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Chapter 1

General Scientific Background

1.1 Motivation

The depletability of fossil fuels and the effect of greenhouse gas emissions on global

warming highlight the urgent need for a renewable and sustainable energy supply. [1,2]

Presently, most renewable energy is generated as electricity from intermittent sources,

namely wind and sunlight. Therefore, one of the greatest challenges for replacing fos-

sil energy appears to be storing electrical energy and providing fuels for mobile and

heating applications. Storing energy in chemical bonds by producing artificial fuels

from water splitting is a promising method to meet this requirement at large scale.

Such a scenario of molecular hydrogen or hydrocarbon production is depicted in Fig-

ure 1.1. The efficiency of this system is however strongly limited by the catalysis of

the oxygen evolution reaction (OER) by water oxidation. [3]

Figure 1.1: Schema of energy storage via artificial fuels (H2 or various hydrocar-
bons). The energy can be used in fuel cells, engines or burners.
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1 General Scientific Background 7

Water splitting is mainly performed by either polymer electrolyte membrane (PEM)

or aqueous electrolysis. [4] For reasons of electrochemical stability of the catalysts,

aqueous electrolysis is usually performed in alkaline media. [5] In contrast, acidic

PEMs (proton exchange membranes) are much more stable than their alkaline coun-

terparts (anion exchange membranes). [6] State-of-the-art PEM electrolysis requires

highly pure water and noble metal oxide catalysts (RuOx, IrOx, Pt). [7–14] Aqueous elec-

trolysis can be performed with earth-abundant catalyst materials (mainly Ni-alloys),

but suffers from particularly low efficiencies. [15–21] These are some of the reasons

why up to 96 % of present-day hydrogen production is based on fossil fuel reforming

instead of water splitting. [21–23]

Transition metal oxides (TMOs) have received much attention in the field of oxy-

gen evolution catalysis because of their flexible iono-covalent transition metal-oxygen

bonds. [24–26] Particular interest lies in first-row TMOs due to their high abundance

and relatively low price. [27] Manganese is one of the most studied transition metals for

OER. [28–36] Perhaps the most prominent OER catalyst is the oxygen evolving complex

(OEC) that is employed by the natural photosynthesis of green plants, cyanobacteria,

and algae as part of the photosystem II. [37] The OEC serves as a blueprint for ef-

ficient OER catalysis by utilizing the flexible Mn valence (here 3+/4+) as well as a

flexible structure around the active site. It consists of a Mn4CaO5 cluster and has

produced the O2 accounting for 21 % of earth’s atmosphere. [38–41] (Figure 1.2)

Figure 1.2: Simplified schema of natural photosynthesis focusing on water splitting
by the Mn4CaO5 oxygen evolving complex in photosystem II.

Much effort has been made to reveal its OER mechanism, the so-called S-cycle.

The system goes through a series of states (S0 - S4), in which the number represents

the amount of accumulated oxidizing equivalents through oxidation of the neighbor-

ing Mn cations, while Ca (and Cl) are needed as cofactor. [42] The redox-inactive Ca2+

modulates the reduction potentials stabilizing the critical high-valence Mn4+
4 configu-



8 1.1 Motivation

ration needed for O2 release. [43–45] The structure and complex reaction cycle of the

OEC have inspired the search for artificial catalysts based on TMOs and perovskites

in particular, as discussed in section 1.2. In particular, strongly correlated manganite

perovskites offer opportunities for tuning the surface electronic structure.

A systematic search for useful, i.e. active and stable, OER catalysts requires an

understanding of the underlying reaction mechanisms. However, during the reaction

catalyst surfaces usually significantly differ from their equilibrium state, featuring dif-

ferent species and configurations as active sites. The nature of these sites in turn

determines the corresponding reaction sequence. Studying catalysts in their active

states by in situ techniques is therefore indispensable for identifying and characteriz-

ing reaction mechanisms.

This thesis presents in situ studies on the active states of manganite catalysts in

H2O vapor. The study in chapter 2 probes the surface electronics of the strongly

correlated Pr1-xCaxMnO3 (0≤ x≤0.8) by in situ X-ray absorption and photoemission

(XANES, XPS). Chapter 3 presents an environmental transmission electron micros-

copy (ETEM) study comparing the microscopic processes in Pr1-xCaxMnO3 (x = 0.1,

0.3) and the related layered Ruddlesden-Popper system Pr0.5Ca1.5MnO4. A discus-

sion about gas phase electrochemistry and further information on the experimental

techniques is provided in section 1.3.
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1.2 Perovskites as OER Catalysts

Several perovskites were found to be well-performing OER catalysts. [3,27,28,46–52] Per-

ovskites are described by the general formula ABO3, where the A-cation is commonly

a rare-earth (A3+) or alkaline earth (A2+) element and the B-cation usually a transition

metal (B3+/4+) forming iono-covalent bonds with the oxygen ligands. The cubic parent

structure is comprised of corner-sharing BO6 octahedra with dodecahedrally coordi-

nated A-cations in between. In other words, it is formed by oxygen ligand bridges

between octahedrally coordinated transition metals in proximity to redox-inactive A-

cations and therefore bares resemblance to the OEC. [40] The lattice sites can be

doped almost independently because their ionic radii differ by a factor of about
√

2.

Heterovalent substitution of A-cations can be used to tune the formal transition metal

valence, while A-cations of different ionic radii tune distance, angle and hybridiza-

tion of the transition metal oxygen bonds by tilting and stretching of the octahedra.

These effects determine the electronic structure near the Fermi energy, which makes

perovskites a very versatile and tunable material class and particularly interesting for

scientific research. [53–55]

In particular, the small ionic radii of Pr3+ and Ca2+ in the perovskite Pr1-xCaxMnO3

(PCMO) cause strong tilting of the MnO6 octahedra. This is reflected by a small Gold-

schmidt tolerance factor of t≈0.94 and results in an orthorombic unit cell with Mn-O-

Mn bond angles between 152 and 157◦ instead of the 180◦ in cubic perovskites. [56,57]

While a detailed description of the complex electronic structure is presented in ref.

[58], its essential features are outlined in the following. Hybridization with the O 2p

states in octahedral symmetry reduces the degeneracy of the Mn 3d states by split-

ting them into 3 t2g and 2 eg states. Hund’s coupling with the large magnetic moment

of the Mn cations leads to a high spin electron configuration of t32g e1-x
g per Mn. The

doping-dependent partial filling of the eg band causes distortions of the octahedra and

further band splitting due to the Jahn-Teller effect. The splitting vanishes in CaMnO3

(e0
g) and is maximal in PrMnO3 (e1

g). Octahedral tilting and distortions reduce over-

lap of the hybridized Mn 3d and O 2p orbitals, producing narrow bands. [59] Moreover,

strong electron-phonon coupling causes formation of small polarons with low mobility.

Electron-electron coupling additionally affects the complex electronic structure of the

valence and conduction bands. The upper valence band of CaMnO3 is dominated by

O 2p states. However, the band edge character transforms into the lower Jahn-Teller

eg band upon electron doping due to replacement of Ca2+ by Pr3+ or formation of oxy-

gen vacancies. The character of valence states is of particular interest during electron
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insertion by water oxidation catalysis.

Water splitting occurs via two half reactions, the hydrogen evolution reaction (HER)

and the oxygen evolution reaction (OER). In alkaline media, they can be summarized

by:

2 H2O + 2 e- −→ H2 + 2 OH- (HER)

4 OH- −→ O2 + 2 H2O + 4 e- (OER)

The equilibrium potentials with respect to the reversible hydrogen electrode (RHE)

are 0 V for the HER and 1.23 V for the OER. [60,61] The requirement to transfer four

electrons for the production of one O2 molecule makes the OER the rate and effi-

ciency limiting half reaction. [2,3,50,62–65] The overall free energy difference is 4.92 eV,

or 1.23 eV per transferred electron. The subsequent transfer of electrons requires

involvement of at least four intermediate states of the active site. To perform the cor-

responding reaction sequence at high efficiency, i.e. low overpotential, the (binding)

energy of each intermediate state must be neither too low, nor too high. This coarse

requirement is called the Sabatier’s principle. [66] The detailed reaction sequence de-

pends on the particular catalyst and is difficult to identify.

For perovskites, mainly two opposing principle mechanisms are discussed. A com-

putationally derived mechanism, originally discussed for metal surfaces, considers

O-based adsorbates (OH* → O* → OOH* → OO*) on a single redox-active surface

B-site. [67,68] This requires sufficiently flexible valence of the B-cation, which is alter-

nately oxidized and reduced in each of the 4 reaction steps. The reaction cycle of

hydroxide adsorption and subsequent deprotonation is depicted in Figure 1.3.

An ideal catalyst would bind all 4 adsorbates equally strong, so that the free en-

ergy difference ∆Gi equals 1.23 eV for each of the 4 reaction steps. Efficiency limiting

overpotentials of real catalysts are thus the result of deviations from this condition.

Computational work has shown that for real catalysts the adsorption energies are uni-

versally correlated. [68–70] The relative energy of the double bonded O* intermediate

(∆GO*) determines whether step 1 or 2 is rate-limiting. Too strong adsorbate binding

hampers the deprotonation of OH* (step 1), while too weak binding hampers the sub-

sequent OH* adsorption (step 2). More importantly, a universal free energy difference

∆GOOH* - ∆GOH* of approximately 3.0 - 3.4 eV has been found. [71] Given this mecha-

nism, the combination of reaction steps 1 and 2 will therefore always considerably

exceed the ideal value of ∆G1+2 = 2.46 eV. [72]
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Figure 1.3: Adsorbate-based OER mechanism for perovskite catalysts in alkaline
media. A redox-active B-cation binds different O-based intermediate species created
by OH- adsorption (steps 2 and 4) and their subsequent deprotonation (steps 1 and
3).

More recent work proposes a model mechanism that includes the formation of oxy-

gen vacancies for perovskites with high covalence of the B-O bond. [73–76] Covalent

bond character, i.e. stronger O 2p contributions to the anti-bonding molecular orbitals,

facilitates the formation of ligand holes which in turn promote O vacancies. [73,77–80]

In addition, recent theoretical work suggests that vacancy formation is especially trig-

gered by introduction of holes in non-bonding atomic O 2p states which exhibit higher

reactivity in comparison to the more delocalized B-O molecular orbitals. [80–82] The

corresponding reaction sequence of a vacancy involving mechanism is presented in

Figure 1.4. The essential difference to the purely adsorbate-based mechanism is that

deprotonation of the OH* adsorbate in step 1 is associated with reorganization of the

surface. In this scenario, the unstable terminal O* adsorbate binds to a neighboring

lattice O, forming the O2 molecule which is released from the B-cation in step 2. The

thereby created vacancy is reoccupied by OH- in step 3.

Notably, such a mechanism does not involve O* or OOH* adsorbates, so that the

energetic scaling relations of the adsorbate mechanism do not apply. Accordingly,

lattice oxygen involvement is found for several highly active rutile OER catalysts. [83–85]

However, the tendency to form oxygen vacancies is generally correlated with low

thermodynamic and electrochemical stability, as further discussed in chapters 2 and

3. [86,87] The character of hole states, which are introduced by the charge transfer dur-

ing water oxidation, may therefore determine the amount of formed oxygen vacancies

and, in addition, if the vacancies create a stable surface phase or lead to corrosion.
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Figure 1.4: Lattice oxygen involving OER mechanism for perovskite catalysts in al-
kaline media. A surface oxygen vacancy is formed by reorganization of the terminal
O* adsorbate to form O2 (step 1), which is released in step 2. The vacancy is reoc-
cupied by OH- in step 3 and deprotonated in step 4.

The involvement or exclusion of lattice oxygen presents an important fundamental

difference in OER pathway. However, catalysts may favor various different reaction

sequences that differ from the two proposed ones. In situ experiments can therefore

provide valuable information on the formation processes of active catalyst surfaces. In

situ spectroscopies probe factors like chemical composition, transition metal valence,

bond covalence, and additional doping by formation of point defects like oxygen va-

cancies, while in situ electron microscopy provides information on surface morphol-

ogy, atom dynamics, structural stability, and spatial distribution of valence states. For

Pr1-xCaxMnO3, the in situ studies in chapters 2 and 3 give strong evidence for oxygen

vacancy involvement in OER leading to doping-dependent corrosion. In contrast, the

ETEM experiments show that the Ruddlesden-Popper type Pr0.5Ca1.5MnO4 phase is

much more stable, suggesting that it rather favors a metal centered mechanism as

depicted in Figure 1.3.
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1.3 Techniques for In Situ Investigation of Catalyst Sur-

faces in Gases

In this thesis, the experimental methods of in situ X-ray spectroscopy (XANES/XPS)

and environmental transmission electron microscopy (ETEM) are used to study elec-

trochemical reactions at solid-gas interfaces. The comparability of such observations

with conventional electrochemical experiments is challenged by the use of H2O vapor

in the µbar to mbar range instead of liquid electrolytes. [88]. Several aspects have to be

considered when comparing and contrasting gas phase with liquid electrochemistry

as depicted in Figure 1.5. First, according to the Nernst equation, equilibrium redox

potentials depend on the activities of involved species which are determined by their

partial pressure and therefore likely to differ from experiments in ambient pressure

liquids. [89]

The second aspect concerns the electrolyte’s conductivity. Liquid electrolytes ex-

hibit high ionic conductivity which supplies the catalyst with reagents and dissipates

reaction products. In addition, mass transport is usually experimentally enhanced

by the use of rotating electrodes. [90] Moreover, buffer solutions stabilize the pH near

oxygen or hydrogen evolving electrodes. [61,89,91] Contrarily, ion concentration and con-

ductivity in gases is generally low although some conductivity may be generated by

ionizing radiation. Also, in the thin liquid H2O layer which condenses on the catalyst

surface when in contact with the vapor mass transport kinetics may differ due to its

small volume. However, the continuously pumped and replenished vapor phase rep-

resents a reservoir which is only limited by the exchange kinetics across the liquid-gas

interface.

Thirdly, the charge double layer created by alignment of the polar H2O molecules

and ion migration may differ significantly. This affects the potential drop across the

catalyst-electrolyte interface which is the driving force for redox reactions. In sum-

mary, some uncertainty about the electrochemical driving forces is produced by the

combination of ionic transport in the low pressure vapor phase, across its interfaces

with the liquid surface layers and within these layers as well as the effects of the

charge double layers. On the other hand, the generally highly conductive liquid elec-

trolytes can be regarded as equipotential volumes confining the potential drops to

the thin charge double layers on the catalyst surfaces. However, when combined

with conventional electrochemistry, in situ gas phase spectroscopy provides valuable

complimentary information.
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Figure 1.5: Schematic electrochemical potential distribution for 2-electrode elec-
trochemistry contrasting liquid electrolytes with vapor phases. In liquid electrolyte,
potential drops are confined to the thin charge double layers on the electrode sur-
faces. Gaseous electrolytes produce a more complex situation including condensed
liquid surface layers.
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1.3.1 In Situ X-Ray Spectroscopy (XANES/XPS)

X-ray absorption near-edge spectroscopy (XANES) and X-ray photoelectron spec-

troscopy (XPS) provide valuable information on redox processes like the OER be-

cause they probe the involved electronic states with high surface sensitivity and can be

performed in situ by using H2O vapor or other gaseous environments. [92,93] Changes

in chemical composition, oxidation states and binding strengths define the processes

that are involved in formation of active catalyst surfaces. The use of monochro-

mated soft X-ray synchrotron radiation on manganite catalysts grants access to the

hybridized Mn 3d - O 2p bands near the Fermi level. XANES probes excitations into

the unoccupied states above the Fermi energy as a function of excitation photon en-

ergy. Instead, XPS measures the kinetic energy of photoelectrons from the occupied

core or valence states at fixed excitation energy.

X-ray photons have a small scattering cross section with the specimen material and

therefore a large penetration depth. However, photo-excited electrons are strongly re-

absorbed within the specimen limiting the probing depth to the escape depth of the

detected electrons. This amounts to about 1 - 2 nm for XPS using primary photoelec-

trons with kinetic energy of about 200 eV. In contrast, the total electron yield (TEY)

used as XANES signal additionally contains Auger and secondary electrons from the

specimen of various energies and therefore various escape depths as well as further

secondary electrons from scattering with gas molecules. In the case of PCMO, 99.9 %

of the TEY signal originate from the topmost 6 – 7 nm as discussed in section 2.2. [94]

The apparatus used for the study in chapter 2 was developed at the Fritz-Haber-

Institut of the Max-Planck-Gesellschaft and is schematically depicted in Figure 1.6. [95,96]

The plane-grating monochromator selects the desired wavelength from the synchrotron

radiation, which is being focussed onto a approximately 150 x 250 µm2 area on the cat-

alyst surface. Emitted photoelectrons are being focussed by electromagnetic lenses

onto the entrance slit of a hemispherical analyzer. A differential pumping system

maintains ultra-high vacuum within the analyzer, while reaction gases are let into the

specimen chamber at up to mbar pressure range.

Electrochemical surface reactions can be driven by external biasing. The resulting

surface potential is directly reflected by a shift in kinetic energy of the photoelec-

trons, which are decelerated (positive bias) or accelerated (negative bias). Moreover,

Arrigo et al. demonstrated bias control over OER/HER at Pt nanoparticles in low

pressure XPS experiments, measuring O2/H2 by mass spectrometer attached to the

chamber. [97]
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Figure 1.6: Schema of in situ XANES/XPS endstation, including a plane-grating
monochromator, electromagnetic focusing lenses for the photoelectrons and a hemi-
spherical analyzer. Differential pumping maintains ultra-high vacuum in the analyzer,
while gas is introduced into the specimen chamber.
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1.3.2 Environmental Transmission Electron Microscopy (ETEM)

The active state of electrode surfaces always varies from the equilibrium structure of

the catalysts. [98–103] Analytical ETEM is a powerful complementary approach to in situ

X-ray techniques because it provides atomically resolved information on structure and

morphology under working conditions. [88,104,105] The technique allows real-time imag-

ing of defect dynamics and morphological changes like the formation of nano-sized

crystals as presented in chapter 3. This is supplemented by spectroscopic informa-

tion on chemical composition and electronic structure via electron energy loss spec-

troscopy (EELS) and energy-dispersive X-Ray spectroscopy (EDX) with nanometer

resolution in scanning transmission electron microscopy mode (STEM).

Figure 1.7: Schema of the differentially pumped column of an ETEM. Reaction
gases can be inserted into the octagon (specimen chamber), while high vacuum
is maintained at the bottom-mounted cameras and detectors and ultra-high vacuum
is maintained at the electron gun.
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The essential feature of an ETEM is the integration of a differential pumping system

into the column. Figure 1.7 shows a schematic representation of such a system. It al-

lows to expose specimen to gases at pressures up to several tens of mbar, while keep-

ing the crucial ultra-high vacuum below 10-9 mbar at the electron source. [106–110] Cor-

rection of aberrations (e.g. spherical Cs) caused by imperfections of electromagnetic

lenses allows sub-nanometer spatial resolution. [111–115] For high resolution studies,

TEM specimens must be significantly thinner than the mean free path λ of the high-

energy beam electrons (usually 80 – 300 keV). Depending on its density the speci-

men’s thickness is usually below approximately 50 nm. Negative specimen charging

due to beam electron injection is therefore usually negligible. However, inelastic scat-

tering excites electrons from the specimens valence band and core states, resulting

in emission of secondary and Auger electrons. [116,117] (Figure 1.8) This provides lo-

cal positive charging, which can be used to drive (anodic) electrochemical surface

reactions with the gaseous electrolyte. Charging of manganite TEM specimens was

adressed in more detail by earlier work including off-axis electron holography and

electrostatic modeling. [88,105,118]

Figure 1.8: Beam-induced specimen charging in a TEM. Inelastic scattering causes
emission of Auger and secondary electrons. Thereby generated positive space
charge saturates due to compensation by ground current and backflow from the
environment.

A major challenge of ETEM in terms of comparability with other in situ techniques

is the large impact of high-energy electrons on the specimen, e.g. due to a four orders

of magnitude higher scattering cross section in comparison to (X-ray) photons. The

benefit of local electronic potentials comes with the risk of radiation damage, which

must be considered and preferably avoided. [119] Specimen atoms can be displaced or

even desorbed by knock-on damage, which depends on the impinging electron energy

as well as on atomic masses and binding strengths of the material. Knock-on damage

also depends on electron flux and density due to balance of induced displacements
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and their relaxation. High energy and flux densities may therefore lead to mass loss,

structural damage and heating. [120] For the study presented in chapter 3, beam dam-

age effects have been ruled out by control experiments in high vacuum or inert gases.

The experiments thus demonstrate the possibility to generate beam-induced poten-

tials for driving electrochemistry at beam fluxes below the damage threshold of the

catalyst material.
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Chapter 2

In Situ XANES/XPS Investigation

This chapter is a reproduction of the following original publication:

In Situ XANES/XPS Investigation of Doped Manganese Perovskite
Catalysts

Daniel Mierwaldt, Stephanie Mildner, Rosa Arrigo, Axel Knop-Gericke, Emanuel

Franke, Andreas Blumenstein, Jörg Hoffmann, and Christian Jooss

Catalysts 2014, 4(2), 129-145; doi: 10.3390/catal4020129

References, labels and arrangement of figures have been modified to suit this thesis.

Abstract Studying catalysts in situ is

of high interest for understanding their

surface structure and electronic states in

operation. Herein, we present a study of

epitaxial manganite perovskite thin films

(Pr1-xCaxMnO3) active for the oxygen

evolution reaction (OER) from electro-

catalytic water splitting. X-ray absorption

near-edge spectroscopy (XANES) at the

Mn L- and O K-edges, as well as X-ray

photoemission spectroscopy (XPS) of the O 1s and Ca 2p states have been performed

in ultra-high vacuum and in water vapor under positive applied bias at room temper-

ature. It is shown that under the oxidizing conditions of the OER a reduced Mn2+

species is generated at the catalyst surface. The Mn valence shift is accompanied

21
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by the formation of surface oxygen vacancies. Annealing of the catalysts in O2 atmo-

sphere at 120 ◦C restores the virgin surfaces.

2.1 Introduction

The search for new energy storage technologies has sparked interest in electro-

catalytic water splitting. Its overall efficiency is limited by the oxygen evolution reaction

(OER). This half reaction can currently only be driven at high overpotentials because

of limiting high potential steps in the multi-electron transfer reaction, where the for-

mation of one O2 molecule requires the cooperative transfer of four electrons to the

catalyst. To facilitate this multi-electron transfer at low overpotential, a catalyst needs

to adjust its acceptor states to the oxidation potentials of all involved intermediates.

This ability requires a sufficiently complex atomic and electronic structure. Mn–O

compounds represent a promising material class due to the flexible Mn valence. [31]

Possible shifts in the Mn valence between 2+ and 4+ during the reaction steps may

allow the catalyst to adjust the bonding characteristics between an active Mn site and

oxygen intermediates.

At present, theoretical works on the catalytic activity of perovskites (ABO3) are

based on strong approximations, such as a frozen, defect free surface. [68,121] Those

consider the bonding strength of the B-site cation to oxygen as a universal descrip-

tor for oxygen evolution activity of perovskites. Systematic experimental studies of

oxygen evolution activity of various transition metal oxide perovskites show a trend of

activity with occupation of antibonding eg states of the B-site d subshell, i.e., a volcano

type relation with maximum activity at an eg occupation of about one electron per B-

cation. [49] However, manganites seem not to follow this dependence. The activity may

strongly depend on factors such as pH value influencing the geometric and electronic

structure of the catalyst surface. [73]

We present the investigation of the surface electronic structure of Pr1-xCaxMnO3

(0 < xCa < 0.8) by means of X-ray absorption near-edge spectroscopy (XANES) and X-

ray photo-emission spectroscopy (XPS). The heterovalent Ca-doping results in a Mn

valence shift with a bulk average value varying from 3.0+ (xCa = 0.0) to 3.8+ (xCa = 0.8).

To what extent the average valence Mn(3+x)+ is comprised of a mixture of Mn3+ and

Mn4+ species, or formed by an intermediate valence state is controversially discussed

in the literature. [122,123] A formation of intermediate Mn valences would be consistent
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with a more "covalent-like" electron density distribution within the Mn 3d–O 2p conduc-

tion band. By studying the thresholds and line shapes of the Mn L- and O K-edges,

we give evidence for the presence of an intermediate Mn valence.

The central question addressed in this work is the surface electronic structure in-

cluding the valence of the Mn surface sites during catalytic activity. In the presence of

water vapor the surface valence may differ from the bulk value due to the bonding of

various adsorbates and the formation of surface defects such as oxygen vacancies.

The presented spectra have either been recorded in ultra-high vacuum (UHV), or in

contact with water vapor at the crystalline catalyst surface with an applied positive

electric potential, nominally corresponding to OER conditions. It is shown, that upon

in situ activation of the catalyst surface Mn2+ coexists with the mean bulk valence of

Mn(3+x)+. This is consistent with the reversible formation of surface oxygen vacancies

as well as surface hydroxide adsorbates. It is furthermore shown that the virgin sur-

face measured under UHV conditions can be restored by annealing at about 120 ◦C

in 0.1 mbar O2. The formation of surface oxygen vacancies contradicts the expecta-

tions from the oxidizing electro-chemical conditions during oxygen evolution and, thus,

sheds light onto possible reaction mechanisms.

2.2 Results and Discussion

2.2.1 Doping Dependence of Virgin Samples

Mn L-edge and O K-edge spectra of the virgin samples under UHV conditions are

shown in Figure 2.1. The Mn L-edge is split into two separate multiplets L3 (at 642 eV)

and L2 (at 653 eV) due to spin-orbit interaction of the Mn 2p3/2 and 2p1/2 core states.

The complex structure of these edges can be attributed to the Mn 3d states due to the

octahedral ligand field including hybridization with O 2p states as well as Coulomb and

exchange interactions within the 3d states. [124–126] Compared to simple Mn oxides,

further complexity of the L3 edge is produced by the lower local symmetry due to

octahedral tilting in the orthorhombic PCMO phase. [127] Linear superposition (Figure

2.9) of the spectra at xCa = 0 and 0.8 resulted in poor agreement with the spectra

at intermediate doping of xCa = 0.3 and 0.5, which indicates an intermediate valence

state of Mn(3+x)+ instead of coexisting Mn3+ and Mn4+ species. [128] This observation

clearly supports the statement of a high covalence of the Mn-O bond.
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Figure 2.1: Normalized (see 2.3.2) X-ray absorption of virgin samples in
UHV. (a) The Mn L-edge shows the systematic increase in Mn valence
with increasing xCa; (b) Intensity of the pre-edge feature of the O K-edge
(530 eV) increases with xCa.

The L3 peak shifts to higher energies and its area decreases systematically with in-

creasing xCa and therefore increasing formal Mn valence of (3 + xCa)+. A similar trend

can be seen for the L2 edge. This chemical shift is in good agreement with reported

results on various manganite perovskites [129,130] and other Mn compounds. [125] Ac-

cording to studies of Mn oxide compounds by means of Electron Energy Loss Spec-

troscopy (EELS) [131] the decreasing energetic distance ∆EL between the maxima of

the Mn L2 and L3 edges (Figure 2.1 a and Table 2.1) due to increasing xCa corresponds

to an increase in Mn valence. Despite the systematic error resulting from only taking

into account the maximum position of the complex L3 edge structure, our data repre-

sent a systematic valence shift as expected from sample stoichiometry (formal bulk

valence from 3.0+ to 3.8+). Moreover, the integral intensity ratio of the L3 and L2

edges decreases systematically with increasing xCa (Table 2.1, for details see 2.5.2).

According to Riedl et al. [132] our data quantitatively represent the expectation of a

systematic Mn valence increase between 3+ and 4+.

The pre-edge region of the O K-edge at roughly 530 eV (Figure 2.1 b) represents

excitation into hybridized states containing O 2p and Mn 3d states. [133,134] It is thus a

direct expression of the degree of covalence of the Mn-O bond near the Fermi level.

Our results show splitting of the pre-edge feature for the undoped PrMnO3 (formal

Mn valence of 3+), which can be explained by ligand field interaction and high-spin

Hund’s coupling resulting in O 2p states hybridized with majority spin Mn eg states
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Table 2.1: Mn valence indicators obtained from the Mn L- and O K-edge spectra of virgin
samples under ultra-high vacuum (UHV) conditions. The energetic distance between
the Mn L3 and L2 edges (∆EL), their intensity ratio (I3/I2) after subtraction of a constant
L2 background (BG1) or linear backgrounds for each edge (BG2, see 2.5.2) as well as
the distance between the pre-edge feature and the first main resonance of the O K-edge
(∆EK) are summarized.

xCa formal bulk valence ∆EL (eV) I3/I2 (BG1) I3/I2 (BG2) ∆EK (eV)
0 3.0+ 10.8 2.89 2.54 3.8

0.3 3.3+ 10.8 2.88 2.53 5.8
0.5 3.5+ 10.6 2.85 2.46 6.3
0.8 3.8+ 10.4 2.75 2.32 6.8

at 529.6 eV and with minority spin Mn t2g states at 530.8 eV. [58](i) Heterovalent Ca-

doping leads to a decreased Mn 3d occupation, which is reflected by the systematic

intensity increase at the low energy flank of the pre-edge region. Furthermore, the

first main resonance, which results from excitation into hybridized states containing

Pr 5d and Ca 3d contributions, [135] shifts from 534 eV (xCa = 0) to 536.4 eV (xCa = 0.8),

which is in good agreement with data reported on various Sr- and Ca-doped rare-

earth manganites. [127,129] These trends can be expressed as an increasing energetic

distance ∆EK between the pre-edge feature and the first main resonance (Table 2.1),

which reflects the effects of the hole doping. [132]

2.2.2 In Situ Investigation

In previous work, oxygen evolution at Pr1-xCaxMnO3 has been detected in two elec-

trode configurations at sample bias above +1.6 V. These experiments have been per-

formed in liquid water by differential electrochemical mass spectrometry (DEMS) and

by mass spectrometry in environmental transmission electron microscopy (ETEM) in

water vapor. [73] We here present in situ studies of the same catalyst in 0.1 mbar H2O

at sample bias of +2.5 V, where oxygen evolution is expected.

Figure 2.2 presents the change of the Mn L-edge during catalyst activation. In con-

tact with the water vapor an increase in L3 and L2 intensity was observed. To analyze

the changes in the Mn valence states, the difference spectra between the UHV virgin

spectra and the spectra in water vapor at positive bias have been generated and are

shown as filled green curves. With peaks at 640.2, 641.6, and 643.9 eV, they bear

a resemblance to a pure Mn2+ spectrum, as will be shown in the following section.

iIn the original publication, this has been cited as unpublished work, but is now available under the
given reference.
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After heating the samples for 10 min to about 120 ◦C in 0.1 mbar O2 the post reaction

analysis was done under UHV conditions. For xCa = 0.3 and 0.5 the original surface

oxidation state was entirely restored, while minor changes remain for xCa = 0 and 0.8

(filled blue curves).

Figure 2.2: Normalized Mn L-edge spectra (Total Electron Yield) before
(red) and during insertion of 0.1 mbar H2O with sample bias of +2.5 V
against chamber ground (green), as well as in UHV after reoxidation in
0.1 mbar O2 (blue). Samples with xCa = 0 (a), xCa = 0.3 (b), xCa = 0.5 (c),
and xCa = 0.8 (d). Filled curves represent the change from virgin to acti-
vated (green) and from virgin to post reaction (blue).

In order to get insight into the changes of the catalyst surface upon contact with

liquid water with respect to the effects of water vapor, we compare in Figure 2.3 the

Mn L-edges of a virgin sample at xCa = 0.8 with a sample which has been pretreated

in liquid water without bias application. After keeping the sample in distilled water

at room temperature for 60 min, it was directly dried and transferred into the UHV

chamber. The pretreatment results in formation of some Mn2+ species in addition to

the bulk Mn3.8+. We observe a slight general decrease of the intensity to background

ratio, which may be due to surface adsorbates such as hydroxides.

This pretreated sample has then been investigated by the same in situ procedure

as the virgin samples, which is shown in Figure 2.3 b. The arising Mn2+ spectrum in

response to water vapor under positive bias is more pronounced than the one of the

virgin sample (Figure 2.2 d), with its two main peaks at 640.2 and 641.6 eV dominating
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the L3 edge. After heating the sample for 10 min in 0.1 mbar O2 and returning to UHV

the post reaction analysis shows the recovery of the pretreated state.

Figure 2.3: Normalized Mn L-edge of pretreated sample (xCa = 0.8). (a)
Comparison to virgin sample with xCa = 0.8 in UHV; (b) Pretreated state in
UHV (red), in 0.1 mbar H2O at a bias of +2.5 V against chamber ground
(green), and post reaction in UHV (blue).

2.2.3 Mn Surface Species

Except for a small additional feature at 639 eV, the difference spectra of the Mn L3

edge between virgin and activated state (filled green curves in Figure 2.2) corre-

spond to a pure Mn2+ spectrum (Figure 2.4), showing good agreement with calcu-

lated spectra based on atomic multiplet theory in a cubic crystal field [124] as well

as with spectra measured at Mn(II)Ox nanoparticles [136], commercial Mn(II)SO4
[125],

Mn(II)CO3
[137,138], Mn(II)O [139], and complex Mn(II) compounds [140].

Figure 2.4: Difference spectra at Mn L-edge between in situ activated and
virgin state compared with Mn2+ spectrum taken from Mette et al. [136]
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The information depth of XANES TEY spectra is determined by the escape depth

of the photoelectrons, which are composed of electrons of quite different energies,

namely primary photoelectrons, Auger electrons and secondary electrons. Contri-

butions of the different types of emitted electrons depend on the material, the pho-

ton energy and the electron energy dependent transmission function of the detector.

Exact values are presently not known. According to a study by Frazer et al. [94] on

the escape depth of electrons through a Cr layer (ZCr = 24 compares to the average

Z = 21.5 of PrMnO3) we expect that 50 % of the signal originates from the topmost

0.6 nm (O K-edge) and 0.7 nm (Mn L-edge) and 99.9 % from the first 6 nm (O K-edge)

and 7 nm (Mn L-edge), respectively.

The high reversibility after removing the water vapor by heating samples in oxygen

and the nm range information depth of the TEY spectra suggest that the formation of

Mn2+ species results from surface and/or subsurface O vacancy formation during oxy-

gen evolution. [138] At first sight this fundamentally contradicts the expectations from a

"frozen surface - no surface defects" picture, since the Mn valence should increase

under the nominally oxidizing conditions with an applied sample bias of +2.5 V vs. the

grounded chamber. Under such conditions, no overall reduction via pure vacancy for-

mation should take place in the catalyst. Our observations thus indicate that surface

oxygen vacancies are directly involved in the reaction mechanism during water oxida-

tion. In such a scenario, the (sub)surface oxygen may represent an exchange site for

oxygen based intermediates, which is affected by the state of neighboring Mn sites.

Alternatively, a Mn valence decrease may be induced by surface adsorbates such

as OH- and OOH-, which exhibit a lower formal valence compared to O2-. However,

the integral L3 intensity increase due to Mn2+ formation of 8.5 % to 13.9 % is quite

strong considering the information depth of the order of several nm. We therefore

conclude that the changes are not mainly due to surface adsorbates, but rather to for-

mation of surface-near oxygen vacancies. The corresponding redox process is visible

in cyclic voltammetry as a reversible surface process centered at U0≈+1 V vs. SHE

(see 2.3.1). It can be interpreted according to:

2 Pr3+
1-x Ca2+

x Mn(3+x)+ O2-
3 + 2 e- ⇔ 2 Pr3+

1-x Ca2+
x Mn(3+x)+

1-y Mn2+
y O2-

2.5 + V”
O + 1

2 O2. (2.1)

Although the chemical equilibrium at reduced oxygen partial pressure is generally

shifted towards oxygen vacancy formation, our finding that reoxidation by healing of

vacancies can take place at a similar partial pressure (0.1 mbar O2) as their formation

seems to exclude this effect as the main driving force. We rather assume that surface

oxygen formation is a non-equilibrium property of the active catalyst during OER.
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This assumption is supported by the observed doping dependence of the Mn2+ for-

mation. Our in situ results show that the accordance of the differential spectra with

the pure Mn2+ reference is best for intermediate doping of xCa = 0.3 and 0.5, while only

minor deviations are observed for xCa = 0.8, namely an increased intensity around the

644 eV peak of the L3 edge and at the high energy tail of the L2 edge (Figure 2.4). Ad-

ditionally, the changes of integral intensity (from 630 to 665 eV) due to Mn2+ formation

are relatively small for xCa = 0.3 (+8.7 %) and 0.5 (+8.5 %) compared to the values at

xCa = 0 (+13.9 %) and 0.8 (+10.6 %) (Figure 2.2). Finally, samples at xCa = 0.3 and 0.5

show a higher reversibility in UHV post reaction analysis. These findings thus indicate

a higher (electro) chemical stability at intermediate xCa, which is in contrast to the

monotonic decrease of the formation energy of manganite perovskites from the metal

elements and O2 with increasing Ca-doping. [121] The hereby observed maximum sta-

bility at intermediate xCa is in good agreement with environmental transmission elec-

tron microscopy results comparing low/intermediate xCa to high Ca-doping [73], as well

as stability analysis in the whole doping range by ex situ cyclic voltammetry (see sup-

plementary information in [73]).

In contrast to oxygen evolution in water vapor, the pretreatment of the catalyst in

liquid water may facilitate the formation of an A-cation deficient surface layer, i.e., the

irreversible dissolution of Ca2+. Evidence for the irreversibility of the pretreatment is

given by post reaction reoxidation in O2 atmosphere, which results in restoration of

the pretreated instead of the virgin state (Figure 2.3 b, blue curve). In addition to Ca2+

dissolution, formation of O vacancies and interstitial hydrogen can take place to some

extent in the absence of external bias. Our data, thus, suggest that these processes

overcompensate the effect of the oxidative Ca2+ dissolution. We cannot entirely ex-

clude that also diffusion of vacancies or hydrogen into deeper subsurface regions

during liquid water exposure contribute to the changes in the pretreated sample.

2.2.4 XPS

Due to in situ activation in water vapor intense additional peaks emerge in the X-

ray photoelectron spectra of the Ca 2p3/2 and Ca 2p1/2 states respectively (347.5 and

351 eV), as well as of the O 1s states (532 eV) shown for the sample at xCa = 0.5

in Figure 2.5 a and b. According to studies on La0.6Ca0.4CoO3
[141,142], the changed

structure of the Ca 2p spectra is consistent with the formation of surficial Ca(OH)2

and CaO species. The broad additional O 1s peak indicates the formation of various

weakly bound O- species on the surface including hydroxide adsorbates and point
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defects in the perovskite lattice. This has been found by studies on La1-xSrxMnO3
[143],

La0.6Ca0.4CoO3
[141], La1-xCexMnO3

[144], La1-xCaxMnO3
[145], CaO/Ca(OH)2

[146] and

LaMO3 (M = Rh, Ni, Co, Fe, Mn, Cr) [147]. For a more detailed peak analysis see 2.5.3.

Figure 2.5: X-ray photoemission spectra of a PCMO film with xCa = 0.5. (a)
Ca 2p states before (red) and during insertion of 0.1 mbar H2O with sam-
ple bias of +2.5 V against chamber ground (green), as well as in UHV af-
ter reoxidation in 0.1 mbar O2 (blue); (b) O 1s states; (c) Depth profiling of
Ca 2p states in active catalyst, ranging from 1 nm (Eexc = 568 eV) to 1.5 nm
(Eexc = 1168 eV); (d) Depth profiling of O 1s states with the same informa-
tion depths.

The spectra presented in Figure 2.5 a, b have been recorded at photon energies

of 568 and 750 eV respectively, resulting in kinetic energies of the photoelectrons of

about 220 eV. This corresponds to an information depth of roughly 1 nm. [148] To in-

vestigate the nature of the additional Ca and O species due to in situ activation the

excitation energies were increased by 300 and 600 eV. Increasing the kinetic energy of

the photoelectrons to 820 eV results in an information depth of about 1.5 nm. The de-

creasing intensity of the active species with increasing photon energy (Figure 2.5 c, d)

thus indicates near surface changes.
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2.3 Experimental Section

2.3.1 Sample Preparation and Characterization

Pr1-xCaxMnO3 (PCMO) thin films at doping levels of xCa = 0, 0.3, 0.5 and 0.8 have

been deposited by reactive ion beam sputtering from stoichiometric targets. The Xe

working gas partial pressure amounted to 1 x 10-4 mbar and the O2 partial pressure

was 1.4 x 10-4 mbar. The films have a thickness of about 300 nm and have been de-

posited on 200 nm Pt layers, which provide the electric back contact. These Pt films

have previously been deposited on commercial MgO (001) single crystal substrates.

Figure 2.6: XRD scans in Θ-2Θ geometry. The intense substrate
peaks correspond to Pt (111) and MgO (001). PrMnO3 (black) exhibits
a (001)/(110) twin structure, while samples with xCa = 0.3 (red) and 0.5
(green), as well as the two samples with xCa = 0.8 (blue and cyan) show
a (100)/(010)/(112) texture.

The films have been characterized by means of X-ray diffraction (XRD) in Θ-2Θ

geometry using an X’Pert MRD diffractometer (Philips B.V., Almelo, Netherlands) with

Co Kα radiation from a tube operated at 40 kV and 30 mA. Figure 2.6summarizes

the XRD results of the five investigated samples. Note that the spectra of two dif-

ferent samples at xCa = 0.8 are shown in Figure 2.6; the sample shown in cyan was

used for pretreatment in liquid water. The two intense peaks at 46.5◦ and 50.3◦ can

be attributed to the Pt (111) layer and the MgO (001) substrate respectively. The

PrMnO3 film (black curve) shows a (001) orientation with (110) twins, represented by

the broadened peak at 54.2◦. The Ca-doped samples (colored curves) exhibit two
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peaks at 38.2◦ – 39.4◦ and 81.8◦ – 84.7◦ respectively, revealing a texture containing

(100), (010), and (112) orientations, which cannot be further distinguished due to

overlap of the (200), (020) and (112) peaks. The systematic shift of these two peaks

to higher angles with increasing xCa represents the reduction in lattice parameter due

to different octahedral tilts and Mn-O bonding length. [57] For the sample with xCa = 0.5

(green curve) (001) misorientations (<33 vol-%) are observed, represented by the

(004) peak at 55.7◦. Additional small peaks from 53◦ to 56◦ result from artifacts due

to other X-ray wavelengths.

The surface morphology has been investigated by scanning electron microscopy

(SEM) using a LEO Supra 35 (Carl Zeiss NTS GmbH, Oberkochen, Germany). A

representative SEM image for each doping level xCa is shown in Figure 2.7, revealing

compact films. The sample with xCa = 0 exhibits a rod-like surface morphology due to

the (110) twins (Figure 2.7 a), while the samples with xCa = 0.3 and 0.5 show a plate-

like morphology (Figure 2.7 b, c) which most probably corresponds to the [100]/[010]

orientations. The sample with xCa = 0.8 shows a morphology of higher complexity

which may indicate a non-unique in-plane epitaxy (Figure 2.7 d). Additionally, it is

revealed that the sample surfaces with xCa = 0.3 and 0.5 contain MnOx precipitates,

which however cover only < 2 % of the surface.

Figure 2.7: SEM images of samples with xCa = 0 (a), 0.3 (b), 0.5 (c), and
0.8 (d) after XANES/XPS investigation. Shown is the secondary electron
contrast.

The catalytic activity for oxygen evolution from water splitting has been investigated

at comparable samples with xCa = 0.3 by cyclic voltammetry (CV). Figure 2.8 shows



2 In Situ XANES/XPS Investigation 33

CV curves measured at a PCMO thin film at sweep rates of 2.5, 5, and 10 mV/s. A

Pt counter electrode and commercial Ag/AgCl reference electrode have been used in

aqueous 0.1 m Na2SO4 (pH 7). In addition to oxygen evolution above +1.2 V vs. SHE a

reversible surface redox process is observed, which is centered at E0≈+1 V vs. SHE.

A more detailed CV investigation of different PCMO stoichiometries has been pub-

lished elsewhere [73], where this process has been interpreted as oxygen vacancy

formation according to Equation (2.1). No changes in surface morphology have been

observed by post reaction SEM investigation.

Figure 2.8: CV curves of a PCMO sample with xCa = 0.3 showing oxygen
evolution above +1.2 V vs. SHE and a reversible redox process centered at
+1.0 V vs. SHE (pH 7).

2.3.2 In Situ XANES/XPS Measurements

X-ray absorption near edge spectroscopy (XANES) as well as X-ray photoemission

spectroscopy (XPS) of various edges and states has been performed at the BESSY

II synchrotron facility of the Helmholtz-Zentrum Berlin, Germany (HZB), using the

near ambient-pressure XPS endstation of the Fritz-Haber-Institut of the Max-Planck-

Gesellschaft (FHI-MPG) at the ISISS beamline. The instrumental setup by Knop-

Gericke and co-workers is described in detail elsewhere. [96]

For XANES at the Mn L-edge the excitation energy was swept from 630 to 665 eV,

while the O K-edge was measured from 520 to 565 eV. The scan rate was 0.5 eV/s in

continuous driving mode of the plane-grating monochromator. The fixed-focus con-

stant was set to cff = 2.25 and the exit slit to 60 µm [37]. [149] The presented spectra

have been measured in total electron yield mode (TEY). Energy shifts have been cor-

rected on the basis of the simultaneously measured characteristic absorption spec-

trum of a focusing mirror. Intensities have been normalized with respect to impinging
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photon flux. A linear background was subtracted and the spectra were intensity nor-

malized to unity at 664 eV for the Mn L-edge and at 558 eV for the O K-edge to account

for the increased signal in water vapor due to inelastic scattering of photoelectrons

with gas molecules.

For collecting the photoemission spectra the monochromator was set to cff = 2.25

with an exit slit of 111 µm. Emission from the Ca 2p states has been recorded at an

excitation energy of 568 eV, while emission from the O 1s states has been recorded at

an excitation energy of 750 eV. For depth profiling each of the excitation energies was

increased by 300 and 600 eV respectively. The step size was 50 meV for Ca 2p and

100 meV for O 1s spectra. All spectra were collected using a pass energy of 20 eV and

a dwell time of 100 ms. Spectra have been intensity normalized with respect to imping-

ing photon flux. A linear as well as a Shirley-type background were subtracted. [150]

To account for loss of total signal intensity during water vapor exposure compared to

UHV measurements due to inelastic scattering of photoelectrons at gas molecules,

the spectra were then normalized with respect to the intensity of the bulk-like peaks of

the Ca 2p3/2 states at 346 eV or the O 1s states at 529 eV respectively. These bulk-like

peaks have also been used for energy alignment, e.g., for subtraction of sample bias.

Experiments have been conducted in ultra-high vacuum (UHV) and in 0.1 mbar H2O

vapor with an applied sample bias of +2.5 V between the sample back contact and the

chamber (ground). All measurements have been performed at room temperature. Be-

fore returning to UHV conditions the samples were heated to approximately 120 ◦C for

10 min and cooled for another 10 min in 0.1 mbar O2 to remove accumulated surface

carbon and to reestablish a fully oxygenized sample surface.

2.4 Conclusions

Pr1-xCaxMnO3 thin films in the doping range between xCa = 0 and 0.8 have been stud-

ied with respect to electro-catalytic oxygen evolution. It is found that the doping de-

pendent Mn valence cannot be described by a mixture of Mn3+ and Mn4+ species

but rather by an intermediate Mn(3+x)+ state. This finding corroborates the picture of

covalent-like contributions to the charge distribution in the antibonding Mn 3d eg-O 2p

states, which are relevant for electron transfer from oxygen-based species to Mn sites

during water oxidation. In situ studies under nominally oxidizing conditions for oxygen

evolution reveal the coexistence of a Mn2+ surface species with the bulk Mn valence
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state. It is shown that the surface activation involves the reversible formation of sur-

face oxygen vacancies. The observed changes are fully reversible with respect to

annealing in O2 atmosphere at 120◦C.

We conclude that the Mn valence shift is mainly due to surface oxygen vacancy

formation, which are formed by the reaction steps during water oxidation despite of

the nominally oxidizing conditions. We propose that such oxygen vacancies are part

of the active catalyst structure and are involved as a docking site for water molecules

and reaction intermediates.

Since the occupation of antibonding eg states is changed in operation, the applica-

tion of a rigid molecular orbital filling model to describe catalytic activity as a function

of bulk bonding strength seems to be very limited. The bulk occupation of these

states, which can be controlled by heterovalent doping, can be strongly modified at

the activated surface.
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2.5 Appendix

2.5.1 Linear Superposition of Experimental Mn L-Edges

To deal with the question whether the average Mn valence is comprised of a mixture

of Mn3+ and Mn4+ species or formed by an intermediate valence state of Mn(3+x)+,

we compared stoichiometric linear superposition of Mn L-edges at high and low xCa

to measured spectra at intermediate xCa. As shown in Figure 2.9, the stoichiomet-

ric superpositions (blue curves) show significant systematic deviations from the cor-

responding measurements. Variations can be compared by the difference spectra

which are shown as filled blue curves. They exhibit a minimum at 640.2 eV as well as
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two maxima at 641.0 and 642.0 eV respectively. According to Kanamori et al. [128] the

bad compliance indicates an intermediate valence state instead of coexisting species.

This result indicates significant covalent contributions to the Mn-O bond, i.e. a charge

density distribution at the upper valence band edge which is more or less centered at

the Mn-O bond instead of forming Mn3+/Mn4+ species.

Figure 2.9: Comparison of linear superpostition of Mn L-edges at high and
low xCa to spectra at intermediate xCa. The superpositions (blue) are as-
sembled according to the expected nominal concentrations of the Mn3+ and
Mn4+ species as indicated by the formulas in blue color.

2.5.2 Intensity Ratio of the Mn L3,2-Edges

For Electron Energy Loss Spectroscopy (EELS) in transmission electron microscopy

(TEM) of white lines like the Mn L-edge a Hartree-Slater-type background model has

been established. [131] Since the physical processes in TEY-XANES experiments are

quite different, we used a constant as well as a linear background model for quantifi-

cation of the integral Mn L3,2 edge intensities of the virgin samples. The backgrounds

are illustrated in Figure 2.10. A constant L2 background (BG1) was used from 649.3

to 658.0 eV, while two linear backgrounds (BG2) were used from 637.3 to 649.3 eV

and from 649.3 to 658.0 eV respectively.

2.5.3 XPS

Spin-orbit interaction splits the Ca 2p states into 2p1/2 and 2p3/2 substates at binding

energies of roughly 350 and 346 eV respectively. The structure of the virgin perovskite

lattice at xCa = 0.5 shown in Figure 2.11 a reveals further splitting into a total of four

peaks labeled P1 and P2 for the 2p3/2 as well as P3 and P4 for the 2p1/2 states. P2

and P4 represent surface sites exhibiting less chemical shift compared to the P1 and

P3 subsurface sites. Upon in situ activation in 0.1 mbar water vapor at a sample bias
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Figure 2.10: Simple background models used for quantification of Mn L3,2

intensities.

of +2.5 V against the grounded chamber our data show the emergence of a second

Ca species represented by the peaks labeled A1 and A2. According to studies on

La0.6Ca0.4CoO3
[141,142] this could correspond to formation of surficial Ca(OH)2 and

CaO. Reoxidation in 0.1 mbar O2 fully restores the virgin state of the surface (blue

curves in Figure 2.11 a).

The four peaks of the O 1s states are shown in Figure 2.11 b. The O2- species

of the perovskite lattice is represented by peak P1 (subsurface) and P2 (surface). P3

corresponds to various weakly bound O- and OH- surface species, while P4 represents

adsorbed H2O molecules. Upon in situ activation P3 and P4 increase significantly.

Reoxidation of the sample leaves a slightly increased intensity of P2 and P4 compared

to the virgin surface.

Figure 2.11: Peak analysis of XPS data before (red) and during inser-
tion of 0.1 mbar H2O with sample bias of +2.5 V against grounded chamber
(green), as well as in UHV after reoxidation in 0.1 mbar O2 (blue). (a) Ca 2p
states; (b) O 1s states.
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Chapter 3

Environmental TEM Investigation of

Electrochemical Stability

This chapter is a reproduction of the following original publication:

Environmental TEM Investigation of Electrochemical Stability of
Perovskite and Ruddlesden-Popper Type Manganite Oxygen Evo-
lution Catalysts

Daniel Mierwaldt, Vladimir Roddatis, Marcel Risch, Julius Scholz, Janis Geppert,

Majid Ebrahimizadeh Abrishami, and Christian Jooss

Adv. Sustainable Syst. 2017, 1(11), 1700109; doi: 10.1002/adsu.201700109

References, labels and arrangement of figures and tables have been modified to suit

this thesis. Videos are accessible on the journal’s website.

Abstract The sluggish kinetics of the oxygen evolution reaction (OER) are a grand

challenge for energy storage technologies. Several perovskites and other oxides of

earth-abundant elements have been found to exhibit improved catalytic OER activity.

However, less attention has been paid to the electrochemical stability, an important

factor for large-scale application. The ongoing search for stable catalysts calls for

characterizing active catalyst surfaces and identifying mechanisms of deactivation,

activation or repair. In situ techniques are indispensable for these tasks. This study

39
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uses environmental TEM (ETEM) on the

highly correlated perovskite Pr1-xCaxMnO3

and the Ruddlesden-Popper Pr0.5Ca1.5MnO4

as model electrodes to elucidate the underly-

ing mechanisms of the stability trends identi-

fied on rotating ring disk electrodes (RRDE).

An electron beam at fluxes well below radia-

tion damage is used to induce positive local

electrode potentials due to secondary elec-

tron emission, driving electrochemical reac-

tions in H2O vapor. Stability of the model systems increases with increasingly ionic

character of the Mn-O bond, while more covalent bonds are prone to corrosion, which

is triggered by formation of point defects in the oxygen sublattice.

3.1 Introduction

Electro-chemical water splitting is a critical step of sustainable production of artificial

fuels from renewable energies. Its efficiency is limited by large overpotentials of the

anodic oxygen evolution reaction (OER). [2,3,50,62–65] Next to scarce noble metal oxides,

several first-row transition metal oxides and, in particular, perovskite-based systems

with the general formula ABO3 perform well as OER catalysts. [3,27,50–52] Theoretical

studies suggest that the catalytic activity of the four-electron transfer reaction forming

molecular O2 depends on strength and flexibility of the bond between active site and

reaction intermediates [68,70] as well as on facile electron transfer. [151] In perovskites,

bond strength and electron transfer are influenced by the transition metal valence as

well as by distance, angle and hybridization of the metal oxygen bonds. These pa-

rameters can be tuned by heterovalent A-site doping. [54,55] The required flexibility to

adjust the surface acceptor states to the various reaction intermediates is facilitated by

the capability of some transition metals to form different valence states. [68,152] Specif-

ically, valence states of Mn-based OER catalysts are found to be between 3+ and 4+,

as in the Mn4Ca complex in natural photosynthesis. [64,153–158]

Searching for correlations between bond parameters and OER activity of per-

ovskites, Suntivich et al. observed a volcano-like relationship between OER activ-

ity and bulk occupation of the σ-antibonding eg states. [49] However, active surfaces

can differ significantly from the equilibrium bulk states of a catalyst, involving dynamic
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point defect formation and annihilation, as e.g. observed in TiO2 or predicted for Au

nanoparticles. [159,160] Point defect dynamics such as vacancies and interstitial atoms

also have a strong impact on reaction mechanisms and activity in perovskites. [74,75]

Furthermore, the reversibility of such point defect dynamics governs catalyst stabil-

ity. The importance of understanding active states is underlined by the finding that

high intrinsic activity is often correlated with low thermodynamic stability leading to

corrosion and therefore limited long-term usability. [77–80]

Two principal scenarios for active sites and underlying reaction mechanisms are

discussed for perovskite oxides, namely redox active metal versus redox active lattice

oxygen sites. In the case of active metal sites, theory suggests that all OER steps

occur at single metal centers. [68] Such a mechanism is supported by recent experi-

ments on La0.6Sr0.4MnO3 (LSMO), where a correlation between OER activity and Mn

surface concentration is observed. [161,162] On the other hand, it has been proposed

that surface lattice oxygen can be involved in OER by protonation (OH) and vacancy

formation (VO), based on in situ experiments [73,74] and recent theoretical works. [76,80]

Note that previous studies have also shown lattice oxygen involvement for several

highly active rutile catalysts. [83–85] Theoretical and experimental works suggest that

lattice oxygen involvement is provoked by strong hybridization of the metal-oxygen

bond, which can shift the redox activity from metal to lattice oxygen surface sites due

to ligand hole formation. [3,73,77,81,82] Thus, an understanding of the underlying micro-

scopic mechanisms, the nature of active sites and catalyst stability is necessary to

rationalize the search for active and stable catalysts.

Using in situ X-ray absorption near-edge spectroscopy (XANES) and environmental

transmission electron microscopy (ETEM) on the perovskite Pr1-xCaxMnO3 (x≥0.3),

which has strong hybridization between O 2p and Mn 3d states, we have found strong

evidence for lattice oxygen involvement in OER. [73,74,105] This was concluded from

the experimentally observed Mn reduction at the surface under strongly oxidizing

conditions, which can be explained by the formation of VO and surface protonation

acting as electron donors to Mn. This scenario was proven by the observation of va-

cancy ordering, showing that redox activity of lattice oxygen can open up a corrosion

channel. [105] VO formation during OER is facilitated by increasing Ca concentration

and was interpreted by an increasing contribution of O 2p holes at the upper valence

band edge based on band structure calculations. A comparative study of the per-

ovskite (P) manganite Pr1-xCaxMnO3 and the related Ruddlesden-Popper (RP) system

Pr1-xCa1+xMnO4 at equal doping levels of xCa = 0.5, 0.75 and 1 shows much higher sta-

bility of the RP structure, which was interpreted by a reduced O 2p character of the
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acceptor states, i.e. lower covalence factor, measured by X-ray spectroscopy at the

O K-edge. [157] Different OER mechanisms, employing either O or Mn as redox active

sites, therefore seem to enable different possible corrosion pathways and thus lead to

remarkable differences in the stability of Mn-based electrodes.

We here present an ETEM study on the interplay of point defect chemistry and cor-

rosion pathways, combined with ex situ rotating ring disk electrochemistry (RRDE).

We compare the electrochemical stability of the perovskite Pr0.7Ca0.3MnO3 (P73-

PCMO) and the Ca-rich, layered RP system Pr0.5Ca1.5MnO4 (RP-PCMO) in H2O va-

por at a fixed pressure of 0.5 Pa. The chosen model systems are comprised of the

same building blocks, namely MnO6 octahedra, which provide the hybridized, redox

active electronic states and similar Mn valence. [58] The systems have been chosen

because of strong differences in covalence. [157] Moreover, RP systems show a much

higher oxygen mobility parallel to the layers compared to perovskites and its change

of lattice parameter as a function of oxygen content is one order of magnitude smaller,

leading to reduced vacancy induced strain. [163,164] Differences in both properties are

presumably important for explaining the observed enhanced stability of the RP phase

under reactive conditions compared to the P phase. The ETEM study is extended to

non-OER conditions in O2 and/or He. To verify the stabilizing effect of lower cova-

lence, the perovskite Pr0.9Ca0.1MnO3 (P91-PCMO) with lower covalence factor than

P73-PCMO is included in the ETEM study.

3.2 Results

3.2.1 Ex Situ Characterization

3.2.1.1 Electrochemistry by RRDE

Catalytic properties of P73-PCMO and RP-PCMO for OER are investigated by means

of rotating ring disk electrodes (RRDE). The powders are deposited onto glassy car-

bon to form disk electrodes. A systematic study of structural and electrochemical

properties including further doping levels of the two systems has been published

elsewhere. [157]

The oxygen evolution activity is demonstrated by cyclic voltammetry (CV) in Ar-

saturated electrolyte (0.1 M KOH) of the disk electrode and using the Pt ring electrode

for detecting evolved oxygen molecules at a constant potential of 0.4 V vs. RHE via
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the oxygen reduction reaction. Representative CV curves of disk and ring current

densities in Figure 3.1 a-b show a comparably higher activity of the RP-PCMO both in

terms of overpotential to obtain a current density of 50 µA/cm2 and in terms of current

density at a potential of 1.65 V vs. RHE. We observe slightly lower Tafel slopes for the

P73-PCMO electrode. The same observations are made in O2-saturated electrolyte,

as summarized in Table 3.1. Ring currents are not superimposed by corrosion or

capacitance, and correspond solely to the reduction of evolved oxygen. [161] Therefore,

the simultaneous increase, i.e. similar Tafel slopes, of disk and ring currents suggests

that the observed onset in fact corresponds to OER. [165]

Figure 3.1: a)-b) Representative CV measurements (forward direction of the 5th scan)
of powders of P73-PCMO (a) and RP-PCMO (b) are shown in blue and the correspond-
ing ring currents in orange. The voltage is corrected for electrolyte resistance. Ring
currents were obtained by CA at 0.4 V vs. RHE. c) Relative changes of current density
at 1.65 V vs. RHE compared to the 2nd scan. All measurements were performed with
10 mV/s scan rate at 1600 rpm rotation in Ar-purged (a-b) or O2-purged (c) 0.1 M KOH
supporting electrolyte. d) Covalence of the Mn-O bond in Pr1-xCaxMnO3 perovskite (P)
thin films (squares), P-particles (circles) and Ruddlesden-Popper (RP) particles (trian-
gles). e)-f) Low magnification brightfield TEM images of the ion milled P73-PCMO (e)
and RP-PCMO (f).

To evaluate the electrochemical stability of P73-PCMO and RP-PCMO, we com-

pare the changes of consecutive voltage cycles relative to the 2nd cycle at a potential

of 1.65 V vs. RHE. These relative changes are presented in Figure 3.1 c, showing sig-

nificantly higher stability of the RP-PCMO. Note that the intermediate potential range
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Table 3.1: The electrochemical parameters are based on CV measurements in O2- or Ar-
saturated 0.1 M KOH and the error represents the averaged values of three electrodes of
the respective composition. Tafel slopes were calculated from the capacitance corrected 5th

scan.

material electrolyte U (50 µA / cm2) joxide (1.65 V vs. RHE) Tafel slope (CV)
[V vs. RHE] [µA / cm2] [mV / dec.]

P73-PCMO O2 1.72±0.01 3.4±0.5 78±3
Ar n.a. 5.6±1.2 97±4

RP-PCMO O2 1.69±0.01 21.0±5.6 93±4
Ar 1.68±0.01 22.4±0.9 97±2

is chosen to avoid contribution of capacitive effects at low potential and bubble forma-

tion at high potentials.

3.2.1.2 Covalence Analysis by XAS

X-ray absorption spectroscopy (XAS) at the O K-edge is very sensitive to the character

of the iono-covalent Mn-O bond. As described in the SI, differences of the bond

covalence can be qualitatively extracted from intensity differences of the low energy

feature, reflecting the presence of O 2p hole states due to hybridization with the Mn 3d

states. [133,157,166] X-ray absorption edges (total electron yield) of different P- and RP-

PCMO samples at various Pr/Ca ratios are presented in Figure 3.2. The obtained

covalence factors are plotted against the corresponding nominal Mn valence in Figure

3.1 d. To compare the results of thin films and submicrometer-sized particles, the

factors are normalized by the respective values for P55-PCMO. Covalence is found to

be highest in Ca-doped P-PCMO, decreasing towards PrMnO3 below half doping. In

comparison, covalence is significantly lower in RP-PCMO, showing strong decrease

with increasing Pr/Ca-ratio also for Ca-rich compositions.

Figure 3.2: X-ray absorption (O K-edge, TEY) of P-PCMO thin films (a) and nanoparticles
(b), as well as RP-PCMO nanoparticles (c). Intensities below 531 eV are highlighted by
filled curves.

Therefore, ex situ experiments demonstrate the correlation of electrochemical sta-
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bility with the iono-covalent character of the Mn-O bonds. However, understanding

the mechanistic origin of corrosion pathways requires in situ studies, as presented in

the following section.

3.2.2 ETEM Experiments

Microscopic investigation of the catalyst surfaces under reactive conditions is per-

formed in an ETEM. Representative low magnification bright field TEM images of the

ion milled specimen from sintered powder pellets are shown in Figure 3.1 e (P73-

PCMO) and Figure 3.1 f (RP-PCMO). Crystal sizes of 80 to 800 nm are observed.

We expose the catalysts to H2O vapor at 0.5 Pa and to different pressures of O2 or

He. Unless specified otherwise, an electron beam of 4 nA and 100 nm diameter is

used to stimulate and observe the specimen, corresponding to an electron flux den-

sity of about 32,000 e-Å-2s-1. At this rather high value, no structural changes due

to beam damage are observed by high-resolution transmission electron microscopy

(HRTEM) imaging in high vacuum and inert gas (He) during exposure for typically

50 min. Absence of oxygen knock-out from intact crystalline areas in high vacuum

mode is proven by EELS analysis of Mn valence. In H2O vapor, the electron flux has

been found to be optimal in order to induce electrochemical activity. [88]

3.2.2.1 ETEM Analysis of P73-PCMO

The ETEM experiment presented in Figure 3.3 demonstrates the beam driven forma-

tion of nanocrystals from the oxygen depleted amorphous surface and the underlying

(001) facet of a P73-PCMO single crystal (orthorhombic Pbnm space group) in 0.5 Pa

H2O. The cross-section lamella is cut from an epitaxial thin film (section 3.5.1). An

amorphous layer of 2-5 nm thickness due to ion milling and carbon contamination is

observed on the pristine surface. (Figure 3.3 a) The contamination is being removed

upon exposure to the beam in vacuum of 10-4 Pa, while the ion beam damaged spec-

imen material remains stable. (Figure 3.3 b, Video 1) Exposure to the same electron

beam in 0.5 Pa H2O leads to rapid recrystallization of surface-near areas. (Video 2)

The state of the specimen after 8 minutes of in situ recrystallization with ca. 5 nm

large crystallites on the surface is shown in Figure 3.3 c.

Next, we present an ETEM experiment on a single crystalline (010) facet of a P73-

PCMO particle. The pristine composition is confirmed by electron energy loss spec-

troscopy (EELS) and energy dispersive X-ray spectroscopy (EDX), as summarized in
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Figure 3.3: a) Epitaxial P73-PCMO thin film with amorphous surface layer due to spec-
imen preparation by ion milling and carbon contamination. b) Remaining preparation
induced layer, after slow removal of carbon contamination under electron beam illumina-
tion in high vacuum (10-4 Pa). c) In 0.5 Pa H2O, ca. 5 nm large crystallites start to form in
random orientation on top of the single crystal surface.

Table 3.2 and described in section 3.6.2. Figure 3.4 a shows a high-resolution image

of the pristine surface and Video 3 demonstrates its stability under illumination by the

electron beam in vacuum of 8·10-5 Pa. H2O vapor is introduced and a pressure of

0.5 Pa is stabilized with blanked beam for about 45 minutes. Upon exposure to the

beam under these conditions, nanocrystals of various orientations start to form at the

particle surface (Figure 3.4 b and Video 4). Corresponding fast Fourier transforms

(FFTs) of the indicated areas are shown in Figure 3.4 c and 3.4 d. The FFT of an

exemplary area marked by the blue square is still clearly dominated by the original

perovskite structure (Figure 3.4 c), demonstrating that it is preserved in the bulk. The

FFT of the surface crystal (Figure 3.4 d) is consistent with the perovskite structure in

new orientation with deviations from the pristine lattice parameters within 10 pm and

also contains weak spots originating from the bulk.

Post-mortem scanning transmission electron microscopy (STEM) and EELS anal-



3 Environmental TEM Investigation of Electrochemical Stability 47

ysis reveals that the experiment in H2O ultimately leads to chemical decomposition

of the P73-PCMO. In order to minimize further beam-induced reactions, post-mortem

analysis is performed after several hours of pumping the H2O out of the microscope re-

turning to a vacuum of ca. 10-4 Pa. The high-angle annular dark field (HAADF) images

of the reacted specimen in Figure 3.4 e and 3.5 show brightness variations between

approximately 5-10 nm large areas, resulting from variations in thickness and chemi-

cal composition. Since the scattering angle is limited to 100 mrad, the HAADF signal

also contains some coherent contrast from different orientations of surface crystals.

EEL spectra from areas A-D (Figure 3.4 e) as well as from larger areas E-H (Fig-

ure 3.6) show varying ratios of the contained cations, as summarized in Table 3.3.

Details of the quantification procedure are given in sections 3.6.2-3.6.3. Major loss

of Mn is revealed in areas where the specimen has been illuminated under reactive

conditions, as indicated by a strongly increased A-cation to Mn ratio compared to its

stoichiometric value. Depletion of Mn increases with decreasing specimen thickness,

indicating that surface reactions drive the perovskite nanocrystal formation as well as

the subsequent decomposition of the perovskite into Pr-rich and Ca-rich phases. In

areas G and H, which have not been exposed to the electron beam during the in situ

experiment, almost no change in chemical composition is observed. In conclusion,

P73-PCMO recrystallizes and subsequently decomposes whenever it is exposed to

the combination of H2O and electron beam at the chosen parameters.



48 3.2 Results

Figure 3.4: a) Pristine P73-PCMO (010) facet of a single crystal particle in <001> zone
axis. b)-d) Beam driven nucleation of misoriented perovskite nanocrystals at the surface,
observed after 3 min of illumination in 0.5 Pa H2O. FFTs show that the original crystal
structure still dominates the bulk (c), while misoriented grains form at the surface (d). e)
Post-mortem HAADF-STEM shows brightness variations between 5-10 nm large areas,
partly due to thickness variation as well as chemical decomposition. f)-h) Post-mortem
EEL spectra of areas A-D marked in (e) at the Ca L-, Mn L-, and Pr M-edges demonstrate
chemical decomposition due to structural disorder.

Figure 3.5: Post mortem HAADF-STEM
overview of the reacted P73-PCMO nanopar-
ticle.
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Figure 3.6: Post mortem HAADF-STEM images of the reacted
P73-PCMO nanoparticle. Colored boxes mark the areas where
EEL spectra were recorded (Table 3.3). Areas E (a) and F (b)
show chemical decomposition due to structural disorder from the
in situ experiment under e-beam, while the nominal composition
is preserved without in situ illumination in areas G (c) and H (d).
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Table 3.2: Chemical composition of the pristine P73-PCMO particles. Quantification of the
Pr M-, Ca L-, and Mn L-edges from EELS and of the Pr L-, Ca K-, and Mn K-lines from EDX.

spectrum t/λ Pr Ca Mn (Pr + Ca) / Mn Ca / (Pr + Ca)
[at-%] [at-%] [at-%]

nominal composition 35 15 50 1.00 0.30
EELS 1 0.40 34.0 15.8 50.2 0.99 0.32
EELS 2 0.40 29.7 16.2 54.2 0.85 0.35
EELS 3 0.40 37.5 14.5 48.0 1.09 0.28
EELS 4 0.36 35.0 17.1 47.9 1.09 0.33
EELS 5 0.51 38.7 16.3 45.0 1.22 0.30
EELS 6 0.35 37.3 15.3 47.4 1.11 0.29
EELS 7 0.36 38.3 15.6 46.2 1.17 0.29
EELS average 0.40(5) 36(3) 16(1) 48(3) 1.1(1) 0.31(3)
EDX 1 34.3 14.6 51.0 0.96 0.30
EDX 2 37.5 14.9 47.6 1.10 0.28
EDX 3 37.9 15.7 46.4 1.16 0.29
EDX 4 38.5 15.3 46.3 1.16 0.28
EDX 5 39.2 14.1 46.7 1.14 0.26
EDX 6 34.6 14.7 50.7 0.97 0.30
EDX 7 37.8 16.0 46.2 1.17 0.30
EDX 8 38.0 15.5 46.6 1.15 0.29
EDX 9 38.2 15.9 45.9 1.18 0.29
EDX 10 38.4 15.8 45.8 1.18 0.29
EDX 11 38.8 15.5 45.7 1.19 0.29
EDX 12 37.0 16.5 46.4 1.15 0.31
EDX average 38(2) 15(1) 47(2) 1.1(1) 0.29(1)

Table 3.3: Post-mortem EELS analysis of the P73-PCMO particle. Concentrations of Pr,
Ca, and Mn atoms (in atomic %) are quantified by using the Pr M-, Ca L-, and Mn L-edges
as described in section 3.6.3. Total relative thickness (ttot/λ) has been calculated from si-
multaneously measured low loss spectra. It has been corrected for carbon contribution from
surface contamination to give the specimen specific t/λ. HAADF images of the measured
areas are shown in Figure 3.4 e (areas A-D) and Figure 3.6 (areas E-H). Areas G and H
were not illuminated by the electron beam during the in situ experiment and are close to the
pristine composition.

area t/λ Pr Ca Mn (Pr + Ca) / Mn Ca / (Pr + Ca)
[at-%] [at-%] [at-%]

nominal composition 35.0 15.0 50.0 1.0 0.30
pristine crystal 37.0 15.5 47.5 1.1 0.30

A 0.09 62.3 25.9 11.9 7.4 0.29
B 0.06 53.5 38.9 7.6 12.2 0.42
C 0.06 59.0 37.2 3.9 24.9 0.39
D 0.10 45.6 28.3 26.1 2.8 0.38
E 0.07 58.8 21.6 19.7 4.1 0.27
F 0.21 54.3 18.6 27.2 2.7 0.25

G (no beam) 0.37 36.5 12.4 51.1 1.0 0.25
H (no beam) 0.17 31.1 17.7 51.2 1.0 0.36
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3.2.2.2 ETEM Analysis of P91-PCMO

A fundamentally higher stability of P91-PCMO compared to P-PCMO with higher Ca-

content is observed in the ETEM under the same experimental conditions at 0.5 Pa

H2O. Figure 3.7 shows the single crystalline (112) facet of a particle in <110> zone

axis of the Pbnm structure during the experiment. The specimen keeps its single

crystalline state over the entire course of the experiment, despite showing strong

cationic dynamics in the uppermost atomic layer. As further discussed for experiments

on RP-PCMO and in section 3.6.5, the very weak contrast of the light oxygen atoms

confines our observations to movement of the cations.

Figure 3.7: P91-PCMO single crystal observed at <110> zone axis
after 4 min (a) and 7 min (b) of the ETEM experiment in 0.5 Pa H2O.
The FFT is shown as an inset.

3.2.2.3 ETEM Analysis of RP-PCMO

RP-PCMO particles are exposed to H2O vapor at 0.5 Pa. The example in Figure 3.8

shows such a particle in <110> projection with a curved edge close to a (001) facet

(orthorhombic Fmm2 space group) with an amorphous surface layer due to lamella

preparation. The pristine composition is confirmed by EELS and EDX, as summa-

rized in Table 3.4 and described in section 3.6.2. Upon exposure to the beam in

H2O, the up to 3 nm thick surface layer starts to crystallize mostly epitaxially on top of

the Ruddlesden-Popper particle. (Video 5) Some amorphous material is still left on

the surface after 7 minutes of illumination in H2O. (Figure 3.8 a) Note that the area

of the low indexed (001) surface facet (marked by arrows) acts as the most stable

substrate leading to faster (and epitaxial) growth compared to edges, corners, and

higher indexed surfaces. After 11 minutes, most of the surface material is crystallized
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and some misoriented grains start to grow. (Figure 3.8 b) After another 13 minutes,

the misoriented grains have grown. (Figure 3.8 c) FFTs of the 550 nm2 large areas

at the observed surface after 7 and 24 minutes are shown in Figure 3.8 d and 3.8 e

respectively. The single crystal peaks of the RP-PCMO clearly dominate both FFTs,

demonstrating its high structural stability. As can be seen in Video 5, the nanocrystals

are mostly formed from the initially amorphous surface layer. This is in contrast to

P73-PCMO, where nanocrystals are formed from bulk material.

Figure 3.8: a)-c) RP-PCMO single crystalline particle with a near (001) facet observed
in <110> zone axis after 7, 11, and 24 minutes of the in situ experiment in 0.5 Pa H2O.
The preparation induced amorphous surface layer (a) begins to crystallize epitaxially on
top of the RP-PCMO (b). After more than 20 minutes, crystals of random orientation start
to form at curved and higher indexed surfaces, while the epitaxy appears stronger on the
flat (001) surface as marked by the arrow (c). d)-e) FFTs of 550 nm2 large areas after
7 (d) and 24 (e) minutes demonstrate the stability of the bulk structure during the entire
time.
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Table 3.4: Chemical composition of the pristine RP-PCMO. Quantification of the Pr M-,
Ca L-, and Mn L-edges from EELS and of the Pr L-, Ca K-, and Mn K-lines from EDX. The
quantification procedure is the same as described for pristine P73-PCMO in section 3.6.2.

spectrum t/λ Pr Ca Mn (Pr + Ca) / Mn Ca / (Pr + Ca)
[at-%] [at-%] [at-%]

nominal composition 16.67 50.00 33.33 2.00 0.75
EELS 1 0.20 15.1 48.1 36.7 1.72 0.76
EELS 2 0.22 14.9 48.2 36.9 1.71 0.76
EELS 3 0.45 20.7 43.5 35.8 1.80 0.68
EELS 4 0.86 17.8 48.2 34.0 1.94 0.73
EELS 5 0.53 15.7 50.8 33.5 1.98 0.76
EELS 6 0.30 14.3 50.4 35.3 1.83 0.78
EELS average 0.4(3) 16(3) 48(3) 35(1) 1.8(1) 0.75(4)
EDX 1 14.8 55.2 30.0 2.33 0.79
EDX 2 15.6 54.1 30.3 2.30 0.78
EDX 3 14.4 53.7 31.8 2.14 0.79
EDX 4 14.8 55.2 30.0 2.33 0.79
EDX 5 15.3 52.6 32.1 2.12 0.77
EDX 6 15.3 52.9 31.8 2.15 0.78
EDX 7 15.4 53.4 31.2 2.20 0.78
EDX 8 15.3 52.0 32.7 2.06 0.77
EDX 9 14.9 49.5 35.6 1.81 0.77
EDX 10 14.2 50.5 35.3 1.84 0.78
EDX 11 14.4 50.1 35.5 1.82 0.78
EDX 12 14.2 51.1 34.7 1.89 0.78
EDX 13 14.4 50.5 35.1 1.85 0.78
EDX average 15(1) 52(2) 33(2) 2.1(2) 0.78(1)
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3.2.2.4 EELS Analysis of RP- and P73-PCMO

A deeper understanding of the electrochemical processes underlying the different sta-

bility of RP- and P73-PCMO is gained from the study of changes in the Mn oxidation

state via EELS. A RP-PCMO particle is investigated under the same conditions of

0.5 Pa of H2O by means of in situ EELS at the O K-edge and Mn L-edge. (Figure

3.9 a-b) HAADF-STEM images of the ca. 20 x 40 nm2 large areas are shown in Figure

3.10. The low energy feature of the O K-edge at around 529 eV represents excita-

tion into hybridized antibonding states of Mn 3d eg character. [58] It is therefore highly

sensitive to changes in Mn valence state and hybridization of the Mn-O bond. [157,166]

The shift of the onset towards lower energy demonstrates oxidation of the Mn during

the in situ experiment. The post-mortem valence is slightly lower, but still above the

value of the pristine specimen. A similar shift of the edge onset to lower energy is

found post-mortem in a nearby area, which has not been illuminated while in contact

with the H2O. The Mn L-edge shows the same general trend with the highest valence

state during the in situ experiment in H2O vapor, as shown by the lowest intensity of

the low energy flank of the L3-edge at around 640 eV. The lowest valence is found in

the initial state. The same edge shape is found post-mortem in the area, which has

not been illuminated during the experiment. Quantification of the Mn valence is given

in Table 3.5. Details on calibration and normalization of the spectra are presented in

section 3.6.4.

Figure 3.9: a)-b) EELS at the Mn L- and O K-edge of a pristine single crystalline RP-
PCMO particle observed in <110> zone axis (black), in 0.5 Pa H2O (blue), and in high
vacuum (HV) after the experiment of the same area (orange) and an area, which had
not been illuminated by the beam during the in situ experiment (green). c) Post-mortem
EELS at O K-edge of 5 areas of a P73-PCMO thin film after exposure to H2O vapor. The
areas have been illuminated by 1.2 nA for 12 min (blue), 3.7 nA for 8 min (green), and
7.4 nA for 13 min (orange) in 0.5 Pa H2O as well as by 7.4 nA for 8 min in 5 Pa H2O (red).
A spectrum from an unilluminated area is shown in black.
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Figure 3.10: HAADF-STEM images of the areas, in which the EEL
spectra in Figure 3.9 a-b were collected. a) before the experiment, b)
in 0.5 Pa H2O, c) in UHV after the experiment, d) an area in UHV, which
had not been illuminated during the in situ experiment and showing a
high density of stacking faults.

Table 3.5: Calculated Mn oxidation state from the EEL spectra in Figure 3.9 b.

spectrum Mn valence
initial state 3.26
0.5 Pa H2O 3.46
post reaction 3.30
porst reaction, no beam 3.43



56 3.2 Results

Corrosion of P73-PCMO via nanocrystal formation and subsequent chemical de-

composition is analyzed by post-mortem EELS at the O K-edge after exposure to

H2O vapor at 0.5 or 5 Pa. The cross-section lamella, cut from an epitaxial thin film,

is stimulated by a beam of 145 nm diameter and 1.2, 3.7 or 7.4 nA (flux densities of

4,500 - 28,000 e-Å-2s-1). After 12 min at 1.2 nA in 0.5 Pa H2O, some fcc nanocrystals

are formed from the amorphous surface material, as demonstrated by the rotation-

ally averaged FFT of a 16 x 16 nm2 area at the edge (Figure 3.11), while the Pbnm

single crystal clearly dominates the FFT of a 32 x 32 nm2 area. (Figure 3.12 a-b) The

reduced intensity of the low-energy feature of the O K-edge (528-530 eV) from the

entire illuminated area of 16,500 nm2 shows reduction of the P73-PCMO in compar-

ison to an area that has not been illuminated during the ETEM experiment. (Figure

3.9 c) Higher beam current or H2O pressure strongly accelerate the formation and

growth of nanocrystals from the surface and bulk material, which is demonstrated by

increasing number and intensity of polycrystalline peaks and decreasing intensity of

the Pbnm single crystal peaks. (Figure 3.12 c-h) As a result, the P73-PCMO increas-

ingly decomposes into fcc nanocrystals (Figure 3.11), which can lead to both oxidized

or reduced Mn species. (Figure 3.9 c) In summary, we observe electronic changes of

both the corroding P73-PCMO as well as the stable RP-PCMO.

Figure 3.11: Rotationally averaged FFTs of 16 x 16 nm2 large areas at the edge of a P73-
PCMO thin film. Shown is the pristine Pbnm single crystal (black), the fcc nanocrystals after
decomposition for 8 min at 7.4 nA in 5 Pa H2O (orange), and the lightly decomposed state
after 12 min at 1.2 nA in 0.5 Pa H2O (green).
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Figure 3.12: Bright field TEM images of the P73-PCMO edge and corresponding FFTs after
various times at various beam intensities and H2O pressures, as indicated in the image.
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3.2.2.5 ETEM control experiments on RP-PCMO in O2 and/or He

Prior to the ETEM experiment presented in Figure 3.8, the same RP-PCMO particle

has been exposed to the beam in vacuum and 0.7 Pa of He. Its amorphous surface

layer is stable against beam damage in vacuum and is only partly being removed in

He (Video 6), presumably only some carbon-rich areas formed in high vacuum.

Other RP-PCMO particles are exposed to O2 (or O2 + He) to study the electro-

chemical oxidation of amorphous surface layers in the absence of catalysis. In the

first experiment, we expose a particle to 100 Pa of O2. The pristine state of a near

(11̄3) facet observed in <110> orientation of the Fmm2 structure is shown in Figure

3.13 a. Some stacking fault-like, Pr-rich defects of perovskite structure are observed

due to incomplete reaction with CaO. Arrows mark such a layer of three perovskite unit

cells. At this high oxygen pressure, in situ electron beam illumination results in strong

cationic surface movement, especially at corners and curved facets. (Video 7) How-

ever, while some amorphous material is removed, it mostly crystallizes to form low

indexed facets of the underlying single crystal (Figure 3.13 b). Contrary to the trend

with Ca-content in P-PCMO and despite the 200 times higher pressure compared to

other ETEM experiments, the RP-PCMO is very stable during the 14 minutes of the

in situ experiment.

The second experiment is performed on a crystal observed in <110> zone axis

with a 3-4 nm thick layer of amorphous material on its surface due to lamella prepa-

ration. (Figure 3.13 c) The particle is exposed to a mixture (1:1) of He and O2 at a

pressure of 0.6 Pa. Under these conditions, the surface material crystallizes to form

a Pr-rich perovskite, while the RP-PCMO acts as a stable substrate allowing epitaxial

growth. (Figure 3.13 d) The epitaxial relationship is clearly demonstrated by FFTs of

the orthorhombic bulk (blue, space group Fmm2) and the pseudo-cubic surface (red,

space group Pm3m). Post-mortem EELS points to depletion of Mn and Ca in the sur-

face layer, due to damage created during lamella preparation and leaching during the

ETEM experiment. (Figure 3.14)

In summary, the ETEM experiments in section 3.2.2 confirm the stability trends

found by ex situ electrochemistry and provide valuable complementary insight: P91-

and RP-PCMO retain their structure, while recrystallization of the P73-PCMO triggers

and facilitates chemical decomposition.
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Figure 3.13: a)-b) RP-PCMO single crystal with a Pr-rich perovskite stacking fault-like
defect observed in <110> zone axis at different times of the in situ experiment in 100 Pa
O2. c)-d) Other single crystal observed in <110> zone axis in 0.3 Pa O2 + 0.3 Pa He.
c) Pristine state with amorphous surface layer due to specimen preparation. d) Epitax-
ial crystallization in pseudo-cubic perovskite structure (<100> zone axis) on top of the
RP-PCMO single crystal during the in situ experiment, as demonstrated by the inset of
corresponding FFTs.

Figure 3.14: a) HAADF STEM image of RP-PCMO after ETEM experiment in O2 + He.
The white rectangle marks the area, in which the areal density of Pr, Ca, and Mn has
been measured by EELS. b) Line profiles of Pr (M-edge, blue circles), Ca (L-edge, red
squares), and Mn (L-edge, green triangles) after horizontal integration and normalization
of each profile in the thick region. Significantly increased Pr concentration compared
to the bulk composition is observed within the in situ crystallized material at 11-15 nm
(Figure 3.13 d).
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3.3 Discussion

3.3.1 Electron Beam Driven Electrochemistry in ETEM

The comparison of stability trends in RRDE and ETEM studies as a function of mate-

rial composition is a powerful approach for identifying destabilizing processes and cor-

rosion channels. However, ETEM observations cannot be directly compared to ex situ

electrochemical stability analysis due to differences in composition and conductivity

of the electrolyte, pH value, pressure, and beam-induced effects. [73,88,105] Thus, dis-

tinguishing between electrochemical and beam damage effects is an important chal-

lenge of ETEM studies. Inelastic scattering of beam electrons has two main effects:

First, the emission of secondary electrons creates a positive space charge within the

material, which can drive electrochemical surface reactions. Second, knock-on dam-

age induces point defects by displacing lattice atoms. Control experiments in high

vacuum or He demonstrate that all systems, including P73-PCMO, are stable against

beam damage, ruling out knock on processes as a significant mechanism for the ob-

served effects during ETEM experiments. Additionally, instead of purely chemical ef-

fects, we observe beam-induced electrochemistry, which is supported by the fact that

the structural and chemical effects as well as changes in oxidation state in reactive

gasses (O2, H2O) only occur in combination with the electron beam, i.e. the observed

changes set in only after unblanking of the beam. Macroscopic electrical measure-

ments yield a specific resistance of the porous electrode materials of 4.7 kΩcm. The

investigated TEM specimens can therefore be estimated to have a ground resistance

of roughly 500 MΩ. The surface potential under illumination by an electron beam of

4 nA is evaluated to a value of ca. 0.7±0.1 V by using equation (7) in Mildner et

al. [105] The relatively large error in this order of magnitude estimation stems from un-

certainties in estimated electric resistance of the porous thin lamella areas as well

as from the deviation of the studied samples from planar lamella geometry underly-

ing equation (7). Nevertheless, the estimated potential is electrochemically relevant

for either driving material dependent electrode redox processes or even the OER. In-

creasing the electron flux accelerates the observed processes, but does not lead to

new phenomena within the used limits.
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3.3.2 Corrosion Pathways and Driving Forces

We suggest that the observed stability trends can be mainly attributed to different

character of the iono-covalent Mn-O bond. In the P-PCMO systems, Ca-doping shifts

the O 2p and Mn 3d bands towards each other, increasing hybridization and cova-

lence of the Mn-O bond, as shown by X-ray absorption spectroscopy. (Figure 3.1 d)

Higher covalence shifts the O 2p band towards the Fermi level and thus facilitates

the oxidation of surface lattice oxygen and the formation of point defects like VO and

protonation. [73,81] Redox active lattice oxygen can therefore participate in OER mech-

anisms, creating an active state that is vulnerable to corrosion. [76,167] Specifically, lat-

tice oxygen mediated OER mechanisms bear the risk of VO diffusion into the bulk of

the catalyst, creating inhomogeneous strain. [168,169] This strain can drive nucleation of

misoriented surface nanocrystals and therefore further drive the corrosion from an O

depleted perovskite structure towards a chemically decomposed state, as observed in

ETEM experiments on P73-PCMO. (Figure 3.3 and 3.4) In previous ETEM and in situ

XANES experiments in H2O vapor under positive bias, surface reduction of P-PCMO

at intermediate and high Ca doping was observed despite nominally oxidizing condi-

tions due to formation of VO acting as electron donors. [73,74,105] Phase decomposition

of P-PCMO into A-O and Mn-O rich phases above a critical VO concentration has also

been observed for vacuum annealed thin films. [170]

In contrast, the increased ionic character of the Mn-O bond in Pr-rich P91-PCMO

suppresses significant OER involvement of lattice O by preventing the formation of O1-

species and VO. [171,172] Its remarkable stability in ETEM experiments suggests that no

significant VO formation occurs in contact with H2O vapor at positive potentials. (Fig-

ure 3.7) Accordingly, in situ XANES at the Mn L-edge of PrMnO3 showed additional

changes compared to Ca-doped specimens, which cannot simply be interpreted as

Mn2+ formation. [74]

In summary, continuous V2 generation at the surface during OER and their migra-

tion into the subsurface can induce phase decomposition of the perovskite structure

by inducing point defect strain. The highly strained grain boundaries between the

formed nanocrystals may then further facilitate chemical decomposition. The subse-

quent beam-driven leaching of Ca and Mn or, in other words, knockout of light cations

is shown by EELS. (Figure 3.4 e-h) In addition, the high solubility of Ca promotes the

formation of weakly bound CaOH in the liquid surface layer, which is then likely to

be knocked out by the beam. This can result in reduced or oxidized Mn species, as

demonstrated in earlier ETEM experiments at different pressures of H2O. [88]
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However, the higher stability of RP-PCMO despite its much higher Ca content com-

pared to P73-PCMO rules out Ca dissolution as the primary driving force for corrosion.

Also, RP-PCMO shows clear Mn oxidation in 0.5 Pa H2O, which points against the VO

formation of its perovskite counterparts and is probably caused by uptake of oxygen

from H2O molecules. The observed formation of nanocrystals in H2O evolves from the

amorphous surface material instead of recrystallization of the RP phase. (Figure 3.8)

Moreover, its ability to enforce epitaxial growth of the thick, initially amorphous sur-

face layer during beam-driven crystallization in O2 + He further demonstrates its high

structural stability. (Figure 3.13 d) However, crystallization forms Pr-rich P-PCMO in-

stead of RP-PCMO, as the electron beam can knock Ca and Mn out of the weakly

bound amorphous material. Leaching of the light cations apparently decreases the

A/Mn ratio to nearly 1 (the stoichiometric value of P-PCMO). Furthermore, the A/Mn

ratio could already have been decreased in the initial state of the amorphous TEM

specimen regions due to preparation by ion milling.

In conclusion, we suggest that the more ionic character of the Mn-O bond of P91-

and RP-PCMO (Figure 3.1 d) inhibits excessive VO formation, avoiding inhomoge-

neous strain at the catalyst surface. In addition, the rock salt-like AO double layers

permit much easier relaxation of strain by non-stoichiometric oxygen compared to the

perovskite structure. [164] Finally, increased diffusion within these layers may also play

a role by homogenizing strain fields within the material. [173]

3.4 Conclusions

We demonstrate that all investigated systems (P73-PCMO, P91-PCMO, and RP-

PCMO) are stable against beam damage in the TEM, unless their bond strength

and phase stability is reduced by beam driven electrochemistry involving reactive

gasses during ETEM experiments. In the case of P-PCMO, the electrochemical sta-

bility shows a strong dependence on Ca-doping, stemming from change of the Mn-O

bond character. Most probably, the more ionic character in P91-PCMO stabilizes the

material against point defect-driven corrosion, while P73-PCMO recrystallizes and

chemically decomposes during ETEM experiments due to its highly covalent bond

character. In contrast, RP-PCMO is much more stable despite its high Ca content,

highlighting the importance of ionic bond character over effects of Ca-stoichiometry.

These observations demonstrate that perovskite electrocatalysts of improved activ-

ity and stability can be developed by systematically tuning the defect chemistry by
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covalence of the transition metal-oxygen bonds.

3.5 Experimental Section

3.5.1 Sample Preparation

The perovskite powders are synthesized from calcium nitrate tetrahydrate Ca(NO3)2

4 H2O (99%), manganese nitrate tetrahydrate Mn(NO3)2 4 H2O (99.5%), praseodym-

ium nitrate hexahydrate Pr(NO3)3 6 H2O (99.9%), and gelatin using a wet chemistry

method. Appropriate amounts of nitrates for 10 g of final product are dissolved in dis-

tilled water and stirred at room temperature for 20 min. Then, the 10 g gelatin solution,

stirred at 40 ◦C for 30 min, is added to the solution of the cations and the whole so-

lution is continually stirred at 60 ◦C for 2 h until it becomes clear with no precipitates

or particulates. Then, a heat bath at 90 ◦C is used to evaporate the solvents until the

desired resin-like product is obtained followed by drying at 200 ◦C for 5 min. Finally,

the brownish black powder is calcined at 900 ◦C for 5 h.

Ruddlesden-Popper powders are prepared by conventional solid-state reaction but

with a novel approach starting from a stoichiometric mixture of Pr0.5Ca0.5MnO3 and

CaO powders. The reagents are mixed in an agate mortar, ball-milled for 15 min, and

heated in air at 1100 ◦C for 24 h. Structural analysis by X-ray Diffraction (XRD) and

Rietveld refinement has already been published. [157]

The oxide electrodes for electrochemical measurements are prepared using a pro-

tocol published by Suntivich et al. but omitting Nafion. [174] The ink is prepared us-

ing acetylene black (AB) carbon (99.9+%, Alfa Aesar) treated in nitric acid overnight

at 80 ◦C and subsequently filtered and dried at 100 ◦C. Additionally, tetrahydrofuran

(THF, 99.9+%, Sigma Aldrich) and the respective oxide powder are mixed and soni-

cated for 30 min. The ink is composed of 1 mg mL-1 AB carbon and 5 mg mL-1 oxide

particles. Finally, 2 ·5 µL of the ink are drop-casted on a freshly polished glassy car-

bon (GC) electrode (0.1257 cm2 area, ALS Co. Ltd) to yield 0.4 mgox cm-2 disk oxide

loading, carefully controlling the drying to ensure a homogeneous coverage.

Particle TEM specimens are produced from pressed pellets of the respective pow-

ders. They are mechanically polished and ion-milled until perforation using a Gatan

PIPS 691 system.
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Pr0.7Ca0.3MnO3 (P73-PCMO) thin films of 300 nm thickness are prepared by reac-

tive ion beam sputtering (Xe sputter gas at 1 kV, 20 mA) from a sintered target onto

single crystalline MgO substrate. TEM cross-section lamellae are cut by focused ion

beam (30 kV, 7 nA - 300 pA) and are subsequently thinned at 5 kV and 29 pA in a FEI

Nova Nanolab 600 dual beam FIB (focused ion beam). Further thinning is done by Ar

ion milling at 2 kV to 500 V in a Gatan 671 Precision Ion Polishing System. The final

lamellae have an amorphous layer of 2 - 5 nm thickness on the single crystalline edge.

Amorphization is accompanied by some oxygen depletion due to preferential etching

as indicated by EELS based on a reduced Mn valence state, i.e. increased L3/L2 ratio

and reduced intensity of the low-energy O K-edge feature.

3.5.2 RRDE Characterization

Electrochemical measurements are carried out with two Interface 1000E (Gamry In-

struments Inc.) used as bipotentiostats assembled with a RRDE-3A rotator (ALS

Co. Ltd) in a polytetrafluoroethylene (P73-PCMO) or glass (RP-PCMO) cell using

a three-electrode configuration at room temperature. The measurements are per-

formed in 0.1 M KOH prepared from 1 M stock solution (Sigma Aldrich) and Milli-Q

water (> 16.5 MΩcm) saturated with either O2 or Ar (99.999%, Air liquid). The poten-

tials are referenced to a saturated calomel electrode (ALS Co. Ltd) calibrated to the

reversible hydrogen electrode (RHE) scale by CV measurement of hydrogen evolu-

tion in H2-saturated 0.1 M KOH, where the average voltages of zero current from the

positive and negative-going CV scans are found at 0.997 V vs. RHE. Additionally, the

potentials are corrected for electrolyte resistance extracted from the high frequency

intercept of the real impedance measured by impedance spectroscopy at the disk.

Cleanliness of the Pt ring is checked before each experiment by matching cyclic

voltammograms (CV) with polycrystalline Pt. [175] CV measurements at the disk are

performed at 10 mV s-1 and 1600 rpm. The ring voltage is always set to 0.4 V vs. RHE,

where the ring current is diffusion-limited. The currents of the oxide electrodes are cor-

rected for the amount of the deposited oxide and corresponding surface area obtained

by scanning electron microscopy (SEM) analysis of the particle size distribution. [157]

3.5.3 ETEM

The HRTEM images and related videos presented in this work are collected using an

aberration-corrected, Schottky field-emission gun transmission electron microscope
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(FEI Titan 80–300 environmental (S)TEM) operated at 300 kV. The microscope base

pressure under high vacuum (HV) condition is below 10-4 Pa. During the experiments,

up to 100 Pa of O2, O2 + He, He or H2O vapor is introduced into the ETEM. The in situ

videos are acquired using a script for Gatan’s Digital Micrograph software. The script

is provided by the Ernst Ruska-Centre (ER-C) for Microscopy and Spectroscopy. E-

beam intensities indicated are measured using the e-beam current reading from the

phosphor viewing screen. All particles or films are characterized in high vacuum

before introducing any gas into the TEM chamber. At least three particles are tested

and observed for each material to check the repeatability of observations.

3.5.4 EELS and EDX

Spectroscopy is performed in scanning diffraction mode, using a Gatan Quantum

965ER post-column energy filter for EELS and an Oxford Instruments X-Max 80 mm2

silicon drift detector for EDX. Quantification of the EDX spectra on the basis of the

Pr L-, Ca K-, and Mn K-lines is performed by the Cliff Lorimer thin ratio section method

using the commercial software INCA (Oxford Instruments). The energy resolution for

EELS is ca. 1 eV, measured as the full width at half height of the zero-loss peak.

The convergence angle is 10.0 mrad and the effective collection angle is 21.9 mrad.

Quantification of the EEL spectra is performed on the basis of the Pr M-, Ca L-, and

Mn L-edges, which is described in more detail in section 3.6.
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3.6 Supporting Experimental Section

3.6.1 Covalence of the Mn-O Bond

X-ray absorption at the O K-edge is very sensitive to the character of the iono-covalent

Mn-O bond. The low energy feature around 528-531 eV represents excitation into
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O 2p states hybridized with Mn 3d eg. Its intensity thus mainly increases in response

to two effects, namely the increasing nominal Mn valence and increasing covalence

of the Mn-O bond. The number of eg holes per Mn is determined by the nominal

Mn valence due to substitution of Pr3+ by Ca2+ assuming ionic bonds with O2- and

strong Hund’s coupling in both PCMO systems. [58] Remaining intensity differences

qualitatively reflect the covalence factor. X-ray absorption edges (total electron yield)

of different P- and RP-PCMO samples at various Pr/Ca ratios are presented in Figure

3.2, where the integrated areas are highlighted by filled curves. The integrated inten-

sity below 531 eV has been divided by the nominal Mn valence to cancel the effect

of eg filling. The thin film measurements were performed at BESSY II (Helmholtz-

Zentrum Berlin, Germany) and the nanoparticle measurements at the Canadian Light

Source (Saskatoon, Canada). Details of the measurements have been described

elsewhere. [74,157] To compare the results of thin films and nanoparticles, the obtained

covalence factors are normalized by the value for P55-PCMO (Figure 3.1 d). Cova-

lence is found to be highest in Ca-doped P-PCMO and decreases towards PrMnO3

below half doping. In contrast, Pr-doping of Ca2MnO4 (RP-PCMO) leads to much

stronger decrease in covalence.

3.6.2 Chemical Composition of the Pristine P73-PCMO Particles

The chemical composition of pristine P73-PCMO nanoparticles is characterized by

electron energy loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy

(EDX) in scanning transmission mode (STEM). A total of twelve EDX spectra are re-

corded at different particles. EEL spectra are extracted from seven spectrum images

of different particles. The Pr M-, Ca L-, and Mn L-edges are used for quantification.

Power-law functions are fit to 50 eV wide windows in front of each edge for back-

ground subtraction. Hartree-Slater type cross-section functions from Gatan’s Digital

Micrograph are fit to the post-edge regions, starting behind the white lines to avoid

artifacts from ligand field or oxidation state. The windows are located at 960 - 1055 eV

(Pr M), 360 - 395 eV (Ca L), and 665 - 730 eV (Mn L), being as wide as 10% of the

corresponding edge energy. Results are summarized in Table 3.2. Deviations from

the nominal composition of Pr0.7Ca0.3MnO3 are within statistical errors of the average

values, as given in parenthesis.
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3.6.3 Post Mortem EELS of P73-PCMO

Quantification of the post mortem EEL spectra follows the same protocol as described

for the pristine state. During the post mortem analysis, carbon-rich contamination from

the TEM accumulated in a thick surface layer, producing a strong C K-edge signal and

largely contributing to the total relative specimen thickness ttot / λ. The contribution of

Pr, Ca, Mn, and C to the total relative thickness is calculated by weighting each mole

fraction by the element specific scattering cross section. [176] The specimen specific

thickness t / λ as given in Table 3.3 is then corrected for C contribution according to

t = ttot · (1 - xC), where xC denotes the weighted mole fraction of carbon calculated from

the C K-edge. An overview of the corroded region is given in the HAADF-STEM image

in Figure 3.5. The varying fractions of the three cations in areas A-D (Figure 3.4 e) is

demonstrated by the corresponding high loss edges in Figure 3.4 f-h. HAADF-STEM

images of areas E-H are shown in Figure 3.6.

3.6.4 In Situ EELS of RP-PCMO in H2O

The energy scale of the O K-edge spectra in Figure 3.9 a is calibrated by adjusting the

high-energy maximum, identified by a parabolic fit, to 543 eV. A power-law background

function, fit from 510 to 525 eV, is then subtracted. Finally, a parabolic fit is used to

identify the intensity of the high-energy maximum, by which the spectra are divided for

normalization. Sawatzki–Golay smoothening is applied by fitting 3rd order polynoms to

15 adjacent data points. The Mn L-edge spectra in Figure 3.9 b are energy calibrated,

so that the L2 maximum lies at 653 eV. A power-law background is fit from 580 to

635 eV and subtracted. The remaining intensities are divided by the L2 maximum for

normalization.

A similar normalization protocol, including subtraction of a Hartree-Slater type

background, and integration of the L3 and L2 edges is used to calculate the Mn

valence state. [177] The results reflect the qualitative observation of in situ oxidation

and slight reduction afterwards (Table 3.5) The absolute values might be subject to

systematic errors due the fact that the relationship between L3 / L2 ratio and Mn va-

lence was established for perovskite La1-xCaxMnO3 instead of Ruddlesden-Popper

type materials. [178] HAADF-STEM images of the areas of spectrum collection are

shown in Figure 3.10.
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3.6.5 Image Simulation

Electrochemical reactions strongly depend on the surface chemistry. However, TEM

only allows for the observation of projected edges, where the signal-to-noise ratio of

both EELS and EDX is poor and usually requires long exposures or strong beam

currents. All this can mask the real composition of studied materials in contact with

an environmental medium because of beam induced changes. Therefore, we per-

form thorough HRTEM image simulations using the QSTEM package. [179] The main

questions are:

1. What is the thickness of specimen at the edge?

2. Is it possible to see a difference between oxygen and cation terminated surfaces

of RP-PCMO?

3. Is it possible to observe and distinguish individual Pr, Mn, Ca and O atoms?

Figure 3.15 shows an exemplary experimental and simulated image as well as the

corresponding atomic model to answer these questions. Our simulations fit to ex-

perimental images when the thickness is in a range between 2 and 3 nm. The rock

salt-like bilayers can be identified as the bright lines with the dark adjacent Pr/Ca

columns. Varying intensity in these columns reflects the random distribution of Pr and

Ca. The dark circles between the rock salt layers represent the MnO columns of the

perovskite-like layers. In order to understand image contrast at the surface, cation-

terminated and oxygen-terminated (11̄3) facets are constructed Figure 3.15 b. The

simulated image (Figure 3.15 c) shows a clear but weak difference between two types

of termination. However, one should take into account that each oxygen column has

no vacancies, there is no movement, the specimen is perfectly stable and there is

no amorphous layer. The contrast difference between Ca, Mn and Pr cations is not

significant and depends on the particular atomic arrangements at the surface.
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Figure 3.15: Image simulation of a (11̄3) facet of RP-PCMO with either cation or oxygen ter-
mination. a) experimental bright field image, b) atomic model, c) image simulation, showing
weak contrast of fully occupied surface oxygen columns and some brightness variations in
A-site columns due to random distribution of Pr and Ca, while MnO columns are of uniform
contrast. At the surface and the corners, atomic columns of cations can have significantly
different contrast depending of their atomic environment.
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Chapter 4

Summary and Outlook

It is well accepted that active catalyst surfaces differ from their equilibrium state. This

is due to dynamic valence changes and structural responses to intermediate reac-

tion steps. In situ studies of these active states are a crucial component of gaining a

mechanistic understanding of the underlying processes. This thesis applies two com-

plementary in situ methods, soft X-ray spectroscopy and environmental transmission

electron microscopy (ETEM), to study the catalysis of the oxygen evolution reaction

(OER) on manganite model catalysts. Spectroscopy using soft X-ray synchrotron

radiation combines high energy resolution with high surface sensitivity. ETEM pro-

vides atomically resolved structural, chemical and electronic information and uses the

electron beam to induce positive potentials. However, interpretation of ETEM data

requires considering side effects of the high energy electron beam due to four orders

of magnitude higher scattering cross section compared to photons. It is therefore

a major challenge to distinguish between effects of beam-induced electrochemistry

and radiation damage. In particular, radiation damage is strongly influenced by pre-

existing damage from specimen preparation or electrochemically induced corrosion of

otherwise stable materials. Reversible changes of the topmost surface are observed

during X-ray spectroscopy, whereas ETEM enables the observation of atom dynam-

ics on active surfaces, if clean, undamaged, electron transparent specimens can be

prepared.

In principle, surface processes in the gaseous environment of in situ experiments

at µbar to mbar pressure may differ from the behavior in liquid electrolytes at atmo-

spheric pressure. However, the presented results show similar stability trends with

Ca-doping for the Pr1-xCaxMnO3 perovskite (P-PCMO) as well as in comparison with

its layered Ruddlesden-Popper type Pr0.5Ca1.5MnO4 counterpart (RP-PCMO).
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The in situ studies at P-PCMO in water vapor show formation of surface point

defects, which is enhanced at higher Ca-doping. Formation of defects like oxygen va-

cancies is, for instance, supported by XANES based on manganese reduction despite

nominally oxidative bias and subsequent annihilation in oxygen gas. In contrast, no

vacancy formation is observed for Ca-rich RP-PCMO. Instead, in situ electron energy

loss spectroscopy (EELS) shows manganese oxidation which is most likely induced

by uptake of oxygen from water molecules.

P-PCMO at intermediate Ca-doping levels is relatively unstable. This is demon-

strated via ETEM by real-time in situ observation of recrystallization on a 10 - 20 nm

scale. On the other hand, under the same ETEM conditions, the Pr-rich P-PCMO

(xCa = 0.1) as well as the Ca-rich RP-PCMO surfaces are significantly more stable,

keeping their single-crystalline state. This is in close agreement with stability trends

seen by ex situ experiments. Nevertheless, significant movement of cations across the

structurally stable surfaces is observed during the ETEM experiments. First results

show that cation dynamics are confined to the uppermost atomic layer on low-indexed

facets of clean, crystalline edges. (section 3.2.2.2) A preferential formation and anni-

hilation of Mn vacancies compared to A-cations is observed, which points towards a

metal-centered OER mechanism.

The results of this thesis clearly indicate that electrochemical stability can primar-

ily be ascribed to the character of the Mn–O bond based on soft X-ray spectroscopy

on the pristine catalysts. The bond is significantly more ionic in the relatively stable

RP-PCMO compared to the relatively unstable P-PCMO, where stronger O 2p contri-

butions to the hybridized states at the valence band edge lead to more covalent bond

character. In addition, a trend of increasing covalence with increasing Ca-doping is

observed for P-PCMO. However, the high stability of the Ca-rich RP-PCMO demon-

strates that bond covalence dominates over direct effects of chemical composition.

The observation of cation movement across stable catalyst surfaces opens up new

perspectives for future ETEM work. For instance, systematic investigation of the atom

dynamics on intact crystalline P-PCMO edges in comparison to more stable catalysts

is a promising focus. The presented results demonstrate that challenging require-

ments would have to be fulfilled. First, preparation of specimen edges completely free

of amorphous layers obscuring the crystal surface is especially challenged by high

etching cross sections of Ca-rich materials. Secondly, the tendency for fast accumula-

tion of point defects in P-PCMO suggests experiments at sufficiently low pressures to

avoid recrystallization and degradation of the material. Differences in the characteris-
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tics of surface dynamics might yet unveil valuable information on redox active species

and nature of active sites as a function of catalyst material. A further step would be

to control surface dynamics by external bias in various 2-electrode geometries which

is severely challenged by uncertainties about the electric field distribution across the

catalyst’s interface to the gaseous electrolyte. (section 1.3) Future quantification of

these fields via off-axis electron holography as planned in Göttingen can provide the

necessary feedback allowing systematic bias control. For example, TEM specimen

holders equipped with a scanning tunneling microscope (STM) tip can in principle be

used for applying local voltages. [180–182] This type of holder was successfully applied

to suppress reactions of Ca-rich P-PCMO with a H2O/SiH4 mixture in earlier ETEM

work. [73] A complementary approach aiming to bridge the conditions between high

resolution ETEM conditions in gas phases and liquid phase electrochemistry is the

use of liquid flow cell TEM holders. [183] These membrane holders allow implementa-

tion of a reference electrode for quantitative potential control while strongly limiting the

spatial resolution of the TEM. In conclusion, the combination of different in situ meth-

ods and complementary rotating ring disk electrochemistry (RRDE) provides valuable

information on active catalysts in non-equilibrium states and is thus a necessary step

in the search for stable electrocatalysts with high efficiency for water oxidation and

oxygen evolution.
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