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Abstract

Due to the steep scaling of computational cost with increasing system size,
approximations are required in order to make quantum mechanical calcu-
lations in large molecular systems amenable. Particular progress has been
made in the field of single-reference local correlation methods allowing the
post-Hartree-Fock part of the calculation to consume only a minor amount
of the entire computational time. This turns the spotlight to the calcula-
tion of the reference itself, the Hartree-Fock wave function. Viable approx-
imations are needed to accelerate the evaluation of the self-consistent field
solution but at the same time conserve a converged and accurate molecular
description. Two different approaches to address this issue are presented
within the course of this thesis.
In the first approach a cap-free fragmentation procedure splitting up the

molecular system into smaller entities is employed. One-body calculations
are carried out in the full Fock potentials of the remaining structure allow-
ing for the convergence to the Hartree-Fock limit with repetitive iterations
over the generated fragments. The inclusion of full Fock potentials of the
environment also provides an exact embedding procedure empowering the
critical analysis of potentials applied to QM/MM structures in condensed
phase.

The second approach directly addresses the most demanding step to the
evaluation of the Hartree-Fock reference, the computation of the exchange
integrals. Local density fitting approximations are applied to exploit the
physics of exchange contributions and result in a linear-scaling algorithm
for the computation of Hartree-Fock exchange. This enables the execution
of accelerated self-consistent field procedures affecting the Hartree-Fock
approach and due to the admixture of exact exchange also hybrid density
functional methods. Of particular interest is the application of local den-
sity fitting approximations to the investigation of open-shell systems. For
restricted open-shell and unrestricted formulations of Hartree-Fock and
hybrid density functional theory the limitations and speed up gains of the
introduced approximations are analyzed in radical benchmark structures.

In the selectivity analysis of a cyanobacterial lipoxygenase enzyme the
local density fitting approach is applied to large open-shell systems. The
quantum mechanical treatment of the active site rules out electronic struc-
ture effects as a steering factor for the selective product formation. Instead,
steric effects move into the focus of investigation and are analyzed through
the use of a newly developed shielding model. With the criteria of a selec-
tive precursory state formation this model is the first one to quantitatively
reproduce experimental product distributions of several lipoxygenase en-
zyme structures.
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1 Introduction
Computational Chemistry is a rapidly evolving research field with a broad
spectrum of application. With the possibility to describe virtually every
structure of chemical interest by theoretical models, several orders of
magnitude in size and time scales are covered. The applications to systems
of different size reach from small molecules in outer space up to large
macromolecular compounds within biological cells, while the time scales
extend from almost instantaneous electron excitation to comparably slow
molecular motions. Due to the impressive developments of computational
power and technology in the past decades, one might get the impression
that it is only a matter of time until every chemical phenomenon will be
accessible to accurate theoretical calculations. In fact, all equations for
a quantum mechanical treatment of the system under consideration are
known and could be in principle readily put to computation. However, such
methods exhibit a steep exponential scaling with an increase of the system
size, making them applicable in reasonable computational timings for small
and medium-sized models only. On the rough estimation of Moore’s law,
according to which the CPU power doubles every two years, the high-level
quantum mechanical solutions of structures beyond a very limited number
of atoms will not be feasible over the course of our lifetimes.

Regarding the abovementioned issues, the fast and accurate description
of large molecular systems with quantum mechanical methods is still today
the holy grail of Computational Chemistry. Due to the high computational
cost of such calculations, approximations are needed to break the wall of
exponential scaling. The aim is to obtain quantum mechanical methods
which are linear or at least low-scaling in terms of their computational
timings with an increasing molecular size. Significant efforts have been
made in the last decades towards low cost single-reference methods, based
upon Hartree-Fock theory. [1–4] Especially in the field of local correlation
methods the recent developments have been actually so significant, that
the evaluation of the Hartree-Fock wave function may act as a compu-
tational bottleneck. [5;6] This calls for the introduction of approximations
to Hartree-Fock calculations which significantly speed up the procedure
without touching the accurate reference character for subsequent correlation
treatments. With this purpose in mind, different approaches to obtain an
accelerated self-consistent field solution are investigated.
A direct attempt is provided by fragmentation techniques which divide

the total system into smaller entities and thus transfer the demanding calcu-
lation to several subsets of heavily decreased computational cost. [7;8] With
the inclusion of the effect of the remaining structure by exact potentials for
the treatment of each entity, the aim is to restore the complete Hartree-Fock
solution solely from simple fragment calculations. Particular effort is put
towards a favorable scaling of the procedure compared to the full molecular
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Hartree-Fock description. Furthermore, the employed inclusion of the effect
of surrounding monomers provides an accurate potential and can be used
as a reference for the analysis of other established embedding techniques.
The comparison to point charge models commonly applied in QM/MM
approaches of condensed matter simulations yields insights into the impact
of embedding potentials on the calculated molecular properties.
Another approach towards a low-scaling self-consistent field procedure

concerns the ease of computation of the most demanding part within
Hartree-Fock theory, the evaluation of exchange. Due to viable approxima-
tions employing local orbital spaces, the rapid decay of exchange contri-
butions can be exploited. This local density fitting approach enables the
formulation of a linear scaling algorithm for the computation of the exchange
matrix and has been recently implemented for closed-shell Hartree-Fock
calculations. [9] The extension of the approach to open-shell calculations
in restricted and unrestricted formulations of Hartree-Fock theory is part
of this work. Due to the admixture of exact Hartree-Fock exchange, the
employment of the approach also enables potential speed ups in hybrid
density functional applications. With a strict control of the errors intro-
duced by the local density fitting approximations, the resulting procedures
eventually facilitate an accurate description of large biomolecular structures
with reasonable computational timings.

The cyanobacterial lipoxygenase CspLOX2 provides a system of high
biochemical complexity, suitable for the application of local and fragment
potentials. Lipoxygenases are a class of enzymes which play a key role
in lipid-mediator biosynthesis by catalyzing the dioxygenation reaction
of polyunsaturated fatty acids. [10;11] CspLOX2 exhibits an extraordinary
selectivity in terms of the dioxygenation products of its fatty acid substrate.
Different single amino acid mutations in the vicinity of the active site are
capable of shifting the product distribution towards the preference of every
possible product. The underlying mechanism of this product formation con-
trol is still not conclusively resolved. Several computational approaches are
applied to analyze possible steering factors for the selectivity in CspLOX2.
Investigation of small radical substrate models, calculation of full active
site structures as well as the simulation of the entire enzyme are carried out
with varying levels of theory. The aim is to explore all factors which are
potentially responsible for the enzyme selectivity and thus yield conclusive
insights to the controlling mechanism of product formation in CspLOX2
and its mutants.

The structure of this thesis is organized as follows. Chapter 2 provides an
overview on the methods and approximations applied in the context if this
work. The theoretical background of quantum mechanical self-consistent
field Hartree-Fock and Kohn-Sham density functional theory approaches
is supplemented by the discussion of local orbital spaces and density fit-
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ting approximations. Subsequently the classical counterpart to quantum
mechanical treatments in form of molecular mechanics and molecular dy-
namics simulations are introduced. The chapter closes with insights to the
typical tasks and issues regarding molecular fragmentation techniques on
the example of two established procedures.

Chapter 3 deals with the use of Fock potentials in molecular embedding
applications. In the first part the employment of such potentials in a
cap-free fragment approach is presented and analyzed in terms of the
possibility to recover the full molecular Hartree-Fock description from
embedded monomer calculations. The scaling of the approach compared
to the conventional Hartree-Fock procedure is evaluated and further effort
is put into the continuous reduction of the involved computational cost.
In a second part, application of the approach to the analysis of QM/MM
embedding techniques is presented. This allows for the investigation of
the importance to employ accurate potentials for the representation of a
molecular environment.
In chapter 4 local density fitting approximations for the accelerated

computation of Hartree-Fock exchange contributions are introduced and ap-
plied. Investigation of open-shell radical structures is carried out, providing
insight into the limitations of the approximation and the actual speed up in
self-consistent field approaches. Different formulations of Hartree-Fock and
hybrid density functional theory are applied to analyze the performance of
the local density fitting approximations in numerous procedures.

Chapter 5 contains the broad selectivity analysis of the CspLOX2 enzyme.
The system is investigated by simulations of various size and accuracy.
Starting from small model systems, the substrate structure is investigated
quantum mechanically. For a large model of the complete active site the
local density fitting approximations shown in chapter 4 are employed to
investigate the substrate radical within the enzyme pocket. Molecular
dynamics simulations are performed for the entire enzyme in solution to
sample the conformational space of the bound substrate. In the end, a
completely new procedure was developed to analyze the factor of steric
shielding within the lipoxygenase system.
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2 Theoretical Background

2.1 Quantum Mechanics

In quantum mechanics (QM) the state of a system is completely described
by its wave function Ψ. This work will only consider time-independent
problems when Ψ is a function of spatial and spin coordinates. Solving the
corresponding Schrödinger equation

ĤΨ = EΨ (2.1)

yields the allowed states in a system defined by the Hamiltonian operator
Ĥ. The wave function Ψ is an eigenfunction of this operator with the
corresponding eigenvalue of the energy E. By using atomic units, the
Hamiltonian operator of a system consisting of n electrons and M nuclei
can be written as

Ĥ =−1
2

n∑
i=1
∇2
i︸ ︷︷ ︸

T̂e

−1
2

M∑
k=1

1
mk
∇2
k︸ ︷︷ ︸

T̂n

−
M∑
k=1

n∑
i=1

Zk
rik︸ ︷︷ ︸

Ven

+
n∑
i=1

n∑
j=i+1

1
rij︸ ︷︷ ︸

Vee

+
M∑
k=1

M∑
l=k+1

ZkZl
rkl︸ ︷︷ ︸

Vnn

, (2.2)

where i and j are the indices of the electrons and k and l the ones of the
nuclei. The mass and charge of a nuclei k is represented by mk and Zk,
respectively. rxy corresponds to the distance between two particles. The
terms of equation (2.2) are divided into the kinetic energy of the electrons
(T̂e) and the nuclei (T̂n), the potential energy of the attractive interaction
between electrons and nuclei (Ven) and the potential energy of the repulsion
of electrons (Vee) or nuclei (Vnn).
However, this equation can be solved analytically only for very simple

cases. In systems of chemical application one is forced to approximate the
wave function Ψ and/or the Hamiltonian operator Ĥ, in order to reduce the
high-dimensionality of the problem. One of the most fruitful approaches in
quantum chemistry, which is used in all of the methods to be discussed later
on, is the Born-Oppenheimer approximation. [12;13] In a system coupled
by Coulomb interactions consisting of nuclei and electrons, both types
of particles experience comparable forces leading to similar translational
momenta. Due to the substantial mass difference the resulting velocity
of the lighter electrons is significantly higher than the one of the nuclei,
allowing for a separation of both movements. The problem can be decoupled
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and split into two parts, namely the solution of an electronic Hamiltonian
for fixed nuclear positions and the solution of a nuclear Hamiltonian within
an effective electronic potential.

The energy of an electronic state for given nuclear positions is obtained
by solving an electronic Schrödinger equation of the form

ĤelΨ = EelΨ , (2.3)

with the electronic Hamiltonian

Ĥel = −1
2

n∑
i=1
∇2
i −

M∑
k=1

n∑
i=1

Zk
rik

+
n∑
i=1

n∑
j=i+1

1
rij

=
n∑
i=1

ĥ(i) +
n∑
i=1

n∑
j=i+1

1
rij

. (2.4)

The missing nuclear repulsion potential is added to the electronic energy
Eel a posteriori. Therefore, the further used terms "Schrödinger equation"
and "Hamiltonian operator" implicitly reference to equation (2.3) and (2.4),
respectively.

2.1.1 Hartree-Fock Theory

In the Hartree-Fock (HF) method, the wave function is represented by a
single Slater determinant as

ΨHF = 1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψn(x1)

ψ1(x2) . . . ...
... . . . ...

ψ1(xn) · · · · · · ψn(xn)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.5)

Here xi denotes a vectors containing the spatial and spin coordinates of
an electron i as xi = {ri, si}. The wave function ΨHF is an antisymmetric
product of spin orbitals {ψi}, which in turn represent a product of a
spatial orbital {φi} and a spin function α or β. The use of a Slater
determinant ensures the Pauli principle for fermions to be fulfilled, which
states that the exchange of two electrons only leads to a change of the
sign of the wave function. In cases with an equal number of α and β spin
electrons, the configuration can be restricted to occupation of the same
spatial orbitals {φi} for one electron of each spin set. This is referred to
as a closed-shell restricted Hartree-Fock (RHF) representation in which
only the first n/2 orbitals are occupied. According to the Slater Condon
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rules [14], the expectation value for the closed-shell energy writes as

ERHF =
〈
ΨHF∣∣Ĥ∣∣ΨHF〉 = 2

n/2∑
i=1
〈i|ĥ|i〉+

n/2∑
i=1

n/2∑
j=1

2(ii|jj)− (ij|ji) . (2.6)

Here, the one-electron integrals take the form

〈i| ĥ |j〉 =
∫ ∫

φ∗i (r1)ĥ(r1)φj(r1) dr1 , (2.7)

while use has been made of a Mulliken-like notation for the two-electron
integrals as

(ij|kl) =
∫ ∫

φ∗i (r1)φj(r1)φ∗k(r2)φl(r2)
r12

dr1dr2 . (2.8)

For the energy expression (2.6), the integration over the spin coordinates
has already been carried out, so that the following derivations are spin-free.

Hartree-Fock theory is by construction following the variational principle,
according to which the expectation value of the Hamiltonian operator of
any test wave function Ψ is always an upper bound to the exact energy E0
of the system [15]

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 = E ≥ E0 .

This states a useful criterion for the optimization of the HF wave func-
tion. The lowering of the resulting energy value corresponds to a better
description of the system under consideration. Thus, the optimal HF wave
functions exhibits a minimum point of its energy expectation value with
respect to orbital changes. Due to the side condition of orthonormal spatial
orbitals, the optimization of the Hartree-Fock energy is achieved by the
method of Lagrange multipliers. The quantity to be optimized is then the
Lagrange functional

L = ERHF − 2
n/2∑
i=1

n/2∑
j=1

εji [〈i|j〉 − δij ] , (2.9)

with the Lagrange multipliers εji and the overlap integral 〈i|j〉. By setting
the derivative of this functional equal to zero for each orbital, one can
derive the Hartree-Fock equations

f̂(i) |i〉 =
n/2∑
j=1

εji |j〉 . (2.10)
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Within this, the Fock operator for each spatial orbital f̂(i) is written as

f̂(i) = ĥ(i) +
n/2∑
j=1

[
2ĵj(i)− k̂j(i)

]
= ĥ(i) + ĝ(i) . (2.11)

The two operators ĵj(i) and k̂j(i) are named the Coulomb and exchange
operator, respectively. They are defined via their effect on a spatial orbital:

ĵj(1)φi(r1) = φi(r1)
∫ |φj(r2)|2

r12
dr2 , (2.12)

k̂j(1)φi(r1) = φj(r1)
∫
φ∗j (r2)φi(r2)

r12
dr2 . (2.13)

By comparison of the Hamiltonian and the Fock operator in equations
(2.4) and (2.11), the approximation made in Hartree-Fock theory becomes
evident. The exact electron-electron operator r−1

12 is replaced by a mean-field
operator ĝ(i). Thus, in HF approaches each electron moves in an average
potential of all remaining electrons.
It can be easily shown that the HF energy is invariant with respect

to unitary transformations among the occupied orbitals. This enables an
easier form of the HF equations (2.10) by a transformation that diagonalizes
the Fock operator as

f̂(i) |i〉 = εi |i〉 . (2.14)

The resulting spatial orbitals are then referred to as canonical orbitals with
the corresponding orbital energies εi.

A crucial point to the solution of the canonical HF equations (2.14) is the
construction of the spatial orbitals {φi}. Since their exact form is unknown,
approximations are needed to find a suitable representation of such orbitals.
A common approach is use real molecular orbitals built from atom-like
gaussian functions, the atomic orbital (AO) set. The linear combination
of atomic orbitals (LCAO) approach incorporates these functions in an
expanding series as

φi(r) =
Nbas∑
µ=1

Cµiχµ(r) . (2.15)

In the limit of an infinite number of basis functions the expansion becomes
exact and the correct wave function under the HF approximation is obtained.
This is of course not feasible and the expansion always has to be restricted
to a limited number of functions Nbas, which is referred to as the basis set
size.

Introduction of the LCAO approach to the canonical HF equations (2.14)
provides a matrix representation over the atomic orbitals in form of the
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Hartree-Fock-Roothaan equations

FC = SCe . (2.16)

Here, F is the AO matrix representation of the Fock operator f̂ , C the
matrix of orbital coefficients and S the AO overlap matrix with elements
as Sµν = 〈µ|ν〉. The diagonal matrix e contains the orbital energies.
Application of the LCAO procedure to the energy expression (2.6) yields

ERHF =
Nbas∑
µ=1

Nbas∑
ν=1

Dµν

{
hµν + 1

2

Nbas∑
ρ=1

Nbas∑
σ=1

Dρσ

[
(µν|ρσ)− 1

2(µσ|ρν)
]}

,

= 1
2tr [D(h + F)] . (2.17)

For this expression the Fock matrix F can also be expressed in terms of
the one-electron matrix h, the Coulomb matrix J and the exchange matrix
K according to

F = h + 2J−K . (2.18)

The one-electron density matrix D is built from atomic orbital coefficients
Cµi as

Dµν =
n/2∑
i=1

CµiCνi (2.19)

Since this sum only runs over the indices of the first n/2 molecular orbitals,
the HF density and energy are purely defined by the occupied space. The
remaining Nbas − n/2 orbitals are called virtual orbitals. They have no
impact on the HF solution, but become of particular interest in post-HF
treatments.

The Fock matrix F in the basis of the atomic orbital functions, as given
in equation (2.18), can be transformed to the Fock matrix f in the basis
of the molecular orbitals by an AO→MO transformation with the orbital
coefficients as

f = C†FC . (2.20)

This Fock matrix f will be diagonal, if it is calculated with the canonical
orbitals. Since the canonical orbital solution is not know from the start,
the Fock matrix is at the beginning calculated with non-optimized orbitals.
The first choice of coefficients to represent the orbital space is completely
arbitrary and is often referred to as the starting guess. Via diagonalization
of the Fock matrix f access to a new set of molecular orbital coefficients
is provided, following the extended eigenvalue problem of equation (2.16).
These orbitals can be used to recompute the electronic density D and
from this once again another AO Fock matrix F. AO→MO transformation
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according to equation (2.20) leads to a new Fock matrix in the MO basis
and the whole cycle can be started again. Thus, an iterative procedure is
obtained which can be performed until self-consistency is reached and the
involved molecular orbitals do not change anymore. Such an approach is
referred to as the self-consistent field (SCF) method.

However, the SCF procedure in the MO basis applies an AO→MO trans-
formation with the calculated coefficients C in every iterative step. This
may lead to an accumulation of numerical errors. A more convenient way
to perform the optimization of the coefficients is provided in a symmetri-
cally orthogonalized basis. The AO Fock Matrix and the coefficients are
transformed with the AO overlap matrix S according to

F̃ = S−1/2FS−1/2 , (2.21)
C = S−1/2C̃ . (2.22)

This allows for the reduction of the generalized eigenvalue problem in
equation (2.16) to a normal eigenvalue expression of the form

F̃C̃ = C̃e . (2.23)

Equation (2.23) provides the starting point for a numerically stable SCF
procedure, in which the matrix F̃ is diagonalized to yield the eigenvector
matrix of the coefficients C̃. Back transformation to the AO basis according
to equation (2.22) yields access to a new Fock matrix F and the next SCF
iteration step can be carried out.

Up to this point, the case of an equivalent number of α and β electrons
was assumed. The situation of a system with n = nα + nβ electrons and
nα > nβ is referred to as an open-shell configuration. In this case the
application of two different procedures is possible, which are described in
the following paragraphs.

Restricted open-shell Hartree-Fock
In the formulation of restricted open-shell Hartree-Fock (ROHF) all nβ
electrons of the system are assumed to be paired with an α electron in the
same spatial orbital. This results in nβ doubly-occupied closed-shell and
(nα − nβ) open-shell orbitals, of which the latter are occupied by single α
electrons. The split of the problem in open and closed parts affects the
density matrix as

Dµν = 2
nβ∑
i=1

CµiCνi +
nα−nβ∑
t=1

CµtCνt︸ ︷︷ ︸
Doµν

. (2.24)
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Thus, the total density D is divided into separate contributions. While
the closed-shell part does not differ from the original density matrix, an
additional term is introduced by the open-shell density matrix Do. This split
of the density results in two different Fock matrices for both components as

F cµν = hµν +
Nbas∑
ρ=1

Nbas∑
σ=1

Dρσ

[
(µν|ρσ)− 1

2(µσ|ρν)
]
, (2.25)

F oµν = −1
2

Nbas∑
ρ=1

Nbas∑
σ=1

Do
ρσ(µσ|ρν) . (2.26)

With these matrices the energy expression for the ROHF case is provided
by distinct closed and open contributions:

EROHF = 1
2tr [D(h + Fc)] + 1

2tr [DoFo] . (2.27)

An AO→MO transformation by analogy with equation (2.20) yields the
closed- and open-shell Fock matrices in the MO basis, f c and fo. These
matrices as well as their sum and difference can be incorporated in a block
matrix f̄ according to [16]

f̄ =


f c f c − fo f c

f c − fo f c + fo f c + fo

f c f c + fo f c + fo

 =


ec 0 0
0 eo 0
0 0 ev

 . (2.28)

This block matrix can be used as an effective Fock matrix in the conventional
SCF approach. It covers the different parts of the restricted open-shell
formulation in form of the closed, open and virtual orbital spaces in its
rows and columns. The matrices e are diagonal and contain the energies of
the closed (ec), open (eo) and virtual (ev) orbitals. Thus, diagonalization
of f̄ provides access to the canonical orbitals of the ROHF formulation.

Unrestricted Hartree-Fock
Release of all restrictions on the spatial orbitals allows for the occupation
of different orbital sets by α and β spin electrons. Within these sets all
molecular orbitals are singly occupied and in general no closed-shell part is
formed as seen in the previous paragraph. The procedure is then referred
to as unrestricted Hartree-Fock (UHF) falling into the class of different
orbitals for different spins (DODS) methods. This approach splits the
corresponding problem into two subspaces, in which the SCF procedure is
carried out for α and β spin electrons separately.



12 2 Theoretical Background

Two distinct density matrices result as

Dα
µν =

nα∑
i=1

CαµiC
α
νi , (2.29)

Dβ
µν =

nβ∑
k=1

CβµkC
β
νk . (2.30)

Their sum forms the total charge density matrix D = Dα + Dβ . This
allows for the formation of the α and β Fock matrices

Fαµν = hµν +
Nbas∑
ρ=1

Nbas∑
σ=1

[
Dρσ(µν|ρσ)−Dα

ρσ(µσ|ρν)
]
, (2.31)

F βµν = hµν +
Nbas∑
ρ=1

Nbas∑
σ=1

[
Dρσ(µν|ρσ)−Dβ

ρσ(µσ|ρν)
]
. (2.32)

Both Fock matrices are applied in HF-Roothaan eigenvalue expressions
comparable to the one from closed-shell HF in equation (2.16):

FαCα = SCαeα , (2.33)
FβCβ = SCβeβ . (2.34)

Since the Fock matrices Fα and Fβ both depend on the total charge density
D, the two equations are coupled and need to be solved simultaneously.
The final UHF energy expression writes as

EUHF = 1
2tr [Dα(h + Fα)] + 1

2tr
[
Dβ(h + Fβ)

]
. (2.35)

In contrast to the restricted approaches, the UHF wave function is in
general not an eigenfunction of the spin operator Ŝ2. This arises from the
artificial mixing of spins, which is referred to as spin contamination and
can lead to serious problems with the description of the electronic state.
Nevertheless, in some cases the unrestricted formalism is indispensable as
the corresponding restricted formulation only converges to a saddle point
instead of a true energy minimum. The removal of the applied restrictions
and check for the corresponding UHF solution is a possibility to overcome
such situations, which are often referred to as triplet instabilities. [17]

The Hartree-Fock procedure provides an approximate solution to the
Schrödinger equation with electrons moving in an averaged potential of
their counterparts. This mean-field approach commonly covers 99% of the
total electronic energy. The lacking 1% stands as the difference to the exact
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energy and is defined as the correlation energy Ecorr in

Ecorr = Eexact − EHF . (2.36)

This contribution describes the instantaneous correlation of electrons during
their movement, which can not be covered by an averaged electronic poten-
tial. However, the correlation effect is a key element of the electronic state
and of crucial importance for the description of chemical transitions. The
approaches covering this energy term are called correlated methods. Such
methods often employ the Hartree-Fock solution as reference and evaluate
the correlation contributions by a perturbative treatment or through the
introduction of additional Slater determinants.

The canonical Hartree-Fock procedure formally scales as O(N 4) with the
molecular system size. This means doubling of the size of the investigated
system will increase the computational time needed for the HF evaluation
by a factor of 16. Possibilities for the reduction of this large computational
effort are the central concern of this work and will be discussed in manifold
approaches.

2.1.2 Orbital Localization

The canonical Hartree-Fock orbitals are in general widely spread over
the entire calculated molecular system. This does not match the picture
typically employed in chemistry, in which a small set of atomic orbitals
are combined to form bonding, non-bonding and anti-bonding molecular
orbitals which are very local in space. Since the orbitals resulting from
Hartree-Fock theory are invariant to a unitary transformation, a represen-
tation close to the chemical picture can be found without changing the
description of the system. By application of a unitary matrix U to the
canonical HF orbitals φcanoni , a set of localized molecular orbitals (LMOs)
φlocali is obtained according to

∣∣φlocali

〉
=
Nocc∑
j

|φcanoni 〉Uji =
Nbas∑
µ

|χµ〉Lµi . (2.37)

Here, L corresponds to the localization matrix used for the application to
the atomic basis functions χµ with L = CU. The resulting orbitals φlocali

are restricted to specific areas within the molecular system with only a
limited number of AO functions significantly contributing to each of them.
A variety of procedures of orbital localization based on different local-

ization matrices L have been proposed. The choice of a specific operator
to be optimized during the transformation distinguishes the approaches.
While the popular localization procedure by Boys optimizes the spatial
extent of the orbitals [18], the Pipek-Mezey localization maximizes the sum
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of orbital-dependent partial charges. [19] Even though the latter approach
ensures a clean separation of σ− and π−orbitals, it is commonly based on
the use of Mulliken charges, which lack a mathematically sound definition.
Another fast and robust orbital localization technique has been intro-

duced by Knizia in form of the intrinsic bond orbitals (IBOs). [20] With a
simple algebraic construction these localized orbitals provide insight into
different aspects of chemical phenomena by separation into atomic core,
valence and bond orbitals without touching the representation obtained
by the self-consistent field wave function. Since the corresponding IBO
partial atomic charges are nearly independent of the applied basis set size,
the procedure stands as a stable orbital localization approach and will be
applied within the context of this work.

2.1.3 Density Functional Theory

In Hartree-Fock theory the quantity of interest is the wave function. Under
neglect of the electron spin, the evaluation of this quantity corresponds to a
high-dimensional problem with 3n spacial coordinates. Density functional
theory (DFT) provides a different approach for the description of the
electronic state with a drastically reduced number of variables.

For the ground state of a molecular system, a one-to-one relation between
the electron density ρ(r) and the resulting energy E is pointed out by the
Hohenberg-Kohn theorem. [21] This enables a different approach to the
problem stated by the Schrödinger equation. Instead of the search for an
eigenfunction of the Hamiltonian operator, a functional connecting the
electron density with the resulting energy is employed. This heavily reduces
the dimensionality of the problem, since the electron density only depends
on three spatial coordinates.
The general form of a spin independent density functional writes as

E[ρ(r)] =− 1
2

n∑
i=1
〈φi|∇2|φi〉+

∫
v(r)ρ(r) dr

+ 1
2

∫ ∫
ρ(r)ρ(r′)
|r− r′| drdr′ + Exc[ρ(r)] . (2.38)

In molecular systems, the external potential v(r) is given by the potential of
the nuclei, so that the second term respects electron-nuclei interactions. The
third term takes into account electron-electron interactions via Coulombic
repulsion of two electron clouds ρ(r) and ρ(r′). The exact form of the
exchange-correlation functional Exc[ρ(r)] is unknown, which yields a variety
of density functionals applying different approximations to the description
of this term.

The first term of equation (2.38) respects the kinetic energy of the elec-
trons. However, in contrast to the other contributions it is not constructed
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as a functional of the density, but rather via the use of molecular orbitals
{φi}. A density-based description of the kinetic energy term leads to signi-
ficant errors. Indeed, in an orbital-free formulation of this functional, no
chemical system would be stable against its dissociation.
Introduction of molecular orbitals in DFT approaches is referred to as

the Kohn-Sham (KS) procedure. Even though this procedure extends the
dimension of the problem to 3n spatial coordinates, it results in solving
equations close to the canonical HF equations (2.14) for each molecular
orbital:[

−1
2∇

2 + v(r) +
∫

ρ(r′)
|r− r′| + δEex[ρ(r)]

δρ(r)

]
︸ ︷︷ ︸

f̂KS

|φi〉 = εiφi . (2.39)

Here, the electron density is expanded in terms of the molecular Kohn-Sham
orbitals by

ρ(r) = 2
n∑
i=1

φ∗iφi . (2.40)

As already seen for Hartree-Fock theory, the molecular orbitals can be
expressed by atomic basis functions through application of the LCAO ap-
proach of equation (2.15). Thus, a matrix representation of the Kohn-Sham
operator f̂KS in equation (2.39) is possible and a generalized eigenvalue
relation results, which is identically in form to the Hartree-Fock-Roothaan
equations (2.16):

FKSC = SCe . (2.41)

Here, FKS is closely related to the conventional Fock matrix and is re-
ferred to as the Kohn-Sham matrix. This exhibits that the Kohn-Sham
procedure can also be performed in an iterative way by application of the
SCF approach. It employs the same treatment of atomic and molecular
orbitals and therefore the KS approach can also be performed in restricted
closed-shell (RKS), restricted open-shell (ROKS) and unrestricted (UKS)
formulations. According to this, the expression of a self-consistent field
procedure is from now on used as a generic term for Hartree-Fock and
Kohn-Sham DFT methods.
As already indicated above, the crucial part of a DFT calculation is

the definition of the exchange-correlation functional, since no analytic
expression is available. The large variety of density functionals available in
the literature employ approximations of different quality to the formation
of Exc[ρ(r)]. The ranking of the involved approximations according to
the complexity of the description is referred to as the Jacob’s ladder of
density functionals. [22] On the lowest rung of this ladder, the local density
approximation (LDA) is found. Corresponding approaches only use local
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information on the density, by employing the values of ρ(r) at certain points
in space. The generalized gradient approximation (GGA) additionally
takes into account the first derivative of the electron density and is thus
located higher in the density functional ranking. Further improvement
can be achieved, if also the second derivative is included, whereas the
corresponding type of density functionals is then referred to as meta-GGA.
The next step on the ladder is the inclusion of non-local effects from

other approaches, which are not directly depending on the density and
its derivatives. Hybrid density functionals form the exchange part of
Exc[ρ(r)] by admixture of exact exchange contributions from Hartree-Fock
theory. This helps with the reduction of problems commonly observed
in standard DFT calculations like the self-interaction error. [23] An even
higher rung of the ladder is represented by doubly hybrid functionals, which
additionally incorporate correlation contributions from correlated methods.
However, this last step is comparably costly and does not ensure a further
improvement of the DFT result.
Nowadays by far the most popular density functional is the B3LYP

functional. [24;25] It belongs to the class of hybrid functionals and forms the
exchange-correlation contribution according to

EB3LYP
xc =ELDA

x + a0
(
EHF
x − ELDA

x

)
+ ax

(
EGGA
x − ELDA

x

)
+ ELDA

c + ac
(
EGGA
c − ELDA

c

)
. (2.42)

The starting point is the LDA approximation ELDA
x from Slater-Dirac

exchange. [26] This term is corrected by the addition of Hartree-Fock ex-
change EHF

x , controlled by the first parameter a0. Another correction to
the exchange part is the admixture of exchange contributions resulting from
the GGA approximation EGGA

x taken from the Becke88 functional. [27] This
contribution is adjusted with the second parameter ax. The initial contri-
butions to the correlation part are extracted from LDA approximations
ELDA
c in the Lee-Yang-Parr functional. [28] This is finally corrected in terms

of the third parameter ac, with the correlation contributions EGGA
c from

the VWN80 [29] functional under GGA approximation. The parameters in
B3LYP are set to a0 = 0.2, ax = 0.72 and ac = 0.81 resulting from fits to
optimally reproduce chemical properties of the G1 molecule test set.
Construction of a universal density functional yielding accurate results

for every system under consideration is desirable, but difficult due to the
parametrization of the exchange-correlation functional. A large list of
functionals have been proposed to accurately describe a broad variety of
chemical phenomena. However, in most cases these functionals perform
best for the type of systems they were parametrized to, while the resulting
issues in applications to other problems can not be foreseen.
A common deficit of DFT approaches is the lacking description of dis-
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persion interactions. These contributions arise from non-overlapping den-
sities and thus can not be included by a simple density functional term.
The approach of parametrized dispersion corrections is widely used to
account for the missing interactions of the DFT functionals. In this con-
text well-established is the D3 procedure introduced by Grimme [30], which
includes dispersion interactions by addition of simple pair-wise damped
Lennard-Jones potentials to the resulting DFT energy. [31]

2.1.4 Density Fitting

The evaluation of four-center electron-repulsion integrals (ERIs) is a compu-
tationally demanding task, but a fundamental operation in atomic orbital
integral-based programs. In the case of Hartree-Fock theory this type
of integrals arise in form of the Coulomb and exchange contributions to
the Fock matrix. In density functional theory ERIs over the Kohn-Sham
orbitals are found regarding the Coulomb electron-electron interactions.
Since hybrid DFT functionals employ the exact exchange contributions
from HF, the corresponding calculations lead to the computation of four-
index exchange integrals as well. Several approaches were proposed to
accelerate the evaluation of the Fock/Kohn-Sham matrix contributions
by application of screening techniques to the demanding ERIs and the
elements of the density matrix. Especially for the more rapidly decaying
exchange terms these methods enabled a quadratic or even linear scaling
of the corresponding evaluation with growing system size. [32;33] However,
the original scaling of the procedure with an increasing size of the applied
basis set remained unchanged. A popular approach proposed by Neese
and coworkers overcame this problem by the use of a chain of spheres
exchange (COSX) [34–36], which finds an approximate exchange potential
by performing a seminumerical integration of the four-center ERIs.
In density fitting (DF) [37] approaches a different idea is followed to

find approximate descriptions of the Coulomb and exchange integrals.
An auxiliary basis set is introduced to represent the four-center ERIs as
combinations of two- and three-index integrals, similar to methods based on
the resolution of the identity (RI) [38–41] and Cholesky decomposition. [42]
In the following a notation is applied to discriminate the involved basis
functions and orbitals. Atomic basis functions are labeled by Greek letters
{µ, ν,...}, molecular orbitals as seen before by small Latin letters {i, j,...}
and the auxiliary fitting functions by capital letters {A, B,...}.
All two-electron integrals over the atomic basis functions can be ex-

pressed as electrostatic interactions between two orbital-product densities
ρµν(r) = χµ(r)χν(r) as

(µν|ρσ) =
∫ ∫

ρµν(r1)ρρσ(r2)
r12

dr1dr2 . (2.43)
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The one-electron densities are approximated by the linear expansion

ρµν(r) ≈ ρ̃µν(r) =
Nfit∑
A=1

dµνA χA(r) , (2.44)

in which χA(r) are the functions of the auxiliary density fitting basis set.
The involved coefficients of the expansion, dµνA , are obtained by minimization
of the difference to the exact one-electron densities in the quantity ∆µν as

∆µν =
∫ ∫ [ρµν(r1)− ρ̃µν(r1)] [ρµν(r2)− ρ̃µν(r2)]

r12
dr1dr2 . (2.45)

This type of fitting minimizes the least squares error of the electric field [43]

and yields the expansion coefficients

dµνB =
Nfit∑
A=1

(µν|A)
[
Q−1]

AB
, (2.46)

where the elements of the fitting matrix QAB and the three-index integral
(µν|A) are defined as

QAB ≡ (A|B) =
∫ ∫

χA(r1)χB(r2)
r12

dr1dr2 , (2.47)

(µν|A) =
∫ ∫

χµ(r1)χν(r1)χA(r2)
r12

dr1dr2 . (2.48)

Subsequent substitution of the fitting relations (2.44), (2.48) and (2.46) in
equation (2.43) enables an approximate description of the initial four-index
two-electron integrals by

(µν|ρσ) =
∫ ∫

ρµν(r1)ρρσ(r2)
r12

dr1dr2

≈
∫ ∫ Nfit∑

B=1

dµνB χB(r1)ρρσ(r2)
r12

dr1dr2

=
Nfit∑
B=1

dµνB (B|ρσ) =
Nfit∑
A=1

Nfit∑
B=1

(µν|A)
[
Q−1]

AB
(B|ρσ) . (2.49)

Equation (2.49) contains the core idea of the density fitting approxima-
tion. The four-center ERIs (µν|ρσ) are approximated by combinations
of the two-index integrals of the fitting matrix entries QAB = (A|B) and
three-index integrals of the (µν|A) type.
Application of the density fitting approach to the Coulomb matrix in a
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closed-shell HF calculation yields

Jµν ≈ J̃µν =
Nfit∑
A=1

eA(A|µν) , (2.50)

where the coefficients eA are determined by

eA =
Nfit∑
B=1

[[
Q−1]

AB

Nbas∑
µ=1

Nbas∑
ν=1

Dµν(µν|B)
]
. (2.51)

Here, Dµν is the closed-shell electron density matrix as given in equa-
tion (2.19). Computation of the contributions to the exchange matrix is
the more demanding part of the density fitting approach. The exchange
matrix can be approximated as

Kµν ≈ K̃µν =
Nfit∑
A=1

Nocc∑
i=1

(µi|A)dνiA , (2.52)

where the original three-index integrals and expansion coefficients have
been half-transformed with the orbital coefficients according to

(µi|A) =
Nbas∑
ν=1

Cνi(µν|A) , (2.53)

dνiA =
Nbas∑
µ=1

Cµid
µν
A =

Nfit∑
B=1

(νi|B)
[
Q−1]

AB
(2.54)

The one-electron matrix h, the density fitted Coulomb matrix J̃ and density
fitted exchange matrices K̃ are finally used to construct the the approximate
closed-shell Fock matrix in the AO basis according to equation (2.18):

F̃µν = hµν + 2J̃µν − K̃µν . (2.55)

In the case of a restricted open-shell HF (ROHF), the fitting of Coulomb
and exchange contributions is performed separately for the closed and
open Fock matrices Fc and Fo as given in equations (2.25) and (2.26),
respectively. This allows for their final combination in the effective Fock
matrix f̄ in equation (2.28). For unrestricted HF (UHF) the procedure is
applied independently to the Fα and Fβ Fock matrices given in equations
(2.31) and (2.32) arising from the distinct treatment of α and β spin
electrons.
The density fitting approximation is not restricted to SCF methods

like HF and DFT. Any quantum chemical calculation that involves the
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computation of four-index-integrals can benefit from the above-described
procedure. It is commonly used in post-HF correlation methods like
Møller-Plesset perturbation [44] and coupled cluster theory [45], in which the
electron correlation is estimated by sets of two-electron four-index integrals.

Despite the introduced approximations the DF-HF method formally still
scales as O(N 4) with the molecular system size. However, the prefactor is
drastically reduced and the rise of the computational cost with the size of
the applied basis set becomes less demanding. This enables the calculation
of medium-sized systems in reasonable computational times.

2.2 Fragmentation Techniques
Fragmentation approaches provide a straightforward way to reduce the
computational effort of any type of molecular calculation by splitting up
the system under consideration into smaller entities. The energy and other
properties of the original structure are subsequently restored from the
individual fragment calculations. [7;8] This raises a set of issues which are
of critical importance to the success of any fragmentation technique.
At first, the choice of the generated fragments may result in radical or

even non-chemical molecules. Since these structures significantly differ
from their state in the original environment, special treatment of the
fragments is necessary allowing for the representation as a piece of the
total molecular system. An approach often performed in this context is the
introduction of molecular caps or link-atoms to saturate dangling bonds
and form closed-shell fragments.
Another problem that arises from the separate treatment of molecular

entities is the inclusion of their inter-fragment interactions. In an ideal
case one would like to describe each fragment individually but under the
interaction effect of the entire remaining system. This is the starting point
for embedding techniques, in which the impact of the environment on
a molecular calculation is included via an external potential. The most
prominent potential of this type is the application of simple atomic point
charges to account for the involved Coulomb interactions. A different way
to address the issue of lacking inter-fragment interactions is their pair-wise
incorporation from dimer calculations in two-body approaches. Through
the combined treatment of all pairs of fragments and subsequent subtrac-
tion of the involved monomer energies, the interaction of the entities can
be calculated in a straightforward manner. This idea can be developed in
a series of higher-order contributions including many-body effects by sub-
sequent calculations of molecular supersets like dimers, trimers, tetramers
and so forth.

If quantum mechanical calculations are performed for the fragments, an
ubiquitous complication arises from the treatment with a molecular basis
set of limited size. The basis set superposition error (BSSE) describes the
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fact that in the calculation of the total system each entity is artificially
stabilized compared to the single fragment treatment due to the additional
basis functions provided in the environment. [46;47] This error vanishes in
the limits of a complete basis set treatment. Several approaches to cancel
BSSE effects have been discussed over the years, of which the counterpoise
correction is by far most popular one. [48;49] In this correction the artificial
stabilization is completely removed by employing the full molecular basis
set of the entire system in each fragment calculation. It is also often applied
to the calculation of molecular dimer properties, in which the involved
monomer calculations suffer from the same lack of basis set description
compared to their combined treatment.
The issues regarding molecular fragmentation techniques are discussed

in further detail on the example of two different established fragmentation
methods in the course of this section.

2.2.1 Molecular Fractionation with Conjugate Caps

The method of molecular fractionation with conjugate caps (MFCC) intro-
duced by Zhang and Zhang [50] provides a fragmentation technique for the
calculation of peptide and protein structures. It was originally proposed
for the computation of protein-ligand interaction energies. [51;52]
In the MFCC approach a protein or peptide is split into single amino

acid fragments by cutting all peptide bonds. Both ends of each fragment
are saturated by introduction of complete atom groups, the molecular
caps. An acetyl group is added to the amino end of the fragment, while
the carboxyl term is saturated with an N -methyl group. The introduced
atomic groups ensure a representation of the natural environment of the
amino acid within the protein and form a pair of conjugate caps (concaps,
cc). This property can be exploited by combination of both caps in one
molecule of N -methylacetamide. Subsequent subtraction of the calculation
of this molecule allows for a clean cancellation of the cap contributions.
Formation of the fragments and the resulting conjugate caps is shown on
the example of a tetrapeptide in Figure 2.1.
The interaction energy between a ligand molecule L and a protein P

which is decomposed into N fragments writes as

EP−L =
N∑
i=1

E(Fi + L)−
N∑
i=1

E(Fi)−
N−1∑
i=1

E(cci + L)+
N−1∑
i=1

E(cci)−E(L) .

(2.56)
Thus, the approach sums up all individual interactions between the frag-
ments and the ligand molecule and subsequently cancels the contributions
of the conjugate caps. Subtraction of the self-energies allows for the calcu-
lation of the interaction energy of the entire protein with the ligand and
for the identification of amino acids with significant contribution to this
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energy term. However, this approach does neither include the interactions
of the fragments among each other, nor provide a way to calculate the total
energy of the protein.
The problem of the lacking total energy description of the protein was

overcome by introduction of the generalized MFCC approach (GMFCC). [53]
This expansion of the original method includes inter-fragment interactions
at the level of an MM force field. Since this is a very rough description for
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Figure 2.1: Fragmentation of the MFCC approach on the example of a tetrapeptide. Four
fragments containing one amino acid each are constructed together with three conjugate
caps. The bottom part illustrates the application of conjugate caps by combination of
the introduced molecular groups to cancel their effect.
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directed interactions, present in protein structures in form of salt bridges
and hydrogen bonds, the approach also includes specific dimer contributions.
Fragments that are non-neighboring within the peptide chain, but found to
be close in space, are treated in a combined quantum mechanical calculation.
The approach was even extended further by inclusion of point charges for
the embedding of each fragment. This electrostatically embedded GMFCC
(EE-GMFCC) was used to accurately reproduce protein energies with
quantum mechanical fragment treatment. [54]
Overall, the MFCC class of approaches ensures a strict linear scaling

with growing size of the investigated protein, since the number of generated
fragments increases constantly. Saturation of all fragments with molecular
caps introduces no constraints to the level of theory applied. Use has
been made of HF, DFT and post-HF correlation methods in MFCC ap-
proaches, providing linear-scaling procedures for the calculation of protein
properties. [55]

However, the proposed conjugate caps are limited to protein and peptide
structures. A generalization of the idea of conjugate caps can be seen in the
extended ONIOM scheme. [56] Even though this approach does not employ
molecular fragmentation, it follows the basic concept of conjugate caps
by calculation of overlapping subsections of a system. Very much in the
spirit of the MFCC method, the undesired contributions are subsequently
canceled by subtraction of the intersection.

2.2.2 Fragment Molecular Orbital Method

The inclusion of intramolecular interactions in fragment-based approaches
is a key element to the recovery of the original molecular state. A common
attempt is the calculation of two-body terms in the electrostatic potential
of the remaining system to account for higher-order interaction effects.
Perhaps the most successful approach of this type is the fragment molecular
orbital method (FMO), originally proposed by Kitaura and coworkers. [57]
Within this method the fragment calculations are converged in monomeric
Coulomb potentials and many-body calculations are performed in the
resulting field.
Every FMO procedure starts with free monomer calculations to obtain

the initial electronic densities. By application of Coulomb operators of the
remaining fragments the monomers calculations are subsequently iterated
until self-consistency is reached. Non-iterative dimer calculations are
performed within the obtained Coulomb bath, referred to as FMO2. The
corresponding energy expression is given by the classical two-body expansion
as

EFMO2 =
N∑
I=1

EI +
N∑
I=1

N∑
J=I+1

(EIJ − EI − EJ) . (2.57)
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Here, EI and EIJ are the energies of the embedded monomers and dimers,
respectively. Additional three- and four-body terms can be optionally
carried out in higher-order FMO procedures referred to as FMO3 and
FMO4.

In contrast to other fragmentation techniques, the FMO approach breaks
covalent bonds by heterolytic fission. Thus, both bonding electrons are
transferred to the same fragment. A resulting charge is avoided by a special
treatment with an additional proton shift from the electron-lacking to the
electron-accumulating fragment yielding two uncharged monomers. The
frontier orbitals previously contributing to the covalent bond are frozen in
the course of the fragment calculations to maintain the original character
within the molecular system. [58]

The choice of molecular fragmentation in FMO avoids the appearance
of non-physical contributions from link-atoms or molecular caps. Due to
the pair-wise treatment of all fragments within the dimer calculations,
significant contributions to the intramolecular interaction can be easily
detected [59], which commonly employed for graphical representation of
specific interactions on an electrostatic potential surface. [60] However, the
description is lacking contributions beside the embedding Coulomb potential
of the fragments. The inclusion of the additional effects of exchange
interactions to FMO has been discussed, but lead to unsatisfying results
due to artifacts in the description of the dimers in the obtained monomer
field. [61]

The overall computational scaling of the FMO method is dominated by
the quadratic growth of dimer calculations with the number of generated
monomers. In addition, to incorporate the embedding Coulomb potentials
and remove BSSE effects, all calculations are carried out with the full
molecular basis set leading to a drastic increase of the computational effort.
This issue of steep computational scaling can be overcome by exploiting
the independence of the fragments calculations within the monomeric
iteration cycles. Since no further information is needed for a specific
fragment until the running monomer cycle is completed, the procedure
is perfectly suited to be performed in parallel on several CPUs. The
application of the FMO approach on supercomputer clusters allows for the
routine calculation of large molecular structures with an accurate quantum
mechanical description.

2.3 Molecular Mechanics
The aforementioned methods and approaches allow for an approximate solu-
tion of the Schrödinger equation. But as already stated, the computational
effort of these descriptions scales exponentially with an increasing system
size making them inapplicable for very large systems. Especially in the
field of biomolecular computations one is quickly dealing with systems of
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thousands of atoms ruling out any kind of quantum mechanical treatment.
An alternative is provided by molecular mechanics (MM) approaches,

which describe the system in a classical fashion comparable to the principle
of a molecular building kit. Within this simplified treatment atoms are
considered as hard spheres and bonds between them are represented by
springs. With the application of fitted parameters all interactions between
the atoms are described by analytic functions of simple form. The evaluation
of such functions is of extremely low computational cost, making the
application to systems of several thousands of atoms amenable.

Incorporation of the classical motion of the nuclei in molecular dynamics
(MD) simulations provides insights into the dynamical properties of the sys-
tem under consideration. Due to the simplicity of the underlying equations
external influences like solvation, temperature and pressure can be modeled
without particular difficulties. This allows for manifold applications like
the investigation of periodic solid state structures or the conformational
sampling of biomolecules in their natural environment. The underlying po-
tentials in form of force fields and the characteristics of molecular dynamics
simulations are discussed in detail within this section.

2.3.1 Force Fields

The energy of the system in a molecular mechanical approach is calcu-
lated by parametrized classical potentials combined in a force field. Since
electrons are not explicitly included, the total energy is given as a pure
function of the nuclei coordinates. The parameters involved can be either
fitted to experimental data or extracted from quantum mechanical model
calculations. Every atom is assigned a specific atom type, defining the
number of binding partners and the parameters used in the corresponding
force field terms. A set of analytic functions is used to incorporate specific
molecular contributions. The AMBER force field [62], for example, uses the
following energy terms:

VAMBER =
∑

bonds

1
2 kb (b− b0)2 +

∑
angles

1
2 kθ (θ − θ0)2

+
∑

torsions

1
2 kϕ [1 + cos (nϕ− γ)] +

∑
improper

1
2 kχ (χ− χ0)2

+
M∑
i=1

M∑
j=i+1

qiqj
4πεoεrrij

+ 4εij

[(
σij
rij

)12
−
(
σij
rij

)6
]
. (2.58)

The first two terms represent the contributions of bonds and angles by
harmonic potentials. Involved parameters are the force constants kb and
kθ, as well as the equilibrium distance values of the corresponding internal
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coordinate b0 and θ0. Such functions provide reasonable approximations to
the actual covalent contributions as long as the nuclei configuration does
not deviate strongly from the equilibrium geometry. The introduction of
harmonic potentials goes along with the limitation that covalent bonds can
not be broken within this description.
In the third sum the contributions of dihedral or torsional angles are

respected by Fourier series. Additional to another force constant kϕ, the
parameter for the number of maxima within a 360◦ twist of the dihedral
in form of the periodicity n and the phase shift γ are needed. Improper
torsions are included in the fourth term of the MM potential and ensure
the maintenance of planarity in specific structural motifs like phenyl rings
or peptide bonds.

Non-bonding interactions are treated by the two last terms. Contributions
are added up by a double sum to respect the Coulomb and van der Waals
interactions of all pairs of atoms with a distance r between them. While
Coulomb’s law is followed for two point charges q1 and q2 located at the
atoms in the first term, their van der Waals interaction is represented by
a Lennard-Jones potential in the second. The latter requires two further
parameters for each atom pair in form of the depth of the potential well ε
and the zero point of the potential σ.
The simple form of the contributing potentials allow for the routine

application of MM approaches to several thousands of atoms. A price to
pay for this favorable scaling is the incapability of MM simulations to break
or form covalent bonds. Since the connectivity of each atom has to be
explicitly specified and does not change during the simulation, no reactive
chemical transformation of the investigated system can be observed.

2.3.2 Molecular Dynamics

Molecular Dynamics (MD) simulations apply the classical Newton’s equa-
tions of motion to obtain atom movements from an arbitrary potential
energy expression. For a particle i with the mass mi moving along one coor-
dinate ri, Newton’s second law requires solving of the differential equation

d2ri
dt2 = Fri

mi
. (2.59)

Here, Fri is the force acting on the particle in the direction of the movement.
Different algorithms have been established for the integration of equation
(2.59), by making use of a Taylor expansion for the position at a time t+ δt
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and its derivatives like the velocities v(t+ δt) and accelerations a(t+ δt) as

r(t+ δt) = r(t) + δtv(t) + 1
2δt

2a(t) + 1
6δt

3b(t) + · · · (2.60)

v(t+ δt) = v(t) + δta(t) + 1
2δt

2b(t) + · · · (2.61)

a(t+ δt) = a(t) + δtb(t) + · · · (2.62)

The solution provides insights into the trajectory of the particle following
its movement after certain periods of time, whereas the chosen difference
δt is referred to as the time step of the simulation. Generalization of
the procedure can be easily performed to allow for the application to a
large number of particles. The approach is thus perfectly suited for the
investigation of the dynamical properties of a chemical system, with being
atoms treated as individual particles moving in the potential of the applied
force field. Also combined movements of atoms are taken into account,
according to which parts of the system or the entire simulated structure is
moving in molecular motions.
Several ensembles can be simulated employing MD approaches by re-

striction of specific system variables. In the microcanonical ensemble, the
amount of substance N , the volume V and the energy E of the system are
conserved. The corresponding simulation is therefore also referred to as
NVE dynamics. It allows for the redistribution of kinetic and potential
energy, while the total energy of the system is kept constant.

The canonical ensemble also fixes the variables of N and V , but instead
of the energy the temperature T is not allowed to vary anymore (NVT).
This is achieved by thermostat, which commonly scales velocities of the
moving atoms to obtain a specific temperature. Different approaches are
present to achieve this constraint. The Berendsen thermostat for example
couples the system to an external temperature bath. [63] Introduction of
friction effects to the applied Newton’s equations of motion is the method
of choice in case of the Langevin thermostat. [64]
In the isothermal-isobaric ensemble the constrained quantities are the

particles N , the temperature T and the pressure p (NPT). This comes
closest to the experimentally accessible situation of ambient temperature
and pressure. Constancy of the pressure is commonly achieved by scaling
the volume of the system. The coupling to a pressure bath can be performed
in analogy with the temperature fixation in the Berendsen thermostat.

In condensed phase simulations, one is usually interested in the simulation
of a solute in a continuous solvent environment or the representation of
an infinite crystal structure. Therefore, a special treatment is applied to
overcome the limited size of the simulated system. By introduction of a
periodic box, the system repeats itself after a certain distance in space
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canceling the impact of surface effects. A cutoff is applied to restrict
long-range interactions to a specific distance in order to decrease the
computational effort. This type of simulations is referred to as being
carried out under periodic boundary conditions.
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3 Fock Potentials in Embedded Calculations
The Hartree-Fock method is at its core an embedding procedure. It provides
a solution to the Schrödinger equation through a mean-field description of
electrons moving in an effective electronic potential. Following this basic
concept in systems of several monomers, it is possible to recover the full
HF description from monomer calculations embedded in an effective mean
potential of their counterparts. An earlier study by Mata and Stoll [65] on
non-covalently bonded systems showed that the use of full Fock potentials
is suitable for an efficient monomer embedding. The Fock potential of a
single monomer covers all of its information within the system at the HF
level. Due to the mean-field character of the HF method itself, this type of
embedding is by no means an approximation and the monomer calculations
will reach the complete HF treatment in the limit of exact potentials used.
Thus, the application of full Fock potentials provides a stable reference and
can be used to critically analyze other established embedding techniques.
The exact limit is reached by updates of the monomer Fock potentials in
an iterative procedure, very much in the spirit of the updating SCF steps
within the HF method. If such iterations are carried out to self-consistency,
the resulting Fock potentials represent the converged description of the
corresponding monomers within the full system.

This chapter gives an overview on the application of full Fock potentials
in embedded calculations of molecular systems. A general introduction
to the inclusion of Fock potentials via the use of effective one-electron
operators is followed by the discussion of two different schemes. The
first scheme introduces a cap-free fragment approach to HF calculations
for covalent systems. After the detailed description of the method and
procedure, the comparison of density and energy convergence to full HF
results is presented. The analysis also considers the scaling of the fragment
approach with the system size in descriptions with limited basis sets.

In the second scheme the application of QM/MM embedding techniques is
analyzed by comparison to full Fock embedding. The investigation includes
the effect on the monomer density of crystal structures and molecules
in solution considering the type of embedding used for their first and
second surrounding molecular shells. Analysis of the embedding effect
on a higher-order molecular property is conducted on the example of the
dispersion interaction energy of molecular dimers. A conclusion critically
summarizing the benefits and limitations of embedding calculations with
full Fock potentials closes the chapter.

3.1 One-electron Operators
In restricted closed-shell Hartree-Fock theory, including an effective po-
tential of neighboring fragments to the calculation of a fragment x can be
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expressed by changing the effective one-electron operator as

hx = hx0 +
N∑
y 6=x

[
2Jy −Ky + Vy

n + Py
]
, (3.1)

where Jy and Ky are the Coulomb and exchange matrices, respectively,
of a surrounding monomer y and Vy

n the corresponding nuclei potential.
hx0 refers to the one-electron matrix of the free fragment, calculated without
embedding. Thus, the embedding potential includes all contributions to
the Fock matrix of the monomer y plus an additional term involved in
form of the matrix Py. This term is the matrix representation of a shift
operator p̂y defined as

p̂y = λ

nyocc∑
i∈y
|φi〉 〈φi| . (3.2)

Here, φi represent the occupied molecular orbitals of the embedding frag-
ment y, while λ is a constant with the dimension of an energy that should
be set to high values. Since the energy is optimized during the SCF proce-
dure, these energetically high terms are avoided by minimizing the overlap
between the orbitals of the calculated fragment x and the ones from the
embedding monomer y leading to near-orthogonality. The elements of the
matrix Py take the following form in the AO basis functions χµ and χν of
the calculated fragment x:

P yµν = 〈χµ| p̂y |χν〉 . (3.3)

Substitution with equation (3.2) yields

P yµν = λ 〈χµ|

nyocc∑
i∈y
|φi〉 〈φi|

 |χν〉 . (3.4)

Here, representation of the molecular orbitals φi with the AO basis functions
χσ and χρ of the embedding fragment y together with the corresponding
electron density matrix elements Dy

σρ leads to

P yµν = λ 〈χµ|

Nybas∑
σ=1

Nybas∑
ρ=1
|χσ〉Dy

σρ 〈χρ|

 |χν〉
= λ

Nybas∑
σ=1

Nybas∑
ρ=1
〈χµ|χσ〉Dy

σρ 〈χρ|χν〉 = λ

Nybas∑
σ=1

Nybas∑
ρ=1

SµσD
y
σρSρν . (3.5)
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In matrix notation this writes as

Py = λ SDyS . (3.6)

Thus, the shift matrix of an embedding fragment y can be constructed
from the corresponding electron density matrix Dy and the matrix S which
contains the overlap between basis functions of the calculated and the
embedding fragments. Use of this relation is made within the course of the
current chapter throughout.
Due to changes in the one-electron operator, the HF procedure of the

fragment x is performed under the external Fock potential of all embedding
monomers y. The application of shift operators ensures that the final
molecular orbitals of x will result in a set that is near-orthogonal to all
occupied embedding orbitals. Thus, the embedded calculation includes the
same contributions involved in a complete HF treatment of all fragments.
In the limit of exact Fock potentials the treatment of fragment x will not
differ from the description of the same fragment within the full system HF
calculation.

3.2 FJK
Parts of this section are featured in
"FJK - A cap-free fragment approach with embedding Fock potentials",
M. Werner and R. A. Mata, AIP Conf. Proc., 1702, 09006, 2015.

For the application of Fock embedding within covalently bonded systems, a
fragment approach to HF calculations was proposed, termed Fragmentation
with Coulomb (J) and exchange (K) embedding, short FJK. [66] This ap-
proach provides a method without parametrization of the boundary between
fragments and allows for the convergence of fragment calculations when
the embedding potential is correct in the limit of self-consistency. In this
section the FJK method and its application for fragment HF calculations is
investigated in detail. After the description of the method itself including
the type of molecular fragmentation and computational details, the pro-
cedure is analyzed in terms of the resulting density and energy compared
to the full HF solution of molecular systems. An approach making use
of different basis sets representing the fragments and the potentials is
investigated in the last part of the section.

3.2.1 Method

In order to employ the embedding with full Fock potentials for fragments
of molecular systems, it is necessary to break covalent bonds. Since one is
interested in fragments that may represent their state within the original
environment, the generation of closed-shell monomers without introduction
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of an internal error by the use of saturating link-atoms or molecular caps
is desired. To achieve this aim, the simplest approach is the heterolytical
fission of covalent bonds assigning both electrons of a covalent bond to
one resulting fragment and none to the other. While a special proton shift
procedure is applied in the FMO approach to avoid charged fragments [58],
the created FJK fragments may or may not carry a charge. This raises no
particular issue as the counter-charge is covered by the embedding full Fock
potential. Application of this fragmentation approach in form of shifting
all binding electrons along the same direction within a long-chained system
yields fragments of opposite charge only at the very end positions. The
remaining monomers are electronically neutral. This is shown in Figure 3.1
for the example of propane.
From the generated fragments the FJK method approximates the full

HF solution in a procedure consisting of four steps. The first three of
these steps cover different type of monomer cycles where all fragments are
calculated one after the other. Construction of the full system energy is
carried out from the embedded monomer results in the last step. This
procedure is displayed in Scheme 3.1.
In the first step 1) free fragment calculations are performed in vacuo

to extract the first monomer Fock potentials. Within the second step 2)
the fragments are calculated again embedded in the potentials of the other
monomers. After this the potential of the calculated monomer is updated
and directly used to embed the following fragment within the cycle. A
fragment x in this monomer cycle is therefore embedded in the updated
potentials of the fragments y < x which have been already treated in this
cycle, while the potentials of the remaining y > x fragments are still the
ones that have not been updated to this point. This cycle in the second
step 2) can be repeated X times to further iterate the fragment potentials
towards the full HF limit. The method is then referred to as FJK-X and
each monomer cycle is denoted as a macro-iteration, while the term of a
micro-iteration is used for single SCF steps within a fragment calculation.
With the second step 2) of the procedure an imbalanced description

of the monomers is introduced. The last fragment of the corresponding
monomer cycle is embedded in all the updated potentials, while only non-
updated potentials are used to embed the first one. To overcome this

H3C

H2

C

CH3 H3C

H2

C

CH3

Figure 3.1: Heterolytical fragmentation in the FJK method on the example of propane.
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Scheme 3.1: Procedure of the FJK method carried out in four steps. Different cycles
over the fragments are carried out by the first three steps, while the energy of the total
system is recovered in the last one.

1) Obtain starting potentials from free monomers:
hx0 −→ Jx,Kx,Vx

n,Dx

2) Update and direct use of monomer potentials:

hx = hx0 +
x−1∑
y=1

[2J̃y − K̃y + Ṽy
n + P̃y] +

N∑
y=x+1

[2Jy −Ky + Vy
n + Py]

hx −→ J̃x, K̃x, Ṽx
n, D̃x repeat step 2) X times⇒ FJK-X

3) Closing monomer cycle without any updates:

h̃x = hx0 +
N∑
y 6=x

[2J̃y − K̃y + Ṽy
n + P̃y]

h̃x −→ D̃x, Ex

4) Energy calculation:

EFJK =
N∑
x

Ex +
N∑
x=1

N∑
y=x+1

{
V x↔yn − tr

[
D̃x
(
J̃y − 1/2K̃y + P̃y

)]}

uneven fragment treatment another monomer cycle is carried out in step 3)
of the procedure. This closing monomer cycle uses the latest potentials to
embed all fragments without carrying out further updates of the potentials
anymore. This ensures that all fragments are embedded with potentials of
a consistent level balancing the resulting monomer description.
The fourth and last step 4) constructs the full system energy out of

the embedded monomer calculations. In the first sum the energies of the
embedded fragments are summed up, while nuclear repulsion between the
fragments is added in the first term of the double sum. All electronic
interactions between two fragments are calculated twice since a fragment x
is embedded in the potential of another fragment y and vice versa. These
double-counted interactions and the contributions of the non-physical shift
operators are canceled out by the last term shown in step 4).
In contrast to other fragmentation approaches FJK does not introduce

errors due to the introduction of hydrogen-link atoms or molecular caps
for bond saturation. It also defines the properties of the total system
solely on the basis of embedded monomer calculations without additional
computation of dimers or trimers as commonly done in many-body fragment
approaches like the FMO method of Kitaura et al. [57], described in detail in
section 2.2.2. While FMO performs embedded monomer calculations in the
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Coulomb bath of the environment until self-consistency is reached, the full
Fock potential of the surrounding fragments is included in FJK. A similar
procedure with the additional inclusion of exchange potentials in monomer
embedding of the FMO method has been tried, but to little success due
to an imbalanced description of the consecutive 2-body calculations in the
resulting field. [61] The FMOmethod was only proposed to calculate the total
energy of the system by a 2-body approach in a converged electrostatic field.
In contrast to this, the characteristics of the FJK method are inspired by
the mean-field SCF procedure itself and allow for the convergence towards
the complete HF solution with an increasing number of macro-iteration
monomer cycles. This property is analyzed in terms of the resulting energy
and electronic density in the following section.

All calculations of this chapter have been carried out at the density-fitted
Hartree-Fock (DF-HF) level of theory [37] in combination with the cc-pVTZ
basis set and corresponding fitting basis. [67;68] A local development version
of the Molpro2012.1 quantum chemistry package was used throughout. [69]
FJK results are always compared to the ones obtained by the full HF
treatment. The parameter in the shift operators was set to 30000 Eh for
all FJK fragment calculations. In order to avoid basis set superposition
effects, each fragment FJK calculation has been carried out with the full
molecular basis set. A mixed basis approach representing the embedding
potentials in a minimal basis set is introduced in section 3.2.4.

3.2.2 Convergence Analysis

A simple case to check for the convergence of the proposed FJK method
towards the full HF solution is given in the application to non-covalent
molecular clusters. In these systems the break of chemical bonds is not
required, since the fragments are naturally given by the monomers involved
in the structure. For two different conformers of tetrametic water clusters
taken from Mata and Stoll [65], the convergence with an increasing number
of macro-iterations was analyzed. These structures provide small neutral
water molecules in a ring and a cage conformer allowing for the analysis of
the FJK convergence without the effect of charged fragments generated by
heterolytic bond fission. The FJK energy was calculated for both structures
using the 4-step procedure as described above. Several repetitions of the
uneven iterated monomer cycle were performed and the resulting energies
were compared to the corresponding full system HF result. The structures
and the differences in the absolute energies ∆Eabs = E(FJK)−E(HF) are
shown in Figure 3.2.
The results exhibit a fast convergence to the the full HF solution with

errors below 2 kJ·mol−1 already after one repetition of the uneven monomer
cycle in FJK-1. However, for the two water clusters, energy differences of
opposite sign are found in the initial FJK-0 procedure. It was shown before
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that the HF binding energies of these water tetramers differ with the ring
conformer being the more stable one compared to the cage structure. [65]
Thus, the FJK-0 approach underestimates the binding of the ring conformer
yielding a higher absolute energy, while the monomer interaction is over-
estimated for the cage conformer. For both structures this error vanishes
with an increasing number of monomer cycles in the FJK procedure. A
smooth convergence of the absolute energy compared to the full HF results
is observed.

Another suitable criteria for the analysis of the convergence of the method
is the resulting molecular electronic density. Since the electronic density of
each fragment is repeatedly optimized in the potential of the surrounding
monomers, the sum of all fragment densities should recover the full HF
electronic density in the limit of self-consistency. The quantity of interest is
therefore the difference ∆ρ(r) = ρFJK(r)− ρHF(r) between the electronic
density observed by the FJK procedure and the full HF calculation. While
the volume integral of this density difference will vanish due to the addition
of positive and negative values, the integral of its absolute can be used to
define another convenient quantity for the convergence analysis of the FJK
method. Half of the value for the volume integral over the absolute density
difference gives the quantity 〈δn〉 as

〈δn〉 = 1
2

∫
|∆ρ(r)| dr . (3.7)

The value of 〈δn〉 can be taken as the mean number of displaced electrons

cage

ring
0 1 2 3-15

-10

-5

0

5

10

15

FJK-X

∆
E

ab
s

/
kJ

·m
ol

−
1

cage
ring

Figure 3.2: Left: Structure of two water tetramers in cage and ring conforma-
tion. Right: Convergence of the FJK energy compared to the full HF calculation
∆Eabs = E(FJK)− E(HF) with an increasing number of macro-iterations for the two
water tetramers.
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described by the FJK method relative to the HF reference.
Both of the aforementioned quantities were applied to analyze the elec-

tronic density convergence of the FJK procedure in the propane system.
As already seen in Figure 3.1, the molecule was divided into the three
fragments (H3C)− · · · (CH2) · · · (CH3)+ and the resulting FJK density was
constructed as the sum of all three monomer densities. The convergence
due to FJK cycles is followed by isodensity surface plots of the density
difference after each fragment calculation. In order to also analyze the
effect of micro-iterations withing the single fragments, the mean number
of displaced electrons 〈δn〉 was calculated after each SCF step using a
numerical grid of evenly spaced points with a step size of 0.183 Å. All
results of the FJK density convergence in the propane system are displayed
in Figure 3.3.

Starting with an electronic density from free monomer calculations leads
to a large mean number of displaced electrons 〈δn〉 of 1.57 compared to
the full system HF result. This is also shown in the first surface plot where
the electronic density on the left negatively charged methyl fragment is
widely overestimated (blue contour), while the one from the right positively
charged methyl fragment is too low compared to the HF density (red
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Figure 3.3: Development of the mean number of displaced electrons 〈δn〉 with each SCF
step of the FJK method for propane. The graphics inside show isodensity surface plots
of the density difference ∆ρ(r) = ρFJK(r)−ρHF(r) with a value of 5 ·10−4 a−3

0 . Positive
areas are colored in blue, negative ones in red. The FJK density was constructed as the
sum of the embedded monomer energies.
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contour). During the FJK macro-iterations the electronic densities of the
monomers are improved from the (H3C)− over the (CH2) to the (CH3)+

fragment. Already the first macro-iteration decreases the 〈δn〉 value to
0.28 at the FJK-0 level. Another monomer cycle in FJK-1 lowers the mean
number of displaced electrons to 0.03, while the FJK density is basically
converged at the FJK-2 level. This convergence is also seen in the surface
plots, in which the density difference is further reduced with each monomer
calculation. At the FJK-2 level only a very small contour indicates the
remaining density difference.
Another interesting observation regarding Figure 3.3 is the fact that

the main influence of the embedding potentials is already covered after
a few micro-iterations in each fragment calculation. While the monomer
density description is significantly changing during the first SCF steps in
the corresponding fragment, its changes seem negligible when carrying
out the final micro-iterations. This indicates the possibility to restrict the
number of micro-iterations allowed in each fragment calculation without
great loss of information on the density described. This option is further
tested in the following conformational energy analysis of the FJK method.

3.2.3 Conformational Energy

Given that the FJK energy and density converge smoothly to the full
HF result, proceeding to model applications seems feasible. In chemical
processes one is usually not interested in the absolute energy of a system, but
rather the changes of the energy due to occurring reactions, conformational
changes or electronic excitations. This gives a more significant weight to the
description of relative energies, which are analyzed for system of different
size and complexity in this section.
In order to investigate the conformational energy description of FJK,

a first benchmark included the alkane chains propane, butane, pentane
and hexane. For all structures 36 conformers were generated by rotation
around an internal C-C bond by 360◦ in steps of 10◦. This corresponds
to rotational barriers reaching from 15 kJ · mol−1 to 36 kJ · mol−1 at
the HF level. The number of generated fragments is consistent with
the number of carbon atoms nC within the system yielding fragments as
(H3C)− · · ·nC × (CH2) · · · (CH3)+. Each conformer was calculated with
the FJK method using different numbers of macro-iterations and with
the full HF treatment. The three energy parameters used for confor-
mational analysis include the mean absolute energy difference 〈|∆Eabs|〉,
the maximum deviation of the relative energy MAXDrel, and the relative
root-mean-square deviation RMSDrel. The results for all alkane systems
are displayed in Table 3.1.

As it was already shown for the simpler cases in the previous section, the
differences in absolute energies compared to the full HF results decrease with



38 3 Fock Potentials in Embedded Calculations

Table 3.1: Mean absolute errors (〈|∆Eabs|〉), relative maximum deviation (MAXDrel)
and relative root-mean-square deviation (RMSDrel) in kJ · mol−1 of different FJK
macro-iterations for alkanes from propane to hexane. The number of fragments was
increased according to the number of carbon atoms involved as given in parenthesis
behind the system.

Propane (3 fragments) Butane (4 fragments)
Method 〈|∆Eabs|〉 MAXDrel RMSDrel 〈|∆Eabs|〉 MAXDrel RMSDrel

FJK-2 9.3 0.05 0.03 30.8 2.24 1.67
FJK-3 1.1 < 0.01 < 0.01 4.6 0.81 0.51
FJK-4 0.4 < 0.01 < 0.01 1.0 0.18 0.10

Pentane (5 fragments) Hexane (6 fragments)
Method 〈|∆Eabs|〉 MAXDrel RMSDrel 〈|∆Eabs|〉 MAXDrel RMSDrel

FJK-2 54.1 0.65 0.25 82.5 1.50 0.69
FJK-3 8.8 0.57 0.33 15.3 1.12 0.65
FJK-4 1.6 0.14 0.08 2.7 0.29 0.18

a larger number of macro-iterations. At the FJK-4 level the mean absolute
energy difference is already below 3 kJ ·mol−1 for all alkane systems. A fast
decrease is also observed for the maximum and root-mean-squared errors of
the relative energies going from FJK-2 to FJK-4 indicating the robustness
of the method. Using FJK-4 the procedure is capable of reproducing
conformational HF energies with mean errors of less than 0.2 kJ ·mol−1

even for the hexane system. Within this benchmark set also the trend
concerning a larger number of generated fragments can be followed. Even
though the errors in terms of absolute and relative energies are clearly
rising for small numbers of macro-iterations from propane to hexane, the
differences become less pronounced for higher FJK-X methods. The larger
number of only roughly described fragments yields inferior starting points
for the iterative procedure, but nevertheless the corresponding FJK energy
can be converged to the full HF limit using slightly more updating cycles
for the fragment potentials.
Two further benchmark systems, namely benzophenone and a capped

dipeptide of alanine, were analyzed with two purposes in mind. On the
one hand the generation of more exotic or even non-chemical fragments
was investigated, on the other hand the idea of using a limited number of
micro-iterations in each fragment calculation was pursued. The N-term
of the alanine dipeptide was acetylated, while an N-methyl group was
used to cap the C-term in order to avoid a charged system. For both
systems 36 conformers were generated by 360◦ rotation around a C-C single
bond in steps of 10◦. This corresponds to HF rotational energy barriers of
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80 kJ ·mol−1 for benzophenone and 65 kJ ·mol−1 for the alanine dipeptide.
The structures of both benchmark systems with the rotated single bonds
highlighted in green are shown in Figure 3.4.
Both systems were divided into three fragments yielding a carbonyl

group and two charged phenyl fragments in case of benzophenone, whereas
the peptide unit CONH represents a single fragment of the alanine dipep-
tide system. The relative energy analysis was based on the same three
parameters 〈|∆Eabs|〉, MAXDrel and RMSDrel, as already seen for the
alkane benchmark set. While the FJK method with different numbers of
macro-iterations was once applied with fully converged SCF cycles within
the fragments, the procedure was repeated with the maximum number
micro-iterations nmicro

maxit per fragment being limited to four only. The corre-
sponding results for both systems are displayed in Table 3.2.

It can be seen that the choice of more extreme monomers, like the charged
phenyl fragments, goes hand in hand with larger errors in the absolute
and relative energy parameters for FJK methods of lower order. Since
these fragments are far from their original state within the molecule, the
starting point for the iterative FJK procedure represents a poor description
of the real molecular constitution. Nevertheless, this does not seem to raise
particular issues as the absolute and relative energies still converge to the full
HF results within a limited number of macro-iterations. For fully converged
SCF cycles at the FJK-4 level, both systems reach a remarkable accuracy
with average errors of the conformational energy within 0.05 kJ ·mol−1.

With a restriction of the maximum number of micro-iterations per
fragment calculation to four the overall energy observations are not changed
drastically. This indicates that a few SCF steps per monomer are sufficient
to cover the effect of the embedding potentials. The mean absolute energies
for the restricted monomer treatment preserve the same trend as in case

Ph-CO-Ph Ac-Ala-CONH-Ala-NMe

Figure 3.4: Structures of benzophenone (left) and the capped alanine dipeptide (right).
The bonds around which the structures were twisted for generation of the different
conformers are displayed in green. Both systems were split up into three fragments by
cutting the bonds indicated with a red dash in the chemical formula below the structures.
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Table 3.2: Mean absolute errors (〈|∆Eabs|〉), relative maximum deviation (MAXDrel)
and relative root-mean-square deviation (RMSDrel) in kJ · mol−1 of different FJK
macro-iterations for benzophenone and the alanine dipeptide. The upper part includes
full SCF cycles while the maximum number of micro-iterations per fragment was limited
to four in the lower part of the table.

Benzophenone Alanine dipeptide
Method 〈|∆Eabs|〉 MAXDrel RMSDrel 〈|∆Eabs|〉 MAXDrel RMSDrel

full SCFs
FJK-2 34.2 2.19 1.25 36.3 2.09 1.14
FJK-3 4.3 0.53 0.33 5.4 0.45 0.17
FJK-4 0.8 0.10 0.04 1.3 0.13 0.05

nmicro
maxit = 4

FJK-2 53.5 1.14 0.66 50.1 2.79 1.60
FJK-3 6.1 0.40 0.25 8.5 0.33 0.17
FJK-4 1.8 0.50 0.23 2.0 0.29 0.22

of the converged fragment calculations. With slightly larger deviations
than for the fully converged fragments, the absolute energies described by
restricted monomers are still converging to the full system HF result with
an increasing number of macro-iterations. The same is not true for the
behavior of the relative energy. In fact, for the example of benzophenone at
the FJK-2 and FJK-3 level, the errors in the relative energy quantities are
even smaller than the ones for fully converged monomer SCF cycles. The
errors caused by the non-converged description of the fragments are able to
add up or compensate in a different way for each conformer. Only with a
sufficient number of macro-iterations minimizing the error in each fragment
description one will observe a stable behavior in the relative energy.

One of the possible limitations of the FJK method is the arbitrary choice
of fragments allowing for the generation of non-physical fragments. It
is uncertain how this fragmentation may impact on the resulting energy
description and the asymptotic convergence to the full HF solution. The
effect of a critical fragment choice was investigated for the extreme case of a
completely delocalized system. A single molecule of benzene was split into
three fragments of C2H2. 14 conformers were generated for this system by
varying the C-C bond distance from 1.32 Å to 1.45 Å in steps of 0.01 Å. This
corresponds to a total HF conformational energy window of 30 kJ ·mol−1.
The parameters of the absolute and relative energy differences for a variety
of FJK macro-iterations and the structure of benzene together with its
fragmentation are shown in Table 3.3.

It is easily seen that a larger number of FJK macro-iterations is needed
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Table 3.3: Mean absolute errors (〈|∆Eabs|〉), relative maximum deviation (MAXDrel)
and relative root-mean-square deviation (RMSDrel) in kJ · mol−1 of different FJK
macro-iterations for benzene. The C6H6 molecule is split into three neutral monomers
of C2H2.

Method 〈|∆Eabs|〉 MAXDrel RMSDrel

FJK-2 122.3 20.36 12.50
FJK-3 45.6 10.31 2.68
FJK-4 16.1 4.71 2.68
FJK-5 5.6 1.82 0.96
FJK-6 2.5 0.42 0.27
FJK-7 1.5 0.20 0.10

y

to achieve the same accuracy in the benzene molecule as in the previous
cases. Starting from large deviations in the lower order FJK methods,
mean relative errors below 1 kJ · mol−1 are found from FJK-5 on. The
calculation is basically converged at the FJK-7 level with an mean error
in the absolute energies of only 1.5 kJ ·mol−1. This is a clear indication
that the asymptotic convergence of the FJK procedure is independent of
the fragment choice. Even charged fragments and monomers far from their
natural chemical environment can be used to recover the full HF result
in the limit of the self-consistent description of their potentials. Also in
the case of delocalized systems the complete HF limit is reached with an
increasing number of macro-iterations, which allow the monomer densities
to spread among each other.
This section solely investigates the convergence of the FJK method to

the full HF limit with an increasing number of macro-iterations, while
no focus is set to the corresponding computational cost. In its current
form the FJK method is carried out in the full molecular basis set for
all fragment calculations. Even though this allows for the analysis of the
resulting errors free from basis set superposition effects, it does not provide
the full benefits known from other fragmentation approaches. The use of
all basis functions in every fragment treatment leads to an unfavorable
scaling of the FJK procedure with growing system size. Even with a limited
number of micro-iterations the FJK method is computational more costly
than the full HF calculation. The fragment calculations involved do not
provide pure monomer treatments, since their computational effort is not
independent of the total systems size due to the use of basis functions on the
embedding fragments. However, in order to represent the embedding Fock
potentials basis functions on the surrounding fragments are mandatory. The
included Fock potentials are based solely on the corresponding fragment
density. This points out the possibility to use a minimal basis set for the
description of the embedding fragments providing a rough representation
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of the corresponding monomer densities. Whether this idea is sufficient to
include the embedding Fock potentials, is analyzed in detail in the following
section.

3.2.4 Mixed Basis Approach

The FJK procedure was modified by the use of a minimal basis set for the
embedding fragments, while the larger basis remains only on the calculated
monomer. This mixed basis FJK (MBFJK) description introduces several
additional operations within the aforementioned FJK steps, since the
monomers are now treated with different basis sets and their potentials
need to be transferred into the basis used for their embedding. Any
electronic density in the AO basis of one fragment y can be projected
to the AO basis of the fragment x by using the overlap matrix between
both fragments Sxy with the corresponding elements Sxyµσ =

〈
χxµ
∣∣χyσ〉. This

projection writes as
Dx = Sxy Dy Syx . (3.8)

With the projection of fragment densities it is possible to build the em-
bedding potential of a surrounding monomer in the basis of the calculated
entity. A schematic procedure of the MBFJK approach and the involved
operations are given in Table 3.4.
As in the full basis FJK approach all fragments are first calculated

individually to obtain their initial densities. In the case of the MBFJK
method this treatment occurs in a minimal basis set representation of the
calculated monomers. This eases the projection of the fragment densities in
the following step, as the minimal basis description is a subset of the basis
set used to include the fragment as an embedding unit. All embedding
densities are projected into to the mixed basis of the treated fragment unit
x, which describes x by a larger basis set, while the remaining fragments
are represented in a minimal set of AO functions. These projected densities
are then used to build the embedding potentials which are included in the
one-electron operator of x. The update of the monomer densities and thus
the embedding potentials if performed in an asymmetric cycle as in the
full basis FJK approach and can be repeated by several macro-iterations
to improve the fragment description.
A clear contrast to the full basis FJK procedure is the calculation of

the total energy in the MBFJK method. Since the various fragments
are treated with different basis sets, an energy composition out of their
individual fragment energies leads to an unbalanced description of the
system. With the projected and updated property for each fragment now
being the corresponding electronic density, this is also the quantity that
needs to be applied to achieve a stable and converging treatment of the
total system. The final electronic densities of all fragments are therefore
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Table 3.4: Schematic procedure for the MBFJK approach in a system of N fragments.
The table includes information on the operations carried out for the given fragments
and the corresponding basis set used.

Fragments Operations Basis

∀ x ∈ {1...N} micro SCF cycle → Dx x @ minimal

m
ac
ro
-

ite
ra
tio

ns


project Dy, form Jy, Ky,

∀ x ∈ {1...N} load Vy
n and form Py x @ large

∀ y 6= x hx0 +2Jy−Ky+Vy
n+Py rest @ minimal

micro SCF cycle → D̃x

∀ x ∈ {1...N} project D̃x,

Dtot =
N∑
x=1

D̃x
all @ large

full geometry one full HF step all @ large

projected into the full molecular basis set with functions of the larger basis
placed on all atoms. Summing up the resulting projected densities to a
total electronic density yields a suitable starting point for the calculation
of the MBFJK energy. A Fock matrix is constructed from the obtained
electronic density and subsequently diagonalized in a final conventional
full HF step. This ensures a balanced energy and density description of
the system and makes the approach accessible to all conventional post-HF
methods.
The MBFJK method was applied to calculate the conformational ener-

gies of four of the benchmark systems already used to analyze the FJK
performance, butane, hexane, benzophenone and benzene. The large basis
set used for fragment calculation was cc-pVTZ [67], while STO-3G [70;71] was
used as a minimal basis set for potential representation. An auxiliary set of
functions for density fitting was only placed on the calculated fragment. [68]
The established parameters for analysis of absolute and relative energy
description compared to the full HF calculations were used and can be
found for different macro-iterations of the MBFJK approach in Table 3.5.
It becomes clear that the MBFJK method yields absolute and rela-

tive energies close to the full HF results already with a small number of
macro-iterations carried out. Due to the final full HF step from embed-
ded fragment densities the mean errors in the relative energy are below
2 kJ ·mol−1 for all four systems already at the MBFJK-0 level. The ef-
fect of the final full HF step is quite pronounced, which can be seen by
comparison of the results for hexane with the ones from the full basis FJK
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Table 3.5: Mean absolute errors (〈|∆Eabs|〉), relative maximum deviation (MAXDrel)
and relative root-mean-square deviation (RMSDrel) in kJ ·mol−1 of different MBFJK
macro-iterations for butane, hexane, benzophenone and benzene. The large basis set
used was cc-pVTZ, the minimal basis set STO-3G.

Butane (4 fragments) Hexane (6 fragments)
Method 〈|∆Eabs|〉 MAXDrel RMSDrel 〈|∆Eabs|〉 MAXDrel RMSDrel

MBFJK-0 5.4 0.02 0.01 14.8 1.24 0.72
MBFJK-1 3.5 0.02 0.01 6.0 0.18 0.10
MBFJK-2 3.4 0.02 0.01 5.6 0.08 0.05

Benzophenone (3 fragments) Benzene (3 fragments)
Method 〈|∆Eabs|〉 MAXDrel RMSDrel 〈|∆Eabs|〉 MAXDrel RMSDrel

MBFJK-0 9.8 0.54 0.35 29.4 2.42 1.52
MBFJK-1 9.4 0.51 0.33 11.5 1.32 0.80
MBFJK-2 9.6 0.53 0.33 8.5 0.85 0.50

procedure in Table 3.1. Several macro-iteration cycles are needed for a
stable description of the absolute and realtive energies from embedded
monomer calculations in the initial FJK method. The MBFJK approach
benefits from the combination of monomer densities in a final HF step
leading to errors comparable to the conventional FJK-4 results already at
the MBFJK-1 level.

By application of the MBFJK procedure to both alkane systems, butane
and hexane, the energy parameters are quickly found to be close to the full
HF limit with an increasing number of macro-iterations, the convergence
is significantly slower in the cases of benzophenone and benzene. In the
latter systems the MBFJK procedure is incapable of smoothly recovering
the conjugation of the structures. As the provided orbital space on the
embedding fragments is drastically reduced, the monomer density is less
effectively spread among the other fragments. However, for the description
of relative conformation energies the MBFJK-2 approach yields mean
differences to the full HF results of less than 1 kJ · mol−1 for all four
benchmark systems.

Considering the fragment operations involved in the MBFJK procedure
and the formal scaling of the HF method, a rough estimation for the
development of the computational cost with a rising number of fragments
can be estimated. This is easiest to follow in a system consisting of Nfrag
equal fragments, like in the case of a water cluster. Each monomer may be
described at a larger basis set with Nlarge functions for its calculation or at
a smaller basis set with Nsmall functions for its embedding. Assuming that
a HF calculation scales cubically with the number of used basis functions,
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the full calculation of the total system with a large AO basis yields an
increase of the computational time tcomp as

tcomp(HF) ∝ [Nfrag ·Nlarge]3 . (3.9)

Considering only the free monomer and mixed basis fragment calculations
in one macro-iteration cycle of MBFJK, the computational effort would
increase with the term

tcomp(MBFJK) ∝ Nfrag · [Nsmall]3 +Nfrag · [(Nfrag − 1) ·Nsmall +Nlarge]3 .
(3.10)

The dependency of both computational costs on the number of fragments
Nfrag is shown in Figure 3.5 with Nlarge = 58 and Nsmall = 7, as it would
be the case in a water cluster with a large cc-pVTZ and a small STO-3G
basis set.

The graph exhibits a ’sweet spot’ for the MBFJK method with a favorable
scaling compared to the full HF calculation in an area between roughly 100
and 550 fragments. However, it also clearly shows that the computational
cost of MBFJK is rising more steeply than the one of HF making the
fragment method unfavorable for larger systems. In any case this estimation
represents an ideal scaling of the MBFJK method. For simplicity, the
proportionally factors to the computational time of MBFJK and HF were
assumed to be equivalent. These prefactors will impact on the actual
computational scaling and differ among both calculations with a strong
dependence on the investigated system. In addition to this, only the
fragment calculations of MBFJK were considered. Taking into account
the additional operations of monomer density projections, generation of
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Figure 3.5: Comparison of the formal scaling of conventional Hartree-Fock and the
MBFJK approach with an increasing system size. The number of basis functions per
fragment corresponds to a water cluster with a large cc-pVTZ and a small STO-3G
basis set.
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embedding potentials, repetition of the macro-iteration monomer cycle and
the final full HF step, the actual scaling will yield an inferior picture where
a very narrow favorable area compared to the full HF calculation can be
found at best.

This rough scaling estimation excludes the FJK procedure as a fragmenta-
tion method recovering the full HF solution at a general lower computational
cost. Due to the fact that basis functions are needed to represent the em-
bedding potentials and allow the fragment densities to spread over the
neighboring monomers, it is difficult to achieve pure fragment calculations
and the corresponding favorable computational scaling. Even with a mixed
basis approach representing the embedding potentials in minimal basis
sets or with a limited number of performed micro-iterations in the SCF
cycle of each fragment, the resulting computational timing is inferior to the
full HF description for all systems of chemical application. Thus, the full
Fock embedding was not successful to yield a fragmentation approach with
linear scaling with the system size as it would be the case for independent
monomer calculations. However, the FJK method demonstrated that full
Fock embedding can be used to describe monomer energies and densities
under the effect of their neighbors in a limit that converges to the full HF
treatment. This property is taken up in the following section, making use
of full Fock potentials in the analysis of standard QM/MM embedding
techniques.

3.3 Embedding Analysis
The use of quantum mechanics/molecular mechanics (QM/MM) hybrid
methods [72] is an approach of evolving success in the past decades for de-
scription of chemical phenomena within an embedding environment. [73–75]
Its applications reach from reactions in the active sites of enzymes over
explicit solvent simulations up to periodic structure calculations in solid
states. [76;77] The interaction between the quantum mechanical and molecu-
lar mechanical regions is a key element to the success of these QM/MM
calculations and can be included by different embedding schemes. At the
simplest level the interaction is calculated at the MM level in mechani-
cal embedding schemes. A more sophisticated approach that is nowadays
commonly used is given in form of electrostatic embedding schemes, which
make use of point charge representations of the MM area to embed the QM
region allowing for its polarization. This polarization effect is mandatory
to accurately describe chemical phenomena inside of the QM part of the
system. [78] It was recently shown, that also the repolarization of the MM
region, as taken into account in polarized embedding schemes, can have a
significant impact in the properties under consideration. [79]
Polarization effects considered in QM/MM approaches are in most

cases restricted to Coulomb contributions represented by embedding point
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charges. Especially for the closest environment of the QM region this treat-
ment is lacking the inclusion of other polarization contributions leading to
artifacts within the resulting QM description. The possible overpolarization
of the QM region by very close point charges is a problem often discussed
in this context. [80;81] To overcome these limitations embedding approaches
based on fixed quantum mechanical descriptions of the environment were es-
tablished, like the frozen orbital approach for wave function methods [82;83]
or the frozen density embedding formulation in DFT. [84;85] Recently, also
polarizable density embedding approaches have been proposed in order to
accurately represent the electrostatic potential of the environment. [86;87]
With the purpose in mind to describe the embedding environment in a
fashion close to the exact HF treatment, the use of full Fock potentials is
applied to the analysis of standard QM/MM embedding approaches in the
following section.

3.3.1 Procedure

For the comparison of the embedding with full Fock potentials to standard
QM/MM embedding techniques, it is necessary to restrict the contributions
of an embedding monomer to the basis set used in the QM region. This
is achieved by a superposition approach combining the basis sets of the
calculated and the embedding monomers. For the transfer of the embedding
potential from one fragment to another, a schematic illustration of the
approach is shown in Scheme 3.2.
In order to transfer the contributions of the potential of an embedding

monomer A to the basis functions of a monomer B, both entities are first
calculated individually in their own basis sets. Subsequently, the orbitals
of A are explicitly orthogonalized against the orbitals of B to account for
their initial orbital interaction. In a following step the electronic density of
A is projected to the combined basis sets of A and B, in which it is only
a submatrix with entries for the basis functions of A. The potential of A
including the Coulomb, exchange, nuclear and shift operator contributions
is then constructed out of the electronic density in this combined basis
set. A final cut of the resulting matrix is performed extracting only the
entries of the basis functions of B. This matrix is eventually used in the
embedded calculation of monomer B by adding it to the corresponding
one-electron operator. The superposition approach allows for the effect of
Fock embedding solely in the basis of monomer B and thus for the direct
comparison to standard QM/MM embedding schemes.

By only building the Coulomb but not the exchange contribution of the
potential, the missing effect to the QM region compared to the full Fock
embedding can be analyzed. Shift operators of all embedding monomers
were used throughout as an external potential with λ = 1000 Eh in order
to make all embedding results comparable. Several point charge models
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Scheme 3.2: Superposition approach for the transfer of the potential of a monomer A
into the basis set of monomer B. The steps and modifications in terms of the involved
electron density and Fock potential matrices are shown.
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used in current QM/MM studies were compared to the embedding with
full Fock potentials. The lacking effects in point charge approaches were
analyzed for the first and second molecular shell around the QM region by
comparison of the resulting monomer density. The example of an effect
of higher-order was covered by the calculation of the dispersion energy of
molecular dimers embedded in different potentials.

3.3.2 Monomer Density

For a simple test case, the water dimer, the density of both monomers were
analyzed with different potentials used to represent the other monomer. As
already seen for the FJK convergence of the electronic density in chapter
3.2.2, the mean number of displaced electrons 〈δn〉 as given in equation (3.7)
was used as a parameter to quantify density differences to the full Fock
embedding reference in ∆ρ(r) = ρpot(r)− ρFock(r). Monomer densities of
both water molecules were obtained for an embedding representation by
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Figure 3.6: Percentage of mean displaced electrons of a water molecule with an ap-
proaching monomer represented by different potentials compared to full Fock embedding.
The monomer in the legend is represented by the labeled potential, while the other one
is calculated at the QM level.
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TIP3P [88] point charges and the Coulomb potential with missing exchange
contributions for different dimer distances. The percentage of the resulting
mean numbers of displaced electrons compared to full Fock embedding are
shown in Figure 3.6.
It is seen that calculation of monomer 2 in the TIP3P charges of

monomer 1 yields large mean numbers of displaced electrons even for
distant dimers. The errors in the resulting electronic density increases when
both monomers are approaching each other due to the poor description of
strong intermolecular interactions. In the swapped situation of monomer
1 in the TIP3P point charges of 2 the error is close to constant in a
broader area and only exhibits a steep increase for distances smaller than
1.8 Å. This difference is easily rationalized by looking at the closest point
charge to the QM region. In the first case the charge is of positive sign
located at the hydrogen atom of 1 leading to a spread of the monomer
density of 2 towards the point charge. For the calculation of monomer 1
the negative charge on the oxygen atom of 2 is the closest, which yields a
less significant polarization of the monomer density.

In both cases of Coulomb embedding the error compared to the full Fock
potential is solely defined by the missing exchange contributions. Thus, the
mean number of displaced electrons is vanishing for very distant monomers,
as their exchange interaction rapidly decays. Only for very short distances a
slightly more disordered monomer density is obtained due to the increasing
effect of exchange contributions in the dimer interaction.
With this approach the full Fock embedding is suitable for the analysis

of monomer densities within an external potential and directly comparable
to different point charge models commonly applied in QM/MM embedding.
Therefore, several model structures from current QM/MM studies were
used to analyze the electronic density of single monomers embedded in
different potentials. For three QM/MM snapshots from liquid and solid
phase the effect of an embedding first monomer shell around the central
unit was analyzed. Geometries of a CO2 crystal, a cyanamide crystal and

Figure 3.7: CO2 crystal structure (left), cyanamide crystal structure (middle) and
ethylene glycol in water (right) used for the monomer density analysis with different
types of embedding. The calculated monomer embedded in the potentials of the others
is shown in green.
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Table 3.6: Density analysis for different embedding schemes of a monomer in the CO2
crystal (top), the cyanamide crystal (middle) and ethylene glycol in water (bottom)
compared to the full Fock embedding. Density differences ∆ρ(r) = ρpot(r)− ρFock(r)
are displayed with an isosurface value of 5 · 10−4 a−3

0 . Positive values are colored in blue,
negative ones in red. The percentage of mean displaced electrons compared to full Fock
embedding and the corresponding difference in the correlation energy of a consecutive
DF-MP2 calculation are provided.

free GAFF iterated NPA
charges Coulomb

〈δn〉
n

/ % 0.25 0.13 0.04 0.01

∆Ecorr / kJ
mol -12.5 -6.6 -1.9 0.2

free GAFF iterated NPA
charges Coulomb

〈δn〉
n

/ % 0.90 0.46 0.28 0.03

∆Ecorr / kJ
mol -20.6 -10.9 -7.0 0.3

free TIP3P TIP3P+exchange Coulomb

〈δn〉
n

/ % 0.44 0.12 0.11 0.01

∆Ecorr / kJ
mol -10.1 -3.1 -2.9 0.2

an ethylene glycol molecule in water were used to embed the central QM
molecule in the potentials of the closest 10, 9 and 13 monomers, respectively.
The corresponding structures are shown in Figure 3.7.

The monomer HF calculations in different embedding potentials were an-
alyzed in terms of their electronic density and the corresponding correlation
energy of a consecutive density fitted Møller-Plesset perturbation theory [89]
(DF-MP2). While no embedding potential was used as a first reference
compared to the full Fock embedding, the QM/MM point charge models
covered the fitted HF/6-31G* RESP charges [90] as commonly employed by
the generalized amber force field (GAFF) [91] for the crystals and TIP3P [88]

charges for the water molecules. For both crystal structures point charges
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obtained by natural population analysis (NPA) [92] of an iterative QM/MM
procedure similar to the one from Bjornsson and Bühl [77] were used for
embedding as well. Coulomb embedding was applied to all systems in
order to quantify the effect of missing exchange contributions compared
to the Fock potentials. The resulting density differences to the full Fock
embedding are shown as isodensity surface plots together with their mean
number of displaced electrons and the difference in correlation energy in
Table 3.6.

Comparing the free central monomer calculation to the one with full Fock
embedding leads to large contours in the isodensity surface plots. Blue
contours indicate an overestimation of the monomer density compared to
full Fock embedding, while a red contour represents a density deficit. The
missing intermolecular interactions also have an impact on the correlation
energy with differences of more than 10 kJ ·mol−1 in all three systems.
Considering the percentage of mean displaced electrons, the total em-

bedding effect of the surrounding monomers on the calculated electronic
density can be estimated. The density changes due to the inclusion of
full Fock potentials is largest for the strongly hydrogen bonded cyanamide
crystal structure with 0.90% of all electrons being displaced. A smaller
embedding impact on 0.44% of all electrons is observed for the ethylene
glycol solute in water. Only slight density adjustments effecting 0.25% of
the electrons are found in the case of the non-polar CO2 crystal structure.

For both crystal structures the application of GAFF charges for monomer
embedding covers roughly half of the effect compared to full Fock potentials
in terms of mean number of displaced electrons and correlation energy. The
TIP3P description of water molecules around the ethylene glycol solute
yields an improved density of the central unit with an absolute error in
the correlation energy of only 3.1 kJ · mol−1. While the use of iterated
charges observed by NPA gives results close to the full Fock limit for
the non-polar CO2 crystal, the resulting density is not satisfying in the
case of the strongly interacting cyanamide. The point charge model is
not sufficient to describe the directed hydrogen bonds involved yielding a
persisting absolute error in the correlation energy of 7.0 kJ ·mol−1. In all
three systems the use of full Coulomb potentials for monomer embedding
leads to only spurious remaining contours in the isodensity surface plots
and to no significant errors in the described monomer density. This is a
clear indication that the Coulomb contributions of the Fock potentials are
the dominating factor influencing the monomer density changes. The effect
of the exchange contributions is by several orders of magnitude smaller for
all systems considered.

So far, all QM/MM systems have been analyzed in terms of the embedding
effect of a first molecular shell around the calculated central monomer. In
order to also investigate the impact of a secondary monomer shell, the
crystal structure of ammonia was split into two different layers around a
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central monomer unit. The first shell around a central ammonia molecule
included 12 monomers in a sphere with a radius of 4 Å. 24 monomers
outside of the sphere were used to represent the secondary ammonia shell.
The corresponding structure is shown in Figure 3.8.

Effects of both ammonia layers were investigated separately either by
embedding with monomers of the first monomer shell represented by differ-
ent potentials or by inclusion of monomer potentials from the second shell,
while full Fock embedding was used to represent monomers in the first shell.
The central molecule was calculated in vacuo, embedded in point charges
from the GAFF, in charges obtained by NPA from an iterative QM/MM
procedure and in the full Coulomb potential of the investigated ammonia
shell. The errors compared to a full Fock potential of the layer under
study were analyzed in terms of the mean number of displaced electrons
and the consecutive DF-MP2 correlation energy. The results are shown in
Table 3.7.

It is seen that for both criteria that the effect on the calculated monomer
density is smaller for the second than for the first ammonia shell. All types
of point charge and Coulomb embedding exhibit no significant errors in
the mean number of displaced electrons and the correlation energy for the
embedding potentials of the secondary ammonia shell, as long as the first
shell is represented by full Fock embedding. For the first shell analysis
similar trends to the already analyzed QM/MM crystal structures are
observed. Due to the specific interactions of the ammonia molecules via
hydrogen bonds, the effect of full Fock embedding is only partly covered
by simple GAFF charges. The use of iterated NPA charges once again
improves the description, but is still lacking part of the interaction effect
compared to full Coulomb and Fock embedding. As already observed

Figure 3.8: Snapshot of an ammonia crystal structure. The gray sphere indicates the
first molecular shell around the calculated monomer shown in green. Molecules on the
outside of the sphere are assigned to the secondary ammonia shell.
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Table 3.7: Comparison of the mean displaced electrons and correlation energies from
DF-MP2 for potentials used to represent the first and second molecular shell in an
ammonia crystal. The results are referenced to the corresponding full Fock potential.
For the analysis of the second shell the first shell was included via full Fock embedding.

free GAFF
iterated NPA

Coulombcharges

first second first second first second first second

〈δn〉
n

/ %
0.53 0.05 0.40 0.04 0.12 0.04 0.04 0.04

∆Ecorr / kJ ·mol−1

−1.37 0.03 −1.10 0.02 −0.40 −0.03 −0.13 −0.06

before, the exchange contributions seem to have a minor impact on the
resulting monomer density.

The QM/MM embedding analysis of this section focused on the changes
in the calculated molecular density. This gives an estimate for the effect of
different embedding techniques on first-order molecular properties which
are directly observed from the resulting electronic density. An example for
the effect of embedding potentials on a property of higher-order is given in
the following section in form of the influence on the dispersion interaction
energy of molecular dimers.

3.3.3 Dispersion energy

In order to analyze the impact of different embedding potentials on the
dispersion interaction energy of molecular dimers, two QM/MM structures
were chosen. Two monomers of a formamide crystal structure were em-
bedded in the potentials of the 14 closest molecules, while a structure of a
butanone solute in toluene was used to analyze the effect of 13 surrounding
solvent molecules on a butanone toluene dimer. Two snapshots of both
QM/MM structures are shown in Figure 3.9.

The dispersion interaction energies of both dimers were calculated within
the full Fock potentials of the embedding molecules and compared to the
free dimer calculation, the dimer in point charges and to full Coulomb
embedding. The QM/MM point charges for the solid and liquid QM/MM
snapshots were taken following the fitting procedure of the generalized
amber force field (GAFF) [91] and the optimized potentials for liquid simula-
tions (OPLS) [93], respectively. The embedded HF reference calculation was
followed by a density fitted spin component scaled local MP2 calculation
with a cc-pVTZ basis set (DF-SCS-LMP2/cc-pVTZ). [1;94] To obtain the
dispersion interaction energy Edisp a decomposition scheme of individual
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Table 3.8: Dispersion interaction energies of a formamide and a butanone toluene dimer
in full Fock embedding and its change using different potentials for the environment.
Edisp was calculated using a decomposition scheme at the DF-SCS-LMP2/cc-pVTZ
level. All values are provided in kJ ·mol−1.

∆Edisp

System Edisp free GAFF/OPLS Coulomb

formamide crystal −3.03 −0.14 −0.03 < 0.01
butanone in toluene −7.86 0.04 0.02 < 0.01

orbital excitation contributions as described by Wuttke and Mata was
applied. [95] The results of the dispersion energies for both systems in the
full Fock potential and their changes due to other embedding schemes are
displayed in Table 3.8.
It first can be seen that the total dispersion interaction energy of the

butanone toluene dimer is more than two times larger than in the case of the
formamide dimer. This is understood in terms of the less polar and larger
monomers involved in the solute solvent dimer summing up more individual
dispersion contributions to the total value of Edisp. However, no significant
changes in the dispersion interaction energies using different potentials
such as point charges or full Coulomb embedding are observed. Even
comparing the full Fock embedded and the free formamide dimer lowers
the corresponding dispersion interaction energy only by 0.14 kJ ·mol−1,
which is below the intrinsic error of the method applied.

The inclusion of an embedding potential for a molecular dimer calculation
yields only marginal changes in the corresponding dispersion interaction
energy. It can therefore be concluded that the interactions with the envi-
ronment have a minor impact on the dispersion interaction of a molecular

Figure 3.9: Structures of a formamide crystal (left) and butanone in toluene (right).
Dimers used for the analysis of their dispersion energy in different embedding potentials
are shown in green.
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dimer, since the main contribution is determined by orbital excitations
depending on the physics of the dimer itself.

3.4 Conclusion
The complete Fock potentials of surrounding fragments or monomers can be
used for embedding of a Hartree-Fock calculation by changing the effective
one-electron operator. Two different applications of this type of embedding
were analyzed. On the one hand the use of full Fock embedding for fragment
calculations can ensure the convergence to the full Hartree-Fock description
in an iterative limit, on the other hand the embedding with Fock potentials
provides a non-approximate inclusion of the environment effects at the HF
level and can be used as a reference for other embedding techniques.
In order to apply the embedding with full Fock potentials in covalently

bonded systems, the cap-free FJK approach with heterolytical bond fission
was proposed. The procedure recovers the description of the total system
by several monomer cycles and converges to the full HF solution in the
limit of self-consistency. Solely defined on the basis of embedded monomer
calculations, FJK was capable to smoothly converge towards the full HF
result in terms of energy and electronic density with an increasing number
of macro-iterations. The choice of charged fragments by heterolytical bond
fission did not raise particular issues as the absolute HF energy was accu-
rately reproduced within less than 3 kJ ·mol−1 after four macro-iterations
for most of the investigated benchmark systems. Larger errors were only
found at this level for the benzene molecule, which was used to test the
FJK method under extreme conditions via application to a completely
delocalized system. Even though more macro-iterations are needed, the
calculation of the benzene fragments still converges to the full HF treatment
yielding accurate absolute and relative energies of different conformers. The
delocalization character of the molecule is incrementally recovered within
several monomer cycles as fragment densities are allowed to spread to the
embedding regions.

Within the convergence analysis of the electronic density it was observed
that the main effect of the embedding potentials is already covered after a
few SCF micro-iterations within each fragment calculation. The idea to
restrict the performed number of micro-iteration steps was pursued for the
benchmark systems of benzophenone and alanine dipeptide. The results
of the absolute and relative energy differences compared to full HF were
promising as only slightly larger errors were introduced with a limited
number of SCF steps per fragment, while the convergence power of the
procedure was preserved.

The initial FJK method was performed using the full molecular basis set
for all fragment calculations involved. This prevented the single fragments
to become independent of the total system size which is a requirement
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to obtain a near-linear scaling fragment approach. Therefore, a mixed
basis FJK (MBFK) method was proposed which represents the embedding
potential in a minimal basis set, while the large set of basis functions is
only used for the calculated fragment. Additional steps of projection were
needed to transfer the potentials of one fragment into the basis set of the
other. A final full HF step was performed to obtain MBFJK energies and
densities that are free from imbalanced descriptions of embedded fragments
in different basis sets. Even though the absolute and relative energy results
were comparable to the initial FJK approach, a rough estimation of the
computational cost of the involved fragment calculations could show that
MBFJK will not scale favorably for all molecular system sizes.
On the basis of the fragment calculations a specific area of favorable

scaling compared to the full HF treatment is expected, which will become
very narrow when taking into account the additional projecting operations
and the final full HF step as well as an increasing number of macro-iterations.
The MBFJK approach ensured a slower rise of the computational cost of
each fragment calculation than the initial FJK procedure, but did not
make it independent of the total system size due to the increasing number
of basis functions used for potential representation. A description of the
electronic densities of the embedding fragments is necessary to include their
Fock potentials. Thus, no overall favorable scaling of the FJK method
compared to the full HF calculation can be achieved with all remaining
fragments represented by Fock potentials in each monomer calculation. A
possible approximation to break this limitation is to truncate the embedding
description with full Fock potentials at a certain distance from the calculated
fragment and represent the long-range interacting monomers by simple
point charge models. The possibility to describe distant fragments with
more approximate potentials without introduction of major errors was also
indicated by the application of full Fock embedding in QM/MM structures.
For the FJK approach, such a truncated treatment ensures that basis
functions are only needed in a restricted region around each fragment,
which eventually becomes independent of the full molecular size in the case
of sufficiently large systems.
Another application of full Fock potentials for embedded HF calcula-

tions was presented in setting it up as a reference for the analysis of
other commonly used embedding schemes. The effect of an embedding
environment on a calculated monomer density was analyzed in snapshots
from different QM/MM studies. A first molecular shell around a central
unit was represented by QM/MM point charge models and the resulting
density and consecutive correlation energy were compared to the ones from
full Fock embedding. By application of embedding with a full Coulomb
potential, information on the effect of the missing exchange contributions
were obtained. Especially for strongly interacting systems the point charge
models were incapable of covering the entire effect of the surrounding Fock
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potentials. The simple model of point charges located at the embedding
atoms is insufficient to describe directed molecular interactions like hydro-
gen bonds which may result in differences of the correlation energy of more
than 10 kJ ·mol−1.

Less significant effects were found considering the impact of a secondary
embedding molecular shell on the monomer density and the influence of
nearby molecules on properties of higher-order. The monomer density of
an ammonia molecule in the corresponding crystal structure was found to
be insensitive to the embedding potential used for inclusion of a secondary
monomer layer. Furthermore, this trend was also found for molecular dimer
calculations in a formamide crystal structure and a butanone solute in
toluene, considering their dispersion interaction energy.

For the formamide crystal structure the effect on the dispersion interac-
tion energy changed by several orders of magnitude from the free dimer
calculation to the one embedded in full Fock potentials. Nevertheless, the
overall impact on the absolute value was not significant for both dimer cal-
culations leading to changes in the dispersion interaction energy within the
intrinsic error of the computational method applied. Combining these re-
sults indicates that nearby monomers have the largest impact on first-order
molecular properties. The effect on higher-order properties was shown to
be significantly smaller on the example of the dispersion interaction energy.
However, this strongly depends on the investigated property and larger
impacts are expected for quantities like the molecular dipole moment.
The analysis of the QM/MM studies revealed concepts that are well

known in the context of molecular embedding. Monomers that are close
to the calculated QM region have the strongest impact on the resulting
first-order properties. A representation of these units via point charge
models may lead to a poor description of the embedding potential due to
over-polarization effects. Nevertheless, the influence of monomers further
away from the QM region is significantly smaller and thus a representation
by simple point charges is capable of covering the main contributions of
the exact potential. For the accurate description of molecular properties
inside an embedding environment, the most sophisticated model needs to
be used for the monomers in the direct proximity, while more approximate
potentials are sufficient to represent long-range contributions. This idea
is followed by established multi-layer approaches, which describe several
shells of embedding around the central QM region with schemes of lowering
computational effort.
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4 Local Density Fitting Approximations
The most time-consuming step in a Hartree-Fock calculation is the evalua-
tion of the two-electron integrals of Coulomb and exchange contributions for
the construction of the Fock matrix. Density fitting approximations reduce
the effort of these computations by approximate descriptions of four-center
integrals decomposed into two- and three-index integrals. However, due to
the increased number of individual integral terms, the overall exponential
scaling of the method with growing system size persists. This becomes a
critical issue considering the impressive developments of post-HF correla-
tion methods that exploit the local nature of dynamical correlation effects
via the use of localized molecular orbitals. [96–101] Indeed, the progress of
these methods reached a point where the computation of the reference
itself, the Hartree-Fock wave function, can become the time-demanding
step of the calculation and thus act as a computational bottleneck. [1–3;5;6]
Thus, a set of viable approximations is needed to obtain an accelerated
Hartree-Fock procedure competing with the reduced computational timings
of local correlation methods without introducing major errors compared to
the exact reference wave function.
It was already shown a decade ago that the application of local orbital

spaces to the density fitted contributions of the Fock matrix may heavily
reduce the corresponding computational effort. [37] In more recent devel-
opments specific focus was set on the efficient evaluation of the exchange
matrix [102], leading to the eventual proposal of a local density fitting (LDF)
approach for HF exchange. [9] This approach allows for the restriction of
exchange-related integral evaluations to entries of significant impact on
the final exchange matrix. The involved restriction criteria are based on
localized molecular orbitals, which are capable of exploiting the comparably
short-range nature of exchange effects.
The LDF approach is not limited to the accelerated computation of a

Hartree-Fock wave function. Due to the admixture of exact HF exchange
in hybrid DFT functionals, also corresponding Kohn-Sham calculations
benefit from a local density fitting description of exchange contributions.
The approach was already established and implemented in the Molpro
quantum chemisty package [103] for closed-shell Hartree-Fock calculations. [9]
This set the focus on the application to open-shell calculations with the
restricted and unrestricted formulations of HF and in particular of hybrid
DFT procedures.

This chapter gives an overview on the application of local density fitting
approximations for the computation of the exchange matrix in restricted
and unrestricted SCF calculations. After the introduction and discussion
of the LDF approach, further approximations for the acceleration of the
general SCF procedure are presented. HF and hybrid DFT calculations
with local exchange fitting on two different type of benchmark systems
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are analyzed to explore the resulting limitations and speed up gains of
the introduced approximations. A chapter conclusion summarizes the
possibilities of the LDF approach concerning the favorable scaling compared
to the non-local SCF variants and the control of the involved energy errors
through adjustable local density fitting thresholds.

4.1 Method
This section describes the characteristics of the local density fitting of
the exchange matrix for SCF calculations. A consistent notation to the
conventional density fitting approach as provided in section 2.1.4 was used.
In contrast to the standard density fitting method, the LDF approach
restricts the summations involved in the computation of exchange contri-
butions. The use of a localized molecular orbital (LMO) basis in form
of intrinsic bond orbitals (IBOs) [20] allows for the generation of different
orbital domains that are limited in the number of included functions.

The first domain arises naturally from the localization of the molecular
orbitals and the resulting sparsity of the LMO coefficients. Since every
LMO i is restricted to a specific region of the molecular system, only a
subset of all AO basis functions located on the nearby atoms contribute
significantly to its construction. The coefficients Cµi at each atomic center
X are assumed to be negligible and thus set to 0, if

NXbas∑
µ∈X
|Cµi|2 ≤ TLMO . (4.1)

Here, TLMO is the threshold for the LMO sparsity with a default value
of 10−6. The remaining non-zero coefficients are readjusted by fitting the
approximate LMOs to the original ones. Thus, a set of AO basis functions
with significant contributions to the formation of the LMO i is found and
denoted as the corresponding LMO domain [i]LMO.

The second domain results from the restriction of the number of fitting
functions to the vicinity of the LMO i. A first fitting set is constructed
by inclusion of all auxiliary functions with an IBO partial charge larger
than 0.2. This set is subsequently extended by addition of functions on
neighboring centers with a distance smaller than RDF and a number of
bonds between both centers less than IDF. Two atoms are considered to be
bonded if their distance does not exceed 1.2 times their combined atomic
radii. The simultaneous application of distance and connectivity criteria
ensures that basis interactions over a chain of covalent bonds are taken
into account as well as the ones from non-bonded centers which are close
in space. Combination of both criteria as RDF = (2IDF + 1)a0 reduces the
domain determination to only one parameter, which is by default set to



4 Local Density Fitting Approximations 61

IDF = 3. The resulting set of fitting functions is denoted the fitting domain
of the LMO as [i]fit.
Determination of the third and last domain is achieved on the basis of

the three-index integral (A|µν) contributions to the resulting exchange
matrix. Since the values of such an integral depends on the overlap of the
AO basis functions χµ and χν , it decays exponentially with the distance
between the corresponding centers. In order to estimate which integrals
will not significantly contribute to the final exchange matrix, each atomic
center is assigned a sphere of a specific radius. With the AO basis functions
χµ and χν being located at different atomic centers and one of them
contributing to the LMO domain [i]LMO, the integrals (A|µν) are neglected
if the spheres around both atomic centers do not overlap. The size of the
spheres is chosen such that if all contributions of the largest normalized
basis functions located at the corresponding center are neglected, the norm
changes by less than the threshold TB. The default value was chosen to
be TB = 10−5, below which no significant improvements of the resulting
accuracy were observed. All atomic functions that survived the screening
with the basis functions of the LMO domain [i]LMO are attributed to the
AO domain [i]AO.

All three domain restrictions at first effect the half-transformation of
the three-index integrals as seen for the conventional DF approach in
equation (2.53). In the LDF approach this half-transformation is limited
to functions included in the atomic orbital [i]AO, local molecular orbital
[i]LMO and fitting domains [i]fit of the LMO i and writes as

(A|µi) =
Ndom
bas∑

ν∈[i]LMO

(A|µν)Cνi , µ ∈ [i]AO , A ∈ [i]fit . (4.2)

For every fitting domain a triangular matrix GAB is determined by Cholesky
decomposition of the fitting matrix QAB known from equation (2.47) as

[Q]AB =
[
GG†

]
AB

, A,B ∈ [i]fit . (4.3)

GAB is applied to the half-transformed three-index integrals resulting in a
set of linear equations of the form

(A|µi) =
Ndom
fit∑

B∈[i]fit

GAB(B̄|µi) , A,B ∈ [i]fit, µ ∈ [i]AO . (4.4)

This linear equation system is solved for each LMO i yielding the integrals
(B̄|µi), which are finally used for the construction of the approximate
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exchange matrix according to

Kµν ≈
NLMO∑
i=1

 Ndom
fit∑

B̄∈[i]fit

(B̄|µi)(B̄|νi) , µ, ν ∈ [i]AO

 . (4.5)

The approximate Coulomb matrix is obtained by the conventional density
fitting procedure as described in section 2.1.4. A final calculation of the
energy with full fitting domains is performed once the SCF procedure
converged. This significantly improves the resulting accuracy and can
be carried out without the demanding computation of a new Fock or
Kohn-Sham matrix. [37]

No particular issues arise from the application of the LDF procedure in
restricted open-shell or unrestricted HF calculations. While separate calls
of the program are necessary for the open- and closed-shell parts of the Fock
matrix in ROHF, the procedure is applied twice for the independent α and
β spin treatment in the UHF formalism. The application in Kohn-Sham
calculations with hybrid functionals is straightforward, since the admixed
exchange originates from Hartree-Fock theory. A fully parallel version of
the LDF approach with abelian point group symmetry for restricted and
unrestricted HF and hybrid DFT calculations was implemented in the
Molpro quantum chemistry package. [103]

4.2 SCF Approximations
Two additional approximations have been introduced to accelerate critical
operations of the SCF procedure and thus improve the overall speed up.
These tools were applied in both, the local and conventional density fitting
approach, throughout the entire course of this chapter. This provided
accelerated SCF calculations, in which the speed ups and errors solely
arising from the local fitting of exchange contributions could be estimated.

Starting Guess
The success of any self-consistent field approach, in which molecular orbitals
are successively optimized, is depending on the quality of the initial starting
guess used for a first orbital description. A straightforward starting guess
can be obtained by diagonalization of the one-electron matrix h and usage
of the resulting eigenvectors as initial orbital coefficients. Even though
this approach is direct and parameter-free, the starting orbitals yield poor
electronic densities and thus a large number of SCF steps is needed until
convergence is reached.
A more sophisticated starting guess is obtained by the description of

superimposed atomic densities as used by default in the Molpro quantum
chemisty package. [103] The coefficients of the used AO basis functions
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are chosen to reproduce atomic densities with occupation numbers of the
valence orbitals stored in a library for each atom type. This approach
corresponds to the description of neutral and spherical atoms within the
system and yields starting densities that are in most cases already quite
close to the actual molecular one.

However, the computation of this guess can be rather demanding in the
case of large basis sets. By the application of a minimal set of AO functions
at each atom, the coefficients of the starting orbitals are quickly determined.
If cc-pVnZ Dunning basis sets [67] are used for the SCF calculation, the
corresponding minimal basis is simply constructed from a subset spanning
the minimum of AO space for each atom. For other basis sets, such as
the Pople or Karlsruhe type [104;105], the minimal orbital basis set stored
in a library for a comparable cc-pVnZ size is applied to create the initial
guess. Their transfer to the actual basis set is finally achieved by orbital
projection.
This approach ensures a fast computation of the starting orbital guess,

even for large systems with extended basis set treatment. As long as the
initial density description is not too far from the actual molecular situation,
a fast and stable convergence of the SCF procedure is expected for the
majority of systems. Since the starting density matrix will be extremely
sparse, a quick computation of the first Fock or Kohn-Sham matrix is
achieved. Especially in the case of a large number of basis functions used
for the SCF calculation, this will lead to significant computational savings
in the evaluation of the starting guess.

Matrix Diagonalization
One of the demanding operations during each SCF step is the diagonaliza-
tion of the entire Fock or Kohn-Sham matrix in HF and DFT calculations,
respectively. In the local and conventional density fitting approaches of
this work, the full matrix diagonalization was only carried out in the first
few iterations and in the final non-local step of the SCF cycle. If during the
procedure the total energy was not changing more than 0.01 Eh compared
to the previous SCF step, an efficient pseudodiagonalization procedure was
applied to reduce the computational cost of this algebraic operation. [37]
This approach diagonalizes the matrix of interest exactly only in an

orbital space of a ±1 Eh range below the highest occupied molecular orbital
(HOMO) and above the lowest unoccupied molecular orbital (LUMO). An
approximate technique is performed to achieve near-diagonalization of the
remaining orbital space by simple orbital rotations. Thus, the region of
interest for chemical application, the valence orbitals and frontier orbitals
of the virtual space, are treated exactly, while the matrix diagonalization
operation is accelerated by approximations effecting the core and high-
lying virtual orbitals. This approach drastically reduces the employed
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CPU time for matrix diagonalization per SCF step without introduction of
significant errors to the final results or to the convergence of the complete
SCF procedure.

4.3 Benchmark Calculations
The local density fitting approach was applied in the restricted and unre-
stricted SCF formulations to calculate open-shell systems. Two benchmark
sets were designed to test LDF in HF and hybrid DFT calculations with dif-
ferent purposes in mind. On the one hand the limitations of the method are
explored in highly delocalized systems, on the other hand one is interested
in the critical molecular size from which on the local fitting of exchange
contributions lead to a significant speed up compared to the established
non-local density fitting procedure.
A first set of benchmark systems contained systems of pronounced

π-conjugation character. These structures allow for the analysis of the LDF
performance in extreme cases and provide insights into the control offered
by the threshold parameters in the total or relative energy errors.
In a second set of test calculations, RAFT initiation reactions were

considered including the formation of different radical intermediates. This
reflects a more realistic application to analyze the errors in relative energies
and the critical molecular size after which the local approximations in fact
lead to computational savings.

4.3.1 Delocalized Systems

Structures containing an unpaired electron which is strongly delocalized
among the system, represent a natural challenge for the application of local
orbital approximations. With an increasing π-character and conjugation
of such systems the HOMO-LUMO gap rapidly decreases moving the
occupied and virtual orbital spaces closer together. At a certain point of
delocalization, the involved orbital interactions will become so significant
that a reliable orbital localization in no longer possible. In this limit the
description of the systems with local density fitting approximation will
eventually break down.
In order to explore such delocalization limits, two types of structures

with an adjustable level of π-conjugation were analyzed. The first set of
molecules were inspired by the radical intermediate during the conversion of
polyunsaturated fatty acids. A hydrogen atom was removed from the central
position of an alkane chain containing 17 carbon atoms and the number
of double bonds within the system was varied to achieve different degrees
of delocalization. Four symmetrical structures 1A-1D were generated
containing 2, 4, 6 and 8 double bonds in the heptadecanyl radical chain, as
shown on the left side of Figure 4.1.
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The second set of molecules is represented by the classical players con-
cerning delocalized systems in form of cycloaromatic compounds. Since the
analysis of open-shell applications was desired, an electron was removed
from each structure leading to cationic systems. The increasing delocaliza-
tion character was achieved by a growing system size among the cations of
benzene, naphthalene, anthracene and tetracene. These structures 2A-2D
are displayed in the right part of Figure 4.1.
Both molecular sets were optimized with C2v point group symmetry at

the ROB3LYP/cc-pVDZ level of theory. Afterwards, the LDF approach
in HF and Kohn-Sham (KS) hybrid DFT calculations with the B3LYP
functional [24;25] was applied. The restricted open-shell and unrestricted for-
malism was used for both SCF procedures with a cc-pVTZ [67] basis set and
the corresponding set of auxiliary functions. [68] Default criteria established
for the closed-shell LDF applications of LMO sparsity TLMO = 10−6 and
fitting domain size IDF = 3 were applied. All energies were compared to the
ones from their non-local density fitted variant and the resulting error was
divided by the number of carbon atoms nC to remove the size-dependency.
Thus, the errors solely arising from the local exchange fitting approximation
could be analyzed free from effects due to an increasing system size in the
case of the structures 2A-2D. The corresponding results for both test sets
are displayed in the top two panels of Figure 4.2.

Looking at the results of the systems 2A-2D and 1A it seems that the
effect of the LDF approximations on the resulting error is less pronounced
for the KS formalism than for HF. All five systems exhibit smaller errors
compared to their non-local treatment if restricted open-shell and unre-
stricted DFT calculations are performed, while larger errors are found in
the corresponding HF applications. However, the same is no longer true for
1B-1D, where the resulting errors per carbon atom are rather similar for

1A

1B

1C

1D

2A

2B

2C

2D

Figure 4.1: Benchmark systems included in the analysis of open-shell local density fitted
HF and hybrid DFT calculations. 1A-1D: Heptadecanyl radical with an increasing
number of double bonds and delocalization character along the system. 2A-2D: Cations
of benzene, naphthalene, anthracene and tetracene.
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the used methods. Thus, the results are not significant to deduct a reliable
trend on the effect of local density fitting among the different procedures
applied.
For both sets, 1 and 2, the rising delocalization character going from

molecule A to D leads to an increase of the corresponding energy error
per carbon atom. This is perfectly expected due to the hampered orbital
localization in systems of strong π-conjugation. Most chemical applications
will feature delocalized systems comparable to 1A-1B and 2A-2B, in which
the errors per carbon atom are still below 10−7 Eh. This strengthens the
initial hypothesis that the same default LDF criteria as in the closed-shell
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Figure 4.2: Total energy errors per number of carbons of the local density fitting
approach compared to the non-local variant. Restricted and unrestricted open-shell HF
and KS (B3LYP) results for the systems 1A-1D (top left) and for the systems 2A-2D
(top right). UHF results for the system 2D with varying LMO sparsity TLMO (bottom
left) and varying fitting domain size IDF (bottom right).
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case can be applied for open-shell calculations. Even in case of the largest
error, the UHF treatment of tetracene 2D, the difference to the non-local
procedure is only slightly above 10−6 Eh per carbon atom. Although
this impact of the local density fitting approximation on the results is not
negligible anymore, it is still below the total effect of the conventional density
fitting approach on the Hartree-Fock energy. When relative energies are
considered, as commonly done in chemical applications, the error resulting
from the LDF approach will be partly removed. Furthermore, the errors in
the absolute energies can be reduced by the application of stricter criteria
within the local density fitting procedure. This is analyzed in detail for the
UHF calculation of tetracene 2D.
The UHF treatment of system 2D was repeated with different criteria

of LMO sparsity TLMO and fitting domain size IDF. While one parameter
was varied to obtain the energy difference to the non-local DF procedure,
the other one was set to its optimum value including either the full fitting
domains for different LMO sparsities or the full LMO domains with altering
fitting domain size. The results are shown in the bottom two panels of
Figure 4.2.

Starting from loose LDF criteria large errors are observed in the region of
10−5 Eh to 10−4 Eh due to the limited size of either the LMO or the fitting
domains. Varying the parameters of the local exchange fitting to a lower
threshold in LMO sparsity or a larger number of bonds for fitting domain
formation leads to smooth convergence with an error limit around 10−9 Eh
per carbon atom. Thus, the errors introduced by the LDF approach can
be erased to an adjustable level by modification of the criteria applied.

Both criteria analyses can be used to estimate the effect of the complete
inclusion of the LMO or fitting domains, while the parameter of the other
domain remains at its default value. Adding the full LMO domains in an
UHF calculation with the default fitting domain parameter of IDF = 3
leads to an error in the region of 10−6 Eh, while the full fitting domain
inclusion for the default parameter of TLMO = 10−6 yields a difference
between 10−9 Eh and 10−8 Eh per carbon atom. This indicates that the
error introduced by local fitting of exchange contributions is in general
more sensitive to the size of the fitting domains than to the LMO sparsity.

4.3.2 RAFT Polymerization

The reversible addition–fragmentation chain transfer (RAFT) polymeriza-
tion process yields macromolecular polymers of controllable chain length. [106]
In an precursory step of the polymerization procedure a chosen RAFT agent
is activated with a radical starter molecule forming a pre-equilibrium with
the resulting radical product. Due to the large variety of available RAFT
agents and radical starters for polymerization, this pre-equilibrium reaction
is perfectly suited for the analysis of local density fitting approximations
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in open-shell systems of variable size.
The starting reactions of five different RAFT agents following several

works on RAFT polymerization processes were chosen for LDF analysis:

• 2-(2’-cyanopropyl) dithiobenzoate (CPDB) [107]
• 1-phenylethyl dithiobenzoate (PEDB) [107]
• 4-cyanopentatonic acid dithiobenzoate (CPADB) [108]
• S,S’-bis(methyl-2-propionate) trithiocarbonate (BMPT) [109]
• S-dodecyl-S′-(α,α′-dimethyl-α′′-acetic acid)
trithiocarbonate (DDMAT) [110]

Pairing the above-listed RAFT agents with the radical starters used in the
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Figure 4.3: Benchmark set of RAFT polymerization initiation reactions used for com-
parison of the local and non-local density fitted open-shell HF and DFT methods. The
reactions are sorted according to an increasing size of the product radical.
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corresponding studies yielded an increasing size of the resulting radical
product reaching from 36 to 65 atoms. According to this criteria the
reactions of all five RAFT pre-equilibria are listed in Figure 4.3.

The structures were optimized at the B3LYP/def2-TZVP level of theory
with the restricted formalism for the closed-shell RAFT agents and the
unrestricted formulation for the radical structures. Solvation effects of
toluene were taking into account during the optimization with the COSMO
solvation model using ε = 1.89. [111] Local density fitting approximations
were applied to the calculation of all compounds involved in the analyzed
RAFT reactions. Restricted open-shell HF and unrestricted Kohn-Sham
DFT with the B3LYP functional [24;25] were used for the calculation of
the radical species of the starter molecules and the resulting products.
The non-radical RAFT agents were treated with the restricted closed-shell
formulations of HF and DFT. All calculations were performed several times
using Dunning basis sets of double-ζ, triple-ζ and quadruple-ζ quality
in cc-pVDZ, cc-pVTZ and cc-pVQZ with density fitting basis sets of
corresponding size. [67;68] The results were compared to the non-local density
fitted variants of treatment in order to quantify the occurring errors in
relative energies and the speed up gained by the local fitting of exchange
contributions for different system sizes. Table 4.1 contains information on
the number of AO and fitting basis functions, the average fitting domain
size and the speed ups compared to non-local density fitting for all products
of the RAFT reactions considered.
Since the experimentally accessible equilibrium constant of the RAFT

reactions depends exponentially on the relative energy between both re-
action sides, the accurate description of the electronic reaction energy
∆Ereac = Eprod − (Eagent + Estarter) is of critical importance. In the con-
sidered RAFT reactions the errors in the electronic reaction energies com-
pared to the non-local calculation of all compounds were found to be
extremely low for the HF and DFT treatment with three different basis
set. Using the default local density fitting criteria of TLMO = 10−6 and
IDF = 3, even the largest error of ∆Ereac did not exceed 0.002 kJ·mol−1,
which is below the intrinsic error of density fitting approximations. [112]

The data gathered in Table 4.1 focuses on the applied basis set sizes
and the computational savings obtained per iteration and compared to the
full SCF calculation. All values refer to the radical products of the RAFT
reactions yielding a range of 359 up to 2637 AO basis functions, with a max-
imum fitting basis of 4926 functions. The parameter qfit = 〈Ndom

fit 〉 / Nfit
represents the average number of functions per fitting domain divided by
the total size of the auxiliary density fitting set. Larger computational
savings are expected for lower values of qfit, since on average a smaller
amount of fitting functions of the entirety are used to form the density
fitting domains.

Considering the intermediate basis set size of cc-pVTZ, one can observe
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Table 4.1: Speed ups of the density fitted restricted open-shell HF (ROHF) and un-
restricted Kohn-Sham (UKS) approach with the B3LYP functional compared to their
non-local variants for a set of RAFT polymerization initiation reactions. The number
of AO basis functions Nbas, fitting functions Nfit and the average fitting domain size
divided by the total number of fitting functions qfit are provided. f is the speed up
factor of the local and non-local procedures given for the calculation of the reaction
product in total (ftot) and in average per SCF iteration (〈fiter〉) calculated using 4 cores
(Intel 3.1Ghz).

(L)DF-ROHF (L)DF-UKS
System Nbas Nfit qfit 〈fiter〉 ftot 〈fiter〉 ftot

cc-pVDZ
CPDB 359 1805 0.51 0.83 0.84 0.89 0.90

CPADB 425 2131 0.43 0.90 0.92 1.08 1.03
PEDB 473 2363 0.38 1.06 0.99 1.26 1.20
BMPT 497 2497 0.34 1.19 1.16 1.41 1.31

DDMAT 580 2890 0.30 1.60 1.50 1.92 1.72

cc-pVTZ
CPDB 816 2095 0.51 0.96 0.95 1.09 1.06

CPADB 964 2471 0.43 1.11 1.10 1.33 1.28
PEDB 1080 2749 0.37 1.30 1.28 1.45 1.36
BMPT 1140 2911 0.33 1.49 1.44 1.74 1.62

DDMAT 1354 3399 0.30 2.02 1.90 2.31 2.09

cc-pVQZ
CPDB 1563 2965 0.50 1.13 1.13 1.26 1.22

CPADB 1843 3491 0.42 1.31 1.29 1.44 1.38
PEDB 2073 3907 0.37 1.46 1.41 1.61 1.52
BMPT 2197 4153 0.32 1.68 1.59 1.90 1.76

DDMAT 2637 4926 0.29 2.44 2.29 2.80 2.52

that for the smallest radical RAFT product, the one formed from the
CPDB agent, the total LDF calculation can even be slightly slower than
the conventional DF run which is indicated by a speed up factor of ftot < 1.
The corresponding system contains only 36 atoms and is thus barely
touching the turning point of a beneficial LDF scaling. For the smaller
cc-pVDZ basis the observation of an inferior scaling compared to the non-
local DF is made even for slightly larger RAFT products. The orbital
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localization and the computation of the individual local density fitted
exchange contributions dominate the computational timing in systems of
such limited basis set size. In the case of the increased cc-pVQZ basis set,
the turning point is reached for all systems yielding speed ups that are
favorable compared to conventional DF procedures in terms of the total
calculation and also on average per SCF iteration.

The proportion between the average fitting domains and the total fitting
basis set size indicated by qfit is quite constant for each system among the
different basis sets used. This indicates that qfit is mostly dependent on the
electronic structure and the molecular geometry, not on the number of basis
functions per site. Consistent to this dependency is the decreasing value of
qfit with an increasing system size from the radical product of CPDB to
the one from DDMAT. The speed up gained by the LDF approach goes
hand in hand with a smaller qfit and a rising number of basis functions.
This is seen at its maximum in the UKS calculation of the DDMAT radical
product with a cc-pVQZ basis set yielding a speed up factor of 2.52 in the
total timing and even 2.80 for the individual SCF iterations.
In all but the smallest analyzed structures, the average speed up per

SCF iteration is larger than for the corresponding total HF or DFT cal-
culation. This difference arises from the initial orbital localization and
the final non-local SCF step performed in the LDF procedure. A stronger
discrepancy of both speed up factors is found for the Kohn-Sham DFT
calculations than for the Hartree-Fock treatment. In the analyzed radi-
cal products also the general speed up gain of the DFT calculations is
more significant than the ones of the performed HF for all basis set and
system sizes considered. Since the evaluation of exchange contributions
is the computationally demanding step in both, Hartree-Fock and hybrid
DFT approaches, the speed up differences are mainly attributed to the
applied formalisms. An unrestricted Kohn-Sham hybrid DFT approach
was carried out in which the exchange contributions of α and β electrons
are calculated independently. While the applied ROHF procedure performs
only the localization of closed-shell and open-shell orbitals separately, their
exchange contributions are evaluated by a single call of the local density
fitting routine. In contrast to this the unrestricted formalism requires two
calls of the LDF procedures and thus a larger speed up compared to the
conventional density fitting approach is observed.
The analyzed RAFT benchmark can be used to identify the onset of

computational savings achieved by the LDF algorithm. With a standard
triple-ζ basis, the turning point of a beneficial scaling in ROHF was reached
between the radical products of CPDB and CPADB, two systems with
36 and 42 atoms. For the larger cc-pVQZ basis set the favorable scaling
was already achieved for the smallest system, while it was shifted between
the products of PEDB and BMPT with 48 and 52 atoms for the cc-pVDZ
basis set. However, beyond this turning point a constant increase of the
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speed up gained by LDF approximations is observed making the approach
applicable to rapid calculations of large systems with errors controllable by
the thresholds used for domain formation.

4.4 Conclusion
The local density fitting approximation was applied to the calculation of
different benchmark systems in restricted and unrestricted HF and hybrid
DFT formulations. Several properties of the approach were investigated
including its limitations in strongly delocalized systems, the crossing point
towards a favorable scaling compared to conventional density fitting and its
accuracy in terms of absolute and relative electronic energies. The possible
application of the approximation for larger systems was estimated on the
basis of smaller benchmark calculations by analysis of the controllability of
the resulting errors and the gain in computational speed up.
In the case of systems with a pronounced π-conjugation character, the

local fitting of exchange contributions was pushed to its limits. The resulting
energy error increased with a rising degree of electron delocalization due
to the poor description of the conjugation effect via local orbital spaces.
However, even for the system with the highest error in the electronic energy,
the description could be smoothly improved by adjustment of the thresholds
of the LMO sparsity TLMO and the fitting domain size IDF. By increasing
the average number of fitting functions per domain or the allowance of
larger LMO domains, the description of the system can be successively
improved towards the non-local limit with errors in the region of 10−9 Eh.
Thus, the errors introduced by the local density fitting approximation can
be strictly controlled in terms of the involved thresholds for the different
domains, whereas the size of the fitting domains were found to have a larger
impact on the resulting energy than the LMO sparsity.
The critical molecular size from upon which the LDF approximations

lead to a beneficial speed up compared to the conventional density fitting
was estimated for a set of RAFT pre-equilibrium reactions. By application
to the radical products of the RAFT reactions, a suitable window for the
local density fitting analysis was found. The involved structures covered
the cases of an unfavorable scaling compared to the standard DF approach,
moderate speed ups and significant savings of computational time by a
total factor of 2 or more. The critical molecular size of a beneficial scaling
could be estimated for system sizes between 36 and 42 atoms for a standard
cc-pVTZ basis set. In the case of the smaller cc-pVDZ basis the turning
point for this behavior was shifted between 48 and 50 atoms. If a large
basis set like cc-pVQZ was applied, the crossing in computational scaling
was already reached for all of the investigated systems and thus had to be
located in a region below 36 atoms.
The investigated RAFT reactions also showed an increase of the speed
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up gain of local exchange fitting with an enlargement of the used basis set.
Going from cc-pVDZ over cc-pVTZ to cc-pVQZ, the speed up factors of
the total calculation and per SCF iteration significantly increased with a
larger number of AO basis and fitting functions used for the computation
of the same structure. The average number of fitting functions divided by
the total fitting basis size qfit was found to be constant among the applied
basis sets. This indicated that the changes of qfit arise according to the
molecular size and not according to the number of basis functions per atom.
Within an applied basis set the speed up gain was obviously rising due to
the increasing system size and the larger number of AO basis and auxiliary
fitting functions involved.
Speed up gains provided by the LDF approach were analyzed in terms

of the acceleration of the total SCF procedure and on average per iteration
within the corresponding cycle. The general trend exhibited a larger
computational saving per SCF iteration than for the entire calculation,
since additional operations such as the orbital localization and the final
non-local SCF step are required within the LDF approach. An estimate of
the impact of the local exchange fitting on HF and hybrid DFT calculations
could also be performed on the basis of the RAFT benchmark results. While
generally improved speed ups were obtained for the performed Kohn-Sham
hybrid DFT calculations, the direct comparison to the Hartree-Fock results
was impossible due to the different formalisms in form of restricted and
unrestricted formulations used. A similar effect for both SCF procedures is
expected due to the inclusion of the same type of exchange contributions,
but the influence was superimposed by the advantageous speed up gain from
a double call of the LDF routine in the unrestricted open-shell treatment.

The overall acceleration of the SCF procedure by local exchange fitting
with controllable errors encourages the application on medium-sized to
large systems. With significant speed up gains for a moderate basis set size
already resulting in systems of roughly 50 atoms, the LDF approach allows
for the performance of otherwise demanding computations in open-shell
systems. Hybrid DFT calculations are the method of choice for the cal-
culation of specific areas in biomolecular systems but are still limited to
medium-sized structures due to the steep scaling of the involved HF ex-
change. The local density fitting of exchange is capable of breaking this
limitation and may provide a more complete picture of larger biomolecular
regions in a reasonable computational time. This idea will be pursued
through application of the LDF approach on a substrate docking to the
active site of an enzyme in the following chapter, dealing with a large
open-shell system far beyond the 50-atom range.
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5 Theoretical Study of CspLOX2 Selectivity
Enzyme studies are perfectly suited for the application of local and fragment
potential calculations. The enzyme catalysis takes place in a specific region,
the active site, which is of sufficiently limited size to employ quantum
mechanical methods. This allows for the simulation of the reaction via
small model systems. However, due to its specific interactions and the
long-range Coulomb effect involved [113;114], the surrounding protein envi-
ronment can have a huge impact on the catalyzed chemical transformation.
Due to the sheer enzyme size, the main part of the system can only be
treated at the molecular mechanics level as it is commonly done in QM/MM
approaches. [74;78;79] In order to enlarge the investigated quantum mechani-
cal region, effective potentials of the nearby environment or local density
fitting approximations are useful approaches, providing the possibility to
study enzyme catalysis in the active site under the effect of the embedding
protein.
This chapter starts with an introduction to the class of lipoxygenase

enzymes. The section on computational details of the electronic structure
and molecular mechanics calculations is followed by the different factors
regarding the enzymatic selectivity of the CspLOX2 system. A chapter
conclusion with some final remarks on the methods and obtained results is
given at the end.
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Figure 5.1: Catalytic cycle of the non-heme iron lipoxygenase (LOX) class of enzymes
for the linoleic acid (C18:2) substrate. Radical rearrangement and dioxygen insertion
are the steps considered in detail in this work.
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5.1 Lipoxygenases

The lipoxygenase (LOX) class of enzymes plays a key role in metabolic
processes for the dioxygenation of polyunsaturated fatty acids in lipids. [10;11]
Reactions catalyzed by LOXs take place ubiquitously in higher plants and
animals but have also been identified in several corals, mosses, fungi and
bacteria. [115;116] The active site of these enzymes contains a non-heme
iron or manganese moiety reacting with the cis,cis-1,4-pentadiene unit of
the fatty acid substrate. In the iron case the Fe(III) metal is typically
coordinated in an octahedral geometry by three histidine nitrogen donor
atoms, the amide oxygen of an asparagine residue, the enzyme C-term
carboxylate and a free hydroxide ligand.

In a first step of the catalytic cycle, as shown in Figure 5.1, a hydrogen
atom is abstracted from the substrate and transferred to the iron bound
hydroxy group yielding a water ligand and Fe(II) in high spin configuration.
The substrate is converted to a bisallylic radical species that can undergo
radical rearrangements as shown in the second step. These rearrangements
allow for the formation of conjugated double bonds with the unpaired
electron located at the outer positions of the pentadiene unit, which corre-
sponds to the thermodynamically favored radical configuration. [117] The
third step of the cycle adds dioxygen to form a superoxide radical. Upon
radical reduction in the last step a substrate hydroperoxide is formed
and the LOX catalyst is restored. While the hydrogen transfer has been
analyzed and well understood [118–125], little is known about the mechanism
of molecular oxygen addition.

WT L304V A300G

C9

C11

C13

C9-S

I296A L502V

C13-R

L506V L258V

Figure 5.2: Product distributions of the CspLOX2 wild type (WT) and a set of single
amino acid mutants. For mutations the first letter gives the amino acid which is replaced,
whereas the number indicates the chain position and the last letter corresponds to the
new amino acid. The regular main stereo products are C9-R, C11-R and C13-S. Changes
in the preferred stereoselectivity are written inside the diagram.
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By using linoleic acid (C18:2) as a substrate the LOXs enzymes catalyze
the dioxygenation in a way that normally yields conjugated products with
hydroperoxides located at the C9 and C13 positions of the fatty acids. How-
ever, bisallylic hydroperoxides at the C11 carbon atom were found to be the
main products in manganese LOXs [126;127] and also in the iron-containing
CspLOX2 from the cyanobacterium Cyanothese PCC8801. [128] The under-
lying mechanism of selectivity control for dioxygen addition has been the
ground for broad discussions over the past 20 years. [129–131] In the case
of the CspLOX2 emzyme it was shown by the Feussner group that single
amino acid mutations in the vicinity of the active site drastically change
the resulting regio- and in some cases even the stereospecificity by strongly
varying product distributions. [132] The corresponding experimental product
distributions are shown in Figure 5.2, while a cartoon representation of the
CspLOX2 wild type structure is displayed in Figure 5.3.

The product distributions reach from clear preference of the C11-R as in
the CspLOX2 wild type over almost equally distributed products as in the
case of the L258V mutant up to C9-R and C13-S being the main products
as seen for A300G and L304V. Two cases of changes in stereochemistry are
observed inverting the product at C9 for the I296A mutation and at C13
regarding the L506V mutant. In order to understand the underlying enzyme
selectivity electronic structure and molecular mechanics computations were
carried out to test several proposed factors steering the observed specificity.
For other LOXs these factors included spin localization [133], activation

Figure 5.3: Cartoon representation of the CspLOX2 wild type enzyme. The dimeric
structure is indicated by the colored amino acid chains, while the iron centers of the
active sites are shown as spheres.



78 5 Theoretical Study of CspLOX2 Selectivity

barriers for dioxygen addition [134], substrate conformation, as well as steric
constraints in the active site. [135;136]

Spin localization within the substrate follows the assumption of molecular
oxygen attacking the carbon site of highest spin density and provides a
possible explanation for the enzymatic selectivity. The idea consists of
substrate torsions induced by the enzyme which will localize the spin
density of the pentadiene unit to specific carbon atoms and thus making
them more reactive for dioxygen addition. A similar concept exists in the
change of the activation barriers for molecular oxygen addition. Due to
different heights in the activation barriers for reactions at C9, C11 and
C13, the pathways are kinetically discriminated by the enzyme. Since these
activation barriers may also change according to torsions of the pentadiene
unit, one is in general interested in the preferred substrate conformation
within the enzyme pocket. The configuration of substrate binding as well
as the access to of dioxygen to the reactive carbon centers are referred
to as another proposed selectivity factor in form of sterical shielding. In
this concept the enzyme moves amino acid residues in front of the reactive
carbons in order to mechanically block these sites for the attack of molecular
oxygen attack. This would force the reaction to happen at the remaining
unshielded carbons.

5.2 Computational Details
Parts of this and the following section are featured in
"Lipoxygenase 2 from Cyanothece sp. controls dioxygen insertion by steric
shielding and substrate fixation",
J. Newie, P. Neumann, M. Werner, R. A. Mata, R. Ficner and I. Feussner,
Sci. Rep., 7, 2069, 2017.

For a small model system, the 2,5-heptadienyl radical, standard unrestricted
density functional theory calculations with the B3LYP functional [24;25] and
the def2-TZVP [105] basis set (UB3LYP/def2-TZVP) were carried out with
the ORCA electronic structure package. [137] Location of the lone electron
was determined by Pipek- Mezey localization of the occupied orbitals [19],
followed by a natural population analysis (NPA) of the resulting localized
SOMO. [92] The spin density distribution was scanned along an internal
dihedral angle which was varied from 150◦ to 210◦ in steps of 5◦ with 180◦
corresponding to the preferred planar substrate conformation.
Activation barriers for dioxygen addition were calculated for the same

model system by using the same electronic structure theory with additional
damped dispersion corrections [30;31] (UB3LYP-D3/def2-TZVP). Molecular
oxygen was moved towards the carbon centers of interest in relaxed surface
scans with fixed internal carbon dihedrals. The scans were performed for
the same range of torsional angles as mentioned above.
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The provided crystal structure of the CspLOX2 wild type dimer [132] was
used as a starting point for molecular dynamics simulations. All calculations
were carried out only considering one chain of the dimer without observing
any significant loss of conformation in the course of all dynamics. After
cleaning up the structure, the monomer was placed in a water box with 8 Å
distance to the periodic cell limits. The charge in the cell was neutralized
by addition of 11 Na+ ions. 2000 steps of minimization were carried out
with a restraint of 5 kcal/Å2 placed on all non-hydrogen atoms in the
enzyme, followed by 3000 steps with no restraints. All atoms were modeled
with the AMBER ff10 force field. [62] A non-bonded sphere model was used
for the Fe2+ [138] ion and the parameters for the substrate were taken from
Furse et al. [136] using Merz-Kollman charges [139] at the UB3LYP/6-31G*
level of theory. Single amino acid mutations were generated by replacing
the corresponding residue manually in order to simulate the L304V, A300G,
I296A, L502V, L506V, L258V mutated enzymes. For the wild type and each
mutation, three starting structures were prepared by placing the radical
of linoleic acid in the active site pocket in different conformations. The
SHAKE algorithm was used for all MD runs, with a 2 fs time step, and a
12 Å cutoff for non-bonded interactions. A Langevin thermostat was used
throughout. [64] After 50 ps of heating to 300 K, 350 ps of NPT dynamics
were carried out at ambient conditions for equilibration. The production
runs consisted of 1 ns for each starting structure. 5000 snapshots were used
for all following analysis.
The snapshots from all simulations were taken to analyze the dihedral

angle distribution of the substrate. The C10-C11-C12-C13 dihedral was
extracted for all 5000 structures, resulting in a histogram of conformers
in a 60◦ range. In order to readdress the spin density calculations within
a larger enzyme environment the observed structures for the wild type
were used to create three different sizes of model systems around the
linoleic acid radical. Their spin density distribution was calculated with
a development version of the Molpro2015.1 program [103] applying local
density fitting approximations as described in section 4.1 with the default
parameters IDF = 3 and TLMO = 10−6 in unrestricted density functional
theory with the B3LYP functional [24;25] and a def2-SVP [140] basis set
(LDF-UB3LYP/def2-SVP). The results were compared to the ones of the
non-local density fitting procedure in terms of accuracy and computational
timings.
For the large model system of the active site, containing the substrate

radical, the iron moiety and a set of nearby amino acids structures, different
conformers were generated for the CspLOX2 wild type and the L502V
mutant from their MD simulations. The conformers were assigned to bins
of 5◦ of the aforementioned dihedral and five random geometries were
calculated in each bin. The location of the unpaired substrate electron
was determined by natural population analysis of the localized SOMO as
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already described above. This procedure ensured a clean separation of the
substrate spin density distribution from external spin influences of the iron
moiety. By averaging the results for each bin and weighting them with their
conformational relevance from the observed dihedral angle distribution, the
product ratio of the hydroperoxides was obtained solely on the basis of the
spin density.

5.3 Selectivity Analysis
This section is guided by the proposed factors for the selectivity of the
CspLOX2 enzyme, namely the analysis of the substrate spin density, ac-
tivation barriers for dioxygen addition, substrate conformations and the
investigation of steric shielding effects.

5.3.1 Spin Density

Changes in the spin density distribution of the substrate would provide
a simple explanation for the observed selectivities with respect to the
assumed molecular oxygen attack the carbon center of highest spin den-
sity. [130;133;136] The enzyme might induce slight out-of-plane bending within
the substrate, leading to a spin localization at specific carbon atoms and
thus making these sites more reactive for dioxygen addition. In order
to model the bound linoleic acid radical, a 2,5-heptadienyl radical model
system was employed and its spin density distribution was analyzed per-
forming UB3LYP/def2-TZVP calculations. By varying one of the dihedrals,
the conjugated radical character over the whole molecule was broken and
therefore the spin density was localized on the reactive carbon atoms. The
amount of spin density in the SOMO at the three carbons of interest was
analyzed in a dihedral range from 150◦ to 210◦. A picture of the model
system as well as the results of the spin density analysis are provided in
Figure 5.4.
Starting from the preferred planar conformation corresponding to a

dihedral angle of 180◦, the spin density is highest at the central C11
carbon and equal amounts are located at the outer C9 and C13 sites of
the pentadiene unit due to the symmetry of the model system. With
variation of the dihedral angle ϕ, the moiety including C13 is bent out
of the molecule plane. This explains the lower amounts of spin density
found at this carbon site for the rest of the dihedral range. Meanwhile, an
increasing spin localization is observed at the other two carbon atoms as
the remaining spin density is distributed among C9 and C11. However, the
spin density is the highest for C11 over the whole analyzed dihedral range.
Since the curves shown in Figure 5.4 do not cross over the torsion values
significantly populated in the active site of the enzyme, it seems unlikely
that spin localization is the steering factor for the observed selectivity.
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However, the degree of spin localization may sensitively depend on the
substrate model employed. This is indicated by comparison of the obtained
spin density distribution of the 2,5-heptadienyl radical to the results from
Hu and Pratt. [133] In the corresponding study only a slightly smaller
substrate model was employed, the 1,4-pentadienyl radical. Nevertheless,
the difference in form of two additional methyl groups at the outer positions
of the pentadiene unit already results in changes of the amount of spin
localization at the central carbon in a planar model conformation. This
indicates that the spin density distribution within the actual fatty acid
radical substrate may differ from both of these models due to their limited
size. Furthermore, only one scan over a single dihedral angle was performed
for the 2,5-heptadienyl system, which does not represent a real conformation
of the fatty acid substrate within the enzyme pocket. And finally, none of
the small substrate models included the influence of the environment such
as the nearby iron center and the surrounding amino acid residues. These
elements may have an impact on the resulting spin density distribution of
the substrate and it is therefore necessary to analyze the changes in the
spin localization concerning the full fatty acid substrate radical under the
effect of the closest enzyme environment.
For the CspLOX2 wild type three different sizes of model systems were

generated out of snapshots taken from the performed MD simulations.
Their spin density distribution was calculated with the local density fit-
ting formalism presented in chapter 4 and with the conventional density
fitting approach at the LDF-UB3LYP/def2-SVP level. The involved SCF
procedure was iterated until changes in the norm of the resulting electronic
density matrix were found to be smaller than 10−5 a−3

0 . All three model
structures and the corresponding spin density results are shown in Fi-
gure 5.5. Only the linoleic acid radical shown in red is covered in the small
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Figure 5.4: Small radical substrate model system 2,5-heptadienyl radical (left). The
dihedral angle ϕ was varied for spin density analysis. Spin distribution of the model
system for different torsions of ϕ (right).
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Table 5.1: System sizes and speed ups of the local density fitting approximation compared
to the non-local approach for three different model system sizes for the CspLOX2 wild
type in UB3LYP/def2-SVP calculations. The number of atoms, number of basis and
fitting functions and the average fitting domain size divided by the total number of
fitting functions qfit are provided. The average speed up per iteration 〈fiter〉 and the
total speed up factor ftot of the local density fitting procedure were calculated using 20
cores (Intel 2.8Ghz).

Model Natoms Nbas Nfit qfit 〈fiter〉 ftot

small 50 430 1564 0.33 1.10 1.07
medium 167 1545 6035 0.14 5.14 3.28
large 294 2657 10159 0.07 10.79 7.61

model system. A medium-sized model adds the iron moiety and its ligands,
namely His257, His262, His449, Ile569, Asn453 and one coordinated water
molecule. The large model system further includes the nearby amino acid
residues Glu253, Leu258, Ile296, Ala300, Leu304, Leu502, Thr505, and
Leu506. Detailed information concerning the system sizes as well as the
errors and speed ups of the local density fitting approach is provided in
Table 5.1.

In terms of the spin density distribution shown in Figure 5.5 only slight
differences are found comparing the local and non-local density fitted cal-
culations for all three system sizes. However, the resulting spin localization

small medium large

LDF
DF

23.1 : 46.7 : 30.2
23.1 : 46.7 : 30.2

21.9 : 45.0 : 33.1
21.6 : 45.5 : 32.9

22.5 : 46.6 : 30.9
22.5 : 46.6 : 30.9

Figure 5.5: Model structures of the CspLOX2 active site around the linoleic acid radical
shown in red. The medium-sized model adds the iron moiety and its ligands, namely
His257, His262, His449, Ile569, Asn453 and one coordinated water molecule. The large
model system further includes the nearby amino acid residues Glu253, Leu258, Ile296,
Ala300, Leu304, Leu502, Thr505, and Leu506. Below the structures the corresponding
SOMO spin density distribution C9 : C11 : C13 is displayed for the density fitted
U3B3LYP/def2-SVP method in their local (LDF) and non-local (DF) variants.
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is varying by going from the small to the large model system. While the
addition of the iron center in the medium-sized model leads to a clear
change of the spin distribution, the effect is partly neutralized with the
additional inclusion of the closest amino acid residues in the large model.
The error of the local density fitting procedure was calculated for the con-
formational energy of two different structures of the small model size and
was found to be below 0.01 kJ·mol−1. It is therefore expected that no major
errors are introduced to the description of spin localization, which is also
indicated by the identical spin distributions of the large model comparing
the DF and LDF approaches. While no significant speed ups for the small
substrate model of 50 atoms are obtained, a pronounced acceleration of
the calculation by application of LDF approximations results for the large
model system containing 294 atoms. In this structure the average fitting
domain size is only 7% of the total number of density fitting functions,
leading to significant speed ups compared to the non-local DF approach.
While the total LDF calculation is more than seven times faster than the
conventional density fitting, each iteration within the corresponding SCF
cycle is even more than ten times as fast as in the non-local procedure.
With this significant speed up and the minor errors in the resulting mole-
cular energy and density, the LDF approach provides a perfect tool for
the systematic analysis of the spin density distribution within the linoleic
substrate radical including the closest enzyme environment.
Structures of the size of the large model system were generated out of

the MD snapshots of the CspLOX2 wild type and the L502V single amino
acid mutant. These contain the same amino acid residues as shown before
with a leucine for position 502 in case of the wild type and a valine for the
point mutant yielding in total 294 and 291 atoms, respectively. According
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Figure 5.6: Conformer count over the dihedral angle and spin density distribution of
the carbons C9, C11 and C13 of the linoleic acid substrate radical for the CspLOX2
wild type (left) and the L502V single amino acid mutant (right). The width of the spin
density curves is given by the standard deviation within each dihedral bin.



84 5 Theoretical Study of CspLOX2 Selectivity

to their C10-C11-C12-C13 substrate dihedral angle, five structures were
chosen for each angular bin of 5◦ between 150◦ and 210◦. By applica-
tion of local density fitting approximations as described in section 4.1,
the spin density distribution of the substrate was computed employing
LDF-UB3LYP/def2-SVP calculations. Convergence of the procedure was
assumed, if the norm of the electron density did not change by more than
10−5 a−3

0 compared to the previous SCF step. The spin density informa-
tion was correlated with the overall dihedral angle distribution in order to
respect the biochemical relevance of the corresponding structures. Spin
density results for both systems are shown in Figure 5.6.

Looking at the spin distribution of the substrate, the overall results do not
drastically change compared to those observed for the small 2,5-heptadienyl
model system. For both enzyme species the C11 carbon carries the highest
spin density over the whole analyzed dihedral angle window. Even though,
no clear trend is found for the out-of-plane bending between C9 and C13,
only slight crossing of the corresponding curves with the one from C11
is observed within the standard deviation. The dihedral angle distribu-
tions with maxima close to 180◦ for both enzymes point out additional
biochemical relevance to the investigated near-planar substrate structures.
If molecular oxygen is assumed to attack the carbon site of highest spin
density, a product distribution can be extracted by correlating the spin
density results with the dihedral angle distribution.

However, the resulting product ratios are unsatisfactory. Similar product
distributions are obtained for both enzymes with C9 : C11 : C13 ratios
of 30.7% : 37.4% : 31.9% for the wild type and 32.4% : 38.6% : 29.0%
for the L502V mutant. This is in clear conflict with the experimental
product distributions of 17.6% : 74.2% : 8.2% for the CspLOX2 wild type
and 11.9% : 49.2% : 38.9% for its single amino acid mutant. All in all
the hypothesis of spin localization within the substrate would always
support C11 as the main site for dioxygen attack. Even though this is the
case for the CspLOX2 wild type system it is incapable of explaining the
drastically change in product distribution for all of the single amino acid
mutants. Taking into account that C11 hydroperoxides are actually not
the main product for almost all other LOXs, the spin density distribution
of the substrate does not provide a suitable explanation for the observed
selectivities.

5.3.2 Activation Barriers

Kinetic aspects of the reaction catalyzed within the LOX class of enzymes
have been of particular interest in order to understand the details of
the underlying mechanisms and were investigated via the calculation of
rate constants and activation barriers. These studies reached from the
initial hydrogen abstraction [118–125] over back and side reactions, such
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as β-fragmentation [141], up to the addition of molecular oxygen on the
radical substrate species. [136] Figure 5.7 displays a schematic profile of the
energy following the reaction coordinate from the free fatty acid up to the
formed hydroperoxide. While hydrogen atom abstraction is proposed to
be the rate-determining step with the highest barrier to cross within the
catalytic cycle, the addition of molecular oxygen exhibits different barriers
for the attacked carbon centers. The latter is therefore proposed to be
the crucial step for the enzymatic selectivity control and is thus analyzed
in further detail. Even though it was clearly shown that hydroperoxides
at the outer carbons of the pentadiene unit are the thermodynamically
favored products [117], a different picture might occur if one analyzes the
kinetic aspects of dioxygen addition.
For the small 2,5-heptadienyl radical model compound, relaxed surface

scans at the B3LYP-D3/def2-TZVP level of theory were performed simu-
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Figure 5.7: Schematic energy profile of the enzyme catalysis in CspLOX2 along the
reaction coordinate. The three different pathways for dioxygen addition represent the
reaction at C9, C11 and C13.
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lating the approach of molecular oxygen towards the three carbon sites of
interest. Following a path of lowering carbon-oxygen distance, the internal
carbon dihedrals corresponding to C9-C10-C11-C12 and C10-C11-C12-C13
in linoleic acid where kept fixed during the scans. The former was fixed at
a planar 180◦ conformation for all calculations while the latter was varied
within the 30◦ window as already applied for the spin density analysis on
the small substrate model. Activation barriers of dioxygen attack were
extracted from all scans. The curve of a generic surface scan and the
activation barrier results within the dihedral angle window are shown in
Figure 5.8.
When approaching molecular oxygen towards a reactive carbon site

a van der Waals pre-complex is formed at carbon-oxygen distances of
typically 2.9 Å, which can be identified by a local energy minimum along
the path. In order to form the bound hydroperoxide the system has to
cross the transition state with an energy maximum at about 2.1 Å. At
distances of approximately 1.5 Å the global energy minimum structure
of the hydroperoxide product is found. The electronic activation barrier
∆E‡ of molecular dioxygen attack is defined by the energy difference of the
transition state structure and the pre-complex. By looking at the results
for conformers close to 180◦, a significantly higher activation barrier is
found for the attack at the central C11 carbon compared to C9 and C13.
In contrast to the spin localization hypothesis this suggests no dioxygen
attack to occur at C11 for the planar substrate conformer since the reaction
is highly kinetically unfavorable. For this structure the carbon center of
maximum spin density is also the center requiring the highest activation
barrier for dioxygen addition which is increased compared to the other
centers by 15.5 kJ ·mol−1. This difference would rule out any reaction to
take place at the central carbon without external influence.
However, slight torsions within the model system allow the reaction

paths to become competitive yielding similar activation barriers for dihedral
angles around 200◦. While this crossing in carbon site preference was not
found in the case of the spin density analysis, enzyme-induced substrate
bending might lead to significant changes in the activation barriers when
dioxygen is approaching. If the conformational distribution of the substrate
is significantly different among the analyzed enzyme mutants, changes in
the activation barriers could provide a suitable explanation for the strongly
varying product distributions. This idea is pursued in the following section.

5.3.3 Substrate Conformation

In order to analyze the relevant substrate conformations the full enzyme
structure with the bound linoleic acid radical was simulated in a water
box employing molecular dynamics. Starting from the experimental crystal
structure of CspLOX2, simulations with three different initial substrate
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geometries were performed for the wild type and all single amino acid
mutants as described in the computational details. For all 5000 snapshots
taken from the total run of 1 ns, the value of the C10-C11-C12-C13 dihedral
was extracted for each simulation and combined in a histogram of conformers
in a range of 60◦. The results for the CspLOX2 wild type and the five
point mutants are shown in Figure 5.9.

Even though the distributions differ in shape and location of their maxi-
mum peaks, the average dihedral angle position is close to the preferred
planar substrate conformation reaching from 176.9◦ in the case of the
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Figure 5.9: Histograms of conformers according to the C10-C11-C12-C13 dihedral of the
linoleic acid substrate from MD simulations on the CspLOX2 wild type (top left) and
the single amino acid mutants L304V, A300G, L258V, L506V and I296A. The average
value of each distribution is indicated by a dashed red line.
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L258V mutant over 178.2◦ for the wild type up to 180.6◦ for the L304V
mutant. A similar behavior was already seen for the L502V mutant in
Figure 5.6 with an average dihedral angle of 181.1◦. For all simulations the
substrate seems to be flexible inside the enzyme pocket, allowing for internal
torsions in the analyzed dihedral angle window. However, no significant
difference in the preferred conformation is observed among all analyzed
enzymes. The activation barrier calculations for the small model system in
the previous section showed that the dihedral angle would have to change
by about 20◦ compared to the planar conformation to allow the reaction
paths towards the different carbon sites to become competitive. If changes
in the activation barriers due to substrate torsion are assumed to be the
steering factor for the enzyme selectivity, nothing more but similar product
distributions would be found on the basis of the analyzed histograms. With
similar substrate structures of relevance for all analyzed enzymes, but their
strongly deviating experimental product distributions, enzyme-induced
substrate torsions modifying the activation barriers do not offer a plausible
selectivity mechanism. Other influences within the enzyme environment
guiding the reaction towards a clear pathway need to be responsible for the
observed selectivity. Such guiding might include the existence of an oxygen
channel, transporting dioxygen directly towards specific carbon atoms or
the sterical blockage of other reactive carbon sites forcing the addition
at the available position. These possibilities are further discussed in the
following section.

5.3.4 Steric Shielding

Enzyme-induced substrate conformations leading to changes of the substrate
spin density or in the activation barriers for dioxygen attack could be
effectively ruled out as relevant factors for the observed enzyme selectivity
as seen in the last sections. As such, the possibility of sterical constraints
within the active site deserves detailed investigation. The existence of
a specific oxygen channel is a widely held hypothesis [128;135;136;142], but
for most LOXs no clear path for dioxygen access could be found. Indeed,
molecular oxygen might even enter the enzyme pocket through the same
channel as the fatty acid substrate does. Another possible sterical constraint
consists in the mechanical blockage of reactive substrate sites by the enzyme.
Models for the analysis of sterical shielding around the substrate have been
already proposed and applied before. [135;136] Furthermore, they are normally
based solely on the smallest distance between potentially shielding atoms
and the substrate carbon sites of interest. Even though this type of model
provides the possibility to qualitatively estimate the average space around
the reactive carbons, it is incapable of predicting the enzyme product
distribution in a quantitative manner. In addition, the shielding results of
these models need to be treated with caution as they do not include angular
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information. If an atom is close to a reactive carbon site but strongly bent
compared to the path in which molecular oxygen approaches, it would lower
the average free space around the site even though no particular shielding
is present at all. This is the main reason for the limited predictive power
of these established steric shielding models.

This work approaches the problem of steric shielding within the enzyme
pocket in a different way. Instead of investigating whether the space close
to a carbon site is sufficient for the bound hydroperoxide structure, it is
assumed that the van der Waals pre-complex needs to be formed first. Thus,
in order for the reaction to happen, the corresponding space is required close
to a reactive center. With the implicit assumption of an oxygen channel
only allowing an attack from the antarafacial substrate side opposed to
the iron center, a new steric shielding model was developed. For each
analyzed structure an equalization plane through the susbtrate pentadiene
unit was defined by three points, using the centers of mass of C9-C10-C11,
C10-C11-C12 and C11-C12-C13 respectively. These points ensures that
the constructed plane takes into account the impact of all carbons of the
pentadiene unit without the problem of near-collinearity which would rise
for C9, C11 and C13 in a zigzag chain configuration. A point in space
was found following the normal of the plane with a distance of 3 Å for the
respective carbon C9, C11 or C13. This distance corresponds to the van
der Waals minimum found in the relaxed surface scans for approaching
dioxygen to the small model system as seen in section 5.3.2. The size of
molecular oxygen was calculated from a bond distance of 1.21 Å added with
half of the van der Waals radius of a single oxygen atom of 1.52 Å. This
leads to an additional space needed of about 2 Å relative to the defined
point in space in order to fit dioxygen. For each structure the distance r
of the enzyme or substrate atom closest to the aforementioned point was
found and the relative accessibility A(r) of the corresponding carbon site
was calculated as

A(r) =


1 if r ≥ rmax

1
rmax−rmin

(r − rmin) exp(r − rmax) if rmin < r < rmax .

0 if r ≤ rmin
(5.1)

If there was no atom found closer than rmax = 2.2 Å, the corresponding
carbon site was considered to be fully accessible for dioxygen attack. If an
atom was found closer than rmin = 1.8 Å, the carbon site was counted as
completely shielded as the space is insufficient to form the pre-complex.
An exponential damping was used for intermediate distances in order to
account for weak steric repulsion and avoid a step function which would lead
to large accessibility fluctuations. This steric shielding model is illustrated
in the snapshot shown in Figure 5.10. The spheres on the antarafacial
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side of the blue substrate are either free for dioxygen attack or their
accessibility is reduced by surrounding residues or substrate atoms shown
in red. Due to the used damping function movements of the amino acid
residues or the substrate are allowed without complete changes in the
calculated accessibilities. The sphere model also accounts for the fact that
dioxygen usually approaches in a tilted trajectory compared to the normal
of the substrate plane. A segment of the Perl script carrying out the steric
shielding analysis can be found in the end of the Appendix.
The steric shielding model described above was applied on all 5000

snapshots of each molecular dynamics simulation of the CspLOX2 wild
type and its single amino acid mutants. Since the model is only applicable
for an antarafacial dioxygen attack, these mutants were the ones conserving
the stereoselectivity compared to the wild type yielding C9-R, C11-R and
C13-S products. Calculating the accessibility for dioxygen attack on the
three carbon centers C9, C11 and C13 resulted in a ratio of available sites
over all structures for each simulation. The ratio was used to analyze the
product distribution of the corresponding enzyme. An additional penalty
taking 10% intensity of C11-R and distributing it equally to C9-R and
C13-S was applied in order to account for the in general higher activation
barrier at the central carbon moiety. The ratios of the three simulations for
each enzyme were averaged and the standard deviation with an additional
5% was used as a basis for an error estimation. This allowed for the

Figure 5.10: Snapshot of the linoleic acid substrate (blue) considered for the steric
shielding model. If atoms (red) are found within a sphere close to the carbon atom of
interest, the corresponding site is considered to be less accessible. In the case shown, C9
would be partly shielded by a substrate atom, while the accessibility of C13 is reduced
by an amino acid residue. C11 would be the only site to be considered fully accessible.
The iron of the active site is shown in the background.
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comparison of the simulated product distributions with the ones observed
by experiments for an antarafacial dioxygen attack as shown in Figure 5.11.
The agreement between the experimental and calculated product dis-

tributions for the considered enzymes is remarkable. With a maximum
deviation of 7.4% over all products and a root-mean-squared deviation
of only 3.1% the calculations are capable of accurately reproducing the
experimental enzyme selectivity. To the best of my knowledge this is the
first theoretical model to quantitatively replicate the specificity of several
LOXs mutants. The agreement with the experimental distribution is a
clear evidence for steric shielding and blockage of reactive carbon sites con-
siderably determining the enzyme selectivity. With controlled amino acid
residue movements, the space around specific carbon centers is restricted
by the enzyme, preventing molecular oxygen to form the van der Waals
pre-complex. Since the pre-complex is essential to cross the transition
state towards hydroperoxide formation, the corresponding carbon sites
are effectively shielded and no reaction takes place at these centers. This
drives the oxygenation towards non-shielded carbon atoms and yields the
observed specificity for each enzyme.
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Figure 5.11: Product distributions for an antarafacial dioxygen attack in CspLOX2
and investigated mutations. The distributions of the main stereo products of the
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the approximations involved.
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The existence of an oxygen channel was by no means excluded using
the developed shielding model. It might still be the case that the enzyme
transports molecular oxygen through a specific channel towards the iron
opposed substrate side to enable an antarafacial dioxygen attack. Con-
sidering only enzymes that preserve the stereochemistry of the wild type
within this model, the inversion of single stereo products for two of the
single amino acid mutants is still unexplained. Due to the remarkable
performance of the steric shielding model among the enantioselectivity
conserving enzymes, it seems unlikely that a molecular oxygen approaches
via a different channel from the suprafacial substrate side, yielding inverted
products at C9 and C13 for the I296A and L506V mutants. Most likely, the
mutated enzymes enforce a restricted substrate binding with the affected
carbon moiety being flipped. This hypothesis is strengthened by the fact
that the mutated isoleucine residue 296 is close in space to the C9 substrate
moiety, while leucine 506 is found in the vicinity of C13 in the wild type
structure. Since both mutations convert a larger amino acid into a smaller
one, more space is provided at the corresponding region on the side of
the iron center, allowing for a one-sided substrate twist. The consecutive
antarafacial dioxygen attack would then yield inverted stereo products at
the carbon sites involved. However, no evidence for the existence of such
structures could be found via the application of molecular dynamics simula-
tions with a manually flipped substrate. The used force field parameters for
the radical pentadiene unit do not allow for this conformation due to the
limited parametrization, even though it might be the preferred geometry
in the I296A and L506V enzymes.

5.4 Conclusion
The cyanobacterial lipoxygenase CspLOX2 covers a rare case of the bisallylic
C11 hydroperoxide being the clear main product in amounts of more than
70%. Single amino acid mutations in the vicinity of the active site of
the enzyme are capable of drastically changing the product distributions
leading to significantly lower amounts of C11 product and in some cases
even to the preference of a conjugated hydroperoxide at C9 or C13. This
indicates that the CspLOX2 wild type possesses a specific mechanism to
control the oxygenation towards the production of the bisallylic product.
Several factors proposed to be responsible for the enzyme selectivity were
investigated by using a variety of computational approaches.

The assumption that the carbon site of highest spin density is preferred
for molecular dioxygen attack would deliver a simple explanation for the
observed specificity due to enzyme-induced spin density localization of the
substrate. DFT calculations on a small model systems showed that changes
in the substrate conformation by twisting the pentadiene unit out of the
planar arrangement are indeed varying the spin density distribution, but
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not in a way that the site of highest spin localization would differ. Even
DFT calculations on a larger model system including the iron center and
nearest amino acid environment did not change this picture. Considering
the biological weight of the substrate conformers, the central C11 carbon
was always the center of highest spin density. Even though this approach
might therefore favor the production of the bisallylic hydroperoxide as
observed in the CspLOX2 wild type, it can not explain the conjugated main
products in other LOXs and the CspLOX2 mutants investigated by the
Feussner group. [132] The hypothesis of a spin-guided dioxygen attack would
suggest the reaction to preferably occur at this central position and the
bisallylic hydroperoxide should be the main products for all LOXs. Since
this is in clear conflict with the experimental findings, spin localization
within the substrate was effectively ruled out as an explanation for the
enzyme selectivity.
Another specificity-controlling mechanism was investigated in form of

changes in the activation barriers for molecular oxygen attack. Relaxed
surface scans approaching dioxygen towards the reactive carbon sites of
a small model system gave a clear contrast to the spin-guided hypothesis,
as the activation barrier was highest for the preferred planar substrate
conformation. The activation barriers for other substrate conformers
indicated that slight substrate torsions are sufficient to let the different
reaction pathways become competitive. Molecular dynamics simulations
were carried out to investigate the preferred substrate conformations within
the CspLOX2 wild type and its single amino acid mutants. Different degrees
of substrate twisting when bound to the active site of the enzyme would
provide an explanation for the observed selectivities as they go hand in hand
with changes of the activation barrier for dioxygen attack. Nevertheless,
no significant changes in the relevant substrate dihedral angle were found
in the different enzyme simulations. The induction of varying substrate
geometries by the enzyme and with it the changes in the activation barriers
for dioxygen attack were therefore excluded as steering factors for product
specificity.
The possibility of an oxygen transport channel delivering molecular

oxygen towards specific carbon sites as well as sterical blockage of carbon
sites by amino acid residues of the enzyme were investigated by using
molecular dynamics simulations. A simple shielding model regarding only
free space information around reactive carbon atoms was used to analyze
the accessibility of molecular oxygen to form the corresponding van der
Waals pre-complex. With an additional penalty respecting the higher
activation barrier at C11, the resulting ratios of accessible carbon sites
were capable of accurately reproducing experimental product distributions.
This is a clear indication that steric shielding of specific carbon atoms is
the main selectivity mechanism present in the CspLOX2 enzyme. Since
the steric shielding model only considered antarafacial dioxygen attacks
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and still yielded remarkable accuracy compared to the experimental data,
the existence of an oxygen channel transporting molecular oxygen to the
antarafacial substrate side, opposed to the iron moiety, is supported. The
developed model for steric shielding analysis was the first to accurately
reproduce experimental product distributions in LOX systems.
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6 Summary
The aim of this work was the development and application of low-scaling
self-consistent field approaches employing local and fragment potentials.
This was of particular interest for the Hartree-Fock method, since its
computation was found to possibly act as a computational bottleneck in
single-reference local correlation treatments. [1–3;5;6] A central task was
therefore the search for viable approximations to accelerate the calculation
of the Hartree-Fock solution. With this purpose in mind, two different
approaches have been followed in the course of this thesis.

In a first approach to the problem a cap-free fragmentation was employed
to form the proposed FJK method. [66] Within the FJK procedure, the
molecular system under consideration was split up into smaller entities,
which were subsequently separately treated. Recovery of the complete
Hartree-Fock description was obtained by an iterative process, very much
in the spirit of the self-consistent field approach itself. By inclusion of full
Fock potentials of the remaining system in all fragment calculations, each
entity was embedded in a mean-field. Iteration over the generated fragments
allowed for the convergence of the FJK results to the full Hartree-Fock
solution of the investigated system. This property was extensively analyzed
in terms of the constructed molecular density as well as the absolute and
relative energy results for a set of molecular benchmark structures. No
particular issues regarding the convergence of the FJK approach were
obtained for the allowed generation of charged and non-physical fragments.
Even in the case of a completely delocalized system, the correct Hartree-Fock
solution could be restored within small energy errors by an increasing
number of fragment iteration cycles.
In the original formulation of the FJK procedure a full molecular basis

set was employed for each fragment calculation to cancel possible basis
set superposition effects. The high computational effort arising from this
treatment ruled out a favorable scaling of the method in the initial form.
Even though it was shown that the number of SCF iteration steps within
each fragment calculation could be restricted without introduction of ma-
jor errors, the computational effort is not sufficiently reduced by such
an approach. To overcome this problem, a modified FJK treatment was
proposed employing the large basis set only for the calculated fragment,
while a minimal basis set representation was introduced for the embedding
potentials. Although the possibility to converge to the full Hartree-Fock
results was widely kept by this procedure, it could be shown that the
involved fragment calculations allow for a favorable scaling at best in a
very narrow window of system size only. Thus, no fragment-based proce-
dure of overall reduced computational cost compared to the conventional
Hartree-Fock method could be established. This would be only possible in
the limit of size-independent fragment calculations, which may be obtained
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by truncation of the embedding area and restriction of the included Fock
potentials to fragments of the closest environment.
Nevertheless, the application of full Fock potentials provided an exact

and stable approach for the representation of a molecular environment.
The procedure was employed as a reference to analyze the embedding
potentials of QM/MM simulations in condensed phase. Investigation
of the resulting molecular density under the embedding effect of nearby
monomers pointed out that significant differences compared to the inclusion
of full Fock potentials are possible in the application of simple point
charge models. Separation of the Fock contributions into Coulomb and
exchange effects showed the additional influence of embedding exchange
potentials to be comparably small. The major effect was arising from
the Coulomb contributions, which could not be recovered by atomic point
charges for monomers close to the calculated molecule. However, the
QM/MM potentials were found to be sufficient to describe the long-rage
impact of further distant monomers on the resulting molecular density.
Thus, the study confirmed the concept followed by multi-layer descriptions,
in which the closest environment is represented by sophisticated potentials,
while the distant interactions are included at a more approximate level of
embedding.
The representation of a molecular environment by an exact embedding

potential provides the starting point for other possible applications. In
periodic structures like molecular crystals it would be possible to employ
the embedding with full Fock potentials on the basis of a single monomer
calculation and subsequent projection of the electron density to the other
embedding molecules. The embedding procedure could then be performed
in an iterative procedure to converge the description of the crystal structure
as already proposed for QM/MM methods. [77] Another application of quan-
tum mechanical approaches with an embedding potential is the calculation
of phenomena in heterogeneous catalysis by combination of wave function
methods and embedded cluster models. [143;144] In such calculations the full
Fock embedding could improve the description of the critical interactions
between substrate and catalyst and thus provide insights into the underly-
ing catalytic mechanism.

An entirely different approach to the problem of the steep scaling of
computational cost in Hartree-Fock theory followed the idea to directly
address the computationally most demanding step, the evaluation of ex-
change contributions. By employment of a localized molecular orbital basis
the rapid decay of exchange interactions with an increasing interatomic
distance was exploited and a linear scaling algorithm for the computation
of the exchange matrix resulted. The corresponding local density fitting
(LDF) approach was already established and implemented for closed-shell
Hartree-Fock calculations. [9] This moved the focus to the application of
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the method to open-shell radical structures. Besides the restricted and
unrestricted formulations of the Hartree-Fock procedure, the LDF approxi-
mations were also applied to hybrid density functional approaches, making
use of the algorithm in the admixed contributions of exact Hartree-Fock
exchange. Different type of benchmark sets were employed to investi-
gate the limitations and the speed up gains of the local fitting of the
exchange matrix. Strongly delocalized systems provided insights into the
energy errors of the procedure in extreme cases. With an increase of the
π-character of the investigated structure, the LDF approximations became
less accurate as larger errors in the total energy description were found.
However, the energy difference to the non-local variant of the procedure
was below the intrinsic error of the density fitting approach itself even
for the most complicated case of the study. The corresponding structure
was employed to investigate the possibility of error control in terms of the
introduced thresholds for the fitting approximations. Indeed, by adjusting
the thresholds of sparsity of the localized molecular orbital coefficients and
the fitting domain size, the results were found to smoothly converge to the
conventional density fitting descriptions.
Another benchmark set consisted of RAFT initiation reactions which

provided a series of radical structures of different molecular size. The
application of LDF approximations in restricted and unrestricted formula-
tions of Hartree-Fock and hybrid DFT approaches yielded access to the
analysis of the errors in relative energies and the speed ups compared to
the non-local calculations. Furthermore, the benchmark set allowed for
the determination of the critical molecular size, upon which a favorable
scaling results from the applied LDF procedure. While for all systems
considered no significant errors in the relative electronic reaction energies
were obtained, the resulting speed ups varied among the radical structures.
The acceleration obtained by the local fitting of exchange increased with
the molecular system size. A comparable trend could be followed for an
expansion of the applied basis set within each benchmark structure. For
small and medium basis sets the critical system size of favorable scaling
could be identified to be located in a region between 36 and 50 atoms.
For larger radical structures the speed up gains of the local density fitting
were more pronounced reducing the computational effort compared to the
non-local variant by a factor of 2 and higher. This favorable scaling and the
possibility to control the resulting error via the adjustable fitting thresholds
allows for the accurate calculation of large structures within heavily re-
duced computational timings. Thus, the LDF approach enables the desired
properties of a low-scaling self-consistent field procedure and can provide
access to manifold applications in macromolecular and biomolecular studies.

Selectivity analysis of the cyanobacterial lipoxygenase CspLOX2 pro-
vided a problem of high complexity. In the dioxygenation reaction of a



98 6 Summary

polyunsaturated fatty acid the CspLOX2 enzyme covers the rare case of
bisallylic product formation with an unclear mechanism involved. Several
computational models and methods including the presented local density
fitting approach were applied to investigate the different proposed fac-
tors steering the product selectivity. A small radical substrate model was
employed to investigate the hypothesis of spin localization within the pen-
tadiene unit of the fatty acid radical leading to preferred dioxygen attack
at spin-enriched carbon centers. The results indicated the changes in spin
density distribution to be insufficient for control of the product formation.
However, the description of this small isolated molecule to represent the
substrate within the enzyme pocket was somewhat incomplete. The lacking
effects of the iron moiety and the surrounding amino acid residues were
taken into account by generation of a large model system of the active
site. Local density fitting approximations were employed in hybrid DFT
calculations to complete the analysis of spin density within the fatty acid
radical. Indeed, the results confirmed the indications of the small model,
according to which spin localization could be ruled out as suitable factor
of enzyme selectivity.
Relaxed surface scans with molecular oxygen approaching to the small

substrate model provided access to the activation barriers of dioxygen attack
at the different carbon centers. In contrast to the results of the spin density
analysis, it was found that slight substrate torsions are sufficient to allow
for competitive reaction pathways. This idea was followed by molecular
dynamics simulations of the entire enzyme structure, in order to sample the
conformational states of the substrate bound to the active site. However,
no differences in the preferred structure of the substrate radical could be
identified among the CspLOX2 wild type and the investigated set of its
point mutants. Indeed, the simulations assigned particular biochemical
relevance to structures with the involved pentadiene unit in a nearly planar
conformation, in which no reaction at the central bisallylic carbon atom
would occur due to the high activation barrier for oxygen attack. This
moved the focus of the enzyme selectivity analysis to the last remaining
factor proposed, the shielding of specific carbon sites in terms of steric
blockage.
A new model was developed to analyze the effect of steric shielding

within the lipoxygenase enzyme structure. On the basis of an equalization
plane through the substrate, a point in space in front of the reactive carbon
site was correlated to the formation of a van der Waals pre-complex in
the dioxygenation addition. The corresponding structure was identified
within the relaxed surface scans of the small substrate model. It was
proposed that the corresponding carbon atom is accessible for molecular
oxygen addition, if the space around the defined point is sufficient to fit the
dioxygen molecule and thus form the pre-complex, which is mandatory for
product formation. After application of an additional penalty to respect the
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differences in the activation barriers, the ratio of accessible reactive carbon
sites within the snapshots taken from molecular dynamics simulations could
be directly compared to experimental product distributions. This yielded
a remarkable agreement with the experimental product amounts for the
CspLOX2 wild type and its single amino acid mutants. Since the proposed
shielding model is solely based on the geometrical constitution around the
pentadiene unit of the substrate, the effect of steric blockage could be
identified as the main factor to the resulting enzyme selectivity.
A comprehensive picture of the CspLOX2 enzyme structure and reac-

tivivity has been recently published. [132] The presented theoretical study
of the enzyme and its mutants provided supplement to the experimental
data and yielded detailed insights into the underlying selectivity mecha-
nism. Former studies could already correlate the amount of steric shielding
with the resulting product distributions in soybean lipoxygenase [135] and
cyclooxygenase [130;136] structures, but were limited to a qualitative analy-
sis. The here proposed steric shielding model is the first in literature to
accurately reproduce experimental product distributions in lipoxygenase
enzyme structures. Its application to the abovementioned structures could
therefore conclusively clarify the impact of sterical blockage within the
corresponding enzymes in a quantitative manner.
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Appendix
This appendix contains the structures that are used in the context of this
work. On the end a small segment of the Perl script performing the steric
shielding analysis is provided. All geometries are either given as a Z-matrix
with distances in Å and angles and dihedrals in degrees or in the xyz-format
in Å.

A.1 FJK Benchmark Structures
The value of the dihedral angle torsion was varied from −180◦ to 180◦ in
steps of 10◦ to generate 36 conformers of each structure. The carbon-carbon
bond length ccdist changes values from 1.21 Å to 1.35 Å in steps of 0.01 Å
yielding 14 structures in the case of benzene.

Propane

C
C 1 1.522920
C 1 1.522920 2 111.937
H 1 1.090900 2 109.584 3 -121.792 0
H 1 1.090900 3 109.584 4 121.792 0
H 3 1.089990 1 110.739 2 torsion 0
H 3 1.089990 1 110.739 6 122.002 0
H 3 1.089990 1 110.739 6 -122.002 0
H 2 1.089990 1 110.739 3 180.000 0
H 2 1.089990 1 110.739 9 122.002 0
H 2 1.089990 1 110.739 9 -122.002 0

Butane

C
C 1 1.52282164
H 2 1.08984935 1 110.75975859
H 2 1.08984043 1 110.73920579 3 119.22506203 0
H 2 1.08871157 1 111.79836024 4 120.32473226 0
H 1 1.09236168 2 109.78094223 3 180.00000000 0
C 1 1.52315630 2 112.53778388 6 121.52823311 0
H 1 1.09229539 2 109.84823056 6 243.26904112 0
C 7 1.52280262 1 112.57729782 2 torsion 0
H 7 1.09237474 1 109.05618901 9 122.11129158 0
H 7 1.09234070 1 109.07813340 9 237.87345850 0
H 9 1.08875772 7 111.74886510 1 180.00000000 0
H 9 1.08981992 7 110.77861326 12 120.34244808 0
H 9 1.08982181 7 110.77041179 12 239.70975832 0
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Pentane

C
C 1 1.52279474
H 2 1.09228842 1 109.12041946
H 2 1.09229385 1 109.10399495 3 115.83501208 0
C 2 1.52305937 1 112.55100840 4 122.06703299 0
H 1 1.09395312 2 109.25155141 3 180.00000000 0
C 1 1.52283039 2 113.27302721 6 121.99822002 0
H 1 1.09391896 2 109.28094890 6 244.08678334 0
C 7 1.52308313 1 112.54554275 2 torsion 0
H 7 1.09229096 1 109.09465558 9 122.04873048 0
H 7 1.09226666 1 109.13539229 9 237.89820750 0
H 9 1.08881805 7 111.74038355 1 180.00000000 0
H 9 1.08985070 7 110.78072074 12 120.33673597 0
H 9 1.08982807 7 110.76512023 12 239.70423779 0
H 5 1.08881770 2 111.74037753 1 180.00000000 0
H 5 1.08984139 2 110.76638037 15 120.30651684 0
H 5 1.08983554 2 110.78088385 15 239.67472190 0

Hexane

C
C 1 1.52307578
H 2 1.08988719 1 110.75716726
H 2 1.08988864 1 110.74274288 3 119.23023274 0
H 2 1.08879584 1 111.79147161 4 120.32608708 0
H 1 1.09227398 2 109.74861288 3 180.00000000 0
C 1 1.52314355 2 112.50258044 6 121.57992615 0
H 1 1.09223795 2 109.79430021 6 243.30280907 0
C 7 1.52252274 1 113.24398661 2 180.00000000 0
H 7 1.09383652 1 109.22844732 9 122.08597463 0
H 7 1.09383600 1 109.21557768 9 237.95726873 0
C 9 1.52304385 7 113.24608933 1 torsion 0
H 9 1.09382984 7 109.30568402 12 122.01560878 0
H 9 1.09383943 7 109.31654097 12 237.98609759 0
C 12 1.52306149 9 112.53860532 7 180.00000000 0
H 12 1.09228385 9 109.11626397 15 122.07881168 0
H 12 1.09229498 9 109.11611557 15 237.92454248 0
H 15 1.08884037 12 111.74216741 9 180.00000000 0
H 15 1.08986240 12 110.77388537 18 120.31681448 0
H 15 1.08986937 12 110.77461281 18 239.68444924 0

Benzene

C
H 1 1.08142068
C 1 ccdist 2 120.00001756
C 3 ccdist 1 120.00001756 2 180.00000000 0
C 4 ccdist 3 120.00001756 1 0.00000000 0
C 5 ccdist 4 120.00001756 3 0.00000000 0
C 6 ccdist 5 120.00001756 4 0.00000000 0
H 3 1.08142068 1 120.00001756 4 180.00000000 0
H 4 1.08142068 3 120.00001756 5 180.00000000 0
H 5 1.08142068 4 120.00001756 6 180.00000000 0
H 6 1.08142068 5 120.00001756 4 180.00000000 0
H 7 1.08142068 6 120.00001756 5 180.00000000 0
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Benzophenone

C
C 1 1.405960
C 2 1.407008 1 119.000
C 3 1.394016 2 120.579 1 1.523 0
C 4 1.400643 3 120.010 2 -1.278 0
C 5 1.397943 4 119.907 3 0.077 0
C 2 1.505041 3 117.575 4 177.355 0
O 7 1.219999 2 119.660 3 -26.323 0
C 7 1.504740 2 120.639 3 153.624 0
C 9 1.405967 7 123.231 2 torsion 0
C 10 1.398152 9 120.360 7 -176.174 0
C 11 1.397916 10 120.128 9 -0.610 0
C 12 1.400644 11 119.900 10 0.929 0
C 13 1.394060 12 120.022 11 0.028 0
H 10 1.091729 9 120.063 14 177.641 0
H 11 1.093195 10 119.783 9 179.135 0
H 12 1.093455 11 120.031 10 -179.546 0
H 13 1.093272 12 120.028 11 179.565 0
H 14 1.091994 9 118.348 10 -178.117 0
H 3 1.092009 2 118.271 1 -178.448 0
H 4 1.093261 3 119.949 2 179.095 0
H 5 1.093447 4 120.052 3 -179.591 0
H 6 1.093260 5 120.086 4 -178.968 0
H 1 1.091763 2 120.075 3 177.862 0

Alanine dipeptide

N
C 1 1.46942
C 2 1.53680 1 109.7324
N 3 1.33663 2 116.5159 1 torsion 0
O 3 1.22748 2 121.0285 4 122.1424 -1
H 1 1.01295 2 117.4644 3 7.8425 0
C 2 1.53776 1 109.5284 3 111.1526 1
H 2 1.09189 1 109.4164 3 108.0257 -1
H 7 1.09098 2 109.7353 1 -62.8141 0
H 7 1.09069 2 109.5211 9 108.5271 1
H 7 1.09022 2 110.6541 9 109.0311 -1
C 1 1.33104 2 124.5789 6 116.7019 1
C 4 1.45966 3 121.5433 2 145.7481 0
C 13 1.54433 4 109.4865 3 -74.6413 0
O 14 1.23475 13 120.1538 4 -23.5780 0
N 14 1.33842 13 117.2575 15 122.5641 1
H 4 1.00654 3 116.8378 13 116.4177 1
C 13 1.53419 4 108.5194 14 111.5678 1
H 13 1.09174 4 109.5160 14 108.7620 -1
H 18 1.09098 13 109.7668 4 -58.8618 0
H 18 1.09049 13 109.8419 20 108.8072 1
H 18 1.09121 13 110.0861 20 109.3159 -1
O 12 1.22338 1 123.7235 2 -7.0745 0
C 12 1.51056 1 116.1613 23 120.1151 -1
H 24 1.08790 12 109.2866 1 63.6287 0
H 24 1.08878 12 109.2772 25 109.8289 1
H 24 1.08905 12 108.9498 25 109.7775 -1
C 16 1.46183 14 123.9658 13 179.7916 0
H 16 1.00806 14 117.9663 28 118.0400 -1
H 28 1.09204 16 109.6765 14 62.6868 0
H 28 1.09093 16 110.3255 30 109.1838 -1
H 28 1.09196 16 109.8176 30 108.5696 1
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A.2 Embedding Analysis Structures
For the water dimer the value of ddim was varied from 1.50 Å to 3.50 Å in
steps of 0.1 Å to obtain the structures used for the creation of Figure 3.6.
In the QM/MM structures the atoms of the calculated unit are colored in
red, while the remaining structure was used for embedding.

Water dimer

O 1
H 1 0.942
H 1 0.948 2 105.937
O 3 ddim 1 171.024 2 172.7 0
H 4 0.944 3 107.134 1 63.4 0
H 4 0.944 3 106.787 1 309.9 0

CO2 crystal

33

C -0.000014 -0.000014 -0.000014
O 0.675400 0.675403 0.675406
O -0.675386 -0.675389 -0.675391
C -2.646125 -0.000015 2.645965
O -3.321546 -0.675433 3.321380
O -1.970748 0.675359 1.970593
C 0.083784 2.729829 2.729733
O -0.591637 3.405246 2.054319
O 0.759161 2.054454 3.405105
C 2.729902 0.083776 2.729713
O 2.054482 -0.591642 3.405128
O 3.405279 0.759150 2.054341
C -0.000007 -2.646126 2.646002
O -0.675427 -1.970708 1.970587
O 0.675370 -3.321500 3.321374
C -2.646133 2.646096 0.000006
O -1.970712 1.970679 -0.675409
O -3.321510 3.321470 0.675378
C 2.729895 2.729887 0.083754
O 3.405315 2.054470 -0.591661
O 2.054518 3.405261 0.759126
C 2.646104 -2.646067 0.000022
O 3.321524 -3.321485 -0.675392
O 1.970727 -1.970693 0.675394
C -2.729924 -2.729858 -0.083725
O -2.054503 -3.405276 -0.759140
O -3.405301 -2.054484 0.591647
C -2.729873 -0.083747 -2.729741
O -3.405294 -0.759164 -2.054327
O -2.054496 0.591627 -3.405113
C 0.000036 2.646097 -2.645974
O -0.675385 3.321514 -3.321388
O 0.675413 1.970723 -1.970601
C 2.646154 0.000044 -2.645994
O 1.970734 -0.675373 -1.970579
O 3.321531 0.675418 -3.321366
C -0.083755 -2.729857 -2.729705
O -0.759175 -2.054440 -3.405119
O 0.591622 -3.405232 -2.054333

Cyanamide crystal

50

N 0.081468 0.338558 -0.455389
N 0.009514 -0.968371 1.671975
C 0.017478 -0.368052 0.661043
H 0.485826 -0.088320 -1.288184
H -0.594285 1.086185 -0.589446
N 1.435318 3.819962 -0.577742
N 1.507273 2.513034 1.549622
C 1.499308 3.113352 0.538690
H 1.030960 3.393084 -1.410537
H 2.111071 4.567590 -0.711799
N 1.407215 -3.126805 -0.386825
N 1.479169 -4.433734 1.740539
C 1.471205 -3.833415 0.729607
H 1.002857 -3.553683 -1.219621
H 2.082968 -2.379178 -0.520882
N -3.261691 0.270953 2.117692
N -3.333645 -1.035975 -0.009672
C -3.325681 -0.435657 1.001260
H -2.857333 -0.155925 2.950488
H -3.937444 1.018581 2.251749
N 3.366460 0.306331 1.999066
N 3.294506 -1.000598 -0.128297
C 3.302470 -0.400280 0.882634
H 3.770818 -0.120548 2.831862
H 2.690708 1.053958 2.133123
N -1.850420 -2.050051 -2.197938
N -1.778465 -0.743122 -4.325302
C -1.786429 -1.343441 -3.314370
H -2.254778 -1.623173 -1.365142
H -1.174667 -2.797678 -2.063881
N -1.907841 3.752358 1.995339
N -1.835886 2.445429 -0.132025
C -1.843850 3.045748 0.878907
H -2.312199 3.325480 2.828135
H -1.232088 4.499985 2.129396
N -1.935944 -3.194410 2.186255
N -1.863989 -4.501338 0.058891
C -1.871954 -3.901020 1.069823
H -2.340302 -3.621288 3.019051
H -1.260191 -2.446782 2.320312
N 1.335336 -2.252601 3.904675
N 1.407290 -0.945672 6.032039
C 1.399326 -1.545991 5.021107
H 0.930978 -1.825723 3.071879
H 2.011088 -3.000228 3.770618
N 1.492739 -1.982446 -4.771019
N 1.564693 -0.675518 -2.643655
C 1.556729 -1.275836 -3.654587
H 1.088381 -1.555568 -5.603815
H 2.168492 -2.730073 -4.905076
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Ethylene glycol in water

55

C 0.55600 0.51500 -0.00000
C -0.55600 -0.51500 -0.00000
O -1.79500 0.19700 -0.00000
H -2.51600 -0.44400 -0.00000
O 1.79500 -0.19700 0.00000
H 2.51600 0.44400 0.00000
H -0.46600 -1.15100 -0.88800
H -0.46600 -1.15100 0.88800
H 0.46600 1.15100 -0.88800
H 0.46600 1.15100 0.88800
O 1.91600 3.49200 1.62700
H 2.43000 4.20000 1.23800
H 1.58400 3.85800 2.44700
O 0.77700 -1.28000 4.16400
H 1.55800 -1.09900 3.64000
H 0.11300 -0.68500 3.81700
O -5.43800 1.13500 -0.75200
H -5.44300 1.26400 0.19600
H -4.62300 0.66400 -0.92600
O -1.66600 2.86700 1.14500
H -0.97400 3.52400 1.06600
H -1.49500 2.25100 0.43300
O -2.81800 0.62900 -2.32100
H -2.33200 0.77400 -1.50900
H -3.22400 1.47400 -2.51100
O -0.23200 -0.28200 -3.53400
H -0.74700 0.49700 -3.74300
H -0.28700 -0.82400 -4.32100
O 2.79100 -1.09000 2.51200
H 2.55700 -0.99600 1.58900
H 3.36400 -0.34500 2.69200
O 3.15100 1.76300 -1.48700
H 3.95200 1.28000 -1.28000
H 3.45700 2.55900 -1.92100
O -1.93700 -2.41900 -2.88900
H -1.00300 -2.60000 -2.78600
H -2.01600 -1.47500 -2.75100
O 1.71800 -2.76500 -0.85700
H 1.32600 -2.87900 -1.72200
H 1.56700 -1.84300 -0.64500
O 4.10000 1.34600 1.89600
H 3.67100 2.15600 2.17200
H 4.84200 1.63600 1.36500
O 5.23900 0.15100 -1.01600
H 5.99900 0.44100 -1.51900
H 5.59100 -0.48700 -0.39500
O -3.80600 -1.38400 0.33100
H -4.17400 -0.92200 1.08400
H -4.56400 -1.60400 -0.20900
O 1.03300 3.42700 -2.65800
H 1.87200 3.78100 -2.95200
H 1.26600 2.66100 -2.13300
O -0.78500 1.10100 3.85500
H -1.45000 1.17300 3.17000
H -0.56200 2.00700 4.06900

NH3 crystal

148

N -0.181721 -0.181727 -0.181722
H 0.674578 0.141730 -0.634585
H 0.141729 -0.634584 0.674576
H -0.634586 0.674581 0.141730
N 0.274291 -2.129822 2.225040
H 0.727154 -2.986121 2.548497
H -0.582007 -2.453272 1.772184
H -0.049161 -1.676957 3.081348
N -2.129818 2.225046 0.274291
H -2.453275 1.772183 -0.582008
H -1.676962 3.081344 -0.049159
H -2.986126 2.548498 0.727155
N -2.200809 -2.654171 0.203298
H -2.524266 -3.107033 -0.653001
H -1.747952 -1.797872 -0.120152
H -3.057117 -2.330718 0.656163
N -2.654171 0.203304 -2.200813
H -1.797872 -0.120153 -1.747951
H -2.330722 0.656161 -3.057112
H -3.107036 -0.653004 -2.524266
N 2.225048 0.274295 -2.129822
H 3.081347 -0.049162 -1.676959
H 2.548498 0.727152 -2.986121
H 1.772183 -0.582013 -2.453274
N 0.203300 -2.200815 -2.654177
H 0.656162 -3.057114 -2.330720
H -0.652999 -2.524264 -3.107034
H -0.120153 -1.747950 -1.797869
N -2.583180 0.274297 2.678404
H -1.726881 -0.049160 3.131267
H -2.259730 0.727153 1.822105
H -3.036045 -0.582011 2.354951
N 2.296039 0.345288 2.749396
H 3.152338 0.021831 3.202258
H 2.619489 0.798144 1.893097
H 1.843175 -0.511020 2.425943
N 0.345282 2.749394 2.296033
H 0.798145 1.893096 2.619490
H -0.511016 2.425945 1.843177
H 0.021830 3.202259 3.152341
N 2.749401 2.296037 0.345282
H 2.425944 1.843174 -0.511017
H 3.202258 3.152335 0.021832
H 1.893093 2.619489 0.798147
N 2.678410 -2.583180 0.274289
H 2.354953 -3.036042 -0.582010
H 3.131267 -1.726881 -0.049160
H 1.822102 -2.259727 0.727154
N 0.274291 2.678402 -2.583184
H 0.727153 1.822103 -2.259728
H -0.582008 2.354952 -3.036041
H -0.049162 3.131266 -1.726876
N -0.110729 -0.110734 4.697495
H 0.745569 0.212722 4.244633
H 0.212720 -0.563591 5.553794
H -0.563594 0.745574 5.020948
N -5.060940 -0.252718 -0.252714
H -4.204641 0.070739 -0.705576
H -4.737490 -0.705575 0.603585
H -5.513805 0.603590 0.070739
N -0.110730 4.697490 -0.110729
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NH3 crystal (cont.)

H 0.745569 5.020946 -0.563592
H 0.212720 4.244633 0.745569
H -0.563595 5.553797 0.212723
N 4.697498 -0.110736 -0.110731
H 5.553797 0.212720 -0.563593
H 5.020948 -0.563593 0.745568
H 4.244633 0.745572 0.212722
N -0.252712 -5.060943 -0.252715
H 0.603587 -4.737487 -0.705578
H 0.070738 -5.513800 0.603584
H -0.705577 -4.204635 0.070738
N -0.252712 -0.252720 -5.060940
H 0.603587 0.070737 -5.513802
H 0.070737 -0.705576 -4.204641
H -0.705577 0.603588 -4.737487
N -4.604928 -2.200813 2.154049
H -4.152065 -3.057112 2.477505
H -5.461226 -2.524262 1.701192
H -4.928380 -1.747948 3.010357
N 2.154057 -4.604922 -2.200815
H 3.010356 -4.928378 -1.747952
H 2.477507 -4.152065 -3.057113
H 1.701192 -5.461230 -2.524267
N -2.725162 -4.675913 -2.271806
H -1.868863 -4.999369 -1.818944
H -2.401712 -4.223056 -3.128105
H -3.178027 -5.532220 -2.595259
N -4.675919 -2.271806 -2.725168
H -4.223057 -3.128105 -2.401712
H -5.532218 -2.595255 -3.178025
H -4.999372 -1.818941 -1.868860
N -2.200810 2.154053 -4.604927
H -2.524266 1.701190 -5.461226
H -1.747953 3.010351 -4.928376
H -3.057117 2.477505 -4.152062
N -2.271801 -2.725164 -4.675920
H -2.595257 -3.178026 -5.532219
H -1.818944 -1.868865 -4.999369
H -3.128108 -2.401711 -4.223055
N 2.225048 -4.533929 2.678403
H 3.081347 -4.857385 3.131265
H 2.548498 -4.081072 1.822104
H 1.772184 -5.390237 2.354950
N -2.654171 -4.604920 2.607411
H -1.797872 -4.928376 3.060274
H -2.330721 -4.152063 1.751113
H -3.107035 -5.461228 2.283959
N -4.533937 2.678403 2.225042
H -4.081074 1.822105 2.548498
H -5.390235 2.354954 1.772185
H -4.857389 3.131268 3.081350
N -4.604928 2.607411 -2.654175
H -4.152066 1.751112 -2.330719
H -5.461227 2.283961 -3.107032
H -4.928381 3.060275 -1.797867
N 2.678409 2.225044 -4.533935
H 2.354953 1.772181 -5.390234
H 3.131266 3.081342 -4.857385
H 1.822102 2.548496 -4.081071
N 2.607419 -2.654173 -4.604928
H 2.283962 -3.107035 -5.461227
H 3.060275 -1.797874 -4.928378
H 1.751111 -2.330720 -4.152063

N -2.058827 2.296038 5.153508
H -2.382283 1.843176 4.297209
H -1.605970 3.152337 4.830058
H -2.915135 2.619491 5.606373
N -2.129818 -2.583178 5.082515
H -2.453274 -3.036040 4.226216
H -1.676961 -1.726879 4.759065
H -2.986126 -2.259725 5.535380
N 5.153510 -2.058831 2.296032
H 5.606373 -2.915130 2.619488
H 4.297212 -2.382281 1.843175
H 4.830058 -1.605966 3.152340
N -2.583180 5.082520 -2.129820
H -1.726881 4.759064 -1.676958
H -2.259731 5.535377 -2.986119
H -3.036045 4.226212 -2.453273
N 2.296039 5.153511 -2.058829
H 3.152338 4.830055 -1.605966
H 2.619488 5.606368 -2.915128
H 1.843174 4.297203 -2.382282
N 5.082519 -2.129824 -2.583186
H 5.535381 -2.986123 -2.259729
H 4.226220 -2.453273 -3.036042
H 4.759066 -1.676959 -1.726878



Appendix 107

Formamide crystal

96

N 1.286359 2.999875 -1.104094
C 0.242742 3.097622 -0.275868
O -0.802537 3.741221 -0.477515
H 2.097372 2.417793 -0.802447
H 1.349389 3.508908 -2.011166
H 0.390106 2.512846 0.657860
N -0.815909 5.044510 -2.806180
O 1.273682 4.302464 -3.432920
C 0.227952 4.945464 -3.633907
H -1.626678 5.625292 -3.107328
H -0.878695 4.534177 -1.898608
H 0.081039 5.530838 -4.568295
O -1.188677 1.022327 1.723869
C -2.234408 1.665327 1.522882
N -3.279280 1.763388 2.350536
N -0.750134 1.611767 -3.660122
C -1.794446 1.710214 -2.831735
O -2.839725 2.353813 -3.033383
N -2.852853 3.655802 -5.361547
C -1.809236 3.558055 -6.189774
O -0.763505 2.915056 -5.988787
N -4.249659 3.778488 -1.195625
C -4.494403 4.980140 -1.725514
O -5.040465 5.941515 -1.155370
O 3.473971 0.714162 -5.310272
C 2.928360 1.676136 -4.740789
N 2.683616 2.877789 -5.270678
O -2.726891 6.543505 -3.754180
C -3.272954 7.504880 -3.184036
N -3.517833 8.707620 -3.713032
O 3.198037 1.500180 -0.156255
C 3.743648 0.538205 -0.725738
N 3.988844 -0.662848 -0.196509
N -2.212471 5.165896 1.360243
C -2.457215 6.367548 0.830354
O -3.003972 7.329624 1.400658
N -1.787298 7.058625 -6.352414
C -2.032042 8.260277 -6.882303
O -2.577653 9.222251 -6.312820
N 2.257749 0.985761 2.442139
C 2.503187 -0.216592 2.971867
O 3.048798 -1.178566 2.402384
O 5.511159 2.101570 -2.754404
C 4.965548 3.063544 -2.184921
N 4.720669 4.266284 -2.713916
O 3.311430 5.690258 -0.876320
C 2.264445 6.333572 -1.077879
N 1.221279 6.431918 -0.250313
O 1.233956 5.129330 2.078513
C 2.280381 4.485629 2.279339
N 3.324106 4.387670 1.452506
O 1.659824 7.021357 -5.634305
C 2.706114 6.378744 -5.432585
N 3.749732 6.280998 -6.260811
H 4.134424 3.806288 1.754315
H 3.386577 4.896316 0.544701
H 2.427853 3.900641 3.214461
H 0.060184 1.030385 -3.358314

H -0.688358 2.121114 -4.567767
H -1.647082 1.125439 -1.898007
H 0.409815 7.013402 -0.551300
H 1.158357 5.922672 0.658153
H 2.117533 6.918947 -2.012267
H 4.249575 4.977292 -2.115380
H 5.015934 4.540142 -3.675628
H 4.610358 2.986580 -1.133957
H 4.460181 -1.375156 -0.794546
H 3.693262 -0.938392 0.764969
H 4.099850 0.616155 -1.776629
H -1.741377 4.454888 0.761706
H -2.507600 4.890951 2.321060
H -2.101464 6.444899 -0.219877
H -4.089598 2.344769 2.048728
H -3.341055 1.254040 3.258181
H -2.382332 2.249716 0.588421
H 1.786654 1.696769 3.040675
H 2.553573 1.260005 1.481160
H 2.146985 -0.294542 4.022759
H 2.211827 3.589498 -4.671981
H 2.978746 3.152734 -6.231496
H 2.572610 1.598786 -3.690558
H -3.778429 3.066392 -1.795055
H -4.544788 3.503543 -0.234807
H -4.138653 5.057491 -2.775744
H -3.664426 4.237498 -5.663928
H -2.915883 3.146769 -4.454475
H -1.956148 4.143430 -7.124162
H 4.560744 5.698915 -5.959164
H 3.812202 6.789644 -7.168616
H 2.853027 5.793369 -4.498196
H -3.988927 9.418628 -3.114495
H -3.222568 8.981478 -4.674744
H -3.628144 7.427916 -2.133073
H -1.315509 6.346916 -6.951111
H -2.081868 6.784066 -5.390863
H -1.676292 8.337628 -7.932533
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Butanone in toluene

223

C 0.06600 0.88800 -0.37900
C -0.86900 1.66300 0.52200
C 1.48800 0.70700 0.11900
H -0.47300 2.66700 0.69900
H -1.85600 1.73200 0.06900
H -0.94300 1.17400 1.49700
C 2.38200 -0.08100 -0.83000
H 3.38800 -0.17800 -0.41900
H 1.97900 -1.08000 -1.00200
H 2.44900 0.41400 -1.80000
H 1.89700 1.70500 0.31300
H 1.43200 0.22700 1.10300
O -0.30400 0.43700 -1.44200
C -1.81600 -2.25800 2.45700
C -2.82100 -1.31800 2.71600
C -3.71200 -0.94900 1.70100
C -3.59900 -1.52000 0.42800
C -2.59500 -2.46000 0.16900
C -1.70300 -2.83000 1.18400
H -2.90800 -0.87400 3.70600
H -4.49300 -0.21700 1.90200
H -4.29200 -1.23300 -0.36100
H -2.50700 -2.90500 -0.82100
H -0.92200 -3.56100 0.98200
C -0.89300 -2.64100 3.50800
H -1.13500 -2.09700 4.41900
H -0.97500 -3.71100 3.69100
H 0.12400 -2.40200 3.20100
C -7.75700 -0.97300 1.70200
C -7.35200 0.16300 0.99000
C -8.14300 1.31700 1.00500
C -9.33900 1.33700 1.73300
C -9.74400 0.20100 2.44400
C -8.95300 -0.95300 2.42900
H -6.42200 0.14700 0.42400
H -7.82800 2.20100 0.45100
H -9.95500 2.23500 1.74500
H -10.67400 0.21700 3.01000
H -9.26800 -1.83700 2.98300
C -6.93700 -2.16900 1.68500
H -6.05500 -1.99600 1.07200
H -6.63100 -2.41300 2.70200
H -7.51100 -2.99700 1.27100
C -6.82100 -2.16000 -2.40700
C -5.90200 -1.70400 -3.36000
C -6.08600 -0.45800 -3.97000
C -7.18900 0.33300 -3.62800
C -8.10800 -0.12200 -2.67500
C -7.92400 -1.36900 -2.06500
H -5.04400 -2.32000 -3.62700
H -5.37100 -0.10400 -4.71200
H -7.33200 1.30300 -4.10200
H -8.96600 0.49300 -2.40800
H -8.63900 -1.72300 -1.32400
C -6.63000 -3.45100 -1.77500
H -5.72600 -3.91600 -2.16600
H -6.53400 -3.31700 -0.69900
H -7.48700 -4.08900 -1.98700
C 1.92700 3.67300 -3.97800
C 0.53200 3.56300 -4.02700
C -0.23100 3.81900 -2.88200

C 0.40100 4.18600 -1.68700
C 1.79600 4.29600 -1.63800
C 2.55900 4.04000 -2.78400
H 0.04100 3.27800 -4.95600
H -1.31600 3.73300 -2.92000
H -0.19300 4.38500 -0.79600
H 2.28700 4.58100 -0.70900
H 3.64400 4.12600 -2.74600
C 2.71800 3.40800 -5.16400
H 2.05700 3.14000 -5.98800
H 3.28500 4.29900 -5.42900
H 3.40400 2.58600 -4.96700
C 3.35600 3.41500 2.47300
C 3.91100 3.11500 3.72400
C 3.08100 2.97800 4.84300
C 1.69700 3.14000 4.71200
C 1.14200 3.44000 3.46200
C 1.97200 3.57700 2.34300
H 4.98800 2.98900 3.82500
H 3.51200 2.74500 5.81500
H 1.05100 3.03400 5.58200
H 0.06500 3.56600 3.36000
H 1.54000 3.81000 1.37000
C 4.21600 3.55700 1.31400
H 5.25200 3.39700 1.60900
H 3.93500 2.82100 0.56200
H 4.10600 4.55900 0.90200
C -4.84800 1.11100 4.67200
C -5.34500 1.85200 3.59300
C -4.55400 2.84400 3.00100
C -3.26500 3.09400 3.48700
C -2.76800 2.35300 4.56600
C -3.55900 1.36100 5.15800
H -6.34800 1.65700 3.21500
H -4.94100 3.42000 2.16200
H -2.65000 3.86500 3.02700
H -1.76500 2.54800 4.94400
H -3.17200 0.78500 5.99700
C -5.66700 0.08400 5.28500
H -6.62900 0.03500 4.77600
H -5.16400 -0.87800 5.20400
H -5.82500 0.32400 6.33500
C 5.46800 -4.12400 -4.31300
C 4.18400 -4.22000 -4.86200
C 3.07200 -3.81400 -4.11500
C 3.24300 -3.31300 -2.81900
C 4.52800 -3.21700 -2.27000
C 5.64000 -3.62300 -3.01700
H 4.05000 -4.61000 -5.87000
H 2.07300 -3.88900 -4.54200
H 2.37800 -2.99800 -2.23800
H 4.66200 -2.82800 -1.26200
H 6.63900 -3.54900 -2.59000
C 6.62100 -4.54400 -5.08700
H 6.29200 -4.90200 -6.06100
H 7.29600 -3.70000 -5.21800
H 7.13800 -5.34500 -4.56100
C 1.70300 -1.80900 6.97400
C 1.54900 -1.26900 8.25700
C 0.94100 -0.01900 8.42200
C 0.48700 0.69100 7.30400
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Butanone in toluene (cont.)

C 0.64100 0.15200 6.02200
C 1.24900 -1.09800 5.85700
H 1.90300 -1.82200 9.12600
H 0.82200 0.40100 9.42000
H 0.01400 1.66400 7.43300
H 0.28800 0.70400 5.15300
H 1.36900 -1.51800 4.85900
C 2.33300 -3.10400 6.80300
H 2.61800 -3.50000 7.77600
H 1.63400 -3.78700 6.32300
H 3.22000 -2.99700 6.18100
C 2.31500 -3.93400 1.98000
C 2.20300 -4.91700 2.97100
C 2.00900 -6.25600 2.61000
C 1.92600 -6.61200 1.25800
C 2.03800 -5.62900 0.26800
C 2.23200 -4.29000 0.62800
H 2.26800 -4.64100 4.02200
H 1.92200 -7.02100 3.38000
H 1.77500 -7.65300 0.97800
H 1.97300 -5.90500 -0.78400
H 2.31900 -3.52500 -0.14200
C 2.51600 -2.54800 2.35400
H 2.55400 -2.46600 3.43900
H 3.45300 -2.19000 1.93000
H 1.69200 -1.94600 1.97300
C -5.71800 -5.76400 1.03100
C -6.33300 -5.44200 2.24700
C -7.53700 -6.05800 2.60700
C -8.12700 -6.99600 1.75200
C -7.51300 -7.31800 0.53500
C -6.30800 -6.70200 0.17500
H -5.87300 -4.71300 2.91300
H -8.01500 -5.80800 3.55300
H -9.06400 -7.47500 2.03200
H -7.97200 -8.04700 -0.13000
H -5.83100 -6.95200 -0.77100
C -4.47100 -5.12600 0.65800
H -4.16900 -4.43300 1.44100
H -3.70000 -5.88500 0.52700
H -4.60600 -4.58200 -0.27600
C -1.40300 -1.02300 -4.87200
C -0.64300 -1.79800 -3.98900
C -0.71400 -3.19500 -4.04400
C -1.54600 -3.81700 -4.98300
C -2.30600 -3.04200 -5.86600
C -2.23500 -1.64500 -5.81100
H 0.00500 -1.31400 -3.25900
H -0.12200 -3.79800 -3.35700
H -1.60100 -4.90400 -5.02600
H -2.95400 -3.52600 -6.59600
H -2.82700 -1.04200 -6.49800
C -1.32900 0.42400 -4.81500
H -0.63700 0.72100 -4.02900
H -0.97900 0.80800 -5.77200
H -2.31700 0.83000 -4.60100
C -3.83000 -1.88800 7.45400
C -3.29900 -0.84200 8.21900
C -4.10300 -0.18300 9.15600
C -5.43800 -0.56900 9.32900
C -5.96800 -1.61500 8.56400
C -5.16400 -2.27500 7.62700
H -2.26100 -0.54200 8.08500

H -3.69100 0.63100 9.75100
H -6.06300 -0.05700 10.05800
H -7.00600 -1.91600 8.69900
H -5.57700 -3.08800 7.03200
C -2.99700 -2.57100 6.48300
H -1.99900 -2.13600 6.49100
H -2.93400 -3.62800 6.73900
H -3.43300 -2.46300 5.49100
C -6.51400 4.16200 -1.41100
C -5.69100 5.22200 -1.01300
C -4.31300 5.02200 -0.86600
C -3.75800 3.76100 -1.11600
C -4.58100 2.70100 -1.51400
C -5.95900 2.90100 -1.66100
H -6.12200 6.20300 -0.81800
H -3.67300 5.84700 -0.55600
H -2.68600 3.60500 -1.00200
H -4.14900 1.72000 -1.70900
H -6.59900 2.07600 -1.97100
C -7.94100 4.36900 -1.56300
H -8.18400 5.40400 -1.32600
H -8.23100 4.15300 -2.59000
H -8.47800 3.70600 -0.88700
C -2.03100 -7.78600 -1.38600
C -2.48500 -7.63400 -2.70200
C -3.62600 -8.32200 -3.13200
C -4.31200 -9.16200 -2.24700
C -3.85800 -9.31400 -0.93200
C -2.71700 -8.62600 -0.50100
H -1.95100 -6.98000 -3.39000
H -3.97900 -8.20400 -4.15500
H -5.20000 -9.69700 -2.58200
H -4.39200 -9.96700 -0.24300
H -2.36400 -8.74400 0.52200
C -0.84900 -7.07300 -0.94000
H -0.45500 -6.47500 -1.76100
H -1.11100 -6.42100 -0.10800
H -0.09400 -7.78800 -0.61800
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A.3 CspLOX2 Model System Structures
Given is the planar structure of the 2,5-heptadienyl model with oxygen
approaching to C13. The atoms of the substrate (small model) in the large
model structure of the CspLOX2 wild type active site are shown in red,
the additional ones from the iron moiety (medium model) in blue.

2,5-heptadienyl + O2

20

C 16.978013 7.777701 24.683949
C 16.479215 9.176118 24.508856
C 15.137170 9.409339 24.328861
C 14.225898 8.324404 24.309190
C 12.841853 8.564924 24.123562
C 11.958234 7.512912 24.104488
C 12.457031 6.114495 24.279580
H 17.698113 7.514463 23.888218
H 17.486095 7.660451 25.658181
H 16.171582 7.023040 24.649595
H 13.552280 6.059435 24.415317
H 11.999372 5.641962 25.167435
H 12.211389 5.495973 23.397472
H 10.888700 7.698776 23.961043
H 17.183410 10.014512 24.524057
H 12.476513 9.589182 23.995318
H 14.771830 10.433598 24.200617
H 14.590571 7.302016 24.437201
O 16.313260 9.290388 25.894281
O 17.617686 9.093809 26.565271

large CspLOX2 model

294

C 24.315 54.378 64.407
C 24.113 53.191 63.459
C 25.249 53.021 62.375
C 25.047 51.940 61.283
C 23.892 52.185 60.402
C 23.921 51.477 59.087
C 24.413 50.300 58.631
C 24.690 49.057 59.345
C 24.616 47.848 58.547
C 24.986 46.540 58.801
C 25.491 45.880 60.066
C 25.301 46.809 61.263
C 25.687 46.174 62.602
C 27.252 46.248 62.744
C 27.743 45.951 64.151
C 27.733 44.451 64.535
C 28.649 44.186 65.715
C 28.182 42.898 66.415
O 28.323 41.816 65.810
O 27.702 42.994 67.552
H 23.914 52.265 63.999
H 23.157 53.481 63.023
H 25.357 54.004 61.915
H 26.206 52.728 62.808
H 25.924 52.020 60.640
H 24.947 51.056 61.913
H 22.995 51.915 60.959
H 23.875 53.263 60.241
H 23.349 51.920 58.285
H 24.385 50.157 57.551
H 24.206 48.946 60.304
H 24.102 48.010 57.600
H 24.345 45.943 58.169
H 25.060 44.915 60.331
H 26.542 45.711 59.833
H 24.259 47.120 61.335
H 25.847 47.744 61.137
H 25.419 45.118 62.630
H 25.231 46.842 63.333
H 27.617 47.247 62.502
H 27.641 45.515 62.037
H 27.390 46.697 64.864
H 28.806 46.190 64.151
H 28.023 43.847 63.676
H 26.761 44.067 64.845
H 28.730 45.035 66.394
H 29.617 43.956 65.270
H 25.301 54.427 64.868
H 23.516 54.539 65.130
H 24.280 55.311 63.844
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large model (cont.)

Fe 27.361 50.230 55.309
O 26.960 49.884 57.219
H 27.523 49.207 57.594
H 26.190 49.896 57.788
C 29.018 47.800 55.914
O 28.471 48.627 55.153
O 28.706 47.799 57.099
N 29.621 46.232 54.059
C 29.889 46.573 55.432
H 29.678 47.017 53.426
H 28.691 45.843 54.002
C 31.434 46.852 55.539
H 29.560 45.726 56.034
H 31.923 45.883 55.432
H 31.476 48.617 54.294
H 33.032 47.809 54.361
H 31.848 47.078 53.419
C 31.956 47.640 54.347
H 31.602 48.376 57.031
H 31.423 46.744 57.801
C 33.399 47.278 57.219
H 33.674 46.233 57.074
H 33.810 47.825 56.370
H 33.713 47.615 58.207
C 31.871 47.320 56.992
O 29.186 51.118 55.860
C 30.278 51.690 55.609
N 31.377 51.236 56.061
H 31.476 50.304 56.438
H 32.260 51.704 55.915
C 30.314 52.910 54.688
H 29.330 52.922 54.219
H 31.088 52.703 53.950
C 30.505 54.238 55.490
H 29.944 54.274 56.424
C 31.949 54.283 55.994
O 32.187 53.824 57.124
H 32.745 54.705 55.380
N 30.140 55.392 54.644
H 30.708 55.495 53.815
H 30.231 56.232 55.197
N 27.944 54.313 48.713
C 28.144 53.563 49.984
C 29.457 54.013 50.716
O 29.477 54.541 51.827
C 28.021 52.086 49.823
C 28.293 51.294 51.045
C 27.627 51.379 52.217
N 29.318 50.394 51.262
C 29.361 50.081 52.588
N 28.313 50.615 53.216
H 29.956 49.977 50.600
H 26.833 52.068 52.462
H 30.015 49.336 53.016
H 26.975 51.874 49.601
H 28.583 51.703 48.971
H 27.389 53.839 50.720
H 30.408 53.848 50.210
H 28.136 53.848 47.837
H 28.538 55.129 48.753
N 22.032 50.858 51.321
C 21.862 49.481 51.881
C 20.488 48.893 51.550

O 20.430 47.960 50.704
C 22.044 49.434 53.413
C 23.475 49.261 53.770
C 24.385 50.227 54.042
N 24.065 48.017 54.083
C 25.320 48.267 54.426
N 25.521 49.606 54.490
H 21.522 51.558 51.842
H 22.681 48.961 51.384
H 21.453 50.188 53.934
H 21.522 48.572 53.828
H 23.629 47.121 53.918
H 24.192 51.290 54.019
H 26.045 47.528 54.734
H 19.586 49.270 52.032
H 21.703 50.862 50.366
N 22.540 56.472 54.628
C 23.236 55.197 54.683
C 22.219 53.986 54.584
O 22.115 53.398 53.541
C 24.127 55.079 55.918
C 25.132 53.937 55.963
C 25.686 53.184 54.979
N 25.839 53.720 57.093
C 26.745 52.718 56.924
N 26.524 52.236 55.663
H 22.677 57.114 55.395
H 23.899 55.167 53.818
H 24.781 55.951 55.902
H 23.491 55.149 56.800
H 25.671 54.137 57.998
H 25.355 53.293 53.957
H 27.481 52.366 57.632
N 21.521 53.652 55.632
H 21.573 54.273 56.427
C 20.677 52.432 55.781
H 21.373 51.602 55.657
C 19.487 52.424 54.811
O 19.348 51.396 54.108
H 18.800 53.267 54.738
C 20.252 52.327 57.198
H 21.137 52.569 57.786
H 19.454 53.049 57.370
C 19.740 50.986 57.604
H 18.930 50.762 56.910
C 19.151 50.937 59.089
H 18.732 49.988 59.425
H 19.988 51.074 59.774
H 18.578 51.864 59.118
C 20.723 49.810 57.495
H 20.657 49.338 56.515
H 21.744 50.158 57.647
H 20.699 49.007 58.231
H 21.551 56.275 54.572
N 22.926 58.172 59.203
C 22.783 56.764 59.385
C 21.417 56.049 59.112
O 21.283 54.878 58.821
C 23.345 56.453 60.791
C 24.829 56.812 61.002
C 25.919 55.979 60.326
O 27.137 56.139 60.675
O 25.598 55.242 59.359
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large model (cont.)

H 22.934 58.717 60.054
H 23.529 56.228 58.798
H 22.748 56.892 61.590
H 23.254 55.369 60.867
H 25.031 57.870 60.840
H 25.050 56.648 62.057
H 20.512 56.652 59.190
H 22.157 58.494 58.632
N 25.081 41.405 54.848
C 25.207 42.629 55.588
C 23.881 43.159 56.058
O 23.764 43.640 57.209
C 26.166 43.608 54.924
C 26.587 44.789 55.814
C 25.674 44.171 53.578
C 27.373 44.355 56.964
H 25.240 41.564 53.864
H 25.696 42.435 56.543
H 27.028 42.989 54.676
H 27.130 45.507 55.200
H 25.686 45.341 56.081
H 26.459 44.771 53.117
H 25.387 43.329 52.948
H 24.803 44.796 53.772
H 28.115 43.565 56.845
H 27.854 45.248 57.364
H 26.671 44.018 57.727
H 23.017 43.125 55.394
H 24.151 41.033 54.978
N 22.095 43.688 59.778
C 21.177 44.761 60.160
C 19.849 44.201 60.754
O 19.413 44.757 61.767
C 20.932 45.657 58.885
H 22.440 43.621 58.831
H 21.661 45.317 60.963
H 20.407 46.561 59.193
H 21.915 45.891 58.477
H 20.356 45.138 58.119
H 19.330 43.359 60.297
H 21.622 42.818 59.977
N 21.075 45.286 64.531
C 20.924 46.772 64.427
C 19.504 47.189 64.822
O 19.315 48.069 65.667
C 21.299 47.376 63.119
C 20.963 48.973 63.065
C 21.888 49.790 63.960
C 21.292 49.539 61.638
H 20.740 44.772 63.728
H 21.698 47.227 65.044
H 22.349 47.138 62.952
H 20.751 46.984 62.262
H 19.901 49.084 63.285
H 21.708 50.862 63.882
H 21.516 49.474 64.935
H 22.921 49.484 63.793
H 22.336 49.323 61.411
H 20.585 49.110 60.929
H 20.984 50.584 61.676
H 18.650 46.703 64.351
H 20.562 44.973 65.343
N 31.270 50.988 67.457

C 30.582 50.935 66.143
C 31.204 51.727 65.001
O 31.513 51.141 63.958
C 29.120 51.207 66.365
C 28.114 51.085 65.152
C 28.154 49.651 64.598
C 26.653 51.300 65.658
H 30.912 51.525 68.234
H 30.715 49.896 65.840
H 28.839 50.498 67.144
H 29.025 52.214 66.773
H 28.296 51.936 64.495
H 27.522 49.500 63.723
H 29.185 49.554 64.258
H 27.788 48.918 65.317
H 26.457 50.749 66.578
H 26.584 52.370 65.856
H 26.002 51.091 64.809
H 31.375 52.799 65.102
H 32.198 51.341 67.275
N 34.336 49.892 63.909
C 33.857 48.666 63.245
C 33.439 48.834 61.773
O 33.765 48.035 60.916
C 32.843 47.898 64.133
C 32.217 46.643 63.489
O 33.342 47.615 65.419
H 33.976 50.160 64.814
H 34.692 47.966 63.259
H 31.996 48.574 64.258
H 33.541 48.447 65.854
H 31.829 46.918 62.508
H 32.963 45.849 63.492
H 31.305 46.439 64.051
H 34.139 50.658 63.281
N 32.613 49.842 61.545
C 32.192 50.369 60.292
C 33.360 50.704 59.348
O 33.305 50.302 58.145
C 31.216 51.527 60.435
C 29.804 51.140 60.856
C 28.939 52.294 61.251
C 28.995 50.413 59.757
H 32.379 50.329 62.398
H 31.780 49.540 59.716
H 31.510 52.132 61.293
H 31.220 52.009 59.458
H 29.847 50.417 61.670
H 28.146 51.833 61.841
H 29.409 52.971 61.964
H 28.427 52.865 60.477
H 29.020 50.973 58.823
H 29.492 49.452 59.624
H 27.993 50.293 60.168
H 34.217 51.275 59.705
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A.4 Code Segment of the Steric Shielding Analysis
A small segment of the Perl script carrying out the sphere model for steric
shielding analysis is provided. Given that the x-, y- and z-coordinates of
all atoms are stored in the correct order in arrays of the form @coordx,
@coordy and @coordz, the segment computes the accessibility A on the
example of the C11 carbon center ($C11acc) for one MD snapshot.
# calculation of the three points P1 , P2 and P3
# for plane construction by centers of mass

$P1x =( $coordx [$C9 ]+ $coordx [$C10 ]+ $coordx [$C11 ])/3;
$P1y =( $coordy [$C9 ]+ $coordy [$C10 ]+ $coordy [$C11 ])/3;
$P1z =( $coordz [$C9 ]+ $coordz [$C10 ]+ $coordz [$C11 ])/3;
$P2x =( $coordx [$C10 ]+ $coordx [$C11 ]+ $coordx [$C12 ])/3;
$P2y =( $coordy [$C10 ]+ $coordy [$C11 ]+ $coordy [$C12 ])/3;
$P2z =( $coordz [$C10 ]+ $coordz [$C11 ]+ $coordz [$C12 ])/3;
$P3x =( $coordx [$C11 ]+ $coordx [$C12 ]+ $coordx [$C13 ])/3;
$P3y =( $coordy [$C11 ]+ $coordy [$C12 ]+ $coordy [$C13 ])/3;
$P3z =( $coordz [$C11 ]+ $coordz [$C12 ]+ $coordz [$C13 ])/3;

# normal vector of the plane by vector product
$normx =(( $P3y -$P1y )*( $P2z -$P1z )-($P3z -$P1z )*( $P2y -$P1y ));
$normy =(( $P3z -$P1z )*( $P2x -$P1x )-($P3x -$P1x )*( $P2z -$P1z ));
$normz =(( $P3x -$P1x )*( $P2y -$P1y )-($P3y -$P1y )*( $P2x -$P1x ));
$norm = sqrt ( $normx **2+ $normy **2+ $normz **2);

# sanity check to ensure that the vector points to the substrate
# side opposed to the iron center by dot product

$ncos =( $normx *( $coordx [$C11]- $coordx [$Fe ])+ $normy *( $coordy [$C11],
-$coordy [$Fe ])+ $normz *( $coordz [$C11]- $coordz [$Fe ]));

if ( $ncos < 0) {
$normx =- $normx ;
$normy =- $normy ;
$normz =- $normz ;

}

# find the points along the normal with 3 Angstroms distance to C11
$PC11x = $coordx [$C11 ]+3* $normx / $norm ;
$PC11y = $coordy [$C11 ]+3* $normy / $norm ;
$PC11z = $coordz [$C11 ]+3* $normz / $norm ;

# large starting value for minimal distance
$PC11_mindist =1000;

# loop over all atoms to find the distance to the closest one
foreach $i (1.. $n) {

$PC11_dist = sqrt (( $coordx [$i]- $PC11x )**2+( $coordy [$i]- $PC11y )**2 ,
+( $coordz [$i]- $PC11z )**2);

if ( $PC11_dist < $PC11_mindist ) {
$PC11_mindist = $PC11_dist ;

}
}

# compare minimal distance to rmax and rmin
if ( $PC11_mindist >= $rmax ) {

$C11acc =1;
}
elsif (( $PC11_mindist < $rmax ) && ( $PC11_mindist > $rmin )) {

$C11acc =(1/( $rmax - $rmin ))*( $PC11_mindist - $rmin ),
*exp( $PC11_mindist - $rmax );

}
else {

$C11acc =0;
}
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