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Abstract 
 
More than 150 types of chemical modifications have been identified in cellular RNAs 

(collectively called ‘’the epitranscriptome’’), and such modifications have emerged as 

important regulators of gene expression. Despite the recent progress in studying RNA 

modifications, knowledge of the enzymes that install many individual modifications and the 

cellular functions of these modifications is lacking. Furthermore, an increasing number of 

diseases are linked to defects in RNA modifications or RNA modification enzymes but the 

molecular basis of these diseases often remains unknown. 

The human genome encodes numerous putative RNA methyltransferases, such as the 

methyltransferase-like (METTL) proteins and the Nol1/Nop2/SUN domain (NSUN) 

proteins, however, the molecular targets and functions of several of these enzymes 

remain unknown. We applied crosslinking and analysis of cDNA (CRAC) to identify the 

RNA binding sites of METTL16, NSUN6 and NSUN3 in a transcriptome-wide manner and 

used in vivo and in vitro assays to study their methylation activities. We showed that 

METTL16 is an N6-methyladenosine (m6A) methyltransferase that targets A43 in the U6 

snRNA, which lies within an evolutionarily conserved sequence that base pairs with 5’ 

splice sites in pre-mRNAs, suggesting that this modification contributes to the regulation 

of pre-mRNA splicing. Furthermore, our results indicated that while NSUN6 introduces 

m5C72 on some cytoplasmic tRNAs during a late step of their biogenesis, NSUN3 installs 

m5C34 on the mitochondrial (mt)-tRNAMet. We have also identified ALKBH1 as the 

dioxygenase responsible for the oxidation of m5C34 to f534 of mt-tRNAMet and shown that 

these modifications are important for expanding codon recognition by mt-tRNAMet to 

enable efficient mitochondrial translation. 

We studied how these proteins recognize their substrates and showed that the CCA 

nucleotides at the 3’ end of tRNAs are important for recognition by NSUN6. Moreover, we 

found that the stability of the anticodon stem loop (ASL) is required for recognition by 

NSUN3, explaining why pathogenic mutations in mt-tRNAMet that disrupt the ASL impair 

methylation by NSUN3 and lead to disease. We further explored the link between RNA 

modification enzymes and disease by analysing effects of an aspartate 86 to glycine 

exchange (D86G) in the nucleolar ribosomal (r)RNA methyltransferase EMG1, which has 

been observed in patients with Bowen-Conradi syndrome (BCS). We discovered that 

EMG1D86G is chaperoned by the IMPb/7 heterodimer in the cytoplasm and, upon the 

disassembly of the import complex in the nucleus, EMG1D86G aggregates and is degraded 

by the proteasome, leading to ribosome biogenesis defects. 
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Taken together, our studies characterized substrates of novel RNA-modifying enzymes 

and provided insights into their cellular functions and the link between defects in these 

enzymes and diseases. 
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Chapter One: Introduction 
 

1.1 Overview of RNA modifications 
RNAs from all domains of life can be co- or post-transcriptionally modified by a collection 

of more than 150 distinct chemical moieties, ranging from simple methylations to complex 

modifications that are installed by the co-ordinated action of several, often highly 

conserved, modification enzymes (Cantara et al., 2011; Machnicka et al., 2013). Such 

modifications expand the chemical and topological properties of the four RNA nucleotides, 

therefore influencing the structure, molecular interactions and biological roles of the RNAs 

that carry them (Motorin and Helm, 2011).  

Modified nucleotides are present in almost all types of cellular RNAs, and the most highly 

modified species are transfer RNAs (tRNAs), with up to 17% of tRNA nucleotides being 

modified, and ribosomal RNAs (rRNAs), which contain approximately 2% modified 

nucleotides (reviewed in Jackman and Alfonzo, 2013; Sloan et al., 2017). Recently, high-

throughput sequencing approaches have been used to generate transcriptome-wide maps 

of specific RNA modifications and this has revealed modified sites in messenger RNAs 

(mRNAs) and several classes of non-coding RNA, such as long non-coding RNAs 

(lncRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs) and 

microRNAs (miRNAs; reviewed in Roundtree et al., 2017). This complex landscape of 

RNA modifications (collectively termed ‘’the epitranscriptome’’) represents an important 

layer of gene expression regulation, and mutations in genes encoding RNA modification 

enzymes are implicated in various human diseases such as malignancies and metabolic 

disorders (reviewed in Sarin and Leidel, 2014). Nevertheless, many open questions 

remain on the identity of the enzymes involved and the detailed mechanisms by which 

RNA modifications are installed, regulated and exert their biological functions.	

 

1.2 rRNA modifications 
1.2.1 Ribosome biogenesis in eukaryotes 
Ribosomes are evolutionarily conserved molecular machines that are responsible for 

cellular protein synthesis. The eukaryotic cytoplasmic, 80S ribosome is a complex 

ribonucleoprotein (RNP) that comprises two subunits containing four different ribosomal 

RNA (rRNA) molecules and around 80 ribosomal proteins (reviewed in Melnikov et al., 

2012). The large subunit (LSU; 60S) contains the 28S (in metazoans)/ 25S (in the yeast 

Saccharomyces cerevisiae), 5S and 5.8S rRNAs assembled with 47 ribosomal proteins of 

the large subunit (RPLs), and the small subunit (SSU; 40S) comprises the 18S rRNA 

associated with 33 ribosomal proteins of the small subunit (RPSs; Ben-Shem et al., 2011; 

Anger et al., 2013). The biogenesis of such complex molecular machines is one of the 
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most crucial and energy consuming processes in the cell (Warner et al., 1999). Our 

current knowledge of ribosome biogenesis has been mainly obtained from studies in the 

yeast Saccharomyces cerevisiae, due to the combination of powerful genetics and 

biochemical methods and the relative simplicity of this organism compared to humans. 

However, recent RNAi-based screens to identify human ribosome biogenesis factors and 

individual studies on human ribosome biogenesis factors have revealed that the core 

features of ribosome biogenesis are conserved from yeast to humans, but that several 

conserved factors have extra or different functions (see for example, Badertscher et al., 

2015; Tafforeau et al., 2013; Wild et al., 2010). Furthermore, these screens have 

uncovered the requirement for many additional factors for human ribosome assembly 

compared to yeast. In humans, the process starts in the nucleolus with the RNA 

polymerase I-mediated transcription of a long precursor ribosomal RNA (pre-rRNA) that 

contains the mature 18S, 5.8S, and 28S rRNA sequences, separated by the internal 

transcribed spacers 1 and 2 (ITS1 and ITS2) and flanked by the 5’ and 3’ external 

transcribed spacers (5’-ETS and 3’-ETS; Mullineux and Lafontaine, 2012). These 

additional pre-rRNA sequences are removed by an ordered series of endonucleolytic 

cleavages and exonucleolytic processing steps to generate the mature 5’ and 3’ ends of 

the rRNAs (Tomecki et al., 2017; Henras et al., 2015). The hierarchical assembly of 

ribosomal proteins and biogenesis factors on the pre-rRNA forms a series of pre-

ribosomal particles, in which pre-rRNA processing steps and the modification of the rRNA 

sequences take place (Fig. 1; reviewed in Henras et al., 2008). These maturation steps 

require the assistance of small nucleolar ribonucleoprotein (snoRNP) complexes and 

more than 200, mostly essential, trans-acting factors, such as RNA-modifying enzymes 

(discussed below), nucleases, kinases, GTPases and RNA-remodelling enzymes, which 

catalyse irreversible steps in the pathway (reviewed in Kressler et al., 2010). RNA-

remodelling enzymes include AAA-ATPases and DExD/H-box RNA helicases, which are 

suggested to modulate the unidirectional transitions of pre-ribosomal structures by 

unwinding or annealing RNA helices and/or facilitating the recruitment or release of RNA-

binding proteins during ribosome biogenesis (reviewed in Martin et al., 2013). 

Additionally, ribosome assembly requires the import of most ribosomal proteins from the 

cytoplasm to their incorporation sites on the nuclear pre-ribosomal particles. However, this 

is a challenging task for the cell because of specific features of ribosomal proteins: they 

contain unstructured extensions and highly basic regions that may form non-specific 

interactions when not assembled into pre-ribosomes, leading to insolubility (Jäkel et al., 

2002). Therefore, there are several mechanisms for preventing aggregation of newly 

synthesized ribosomal proteins in the cell (Pillet et al., 2016). Besides the general 

ribosome-associated chaperones that assist the de novo folding of ribosomal proteins, 
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import receptors have been shown to protect ribosomal proteins from precipitation in the 

cytoplasm by shielding their basic regions (Jäkel et al., 2002; Albanese et al., 2006, 2010). 

Moreover, recent studies have uncovered a set of dedicated chaperones that bind 

ribosomal proteins, often co-translationally, and escort them to appropriate pre-ribosomal 

complexes (Pausch et al., 2015). Non-(pre-)-associated ribosomal proteins that are prone 

to aggregation are targeted for degradation by the excess ribosomal protein quality control 

(ERISQ), which specifically ubiquitinates lysine residues that are otherwise not accessible 

after the assembly into pre-ribosomes (Sung et al., 2016).  

 
Figure 1. A simplified scheme of ribosome biogenesis in humans. 
The RNA polymerase I-mediated transcription of rDNA generates a long precursor rRNA (pre-
rRNA). Association of early ribosomal proteins and ribosome biogenesis factors on the pre-rRNA 
leads to the formation of the 90S pre-ribosome. Processing of pre-rRNAs within pre-ribosomal 
complexes generates the pre-40S and pre-60S ribosomes, which undergo separate maturation 
pathways in the nucleoplasm before they are translocated through nuclear pore complexes to the 
cytoplasm, where the final maturation steps and the assembly of mature ribosomes take place (The 
Bohnsack lab). 
 

In yeast, the association of the first ribosomal proteins and biogenesis factors with the 

nascent pre-rRNA during its transcription forms the 90S pre-ribosome/ SSU processome, 

which is the first stable pre-ribosomal particle (reviewed in Woolford et al., 2013). Many of 

these biogenesis factors are recruited as part of pre-assembled subcomplexes, including 
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the U3 snoRNP and the UTP-A, UTP-B and UTP-C complexes, which sequentially 

assemble on the 5’-ETS and 18S rRNA sequence (Kornprobst et al., 2016; Hunziker et al., 

2016). Following a pre-rRNA processing event in ITS1 (typically site A2 cleavage in yeast 

or site 2 cleavage in humans), the early pre-40S particle is separated from the rest of the 

pre-rRNA, which assembles with RPLs and biogenesis factors forming the early 60S pre-

ribosomal particles (reviewed in Henras et al., 2015). In yeast, it has been shown that 

upon separation, the protein composition of the pre-40S particle changes dramatically as 

most biogenesis factors are released and several RPSs are recruited (Schäfer et al., 

2003). This early pre-40S particle, which already displays the head, platform and body 

structures of the mature SSU but not the characteristic beak structure, is rapidly exported 

to the cytoplasm (see below; reviewed in Kressler et al., 2010). Formation of the beak 

structure involves the incorporation of Rps3 (uS3), which is promoted by the 

phosphorylation-dependent release of Ltv1 (Ghalei et al., 2015; Mitterer et al., 2016). Prior 

to the final pre-rRNA processing step, Nob1-mediated cleavage to form the mature 3’ end 

of the 18S RNA, pre-40S subunits undergo a translation-like cycle involving the GTPase 

Fun12 (eIF5B), in which the pre-40S subunits bind mature 60S subunits (Lebaron et al., 

2012; Strunk et al., 2012; Turowski et al., 2014). This final quality control step prevents 

aberrant or immature pre-40S particles from entering the pool of translating ribosomes. 

In contrast to the relatively simple SSU assembly pathway in yeast, LSU assembly 

appears more complex as it involves the formation of several successive intermediates 

with different compositions (reviewed in Kressler et al., 2017). Several of these 

intermediates have been characterised in yeast using tandem affinity purification (TAP) via 

pre-60S bait proteins providing insight into the timing of recruitment and dissociation of 

numerous trans-acting biogenesis factors. A key event during pre-60S biogenesis is the 

integration of the 5S RNP. The 5S RNP is formed by the Syo1-facilitated association of 

Rpl5 (uL5) and Rpl11 (uL18) with the 5S RNA, which is transcribed separately by RNA 

polymerase III (Ciganda and Williams, 2011; Calvino et al., 2015). The incorporation of the 

5S RNP into the pre-60S ribosome is then mediated by the Rpf2-Rrs1 heterodimer but in 

humans, several other factors have also been linked to 5S RNP recruitment to pre-

ribosomal complexes (Zhang et al., 2007; Sloan et al., 2013; Kharde et al., 2015). 

However, initially, the 5S RNP is rotated 180° from its final position and the 

peptidyltransferase centre (PTC) is occupied by the GTPases Nog1 and Nog2, preventing 

the recruitment of the export adaptor Nmd3 (Leidig et al., 2014; Wu et al., 2016). The 

recruitment of the Rix1 subcomplex and the AAA-ATPase Rea1 coincides with the rotation 

of the 5S RNP to its mature position and the activation and release of Nog2, allowing the 

binding of Nmd3 to the pre-60S ribosome (Barrio-Garcia et al., 2016; Matsuo et al., 2014). 

Rea1 and Nog2 are therefore considered checkpoint factors that monitor the maturation 
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status of pre-60S particles and licence their export to the cytoplasm. After export, the 

release of biogenesis factors occurs in concert with the association of the final ribosomal 

proteins. For example, the GTPase Nog1 is released by the AAA-ATPase Drg1, allowing 

the incorporation of Rpl24 (eL24; Kappel et al., 2012). Moreover, the GTPase Lsg1 

releases the export adaptor Nmd3 enabling the recruitment of Rpl10 (uL16; Hedges et al., 

2005). Finally, the release of Tif6 by the GTPase Efl1 and Sdo1 yields 60S subunits that 

are competent to join 40S subunits (Weis et al., 2015; Ma et al., 2016). 

During the maturation of the pre-40S and the pre-60S particles, numerous remodelling 

events, nuclear export signal (NES)-containing export adaptors and additional export 

factors have been proposed to mediate their translocation through nuclear pore 

complexes (NPCs) into the cytoplasm (reviewed in Sloan et al., 2015). Both pre-40S and 

pre-60S export rely on the exportin CRM1, which binds export adaptors associated with 

the pre-ribosomal subunits in the presence of RanGTP to facilitate export of these 

complexes (Hurt et al., 1999; Stage-Zimmermann et al., 2000). Additionally, the mRNA 

export factor Mex67-Mtr2 was shown in yeast to contribute to the export of both pre-

ribosomal complexes, however, the loop insertions in the middle domain that are crucial 

for this function are absent from its human homolog TAP-p15, questioning whether this 

complex also contributes to pre-40S or pre-60S export in humans (Yao et al., 2007; Faza 

et al., 2012). Several SSU biogenesis factors that contain classical NES motifs and shuttle 

between the nucleus and the cytoplasm have been suggested to have a role in the export 

of pre-40S particles. For example, the protein kinase human RIO2 was shown to directly 

bind CRM1 in the presence of RanGTP via its NES and contribute to efficient pre-40S 

export (Zemp et al., 2009). However, none of these factors is essential, suggesting the 

presence of unidentified pre-40S export adaptors or that multiple factors play redundant 

roles in the pre-40S export (reviewed in Sloan et al., 2015). In contrast, the pre-60S export 

is dependent on the essential NES-containing export adaptor NMD3, which binds CRM1 

in a RanGTP-dependent manner and facilitates the translocation of the pre-60S particles 

to the cytoplasm (Thomas and Kutay, 2003; Bai et al., 2013). Alongside CRM1, in human 

cells, Exportin 5 was similarly reported to bind the pre-60S particles and facilitate their 

export, suggesting the presence of a second RanGTP-dependent pre-60S export pathway 

(Wild et al., 2010). Interestingly, no role for Msn5, the yeast homolog of Exportin 5, in the 

export of pre-ribosomal subunits has been observed. 

Taken together, assembly of the ribosomal subunits is a complex and hierarchical process 

that is orchestrated by a wealth of trans-acting factors and involves pre-rRNA processing 

and folding and the concomitant assembly of ribosomal proteins, forming pre-ribosomes 

that translocate from the nucleolus, through the nucleoplasm, to the cytoplasm as they 

mature. 
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1.2.2 rRNA modifications introduced by snoRNPs and stand-alone enzymes 
During maturation of the pre-rRNAs, a significant portion of rRNA nucleotides 

(approximately 210 sites in the human rRNAs) is modified by the action of snoRNPs or 

stand-alone enzymes (reviewed in Sloan et al., 2017). Despite the relatively large fraction 

of modified nucleotides in rRNA, the diversity of rRNA modifications is only limited to a set 

of 12 different types of modifications. In contrast to prokaryotes where base methylations 

are the most abundant modifications in rRNA, the majority of rRNA modifications in 

eukaryotes are 2’-O-methylation of the ribose of any of the four nucleotides and 

isomerization of uridine to pseudouridine (Y; Lestrade and Weber, 2006; Pienka-

Przybylska et al., 2008). These modifications are mostly installed by the box C/D and box 

H/ACA snoRNPs respectively and, so far, approximately 100 of each modification are 

documented in human rRNA. The only exceptions are the stand-alone enzymes Sbp1 and 

Pus7, which have been reported in yeast to catalyse the 2’-O-methylation of G2922 of the 

25S rRNA and pseudouridylation of U50 in the 5S rRNA respectively (Lapeyre et al., 

2004; Decatur and Schnare, 2008).  

Eukaryotic snoRNPs, many of which are essential, contain a snoRNA that base pairs with 

the pre-rRNA and guides the catalytic protein component of the snoRNP to modify a 

specific target nucleotide (reviewed in Watkins and Bohnsack, 2012). Box C/D snoRNAs 

contain a C/D motif at the 5’ and 3’ ends of the transcript respectively and an internal C’/D’ 

motif, and their extensive base pairing with the pre-rRNA adjacent to the D/D’ box is 

facilitated by the association with the core proteins Nop58, Nop56 and Snu13 (15.5K in 

humans). The catalytic subunit of box C/D snoRNPs, fibrillarin (Nop1 in yeast) is then 

correctly positioned to modify the specific target nucleotide, five residues upstream of the 

D/D’ box (Tollervey et al., 1993; van Nues et al., 2011). Box H/ACA snoRNAs contain a 

conserved H box and an ACA sequence, and form a hairpin structure that contains the 

‘’pseudouridylation pocket’’, where base pairing with the pre-rRNA takes place (Lafontaine 

et al., 1998). The tertiary fold of the H/ACA box snoRNA, stabilized by the protein 

components Nop10, Nhp2 and Gar1, leaves the target uridine non-base-paired and 

correctly positioned in the pseudouridine synthase dyskerin (Cbf5 in yeast) active site 

(Ganot et al., 1997). Interestingly, a subset of snoRNPs have been reported in yeast to 

guide modifications of multiple sites on the same pre-rRNA (e.g. snR60 targets A817 and 

G908 of the 25S rRNA) or on different pre-rRNAs (e.g. snR52 targets A420 of the 18S 

rRNA and U2921 of the 25S rRNA; Kiss-Laszlo et al., 1996; Lowe et al., 1999; Petrov et 

al., 2014). Conversely, redundancy between snoRNAs in targeting modification of a 

particular site has also been documented. Examples include snoRNAs of the same class 

(e.g. snR39 and snR59 modify A807 of the 25S rRNA), or even different classes (e.g. the 

box C/D snoRNA snR65 and the box H/ACA snoRNA snR9 target U2347 of the 25S 



	 19	

rRNA; Taoka et al., 2016). Besides their function in rRNA modification, several snoRNAs, 

including U14 and snR10, play additional roles in regulating pre-rRNA folding and 

mediating long-range interactions within pre-ribosomal particles (Enright et al., 1996; 

Martin et al., 2014). 

Besides uridine isomerization, several rRNA bases at sites distributed between the LSU 

and SSU are also modified (reviewed in Sharma and Lafontaine, 2015). In humans, the 

28S rRNA of the LSU carries two C5-methylcytosine residues (m5C3761 and m5C4413/4), 

one N1-methyladenosine residue (m1A1309) and one N3-methyluridine residue (m3U4500). 

Modifications are more diverse on the 18S rRNA of the SSU, which contains two highly 

conserved N6,N6-dimethyladenosine residues (m6
2A1850 and m6

2A1851), two acetylated 

cytosine residues (ac4C1337 and ac4C1842), one N7-methylguanosine residue (m7G1639) 

and one hypermodified N1-methyl-N3-aminocarboxypropylpseudouridine residue 

(m1acp3Y1248; Pienka-Przybylska et al., 2008). The RNA methyltransferases involved in 

the base modifications in human rRNA have been mostly identified: NSUN5/WBSCR20 

(m5C3761; Schosserer et al., 2015), NSUN1/NOL1 (m5C4413/4; Bourgeois et al., 2015), 

NML (m1A1309; Waku et al., 2016), DIMTL1 (m6
2A1850 and m6

2A1851; Zorbas et al., 2015) 

and WBSCR22 (m7G1639; Haag et al., 2015). These RNA methyltransferases use S-

adenosylmethionine (SAM) as a methyl donor and display a classical Rossmann-like fold. 

In contrast, the RNA methyltransferase EMG1, which participates in the m1acp3Y 

hypermodification at position 1248 in the 18S rRNA, belongs to the SPOUT (alpha-beta 

knot fold) family (Leulliot et al., 2008; Taylor et al., 2008; Thomas et al., 2010). The 

chemically complex modification of U1248 is of particular interest because it requires 

several strictly ordered steps by different factors in different subcellular compartments 

(Brand et al., 1978). The first step, which has been described in yeast, is isomerization of 

U1248 to Y in the nucleolus by the H/ACA box snoRNP snR35 (ACA 13 in humans; 

Samarsky et al., 1995). This initial step generates the substrate for subsequent N1-

methylation of the residue by the essential nucleolar RNA methyltransferase EMG1 

(Wurm et al., 2010). Finally, TSR3, which also has a SPOUT fold and utilizes SAM, 

introduces the acp group in the cytoplasm (Meyer et al., 2016). Besides RNA 

methyltransferases, the RNA acetyltransferase NAT10, which has a Gcn5-related N-

acetyltransferase (GNAT) domain, has been shown to be responsible for introducing 

ac4C1337 and ac4C1842 in the 18S rRNA (Ito et al., 2014; Sharma et al., 2015). 

Interestingly, the yeast homolog of NAT10, Kre33 was recently suggested to be guided to 

its modification sites by snoRNAs snR4 and snR45 (Sharma et al., 2017). 

Notably, several modifications have been reported in yeast and are not conserved in 

humans, including one N1-methyladenosine residue (m1A2142) and two N3-methyluridine 

residues (m3U2634 and m3U2843) in the 25S rRNA. Interestingly, the enzymes 
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responsible for installing these modifications (Bmt2 (Sharma et al., 2013), Bmt5 and Bmt6 

(Sharma et al., 2014) respectively) are non-essential, suggesting that their roles in 

ribosome structure or function may be less important than other enzymes. In contrast, all 

other evolutionarily conserved enzymes involved in base modifications in rRNAs are either 

essential or important for growth, and surprisingly, this is in most cases not because of 

their RNA-modifying catalytic activity, but because their presence in pre-ribosomal 

complexes is required for subunit assembly (reviewed in Sharma and Lafontaine, 2015). 

For example, apart from its methylation function, Emg1 plays an additional essential role 

in yeast ribosome biogenesis, which is proposed to be the recruitment of Rps19 (eS19) 

into pre-40 particles (Meyer et al., 2011; Buchhaupt et al., 2006).  

 

1.2.3 Functions of rRNA modifications 
The use of this minimal set of different modifications in rRNA in eukaryotes, despite the 

plethora of modified RNA nucleotides in nature, suggests that their chemical nature is 

particularly appropriate for their functions in rRNAs. Furthermore, rRNA modifications are 

not randomly distributed over the ribosome, but they cluster in evolutionarily conserved 

positions at the interface between the LSU and SSU and the inner cores of the subunits 

(Fig. 2; Decatur and Fournier, 2002). These include functionally important regions, such 

as the peptidyltransferase centre (PTC) in the LSU and the decoding site in the SSU, 

suggesting that rRNA modifications might play important roles in optimizing ribosome 

structure and function (Ben-Shem et al., 2011). Indeed, the two most abundant rRNA 

modifications, 2’-O-methylation and pseudouridylation, are known to alter local 

conformation and folding properties of RNA. 2’-O-methylation increases RNA rigidity by 

promoting base stacking and can alter RNA folds (Prusiner et al., 1974; reviewed in Helm, 

2006), while pseudouridine has increased hydrogen bonding capability compared to 

uridine and stabilizes specific RNA structures (reviewed in Charette and Gray, 2000; 

Hayrapetyan et al., 2009). However, rRNA modifications are generally thought to act in a 

cumulative manner since loss of individual modifications causes only subtle defects in cell 

growth, and significant phenotypes are only observed when clusters of modifications in 

certain functional regions of the ribosome are concomitantly lacking (Baxter-Roshek et al., 

2007; Esguerra et al., 2008). For example, combined deletion of 5 box H/ACA snoRNAs 

that guide modifications in the PTC was shown, in yeast, to cause synergistic effects on 

ribosome structure and activity (King et al., 2003). Similarly, the base modifications 

present in the rRNAs can serve to stabilise secondary and tertiary rRNA structures. For 

example, loss of the conserved m5C2278 base modification in combination with the ribose 

methylation at G2288 was shown to cause changes in the structure of the yeast 25S 

rRNA, leading to dramatic ribosome instability (Gigova et al., 2014). 
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Figure 2. Distribution of rRNA modifications on functionally important regions in the yeast 
ribosome. 
Positions of 2’-O-methylations (purple), pseudouridines (blue) and base modifications (orange) are 
shown on the yeast Saccharomyces cerevisiae ribosome (PDB 4V88; Ben-Shem et al., 2011). The 
LSU is shown in grey and the SSU is shown in teal. The peptidyltransferase centre (PTC), the 
intersubunit bridge (eB14) and the decoding site are presented in a magnified view (taken from 
Sloan et al., 2017). 
 

In addition to their role in modulating rRNA structure, rRNA modifications have also been 

implicated in regulating translation efficiency and fidelity. 2’-O-methylation and 

pseudouridylation of residues at the aminoacylated tRNA site (A-site) and the peptidyl 

tRNA site (P-site) of the yeast LSU play a significant role in ensuring translation efficiency 

(Liang et al., 2009). Furthermore, a cluster of modifications in the decoding site of the 

yeast SSU was shown to influence translation accuracy, demonstrating that modifications 

in different regions of the ribosome have different functions (Baudin-Baillieu et al., 2009). 

In line with this, base modifications have also been proposed to optimize translation. For 

example, the dimethylation (m6
2A1781 and m6

2A1782) in the yeast 18S rRNA was shown to 
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be required for translation, and cells expressing mutant forms of Dim1 or Emg1 display 

hypersensitivity to aminoglycoside antibiotics, which affect translation (Lafontaine et al., 

1998; Liu and Thiele, 2001). Strikingly, certain rRNA modifications have been shown to 

influence translation of specific subsets of mRNAs. For example, the loss of Rcm1 in 

yeast, which introduces m5C2278 in the 25S rRNA, was shown to promote the recruitment 

of a specific subset of oxidative stress-responsive mRNAs into polysomes (Schosserer et 

al., 2015). In conclusion, rRNA modifications and the enzymes introducing them play 

different roles in regulating ribosome biogenesis, structure and function. Interestingly, 

some enzymes that perform rRNA modifications have been implicated in modification of 

other classes of RNA. For example, NAT10 was shown to acetylate specific tRNAs 

(Sharma et al., 2015) and fibrillarin was shown to mediate 2’-O-methylation in human 

snRNAs (Tycowski et al., 1998; Jady and Kiss, 2001), suggesting possible crosstalk 

between the biogenesis of different species of RNA. 

 

1.2.4 Timing and regulation of rRNA modifications 
The observations that rRNA modifications are present in the core of the ribosomal 

subunits, and that pre-ribosomal complexes are highly structured imply that factors 

involved in rRNA modifications have limited access to their substrate residues during late 

stages of ribosome maturation. It was therefore expected that the majority of rRNA 

modifications are introduced in early stages, where pre-ribosomal complexes have more 

open structures. Indeed, most 2’-O-methylations were shown in yeast to occur during 

early stages of ribosome maturation, often co-transcriptionally (Kos and Tollervey, 2010; 

Birkedal et al., 2015). It is similarly proposed that pseudouridylations occur early during 

ribosome biogenesis, however, this remains to be documented. In contrast, rRNA base 

modifications are thought to be introduced later during the process, however, the precise 

timing of most base modifications has remained unclear so far. An exception is the N3-acp 

modification of nucleotide 1248 of the 18S rRNA that is installed by TSR3 in the cytoplasm 

and can therefore be clearly defined as a “late modification” (Meyer et al., 2016). 

Furthermore, several rRNA modification enzymes are bound to early pre-ribosomal 

complexes, but do not modify their substrate residues until later. For example, Dim1 

associates with early nucleolar pre-ribosomes in yeast, but it only installs the m6
2A1850 

and m6
2A1851 dimethylation after the export of the maturating pre-SSU to the cytoplasm 

(Lafontaine et al., 1995). Remarkably, the corresponding dimethylation in humans is 

introduced by DIMTL1 in the nucleus (Zorbas et al., 2015), but the significance of this 

temporal difference is not yet understood. 

The introduction of several rRNA modifications during late stages of ribosome biogenesis 

suggests that RNA-remodelling enzymes, such as RNA helicases, may be required to 
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enable certain modifications to be installed. Late-acting snoRNPs, for example, were 

proposed to gain access to their target sites in the human 18S rRNA by the coordinated 

action of the RNA helicase DDX21 (Sloan et al., 2015). Similarly, several base 

modification enzymes require co-factors with RNA-remodelling activities or even carry 

such activities within their own sequence. For instance, the acetyltransferase NAT10 has 

an ATPase-dependent helicase domain, which is suggested to facilitate the access of the 

enzyme to its target site for acetylation (Sharma et al., 2015). Additionally, the yeast m7G 

methyltransferase Bud23 requires the coactivator Trm112, which stabilizes Bud23 by 

masking solvent-unfavourable hydrophobic surfaces (Figaro et al., 2012). The action of 

the RNA helicase Dhr1 is then required for the Bud23-Trm112 complex to gain access to 

its target site within the pre-40S particle (Sardana et al., 2014).  

It has recently emerged that certain rRNA residues are differentially modified, i.e. some 

rRNA molecules carry specific modifications while others do not (Birkedal et al., 2015). In 

yeast, 18 modification sites were found to be modified on less than 85% of ribosomes 

(Taoka et al., 2016). In line with this, in several human cell lines, around one-third of 2’-O-

methylation sites are partially modified (Krogh et al., 2016). Together, this suggests that 

rRNA modifications contribute to the heterogeneity of the ribosomes. However, base 

modifications installed by the conserved stand-alone enzymes appear to be constitutively 

present. It has been speculated by Krogh and colleagues that such conserved 

modifications are involved in essential aspects of rRNA folding and assembly of 

ribosomes, while the fractionally modified residues play roles in fine-tuning translation. 

The extent of specific 2’-O-methylations has been suggested to be determined by the 

levels of the corresponding snoRNAs (Buchhaupt et al., 2014), but it is also possible that 

alternative rRNA processing and folding pathways, or the selective removal of the 

methylations by demethylases, also contribute to differences in rRNA modifications 

(reviewed in Sloan et al., 2017). Excitingly, variations in the levels of specific rRNA 

modifications in response to environmental signals have been reported. Diauxic shift and 

heat-shock, for example, were observed to alter the modification levels of specific rRNA 

residues in the yeast Saccharomyces cerevisiae (Schwartz et al., 2014; Carlile et al., 

2014). Similarly, changes in growth conditions of Schizosaccharomyces pombe cells were 

shown to significantly affect the extent of modifications of specific sites in rRNA (Taoka et 

al., 2015). In addition to their variation under physiological conditions, the extent of rRNA 

modifications is also altered in several genetic disorders and cancers (see below). 
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1.2.5 Ribosomopathies and diseases associated with rRNA modifications 
Recently, a number of human diseases associated with defects in ribosome biogenesis 

have been identified and collectively termed ‘’ribosomopathies’’ (reviewed in Narla and 

Ebert, 2010; Khanna-Gupta, 2013). Ribosomopathies are caused by alterations in genes 

encoding ribosomal proteins or ribosome biogenesis factors, and these alterations are in 

most cases caused by congenital haploinsufficiency of the affected gene (mutation or 

deletion of one copy of a gene, leaving the other copy functional; reviewed in McCann and 

Baserga, 2013). For example, mutations in a number of ribosomal proteins, including 

RPS19 (eS19), have been linked to Diamond-Blackfan anaemia (DBA; Draptchinskaia et 

al., 1999; Gazda et al., 2006; Cmejla et al., 2007). Furthermore, mutations in the ribosome 

biogenesis factor TCOF1/treacle have been found in Treacher Collins syndrome (TCS; 

The Treacher Collins Syndrome Collaborative Group, 1996). Similarly, Schwachman-

Diamond syndrome patients have been found to carry biallelic mutations in SBDS, which 

associates with late pre-60S complexes (Boocock et al., 2003). To date, the only reported 

acquired ribosomopathy is the 5q-syndrome, which is caused by the deletion of 

chromosome 5q including one allele of RPS14 (Ebert et al., 2008; Pellagatti et al., 2008).  

Generally, many ribosomopathies display a number of common symptoms (bone marrow 

failure, growth retardation, skeletal abnormalities and malignancies), however, each 

ribosomopathy is clinically distinct. For example, patients with haploinsufficiency of RPSA 

(uS2; isolated congenital asplenia) lack a spleen, but they have no other observable 

anomalies (Bolze et al., 2013). Similarly, patients with a mutation in the ribosome 

biogenesis factor hUTP4/Cirhin (North American Indian childhood cirrhosis) show one 

main phenotype, which is biliary cirrhosis (Chagnon et al., 2002). The mechanism by 

which such defects in a macromolecular complex as constitutive and essential as the 

ribosome cause only tissue-specific phenotypes remains unclear. One possible 

explanation is that certain defects in ribosomes could influence translation of specific 

mRNAs, which might be essential for the affected cell type (reviewed in McCann and 

Baserga, 2014). This model is supported by the observation that reduction of RPL40 in 

humans impedes translation of specific vesicular stomatitis virus mRNAs (Lee et al., 

2013). An alternative explanation is that ribosome variants are produced in different cell 

types, and ribosomes in the affected cell types are more sensitive to the defect that 

causes the disease (Marcel et al., 2015). 

Defects in ribosome biogenesis, such as those observed in ribosomopathies, cause the 

5S RNP to bind the E3 ubiquitin ligase HDM2 and inhibits its activity, leading to induction 

of the tumor suppressor p53 (Sloan et al., 2013; Donati et al., 2013). Such accumulation 

of p53 arrests cell division and leads to apoptosis, which can be responsible for some of 

the symptoms (McGowan et al., 2008; Fumagalli et al., 2009). In line, reduction of p53 
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activity rescued the craniofacial abnormalities in a mouse model for TCS (Jones et al., 

2008) and rescued the erythroid abnormalities in zebrafish models for DBA (Boultwood et 

al., 2012). However, the accumulation of p53 when ribosome biogenesis is impeded is 

surprising given the increased susceptibility to cancers observed in most ribosomopathies 

(reviewed in Teng et al., 2013). One possible explanation for this is that the elevated p53 

levels may lead to mutations or downregulation of the p53 pathway, resulting in 

desensitizing patient cells to p53 (Pelava et al., 2016). Another possible explanation is that 

defects in ribosomal proteins or ribosome biogenesis factors could produce ribosomes 

with altered translation capacities that differentially translate distinct subpopulations of 

mRNAs, leading to tumorigenesis. This hypothesis is supported by the finding that 

depletion of RPL38 in mice impairs translation of a subset of Hox mRNAs, which could 

lead to malignant transformation when dysregulated (Kondrashov et al., 2011).  

Similarly, mutations in DKC1, which encodes the box H/ACA pseudouridine synthase 

dyskerin, in patients with X-linked dyskeratosis congenita (X-DC) cause defects in IRES-

dependent translation of a subset of mRNAs including the ones encoding the tumor 

suppressor p27 and the antiapoptotic factors Bcl-xL and XIAP (Yoon et al., 2006; Bellodi 

et al., 2010). This suggests that changes in rRNA pseudouridylation pattern may result in 

ribosomes with differential translation activities that promote tumorigenesis. In a similar 

way, altered rRNA 2’-O-methylation profiles have been associated with tumorigenesis and 

differences in the extent of modification at multiple sites have been reported in different 

cancer cell lines (Krogh et al., 2016). The tumor suppressor p53 is suggested to regulate 

the expression levels of fibrillarin, with overexpression of fibrillarin leading to changes in 

the rRNA 2’-O-methylation pattern of the rRNAs and altered translation fidelity of 

ribosomes (Marcel et al., 2013). Reciprocally, lack of fibrillarin has been reported to cause 

an increase in the cap-independent translation of p53, independent from the 5SRNP-

HDM2 pathway (Su et al., 2014). Furthermore, the levels of other components of box C/D 

snoRNPs including NOP56 (Cowling et al., 2014) and NOP58 (Nakamoto et al., 2001) are 

elevated in different types of cancer, making them good markers of tumorigenesis (Liao et 

al., 2010). 

Defects in stand-alone rRNA base-modifying enzymes have also been linked to cancers 

and genetic diseases. For example, WBSCR22 promotes survival and metastasis of tumor 

cells (Nakazawa et al., 2011), and the high expression levels of NSUN1/NOL1 have been 

correlated with growth of lung adenocarcinoma (Sato et al., 1999). WBSCR22 and 

NSUN5/WBSCR20 are deleted, along with other genes, in a developmental disorder 

called Williams-Beuren syndrome (Doll and Grzeschik, 2001) and NML has been 

associated with high fat diet-induced obesity (Oie et al., 2014). More specifically, a point 

mutation in the gene encoding EMG1, leading to an aspartate to glycine exchange in the 
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protein sequence, causes a severe genetic disorder known as Bowen-Conradi syndrome 

(BCS), which is characterized by bone marrow failure, bone abnormalities, growth 

retardation and death within the first year of life (Armistead et al., 2009). However, 

whether lack of the rRNA modifications or other effects caused by defects in the 

modification enzymes cause these disease phenotypes is often still unknown. 

Interestingly, chemical inhibition of the acetyltransferase NAT10 was shown to rescue 

defects of laminopathic cells, raising the possibility of using rRNA modification enzymes 

as drug targets (Larrieu et al., 2014). In conclusion, disruptions in ribosome biogenesis are 

linked to multiple human diseases, and further understanding of the effects of such 

genetic alterations on the molecular and cellular levels is integral to finding therapeutic 

interventions to treat these disorders. 

 
1.3 tRNA modifications 
1.3.1 Overview of eukaryotic tRNA biogenesis 
tRNAs are highly structured short non-coding RNAs of approximately 70 nucleotides that 

decode the mRNA codons and carry the cognate amino acids to the ribosome for protein 

biosynthesis in the cytoplasm of all living cells, and in eukaryotic mitochondria and plastids 

(reviewed in Fujishima and Kanai, 2014). tRNAs display a highly conserved cloverleaf 

secondary structure, which comprises four distinct domains: the acceptor stem, the 

anticodon arm, the D loop and the TYC loop. Interactions between these domains are 

required to form the folded L-shaped tertiary structure of tRNAs (see for example, Kim et 

al., 1973; Robertus et al., 1974). The biosynthesis of cytoplasmic tRNAs starts with the 

RNA polymerase III-mediated transcription of tRNA genes in the nucleolus, generating 

precursor tRNAs (pre-tRNAs) that contain sequences that are not present in the mature 

tRNAs: the 5’ leader sequence, the 3’ trailer and, in some cases, introns (reviewed in 

Hopper and Phizicky, 2003; Phizicky and Hopper, 2010). Maturation of pre-tRNAs 

requires processing of these three sequence elements. The 5’ leader sequence is 

removed by an endonucleolytic cleavage by RNase P, which is an RNP composed of a 

catalytically active RNA component, the H1 RNA, and 10 protein subunits in humans 

(reviewed in Walker and Engelke, 2006). Maturation of the 3’ end of tRNAs requires 

processing of the 3’ trailer by the endonuclease tRNase Z (ELAC2 in humans), and the 

subsequent addition of the CCA tail by the tRNA nucleotidyltransferase (CGI-47 in 

humans; Takaku et al., 2003; Rossmanith et al., 2011; Reichert et al., 2001). Furthermore, 

introns, which are found between nucleotides 37 and 38 of some eukaryotic tRNAs, are 

spliced by the consecutive activities of an endonuclease complex (human active subunits: 

HsSen2 and HsSen34) and a tRNA ligase complex (human active subunit: HSPC117; 

Paushkin et al., 2004; Popow et al., 2011). In vertebrates, tRNA splicing is thought to 
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occur in the nucleus, while, in yeast, the process takes place after nuclear export on the 

cytosolic surface of the outer mitochondrial membrane (reviewed in Leisegang et al., 

2012). A reason for this difference is that Exportin-T, which is the major tRNA export 

receptor in humans, probes the structure of the tRNAs, ensuring their proper folding and 

completion of nuclear maturation events (Kutay et al., 1998; Lipowsky et al., 1999; Cook 

et al., 2009; Hopper et al., 2010). In contrast, the yeast homolog of Exportin-T, Los1, does 

not distinguish between intron-containing and spliced tRNAs, allowing export of unspliced 

tRNAs (Yoshihisa et al., 2003, 2007). Interestingly, a retrograde import pathway that is 

conserved in yeast and vertebrates exists by which tRNAs are returned to the nucleus (by 

the importin Mtr10 in yeast), and they can be re-exported to the cytoplasm (Whitney et al., 

2007; Shaheen et al., 2007). In addition to Exportin-T, Exportin 5 (Msn5 in yeast) has also 

been implicated in the re-export of tRNAs to the cytoplasm (Bohnsack et al., 2002; Calado 

et al., 2002). 

Besides cytoplasmic tRNAs, which are encoded by the nuclear genome, the mitochondrial 

(mt) genome encodes 22 mt-tRNAs in humans, alongside 13 mt-mRNAs and 2 mt-rRNAs 

(Anderson et al., 1981). Transcription of mt-tRNAs in humans is mediated by the 

mitochondrial RNA polymerase POLMRT, and, akin to the maturation of cytoplasmic 

tRNAs, the generated transcripts are further processed at the 5’ and 3’ ends of each tRNA 

(reviewed in Suzuki et al., 2011). The 5’ end of mt-tRNA is processed by mitochondrial 

RNase P (MRPP1, 2 and 3), which is a protein complex devoid of a catalytically active 

RNA, while the 3’ end is cleaved by mitochondrial tRNase Z (ELAC2; Holzmann et al., 

2008; Brzezniak et al., 2011). Finally, the CCA tail is added to the 3’ end of mt-tRNAs by a 

mitochondrial CCA-adding enzyme (TRNT1; Nagaike et al., 2001).  

Alongside these maturation steps, a myriad of chemical modifications is introduced to both 

cytoplasmic and mitochondrial tRNAs, resulting in mature tRNAs that can be 

aminoacylated by cognate tRNA aminoacyl synthetases and can function in translation 

(Hopper et al., 2010). 

 

1.3.2 Diversity of tRNA modifications 
A striking feature of tRNAs from all living organisms is that they carry the most numerous 

and chemically diverse post-transcriptional modifications. On average, each tRNA carries 

14 modifications, and the type and extent of these modifications vary between different 

tRNAs and in some cases between similar isoacceptors (Fig. 3; reviewed in Nachtergaele 

and He, 2017). While some tRNA modifications at specific positions are conserved among 

the three phylogenetic domains of life, other modifications vary between tRNAs from 

different organisms within the same domain of life (reviewed in Phizicky and Alfonzo, 

2010; Sprinzl and Vassilenko, 2005). The chemical nature of the evolutionarily conserved 
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tRNA modifications is generally simple. Examples include pseudouridylation, reduction of 

uridine to dihydrouridine, base and 2’-O-methylation, replacement of oxygen with sulfur, 

acetylation and threonylation. In contrast, tRNA modifications that are unique to specific 

domains of life typically display larger and more complex chemical structures (reviewed in 

Jackman and Alfonzo, 2013). 

 
Figure 3. Overview of cytoplasmic tRNA modifications in eukaryotes. 
A schematic Saccharomyces cerevisiae cytoplasmic tRNA is shown in its secondary structure. 
Green circles show residues that are not modified; pink circles show residues that are modified in 
some or all yeast cytoplasmic tRNAs; white circles indicate additional residues, 20a and 20b, which 
are present is some yeast cytoplasmic tRNAs and are sometimes modified; red circles indicate the 
anticodon residues; light blue circles indicate the CCA tail. Lines represent base pairs. The RNA 
modifications present at specific positions (numbered) are indicated using conventional 
abbreviations, according to the abbreviations list (adapted from Phizicky and Hopper, 2010). 
 

The two uridine derivatives pseudouridine (Y) and dihydrouridine (D) are amongst the 

most common modifications in tRNAs. Although the TYC and the D loops have been 

named after these modifications, Y and D residues can also be found at other positions 

(reviewed in Hur and Stroud, 2007). Unlike rRNA, where the majority of 

pseudouridylations are introduced by box H/ACA snoRNPs, cytoplasmic and mt-tRNAs 

are mostly pseudouridylated by stand-alone pseudouridine synthases (PUS enzymes; see 

for example, Czudnochowski et al., 2013; McCleverty et al., 2007). Similarly, uridine is 

mostly reduced to D by stand-alone enzymes, known as dihydrouridine synthetases 

(DUS1-4) in both cytoplasmic and mt-tRNAs (Xing et al., 2004). Although D is highly 

abundant in cytoplasmic tRNAs, it has only been reported at one position in mt-tRNASer 

and mt-tRNALeu in humans (reviewed in Suzuki et al., 2014). 
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Additionally, tRNAs also undergo base methylation at multiple positions. A classic 

example is the conserved N1-methyladenosine (m1A) at position 58 of many cytoplasmic 

and mitochondrial tRNAs (Anderson et al., 1998). In humans, these modifications are 

installed by the TRMT61A/TRMT6 complex on cytoplasmic tRNAs and by TRMT61B on 

mt-tRNAs (Anderson et al., 2000; Ozanick et al., 2005). Furthermore, cytosines can be 

methylated at nitrogen 3 and carbon 5, generating N3-methylcytosine (m3C) and C5-

methylcytosine (m5C) modifications on tRNAs respectively. m3C modifications can be 

installed on tRNAThr(UGU) and tRNA(CCU) at position 32 by methyltransferase-like (METTL)2 

and on tRNASer(AGA) and tRNASer(GCU) at the same position by METTL6 (Xu et al., 2017). 

m5C modifications can be installed on tRNA, as well as other classes of RNA, in humans 

by members of the Nol1/Nop2/SUN domain (NSUN) family of putative methyltransferases 

(NSUN1-7) and by DNA methyltransferase 2 (DNMT2; Tuorto et al., 2012). For example, 

NSUN2 and DNMT2 introduce m5C modifications at position 34 of tRNALeu and at position 

38 of tRNAAsp respectively (Brzezicha et al., 2006; Goll et al., 2006). The enzymes 

installing m5C modifications on mt-tRNA are not well characterized but the known and 

putative m5C methyltransferases NSUN2, NSUN3 and NSUN4 have all been detected in 

human mitochondria, making them candidates for catalysing such reactions. Other 

examples of conserved base methylations that occur in specific cytoplasmic or 

mitochondrial tRNAs, include N1 or N2 or N7-methylguanosine (m1G, m2G or m7G) and N3 

or C5-methyluridine (m3U or m5U). Dimethylation of tRNA residues has also been reported 

and examples include N2,N2-dimethylguanosine (m2,2G) and N6,N6-dimethyladenosine 

(m2,2A or m6
2A; reviewed in Jackman and Alfonzo, 2013).  

The diverse and abundant nature of tRNA modifications, and the evolutionary 

conservation of many individual modifications implies that they play important roles in 

ensuring proper structure and function of tRNAs. 

 

1.3.3 Functions of tRNA modifications 
It is generally thought that modifications in the core of tRNAs influence folding and 

stability, whereas modifications in or around the anticodon affect efficiency or accuracy of 

translation (reviewed in Phizicky and Hopper, 2010). For example, the lack of m5U at 

position 54 in tRNAfMet and tRNAPhe lowers the melting temperature of the tRNA by 2-6°C 

in vitro and the lack of m1A at position 9 of mt-tRNALys causes misfolding of the tRNA 

(Sengupta et al., 2000; Helm et al., 1999). Interestingly, many tRNAs contain both y, 

which increases RNA rigidity, and D, which promotes RNA flexibility, and it has been 

suggested that the balance between the opposite effects caused by these two 

modifications is important for maintaining the optimal structure of some tRNAs (reviewed 

in Zagryadskaya et al., 2004; Giege et al., 2012). The lack of specific modifications can 
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also lead to degradation of the tRNA. For example, the lack of m1A modifications at 

position 58 in trm6 temperature-sensitive mutants increases the turnover of the initiator 

tRNAMet (Anderson et al., 1998). Additionally, tRNA modifications at various positions 

serve as identity elements; for example, the 2’-O-ribosyl phosphate modification at 

position 64 in tRNAMet allows discrimination between the initiator and elongator tRNAsMet 

in yeast (Astrom et al., 1994). 

In the anticodon loop, two positions are modified in almost every tRNA, position 37 and 

the wobble nucleotide at position 34, and the modifications present in these positions 

show the largest chemical diversity. In most cytoplasmic and mt-tRNAs, position 37 is a 

modified purine (reviewed in Jackman and Alfonzo, 2013). Modifications at this position 

typically reduce its Watson-Crick base pairing potential, thereby preventing unspecific 

interactions with nearby tRNA or mRNA nucleotides and also helping maintain an open 

structure of the anticodon loop. Consistent with this, the lack of m1G37 formation in 

tRNAArg or tRNALeu results in increased frameshifting by the ribosome and consequently 

affects translation fidelity and cellular growth (Bjork et al., 2001; Urbonavicius et al., 2001). 

Notably, m1G37 is also present in mt-tRNAs and mutations in the enzyme installing the 

modification (TRMT5) have been linked to multiple mitochondrial respiratory chain 

deficiencies highlighting the importance of the modification at this position (Powell et al., 

2015). In some cases, m1G37 is further modified into wybutosine (yW), which prevents -1 

frameshifting by allowing base stacking interactions that stabilize codon-anticodon base 

pairing in the A site of the ribosome (Waas et al., 2007; de Crecy-Lagard et al., 2010). 

When position 37 is an adenosine, it can be further modified in a number of different ways. 

In both cytoplasmic and mt-tRNAs, threonylcarbamoyl adenosine (t6A) at position 37 

maintains an open conformation of the anticodon loop and promotes codon-anticodon 

interactions, which maintain the speed and accuracy of translation (Morin et al., 1998; 

Thiaville et al., 2016). Alternatively, adenosine at position 37 can be isopentenylated 

forming a bulky modification known as isopentenyl adenosine (i6A), which is found in a 

subset cytoplasmic and mitochondrial tRNAs. In yeast, i6A has been shown to enhance 

translation efficiency of specific codons (Lamichhane et al., 2011). Coupled with these 

modifications at position 37, various modifications at the wobble position (34) ensure 

efficient, accurate and flexible decoding. One of the best-understood examples is the 

thiolation of U34 forming 2-thiouridine (s2U), which enhances anticodon rigidity, and, 

combined with other modifications at carbon 5, serves as a translation efficiency and 

fidelity determinant (Johansson et al., 2008). Another prevalent modification at the wobble 

position in various cytoplasmic and mt-tRNAs is the replacement of guanosine with the 7-

deaza guanosine derivative, queuosine (Q; Katze et al., 1984). It has been suggested that 

Q regulates the strength of specific codon-anticodon interactions, however, the exact 
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function of the modification is still unknown (Morris et al., 1999). tRNA modifications at the 

wobble position are particularly important for decoding the non-universal mitochondrial 

genetic code in mammals, where they allow non-canonical base pairing with the third 

nucleotide of the mRNA codon (reviewed in Bohnsack and Sloan, in press). For example, 

the 5-formylcytosine modification (f5C34) in the mt-tRNAMet has been proposed to increase 

the decoding capacity of the tRNA by influencing the thermodynamic and structural 

features of the anticodon (Bilbille et al., 2011). Such effects could possibly contribute to 

the ability of the mt-tRNAMet to decode AUG, AUU and AUA codons during translation 

initiation and AUG and AUU codons during translation elongation. 

Through regulation of codon usage, modifications in the anticodon loop have also been 

suggested to influence translation of specific mRNAs (reviewed in Gustilo et al., 2008). 

For example, the 5-methylcarbonylmethyluridine modifications (mcm5U) at the wobble 

position of tRNAARG(UCU) and tRNAGLU(UUC) increase the translation of mRNAs enriched in 

these codons upon DNA damage (Begley et al., 2007). Strikingly, the mcm5U34 

modification enhances the translation of two mRNAs highly enriched in these codons, 

RNR1 and RNR3, which encode key proteins involved in the DNA damage response, 

suggesting a link between tRNA modifications and cellular responses. Similarly, m5C 

modifications installed in tRNAs by NSUN2 and DNMT2 have been implicated in stress 

responses, as the lack of these modifications leads to endonucleolytic cleavage of the 

tRNAs and accumulation of tRNA fragments, which downregulate protein translation and 

promote apoptosis (Blanco et al., 2014). However, the mechanisms by which tRNA 

modifications are regulated in response to different cellular conditions remain not fully 

understood. One exciting means by which tRNA modifications have been shown to be 

dynamically regulated is through the presence of demethylases (so called “eraser” 

proteins), which selectively remove the modification in certain conditions. Indeed, the 

alpha-ketoglutarate and Fe(II)-dependent dioxygenase ALKBH1 (ABH1) has been recently 

identified as a tRNA demethylase that catalyses the selective removal of m1A 

modifications at position 58 of selected cytoplasmic and mitochondrial tRNA, thereby 

regulating the utility of these tRNAs in translation (Liu et al., 2016).  

Although defects in tRNA structure and translation due to lack of individual modifications 

have been observed, it has also been suggested that tRNA modifications act in concert. 

This model is supported by the findings that the combinatory depletion of m7G and m5C 

modifications at positions 46 and 49 respectively in trm8 trm4 yeast mutants causes 

specific degradation of tRNAVal(ACC) (Alexandrov et al., 2006) and that the combinatory 

depletion of non-essential genes encoding tRNA modification enzymes cause growth 

defects in yeast (Chernyakov et al., 2008). Furthermore, the installation of tRNA 

modifications at different positions have been shown in some cases to be coordinated. For 
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example, the introduction of an m3C modification at position 32 of cytoplasmic tRNAsSer is 

dependent on the presence of an i6A modification at position 37, suggesting that the 

functions of these tRNA modifications may be interconnected (Arimbasseri et al., 2016). 

In short, this network of diverse, and often complex, chemical modifications plays 

significant roles in maintaining the structure, stability and function of cytoplasmic and mt-

tRNAs, which modulate gene expression and regulate cellular processes. Therefore, it has 

been proposed that defects in tRNA modifications may play crucial roles in human 

diseases. 

 

1.3.4 tRNA modifications and disease 
Growing evidence links defects in tRNA modifications to complex human pathologies, 

such as neurological disorders, metabolic diseases, cancer and mitochondrial-linked 

disorders (reviewed in Sarin and Leidel, 2015). Such defects can result from alterations in 

genes encoding tRNA modification enzymes, or mutations in tRNA sequences that 

prevent the installation of modifications. For example, mutations in the human IKBKAP 

gene, which encodes IKAP, a subunit of the human Elongator complex, have been linked 

to a complex genetic neuropathy affecting the autonomic nervous system, called familial 

dysautonomia (FD; reviewed in Slaugenhaupt and Gusella, 2002). The Elongator complex 

has been shown to play a role in the formation of the mcm5U and 5-

methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modifications in U34 of several tRNAs 

(Huang et al., 2005). The most prevalent mutation identified in FD patients causes tissue-

specific exon skipping and reduced IKAP levels, leading to reduced levels of mcm5U and 

mcm5s2U modifications (Anderson et al. 2001; Slaugenhaupt et al., 2001). Another tRNA 

modification enzyme that is associated with a neurological condition is FTSJ1, a homolog 

of the yeast Trm7, which is required for the 2’-O-methylation at several positions of 

different tRNAs (Pintard et al., 2002). Mutations in FTSJ1 are implicated in non-syndromic 

X-linked mental retardation (Freude et al., 2004). Furthermore, mutations in NSUN2, 

which installs an m5C modification at the wobble position of tRNALeu(CCA), have been linked 

to autosomal recessive intellectual disability (Abbasi-Moheb et al., 2012; Khan et al., 

2012). 

Lack of specific tRNA modifications have also been associated with metabolic disorders 

such as type 2 diabetes, which is of particular interest because it affects health and 

economies on a global scale (reviewed in Zimmet et al., 2001). Mutations in CDKAL1, 

which encodes the methylthiotransferase that is required for the formation of 2-methylthio-

N6-threonylcarbamoyladenosine (ms2t6A) at position 37 of tRNALys(UUU), leads to reduced 

modification levels, perturbed proinsulin processing and reduced insulin secretion in b 
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cells (Ohara-Imaizumi et al., 2010; Wei et al., 2011). Notably, CDKAL1 has also been 

identified as a risk factor for Psoriasis and Crohn’s disease (Quaranta et al., 2009). 

It has been long known that cancer cells often contain more methylated tRNA nucleotides 

than tRNAs derived from non-tumor cells and elevated tRNA methyltransferase activity 

has been observed during tumorigenesis, however subsequent studies have shown that 

also hypomodification of tRNAs is associated with cancer (Tsutsui et al., 1966; Dirheimer 

et al., 1995). For example, NSUN2 is highly expressed in a range of human and mice 

tumor types including breast cancer, colorectal cancer and squamous cell carcinoma, 

although it is expressed at low levels in non-tumor cells and in benign papillomas (Frye 

and Watt, 2006). Similarly, TRM12, which is the human homolog of the yeast enzyme that 

catalyses the formation of wybutosine at position 37 of tRNAPhe, is overexpressed in 

multiple breast cancer tumors (Rodriguez et al., 2007). In contrast, reduced levels of Q34 

modifications in tRNAs have been observed in leukaemia, lymphoma and other types of 

tumors (Shindo-Okada et al., 1981; Huang et al., 1992). It has been suggested that Q 

deficiency is due to reduced activity of the enzyme that installs the modification, tRNA-

guanine transglycosylase (TGTase), in tumor cells (Morris et al., 1999; Costa et al., 2004). 

In a similar way, expression of TRMT5, which catalyses the m7G modification at position 

37 of several tRNAs, is downregulated in colorectal cancers (reviewed in Sarin and Leidel, 

2015). 

Besides alterations in the tRNA modification enzymes, mutations in the genes encoding 

tRNAs can also prevent the installation of specific modifications and lead to serious 

pathologies. This is particularly important in mitochondria, where modifications in the 

anticodon of mt-tRNAs influence their decoding capacity and enable the use of the non-

conventional mitochondrial genetic code. For example, mutations in mt-tRNALeu(UAA) and 

mt-tRNALys(UUU) lead to mitochondrial encephalomyopathy with lactic acidosis and stroke-

like episode (MELAS) and myoclonus epilepsy associated with ragged-red fibers 

(MERRF) syndromes respectively (Fig. 4; Yasukawa et al., 2000a, 2000b). In both 

syndromes, the mutations disrupt the tertiary structure of tRNAs and prevent their 

recognition by the taurine transferases, which are suggested to be MTO1 and GTPBP3 

(Tischner et al., 2015; Chen et al., 2016), leading to 5-taurinomethyluridine (tm5U) 

hypomodification of U34 in MELAS patients and 5-taurinomethyl-2-thiouridine (tm5s2U) 

hypomodification of U34 in MERRF patients (Kirino et al., 2005). The lack of tm5U 

impedes mt-tRNALeu(UAA) decoding UUG codons, but it does not affect reading of UUA 

codons. In MELAS patients, this leads to a specific reduction in ND6, which is a 

component of the respiratory chain complex I that is translated from a transcript enriched 

in UUG codons. However, the absence of tm5S2U prevents mt-tRNALys(UUU) from reading 
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both of its cognate codons (AAG and AAA), leading to reduced overall mitochondrial 

translation in MERRF patients (reviewed in Suzuki et al., 2011). 

 
Figure 4. Defects in enzymes installing chemical modifications on mitochondrial tRNAs lead 
to human diseases. 
A schematic mitochondrial (mt-)tRNA is shown in its secondary structure. Circles show residues 
that can be modified. Red circles show modified residues that are associated with human diseases 
and the types of the modifications, the enzyme(s) installing them and the associated diseases are 
given using conventional abbreviations, according to the abbreviations list (taken from Bohnsack 
and Sloan, 2017). 
 

The dysfunction of the tRNA modification machinery in multiple human disorders raises 

the possibility of developing therapeutic strategies based on correcting the levels of tRNA 

modifications or targeting the enzymes installing them. Modulating tRNA modification 

enzymes has been suggested to be a promising therapeutic strategy to treat cancer 

(reviewed in Torres et al., 2014). For example, the proposed human homolog of Trm9, 

which installs mcm5U at position 34 of tRNAArg and tRNAGlu in yeast, HTRM9L, is 

downregulated in breast, testicular, cervical and colorectal carcinomas, and re-expression 

of the protein reduced tumor growth in vivo (Begley et al., 2013). In contrast, 

downregulation of NSUN2, which is overexpressed in different cancers, decreases the 

growth of human squamous cell carcinoma xenografts (Frey and Watt, 2006). Additionally, 

small molecules can also be used to target tRNA modification enzymes. For example, 

Kinetin has shown positive clinical results in the treatment of FD, which is caused by the 

lack of mcm5s2U modification in several tRNAs (see above; Axelrod et al., 2011). 

Moreover, the anti-cancer drug Azacytidine has been shown to reduce m5C levels at 

DNMT2 target sites, suggesting that tRNA demethylation may contribute to the efficacy of 
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the drug (Schaefer et al., 2009). Besides their potential as therapeutic tools, changes in 

tRNA modifications could also be used as diagnostic markers for certain diseases. For 

example, the human homolog of Trm10, which installs m1G modifications at position 9 in 

several tRNAs in yeast, HRG9MTD2, is a good candidate to diagnose early onset and late 

onset colorectal cancer patients (Berg et al., 2010). 

Despite the increasing number of reports linking tRNA modification to disease, we still lack 

understanding of the mechanisms by which many tRNA modifications are installed or 

regulated, and their precise biological roles.  

 
1.4 Modifications in other RNA species 
1.4.1 Transcriptome-wide mapping approaches 
Although RNA modifications have been recognized from the early days of molecular 

biology (examples include Cohn and Volkin, 1951; Davis and Allen, 1957), the majority of 

early research was limited to modifications in highly abundant RNAs, such as tRNAs, 

rRNAs and snRNAs (reviewed in Schwartz, 2016). This is because detection of 

modifications in RNAs expressed at low levels, such as mRNAs, is technically challenging 

for classical biochemical methods. However, recently, transcriptome-wide studies of RNA 

modifications using next generation sequencing (NGS) technologies allowed the 

identification and mapping of several modification types in all classes of RNA, including 

mRNAs and long non-coding RNAs (reviewed in Roundtree et al., 2017). NGS 

technologies involve the reverse transcription of RNAs into cDNAs, which are ligated to 

adaptors for sequencing, and mapping of the obtained sequence reads to the genome 

and read-end mapping enables the sites of the modifications to be determined in a 

transcriptome-wide manner. Such RNA modification mapping techniques require a means 

by which nucleotides carrying specific modification can be differentiated from non-modified 

nucleotides. One approach by which this can be achieved is based on distinctive reverse 

transcription signatures (RT signature) resulting from nucleotides misincorporation or 

abortive cDNA products caused by large RNA modifications or chemical adducts on the 

Watson-Crick face of the modified residues (Ebhardt et al., 2009; Findeiss et al., 2011). 

This approach has been used in transcriptome-wide mapping of m1A modifications after 

antibody-mediated enrichment (Li et al., 2016; Dominissini et al., 2016). Interestingly, RNA 

modifications, such as pseudouridine (Y), which do not themselves cause reverse 

transcriptase stalling, can also be analysed by such approaches as, chemical treatments 

of RNA can enhance the RT signature of specific RNA modifications. For example, N-

cyclohexyl-N’-(2-morpholinoethyl)carbodiimide methyl-p-toluenesulfonate (CMCT) 

treatment of RNAs leads to formation of RT-arresting adducts at Y residues, allowing their 

detection and the generation of transcriptome-wide maps of the modification (Carlile et al., 
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2014; Li et al., 2015). Furthermore, the different reactivities of modified and unmodified 

nucleotides to specific chemical treatments can be exploited to enable detection of 

modification sites in cellular RNAs. This is the basis of the well-known bisulfite sequencing 

approach, which can be applied to both DNA and RNA. Here, bisulfite treatment 

deaminates unmodified cytidines to uridines but does not affect 5-methylcytidines, and this 

conversion can be detected by sequencing after reverse transcription (Schaefer et al., 

2009).  

An alternative approach for the detection of modified sites in RNAs is through the use of 

antibodies that specifically recognise modified nucleotides to enrich modification-

containing RNA fragments, which are then converted into a cDNA library for sequencing. 

This approach is used for transcriptome-wide mapping of several RNA modifications, 

including N6-methyladenosine (m6A; Dominissini et al., 2012; Meyer et al., 2012). m6A 

mapping combined with RNAi-mediated knockdowns of METTL3 and METTL14 allowed 

identification of the METTL3-METTL14 heterodimer as a methyltransferase complex that 

installs m6A modifications on multiple RNAs (Liu et al., 2014). Moreover, the antibody-

mediated immunoprecipitation of 5-hydroxymethylcytosine (hm5C)-containing RNA 

fragments uncovered the transcriptome-wide distribution of the modification in Drosophila 

melanogaster cells (Delatte et al., 2016). However, these antibody-based techniques 

enable mapping of the modifications to RNA regions of approximately 100 nucleotides but 

do not provide their exact nucleotide positions. For m6A mapping, a significant 

improvement in the resolution of the mapping approaches was obtained by crosslinking 

the antibodies to the modified sites in RNA, which induced unique signature mutations 

upon reverse transcription, allowing the generation of the first single-nucleotide resolution 

map of m6A (Linder et al., 2015). In short, this rapidly expanding spectrum of techniques 

for the detection of RNA modifications in cellular RNAs has led to a resurgence in the field 

of ‘epitranscriptomics’ through generating transcriptome-wide maps of different 

modifications on all classes of RNA. These methods allow studying the dynamic 

occurrence of RNA modifications under different conditions and their potential roles in 

regulation of gene expression and cellular behaviour (reviewed in Helm and Motorin, 

2017). 

 

1.4.2 Modifications in other non-coding RNAs 
Besides tRNAs and rRNAs, modifications on other classes of non-coding RNAs that play 

crucial roles in cellular homeostasis have been identified (reviewed in Esteller and 

Pandolfi, 2017). For example, the long non-coding RNA (lncRNA) XIST, which mediates 

transcriptional repression of multiple genes on the X chromosome during female 

mammalian development, has been recently shown to be highly methylated and the 
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METTL3-METTL14 complex was shown to be responsible for many of these modifications 

(Linder et al., 2015). In fact, it is suggested that XIST carries more m6A modifications than 

any other RNA with 78 mapped m6A residues, and these modifications were later shown 

to be critical for its gene silencing activity (Patil et al., 2016). Additionally, XIST also 

carries m5C modifications, which regulate its function by affecting the binding to the 

chromatin-modifying complex PCR2 (Amort et al., 2013). Another well-studied modified 

lncRNA is MALAT1, which is known to regulate alternative splicing (Tripathi et al., 2010). 

MALAT1 has at least four m6A modifications that are suggested to regulate its hairpin 

stem structure (Liu et al., 2013; Zhou et al., 2016). 

Primary microRNAs (pri-miRNAs) can also carry m6A modifications, which allow their 

recognition and processing by DGCR8 (Alarcon et al., 2015). Lack of the METTL3-

METTL14 complex, which installs m6A modifications on pri-miRNAs, results in 

accumulation of unprocessed pri-miRNAs and a general reduction of mature miRNAs. 

Additionally, some miRNAs also carry m5C modifications, however, in contrast to the role 

of m6A in pri-miRNAs, the NSUN2-mediated m5C modification of pri-miRNA125 inhibits its 

processing, therefore repressing its function in silencing gene expression (Yuan et al., 

2014). Interestingly, NSUN2 also introduces m5C modifications on vault non-coding RNAs, 

and lack of these modifications causes aberrant processing producing small RNA 

fragments that can function as miRNAs (Hussain et al., 2013). 

Finally, the spliceosomal small nuclear RNAs (snRNAs) are also heavily modified. In 

eukaryotes, five snRNAs (U1, U2, U4, U5 and U6) participate in pre-mRNA splicing by the 

major spliceosome as small nuclear ribonucleoprotein (snRNP) complexes (reviewed in 

Matera and Wang, 2014). The U1, U2, U4 and U5 snRNAs have a 2,2,7 

trimethylguanosine (TMG) cap at the 5’ end, which can function as a nuclear localization 

signal (Fischer and Lührmann, 1990). In contrast, the 5’ guanosine triphosphate cap of the 

U6 snRNA, which remains in the nucleus during its maturation, is monomethylated at the g 

position and does not contribute to its nuclear localization (Singh et al., 1989). Moreover, 

the 3’ end of the U6 snRNA has a 2’,3’-cyclic phosphate, which has been recently shown 

to be generated by the exonuclease/phosphodiesterase USB1 (Mroczek et al., 2012; 

Shchepachev et al., 2012). Internally, the most abundant modifications in snRNAs are, 

similar to rRNA, 2’-O-methylation and Y (reviewed in Roundtree et al., 2017). The majority 

of these modifications are guided by specialized snoRNAs that reside in Cajal bodies, 

called small Cajal body-specific RNAs (scaRNAs; reviewed in Meier et al., 2017). 

Exceptions include the Y modifications at positions 44 and 35 of the yeast U2 snRNA, 

which are introduced by the stand-alone pseudouridine synthases Pus1 and Pus7 

respectively (Massenet et al., 1999; Ma et al., 2003). Besides Y and ribose methylation, 

snRNAs also carry several other types of RNA modifications. For example, the U6 snRNA 
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has been reported to carry one m6A modification at position 43 and one N2-

methylguanosine (m2G) at position 72 (Shimba et al., 1995; Massenet et al., 1999). 

Recently, an additional m6A site in the U6 snRNA at position 76 has been proposed (Sun 

et al., 2016). Moreover, the U2 snRNA, which is the most modified snRNA, was also 

suggested to carry an m6A modification (Bringmann and Lührmann, 1987). However, most 

of the enzymes that introduce snRNA modifications remain unidentified. 

Interestingly, snRNA modifications are present in evolutionarily conserved sequences that 

are functionally important, suggesting that these modifications may play important roles in 

regulating the structure or function of the snRNPs (reviewed in Karijolich et al., 2010). For 

example, the m6A43 in the U6 snRNA is present in the conserved ACAGAGA sequence, 

which directly interacts with pre-mRNA 5’ splice sites during splicing (Wassarman and 

Steitz, 1992). Despite the potential of snRNA modifications to influence numerous aspects 

of pre-mRNA splicing, most functional studies have focused on the U2 snRNA since it has 

the highest number of modifications. For example, Y modifications within the U2 snRNA 

sequence that base pairs with pre-mRNA branch-points during splicing influence the 

catalytic phase of pre-mRNA splicing (Lin and Kielkopf, 2008). Moreover, several 2’-O-

methylations at the 5’ end of human U2 snRNA have been shown to be individually 

required for pre-mRNA splicing, and although individual Y modifications in the same 

region are not essential, they have a cumulative effect on U2 function (Dönmez et al., 

2004). Modifications at the 5’ end of U2 were also later shown to modulate the dynamic 

equilibrium of the U2-U6 complex, which is the catalytic core of the spliceosome 

(Karunatilaka and Rueda, 2014). Besides their well-studied functions in the U2 snRNA, 

modifications in other snRNAs have also been suggested to impact pre-mRNA splicing. 

For example, modifications at the U4/U6 snRNA base pairing region have been suggested 

to influence the rate of unwinding the duplex, and modifications in the U1 snRNA can 

contribute to its interaction with the 5’ splice site during the initial step of mRNA splicing 

(Freund 2003; reviewed in Karijolich et al., 2010). Recently, defects in snRNA 

modifications have been linked to disease, as the absence of Usb1, which modifies the 3’ 

end of the U6 snRNA, leads to a genetic disease known as poikiloderma with neutropenia 

(PN; Mroczek et al., 2012; Shchepachev et al., 2012). In addition to snRNA modifications, 

pre-mRNA splicing can also be influenced by modifications in the pre-mRNAs themselves. 

 

1.4.3 mRNA modifications 
The revived interest in the epitranscriptomics field over recent years is mainly due to novel 

findings from studies on mRNA modifications, particularly m6A, which is the most 

abundant internal modification in eukaryotic mRNAs (Fig. 5; reviewed in Roundtree and 

He, 2016). In humans, m6A is reported to be present at more than 10,000 sites in the 
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transcriptome and is suggested to occur in at least a fourth of all mRNA transcripts 

(Domonissini et al., 2012; Meyer et al., 2012). Notably, m6A modifications are typically 

enriched in the 3’ untranslated regions (3’UTRs) and in close proximity to stop codons. 

m6A modifications are often installed co-transcriptionally by a multicomponent 

methyltransferase (‘writer’) complex containing METTL3, METTL14 and the regulatory 

subunits WTAP and KIAA1429 (Liu et al., 2014; Ping et al., 2014; Schwartz et al., 2014). 

Although both METTL3 and METTL14 have methyltransferase domains, structural and 

functional data have suggested that METTL3 is the catalytic core of the complex, while 

METTL14 serves as an inactive RNA-binding platform (Wang et al., 2016). Strikingly, 

some m6A modifications have been shown to be selectively removed by demethylases 

(‘erasers’), called FTO and AlkB family member 5 (ALKBH5), indicating that m6A 

modifications can be dynamically regulated and that changes in RNA modifications could 

be a means to alter the biological functions of specific RNAs under certain conditions (Jia 

et al., 2011; Zheng et al., 2013). m6A can affect the functions of RNAs by altering RNA 

folding and structure, or via ‘reader’ proteins, which directly recognize and bind the 

modification and thereby regulate the fate of the RNA (reviewed in Wu et al., 2016). m6A-

mediated structural effects (collectively termed ‘m6A switches’) can directly affect codon 

anti-codon base pairing, thus influencing translation dynamics of mRNAs, or indirectly 

recruit functional proteins that recognize the formed RNA structures (Choi et al., 2016; Liu 

et al., 2015). In contrast, the best characterised group of m6A readers all contain a YTH 

domain, which contains a conserved hydrophobic pocket that can specifically bind m6A 

with a much higher affinity than A (Luo and Tong, 2014). During pre-mRNA splicing, 

YTHDC1 binds m6A-containing transcripts and recruits SRSF3, leading to exon inclusion 

(Xiao et al., 2016). Although m6A has been suggested to play a role in facilitating pre-

mRNA export to the cytoplasm, the mechanistic details remain to be reported (Zheng et 

al., 2013). In the cytoplasm, YTHDF1 binds specific m6A-modified mRNAs and recruits 

translation initiation factors, promoting translation (Wang et al., 2015). YTHDF3, another 

cytoplasmic m6A reader, was shown to facilitate translation and decay of a subset of m6A-

modified mRNAs (Li et al., 2017; Shi et al., 2017). Similarly, YTHDC2 was recently 

reported to enhance translation of some m6A-modified mRNAs and to decrease their 

abundance (Hsu et al., 2017). Finally, YTHDF2 localizes m6A-methylated mRNAs to 

cytoplasmic processing bodies, accelerating their degradation (Wang et al., 2014). 

Collectively, m6A modifications are proposed to regulate almost every stage of RNA 

metabolism and modulate the expression of specific groups of mRNAs during complex 

cellular events, such as differentiation, development, cell cycle regulation, circadian 

rhythm and stress responses (reviewed in Zhao et al., 2016). 
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Interestingly, N6-methylation of adenosine can also occur in the second nucleotide of 

mRNA if it is 2’-O-methylated, forming N6,2’-O-dimethyladenosine (m6Am; Wei et al., 1975, 

1976). Interestingly, m6Am renders the transcripts resistant to the mRNA-decapping 

enzyme DCP2 and therefore less susceptible to miRNA-mediated mRNA degradation 

(Mauer et al., 2017). Moreover, FTO was shown in the same study to selectively remove 

the modification, suggesting that m6Am is another dynamic epitranscriptomic mark in 

mRNA. 

 
Figure 5. Summary of modifications reported in eukaryotic mRNAs. 
The line represents a eukaryotic mRNA, which includes the 5’ cap structure, the 5’ untranslated 
region (UTR), the coding sequence (bold), the 3’ UTR and the poly(A)tail. The types of 
modifications detected in mRNAs are shown at the positions where they have predominantly been 
detected and are abbreviated as described in the abbreviations list (taken from Roundtree et al., 
2017). 
 

N1-methylation of adenosine can also take place in mRNAs, forming N1-methyladenosine 

(m1A), which carries a positive charge that can alter RNA structure or influence RNA-

protein interactions (Zhou et al., 2016). Recently, transcriptome-wide mapping of m1A 

sites showed its enrichment in proximity to translation start sites and the first splice site, 

suggesting a role in regulating mRNA translation that has yet to be documented 

(Dominissini et al., 2016; Li et al., 2016). Mapping of m5C sites in mRNAs was also 

recently performed, uncovering its enrichment in the vicinity of the Argonaute protein-

binding regions within 3’UTRs and downstream of translation initiation sites (Squires et al., 

2012). To date, NSUN2, which installs m5C on several tRNAs, is the only characterized 

m5C writer on mRNA (Hussain et al., 2013; Khoddami et al., 2013). Excitingly, m5C 

modifications in mRNAs have been recently shown to be ‘read’ by the mRNP export factor 

ALYREF, facilitating mRNA export to the cytoplasm (Yang et al., 2017). 

Y and 2’-O-methylation, which are the most abundant modifications in several classes of 

RNA in eukaryotes, have been also identified in mRNAs. Recently, the distribution of Y on 

mRNA has been reported, revealing thousands of modified sites in human mRNAs (Li et 
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al., 2015; Carlile et al., 2014; Lovejoy et al., 2014). Members of the pseudouridine 

synthetase (PUS) family have been shown to mediate pseudouridylation of mRNAs 

(Karijolich et al., 2011). Although the precise roles of Y in mRNA have not been shown in 

detail yet, in E. coli, it has been suggested that Y modification of the first nucleotide of 

stop codons affects base pairing during decoding, leading to increased read-through 

(Fernandez et al., 2013). The distribution of 2’-O-methylation sites on mRNAs was 

recently reported, uncovering the presence of more than 7000 2’-O-methylation sites (Dai 

et al., 2017). It has been suggested that certain snoRNAs bind to mRNAs where it is 

possible that they install 2’-O-methylations, however, experimental evidence of these 

interactions is lacking and the exact mechanism of installing the modification on mRNA is 

still not clear (Bachellerie et al., 2002; Cavaille et al., 2000). Similarly, the exact functions 

of non-cap 2’-O-methylations in mRNAs are not fully understood, but in vitro studies have 

suggested that it can inhibit A to I RNA editing (Beal et al., 2007). 

Taken together, the last decade has witnessed great progress in the field of RNA 

modifications, unravelling transcriptome-wide maps of different modifications on different 

RNA species and their dynamic occurrence. However, we are still "scratching the surface" 

of the field, since we still need to understand the mechanisms by which different RNA 

modifications are installed as well as their contribution to signalling pathways, human 

physiology and disease. 
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Chapter Two: Aims of this work 
 
Recent studies have shown that chemical modifications are widespread in almost all 

classes of RNA and these modifications are emerging as key players in the regulation of 

gene expression. Modifications expand the features of RNA residues, thereby influencing 

RNA secondary structures, base pairing properties and/ or RNA-protein interactions. 

These functions enable RNA modifications to regulate the fates of the modified RNAs and 

affect cellular processes that involve ribonucleoprotein (RNP) complexes, such as 

ribosome biogenesis, mRNA splicing and translation. Interestingly, some RNA 

modifications were recently shown to be selectively removed by ‘eraser’ proteins, 

suggesting that they represent a dynamic layer of regulation of gene expression. 

Moreover, defects in RNA-modifiying enzymes have been linked to human diseases, such 

as cancer and metabolic disorders.  

The enzymes that install many RNA modifications and the biological functions of these 

modifications remain uncharacterized and knowledge of the molecular mechanisms of 

most diseases caused by defects in RNA modification enzymes is often lacking. Here, we 

aimed to characterise several putative RNA methyltransferases for which no functions 

were known. We set out to determine the RNA substrates of the putative m6A and m5C 

methyltransferases METTL16, NSUN6 and NSUN3 in a transcriptome-wide manner using 

the crosslinking and analysis of cDNA (CRAC) approach. In addition, we aimed to 

characterize the modification activity of these enzymes using in vivo and in vitro 

methylation assays and to identify recognition elements that are required for recruitment 

of the RNA-modifying enzymes to their specific substrate RNAs. Furthermore, to gain 

insight into the cellular functions of the modifications installed by these enzymes, we 

analysed the effects of lack of these modifications/modification enzymes on the target 

pathways identified by CRAC. Another important aspect of this work was to better 

understand how defects in RNA modification enzymes can cause disease, and we studied 

Bowen-Conradi syndrome (BCS), which is caused by a point mutation in the gene 

encoding the rRNA methyltransferase EMG1, to elucidate the molecular basis of this 

disease.  

Collectively, our studies aimed to characterize RNA-modifying enzymes by providing 

insights into their modification substrates, cellular functions and their involvement in 

human diseases. 
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Chapter Four: Discussion 
 
More than 150 distinct chemical modifications have been reported in RNAs from diverse 

organisms. In recent years, our knowledge of RNA modifications has substantially 

advanced with transcriptome-wide studies showing that the landscape of different RNA 

modifications represents an important dynamic layer of regulation of gene expression. 

However, many enzymes responsible for installing particular RNA modifications, their 

biological roles in cellular processes and their contributions to human diseases remain to 

be uncovered. 

 

4.1 Characterization of the novel m6A writer METTL16 
N6-methyladenosine (m6A) is the most abundant internal modification in mRNAs and 

lncRNAs (reviewed in Roignant and Soller, 2017). Mapping of m6A has revealed its 

enrichment within a RRACH sequence motif (R=A or G; H=A or U or C) around stop 

codons in mRNAs (Dominissini et al., 2012; Meyer et al., 2012). Recent studies showed 

that m6A modifications can regulate almost all stages of RNA metabolism, including (pre-) 

mRNA splicing, processing, nuclear export, translation and degradation, and therefore, 

m6A influences multiple cellular processes, such as differentiation and development 

(reviewed in Roundtree et al., 2017). Initial studies showed that m6A can be reversed by 

the dioxygenases FTO and ALKBH5, indicating that the modification is highly dynamic and 

can be regulated in different cellular conditions (Jia et al., 2011; Zheng et al., 2013). 

However, recently, m6A was shown to be not the preferred target of FTO in vivo and the 

dynamic regulation of m6A was proposed to occur on nascent pre-mRNAs at the level of 

the m6A writers, and it was suggested that m6As are relatively stable after the release of 

pre-mRNAs into the nucleoplasm (Mauer et al., 2017; Ke et al., 2017). Mis-regulation of 

the installation or removal of m6A modifications can lead to human diseases, such as 

cancers and metabolic disorders (reviewed in Batista, 2017). 

m6A can be installed by a ‘writer’ methyltransferase complex containing METTL3 and 

METTL14, as well as the regulatory subunit WTAP (Liu et al., 2014; Ping et al., 2014). 

Although the binding sites of the METTL3-METTL14 complex show a significant overlap 

with previously mapped m6A sites and the RRACH sequence motif, numerous m6A 

modifications do not map within the METTL3-METTL14 binding sites and lie within 

different sequence contexts, raising the exciting possibility that other m6A writers may 

exist in human cells. Based on its homology to the Escherichia coli protein YbiN, which 

introduces an m6A modification at position 1618 in the 23S rRNA (Sergiev et al., 2008), 

we hypothesised that METTL16 could possess such activity in human cells. 
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Using crosslinking and analysis of cDNA (CRAC; Bohnsack et al., 2012), we identified the 

RNA binding sites of METTL16 in a transcriptome-wide manner. Our CRAC analysis 

identified numerous lncRNAs, pre-mRNAs and the U6 snRNA as direct interaction 

partners of METTL16 in vivo. Consistent with a previous report, our data confirms the 

association of METTL16 with a triple helix close to the 3’-end of the MALAT1 lncRNA, 

which is required for its nuclear expression (Brown et al., 2016). Moreover, we observed 

the association of METTL16 with the MAT2A mRNA, which encodes the S-

adenosylmethionine (SAM) synthetase. The binding of METTL16 to MAT2A mRNA was 

recently reported to promote MAT2A splicing under SAM-limiting conditions, therefore 

METTL16 increases the synthesis of the SAM synthetase and maintains SAM 

homeostasis (Pendleton et al., 2017).  

Collectively, our CRAC data identified 355 pre-mRNAs associated with METTL16 in vivo. 

Interestingly, and in contrast to the binding of the METTL3-METTL14 complex in proximity 

to stop codons (Liu et al., 2014), the majority of METTL16 binding sites in pre-mRNAs lie 

within introns, indicating that METTL16 installs a different subset of m6A modifications that 

likely have different functions. Together with the results of a recent study, where m6A 

modifications were suggested to be installed on chromatin-bound pre-mRNAs (Ke et al., 

2017), and the nuclear localization of METTL16, this suggests that METTL16 installs m6A 

modifications on nascent pre-mRNAs during their synthesis and processing in the 

nucleus. Although the precise functions of intronic m6A modifications installed by 

METTL16 are not yet clear, in Drosophila melanogaster, intronic m6A modifications have 

been shown to be required for female-specific alternative splicing of Sxl (sex-lethal gene) 

(Haussmann et al., 2016). However, our analysis showed that the majority of the pre-

mRNA introns bound by METTL16 are constitutively spliced, suggesting that the m6A 

modifications installed by METTL16 in pre-mRNA introns are likely involved in other 

functions than regulating alternative splicing of these introns. It is possible that intronic 

m6A modifications affect the RNA secondary structure or long-distance interactions. 

Structural changes at conserved sequences, such as the splice sites or the branch point, 

could affect the binding of splicing factor proteins or influence base pairing with 

spliceosomal snRNAs, thereby affecting splicing efficiency (reviewed in Buratti and 

Baralle, 2004). Changes in RNA secondary structures of intronic regions other than the 

conserved splicing sequences can vary the relative distance between these conserved 

elements, which could similarly affect splicing efficiency (Deshler and Rossi, 1991). 

Furthermore, intronic m6A modifications in pre-mRNAs could be bound by ‘reader’ 

proteins that influence pre-mRNA splicing or processing, for example, by the recruitment 

of splicing factors in a similar way to the m6A reader YTHDC1, which recruits SRSF3 and 

promotes exon inclusion (Xiao et al., 2016). 
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The direct binding of various lncRNAs, pre-mRNAs and the U6 snRNA by METTL16 

suggested that they may be modification targets. We tested this hypothesis on the U6 

snRNA, as it has been previously shown to carry an m6A modification at position 43, 

installed by an unknown enzyme (Shimba et al., 1995). Interestingly, the amount of the 

m6A-modified U6 snRNA was reduced to around 50% upon the knockdown of METTL16, 

compared to the amount of the m6A-modified U2 snRNA, demonstrating that METTL16 is 

an m6A writer that installs m6A43 in human U6 snRNA. The finding that the modification 

level falls only to 50% may be explained by the high stability of the U6 snRNA (Sauterer et 

al., 1988), which could lead to the detection of U6 snRNAs that are modified prior to the 

depletion of METTL16, or by the detection of the recently proposed m6A at position 76 of 

the U6 snRNA (Sun et al., 2016). Importantly, m6A76 lies in a binding site of the METTL3-

METTL14 complex and within a RRACH sequence, suggesting that it is introduced by 

METTL3-METTL14 rather than METTL16 (Liu et al., 2014).  

Although the precise function of the METTL16-mediated m6A43 in the U6 snRNA remains 

unknown, the location of the modification within the conserved ACm6AGAGA sequence, 

which base pairs with the 5’ splice site of pre-mRNAs during splicing, suggests an 

important role in the regulation of pre-mRNA splicing. This is supported by the finding that 

mutating this sequence is lethal in yeast (Peebles et al., 1995; Keating et al., 2010). 

Based on recent structural studies of human pre-spliceosomal particles, it is most likely 

that m6A43 exerts an effect on the RNA structure or base pairing properties rather than 

functioning through the recruitment of a reader protein (Agofonov et al., 2016; Bertram et 

al., 2017). The U6 snRNA undergoes conformational changes during its assembly into 

spliceosomal complexes (Fortner et al., 1994) and m6A43 may influence local RNA 

secondary structures that are required to accommodate these conformational changes. 

Furthermore, m6A43 may affect U6-pre-mRNA interactions, which are important for 5’ 

splice site recognition and the splicing reaction (McPheeters, 1996). Interestingly, during 

splicing, the ACm6AGAGA sequence is contacted by the U5 snRNP protein PRP8, which 

plays crucial roles in the formation of the catalytic core of the spliceosome (Galej et al., 

2013). It is possible that m6A43 influences the interaction of PRP8 with the U6 RNA 

sequence and consequently affects the function of PRP8 in splicing. This model is 

supported by the observation that the expression levels of METTL16 and PRP8 are co-

regulated in human cells (Kohn et al., 2014). Recently, frameshift mutations in the gene 

encoding METTL16 have been suggested to play a role in the tumorigenesis of colorectal 

cancer, but whether this phenotype is related to its methyltransferase activity or not 

remains unclear (Yeon et al., 2017). 

The U6 snRNA is present in cells as part of three distinct snRNP complexes: a U6 mono-

snRNP, the U4/U6 di-snRNP or the U4/U6.U5 tri-snRNP (reviewed in Patel et al., 2008). 
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Our finding that METTL16 associates with the U6 snRNA, but not with the U4 or the U5 

snRNAs, in native immunoprecipitation experiments indicates that the m6A43 modification 

is installed in the context of the U6 mono-snRNP, during early maturation stages of the U6 

snRNA. Maturation steps of the U6 snRNA include synthesis by RNA polymerase III in the 

nucleus, addition of a 5’ monomethylated guanosine triphosphate cap structure and 

formation of a 3’ uridine tract, which is initially bound by the chaperone-like protein La that 

plays a role in stabilizing the transcript (reviewed in Mroczek and Dziembowski, 2013). 

Further maturation of the 3’ end of the U6 snRNA leads to the replacement of the La 

protein with the LSm2-8 proteins, which also stabilize the transcript (Mayes et al., 1999). 

The LSm-chaperoned U6 snRNP enters the nucleoli where it undergoes snoRNP-guided 

2’-O-methylation and pseudouridylation, before it is returned to the nucleoplasm where 

additional proteins associate to form the mono-U6 snRNP (reviewed in Meier et al., 2017). 

In order to gain further insights into the timing of m6A43 installation, we identified protein 

interaction partners of METTL16. Immunoprecipitation experiments followed by mass 

spectrometry revealed the La protein, the La-associated protein LARP7 and the 

guanosine triphosphate capping enzyme MEPCE as interaction partners of METTL16. Our 

finding that these interactions are RNA-dependent suggests that they are likely mediated 

by the U6 snRNA, however, we cannot exclude that the interactions are mediated by other 

RNAs. For example, the 7SK snRNA, which we also found to interact with METTL16, 

similarly binds La, LARP7 and MEPCE (Uchikawa et al., 2015) suggesting that these 

interactions may also be formed in the context of the 7SK RNP. The interaction of 

METTL16 with the U6 snRNA and MEPCE and LARP7 suggests that METTL16 binds 5’-

capped U6 snRNA, and since La and LARP7 favour binding to oligo-U sequences, it was 

anticipated that METTL16 binds 3’-oligouridylated U6 snRNA (Pannone et al., 1998; 

Markert et al., 2008). Further analysis of our CRAC data revealed the association of 

METTL16 with U6 containing non-genomically-encoded U’s, further supporting this 

hypothesis. Together with the prominent nuclear localization of METTL16, our data 

indicate that the METTL16-mediated m6A43 modification is one of the earliest events 

during the biogenesis of the U6 snRNP, more specifically, METTL16 binds to nuclear 5’-

capped oligouridylated U6 snRNA while it is chaperoned by the La protein, before the 

installation of 2’-O-methylation and pseudouridylation modifications in the nucleolus. It is 

possible that the presence of m6A43 is a pre-requisite for the installation of the snoRNP-

guided modifications on the U6 snRNA. While this has not yet been demonstrated, the 

close proximity of m6A43 to snoRNA-guided modifications, together with the extensive 

base pairing interactions snoRNAs form with their substrates and the known role of m6A in 

regulating RNA-RNA base pairing interactions, makes this a strong possibility. Such 
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coordination of installing different modifications has been previously reported in tRNASer, 

where i6A37 is required for the installation of m3C32 (Arimbasseri et al., 2016). 

Besides the U6 snRNA, it is possible that METTL16 installs m6A modifications on other in 

vivo RNA targets identified in our CRAC results. Sequencing of m6A-containing RNA 

fragments, with or without the knockdown of METTL16, has been recently performed, and 

showed reduced m6A modification levels on multiple RNAs upon METTL16 knockdown 

(Pendleton et al., 2017). However, since the lack of METTL16 causes a reduction of SAM 

levels, it is difficult to differentiate RNAs that are directly bound and modified by METTL16 

from RNAs that have reduced m6A modification as a secondary effect caused by the lack 

of SAM. Indeed, Pendleton and colleagues showed that the GNPTG and GMIP mRNAs, 

which contain m6As that are highly sensitive to depletion of METTL16, are not bound by 

METTL16. However, comparison of the transcriptome-wide mapping of the binding sites of 

METTL16 by our CRAC experiments with this m6A-seq dataset allowed the identification 

of METTL16-dependent m6A modification sites that are directly bound by METTL16, 

strongly suggesting that these modifications are introduced by METTL16. Together, the 

identification of METTL16 as an m6A methyltransferase that targets a range of RNA 

substrates provides important insights into the installation of the m6A landscape in 

different classes of RNA. In the future, characterization of the METTL16-mediated m6A 

modifications will lead to understanding their functional roles and how different their 

modes of actions are from the m6A modifications installed by the METTL3-METTL14 

complex. 

The identification of METTL16 as a second active m6A methyltransferase in human cells 

raises the question of why multiple m6A writer proteins are required. The presence of 

more than one m6A writer may allow recognition of different modification substrates. In 

contrast to the METTL3-METTL14 complex, which recognizes the RRACH sequence motif 

in its substrate RNAs, the sequence and/or structural elements that allow METTL16 to 

recognize its targets remain unknown. Interestingly, the UACAGAGAA sequence is 

methylated by METTL16 in both the U6 snRNA and the MAT2A pre-mRNA (Pendleton et 

al., 2017). However, this sequence is absent from other METTL16 targets, showing that it 

is not the only recognition element for METTL16. Therefore, it is more likely that METTL16 

recognizes secondary structures, which is in line with the binding of METTL16 to hairpin 1 

in the MAT2A pre-mRNA and to the highly structured U6 snRNA as well as other 

structured (l)ncRNAs, e.g. MALAT1, vault RNAs, Y-RNAs, etc. Crystal structures of 

METTL16 with different RNA binding partners may provide insights into the required 

elements for substrate recognition. Another possible explanation for the need for multiple 

m6A writers is that m6A modifications that are installed by one writer on specific RNAs 

need to be co-regulated during a certain cellular response and this is achieved by 
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modulating the activity of the corresponding writer protein. For example, the METTL3-

METTL14 complex installs m6A modifications on pluripotency-promoting transcripts, such 

as mRNAs encoding NANOG and other Yamanaka factors, reducing their stability during 

differentiation of embryonic stem cells (Geula et al., 2015). Interestingly, the presence of 

known m6As that do not appear to be installed by either the METTL3-METTL14 complex 

or METTL16, such as in the 28S rRNA (Linder et al., 2015), raises the possibility that 

more m6A writers remain to be identified in human cells. The speculation that more m6A 

writers exist in human cells is also supported by the detection of m6A modifications in 

mitochondrial RNAs (Sun et al., 2016), where neither of the known m6A writers has so far 

been reported to localise.  

 

4.2 Characterization of the putative m5C methyltransferases NSUN6 and NSUN3 
Similar to m6A, 5-methylcytosine (m5C) is an evolutionarily conserved modification that is 

present in RNAs from the three domains of life (reviewed in Motorin et al., 2010). 

Recently, transcriptome-wide studies have suggested that m5C modifications are 

widespread in mRNAs as well as several classes of non-coding RNA, including tRNAs 

and rRNAs (Squires et al., 2012; Edelheit et al., 2013). In these RNAs, m5C has been 

shown to play important roles, including modulating RNA structural stability, translation, 

RNA processing and degradation (see for example, Blanco et al., 2016; Alexandrov et al., 

2006; Tuorto et al., 2012). Excitingly, m5C modifications in mRNA have been recently 

shown to be specifically recognised by a reader protein, ALYREF, which can specifically 

bind the modification and influence export of m5C-modified mRNAs to the cytoplasm 

(Yang et al., 2017). 

m5C modifications in RNA can be installed by DNMT2 or by one of the members of the 

Nol1/Nop2/SUN domain (NSUN) family (Goll et al., 2006). The human genome encodes 

seven NSUN proteins (NSUN1-7), which can target distinct classes of RNA in different 

cellular compartments (Chi and Delgado-Olguin, 2013). Examples include modification of 

mRNA (NSUN2; Hussain et al., 2013), tRNA (NSUN2; Schaefer et al., 2010) or rRNA in 

the cytoplasm (NSUN1, NSUN5; Sloan et al., 2013; Schrosser et al., 2015) or in the 

mitochondria (NSUN4; Metodiev et al., 2014). Furthermore, NSUN7, which is highly 

expressed in testes, has been suggested to install m5C modifications in enhancer RNAs 

and affect their stability (Chi and Delgado-Olguin, 2013; Aguilo et al., 2016). Here, we 

identified the RNA substrates of NSUN6 and NSUN3, providing insights into their cellular 

functions. 

Transcriptome-wide mapping of NSUN6 binding sites in vivo using UV CRAC revealed 

binding to tRNACys and tRNAThr. Interestingly, CRAC using 5-azacytidine as a crosslinking 

reagent (5-aza CRAC), which traps m5C methyltransferases on their RNA substrates in a 
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covalent intermediate that is formed during the methylation reaction (Khoddami and 

Carins, 2013), showed binding of NSUN6 to the same tRNAs, demonstrating that NSUN6 

is an m5C tRNA methyltransferase that modifies these tRNA. This finding was confirmed 

in vitro using methylation assays (Haag et al., 2017), and these assays further revealed 

that NSUN6 methylates cytosine C72 at the 3’ end of the acceptor stems of tRNACys and 

tRNAThr. This was in line with the CRAC data, where most of the sequence reads in the 

NSUN6 sample map to the 3’ ends of these two tRNAs, and a transcriptome-wide 

mapping study that showed the presence of an m5C modification at this nucleotide in 

tRNAThr in vivo (Squires et al., 2012). Although the precise functions of the NSUN6-

mediated m5C modifications remain unknown, based on their presence at the 3’ acceptor 

stems of the tRNAs, it is tempting to speculate that the m5C72 modifications may affect 

the aminoacylation of the tRNAs and therefore their function in translation. 

Modifications can be introduced at various stages during the maturation of tRNAs. For 

example, the nucleolar localization of NSUN2 suggests that it methylates the substrate 

tRNAs at early stages in their maturation, likely co-transcriptionally (Frye and Watt, 2006). 

In contrast, the cytoplasmic localization of NSUN6 suggests that it modifies its substrate 

tRNAs at a late step in their biogenesis. Interestingly, we observed that NSUN6, unlike 

most other tRNA-modifying enzymes, co-localizes with the pericentriolar matrix (PCM) and 

the cis-golgi. Although there is no evidence that tRNAs function at the Golgi apparatus 

and the association with the Golgi apparatus is not a typical step of tRNA biogenesis, such 

tethering of proteins to cytoplasmic structures might play a role in preventing them from 

entering the nucleus by diffusion or while the nuclear envelope is dis-/re-assembled during 

mitosis (Wang et al., 2000). The cytoplasmic localization of NSUN6 likely ensures that 

NSUN6 only modifies its tRNA substrates after their nuclear maturation but since NSUN6 

can methylate unmodified tRNACys and tRNAThr transcripts in vitro, it is unlikely that other 

nucleotide modifications installed on these tRNAs during the early stages of their 

maturation are a pre-requisite for NSUN6-mediated m5C72 modification. 

In contrast to NSUN6, which methylates cytoplasmic tRNAs, NSUN3 CRAC results 

showed an association of NSUN3 with mitochondrial tRNAs, which is in line with the 

localization of NSUN3 in the mitochondrial matrix. Detailed analysis of the CRAC data 

showed the association of NSUN3 with the mitochondrial (mt-)tRNAMet. Furthermore, we 

demonstrated in vivo and in vitro that NSUN3 installs an m5C at cytosine 34, the wobble 

position, of mt-tRNAMet. However, this position was previously reported to contain a 5-

formylcytosine (f5C; Moriya et al., 1994), therefore we hypothesized that m5C34 installed 

by NSUN3 can be further oxidized by a specific dioxygenase to form f5C34. We focused 

on the AlkB-like Fe(II)/ alpha-ketoglutarate-dependent dioxygenases (ALKBH) as 

candidates for catalysing such a reaction, since members of this protein family have been 
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previously reported to perform oxidative reactions on RNA modifications (reviewed in 

Shen et al., 2014). Interestingly, we found that ALKBH1/ABH1, similar to NSUN3, is 

localized to the mitochondrial matrix and binds mt-tRNAMet, suggesting that it could 

perform such activity. Indeed, oxidation assays have revealed that ABH1 oxidises m5C34, 

generating f5C34 in mt-tRNAMet. Using bisulfite sequencing, we showed that C34 in mt-

tRNAMet is almost fully modified in vivo, and although the majority of the modification is 

f5C, in line with previous reports of f5C34 in mt-tRNAMet (Moriya et al., 1994), a portion of 

cytosines appear to carry m5C modifications introduced by NSUN3. This is consistent with 

results of a parallel study that reported the presence of an m5C modification at position 34 

of mt-tRNAMet in vivo (Van Haute et al., 2016). However, we cannot exclude that the 

detection of m5C34 may result from partial reduction of f5C34 during the bisulfite 

sequencing protocol. Moreover, it remains unclear if m5C34 is just an intermediate during 

the formation of f5C34 or it has a cellular function itself. However, our finding that m5C34-

containing mt-tRNAMet binds AUG and AUA codons in the P site stronger than mt-tRNAsMet 

containing different modification states of C34, suggests a potential role for m5C34 in 

codon recognition by mt-tRNAMet. In DNA, oxidation of m5C by TET enzymes can form 5-

hydroxymethylcytosine (hm5C) as an intermediate product (Ito et al., 2011). Recently, it 

was found that ABH1 first hydroxylates m5C34 to form hm5C34, and then oxidizes hm5C34 

generating f5C34 in mt-tRNAMet (Kawarada et al., 2017). However, in our in vitro assays, 

the conversion of m5C34 to f5C34 was highly efficient and the presence of hm5C34 as an 

intermediate was not significantly detected. Together with our finding that hm5C34 does 

not show a significant effect in the codon recognition experiments, it seems unlikely that 

hm5C34 plays an important function on mt-tRNAMet. 

Human mitochondria contain their own genome, which encodes 13 mRNAs that are 

translated by mitochondrial ribosomes to form the essential subunits of the oxidative 

phosphorylation complex (OXPHOS; reviewed in Powell et al., 2015). The mitochondrial 

protein synthesis machinery uses a minimalistic set of 22 mt-tRNAs, which are 

responsible for decoding 60 sense codons. Therefore, mitochondria use a non-

conventional genetic code, where all mt-tRNAs recognise at least two different codons 

(reviewed in Suzuki & Suzuki, 2014). The expanded decoding capacity of several mt-

tRNAs has been attributed to chemical modifications in the wobble position (reviewed in 

Bohnsack and Sloan, 2017). For example, the 5-taurinomethyluridine at the wobble 

position of mt-tRNATrp enables UGA codons, which are normally read as stop codons 

during cytoplasmic translation, to encode Tryptophan (Suzuki et al., 2002). Similarly, 

f5C34, which is installed by the consecutive action of NSUN3 and ABH1, has been 

suggested to expand the codon recognition capacity of mt-tRNAMet (Moriya et al., 1994). In 

contrast to cytoplasmic translation, where the initiator tRNAi
Met decodes methionine during 
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translation initiation and the elongator tRNAe
Met decodes methionine during translation 

elongation, mitochondria contain only one mt-tRNAMet that functions during both initiation 

and elongation (Takeuchi et al., 2001). In addition to decoding the standard AUG codon 

for the incorporation of methionine, mt-tRNAMet can decode AUA codons during translation 

initiation and elongation and AUU codons during the initiation of NADH dehydrogenase 2 

(ND2) translation (Tekamoto et al., 1995). f5C34 was shown to allow mt-tRNAMet to decode 

AUA codons, as well as AUG codons, as it is able to pair with both A and G at the third 

position of the codon (Bilbille et al., 2011; Cantara et al., 2013). Consistent with this, our in 

vitro codon recognition experiments with mitochondrial translation factors demonstrate 

that the different modification states of C34 in mt-tRNAMet can influence the ability of the 

tRNA to decode multiple codons during translation initiation and elongation, suggesting 

that the modification plays a role in mitochondrial translation. Indeed, we found that the 

depletion of NSUN3 or ABH1 leads to a general reduction in translation of all 

mitochondrial proteins, in line with the presence of AUA codons encoding methionine in all 

of the mitochondrial mRNAs. This is further supported by the findings that oxidative 

phosphorylation and respiratory coupling of mitochondria are impaired in NSUN3 knockout 

cells (Nakano et al., 2016), and that depletion of NSUN3 or ABH1 reduces cellular growth. 

Together, our data describe the biosynthetic pathway of installing f5C34 in the wobble 

position of mt-tRNAMet by NSUN3 and ABH1, and show the importance of the modification 

in expanding the decoding capacity of the tRNA, which is essential for the mitochondrial 

translation machinery. 

Taken together with the previously described functions of NSUN1, NSUN2, NSUN4 and 

NSUN5 in modification of cytoplasmic and mitochondrial rRNAs and cytoplasmic tRNAs, 

these data show that members of the NSUN protein family of m5C methyltransferases 

target diverse cellular RNAs. Therefore, an interesting question is how these different 

proteins recognize their specific substrates in the complex cellular environment. NSUN 

proteins can localize in different subcellular compartments via localization signals in their 

sequences or via recruitment into a complex. For example, NSUN1 contains a nuclear 

targeting signal that was shown to be required for its nuclear and nucleolar localization 

(Valdez et al., 1994) and NSUN4 was shown to form a complex with MTERF4, which is 

required for its recruitment to the mitochondrial large ribosomal subunit (Spahr et al., 

2012). The recruitment of NSUN proteins to their localization sites may allow their 

presence in the vicinity of their substrates or regulate their sequence of action in 

conjunction with other proteins. For example, the tethering of NSUN6 to cytoplasmic 

structures may facilitate the modification of tRNAs after their export to the cytoplasm. 

Based on its sequence and prediction of its domain structure, NSUN6 contains an N-

terminal pseudouridine synthase and archaeosine transglycosylase (PUA) domain and C-
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terminal methyltransferase domain that includes an RNA recognition motif (RRM) and the 

catalytic core. In our study, we showed that NSUN6 methylates C72 at the 3’ end of the 

acceptor stems of tRNACys and tRNAThr and is exclusively recruited to tRNAs that contain 

a cytosine at position 72. Consistent with this, a recently published structure of NSUN6 

revealed extensive interactions between C72 and the catalytic core of NSUN6 (Liu et al., 

2017). Interestingly, we found that the CCA tail of the substrate tRNA is essential for 

recognition by NSUN6, as deletion or exchange of one of the three nucleotides abolishes 

the methylation reaction. This is consistent with the finding that the surface of the PUA 

domain of NSUN6 precisely recognizes the CCA tail of the substrate tRNAs (Liu et al., 

2017). Binding of NSUN6 to CCA-tailed tRNA substrates might represent a quality control 

mechanism ensuring that the m5C72 modification is installed on tRNA substrates that 

contain an appropriate 3’ end and therefore will be functional. However, the observation 

that NSUN6 only methylates a subset of CCA-containing tRNAs indicates that the CCA-

tail and C72 are not sufficient for NSUN6 to recognize its substrate tRNAs. Indeed, 

mutational analysis has revealed more recognition elements including U73, which acts as 

a discriminator base that directly binds the RRM motif, and more distant nucleotides in the 

D stem that form extensive electrostatic interactions with the PUA domain (Long et al., 

2016; Liu et al., 2017). Consistent with this, we found that NSUN6 does not methylate the 

C72-containing tRNAArg, which lacks the discriminator base U73. Taken together, NSUN6 

requires a delicate network for recognition of tRNA substrates, involving both primary 

sequence elements and tertiary structural features. Recently, NSUN6 was found to form a 

complex with LLGL2 and the lncRNA MAYA for the methylation of Hippo/MST at lysine 59 

(Li et al., 2017). Based on the structure of NSUN6, it is likely that these interactions are 

mediated by the RNA-binding PUA domain (Liu et al., 2017).  

In our study of NSUN3, we gain insight into how the protein recognizes tRNAMet in order to 

methylate C34 in the anticodon loop. We observed that mutation of the neighbouring 

cytosines C33 and C32 reduces the extent of methylation of C34 by NSUN3 in vitro, 

suggesting that these residues might contribute to the binding or methylation by NSUN3. 

Furthermore, mutation of C39, which base pairs with G31 at the base of the anticodon 

stem, abolished NSUN3-mediate methylation of C34, suggesting that NSUN3 might 

recognise the anticodon step loop (ASL) of mt-tRNAMet. Interestingly, swapping the 

nucleotides at positions 31 and 39 of the anticodon stem, which results in a stable stem 

structure but a different sequence, did not affect C34 methylation, further supporting that 

NSUN3 requires the ASL for substrate recognition. Furthermore, NSUN3 can methylate a 

chemically synthesized ASL, indicating that the ASL is sufficient for recognition and 

methylation by NSUN3. This is in contrast to NSUN6, which requires a correctly folded, 

full-length tRNA as a substrate (Long et al., 2016).  
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The NSUN3-mediated methylation of C34 of mt-tRNAMet is a pre-requisite for subsequent 

oxidation by ABH1. Interestingly, ABH1 was previously reported to recognize different 

substrates other than mt-tRNAMet. For example, ABH1 can demethylate 3-methylcytosine 

(m3C) in single-stranded RNA and DNA in vitro (Westbye et al., 2008), and is suggested 

to act as a histone demethylase and a DNA lyase at abasic sites (Müller et al., 2010; 

Ougland et al., 2012). Moreover, ABH1 was recently suggested to demethylate m1A at 

position 58 in a subset of cytoplasmic tRNAs (Liu et al., 2017). Although structural 

information on how ABH1 recognizes its substrates is lacking, it is tempting to speculate 

that ABH1 might recognize structural elements that are shared between its diverse 

substrates. It is possible that different protein co-factors recruit ABH1 to its target sites, in 

a similar way to the rRNA/tRNA acetyltransferase NAT10, which requires the adaptor 

protein THUMPD1 for its role in tRNA modification (Sharma et al., 2015) but is targeted to 

its modification sites in the 18S rRNA by snoRNAs (Sharma et al., 2017). 

Aberrant expression or mutations of several NSUN proteins have been linked to human 

diseases. NSUN5 is among the completely deleted genes in Williams-Beuren syndrome 

(Merla et al., 2002). Moreover, mutations in NSUN2 cause intellectual disability (Khan et 

al., 2012; Abbasi-Moheb et al., 2012) and mutations in NSUN7 are associated with 

reduced sperm motility and infertility (Harris et al., 2007; Khosronezhad et al., 2015). 

Recently, most of the disease-related mutations in NSUN proteins were suggested to 

impair m5C methylation of RNA, implying the direct association between defects of m5C 

modifications and these diseases (Liu et al., 2017). In contrast, NSUN6 was reported to 

play a role in bone metastasis through the methylation of the Hippo/MST1 protein complex 

and the activation of YAP in tumour cells, showing that NSUN proteins could also play a 

role in human diseases through other functions than m5C modification of RNA (Li et al., 

2017). 

In mitochondria, point mutations in mt-tRNAs can interfere with the installation of 

modifications and cause diseases (see for example, Brule et al., 1999; Yasukawa et al., 

2005; Yarham et al., 2014). To date, eight pathogenic mutations have been reported in 

mt-tRNAMet and suggested to lead to mitochondrial disorders that manifest with a broad 

range of symptoms (Lott et al., 2013). Interestingly, we found that one of these pathogenic 

mutations in mt-tRNAMet (C39U), which destabilizes the ASL structure, abolishes the 

methylation at C34 due to disruption of the ASL. Moreover, another pathogenic mutation 

in mt-tRNAMet, A37G, was shown to abolish the methylation by NSUN3, further supporting 

that defects in modification at C34 and consequently, mitochondrial translation and 

function are the underlying cause of these diseases (Nakano et al., 2016). Consistent with 

this, a patient with mitochondrial disease symptoms was recently shown to lack f5C 

modification of C34 of mt-tRNAMet (Van Haute et al., 2016). Furthermore, exome 
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sequencing of DNA derived from patient cells identified loss-of-function variants of the 

NSUN3 gene and that lead to a lack of functional NSUN3 protein. Taken together, lack of 

the modifications installed by the NSUN proteins can lead to diseases, and our data 

provide insights into the basic mechanistic aspects of these modifications, which might 

help in explaining the molecular mechanisms of these diseases. 

 

4.3 Understanding the molecular basis of Bowen-Conradi syndrome 
A growing number of human disorders have been linked to ribosome dysfunction. Such 

disorders, which are known as ‘ribosomopathies’, are generally characterized by 

developmental defects, haematological dysfunction, craniofacial anomalies, and increased 

incidence of cancer (reviewed in Narla and Erbert, 2010). Although many of the mutations 

in ribosomal proteins or biogenesis factors that cause these diseases have been 

identified, the precise functions of these factors in human ribosome assembly often remain 

uncharacterized and moreover, the molecular basis of most of these diseases are not 

thoroughly understood. Bowen-Conradi syndrome (BCS) is a severe autosomal recessive 

disorder that is characterized by bone marrow failure, craniofacial abnormalities and early 

infant death (Lowry et al., 2003). BCS is caused by a point mutation in the gene encoding 

the rRNA methyltransferase EMG1, leading to an aspartate to glycine exchange at 

position 86 (D86G; Armistead et al., 2009). In yeast, Emg1 is an essential nucleolar 

protein that plays a role in the maturation of the small ribosomal subunit, where it 

participates in the unique hypermodification of uridine 1191 of the 18S rRNA (Meyer et al., 

2011). The hypermodification begins with the isomerization of uridine 1191 to 

pseudouridine (Y) by the action of the H/ACA box snoRNP snR35, which allows the 

subsequent N1 methylation by Emg1 (Wurm et al., 2010). Recently, the cytoplasmic 

enzyme Tsr3 was shown to catalyse the addition of a 3-amino-3-carboxypropyl (acp) 

moiety, generating the N1-methyl-N3-aminocarboxypropylpseudouridine (m1acp3Y) 

modification (Meyer et al., 2016). Although the presence of Emg1 within its binding site in 

pre-ribosomal complexes is required for small ribosomal subunit biogenesis, the 

methyltransferase activity was shown to be not essential (Meyer et al., 2011).  

While the functions of Emg1 in biogenesis of the small ribosomal subunit are relatively 

well understood, characterizing the effects of the BCS mutation in EMG1 on its function 

was necessary in order to understand the molecular basis of the syndrome and thereby, 

potentially enable the development of therapeutic agents to treat this disorder in the 

future. We discovered that the BCS mutation destabilizes the EMG1 protein, which is 

consistent with the previous finding that EMG1 protein levels are dramatically reduced in 

BCS patient fibroblasts (Armistead et al., 2009). Structural analysis of EMG1 suggests 

that the destabilization of EMG1D86G may be explained by the high conformational 
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flexibility of glycine compared to aspartate, which likely mitigates the stabilizing effect of 

proline 85 in EMG1, or that the BCS mutation disrupts a stabilizing salt-bridge between 

aspartate 86 and arginine 84 (Leulliot et al., 2008; Armistead et al., 2009). Interestingly, 

the reduced levels of EMG1D86G could be rescued by inhibiting the proteasome, implying 

that EMG1D86G is largely degraded in BCS cells. 

In line with a conserved role for Emg1 in the biogenesis of the small ribosomal subunit (Liu 

and Thiele, 2001), the reduced expression of EMG1D86G compared to EMG1 lead to 

defects in maturation of the 18S rRNA. This is consistent with the finding that the rate of 

the 18S rRNA processing was reduced in BCS patient cells (Armistead et al., 2014). 

Interestingly, overexpression of EMG1D86G to protein levels that were comparable to the 

endogenous levels of wildtype EMG1 could rescue the pre-rRNA processing defects, 

implying that the BCS mutation in EMG1 does not directly impair the function of EMG1 in 

ribosome biogenesis, but the reduced EMG1D86G protein levels cause the small ribosomal 

subunit biogenesis defects. Consistent with this, our in vitro methylation assays 

demonstrated that EMG1D86G still has methylation activity, implying that the lack of the 

m1acpY1248 modification is not the main reason for the molecular defect observed in 

BCS. 

In order to obtain further insights into the effects of the BCS mutation, we monitored the 

localization of EMG1D86G. In contrast to the nucleolar localization of wildtype EMG1, only a 

portion of EMG1D86G is recruited to the nucleolus, whereas the majority of the protein 

forms foci in the nucleoplasm. Together with the previously observed increased insolubility 

and dimerization of EMG1D86G (Armistead et al., 2009; Meyer et al., 2011), these nuclear 

foci likely present protein aggregates. The mislocalization of EMG1D86G to the nucleoplasm 

suggested that the mutation prevents its specific recruitment to the nucleolus, leading to 

destabilization. Our finding that a sub-complex containing NOP14, NOC4L and UTP14A 

recruits EMG1 to the nucleolus allowed us to address whether the nucleolar fraction of 

EMG1D86G is specifically recruited to the nucleolus or formed by non-specific accumulation 

of the protein. In line with the observations that EMG1D86G can perform its function in 

ribosome biogenesis and methylate its substrate residue, our data showed that the 

nucleolar fraction EMG1D86G is recruited to the nucleolus by its interaction partners, 

implying that it the BCS mutation does not directly affect nucleolar recruitment of EMG1. 

The presence of EMG1D86G in foci in the nucleoplasm raised the question of how EMG1 is 

imported to the nucleus after its translation in the cytoplasm and why it does not 

aggregate in the cytoplasm or during import. The import of proteins to the nucleus occurs 

via nuclear pore complexes (NPCs), which contain, in their central channels, numerous 

nucleoporins possessing phenylalanine-glycine-rich repeats (FG-repeats) that constitute a 

permeability barrier (Frey et al., 2006; Frey and Görlich, 2007). In the cytoplasm, where 
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the concentration of RanGTP is low, cargo proteins form complexes with import receptors 

(importins), which bridge interactions between cargo proteins and the FG-repeat 

meshwork to facilitate the complex to be translocated across the NPC (reviewed in 

Schmidt and Görlich, 2016). In the nucleus, the high levels of RanGTP disassemble the 

nuclear import complex and release the cargo proteins (reviewed in Görlich, 1998; Görlich 

and Kutay, 1999). We found that the nuclear import of EMG1 can be mediated by Importin 

(IMP)a/b or by the IMPb/7 heterodimer. Besides the primary function of import receptors in 

mediating nuclear import of proteins, they can also chaperone basic proteins, such as 

RNA binding proteins or histones, by shielding their basic regions and preventing their 

multivalent interactions with polyanions in the cytoplasm that could otherwise lead to 

aggregation (Jäkel et al., 2002; Bäuerle et al., 2002). The presence of a basic patch on 

the surface of Emg1, within which the BCS mutation lies, lead us to hypothesize that 

IMPa/b and/or the IMPb/7 heterodimer might chaperone EMG1 and EMG1D86G in the 

cytoplasm (Leulliot et al., 2008; Taylor et al., 2008; Thomas et al., 2010). Indeed, we 

found that the IMPb/7 heterodimer chaperones EMG1 and EMG1D86G efficiently, 

suggesting that it represents the physiological nuclear import receptor that chaperones 

EMG1 and EMG1D86G in the cytoplasm. This is consistent with previous reports showing 

that IMPb/7 heterodimer can chaperone highly basic proteins, such as the histone H1 and 

the ribosomal proteins RPL4 (uL4) and RPL6 (eL6) (Jäkel et al., 2002; Bäuerle et al., 

2002). Interestingly, it has been suggested that the nuclear disassembly of the cargo-

IMPb/7 complex takes place in two successive steps: (i) binding of RanGTP to IMPb and 

release of the cargo-IMP7 complex (ii) transfer of the cargo from the cargo-IMP7 complex 

to its binding site (Jäkel et al., 1998, 1999). This suggests that IMP7 remains associated 

with the basic proteins in the nucleus, chaperoning them until they form specific 

interactions with their binding partners.  

In addition to importins, a group of proteins (called ‘’dedicated chaperones’’) were recently 

shown to prevent ribosomal proteins from aggregation and degradation (reviewed in Pillet 

et al., 2016). Since ribosomal proteins and ribosome biogenesis factors possess highly 

basic regions that make them prone to aggregation, it is likely that they are shielded 

already during their synthesis. Indeed, several ribosomal proteins, Rps3, Rpl3, Rpl4, Rpl5 

and Rpl10 were shown to be bound by their dedicated chaperones co-translationally 

(Pausch et al., 2015; Pillet et al., 2015). Although the co-translational binding of importins 

to their substrates remains to be documented, it is tempting to speculate that EMG1 is 

likely chaperoned by the IMPb/7 heterodimer while it is being translated. Alternatively, it is 

possible that an additional cytoplasmic chaperone protects EMG1 from aggregation on the 

ribosome before it is captured by the Impb/7 heterodimer. While importins chaperone 

basic proteins in the cytoplasm and dissociate from the import complex in the nucleus, 
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most dedicated chaperones accompany ribosomal proteins to their assembly sites on 

nucleolar pre-ribosomes (reviewed in Pillet et al., 2016). It is likely that these basic 

proteins require to be shielded until they reach their final incorporation sites. Interestingly, 

importins can hand over the substrate proteins to dedicated chaperons in the nucleus. For 

example, Rps26 is chaperoned in the cytoplasm by its transport receptors (Kap123, 

Kap121/Pse1 and Kap104) and after it is imported to the nucleus, Rps26 is bound by the 

dedicated chaperone Tsr2, which displaces the protein from its transport receptors and 

facilitates its nucleolar recruitment and integration into pre-ribosomal complexes (Schütz 

et al., 2014). It is possible that EMG1 is chaperoned in the nucleoplasm by its interaction 

partners (NOP14, NOC4L and UTP14A), which may form a complex with EMG1 that is 

then incorporated into the nucleolus. Alternatively, EMG1 can be chaperoned in the 

nucleus by IMP7, which may remain associated with EMG1 after the release of IMPb by 

RanGTP. In BCS, it is possible that the residence of EMG1D86G with its import receptors in 

the nucleus is not sufficient to enable the protein to bind its specific interaction partners, 

which is in line with our observation that EMGD86G binds less than wildtype EMG1 to its 

interactions partners and is not fully recruited to the nucleolus. Collectively, our data 

suggest that EMG1D86G is chaperoned in the cytoplasm by the IMPb/7 heterodimer, but 

after its import to the nucleus, the disassembly of the EMG1D86G-IMPb/7 complex and the 

release of EMG1D86G leads to its aggregation and degradation. The reduced levels of 

EMG1D86G lead to defects in maturation of the small ribosomal subunit.  

Impaired ribosome biogenesis results in the inhibition of the E3 ubiquitin ligase HDM2 by 

the 5S RNP, causing increased levels of the tumor suppressor p53 (Sloan et al., 2013). 

Together with the observation that the knockdown of EMG1 in U2OS cells leads to 

increased expression of p53 (unpublished data, the Bohnsack lab), it is possible that p53 

levels are elevated in BCS patients, leading to cell cycle arrest and apoptosis. This is 

supported by the previous finding that BCS patient fibroblasts accumulate in the G2/M 

transition of the cell cycle, resulting in reduced proliferation rates (Armistead et al., 2014). 

Similar to other ribosomopathies (reviewed in Narla and Ebert, 2010), symptoms of BCS 

include bone marrow failure and bone abnormalities. These common symptoms may 

result from p53-mediated apoptosis of rapidly growing cells, such as erythroblasts and 

bone-forming cells, which are sensitive to impaired ribosome biogenesis. However, each 

ribosomopathy is clinically distinct. For example, some ribosomopathies such as X-linked 

Dyskeratosis Congenita (X-DC) lead to increased incidence of cancer, which is surprising 

considering the elevated p53 levels due to impaired ribosome biogenesis. One possible 

explanation is that defects in ribosome biogenesis may lead to the production of impaired 

ribosomes that have differential translation activities that promote tumorigenesis. For 

example, in X-DC, the produced ribosomes have defects in translating a subset of 
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mRNAs, including the mRNA encoding the tumor suppressor p27, leading to malignant 

transformation (Yoon et al., 2006). 

To date, bone marrow transplantation is the only definitive treatment for the severe 

haematological dysfunction in most ribosomopathies (Vlachos et al., 2001). Based on our 

data, screening for a drug that prevents the degradation of EMG1D86G, for example, by 

targeting one of the ubiquitin ligases that specifically target EMG1D86G for proteasome-

dependent degradation, may be one step towards developing a treatment for BCS. 

However, our data showed that EMG1D86G is prone to aggregation, therefore such a drug 

might lead to secondary pathogenic effects due to increased aggregated protein levels. 

Alternatively, developing a drug that prevents the misfolding and aggregation of EMG1D86G 

may be a better approach. This could be achieved, for example, by fluorescence 

microscopy-based screening for a compound that prevents the accumulation of EMG1D86G 

in nuclear foci. Taken together, our data provide insights into the molecular basis of BCS 

and raise the possibility of developing therapeutics for treatment of the syndrome. 

 

4.4 RNA modifications and RNA modification enzymes 
Interestingly, some modifications are widely spread in cellular RNAs while others are rare. 

For example, m6A and m5C modifications are found in different classes of RNA, whereas 

so far f5C has been only detected in the wobble position (f5C34) of mt-tRNAMet 

(Dominissini et al., 2012; Squires et al., 2012; Moriya et al., 1994). This is likely due to the 

diverse roles that individual modifications have on RNAs. For example, m6A modifications 

influence RNA secondary structure by destabilizing RNA duplexes or by promoting base 

stacking and the stability of single-stranded RNAs (Roost et al., 2015). These RNA-

stabilizing effects are likely required in different contexts for the functions of RNAs and 

RNA-protein complexes. Similarly, the topological effects of m5C modifications, such as 

base stacking and stability of RNA structures, are likely required in multiple cellular RNAs 

(Motorin et al., 2010). In contrast, f5C was shown to allow base pairing of cytosine to 

adenine and guanine, which is a specific feature that enables mt-tRNAMet to decode AUG 

and AUA codons, therefore f5C appears to be a rare modification in cellular RNAs (Bilbille 

et al., 2011). Similarly, although the exact function of the m1acp3Y modification is not 

known, it is likely that the particular chemical effect from this chemically complex 

modification is only required in limited contexts. 

In a similar way, some RNA modification enzymes modify only a limited number of targets 

while other enzymes have multiple substrates. For example, only one site (U1248 of the 

18S rRNA) is suggested to be modified by EMG1 (Meyer et al., 2011), whereas our data 

indicated that METTL16 introduces m6A modifications in numerous RNA substrates. 

Furthermore, the METTL3-METTL14 complex was shown to install m6A modifications in 
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even more RNA substrates than METTL16 (Liu et al., 2014). This may reflect co-

regulation between m6A modifications on different substrates. Grouping of certain mRNA 

transcripts, for example, for a certain process such as translation or decay can be 

important for regulation of cellular events including the cell cycle, the circadian rhythm, 

differentiation and development (reviewed in Zhao et al., 2016). Furthermore, some RNA 

modification enzymes can act on more than one type of modification substrate. 

Interestingly, although the f5C modification generated on mt-tRNAMet by ABH1 is rare, 

ABH1 was also reported to demethylate m1A modifications in several cytoplasmic tRNAs 

and to demethylate m3C modifications in single-stranded RNA and DNA, and to act as a 

DNA lyase at abasic sites (Liu et al., 2016; Westbye et al., 2008; Müller et al., 2010; 

Ougland et al., 2012). Moreover, our data indicate that NSUN6 methylates cytoplasmic 

tRNAs and recently, NSUN6 was shown to be involved in methylation of Hippo/ MST (Li et 

al., 2017). The ability of RNA modification enzymes to modify more than one type of 

substrate may represent a mechanism for cross-regulation of these substrates and their 

action in certain cellular pathways. 

Besides their modification functions, some enzymes can also perform additional functions 

in the cell. For example, Emg1 was shown to have an essential assembly role in the 

biogenesis of the small ribosomal subunit, in addition to its function in the 

hypermodification of the 18S rRNA (Meyer et al., 2016). Interestingly, METTL16 was 

shown to promote splicing of MAT2A pre-mRNA, but in a methylation independent 

manner (Pendleton et al., 2017). Together with our model that the METTL16-mediated 

m6A43 in the U6 snRNA has a role in splicing, this suggests that METTL16 may regulate 

pre-mRNA splicing in methylation dependent and independent ways. The ability of RNA 

modification enzymes to perform additional functions may represent a means to co-

ordinate RNA modification with other aspects of RNA/RNP biogenesis or function. In the 

case where RNA modifications are essential for the function of RNAs, this could be a 

means of quality control to ensure that only correctly modified, mature RNAs are 

produced. 

An emerging concept in the RNA modifications field is the presence of residues that are 

partially/ substoichiometrically modified (reviewed in Sloan et al., 2017; Roundtree et al., 

2017). In the context of rRNA, partially modified residues were proposed to fine-tune 

translation, whereas constitutively modified residues, which are present in functionally 

important regions, are essential for rRNA folding and the assembly of ribosomes (Krogh et 

al., 2016). The m1acp3Y modification, where EMG1 functions, was found to be fully 

modified in yeast (Taoka et al., 2016), suggesting that the modification has an important 

function on the ribosome. This is in line with the finding that depletion of snR35, which 

installs the first step of the modification, leads to ribosome biogenesis defects (Liang et al., 
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2009). Similarly, our data indicated that C34 of mt-tRNAMet is almost fully modified by 

NSUN3 and ABH1 in vivo. This is supported by our finding that NSUN3 and ABH1 are 

required for mitochondrial translation by expanding codon recognition by mt-tRNAMet. 

Similarly, and consistent with our model that METTL16 installs m6A43 in an essential 

conserved sequence in the U6 snRNA, it is likely that m6A43 is not dynamically regulated. 

In contrast, it is possible that the intronic m6A modifications installed by METTL16 on pre-

mRNA introns are dynamically regulated, in line with previous findings that many 

modifications, such as m6A, m1A and y, occur at substoichiometric levels on mRNAs 

(Zheng et al., 2013; Dominissini et al., 2016; Carlile et al., 2014). 

RNA modifications can be regulated according to environmental signals such as stress 

signals and the metabolic status of the cell. For example, in yeast, oxidative stress was 

shown to cause a change in the levels of m5C, 2’-O-methylcytosine, N2,N2-

dimethylguanosine and t6A modifications in tRNAs (Chan et al., 2010). Consistent with 

this, m5C methylation of tRNALeu(CAA) was later shown to facilitate the translation of a TTG-

rich mRNA that encodes RPL22A, which is suggested to be involved in oxidative stress 

response (Chan et al., 2012). Recently, mRNA modifications were suggested to be 

dynamically regulated by demethylases in response to cellular stresses. For example, UV-

induced DNA damage was shown to regulate m6A levels on mRNAs by the METTL3-

METTL14 methyltransferase complex and the demethylase ALKBH5 (Xiang et al., 2017). 

However, response to environmental stresses may be only one side of RNA modifications 

dynamics. Many RNA modification enzymes require cofactors or utilise chemical moieties 

that are interconnected with, or produced during metabolic pathways, suggesting that 

RNA modifications may be adjusted according to the availability of metabolites and play 

roles in maintaining cell homeostasis (reviewed in Helm and Alfonzo, 2004). For example, 

the biosynthesis of i6A, which is present at position 37 of several tRNAs, requires DMAPP 

(dimethylallylpyrophosphate). DMAPP is derived from acetyl-CoA, which may be derived 

for example from glycolysis via pyruvate, suggesting a link between the metabolic status 

and the function of t6A in promoting translation efficiency (Benko et al., 2000; Thiaville et 

al., 2016). We have shown that the oxidation of m5C34 to f5C34 in mt-tRNAMet is catalysed 

by ABH1, which requires alpha (a)-ketoglutarate as a cofactor, that itself is an 

intermediate of the citric acid cycle (CAC; reviewed in Akram et al., 2014). a-ketoglutarate 

may signal that the CAC is active and that enough NADH and succinate are produced and 

can be utilized in oxidative phosphorylation (OXPHOS). The a-ketoglutarate-mediated 

activation of ABH1 is required for efficient translation of mitochondrial proteins, which form 

the OXPHOS complexes that utilize NADH and succinate for the production of the majority 

of cellular energy (reviewed in Dennerlein et al., 2017). 
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Taken together, RNA modifications are integral for the functionality of core aspects of the 

gene expression machinery, as they can be specifically regulated in different cellular 

conditions and can play major roles in regulation of gene expression for the maintenance 

of cell homeostasis.  
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