformly its ASB is bounded

by the corresponding ASB’s of the single components, i.e., AS B(ω)2 ≥
∑M

j=1 AS B(ω· j)2, where

AS B(ω· j), j = 1, . . . ,M, are independent and identically distributed with

E
(
AS B(ω· j)2

)
≥

∫ ∞

0
(1 − d

√
x)+dx =

1
3d2 .

Hence, for c < 1√
3d

it follows from the strong law of large numbers that almost surely

lim inf
M→∞

AS B(ω)2

M
≥ lim inf

M→∞

1
M

M∑
j=1

AS B(ω· j)2 = E
(
AS B(ω· j)2

)
> c2,

which shows the inequality on the left hand side. �
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Proof of Theorem 2.3.6. With the notation of the proof of Lemma A.1.1 we have that

c(m) P(AS B(ω) < δ) = λm−1

 ⋃
d∈∆Am

wd


=

|∆Am |∑
i=1

(−1)i+1
∑

{d1,...,di}⊂∆Am

λm−1 (
wd1 ∩ . . . ∩ wdi

)
,

for some constant c(m) which only depends on m. Moreover,

wd1 ∩ . . . ∩ wdi =
{
ω ∈ Ω̃m : 〈d̃ j, ω〉 ∈ [d j

m ± δ] for j = 1, . . . , i
}

=
{
ω ∈ Ω̃m : Dω ∈ a ± δ

}
,

with d̃ j := (d j
1 − d j

m, . . . , d
j
m−1 − d j

m) ∈ Rm−1, D := (d̃1, . . . , d̃i)> ∈ Ri×(m−1), and a =

(d1
m, . . . , d

i
m)> ∈ Ri. Let r := rank(D) and consider a singular value decomposition D = UΣV?.

Then, as 1 ≤ r ≤ m − 1 the assertion follows from

λm−1
(
{ω ∈ Ω̃m : Dω ∈ a ± δ}

)
= λm−1

(
{ω ∈ V?Ω̃m : Σω ∈ U?a ± δ}

)
= λm−1

(
{ω ∈ V?Ω̃m : ω1 ∈ [(U?a)1 ± δ], . . . , ωr ∈ [(U?a)r ± δ]}

)
= O(δr).

�

Proof of Theorem 2.3.10. First, note that for all j = 1, . . . , k − 1 and ω ∈ Ωm

AS B(ω,A) ≤ AS B(ω, {a j, a j+1}) = (a j+1 − a j)AS B(ω, {0, 1})

and hence

max
ω∈Ωm

AS B(ω,A) ≤ min
j=1,...,k−1

(a j+1 − a j) max
ω∈Ωm

AS B(ω, {0, 1}). (A.30)

Further, AS B(ω, {0, 1}) ≤ min(ω1, ω2 − ω1, . . . , ωm − ωm−1) and hence AS B(ω, {0, 1}) can be

bounded from above by the solution of the optimization problem

max
ω∈Rm

min(ω1, ω2 − ω1, . . . , ωm − ωm−1) s.t.

ω1 + . . . + ωm = 1

ω1 ≥ 0

ωi − ωi−1 ≥ 0, i = 2, . . . ,m.

Applying the coordinate transformation (λ1, . . . , λm) = (ω1, ω2 − ω1, . . . , ωm − ωm−1), this can

be rewritten as
max
λ∈Rm

min(λ1, λ2, . . . , λm) s.t.

mλ1 + (m − 1)λ2 + . . . + λm = 1

λi ≥ 0, i = 1, . . . ,m.

(A.31)

Note that omitting the positivity constraint in (A.31) does not change its optimal solution and

hence coincides with the global maximum of f : Rm−1 → R, f (λ) = min(λ1, . . . , λm−1, 1 −
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mλ1 − (m − 1)λ2 − . . . − 2λm−1), which is attained at

λ1 = . . . = λm−1 = 1 − mλ1 − (m − 1)λ2 − . . . − 2λm−1,

i.e., maxλ∈Rm−1 f (λ) = 2/(m(m + 1)). Together with (A.30) it follows that

max
ω∈Ωm

AS B(ω) ≤
2

m(m + 1)
min

j=1,...,k−1
(a j+1 − a j).

Moreover, as the weights ω sum up to one, it follows for any e ∈ Am that eω ∈ [0, ak]. Thus,

maxω∈Ωm AS B(ω) must be smaller than the maximum of the minimal distance between km

points in the interval [0, ak], which equals ak/(km − 1). Hence, the assertion follows. �

Proof of Theorem 2.3.12. From (A.26) together with an expression for the modified Bessel

function of the v-th kind (Abramowitz and Stegun, 1972, equation 9.6.10)

Iv(z) =

( z
2

)v ∞∑
k=0

(z/2)2k

k!Γ(k + v + 1)
(A.32)

one gets

λ(Ω̃) =

∞∑
m=2

λ(Ω̃m) =
∑
m∈N

1
m!(m − 1)!

= I1(2) − 1 ≈ 0.59,

and similar from Lemma A.1.1

λ(Ω̃\Ω̃δ) =

∞∑
m=2

λ(Ω̃m\Ω̃
δ
m) ≤

δ
√

2 ∆2Amin

∞∑
m=2

k2mm
(m − 1)!(m − 2)!

=
δ

√
2 ∆2Amin

∑
m=2

k2m(m − 2)
(m − 1)!(m − 2)!

+

∞∑
m=2

2k2m

(m − 1)!(m − 2)!


=

δ
√

2 ∆2Amin

k6
∑
m=0

k2m

m!(m + 2)!
+ 2k4

∞∑
m=0

k2m

m!(m + 1)!


=

δ
√

2 ∆2Amin
k3(2I1(2k) + kI2(2k)),

which shows the assertion. �

A.1.4 Proofs of Section 2.4

Proof of Theorem 2.4.1. W.l.o.g. assume that (a2 − a1)/(ak − ak−1) < 1. Otherwise one can

multiply all observations by −1, such that the new alphabet becomes −ak < . . . < −a1. Further,

note that AS B(ω) > 0 implies that ωi , 0 for all i = 1, . . . ,m. For g := fω let G :=

{g1, . . . , gn} be the set of the pairwise different observations. (2.24) implies that there exist

i0, . . . , im, j0, . . . , jm ∈ {1, . . . , n} such that for r = 0, . . . ,m

gir = As(a2, a1, ak)r+1· ω, g jr = As(ak−1, ak, a1)r+1· ω.
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First, note that

minG = gi0 = ak

m∑
i=1
ωi<0

ωi + a1

m∑
i=1
ωi>0

ωi, maxG = g j0 = a1

m∑
i=1
ωi<0

ωi + ak

m∑
i=1
ωi>0

ωi

and thus

o+ :=
m∑
i=1
ωi>0

ωi =
ak maxG − a1 minG

a2
k − a2

1

, o− :=
m∑
i=1
ωi<0

ωi =
ak minG − a1 maxG

a2
k − a2

1

.

If o− = 0, all weights are positive and, as o+ is identified and thus w.l.o.g. equal to one, Theorem

2.1.5 applies. Thus, assume that o− < 0 and define G0 := G\{minG,maxG} and

m̃0 := max{i = 1, . . . ,m s.t. ωi < 0}, m̃+
0 := m̃0 + 1,

i.e., ω1 < . . . < ωm̃0 < 0 < ωm̃+
0
< . . . < ωm. Second, note that

minG0 = min
(
gim̃+

0
, g jm̃0

)
= min

a2ωm̃+
0

+

m̃0∑
i=1

akωi +

m∑
i=m̃+

0 +1

a1ωi, ak−1ωm̃0 +

m̃0−1∑
i=1

akωi +

m∑
i=m̃+

0

a1ωi

 ,
= min

(
a2ωm̃+

0
+ ako− + a1(o+ − ωm̃+

0
), ak−1ωm̃0 + ak(o− − ωm̃0) + a1o+

)
,

and analog

maxG0 = max
(
g jm̃+

0
, gim̃0

)
= max

ak−1ωm̃+
0

+

m̃0∑
i=1

a1ωi +

m∑
i=m̃+

0 +1

akωi, a2ωm̃0 +

m̃0−1∑
i=1

a1ωi +

m∑
i=m̃+

0

akωi


= max

(
ak−1ωm̃+

0
+ a1o− + ak(o+ − ωm̃+

0
), a2ωm̃0 + a1(o− − ωm̃0) + ako+

)
.

Thus,

minG0 − ako− − a1o+

ak − ak−1
= min

(
a2 − a1

ak − ak−1
ωm̃+

0
,−ωm̃0

)
ako+ + a1o− −maxG0

a2 − a1
= min

(
ak − ak−1

a2 − a1
ωm̃+

0
,−ωm̃0

)
.

Hence, if (minG0 − ako− − a1o+) / (ak − ak−1) < (ako+ + a1o− −maxG0) / (a2 − a1), we find

ωm̃+
0

=
minG0 − ako− − a1o+

a2 − a1
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and if (minG0 − ako− − a1o+) / (ak − ak−1) = (ako+ + a1o− −maxG0) / (a2 − a1), that

ωm̃0 =
maxG0 − ako+ − a1o−

a2 − a1
.

Thus, we have identified the first weight, namely

ω?
1 :=

ωm̃+
0

if minG1−ako−−a1o+
ako++a1o−−maxG1

< ak−ak−1
a2−a1

ωm̃0 otherwise.

Now assume that we have identified l different weights, ω?
1 , . . . ,ω

?
l . If o− =

∑l
i=1,ω?

i <0 ω
?
i ,

all the remaining weights are positive and Theorem 2.1.5 applies. Thus assume that o− <∑l
i=1,ω?

i <0 ω
?
i and define Gl := Gl−1\Rl−1, with

Rl−1 :=
⋃

e′,e′′∈A
e∈Al

{
e′(o− −

l∑
i=1

ω?
i <0

ω?
i ) + e′′(o+ −

l∑
i=1

ω?
i >0

ω?
i ) + (ω?

1 , ...,ω
?
l )e

}

and

m̃l := max
{
i = 1, ...,m s.t. ωi < 0 and ωi < {ω

?
1 , ...,ω

?
l }

}
,

m̃+
l := min

{
i = 1, ...,m s.t. ωi > ωm̃l and ωi < {ω

?
1 , ...,ω

?
l }

}
.

Note that

minGl = min
(
gim̃+

l
, g jm̃l

)
, maxGl = max

(
g jm̃+

l
, gim̃l

)
and thus

minGl − ako− − a1o+

ak − ak−1
= min

(
a2 − a1

ak − ak−1
ωm̃+

l
,−ωm̃l

)
ako+ + a1o− −maxGl

a2 − a1
= min

(
ak − ak−1

a2 − a1
ωm̃+

l
,−ωm̃l

)
.

Hence, if (minGl − ako− − a1o+) / (ak − ak−1) < (ako+ + a1o− −maxGl) / (a2 − a1), we find

ωm̃+
l

=
minGl − ako− − a1o+

a2 − a1

and if (minGl − ako− − a1o+) / (ak − ak−1) = (ako+ + a1o− −maxGl) / (a2 − a1), that

ωm̃l =
maxGl − ako+ − a1o−

a2 − a1
.

Thus, we have identified the (l + 1)-th weight as

ω?
l+1 :=

ωm̃+
l

if minGl−ako−−a1o+
ako++a1o−−maxGl

< ak−ak−1
a2−a1

ωm̃l otherwise.
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By induction, we can identify all weights and thus, by AS B(ω) > 0 the assertion follows. �

Proof of Theorem 2.4.2. W.l.o.g. assume that g1 < . . . < gn. Then g1 = a1 and gn = ak and

we can assume w.l.o.g. that a1 = 0 and ak = 1 (otherwise one may consider (g j − a1)/(ak −

a1) instead). Thus, g2 = a2ω1 and 1 − gn−1 = (1 − ak−1)ω1. Assume we have identified

ω1a2, . . . ,ω1a1+l and ω1(1 − ak−1), . . . ,ω1(1 − ak−l′) for some l, l′ ≥ 1. Set G := {g1, . . . , gn},

then

rl := min (G\{ω1a2, ...,ω1a1+l}) = min (ω1a1+l+1, (1 − ω1)a2) ,

sl′ := min ((1 −G)\{ω1(1 − ak−1), ...,ω1(1 − ak−l′)}) = min (ω1(1 − ak−l′−1), (1 − ω1)(1 − ak−1))

and

s̃l′ :=
g2

1 − gn−1
sl′ = min

(
ω1

(1 − ak−l′−1)a2

(1 − ak−1)
, (1 − ω1)a2

)
.

If rl = s̃l′ , it follows from OS B(A) > 0 that rl = (1 − ω1)a2 and ω1 = g2/(g2 + rl), and hence

we have identified ω = (ω1, 1 − ω1)>.

If rl < s̃l′ , then rl = ω1a1+l+1 and if rl > s̃l′ , then sl′ = ω1(1−ak−l′−1). Thus, we have increased

either l or l′ by one. Note that if l = k − 1, then rl = (1 − ω1)a2 and hence, either rl = s̃l′ (in

which case ω is identified) or rl > s̃l′ (in which case l′ increases). Similar, if l′ = k − 1, then

sl′ = (1 − ω1)(1 − ak−1) and hence, either rl = s̃l′ (in which case ω is identified) or rl < s̃l′ (in

which case l increases). Consequently, rl = s̃l′ finally and ω is identified.

Now, we show to identify the unknown alphabet, given the mixing weights ω = (ω1, 1 −ω1)>.

We have that a2 = g2/ω1. So assume we have identified a2, . . . , al for some l ≥ 2. Then

min
(
G\{aω1 + a′(1 − ω1) : a, a′ ∈ {0, a2, . . . , al}}

)
= al+1ω1

and hence al+1 is identified. Successively, we can identify the complete alphabet 0, a2, . . . , ak−1,

1 with

k = min
(
l : G\{aω1 + a′(1 − ω1) : a, a′ ∈ {0, a2, . . . , al}} = ∅

)
.

Finally, identifiability of f follows from AS B(ω) > 0. �

A.1.5 Additional lemmas on the ASB

Lemma A.1.2. If Ωδ
m,M in (2.11) is non-empty for some m,M ∈ N, then δ ≤

√
M(1+mak)
√

2m(m+1)
.

Proof. If Ωδ
m,M in (2.11) is non-empty, then there exists an ω ∈ Ωm,M with δ ≤ AS B(ω) ≤√∑M

j=1 ω
2
1 j and δ ≤ WS B(ω) ≤ (1 + mak)/2 (‖ωi·‖ − ‖ωi−1·‖) ≤ (1 + mak)/2

√
‖ωi·‖

2 − ‖ωi−1·‖
2

for all i = 1, . . . ,m, with ωm j = 1−ω1 j− . . .−ωm−1 j. In particular, there exists ω ∈ Rm×M
+ with

4δ2

(1 + mak)2 ≤ min
( M∑

j=1

ω2
1 j, min

i=2,...,m−1

M∑
j=1

(
ω2

i j − ω
2
i−1 j

)
,

M∑
j=1

(
(1 − ω1 j − ... − ωm−1 j)2 − ω2

m−1 j

) )
.
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Moreover,

(1 − ω1 j − . . . − ωm−1 j)2 = 1 + (ω1 j + . . . + ωm−1 j)2 − 2ω1 j − . . . − 2ωm−1 j

= 1 −
m−1∑
i=1

ωi j (2 −
m−1∑
s=1

ωs j)︸         ︷︷         ︸
≥1≥ωi j

≤ 1 − ω2
1 j − . . . − ω

2
m−1 j.

And thus,

δ24
(1 + mak)2 ≤min

( M∑
j=1

ω2
1 j, min

i=2,...,m−1

M∑
j=1

(
ω2

i j − ω
2
i−1 j

)
,

M∑
j=1

(
1 − ω2

1 j − . . . − 2ω2
m−1 j

) )
≤ max

x∈Rm−1
min (x1, x2, . . . , xm−1, (M − mx1 − . . . − 2xm−1)) =

2M
m(m + 1)

,

where for the second inequality we used x1 :=
∑M

j=1 ω
2
1 j and xi :=

∑M
j=1 ω

2
i j −

∑M
j=1 ω

2
i−1 j for

i = 2, . . .m. �

Lemma A.1.3. Ω
0.2∆Amin
m,m as in (2.11) is non-empty for any m ∈ N, with ∆Amin as in (2.21).

Proof. For 1/2 > δ > 0 define

ωδ := Im×m −
2δ

1 + mak



m − 1 0 . . . 0 0

0 m − 2 . . . 0 0
...

0 0 . . . 1 0

−(m − 1) −(m − 2) . . . −1 0


, (A.33)

where Im×m denotes the m×m identity matrix. As 2δ
1+mak

(m−1) < 1, it holds for i = m−1, . . . , 1

that ∣∣∣∣∣1 − 2δ
1 + mak

(i − 1)
∣∣∣∣∣ − ∣∣∣∣∣1 − 2δ

1 + mak
i
∣∣∣∣∣ ≥ 2δ

1 + mak

and thus WS B(ωδ) ≥ δ. Consequently, if AS B(ωδ) ≥ δ it follows that Ωδ
m,m is non-empty. We

have that

AS B(ωδ) ≥ AS B(Im×m) −
2δ

1 + mak
max

e,0∈∆Am

√
((m − 1)(e1 − em))2 + . . . + (em−1 − em)2

= ∆Amin −
2δ

1 + mak
max

e,0∈∆Am

√
((m − 1)(e1 − em))2 + . . . + (em−1 − em)2

≥ ∆Amin −
2δ

1 + mak
2ak

√√√m−1∑
i=1

(m − i) = ∆Amin −
δ4ak

1 + mak

√
m(m − 1)

2
,

which implies that if

δ ≤ ∆Amin −
δ
√

8ak
√

m(m − 1)
1 + mak

⇔ δ ≤ ∆Amin

1 +

√
8ak
√

m(m + 1)
1 + mak

−1

(A.34)
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then Ωδ
m,m is non-empty. As

1 +

√
8ak
√

m(m + 1)
1 + mak

−1

≥

1 +

√
8(m + 1)

m

−1

≥ 0.2

(A.34) holds for δ = 0.2∆Amin. �

Lemma A.1.4. If M/m ∈ N, then Ω
0.2∆Amin

√
M/m

m,M in (2.11) is non-empty.

Proof. By Lemma A.1.3 there exists ω′ ∈ Ω
0.2∆Amin
m,m , i.e., AS B(ω′),WS B(ω′) ≥ 0.2∆Amin.

Define

ω = (ω′, . . . , ω′)︸        ︷︷        ︸
M/m×

∈ Ωm,M.

Then AS B(ω),WS B(ω) ≥ 0.2∆Amin
√

M/m. �

Lemma A.1.5. If Ωδ
m,M is non-empty for some δ > 0, then there exists ω ∈ Ωδ

m,M with

AS B(ω) = δ.

Proof. Fix some ω ∈ Ωδ
m,M and for 0 ≤ ε ≤ 1 define ωε ∈ Ωm,M as

ωεi j =


ωi j if i < {1,m},

ε ω1 j if i = 1,

ωm j + (1 − ε)ω1 j if i = m.

Then WS B(ωε) ≥ WS B(ω) ≥ δ for all 0 ≤ ε ≤ 1 and ε 7→ AS B(ωε) is continuous with

AS B(ω0) = 0 and AS B(ω1) ≥ δ. Thus, there exists an ε? ∈ (0, 1] such that ωε
?

has the desired

properties. �

Lemma A.1.6. If Ωδ
m,M in (2.11) is non-empty, then there exists an ω ∈ Ωm,m such that

AS B(ω) = δ∆Amin/(9
√

Mak) and WS B(ω) ≥ δ∆Amin/(9
√

Mak).

Proof. If Ωδ
m,M is non-empty, it follows from Lemma A.1.2 that δ ≤

√
M(1+mak)
√

2m(m+1)
and, hence,

δ∆Amin/(9
√

Mak) ≤ 0.2∆Amin. Thus, by Lemma A.1.3 it follows that Ω
δ∆Amin/(9

√
Mak)

m,m ⊃

Ω
0.2∆Amin
m,m , ∅. i.e., there exists ω ∈ Ωm,m such that AS B(ω),WS B(ω) ≥ δ∆Amin/(9

√
Mak).

Now the assertion follows from Lemma A.1.5. �

A.2 Proofs of Chapter 3

Proof of Theorem 3.2.1. Let ω ∈ Ωm be fixed. Analog to S(A)mλ in (1.12) define

S(N(ω))mλ :=
{ K∑

j=0

θ j1[τ j,τ j+1) : θ j ∈ N(ω), τi+1 − τi ≥ λ,

τ0 = 0, τK+1 = 1, ω1, . . . , ωm ∈ {θ0, . . . , θK},K ∈ N
}
,

(A.35)
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for the neighborhood of ω-mixture values

N(ω) :=
{

eω̃ : e ∈ Am and ‖ω̃ − ω‖∞ ≤ 2σ
qn(α) +

√
2 ln(e/λ)

√
nλ

}
.

First, we show the following lemma.1

Lemma A.2.1. Conditioned on {ω ∈ C1−α(Y)} and {Tn(Y, g) ≤ qn(α)}

inf
g∈S(N(ω))m

λ/3

Tn(Y, g) ≤ qn(α) surely. (A.36)

Proof of Lemma A.2.1. For ease of notation assume that nλ ∈ N. As in R3 define

Q(i, j) :=
[

max
i≤u≤v≤ j

buv, min
i≤u≤v≤ j

buv
]
∩ N(ω)

and note that any g =
∑K

j=0 θ j1[τ j,τ j+1) such that for every j = 0, . . . ,K there exist an interval

[xu, xv] with 1 ≤ u ≤ v ≤ n and v − u + 1 ≥ nλ such that

1. [τ j, τ j+1) ⊂ [xu, xv],

2. Q(u, v) , ∅, and

3. θ j ∈ Q(u, v),

fulfills the multiscale constraint Tn(Y, g) ≤ qn(α) and takes only values in N(ω), that is g ∈

S(N(ω))m := S(N(ω))m0 . Further, note that conditioned on {Tn(Y, g) ≤ qn(α)} it follows that

ω ∈ C1−α (see (1.13)) and, in particular, B? , ∅ in (1.22). Thus, ω ∈ B := B(i∗1, j∗1) × . . . ×

B(i∗m, j∗m) for some B ∈ B? with j∗r − i∗r + 1 ≥ nλ for r = 1, . . . ,m. By definition of B in (1.18)

N(ω) ⊃ {eω̃ : e ∈ Am, ω̃ ∈ B}. (A.37)

Consequently, it follows directly from R3 and (A.37) that a function g which fulfills 1. - 3.

exists. In the following we explicitly construct a function g which has minimal scale λ/3 and

fulfills 1. - 3. such that g ∈ S(N(ω))mλ/3, which yields (A.36).

To this end, define t1 := 1, t1 := max{i ≥ nλ : Q(1, i) , ∅} and successively for r ≥ 2

tr := min{i > tr−1 : ∃ j ≥ i − 1 + nλ s.t. Q(i, j) , ∅},

tr := max{i ≥ tr : Q(tr, i) , ∅},

with the convention that min{∅} = ∞. Let R := max{r : tr < ∞} and tR+1 := n + 1. Further, for

every r = 1, . . . ,R fix some

θr ∈ Q(tr, tr). (A.38)

1In the original version of (A.36) in (Behr et al., 2017) λ/3 was falsely replaced by λ and this mistake propagated
to the constants c1, c2 and N? in (3.13), (3.14), and (3.15), respectively.
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Note that by construction Q(tr, tr) , ∅ and tr − tr + 1 ≥ nλ. Further, by R3 it follows that

tr − tr−1 ≤ nλ for r = 2, . . . ,R + 1. To see this, assume the opposite, i.e., tr − tr−1 > nλ for

some r = 2, . . . ,R + 1. For k = tr − 1 in R3 let [i, j] ∈ Jλ
k be such that (3.8) is non-empty with

j− i + 1 = nλ. By definition of Jλ
k in (3.7) tr − 1 ∈ [i, j]. Hence, i = j− nλ+ 1 ≥ tr − nλ > tr−1

and, by construction of tr and (A.37), it follows that tr ≤ i ≤ tr − 1, which is a contradiction.

Next, define for r = 1, . . . ,R

sr := max{tr < i ≤ tr + nλ : Q(i + 1 − nλ, i) , ∅},

sr := min{tr+1 − nλ ≤ i < tr+1 : Q(i, i − 1 + λn) , ∅},

with the convention that max{∅} = −∞. Note that sr > −∞. To see this, for k = tr + 1 in R3 let

[i, j] ∈ Jλ
k be such that (3.8) is non-empty with j− i+1 = nλ. Then tr < j = i−1+nλ ≤ tr +nλ

and Q( j + 1− nλ, j) , ∅. Analog, sr < ∞. Further, note that sr ≥ sr. To see this, one can argue

similar as above for k = sr + 1 in R3. Further, for every r = 1, . . . ,R fix some

θr ∈ Q(sr + 1 − λn, sr), θr ∈ Q(sr, sr − 1 + λn). (A.39)

Next, for r = 1, . . . ,R consider the following four different cases.

Case 1: tr + 1 = tr+1.

Case 2: tr + 1 < tr+1 and sr ≥ tr+1 − 1.

Case 3: tr + 1 < tr+1, sr < tr+1 − 1 and sr ≤ tr + 1.

Case 4: tr + 1 < tr+1, sr < tr+1 − 1 and sr > tr + 1.

Define T0 := {1}, for r = 1, . . . ,R − 1

Tr :=
(
tr + 1

)
in case 1 ,

Tr :=
(
max(tr + 1 − nλ/3, sr + 1 − nλ),min(tr+1 + 1 + nλ/3, sr + 1)

)
in case 2 ,

Tr :=
(
max(tr + 1 − nλ/3, sr + 1),min(tr+1 + 1 + nλ/3, sr + 1 + nλ)

)
in case 3 ,

Tr :=
(

max(tr + 1 − nλ/3, sr + 1 − nλ),
⌈
(sr + sr)/2

⌉
,

min(tr+1 + 1 + nλ/3, sr + 1 + nλ)
)

in case 4 ,

and

TR := ( ) in case 1 ,

TR :=
(
max(tR + 1 − nλ/3, sR + 1 − nλ)

)
in case 2 ,

TR :=
(
max(tR + 1 − nλ/3, sR + 1)

)
in case 3 ,

TR :=
(

max(tR + 1 − nλ/3, sR + 1 − nλ),
⌈
(sR + sR)/2

⌉)
in case 4 .
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Further, define Θ0 := (θ1), for r = 1, . . . ,R − 1

Θr := (θr+1) in case 1 ,

Θr :=
(
θr, θr+1

)
in case 2 ,

Θr :=
(
θr, θr+1

)
in case 3 ,

Θr :=
(
θr, θr, θr+1

)
in case 4

and

ΘR := ( ) in case 1 ,

ΘR :=
(
θR

)
in case 2 ,

ΘR :=
(
θR

)
in case 3 ,

ΘR :=
(
θR, θR

)
in case 4 ,

with θr as in (A.38), θr and θr as in (A.39). Concatenating the individual vectors T0, . . . ,TR

and Θ0, . . . ,ΘR, define

T̃ = (t1, . . . , tR̃) := (T0, . . . ,TR), Θ̃ = (θ1, . . . , θR̃) := (Θ0, . . . ,ΘR).

Recall that by R1 B = B(i∗1, j∗1) × . . . × B(i∗m, j∗m) < Bnc as in (3.6) and thus, Q(i∗r , j∗r ) , ∅ for

r = 1, . . . ,m. Define lr and lr via

tlr := max{t ∈ T̃ : t ≤ i∗r }, tlr := min{t ∈ T̃ : t ≥ j∗r },

for r = 1, . . . ,m and define T by replacing (tlr+1, . . . , tlr−1) in T̃ by
(

max(tlr + nλ/3 + 1, i∗r ),

min( j∗r + 1, tlr − nλ/3)
)
. If lr + 1 = lr just insert the latter vector between tlr and tlr in T̃ . Analog

define Θ by replacing (θlr+2, . . . , θlr−2) byωr. Then, reusing some notation, for T := (t1, . . . , tR),

Θ := (θ1, . . . , θR), and tR+1 := n + 1 it follows that

g :=
R∑

i=1

θi1[(ti−1)/n,(ti+1−1)/n) ∈ S(N(ω))mλ/3

and g fulfills 1. - 3. . Thus, (A.36) follows. �

For εn := mak2σ
(
qn(α) +

√
2 ln(e/λ)

)
/
√

nλ it follows from the definition of S(N(ω))mλ/3 that

sup
g∈S(N(ω))m

λ/3

min
f∈S(A)m

λ/3

‖g − fω‖∞ ≤ εn. (A.40)

Further, let (yn)n∈N be a fixed sequence in R, and denote yn := (y1, . . . , yn). Let ε > 0, and
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g, g′ ∈ Mλ be such that supx∈[0,1) |g(x) − g′(x)| ≤ ε. Then by the reverse triangle inequality

∣∣∣Tn(yn, g) − Tn(yn, g′)
∣∣∣ ≤ max

1≤i≤ j≤n
j−i+1≥nλ

∣∣∣∣∣∣∣∣∣
∣∣∣∣∑ j

l=i yl − g(xl)
∣∣∣∣ − ∣∣∣∣∑ j

l=i yl − g′(xl)
∣∣∣∣

σ
√

j − i + 1

∣∣∣∣∣∣∣∣∣
≤ max

1≤i≤ j≤n
j−i+1≥nλ

∣∣∣∣∑ j
l=i g(xl) − g′(xl)

∣∣∣∣
σ

√
j − i + 1

≤

√
nλ
σ

ε.

This implies that conditioned on {ω ∈ C1−α(Y)} and {Tn(Y, g) ≤ qn(α)}

inf
ω∈Ωm

P
 min

f∈S(A)m
λ/3

Tn(Y, fω) ≤ c3qn(α) + c4

 = inf
ω∈Ωm

P
 min

f∈S(A)m
λ/3

Tn(Y, fω) ≤ qn(α) +

√
nλ/3
σ

εn


≥ inf
ω∈Ωm

P
 inf

g∈S(N(ω))m
λ/3

Tn(Y, g) ≤ qn(α)

 = 1,

where the inequality results from

min
f∈S(A)m

λ/3

Tn(Y, fω) = inf
g∈S(N(ω))m

λ/3

Tn(Y, g) +

 min
f∈S(A)m

λ/3

Tn(Y, fω) − inf
g∈S(N(ω))m

λ/3

Tn(Y, g)


≤ inf

g∈S(N(ω))m
λ/3

Tn(Y, g) + sup
g∈S(N(ω))m

λ/3

min
f∈S(A)m

λ/3

|Tn(Y, fω) − Tn(Y, g)| .

�

Proof of Theorem 3.4.2. A slight modification of (Sieling, 2013, Corollary 4) gives for all n ∈

N and q > C, for some universal constant C < ∞, that

P(Tn > q) ≤ exp(−q2/8), (A.41)

which implies

qn(α) ≤
√
−8 ln(α). (A.42)

Thus, for αn as in (1.25) it follows that

qn(αn) ≤
δ

17makσ
ln(n) (A.43)

and hence, it follows from (3.14) that for βn as in (1.25) and n > N?

qn(βn) ≤
δ

9σ
ln(n). (A.44)

Let

I := {[xi, x j] : 1 ≤ i ≤ j ≤ n and j − i + 1 ≥ nλ/9}

and B := {B(I) = B(i, j) : I = [xi, x j] ∈ I} as in (1.18) with q = qn(βn). Define ‖B(I)‖ := b−b
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with B(I) = [b, b] and qn := qn(βn). Furthermore, let Bnc be as in (3.6). Define

εn :=
4/9 δ + 4σ

√
2 ln(9e/λ)

√
λ/9

ln(n)
√

n
(A.45)

and

An :=
{

max
j
|τ̂ j − τ j| ≤ 2

ln(n)2

n

}
∩

{
K(ĝ) = K(g)

}
∩
{

max
j

max
i

∣∣∣∣ f̂ i|[τ̂ j,τ̂ j+1) − f
i|[τ j,τ j+1)

∣∣∣∣ = 0
}
∩

{
max

i
|ω̂i − ωi| < 2εn

}
.

First, we show that for all n > N?

P (An| Tn(Y, g) ≤ qn(αn)) = 1. (A.46)

Note that conditioned on {Tn(Y, g) ≤ qn(αn)} it follows from (1.13) that ω ∈ C1−αn and thus, by

(1.23) it follows that2

AS B(ω̂) ≥ δ. (A.47)

Further, note that conditioned on {Tn(Y, g) ≤ qn(αn)} it follows from Theorem 3.2.1 that

inf
f∈S(A)m

λ/3

Tn(Y, f ω̂) ≤ qn(βn).

Fix some f ∈ S(A)mλ/3 such that

Tn(Y, f ω̂) ≤ qn(βn) (A.48)

and consider a c.p. of f . Let I1 and I2 be intervals of length λ/3 left and right of this c.p. (note

that f is constant on I1 and I2 as it has minimal scale λ/3). Then it follows from (A.44) that for

all n > N? (see (3.14) and (3.15))

‖B(I1)‖ + ‖B(I2)‖ = 4
qn(βn) +

√
2 ln(9e/λ)

√
nλ/9/σ

< δ.

By (A.47) f ω̂ has minimal jump size δ, in particular,
∣∣∣ f |I1 − f |I2

∣∣∣ ≥ δ. Further, by (A.48)

f ω̂|I1 ∈ B(I1) and f ω̂|I2 ∈ B(I2). Thus, it follows that B(I1) and B(I2) do not intersect and

hence, a function g which fulfills Tn(Y, g) ≤ qn(βn) has at least one jump in a λ/9 neighborhood

of a jump of f ω̂. In particular, f̂ has at least one jump in a λ/9 neighborhood of a jump of f ω̂.

Moreover, as f̂ (and thus also ĝ = f̂ ω̂) is chosen to have minimal number of jumps (see (1.27)),

it follows that f̂ (and ĝ) has exactly one jump in a λ/9 neighborhood of a jump of f ω̂ and no

jumps outside of a λ/9 neighborhood of a jump of f ω̂. As f (and f ω̂) has minimal scale λ/3 it

follows that ĝ = f̂ ω̂ has minimal scale λ/9.3

2The specific form of ω̂ in (1.23) is irrelevant for (A.47) to hold. One may as well use (1.24), as long as ω̂ is
an element of the parameter space Ωδ

m, which yields Corollary 3.4.3. This should have been stated more clearly in
(Behr et al., 2017, Theorem 2.7. and Corollary 2.8.).

3In the original version in (Behr et al., 2017) it was falsely stated that f̂ has minimal jump size λ instead λ/9.
This additional 1/9 factor propagates to the constants c1, c2 and N? in (3.13), (3.14), and (3.15).
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Now let dn := ln2(n)/n and define the partition I = I1 ∪ I2 ∪ I3 as follows.

I1 := {I ∈ I : I contains more than two c.p.’s of g},

I2 := {I ∈ I : g|I = gI
11I1 + gI

21I2 + gI
31I3 , with |I1| ≥ |I2| ≥ |I3| ,

|I2| ≤ dn, and gI
1, g

I
2, g

I
3 ∈ imag(g) pairwise different}

I3 := {I ∈ I : g|I = gI
11I1 + gI

21I2 + gI
31I3 , with |I1| ≥ |I2| ≥ |I3| ,

|I2| > dn, and gI
1, g

I
2, g

I
3 ∈ imag(g) pairwise different}.

I2 contains all intervals of minimal scale λ/9 which are dominated by a single constant segment

of g. I1 contains all intervals where g has at least two constant segments each of minimal scale

λ. I3 contains intervals, where g has at least two (sufficiently long) constant segments, with

one of them having at least length λ/9 − 2dn and the other one having at least length dn.

Define

E1 :=
⋂

I∈I1∪I3

{B(I) ∈ Bnc} ,

E2 :=
⋂
I∈I2

{
B(I) ⊂ [gI

1 − εn, g
I
1 + εn]

}
,

E3 :=
{

K(ĝ) = K(g)} ∩ {max
j
|τ̂ j − τ j| ≤ 2dn

}
∩

{
max

j

∣∣∣ĝ(τ̂ j) − g(τ j)
∣∣∣ < 2εn

}
.

First, we show that

E1 ∩ E2 ⊂ E3. (A.49)

To this end, consider Figure A.1. If B(I) ∈ Bnc, then ĝ is not constant on I. Therefore, it

follows from E1 and the fact that ĝ has minimal scale λ/9 that ĝ is constant only on intervals

I ∈ I2. Conversely, if ĝ is constant on I ∈ I2 then ĝ|I ∈ B(I) (see orange bars in Figure A.1) as

Tn(Y, ĝ) ≤ qn(βn). Now, consider a c.p. of ĝ. Let I, I′ ∈ I2 be the constant parts of ĝ left and

right of this c.p. and I1, I′1 be those sub-intervals which contain the largest constant piece of g

(see green lines in Figure A.1), with g|I1 ≡ gI
1 and g|I′1 ≡ gI′

1 . As εn < δ/4 for all n > N? (see

(3.15)) and ĝ has minimal jump size δ, E2 implies that [gI
1−εn, g

I
1+εn]∩[gI′

1 −εn, g
I′
1 +εn] = ∅ and

thus,
∣∣∣gI

1 − g
I′
1

∣∣∣ > 0 (see the vertical distance between the left and the right green line in Figure

A.1). Consequently, g has at least one jump in a 2dn-neighborhood of a jump of ĝ. Conversely,

as 2dn < λ for all n > N? (see (3.15)) g has at most one jump in a 2dn-neighborhood of a jump

of ĝ. Consequently, (A.49) follows.

For all n > N? (see (3.15)) 2εn < δ/(2mak). Thus, if f̂ was separable and thus, (ω̂, f̂ ) δ-

separable as in Definition 2.2.1, Theorem 2.2.3 implies

E3 ⊂ An. (A.50)

f̂ is not separable, in general. However, by Theorem 3.2.1, it follows that there exists a separa-

ble f ∈ H(βn) as in (1.29) with minimal scale λ/3 > λ/9. As we have not used the particular
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Figure A.1: The key argument underlying E1 ∩ E2 ⊂ E3.

choice of f̂ in (1.28) it follows that E3 ⊂
{

maxi |ω̂i − ωi| < 2εn
}
. Moreover, it follows from the

proof of Theorem 2.2.3 that for the second assertion of the theorem (if the first assertion holds)

separability is not needed. Thus (A.50) follows for the SLAM estimates ω̂ and f̂ .

(A.49) and (A.50) imply that for all n > N?

P (An| Tn(Y, g) ≤ qn(αn)) ≥ P (E1 ∩ E2| Tn(Y, g) ≤ qn(αn)) .

First, consider E1 conditioned on {Tn(Y, g) ≤ qn(αn)}. Every interval I ∈ I1 includes a sub-

interval I′, which is the union of two constant pieces of g. As 2dn < λ for all n > N? (see

(3.15)), I′ ∈ I3 and E1 ⊇
⋂

I∈I3{B(I) ∈ Bnc}. Moreover, for I ∈ I3 with I = I1 ∪ I2 ∪ I3 as in

the definition of I3, conditioned on {Tn(Y, g) ≤ qn(αn)} (recall that qn(αn) < qn(βn)) it follows

that g|I1 ∈ B(I1) and g|I2 ∈ B(I2) with
∣∣∣g|I1 − g|I2

∣∣∣ ≥ δ. Thus, if δ > ‖B(I1)‖ + ‖B(I2)‖ it follows

that B(I1) ∩ B(I2) = ∅ and hence, I ∈ Bnc. In particular,

E1 ⊇
⋂
I∈I3

{δ > ‖B(I1)‖ + ‖B(I2)‖}.

By the definition of I3 it follows that |I1| ≥ λ/9 − dn > dn for all n > N? (see(3.15)) and

|I2| > dn. Hence, (1.18) implies

‖B(I1)‖ + ‖B(I2)‖ ≤ 4
(
qn +

√
2 ln(e/dn)

√
ndn/σ

)
=

4σ
(
qn +

√
2 ln(e/dn)

)
ln(n)

.

In summary, we obtain conditioned on {Tn(Y, g) ≤ qn(αn)} for all n > N?

E1 ⊇

δ > 4σ
(
qn +

√
2 ln(e/dn)

)
ln(n)


=

{
qn <

δ ln(n)
4σ

−
√

2 ln(e/dn)
}
⊇

{
qn ≤

δ

8σ
ln(n)

}
,

(A.51)

where the second inclusion results from (3.14). In particular, (A.51) and (A.44) yield that

P(E1|Tn(Y, g) ≤ qn(αn)) = 1 for all n > N?.



A.2. Proofs of Chapter 3 119

Second, consider E2 conditioned on {Tn(Y, g) ≤ qn(αn)}. By (A.44), (A.45), and (3.13) it holds

for all I = [xi, x j] ∈ I that

‖B(I)‖ = 2σ
qn +

√
2 ln( en

j−i+1 )√
j − i + 1

≤ 2σ
δ

9σ ln(n) +

√
2 ln( 9e

λ )
√

nλ/9
≤ εn/2

and as ḡI :=
∑

l∈I g(xl)/(n |I|) ∈ B(I),

E2 ⊇
⋂
I∈I2

{|ḡI − g
I
1| ≤ εn − ‖B(I)‖} ⊇

⋂
I∈I2

{|ḡI − g
I
1| ≤ εn/2}.

Moreover, for I ∈ I2∣∣∣ḡI − g
I
1

∣∣∣ =

∣∣∣∣∣(gI
2 − g

I
1)
|I2|

|I|
+ (gI

3 − g
I
1)
|I3|

|I|

∣∣∣∣∣ ≤ |I2| + |I3|

|I|
ak ≤

2dn

λ/9
ak. (A.52)

Summarizing, conditioned on {Tn(Y, g) ≤ qn(αn)}

E2 ⊇

{
2dn

λ/9
ak ≤ εn/2

}
=

 √λn
ln(n)

≥
36ak

4/3δ + 12σ
√

2 ln(9e/λ)

 . (A.53)

(3.15) implies that the right hand side of (A.53) holds for all n ≥ N? and, in particular, that

P(E2|Tn(Y, g) ≤ qn(αn)) = 1 for all n ≥ N?. Together with (A.51), this gives that P(E1 ∩

E2|Tn(Y, g) ≤ qn(αn)) = 1 for all n > N?. This shows (A.46) and thus,

P (An) ≥ P (An| Tn(Y, g) ≤ qn(αn)) P (Tn(Y, g) ≤ qn(αn)) = P(Tn(Y, g) ≤ qn(αn)) ≥ 1 − αn.

Finally, remember that the identifiability condition AS B(ω) ≥ δ > 0 implies that g jumps if

and only if f jumps. Hence, when f i and f̂ i take the same function values on constant pieces,

results about c.p.’s of g directly translate to results about c.p.’s of f 1, . . . ,fm.

�

Proof of Theorem 3.3.1. It follows from the proof of Theorem 3.4.2 that conditioned on {Tn(Y, g) ≤

qn(αn)} for all n ≥ N? as in (3.14) and (3.15)

max
e∈imag(f )

|eω − eω̂| ≤ c2
ln(n)
√

n
and K(ω̂>f ) = K(ĝ). (A.54)

Let B(i, j) = [bi j, bi j] be as in (1.18) with q = qn(β) as in (1.19) and

B̃(i, j) :=
[
bi j − c2

ln(n)
√

n
, bi j + c2

ln(n)
√

n

]
.
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Then, it follows from (A.54) that

P
(
f = (f 1, ...,fm)> ∈ H̃(β)

)
= P


⋂

1≤i≤ j≤n
(f ω̂)|[i, j]≡(f ω̂)i j

(f ω̂)i j ∈ B̃(i, j) and K (f ω̂) = K(ĝ)


≥ P


⋂

1≤i≤ j≤n
g|[i j]≡gi j

gi j ∈ B(i, j) and Tn(Y, g) ≤ qn(αn)


= P (Tn(Y, g) ≤ min(qn(β), qn(αn))) .

Finally, the assertion follows from limn→∞min(qn(β), qn(αn)) = qn(β) for every fixed β ∈ (0, 1).

�

A.2.1 Proofs of Section 3.6

For the proof of Theorem 3.6.6 we require the following auxiliary result, which is a direct

consequence of Theorem 2.2.5.

Corollary A.2.2. If g, g̃ ∈ Mδ,λ and m(g) , m(g̃), then there exists an interval I with |I| > λ/2

such that g and g̃ are both constant on I and |g(x) − g̃(x)| > δ3/2/(
√

3ak) for x ∈ I.

Proof of Theorem 3.6.6. With the notation Ωδ
0 :=Mδ

0 := ∅ (3.20) implies

{m̂(q) <m} ∩ {Tn(Y, g) ≤ q} =
⋃

m̃<m

⋃
ω∈Ωδ

m̃

{
ω ∈ Cm̃

q } ∩ {Tn(Y, g) ≤ q
}

⊂

 inf
g∈

⋃
m̃<mM

δ,λ/3
m̃

Tn(Y, g) ≤ c3q + c4


and together with (3.23) this gives

{m̂(q) ,m} ⊂ {Tn(Y, g) > q} ∪

 inf
g∈

⋃
m̃<mM

δ,λ/3
m̃

Tn(Y, g) ≤ c3q + c4

 . (A.55)

Consequently,

P (m̂(q) ,m) ≤ αn(q) + P
 inf

g∈
⋃

m̃<mM
δ,λ/3
m̃

Tn(Y, g) ≤ c3q + c4

 . (A.56)

Thus, it remains to show that the second probability on the r.h.s. of (A.56) is bounded from

above by βn(q). Let Ĩ1 := [x1, xnλ/12) and Ĩi := [x(i−1)nλ/12, xinλ/12) for i = 2, . . . , b12/λc and

I :=
{
Ĩi : g is constant on Ĩi for i = 1, . . . , b12/λc

}
:= {I1, . . . , Ir}

with r ≤ 12/λ, and let gi := g(x) for x ∈ Ii. Note that for g, g ∈ Mδ,λ/3, by Corollary A.2.2,

there exists an interval I ⊂ [0, 1) with |I| = λ/6 such that g and g are both constant on I with
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|g(x) − g(x)| ≥ δ3/2/(
√

3ak) for x ∈ I and for each such I there exists an i ∈ {1, . . . , 12/λ} such

that Ĩi ⊂ I. Hence, with the events

Ai :=
{
∃ci <

[
gi ±

δ3/2
√

3ak

]
:

∣∣∣∣ √n |Ii| Y Ii −
√

n |Ii| ci

∣∣∣∣ ≤ σ (q + pen (n |Ii|))
}

it follows from the definition of the multiscale statistic Tn(Y, g) in (1.16) that

P
 inf

g∈
⋃

m̃<mM
δ,λ
m̃

Tn(Y, g) ≤ q

 ≤ P
 r⋃

i=1

Ai

 .
Let

Xi :=
1

σ
√

n|Ii|

∑
x j∈Ii

ε j ∼ N(0, 1), (A.57)

then for

d = d(λ, δ, ak, σ) :=
√
λ/12nδ3/2
√

3akσ

it holds that

P(Ai) = P
(
∃ci < [±d] : |Xi − ci| ≤ q +

√
2 ln(12e/λ)

)
≤ P

(
∃ci < [±d] : |Xi − ci| ≤ q +

√
2 ln(12e/λ)

⋂
Xi ∈ [−d, 0]

)
+ P

(
∃ci < [±d] : |Xi − ci| ≤ q +

√
2 ln(12e/λ)

⋂
Xi ∈ (0, d]

)
+ P (|Xi| ≥ d) .

Moreover,

P
(
∃ci < [±d] : |Xi − ci| ≤ q +

√
2 ln(12e/λ)

⋂
Xi ∈ [−d, 0]

)
= P

(
Xi + d ≤ q +

√
2 ln(12e/λ)

⋂
Xi ∈ [−d, 0]

)
= P

(
−Xi ≥ d −

(
q +

√
2 ln(12e/λ)

)⋂
Xi ∈ [−d, 0]

)
= P

(
|Xi| ≥ d −

(
q +

√
2 ln(12e/λ)

)⋂
Xi ∈ [−d, 0]

)
and analogously

P
(
∃c < [±d] : |Xi − c| ≤ q +

√
2 ln(12e/λ)

⋂
Xi ∈ (0, d]

)
= P

(
|Xi| ≥ d −

(
q +

√
2 ln(12e/λ)

)⋂
Xi ∈ (0, d]

)
.

It follows from the above equations and the subgaussian tail estimate, see e.g., (Wainwright,

2017, equation (2.9)), that

P(Ai) ≤ P
(
|Xi| ≥ d −

(
q +

√
2 ln(12e/λ)

)⋂
|Xi| ≤ d

)
+ P (|Xi| ≥ d)

≤ 2P
(
|Xi| ≥ d −

(
q +

√
2 ln(12e/λ)

))
≤ 4 exp(−γn(q)n)

with γn(q) :=
( √

λ/12δ3/2
√

6akσ
−

q+
√

2 ln(12e/λ)
√

2n

)2

+
. As the intervals I1, . . . , Ir are disjoint and r ≤ 12/λ,
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it follows that

P
 inf

g∈
⋃

m̃<mM
δ,λ
m̃

Tn(Y, g) ≤ q

 ≤ 1 −
(
1 − 4 exp(−γn(q)n)

)12/λ . (A.58)

Replacing q in (A.58) by c3q + c4 yields

P
 inf

g∈
⋃

m̃<mM
δ,λ
m̃

Tn(Y, g̃) ≤ q′
 ≤ βn(q)

and finishes the proof. �

Proof of Theorem 3.6.7. It follows from Theorem 2.3.10 that m ≤
√

1/δ and hence, c3/
√

2 ≤
√

8ak/
√

3δ. Thus, βn(q) ↘ 0 as n ↗ ∞ and lim sup qn/
√

n ≤
√
λδ2/(24

√
2a2

kσ) for n → ∞.

Moreover, as the statistic Tn := Tn(ε, 0) ≥ Tn(Y, g) is known to converge to a certain functional

of the Brownian motion Tn
D
⇒ L(B) < ∞ a.s. (see (Dümbgen and Spokoiny, 2001)) it follows

that αn(q)↘ 0 for q↗ ∞. Hence, Theorem 3.6.6 directly yields Theorem 3.6.7. �

Proof of Theorem 3.6.9. It follows from Theorem 2.3.10 that m ≤
√

1/δ and hence, for qn as

in Definition 3.6.8

qn = c
√

n =

√
λδ2

24
√

2a2
kσ

√
n ≤

√
λδ3/2

24
√

2a2
kmσ

√
n.

Further, note that for q = qn the exponential term in the definition of βn(q) in Theorem 3.6.6

gets smaller than 1 for n large enough. Thus, we can apply binomial inequality to obtain that

for q = qn and n large enough

1 − βn(qn) ≥ 1 −
48
λ

exp

−  √λδ3/2
√

72akσ

√
n − 2makqn − 3mak

√
ln(12/λ)

2
≥ 1 − 4

(
12
λ

)10m2a2
k

exp

− λδ3

288a2
kσ

2
n

 ≥ 1 − 4
(
12
λ

)10m2a2
k

exp
(
−4c2n

)
and with the deviation inequality (Sieling, 2013, Theorem 37) it follows for αn(q) as in Theo-

rem 3.6.6 that αn(qn) ≤ exp
(
−c2n/8

)
. Thus, Theorem 3.6.6 yields

P (m̂(qn) = m) ≥ 1 − exp
(
−c2n/8

)
+ O

(
exp

(
−4c2n

))
.

�

A.3 Proofs of Chapter 4

Proof of Theorem 4.1.1. The proof of Theorem 4.1.1 is divided into two steps, corresponding

to the two different estimation errors of Π̂ and ω̂, respectively. We start with the first term

on the r.h.s. of the assertion which corresponds to the estimation error of ω̂. The idea is to

construct a hyperrectangle of maximal size which is a subset of Nδ,Λ and then apply results
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of Donoho et al. (1990) (for fixed selection matrix Π). In the following, ω? will denote the

center of this hyperrectangle and the matrix E will denote the perturbation (of maximal size)

around ω?. To this end, let ω? ∈ Ωm,M be such that AS B(ω?) = 0.2∆Amin
√

M/m, WS B(ω?) ≥

0.2∆Amin
√

M/m, and ω?m j ≥ 0.4∆Amin/(1 + mak) for j = 1, . . . ,M (existence follows from

Lemma A.1.4 and A.1.5). For ε ∈ (0, 1)(m−1)×M define

ωε := ω? +


ε11 . . . ε1M

...

ε(m−1)1 . . . ε(m−1)M

−
∑m−1

i=1 εi1 . . . −
∑m−1

i=1 εiM


= ω? + E. (A.59)

Let ε := maxi j
∣∣∣εi j

∣∣∣. If
0.4∆Amin

1 + mak
≥ ε(m − 1), (A.60)

then all entries of ωε are non-negative and ωε ∈ Ωm,M. For ωε to be an element of Ωδ
m,M we

further need that WS B(ωε), AS B(ωε) ≥ δ. To this end, note that∥∥∥ωεi·∥∥∥ − ∥∥∥ωεi−1·

∥∥∥ =
∥∥∥ω?i· + Ei·

∥∥∥ − ∥∥∥ω?i−1· + Ei−1·
∥∥∥ ≥ ∥∥∥ω?i· ∥∥∥ − ∥∥∥ω?i−1·

∥∥∥ − ‖Ei·‖ − ‖Ei−1·‖

≥
2

1 + mak
0.2∆Amin

√
M/m − m

√
Mε

and thus

WS B(ωε) ≥ 0.2∆Amin
√

M/m −
1 + mak

2
m
√

Mε. (A.61)

Further, note that for e ∈ ∆Am and E as in (A.59)

‖eE‖2 =

M∑
j=1

m−1∑
i=1

(ei − em)εi j


2

≤ M ((m − 1)2akε)2

and thus,

AS B(ωε) = min
e∈∆Am

∥∥∥e(ω? + E)
∥∥∥ ≥ min

e∈∆A

∥∥∥eω?
∥∥∥ − ‖eE‖

= AS B(ω?) − ‖eE‖ ≥ 0.2∆Amin
√

M/m − 2(m − 1)akε
√

M.
(A.62)

Summing up, (A.61) and (A.62) yield that ωε ∈ Ωδ
m,M if

δ ≤ 0.2∆Amin
√

M/m − m2ak
√

Mε (A.63)

and (A.60) holds. As δ ≤ ∆Amin
√

M/m(45
√

2)−1, (A.63) and (A.60) hold for all ε ∈ R(m−1)×M
+

with

ε ≤
∆Amin

6m5/2ak
=: ε?. (A.64)
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Now let Π? be the selection matrix such that

Π?A =
(
e1 e2 . . . em e1 e2 . . .

)>
,

where er ∈ Rm is the r-th unit vector in Rm. Then, as Λ ≤ n/m,

Θ :=
{
Π?Aωε : ε ∈ [0, ε?]m−1×M

}
⊂ Nδ,Λ

and for Π?Aωε ∈ Θ one observes in (4.1)

Y1, . . . ,Yn/m
i.i.d.
∼ N(ωε , σ2IMm×Mm).

Define

Θ̃ :=
{
ωε : ε ∈ [0, ε?]m−1×M

}
.

Θ̃ is almost an hyperractangle. To make it a proper hyperractangle, we have to remove the last

column of the matrices in Θ, namely

Θ̃′ := {(ωεi j)1≤i≤m−1
1≤ j≤M

: ε ∈ [0, ε?]m−1×M}.

Note that

inf
θ̂

sup
θ∈Θ̃

Eθ

(∥∥∥θ̂ − θ∥∥∥2
2

)
≥ inf

θ̂
sup
θ∈Θ̃′

Eθ

(∥∥∥θ̂ − θ∥∥∥2
2

)
.

Then it follows from (Donoho et al., 1990, (2.1), (3.4) and Proposition 3) that

inf
θ̂

sup
ΠAω∈Nδ,Λ

EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2

)
≥ inf

θ̂
sup

ΠAω∈Θ
EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2

)
=

n
m

inf
θ̂

sup
ω∈Θ̃

Eω

(∥∥∥θ̂ − ω∥∥∥2
)

≥
n
m

inf
θ̂

sup
ω∈Θ̃′

Eω

(∥∥∥θ̂ − ω∥∥∥2
)

≥ (1.25)−1 n
m

M(m − 1)
(ε?)2σ2/(n/m)

(ε?)2 + σ2/(n/m)

≥ 0.4M
(

1
σ2(m − 1)

+
2

n(ε?)2

)−1

.

Together with (A.64) this gives

inf
θ̂

sup
ΠAω∈Nδ

EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2

)
≥0.4M

 1
(m − 1)σ2 +

72m5a2
k

(∆Amin)2n

−1

.

Now we show the second part of the proof which corresponds to the estimation error of Π.

The idea is to fix a suitable mixing matrix ω ∈ Ωδ
m,M and thus, reduce the estimation prob-

lem to a classification problem on the finite set of possible selection matrices Π. This can be

considered as a testing problem which allows to apply the Neyman-Pearson lemma. As δ ≤
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0.2
9ak

(∆Amin)2
√

M/m it follows that 9δ
√

mak/∆Amin ≤ 0.2∆Amin
√

M/m. Thus, by Lemma A.1.4

it follows that Ω
9δ
√

mak/∆Amin
m,M is non-empty and hence, by Lemma A.1.6 there exists a quadratic

mixing matrixωδ ∈ Ωm,m such that AS B(ωδ) = (9δ
√

mak/∆Amin)/(9
√

Mak/∆Amin) = δ/
√

M/m

and WS B(ωδ) ≥ δ/
√

M/m. Hence,

Θ := {ΠA (ωδ, . . . , ωδ)︸         ︷︷         ︸
M/m×

: Π Λ-separable} ⊂ Nδ,Λ. (A.65)

Then for ΠAω ∈ Θ one observes in (4.1)

Y1, . . . ,YM/m
i.i.d.
∼ N(ΠAωδ, σ2Inm×nm). (A.66)

For the finite parameter space Θ̃ := {ΠAωδ : Π Λ-separable} it holds that

min
θ,θ′∈Θ̃

∥∥∥θ − θ′∥∥∥2
= min

θ,θ′∈Θ̃

n∑
j=1

∥∥∥θ j· − θ
′
j·

∥∥∥2
= min

θ,θ′∈Θ̃
∃! j?:θ j?,θ

′

j?

∥∥∥∥θ j?· − θ
′
j?·

∥∥∥∥2
= AS B(ωδ)2 =

δ2m
M

.

Lemma A.3.1 yields for any estimator θ̂

sup
ΠAω∈Nδ,Λ

EΠAω

(∥∥∥θ̂ − ΠAω
∥∥∥2

)
≥ sup

θ∈Θ
Eθ

(∥∥∥θ̂ − θ∥∥∥2
)

= sup
θ∈Θ̃

M
m

Eθ
(∥∥∥θ̂ − θ∥∥∥2

)
≥ δ2 sup

θ∈Θ̃

Pθ
(
θ̂ , θ

)
.

(A.67)

Now let θ, θ′ ∈ Θ̃ be fixed such that ‖θ − θ′‖2 = δ2m
M . Then the Neyman-Pearson lemma yields

for Ȳ :=
∑M/m

i=1 mYi/M with Yi as in (A.66) and Z ∼ N(0,mσ2/MInm×nm) that

sup
θ∈Θ̃

Pθ
(
θ̂ , θ

)
≥

1
2

(
Pθ

(
θ̂ , θ

)
+ Pθ′

(
θ̂ , θ′

))
≥

1
2

(
Pθ

(
θ̂ , θ

)
+ Pθ′

(
θ̂ = θ

))
≥

1
2

inf
u∈R

(
Pθ

(∥∥∥Ȳ − θ
∥∥∥2
−

∥∥∥Ȳ − θ′
∥∥∥2
> u

)
+ Pθ′

(∥∥∥Ȳ − θ
∥∥∥2
−

∥∥∥Ȳ − θ′
∥∥∥2
< u

))
=

1
2

inf
u∈R

(
P

(
2Z>(θ′ − θ) > u +

∥∥∥θ − θ′∥∥∥2
)

+ P
(
2Z>(θ′ − θ) < u −

∥∥∥θ − θ′∥∥∥2
))

= P
(
Z>(θ′ − θ) >

‖θ − θ′‖2

2

)
= 1 − Ψ

‖θ − θ′‖ √M
2σ
√

m

 = 1 − Ψ

(
δ

2σ

)
≥
σ

2δ
e−

δ2

8σ2 ,

where Ψ denotes the cumulative distribution function of the standard normal and the last in-

equality follows from Mill’s ratio and 1 − 4σ2/δ2 ≥ 1/2 as δ ≥ σ
√

8. With (A.67) this gives

sup
ΠAω∈Nδ,Λ

EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2

)
≥ δ

σ

2
e−

δ2

8σ2
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This finishes the proof. �

Proof of Theorem 4.1.3. By Theorem 2.2.3 we can write θ̂ = Π̂Aω̂ in a unique way. We have

that for any ΠAω ∈ Nδ,Λ

EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2

)
= EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2
1{Π̂=Π}

)
+ EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2
1{Π̂,Π}

)
.

(A.68)

We start with the second term. The idea is to bound it with the classification error, that is

PΠAω
(
Π̂ , Π

)
, and then apply exact recovery as in Theorem 2.2.3. As the entries of the n×M

matrices θ̂ and ΠAω are contained in the range of the alphabet [0, ak], it follows that

EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2
1{Π̂,Π}

)
≤ a2

knMPΠAω
(
Π̂ , Π

)
= a2

knM
∑
Π,Π

PΠAω
(
Π̂ = Π

)
.

For a fixed Λ-separable Π and anyω ∈ Ωδ it follows from Theorem 2.2.3 that ‖ΠAω − ΠAω‖ ≥
√

Λδ/(1 + mak) =: c. Further, as by separability rank(ΠA) = m and Ωδ ⊂ Rm×M, there exists a

rotation matrix R such that for Θ := {ΠAω − ΠAω : ω ∈ Ωδ
m,M} ⊂ R

nM and Θ̃ := RΘ it holds

for all θ ∈ Θ̃ that θmM+2 = . . . = θnM = 0. This gives

PΠAω
(
Π̂ = Π

)
≤ PΠAω

‖Y −ΠAω‖2 > min
ω∈Ωδ

m,M

‖Y − ΠAω‖2


= PΠAω

(
‖Z‖2 > min

θ∈Θ
‖Z + θ‖2

)
= P

(
‖Z‖2 > min

θ∈Θ̃
‖Z + θ‖2

)
= P

(
max
θ∈Θ̃
−2Z>

θ

‖θ‖σ
−
‖θ‖

σ
> 0

)
≤ P

 max
i=1,...,Mm+1

∣∣∣∣∣Zi

σ

∣∣∣∣∣ max
θ∈Θ̃

∑mM+1
i=1 |θ|

‖θ‖
>

c
2σ


≤ (Mm + 1)P

(∣∣∣∣∣Z1

σ

∣∣∣∣∣ √mM + 1 >
c

2σ

)
= (Mm + 1)P

(
|N(0, 1)| >

c

2
√

mM + 1σ

)
≤ (Mm + 1)

2
√

mM + 1σ
c

e
− c2

8(mM+1)σ2 ,

where we considered the noise matrix Z ∈ Rn×M in (4.1) as a vector Z ∈ RnM (with entries

Zi
i.i.d.
∼ N(0, σ2), i = 1, . . . , nM) and for the last inequality we used Mill’s ratio. As the number

of Λ-separable selection matrices Π is bounded by nmkm, it follows that

PΠAω
(
Π̂ , Π

)
≤ 2σnkmm(1 + mak)

(1 + mM)3/2
√

Λδ
e
− Λδ2

8(mM+1)(1+mak )2σ2 .
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and

EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2
1{Π̂,Π}

)
≤ 12σn2kmm7/2a3

k
M5/2
√

Λδ
e
− Λδ2

8(mM+1)(1+mak )2σ2 .

This gives the second term of the r.h.s. of the assertion.

Now we consider the first summand on the r.h.s. of (A.68). The idea is to bound the minimax

risk conditioned on Π̂ = Π with the minimax risk of the LSE on the linear subvector space

imag(ΠA). To this end, let Nδ(Π) ⊂ Nδ,Λ denote the set of all ΠAω ∈ Nδ,Λ with Π = Π.

Further, let θ̂′ ∈ argminΠAω∈Nδ(Π) ‖Y − ΠAω‖2 be the least-squares estimator restricted to Π̂ =

Π. Then, clearly, θ̂ = θ̂′ on {Π̂ = Π} and thus

EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2
1{Π̂=Π}

)
= EΠAω

(∥∥∥θ̂′ −ΠAω
∥∥∥2
1{Π̂=Π}

)
≤ EΠAω

(∥∥∥θ̂′ −ΠAω
∥∥∥2

)
.

Thus, for all fixed Π as in (4.2)

sup
ΠAω∈Nδ(Π)

EΠAω

(∥∥∥θ̂ −ΠAω
∥∥∥2
1{Π̂=Π}

)
≤ sup

ΠAω∈Nδ(Π)
EΠAω

(∥∥∥θ̂′ −ΠAω
∥∥∥2

)
.

Clearly, Nδ(Π) ⊂ imag(ΠA)M with dim(imag(ΠA)M) = mM. Thus, for the LS estimator on

imag(ΠA)M, θ̂′′ ∈ argminθ̃∈imag(ΠA)M

∥∥∥Y − θ̃
∥∥∥2, it follows from Lemma A.3.2 that

sup
ΠAω∈Nδ(Π)

EΠAω

(∥∥∥θ̂′ −ΠAω
∥∥∥2

)
≤ 4 sup

θ∈imag(ΠA)M
Eθ

(∥∥∥θ̂′′ − θ∥∥∥2
)

= 4σ2mM,

which finishes the proof. �

Proof of Theorem 4.2.2. The first assertion follows directly from the first part of Lemma A.3.3

with ε = ‖ΠAω − Π′Aω′‖ /(
√

nmak). The second assertion follows from the second part of

Lemma A.3.3 with ε ↗ ‖ΠAω − Π′Aω′‖. �

Proof of Theorem 4.2.3. It follows directly from combining the first part of Theorem 4.2.2 and

Corollary 4.1.4 that

inf
Π̂,ω̂

sup
Π,ω

EΠAω

(
d
(
(Π,ω), (Π̂, ω̂)

)2
)
& σ2M

1
nma2

k

+ σ
√

M
c1

nm2a2
k

e−
c2
1
8

M
σ2 .

For B :=
{∥∥∥ΠAω − Π̂Aω̂

∥∥∥ ≤ c1
√

M/(1 + mak)
}
, Markov’s inequality gives

PΠAω
(
Bc) = PΠAω

(∥∥∥ΠAω − Π̂Aω̂
∥∥∥ > c1

√
M/(1 + mak)

)
≤

EΠAω

(∥∥∥ΠAω − Π̂Aω̂
∥∥∥2

)
c2

1M/(1 + mak)2
.

As for any ΠAω,ΠAω ∈ Nδ,Λ, d ((Π,ω), (Π, ω)) ≤
√

M(1/m + 1) ≤
√

M3/2 it follows from
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combining the second part of Theorem 4.2.2 and Corollary 4.1.4 that

inf
Π̂,ω̂

sup
Π,ω

EΠAω

(
d
(
(Π,ω), (Π̂, ω̂)

)2
)

≤ inf
Π̂,ω̂

sup
Π,ω

EΠAω

(
d
(
(Π,ω), (Π̂, ω̂)

)2
1B

)
+ 9/4MPΠAω

(
Bc)

≤ inf
Π̂,ω̂

sup
Π,ω

EΠAω

(∥∥∥ΠAω − Π̂Aω̂
∥∥∥2

)
+ 9/4M

EΠAω

(∥∥∥ΠAω − Π̂Aω̂
∥∥∥2

)
c2

1M/(1 + mak)2

= inf
Π̂,ω̂

sup
ω,ω

EΠAω

(∥∥∥ΠAω − Π̂Aω̂
∥∥∥2

) 1 +
9/4(1 + mak)2

c2
1


. inf

Π̂,ω̂
sup
ω,ω

EΠAω

(∥∥∥ΠAω − Π̂Aω̂
∥∥∥2

) (mak

c1

)2

. σ2M
m3a2

k

c2
1

+
√

Mσ
m2a2

k
√

c2c3
1

e
−

c2c2
1

16m3(1+ak )2
M
σ2 .

�

A.3.1 Additional lemmas

Lemma A.3.1. For a finite parameter space Θ ⊂ Rn and any estimator θ̂

min
θ′,θ′′

∥∥∥θ′ − θ′′∥∥∥2
≤

supθ∈Θ Eθ
(∥∥∥θ̂ − θ∥∥∥2

)
supθ∈Θ Pθ

(
θ̂ , θ)

) ≤ max
θ′,θ′′

∥∥∥θ′ − θ′′∥∥∥2
.

Proof.

sup
θ∈Θ

Eθ
(∥∥∥θ̂ − θ∥∥∥2

)
= sup

θ∈Θ

∑
θ̃∈Θ\θ

∥∥∥θ̃ − θ∥∥∥2 Pθ
(
θ̂ = θ̃

)
= sup

θ∈Θ
Pθ(θ̂ , θ)

∑
θ̃∈Θ\θ

∥∥∥θ̃ − θ∥∥∥2 Pθ
(
θ̂ = θ̃

)
Pθ(θ̂ , θ)

,

where, for every θ ∈ Θ

min
θ′,θ′′

∥∥∥θ′ − θ′′∥∥∥2
≤

∑
θ̃∈Θ\θ

∥∥∥θ̃ − θ∥∥∥2 Pθ
(
θ̂ = θ̃

)
Pθ(θ̂ , θ)

≤ max
θ′,θ′′

∥∥∥θ′ − θ′′∥∥∥2
.

�

Lemma A.3.2. Let V be a subvector space of Rd, A ⊂ V an arbitrary subset, and Y ∈ Rd.

Further, let θ̂A(Y) ∈ argminθ̃∈A

∥∥∥Y − θ̃
∥∥∥ and θ̂V (Y) ∈ argminθ̃∈V

∥∥∥Y − θ̃
∥∥∥. Then

∀θ ∈ A :
∥∥∥θ̂A − θ

∥∥∥2
≤ 4

∥∥∥θ̂V − θ
∥∥∥2
. (A.69)

Proof. Let θ ∈ A be fixed. If
∥∥∥θ̂A − θ

∥∥∥2
= 0, (A.69) holds trivially. Further, if Y ∈ A, it holds

that θ̂V = θ̂A = Y , and hence, (A.69) follows trivially, too. So assume that
∥∥∥θ̂A − θ

∥∥∥2
> 0 and

Y < A.
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Choosing an appropriate coordinate system, we may w.l.o.g. assume that

V = {x ∈ Rd : x1 = . . . = xr = 0},

with dim(V) = d − r. Let pr be the orthogonal projection onto V , i.e.,

pr : (x1, . . . , xd)> 7→ (xr+1, . . . , xd)>.

Then,

argmin
θ̃∈A

∥∥∥Y − θ̃
∥∥∥2

= argmin
θ̃∈A

r∑
i=1

Y2
i +

∥∥∥pr(Y) − pr(θ̃)
∥∥∥2

= argmin
θ̃∈A

∥∥∥pr(Y) − pr(θ̃)
∥∥∥2

and analog argminθ̃∈V
∥∥∥Y − θ̃

∥∥∥2
= argminθ̃∈V

∥∥∥pr(Y) − pr(θ̃)
∥∥∥2,

∥∥∥θ̂V − θ
∥∥∥2

=
∥∥∥pr(θ̂V ) − pr(θ)

∥∥∥2,

and
∥∥∥θ̂V − θ

∥∥∥2
=

∥∥∥pr(θ̂V ) − pr(θ)
∥∥∥2. Thus, we may w.l.o.g. assume that V = Rd, i.e., θ̂V = Y .

Then

‖Y − θ‖2∥∥∥θ̂A − θ
∥∥∥2 ≥

min
x<A

‖x − θ‖∥∥∥θ̂A(x) − θ
∥∥∥
2

≥

min
x<A

‖x − θ‖∥∥∥θ̂A(x) − x
∥∥∥ + ‖x − θ‖

2

=

1 + max
x<A

∥∥∥x − θ̂A(x)
∥∥∥

‖x − θ‖

−2

≥
1
4
,

where the last inequality follows from the definition of θ̂A.

�

Lemma A.3.3. Let ΠAω,Π′Aω′ ∈ Nδ, then for all ε > 0

1. ‖ΠAω − Π′Aω′‖ ≥
√

nmak ε ⇒ d ((Π, ω), (Π′, ω′)) ≥ ε,

2. if ε < δ/(1 + mak), then ‖ΠAω − Π′Aω′‖ < ε ⇒ d ((Π, ω), (Π′, ω′)) < ε.

Proof. From ‖ΠAω − Π′Aω′‖ ≥
√

nmak ε it follows that max j=1,...,n
∥∥∥(ΠAω) j· − (Π′Aω′) j·

∥∥∥ ≥
mak ε and ε ≤ max j=1,...,n

∥∥∥(ΠAω) j· − (Π′Aω′) j·
∥∥∥ /(mak) ≤

√
M/m. Hence, by Theorem 2.2.3

maxi=1,...,m
∥∥∥ωi· − ω

′
i·

∥∥∥ ≥ ε or Π , Π′ and thus d ((Π, ω), (Π′, ω′)) ≥ ε, which shows the first

assertion. If ε < δ/(1 + mak) and max j=1,...,n
∥∥∥(ΠAω) j· − (Π′Aω′) j·

∥∥∥ ≤ ‖ΠAω − Π′Aω′‖ < ε it

follows from Theorem 2.2.3 that maxi=1,...,m
∥∥∥ωi· − ω

′
i·

∥∥∥ < ε and Π = Π′ and thus it follows that

d ((Π, ω), (Π′, ω′)) < ε, which shows the second assertion. �
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A.4 Proof of Chapter 5

Proof of Theorem 5.1.1. Recall the definition of the ASB in (1.8) and employ the notation

{a − a′ : a , a′ ∈ Am} := {d1, . . . , dD}.

Introducing an auxiliary variable δ (5.6) can be rewritten as

max δ, s.t.∣∣∣〈ω, di〉
∣∣∣ ≥ δ, i = 1, . . . ,D,

ω1 ≥ 0

ωi − ωi−1 ≥ 0, i = 2, . . . ,m,

ωi ≥ ai, i = 1, . . . ,m,

ω1 + . . . + ωm = 1

ωi ≤ bi, i = 1, . . . ,m.

(A.70)

Define M := 2(ak − a1) and note that for all feasible values of (ω, δ) in (A.70) it holds true

that δ +
∣∣∣〈ω, di〉

∣∣∣ ≤ M for all i = 1, . . . ,D. Thus, introducing further auxiliary binary variables

B1, . . . , BD we can rewrite (A.70) as

max δ, s.t.

〈ω, di〉 + MBi − δ ≥ 0, i = 1, . . . ,D,

−〈ω, di〉 − MBi − δ ≥ −M, i = 1, . . . ,D,

ω1 ≥ 0

ωi − ωi−1 ≥ 0, i = 2, . . . ,m,

ωi ≥ ai, i = 1, . . . ,m,

ω1 + . . . + ωm = 1

ωi ≤ bi, i = 1, . . . ,m

Bi ≤ 1 i = 1, . . . ,D,

int Bi i = 1, . . . ,D.

(A.71)

In summary, we have rewritten (5.6) as a MILP, with vector of variables x = (ω, δ, B) ∈ Rm+1×

{0, 1}D, objective function coefficients c = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rm+1 × {0, 1}D, a matrix of

constraint coefficients A ∈ R(3(D+m)+2)×(D+m+1), and a vector of values for the right-hand sides

of the constraints b ∈ R(3(D+m)+2). �
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A.5 Proof of Chapter 8

Proof of Theorem 8.0.1. Note that

Tn(Y, g) ≤ max
1≤i≤ j≤n
j−i+1≥λn

∣∣∣∣∑ j
l=i ε j/σ

∣∣∣∣√
j − i + 1

− pen( j − i + 1), (A.72)

with ε j/σ i.i.d. sub-Gaussian random variables as in (8.1) for σ = 1, with mean 0 and vari-

ance 1. Therefore, the following corollary from Sakhanenko (1985) (see also (Zaitsev, 2002,

Theorem 1 and the subsequent remark)) can be applied.

Corollary A.5.1 (Sakhanenko, 1985). Given i.i.d. sub-Gaussian random variables ε1, . . . , εn

as in (8.1) for σ = 1, with mean 0 and variance 1, one can construct a sequence of i.i.d.

Gaussian random variables ζ1, . . . , ζn ∼ N(0, 1) and for all x > 0

P(C1∆(ε, ζ) > x) ≤ (1 + C2
√

n) exp(−x),

for some constants 0 < C1,C2 < ∞ and ∆(ε, ζ) := maxi≤n
∣∣∣∑i

l=1(εl − ζl)
∣∣∣.

Let ζ1, . . . , ζn be the Gaussian random variables from Corollary A.5.1. Then it follows from

(A.72) that

P(Tn(Y, g) > q) ≤ P

 max
1≤i≤ j≤n
j−i+1≥λn

∣∣∣∣∑ j
l=i ζ j

∣∣∣∣√
j − i + 1

− pen( j − i + 1) > q/2


+P

 max
1≤i≤ j≤n
j−i+1≥λn

∣∣∣∣∑ j
l=i ε j/σ

∣∣∣∣√
j − i + 1

− pen( j − i + 1) − max
1≤i≤ j≤n
j−i+1≥λn

∣∣∣∣∑ j
l=i ζ j

∣∣∣∣√
j − i + 1

− pen( j − i + 1) > q/2

 ,
where (Sieling, 2013, Corollary 4) yields that the first summand on the r.h.s. is bounded by

exp(−q2/32). Moreover,

max
1≤i≤ j≤n
j−i+1≥λn

∣∣∣∣∑ j
l=i ε j/σ

∣∣∣∣√
j − i + 1

− pen( j − i + 1) − max
1≤i≤ j≤n
j−i+1≥λn

∣∣∣∣∑ j
l=i ζ j

∣∣∣∣√
j − i + 1

− pen( j − i + 1)

≤ max
1≤i≤ j≤n
j−i+1≥λn

∣∣∣∣∑ j
l=i ε j/σ − ζ j

∣∣∣∣√
j − i + 1

≤
2∆(ε/σ, ζ)
√

nλ
.

Thus, it follows from Corollary A.5.1 that the second summand is bounded by (1 + C2
√

n)

exp(−C1q
√

nλ/4). �
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APPENDIX B
Additional figures from Section 6.2

Figure B.1: As in Figure 6.4, but with σ = 0.02.
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Figure B.2: As in Figure 6.4, but with σ = 0.05.
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Figure B.3: As in Figure 6.4, but with σ = 0.1.

Figure B.4: As in Figure 6.5, but with σ = 0.01.



136 Additional figures from Section 6.2

Figure B.5: As in Figure 6.5, but with σ = 0.02.

Figure B.6: As in Figure 6.5, but with σ = 0.1.



Bibliography

Abramowitz, M. and Stegun, I. (1972). Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables. Dover Publications, New York.

Abrard, F., Deville, Y., and White, P. (2001). From blind source separation to blind source

cancellation in the underdetermined case: A new approach based on time-frequency analysis.

In Proceedings of Third International Conference on Independent Component Analysis and

Signal Separation, pages 734–739. San Diego, CA.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19(6):716–723.

Arora, S., Ge, R., Kannan, R., and Moitra, A. (2012). Computing a nonnegative matrix factor-

ization–provably. In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of

Computing, pages 145–162. New York.

Arora, S., Ge, R., Moitra, A., and Sachdeva, S. (2015). Provable ICA with unknown Gaussian

noise, and implications for Gaussian mixtures and autoencoders. Algorithmica, 72(1):215–

236.

Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural

changes. Econometrica, 66(1):47.

Bandeira, A., Rigollet, P., and Weed, J. (2017). Optimal rates of estimation for multi-reference

alignment. arXiv preprint arXiv:1702.08546.

Behr, M., Holmes, C., and Munk, A. (2017). Multiscale blind source separation. arXiv preprint

arXiv:1608.07173. To appear in The Annals of Statistics.

Behr, M. and Munk, A. (2017a). Identifiability for blind source separation of multiple finite

alphabet linear mixtures. IEEE Transactions on Information Theory, 63(9):5506–5517.

Behr, M. and Munk, A. (2017b). Minimax estimation in linear models with unknown finite

alphabet design. arXiv preprint arXiv:1711.04145.

Belkin, M., Rademacher, L., and Voss, J. (2013). Blind signal separation in the presence of

Gaussian noise. Journal of Machine Learning Research: Proceedings, 30:270 – 287.



138 Bibliography

Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., and Moulines, E. (1997). A blind source

separation technique using second-order statistics. IEEE Transactions on Signal Processing,

45(2):434–444.

Beroukhim, R., Mermel, C. H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., et al.

(2010). The landscape of somatic copy-number alteration across human cancers. Nature,

463(7283):899–905.

Berthet, Q. and Rigollet, P. (2013). Optimal detection of sparse principal components in high

dimension. The Annals of Statistics, 41(4):1780–1815.

Bittorf, V., Recht, B., Re, C., and Tropp, J. (2012). Factoring nonnegative matrices with linear

programs. In Advances in Neural Information Processing Systems (NIPS) 25, pages 1214–

1222.

Bofill, P. and Zibulevsky, M. (2001). Underdetermined blind source separation using sparse

representations. Signal Processing, 81(11):2353–2362.

Boysen, L., Kempe, A., Liebscher, V., Munk, A., and Wittich, O. (2009). Consistencies and

rates of convergence of jump-penalized least squares estimators. The Annals of Statistics,

37(1):157–183.

Brunet, J.-P., Tamayo, P., Golub, T. R., and Mesirov, J. P. (2004). Metagenes and molecu-

lar pattern discovery using matrix factorization. Proceedings of the National Academy of

Sciences, 101(12):4164–4169.

Burnham, K. P. (2004). Multimodel inference: Understanding AIC and BIC in model selection.

Sociological Methods & Research, 33(2):261–304.

Carlstein, E., Müller, H.-G., and Siegmund, D. (1994). Change-point problems. Lecture Notes

Monograph Series, 23. Institute of Mathematical Statistics.

Carter, S. L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., Zack, T., et al. (2012). Ab-

solute quantification of somatic DNA alterations in human cancer. Nature Biotechnology,

30(5):413–421.

Chen, H., Xing, H., and Zhang, N. R. (2011). Estimation of parent specific DNA copy

number in tumors using high-density genotyping arrays. PLoS Computational Biology,

7(1):e1001060.

Cheng, M.-Y. and Hall, P. (1999). Mode testing in difficult cases. The Annals of Statistics,

27(4):1294–1315.

Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging. Cambridge

Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing,

36:287–314.



Bibliography 139

Davies, L., Höhenrieder, C., and Krämer, W. (2012). Recursive computation of piecewise

constant volatilities. Computational Statistics & Data Analysis, 56(11):3623–3631.

Davies, P. L. and Kovac, A. (2001). Local extremes, runs, strings and multiresolution. The

Annals of Statistics, 29(1):1–65.

Dette, H., Munk, A., and Wagner, T. (1998). Estimating the variance in nonparametric re-

gression - what is a reasonable choice? Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 60(4):751–764.

Diamantaras, K. and Papadimitriou, T. (2011). Blind deconvolution of multi-input single-

output systems using the distribution of point distances. Journal of Signal Processing Sys-

tems, 65(3):525–534.

Diamantaras, K. I. (2006). A clustering approach for the blind separation of multiple finite

alphabet sequences from a single linear mixture. Signal Processing, 86(4):877–891.

Diamantaras, K. I. (2008). Blind separation of two multi-level sources from a single linear

mixture. In IEEE Workshop on Machine Learning for Signal Processing, pages 67–72.

Cancun.

Diamantaras, K. I. and Chassioti, E. (2000). Blind separation of n binary sources from one ob-

servation: A deterministic approach. In International Workshop on Independent Component

Analysis and Blind Signal Separation, pages 93–98. Helsinki.

Diamantaras, K. I. and Papadimitriou, T. (2009). Blind MISO deconvolution using the distribu-

tion of output differences. In IEEE International Workshop on Machine Learning for Signal

Processing. Grenoble.

Ding, L., Wendl, M. C., McMichael, J. F., and Raphael, B. J. (2014). Expanding the computa-

tional toolbox for mining cancer genomes. Nature Reviews Genetics, 15(8):556–570.

Donoho, D., Liu, R. C., and MacGibbon, B. (1990). Minimaxristk over hyperrectangles and

implications. The Annals of Statistics, 18(3):1416–1437.

Donoho, D. and Stodden, V. (2004). When does non-negative matrix factorization give a correct

decomposition into parts? In Advances in Neural Information Processing Systems (NIPS)

16. MIT Press, Cambridge.

Dörband, W. (1970). Determinantensätze und Simplexeigenschaften (Verallgemeinerung

trigonometrischer Lehrsätze auf n-dimensionale Simplexe). Mathematische Nachrichten,

44(1-6):295–304.

Du, C., Kao, C.-L. M., and Kou, S. C. (2015). Stepwise signal extraction via marginal likeli-

hood. Journal of the American Statistical Association, 111(513):314–330.



140 Bibliography

Dümbgen, L., Piterbarg, V. I., and Zholud, D. (2006). On the limit distribution of multiscale test

statistics for nonparametric curve estimation. Mathematical Methods of Statistics, 15(1):20–

25.

Dümbgen, L. and Spokoiny, V. (2001). Multiscale testing of qualitative hypotheses. The Annals

of Statistics, 29(1):124–152.

Dümbgen, L. and Walther, G. (2008). Multiscale inference about a density. The Annals of

Statistics, 36(4):1758–1785.

Fearnhead, P. (2006). Exact and efficient Bayesian inference for multiple changepoint prob-

lems. Statistics and Computing, 16(2):203–213.

Flammarion, N., Mao, C., and Rigollet, P. (2016). Optimal rates of statistical seriation. arXiv

preprint arXiv:1607.02435.

Frick, K., Munk, A., and Sieling, H. (2014). Multiscale change point inference. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 76(3):495–580.

Friedrich, F., Kempe, A., Liebscher, V., and Winkler, G. (2008). Complexity penalized

m-estimation: Fast computation. Journal of Computational and Graphical Statistics,

17(1):201–224.

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The

Annals of Statistics, 42(6):2243–2281.

Futschik, A., Hotz, T., Munk, A., and Sieling, H. (2014). Multiscale DNA partitioning: Statis-

tical evidence for segments. Bioinformatics, 30(16):2255–2262.

Greaves, M. and Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381):306–313.

Gu, F., Zhang, H., Li, N., and Lu, W. (2010). Blind separation of multiple sequences from a

single linear mixture using finite alphabet. In International Conference on Wireless Commu-

nications and Signal Processing. IEEE, Suzhou.

Ha, G., Roth, A., Khattra, J., Ho, J., Yap, D., Prentice, L. M., et al. (2014). TITAN: Inference

of copy number architectures in clonal cell populations from tumor whole-genome sequence

data. Genome Research, 24(11):1881–1893.

Hall, P., Kay, J. W., and Titterinton, D. M. (1990). Asymptotically optimal difference-based

estimation of variance in nonparametric regression. Biometrika, 77(3):521–528.

Harchaoui, Z. and Lévy-Leduc, C. (2010). Multiple change-point estimation with a total vari-

ation penalty. Journal of the American Statistical Association, 105(492):1480–1493.

Jeng, X. J., Cai, T. T., and Li, H. (2010). Optimal sparse segment identification with appli-

cation in copy number variation analysis. Journal of the American Statistical Association,

105(491):1156–1166.



Bibliography 141

Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal detection of changepoints with a

linear computational cost. Journal of the American Statistical Association, 107(500):1590–

1598.

Kim, J. and Park, H. (2008). Sparse nonnegative matrix factorization for clustering. Georgia

Institute of Technology. Technical Report GT-CSE-08-01.

Kolokoltsov, V. N. (2011). Markov Processes, Semigroups, and Generators, volume 38 of De

Gruyter studies in mathematics. Walter de Gruyter & Co., Berlin.

Lee, D. and Seung, S. (1999). Learning the parts of objects by non-negative matrix factoriza-

tion. Nature, 401:788–791.

Lee, T.-W., Lewicki, M. S., Girolami, M., and Sejnowski, T. J. (1999). Blind source separation

of more sources than mixtures using overcomplete representations. IEEE Signal Processing

Letters, 6(4):87–90.

Li, T. (2005). A general model for clustering binary data. In Proceedings of the Eleventh

ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pages

188–197. Chicago.

Li, Y., Amari, S., Cichocki, A., Ho, D., and Shengli Xie (2006). Underdetermined blind

source separation based on sparse representation. IEEE Transactions on Signal Processing,

54(2):423–437.

Li, Y., Cichocki, A., and Zhang, L. (2003). Blind separation and extraction of binary sources.

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sci-

ences, 86(3):580–589.

Liu, B., Morrison, C. D., Johnson, C. S., Trump, D. L., Qin, M., Conroy, J. C., et al. (2013).

Computational methods for detecting copy number variations in cancer genome using next

generation sequencing: Principles and challenges. Oncotarget, 4(11):1868.

Love, D. J., Heath, R. W., Lau, V. K., Gesbert, D., Rao, B. D., and Andrews, M. (2008). An

overview of limited feedback in wireless communication systems. IEEE Journal on Selected

Areas in Communications, 26(8):1341–1365.

Lu, Y. and Zhou, H. H. (2016). Statistical and computational guarantees of Lloyd’s algorithm

and its variants. arXiv preprint arXiv:1612.02099.
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