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V   Summary 

Phosphorus (P) is the most limiting nutrient for plant growth and productivity in many 

regions worldwide especially in the tropics. Aside intrinsic low P availability controlled 

by physicochemical and biological reactions, erosion and yield harvest are also very 

crucial in P depletion. These processes are massively intensified through 

anthropogenic activities, such as land-use change, the predominant global change of 

this century due to increasing population and food demand. Land-use change in 

consequence, affects P mobilization directly or indirectly through major modification 

of soil properties and functions. Hence, profound knowledge on abiotic and biotic 

factors affecting various P pools is necessary to understand the P dynamics and 

mobilization and to obtain a more effective soil management practices towards P 

conservation. Most studies were focused only on assessing the effects of land-use 

change on available P, but the other P pools such as Fe-bound P and microbial 

biomass P which are very important as reserve P pools especially in P-depleted soil 

were rarely considered. Therefore, this thesis aims at assessing the impacts of land-

use on abiotic and biotic processes controlling forms, distribution and availability of P 

in soil. 

The P sequential fractionation approach following Hedley method (1982) was used to 

assess the various P pools. The Hedley fractionation method estimates the P forms 

that have potential contribution to available P over a growing season. The extent of 

the method on extracting P from various pools and the mechanisms behind P 

dynamics was validated in an incubation experiment using 33P tracer isotope. The 

incorporation of 33P-labeled KH2PO4 was traced in available P, microbial biomass P 

and Fe-bound P pools in an acidic P-depleted soil (Cambisol) depending on 

availability of carbon and nitrogen provided via applying glucose and ammonium 

sulfate, respectively. The Hedley fractionation was very efficient and accurate in 

extracting various P forms. The P immobilization via microbial uptake and fixation by 

the Fe and Al oxides was almost instantaneous. Applying glucose boosted microbial 

growth and so demand for P, resulting in increased 33P recovery and P content in 

microbial biomass. The microbial biomass P, as the most important labile P reservoir 

prohibits P fixation and increases the availability of P to plants during biomass 

turnover. In contrast, the high 33P recovery in Fe-bound P pool showed the 

dominance of P adsorption by Fe and Al oxides on P fixation and so less availability 

for plants. 
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The potential contribution of earthworms (another biotic factor) on P availability was 

also investigated. By coupling 14C imaging and direct zymography for the first time, 

we visualized and localized the effects of earthworms on distribution of litter and C 

compounds as well as enzymes activity throughout soil profile. Earthworms bury 

above ground litter, produce casts and mucus that enhance the activity of beneficial 

soil microorganisms, colonizing earthworms’ biopores and so affect the P 

mobilization. Indeed, increase in microbial biomass P in the biopores and the activity 

of phosphatase enzymes which is responsible in hydrolyzing recalcitrant forms of 

organic P to become available for plants, were recorded.      

In the second part of this thesis, we found out that the change of forests to: (a) 

intensively-managed oil palm and rubber plantations in the tropics and; (b) organic 

and conventional farming in sub-tropics alters the distribution of P pools through 

controlling abiotic and biotic reactions in soil. Organic and inorganic fertilizers 

application increases easily-available inorganic P. However, by decrease of easily-

available organic P, moderately-available and non-available P intensifies. This 

means that fertilization maintains soil fertility only for a short time and fertilization is 

not sustainable in the long run due to the depletion of P reserves. The mechanisms 

of depletion in this easily-available P pool through land-use change are: 1) soil 

erosion; 2) microbial mineralization of soil organic matter (SOM) and 3) P export via 

yield products.  

The intensified reduction in SOM contents induced by land-use change is the major 

influencing factor on P mobilization. Decreasing SOM furthermore, promotes soil 

compaction and reduces soil water holding capacity that leads to flooding. In the third 

part of this thesis, we demonstrated that anaerobic conditions which may take place 

following flooding accompanying decreasing SOM contribute to P mobilization and so 

the potential uptake of P by plant roots. The extent of microbial-mediated reduction 

process leading to dissolution of ferric oxides is apparently determined by the SOM 

content. SOM is the source of carbon and energy which enables microorganisms to 

efficiently reduce Fe3+. Therefore, soils under forest and agroforest, with relatively 

high SOM content, resulted in a faster and higher P release than the plantation soils. 

Furthermore, increasing bulk density and in consequence flooding in soils under 

rubber and particularly under oil palm plantations led to lengthier anaerobic 

conditions and so more Fe3+ reduction and P release. 

In conclusion, land-use change leads to major modification of soil properties and 

functions that affect abiotic and biotic mechanisms controlling the dominant type of P 
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pool and their distribution in a soil, and determine the dynamics of P pools 

transformation and P availability for plants. Among all the affecting factors, the 

mechanisms controlling P mobilization and availability are more closely linked to 

SOM content. Thus, ecologically-based managements to reduce SOM content loss 

are necessary to have the highest P availability for plants and so higher yield.  
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Zusammenfassung 

Phosphor (P) ist am meisten der einschränkenden Nährstoff für Pflanzenwachstum 

und Produktivität in viele Regionen der Welt, vor allem in den Tropen. Abgesehen 

von weniger P-Verfügbarkeit, die von den physikalischen, chemischen und 

biologischen Reaktionen dominiert wird, sind Bodenerosion und Ertragsernte bei der 

P-Erschöpfung sehr wichtig. Diese Prozesse werden durch die anthropogene 

Aktivitäten, wie die Landnutzungsumwandlung, die die vorherrschende globale 

Veränderung dieses Jahrhunderts ist - aufgrund der zunehmenden 

Bevölkerungnachfrage nach Nahrung und anderen Produkten - massiv verändert. 

Dies führt zu einer wesentlichen Veränderung der Bodeneigenschaften und 

Funktionen, die direkt bzw. indirekt die P-Mobilisierung beeinflussen. Ein fundiertes 

Wissen über abiotische und biotische Faktoren, die verschiedene P-Pools 

beeinflussen, wäre für das Verständnis der P-Dynamik und Mobilisierung in den 

Böden sowie das erhalten effektivere Boden-Management-Praktiken in Richtung P 

Erhaltung sehr wichtig. Die meisten Studien konzentrierten sich nur auf die 

Beurteilung der Auswirkungen der Landnutzung auf den labilen P-Pool, aber die 

anderen P-Pools, die als Reserve-Pool insbesonder in P-abgereicherten Boden sehr 

wichtig sind, selten berücksichtigt. Daher diese Arbeit zielt darauf ab, die 

Auswirkungen von Landnutzungsänderungen auf abiotische und biotische Prozesse 

die die Formen, Verteilung und Verfügbarkeit der P im Boden kontrollieren zu 

steuern. 

Der P-sequentielle Fraktionierungsansatz nach der Hedley-Methode wurde 

verwendet, um die verschiedenen P-Pools in den Böden zu beurteilen. Die Hedley-

Fraktionierungsmethode liefert die Schätzungen von verschiedenen P-Formen, die 

einen möglichen Beitrag zur verfügbaren P über eine Wachstumsphase haben. Das 

Ausmaß der Methode zur Extraktion von P aus verschiedenen Pools und den 

Mechanismen hinter der P-Dynamik wurde in einem Inkubationsexperiment mit 33P- 

isotopen Tracer validiert. Der einfügung der 33P-markiertem KH2PO4 wurde in den 

verfügbaren P-, mikrobiellen Biomasse-P- und Fe-gebundenen P-Pools in einem 

sauren P-abgereichertem Boden (Cambisol) in Abhängigkeit von der Verfügbarkeit 

von Kohlenstoff und Stickstoff, die durch als Glucose bzw. Ammoniumsulfat 

angewendet wurden, verfolgt. Die Hedley-Fraktionierung erwies sich als sehr effizient 

und genau bei der Extraktion von verschidene P Pools. Die P Immobilisierung durch 

mikrobielle Aufnahme und die P Fixierung durch die Fe- und Al-Oxide war fast 

augenblicklich. Die Anwendung von Glukose steigert das mikrobielle Wachstum und 
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die Nachfrage nach P, was zu einer erhöhten 33P-Rückgewinnung und einem P-

Inhalt in mikrobieller Biomasse führt. Die P in mikrobielle Biomasse als das wichtigste 

labile P Pool verbietet die P-Fixierung und erhöht die Verfügbarkeit der P für die 

Pflantzen während des Biomasse Umsatzes. im Gegensatz zeigte die hohe 33P-

Erholung im Fe-gebundenen P-Pool die Dominanz der P-Adsorption durch Fe- und 

Al-Oxide auf der P Fixierung und unverfügbarkeit der P für die Pflantzen. 

Der mögliche Beitrag der Regenwürmer (ein weiterer biotischer Faktor) zur P-

Verfügbarkeit wurde ebenfalls untersucht. Durch Kopplung von 14C-Bildgebung und 

direkter Zymographie visualisierten und lokalisierten wir zum ersten Mal, die Wirkung 

von Regenwürmern auf die Verteilung von Plantzenreste und C-Verbindungen sowie 

die Enzymaktivität im gesamten Bodenprofil. Regenwürmern begraben die über dem 

Boden liegenden organische Substanze und produzieren Guss und Schleim, die die 

Aktivität von nützlichen Bodenmikroorganismen, die in den Bioporen kolonisieren, 

verstärken und so beeinflussen die P-Mobilisierung. In der Tat wurde die erhöhung 

der mikrobielle Biomasse P in den Bioporen und die Aktivität von Phosphatase-

Enzymen, die bei der Hydrolyse der widerspenstigen Formen von organischem P 

verantwortlich sind, aufgezeichnet. 

Im zweiten Teil dieser Arbeit haben wir herausgefunden, dass die Veränderung der 

Wälder zu: (a) intensiv verwalteten Ölpalmen und Kautschukplantagen in den Tropen 

und; (b) die organische und konventionelle Landwirtschaft in Subtropen verändert die 

Verteilung von P-Pools via kontrollieren der abiotische und biotische Reaktionen im 

Boden. Die organische und anorganische Düngemittelanwendung erhöht die labile 

anorganische P. Allerdings würde in kurzem die labile organische P vermindert und 

so die mäßig verfügbare und nicht verfügbare P intensiviert. Das heisst dass die 

Bodenfruchtbarkeit durch Landnutzungsintensivierung nur kurzfristig beibehalten 

würde und deshalb so eine Landnutzung ist nicht nachhaltig weil auf eine längere 

Zeit zu Erschöpfung der P-Reserven führt. Die Mechanismen dieser P Reserve 

Erschöpfung sind: 1) Bodenerosion; 2) mikrobielle Mineralisierung der organische 

Substanzen (SOM) und 3) P Export mit der Ertrag.  

Die intensive Reduktion des SOM-Inhalts ist der wesentliche Einflussfaktor für die P-

Mobilisierung. Außerdem führt die Erschöpfung von SOM zu die Bodenverdichtung 

und in Folge zu einer Überschwemmung. I dritter Teil dieses Studie haben wir 

gezeigt, dass Anaerober Zustand nachfolgend der Überschwemmungen und 

begleitet mit verringerter SOM-Inhalt zur P-Mobilisierung und damit zur möglichen 

Aufnahme durch Pflanzenwurzeln beigetragen haben. Das Ausmaß der mikrobiell 
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vermittelten reduktiven Auflösung von Eisenoxiden wurde offensichtlich durch den 

SOM-Inhalt bestimmt, da es sich um eine Kohlenstoff- und Energiequelle handelt, die 

es Mikroorganismen ermöglicht, Fe3+ effizient zu reduzieren. Böden unter dem Wald 

und Dschungelgummi, die die hohe SOM enthalten, führten zu einer schnelleren und 

höheren P-Freisetzung als die Plantagenböden. Außerdem leiden Gummi- und 

insbesondere Ölpalmenplantagen an einer Bodenverdichtung, was zu einer höheren 

Überschwemmungen und so längeren anaeroben Bedingungen führt. 

Abschließend führt die Landnutzungsumwandlung zu einer starken Veränderung der 

Bodeneigenschaften und Funktionen, die der abiotische und biotische Mechanismen 

beeinflussen, die den Dynamik von P-Pools-Transformationen, und die pflanzlische 

Verfügbarkeit bestiemen. Unter allen Einflussfaktoren sind die Mechanismen, die P-

Mobilisierung und Verfügbarkeit steuern, eng mit dem SOM-Inhalt verknüpft. Damit 

ist ein ökologisch fundiertes Management zur redutzierung der SOM-Verlusten 

erforderlich um die hohe der P Verfügbarkeit und hohere Ertrag beibehalten. 
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1 Extended Summary 
 

1.1 General Introduction 

1.1.1 Role and relevance of P in plant nutrition 

Phosphorus (P) is ubiquitous in nature (Chimdi et al., 2014). P, as 

orthophosphate, is essential to life, as a structural and functional component 

of all living organisms. It is present in a number of important plant cell 

compounds, such as sugar-phosphate, phospholipids in plant membranes, 

and nucleotides required for the accumulation and release of energy for 

cellular metabolism, as well as in control processes and in genetic material 

(Kirkby & Le Bot, 1994).  

P is primarily absorbed by plant roots from soil solution as orthophosphate 

ions (principally dihydrogen phosphate, H2PO4
- and to a lesser extent HPO4

2-

).  

1.1.2 The P cycle in soil  

According to Walker and Syers’ conceptual model (1976) (Fig. S1), all soil P 

is in the primary form, mainly as Apatite, at the beginning of soil development. 

With time, the action of different factors (e.g., climate, slope, organisms) 

exerted on the parent material (Apatite) during the weathering process causes 

Apatitic P to solubilize: react with dissolved carbon dioxide and congruently 

release P:   

 

 

This give rise to P in various other forms, i.e., organic P (Po), non-occluded P 

and occluded P.  The ionic form of solubilised P depends on the pH of the 

solution, with the predominate species in slightly acidic soils being H2PO4
- and 

in soils with a pH over 7 being HPO4
2-. The liberated PO4

3- can be taken up by 

plants and microorganisms entering the organic P reservoir, or ultimately 

returned to inorganic P (Pi) pools in the soil via mineralization. Nonetheless, 

during each turn of this cycle, some P may also be sorbed onto the surface of 

Fe and Al oxides and mineral edges of clay particles to become “non-

Ca5 (PO4)3OH (Apatite) + 4CO2 + 3H2O              5Ca2+ + 3HPO4
2- + 4HCO3

1- 
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occluded P”. With time, the non-occluded P is slowly encapsulated physically 

or surrounded by secondary minerals, which will continually be converted to 

occluded P. Therefore, at the late stage of soil development, soil P is 

dominated by organic P and occluded P. Furthermore, a decline of total P due 

to leaching, erosion and yield harvest could occur, consequently depleting 

available P for plant growth and productivity. 

 

 

Figure S1 Walker and Syers’ (1976) conceptual model of soil P geochemistry transformation 
over time. The model shows the transformation of mineral phosphorus into non-occluded and 
organic forms before eventual dominance of occluded (oxide-bound) and organic forms. The 
relative bio-reactivity of phosphorus increases from mineral to occluded to organic forms of 
phosphorus. Note the continual loss of total phosphorus from the system.  

 

In general, the P transformation processes controlling the P cycle in soil 

includes: (1) dissolution and precipitation; (2) immobilization and 

mineralization; (3) adsorption and desorption; (4) leaching and erosion. Figure 

S2 shows the different pathways of P in ecosystems, including fertilizer 

application and yield harvest.  
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Figure S2 Phosphorus dynamics in an agricultural system. Adapted from: Potash & 
Phosphate Institute, (PPI), Georgia, USA. 

 

1.1.3 Soil P forms and availability 

Soil P can be grouped according to form and availability. P can be inorganic 

(Pi) or organic (Po) and of different availability and chemical bindings (i.e. 

available, moderately available, non-available inorganic and organic) (Hedley 

et al., 1982). With regards to availability and chemical bindings, P can be 

grouped into refractory (non-available) and labile (readily-available). The 

refractory forms are more stable in nature and include P in apatite minerals 

and P co-precipitated with and/or adsorbed by Fe, Al and Mn (hydro)oxides 

(termed “occluded” P). The importance of refractory forms has been 

frequently reported (Neutfeldt et al., 2000; Reddy et al., 1999; Sharpley, 1985; 

Tiessen et al., 1984; Zheng et al., 2002). Depending on soil type and 

management, non-available P forms can be mobilized and become available 

for plant uptake, with mobilization rates depending on P form, desorption-

status, weathering, and mineralization processes. On the other hand, labile 

forms include soil Pi that moves readily among plants, soil biota, soil solution 

(termed “available” Pi), loosely bound Pi (termed “non-occluded” or 

“moderately-available” Pi), organic pools incorporated in soil organic matter 
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(SOM) (termed “easily-mineralized” Po) and P pools associated with microbial 

biomass (termed “Pmic”). Easily-mineralized Po and Pmic are very important 

P reserve pools involved in soil P transformation and P cycling when soil Pi 

reserves are limited (Buehler et al., 2002). The distribution of P between these 

forms changes dramatically with time and soil development, as discussed 

earlier (section 1.1.2). When available P is depleted, replenishment from other 

P forms becomes important (Henriquez, 2002). Syers (1976) showed that the 

proportion of Po increases at the later stages of soil development, especially 

in relation to labile Pi. Thus, the relative contribution of soil biological 

processes to delivering plant-available P may become more important when 

the availability of Pi is low. 

1.1.4 Mechanisms controlling P availability in soils 

P dynamics and availability are characterized by physicochemical (sorption-

desorption) and biological processes (immobilization-mineralization) that are 

prevalent in soils and involve changes in various P pools. Despite the fact that 

these processes occur naturally, they are greatly modified by human activities 

(Beauchemin & Simard, 2000; Reddy et al., 1999).  At the beginning of soil 

development, the availability of P in the ecosystem is restricted by the rate 

weathering-induced release from the parent material. As soil development 

progresses, changes in physicochemical and biological reactions and 

processes mediated by anthropogenic activities control the fate of various P 

pools.   

1.1.4.1 Abiotic control: P sorption, anaerobic condition, soil organic matter 

P sorption, which includes both adsorption and precipitation, is a very 

important process controlling P mobilization in the soil.  Both Po and Pi are 

susceptible to sorption, but the extent is influenced primarily by the 

concentration, chemistry and solubility of soil P (Berg and Joern, 2006). P 

sorption reactions are particularly important in highly weathered soils because 

strong soil sorption capacities compete with biological sinks for P, effectively 

reducing P availability (Uehara and Gillman, 1980; Sollins et al., 1988).  In 

highly weathered soils, 1:1 clays (e.g., kaolinite) and Al and Fe hydr(oxides) 

that effectively sorb P are prevalent. Consequently, sorbed P concentrations 
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often exceed those of soil solution by several orders of magnitude (Sanchez 

1976). Fertilization studies have shown that, in highly weathered soils, P may 

be rapidly and nearly completely sorbed over short timescales (e.g., Sanchez, 

1976; Uehara and Gillman, 1980; Oberson et al., 2001). Nonetheless, 

occluded P may actually enter available P pools, which are influenced by 

biological demand (Tiessen et al., 1984; Olander and Vitousek, 2004; Richter 

et al., 2006). For example, the increase in biological P in Piedmont forest 

regrowth (>28 yrs) came at the expense of P residing in the Fe-, Al- and 

occluded-P pools. This suggests that plants may have access to these pools 

over decadal (or perhaps shorter) timescales (Richter et al., 2006). Therefore, 

desorption of fixed P sustains long-term P fertility.  In addition, P sorption is 

very important for keeping P in the soil system, as it protects P reserves from 

leaching and surface run-off.  

Recent studies show that the interactions between soil solution P and Fe 

oxides are more temporally dynamic than previously thought, and are strongly 

influenced by soil oxidation states (Baldwin and Mitchell, 2000; Liptzin and 

Silver, 2009). In many tropical forests, for example, abundant rainfall coupled 

with high biological activity promotes episodic anoxia (Silver et al., 1999; 

Schuur and Matson, 2001). Consequently, the corresponding fluctuations in 

redox potential can release Fe-bound P (Ponnamperuma, 1972; Baldwin and 

Mitchell, 2000; Liptzin and Silver, 2009). This P can be subsequently resorbed 

or taken up by biota, and the sorption–desorption cycle of Fe and P bonding 

(in part determined by the soil and climate of tropical forests) helps regulate P 

cycling and availability.  

Soil organic matter (SOM) is an important influential factor for chemical, 

physical and biological soil properties. Aside from iron oxides, SOM is the soil 

constituent that most strongly affects the reactions and rate of P adsorption 

and desorption, especially in highly weathered soils (Fink et al., 2016). SOM 

can supply P to plants by either blocking absorption sites and/or releasing 

soluble P with time. Negatively charged functional groups in organic 

substances (e.g., carboxyl, phenol) can interact with positively charged 

minerals, such as iron oxides, altering P adsorption as a result (Schwertmann 

et al., 1986; Liu et al., 1999). Adsorption of organic functional groups onto iron 
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oxides can promote anion adsorption via cation bridges (Al3+ and Fe3+), boost 

competition with other anions for adsorption sites and cause adsorbed anions, 

such as P, to be desorbed (Hinsiger et al., 2011; Borggaard et al., 2005; 

Guppy et al., 2005). In addition, SOM is a primary energy resource for 

organisms involved in nutrient recycling and soil structuration. SOM is used as 

a source of carbon (C) and energy by microorganisms to fuel and stimulate 

the microbially-mediated reductive dissolution of Fe3+ minerals, thereby 

releasing substantial amount of P associated with Fe3+ oxides (Rakotoson et 

al., 2015; Scalenghe et al., 2002). With regard to soil physical properties, 

SOM has a positive effect on soil aggregation, which enhances water 

infiltration. Enhanced water infiltration reduces erosion (Bronick & Lal, 2005), 

keeping P available for biological uptake. 

1.1.4.2 Biotic control: Vegetation, Soil Fauna 

Plants take up or mine easily-available P in the soil, which is considered as 

one source of P output from the soil. However, litterfall or other organic 

materials from plants contribute to the easily-available Po pool, which acts as 

a P reserve for buffering available P following decomposition and 

mineralization in P-depleted soil (Maranguit et al., 2017).  Plants form a 

symbiotic relationship in their rootlets with microorganisms like mycorrhizal 

fungi, excreting phosphatase and organic acids to release P and providing an 

active uptake site for the rapid diffusion of P from soil pore spaces to the root 

surface (Antibus et al., 1981, Bolan et al., 1984, Dodd et al., 1987). In 

exchange, the plant provides carbohydrates to the mycorrhizal fungi 

(Schlesinger, 1997).  

Soil organisms are the driving force behind plant nutrient transformation and 

play and crucial role in soil fertility and ecosystem functioning (Smith and Paul 

1990; Spohn and Kuzyakov, 2013; Damon et al., 2014). In P cycling, 

microorganisms processes, which include, (1) microbial P immobilization, (2) 

re-mineralization of immobilized P and (3) mineralization of non-microbial 

organic P (SOM), are of great importance, especially in soil with low P 

availability. Soil microbes secrete phosphatase, an enzyme that can release 

bio-available inorganic P from organic matter (Kroehler and Linkins, 1988, 

Tarafdar and Claasen, 1988; Nannipieri et al., 2011; Rasavi et al., 2016). 
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Without phosphatase enzymes, the presence of Pi would be limited to 

external sources, such as fertilizers, and primary productivity would be limited 

and dependent on these external sources. 

Aside from being the main mediator of SOM mineralization (and hence, 

increasing P availability), microbial uptake of P acts as a very important labile 

reservoir, providing significant contributions to plant available P pools 

following microbial biomass turnover (Brookes et al., 1984; Frossard et al., 

2011; Bünemann, 2015; Yevdokimov et al., 2016). The P content stored in the 

microbial biomass constitutes a significant component of total soil P, and is 

generally larger than the P content in above-ground biomass (Perrott and 

Sarathchandra, 1989, Richardson and Simpson, 2011). Thus, microorganisms 

effectively compete with plants for available orthophosphate from soil solution 

and also represent a significant pool of immobilized P that is temporarily 

unavailable to plants (Richardson and Simpson, 2011). Nonetheless, 

immobilization of P within the biomass was suggested to be an important 

mechanisms for regulating the supply of P in soil solution (Seeling and 

Zasoski, 1993), protecting P from erosion or leaching and from fixation to 

oxides, thereby maintaining P in labile forms (Olander and Vitousek, 2004). 

Over the longer term, the rapid turnover of microbial biomass P makes this 

pool a relevant dynamic source of plant-available P (Bünemann, 2015).  

Earthworms, a major component of soil faunal communities in most 

ecosystems, also play a crucial role in P cycling. Their activity is beneficial 

because it can enhance soil nutrient cycling and soil aggregation through the 

rapid incorporation of detritus into mineral soils (Bhadauria and Saxena, 

2010). Earthworm burrowing activities produces pores (i.e., Biopores) in the 

soil and/or on the soil surface (Hoang et al., 2016) where beneficial soil 

microorganisms can colonize. As earthworms dig burrows they deposit casts, 

which is digested organic material formed while mixing soil horizons and 

burying above ground litter. The casts and mucus production associated with 

water excretion from earthworm guts also enhance the activity of beneficial 

soil microorganisms colonizing the biopores (Bhadauria and Saxena, 2010). 

For example, when bacteria colonize biopores, the activity of phosphatase, an 

enzyme responsible for solubilizing P, increases in the soil (Wan et al., 2004).   

https://www.hindawi.com/68329742/
https://www.hindawi.com/50325036/
https://www.hindawi.com/68329742/
https://www.hindawi.com/50325036/
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1.1.4.3 Anthropogenic control: Land-use change 

P is a key nutrient requiring attention in response to human activities (Garcia-

Montiel et al., 2000). Human impact on the P cycle has been substantial over 

the last 150 years and will continue to dominate the natural cycle of P in the 

future (Filippelli, 2002). Land use change via fire, forest change to pasture, 

deforestation, agriculture, and urbanization will certainly alter P cycling, 

especially  in tropical ecosystems, and multiple lines of evidence suggest that 

such perturbations may enhance P losses and exacerbate P limitation  

(Maranguit et al., 2017). This will result in potentially significant effects on the 

distribution of P within chemically-defined pools, in turn determining 

availability and stability (Wright, 2009). It is thought that the biggest changes 

affecting the availability of P over time are result from inorganic and organic 

fertilizer application (Neufeldt et al., 2000; Guo et al., 2000). The use of 

fertilizers has been mentioned as the most important method of increasing 

inorganic and easily available soil P forms. It accomplishes the task of 

maintaining enough available P for crops (Sample et al., 1980; Beauchemin 

and Simard, 2000). Nonetheless, P fertilization is not sustainable in the long-

run, as rock phosphate reserves suitable for fertilizer production are rapidly 

declining, rendering P fertilizer increasingly expensive (Cordell et al., 2009).  

Moreover, the exhaustion of SOM resulting from the conversion of natural 

forest to plantations raises major concerns for its functions (e.g., P fertility, soil 

compaction – erosion/flooding) directly or indirectly affecting soil P availability.  

1.1.5 Challenges for P availability  

In order to enhance P availability in P-depleted highly weathered soil and 

increase the efficiency of P fertilizers, management practices must be 

enhanced. A better understanding of P dynamics and the mechanisms 

controlling availability are the initial steps in improving management practices. 

Furthermore, quantifying P losses due to land-use changes and their effects 

on soil functions affecting P availability must be determined to achieve 

optimum land productivity.   
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1.2 Objectives  

The main objectives of the present work were as follows: 

1.2.1 Evaluation of methodology to determine applicability for the purpose of 

P determination in various P pools of different availability (study 1)  

- 33P isotope-labeling technique for tracing the fates of P fertilizer applied 

to soils 

- Hedley et al (1982) sequential P fractionation method for extracting P 

from various pools  

 

1.2.2 Elucidate the role of abiotic and biotic processes in conserving P 

availability in P-limited soils. 

- determine the rate of incorporation of newly added P fertilizer into the 

various P pools of different availability (study 1) 

- demonstrate the effect of labile organic carbon on microbial activity 

controlling P availability (studies 1, 3, 5) 

- show the contribution of macro fauna (earthworms) to P mobilization 

and availability (study 6)  

- determine the effect of P adsorption by Fe and Al oxides on P 

availability (studies 1, 2, 3) 

- investigate the effect of land-use type on phosphatase enzyme activity, 

which is responsible for solubilizing P (studies 4, 5)  

1.2.3 Impact assessment of land-use change on P availability  

- quantify P losses following forest change to oil palm and rubber tree 

plantations (studies 2, 4) 

- identify the mechanisms controlling P availability and losses under 

different land-use types (studies 2, 4, 7) 

- assess the effect of SOM exhaustion on P availability following forest 

change to agricultural land-use (studies 2, 3, 7) 

- assess the effect of soil flooding resulting from soil compaction after 

forest change to monoculture plantation on P mobilization (study 3)  
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1.3 Materials and Methods 

1.3.1 Study area and soil sampling 

For the study focused on identifying the role of biotic and abiotic factors in 

altering P dynamics and assessing the efficiency of the P fractionation method 

(study 1), bulk soil from the Ah horizon at site Unterluess (Luess) was used. 

The site was located in the district Celle of Lower Saxony (Germany) in the 

Lueneburg Heath (52°50.32 ′N, 10°16.0 ‘E) at 115 m a.s.l. The soil type is a 

Hyperdystric Folic Cambisol developed from Pleistocene sediments.  

Tropical and sub-tropical soils were considered in the studies investigating the 

impact of land-use change on P dynamics and its effect on biotic and abiotic 

processes of P availability. The study in the tropics was carried out in the 

Jambi Province in Sumatra, Indonesia (Fig. S3). The climate is tropical humid 

with an average temperature of 27 °C and an average precipitation of 2200 

mm yr-1 and 112–259 mm month-1 (Guillaume et al., 2015). Aside from tropical 

rainforest, the area had three dominating land-use types (Fig. S4): (1) 

extensively-managed agroforest (jungle rubber) in which rubber trees are 

planted in a partially logged forest, (2) intensively-managed rubber plantation, 

and (3) oil palm plantation. Three replicate sites for each land-use type were 

selected within a distance of 16 km with an elevation varying between 50 and 

100 m a.s.l. The soils were Acrisols with a sandy loam texture. 

The study in sub-tropics was carried out in the Chitwan district (27o 35’N 84o 

30’E) of Nepal with an annual rainfall of 1763 mm and an average 

temperature of 30oC. Three land-use types were considered: forest, organic 

and conventional farming. Samples were collected in topsoil (0–10 cm) and 

subsoil (10–20 cm). 
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Figure S3 Study site, sampling area and the typical soil profile of a loam acrisol that can be 
observed at Sumatra Indonesia. 

 

 

 

Figure S4 Three dominating land-use types in Sumatra Indonesia after forest conversion. 
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1.3.2 33P isotope-labeling technique  

The 33P isotope-labeling technique was used in an incubation experiment 

(study 1) to compare the fate of P applied at increasing rates to acidic, P-

limited soil depending on the presence of C and N sources applied as glucose 

and ammonium sulfate, respectively. The incorporation of 33P from KH2PO4 

into various P pools (i.e. microbial P (Pmic), available P (PAEM) and Fe-bound P 

(PNaOH)) was traced. 

1.3.3 Hedley et al. (1982) sequential P fractionation method 

The Hedley et al. (1982) sequential fractionation method was used to 

fractionate soil P in all of the studies. Hedley fractionation assumes that 

extractants of varying strength estimate Pi and Po fractions of different 

availability and chemical bindings (Guo et al., 2000; Hedley et al., 1982) (Fig. 

S5).  

    

Figure S5 The Hedley et al. (1982) sequential P fractionation method. 

1.3.4 Flooding simulation experiment  

2.5 g of soil sample were filled into a 12 ml glass tube (Labco Exetainer). Six 

milliliters of purified distilled water were added in each tube and air was driven 

out by purging with N2 gas. The suspension was then covered with a rubber 

stopper to prevent O2 diffusion, evaporation losses and to ensure anaerobic 

conditions. Four field replicates of each land-use type and depth were 

incubated in the dark at 30 ± 1 o C. 
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1.4 Main results and discussion 

1.4.1 Method Applicability 

― Through the use of the 33P isotope-labeling technique, the Hedley et al. 

(1982) sequential fractionation method was found to be very efficient and 

accurate in extracting P from various P pools. Recovery of around 86% of 

labelled 33P in extracted P pools (i.e., available and Fe-P pools), suggests 

that Hedley fractionation is a good method to use in assessing P 

distribution in soils under different land-use managements. It also provides 

an estimate of the P forms that may potentially contribute to available P 

over a growing season. 

― The use of 33P as a tracer in the incubation experiment (study 1) provides 

information on the contribution of abiotic and biotic factors to P availability. 

In addition, the use of the 33P isotope-labelling technique provides 

information on the gross P fluxes in the respective P pools (Fig. S6).   

1.4.2 Role of abiotic and biotic processes on P availability 

― Abiotic and biotic factors were found to influence the forms and distribution 

of P in various P pools of different availability (Table S1). These either 

increased or decreased P content in different pools. 

 
Table S1 Direct effects of abiotic and  biotic processes on P fractions in soil. 

 

Processes/Mechanism 

Easily- 

available 

 Moderately- 

available 

 Non-

available 

  Pi   Po      Pi     Po  Pi + Po 

 

Biotic Litter input        

Mineralization        

Plant uptake              

Immobilization in              

      microorganism 

 

       

Abiotic Erosion              

 Leaching        

 Fixation/Adsorption              

 Desorption        

 

 

     strong increase;       moderately increase;      slight increase 

    strong decrease;       strong decrease;   slight decrease 
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― Indeed, abiotic and biotic factors control P availability in the soil as 

observed from our experiment (study 1). After the addition of 33P-labelled 

fertilizer, a fast, almost instantaneous P fixation by the Fe and Al oxides 

and immobilization by microbial uptake were observed (Fig S6).  

― Applying glucose boosts microbial growth and demand for P, resulting in 

increased 33P recovery (20% of the applied 33P) and P content in Pmic.  

―  The negative relationship between Pmic and PAEM (P < 0.05; R2 = 0.46) 

emphasizes that P availability is influenced by microbial uptake. The high 

33P recovery (45% of applied 33P) in PNaOH and the strong negative 

relationship (P < 0.001; R2 = 90-96) between PNaOH and PAEM demonstrate 

the dominance of P adsorption by Fe and Al oxides as a potential P fate.  

― Therefore, P availability is strongly mediated both by physicochemical and 

biological reactions. These two process groups – biotic (microbial P 

immobilization) and abiotic (adsorption) – sustain long-term P fertility via 

the turnover of microbial biomass and desorption of fixed P, respectively.  

 
 

Figure S6 The fate of inorganic phosphorus applied to acidic P-limited soil. The 
distribution of P fertilizer in P pools is affected by biological and physicochemical 
reactions. Box size indicates the proportion of P fertilizer recovered in each pool 
throughout the incubation period. Values in bold inside the box: P content in 
respective pool (mg P kg-1); values in italics: 33P recovery in respective pool (% of 
applied 33P); underlined values: the total increase of P content (mg P kg-1) 
immobilized and adsorbed at 120 h. Values above and below horizontal dashed line 
represent contents at 24 h and 120 h, respectively. 
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― Earthworms influence P availability. The biopores created by 

earthworms were considered hotspots for microbial activity, which 

contributes to P mobilization. This was shown by higher MBP content 

and phosphatase enzyme activity in biopore soils (both topsoil and 

subsoil) compared to both earthworm-free (control) and undigested 

soils.  

 

1.4.3 Land-use control on P availability 

― Land-use change leads to an overall reduction in P stocks (Fig. S7), 

resulting from a strong decrease in SOM content caused by erosion and 

yield export of rubber or oil palm seeds.  

 

Figure S7  

Soil phosphorus 
stocks (kg P ha-1) at 
the 0-20 and 0-60 cm 
soil depth layer 
depending on land 
use. Values represent 
means ± SE (n=3). 
Means followed by 
different letters within 
the same depth differ 
significantly (t-test at 
P<0.05). 

 

 

 

― Fertilization did not compensate for these additional P losses. Fertilization 

only increases the available Pi in the topsoil. While this maintains or 

increases fertility over the short term, it ultimately results in decreases 

fertility over the long term by depleting P reserves (e.g., moderate or non-

available P). 

― Acid phosphatase activity, responsible for the hydrolysis of recalcitrant 

organic P, was also altered following land-use change. Acid phosphatase 

activity was lower in monoculture plantation soils (48–71 nMg-1 h-1) than in 

forest (189 nMg-1 h-1) and agroforest soils (93 nMg-1 h-1). 
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― Land-use type influenced the impacts of flooding on P and Fe forms 

mainly in the topsoil, where P dissolution and availability were generally 

higher under forest and, to a lesser extent, under jungle rubber. Faster 

solubility in topsoil and especially under forest is connected with a higher 

SOM content, which influences microorganisms (Fig. S8). 

― SOM is used as a source of C and energy by the microorganisms and 

stimulates the microbially-mediated reductive dissolution of Fe3+ minerals. 

The presence of high concentrations of native SOM in forest and jungle 

topsoils drove Fe3+ reductions and increased the reduction intensity. 

― In addition to serving as a C source for microorganisms, SOM was found 

to contribute to the available P content. This was demonstrated by the 

strong positive correlation between soil C and Po and the C:Po ratio in 

agroforest soils.  

 

 

 

 

 

 

 

 
 
 
Figure S8 Effects of soil 
flooding on the available P 
(PNaHCO3) of topsoil (A) and 
subsoil (B) under forest, 
jungle rubber, rubber and oil 
palm plantations. Available 
P on day 0 indicates the 
initial content before soil 
flooding. Values represent 
means ± SE (n=4). Asterisks 
show significant differences 
(one-way ANOVA; p < 0.05) 
to rubber and oil palm soils 
at a given sampling time. 
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― Under natural condition, however, we speculate that the P turnover is 

faster in compacted soils under plantations due to the regular changes 

between oxic and anoxic conditions. Consequently, more P is taken up 

by the vegetation and subsequently removed from plantations via yield 

export.  

1.5 Conclusions  

The form, distribution and availability of P in P-limited soils are determined by 

abiotic and biotic processes. When P fertilizer is introduced to the system, it 

will be quickly immobilized by microorganisms and fixed by Fe and Al oxides. 

In highly weathered soil (e.g. most tropical soils) with high concentration of Fe 

and Al oxides, fixation of P dominated P availability. On the other hand, if soil 

contains high amount of SOM, an important source of energy for 

microorganisms, the growth of microorganisms will increase and the demand 

for P will also increase. Microorganisms will take up high levels of P, which 

will be incorporated into their biomass. All of these scenarios were proven and 

traced via the application of a novel 33P isotope-labeling technique in an 

incubation experiment, followed by careful extraction of the various P pools 

using the Hedley et al. (1982) sequential P extraction method. Furthermore, 

our results suggest that turnover of microbial biomass and desorption of P 

sustains the long-term P fertility by minimizing P losses from erosion and/or 

leaching. Earthworms also contribute to P mobilization, as demonstrated by 

the high MBP content and phosphatase enzyme activity inside earthworm 

biopores. Nonetheless, anthropogenic activities, such as the conversion of 

forest to monoculture plantations or for any other agricultural use, were found 

to alter abiotic and biotic mechanisms of P mobilization, especially in P-limited 

soils. Although plantation with high levels of P fertility exhibit normal yields, 

fertilization only maintains short-term fertility but is not sustainable in the long-

run due to the depletion of P reserve pools (i.e., organic P, moderately and 

non-available P). Acid phosphatase activity, responsible for the hydrolysis of 

recalcitrant organic P to make it available for plant uptake, was also affected 

by land-use change. The exhaustion of SOM mainly affects P mobilization 

following change of forest to monoculture plantation. The SOM itself 
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contributes to the available P pool once decomposed and mineralized.  

However, in plantation systems, plant biomass (i.e., yield of rubber and/or oil 

palm seed) is exported, reducing easily mineralizable Po. The depletion of 

SOM also affects soil physical properties, such as bulk density, which have a 

direct effect on P availability. Compacted soils are prone to erosion, which is 

one of the outputs of P losses. Nonetheless, the vulnerability of plantations to 

erosion or flooding can enhance mobilization of fixed P through microbial 

activity. Microbially-mediated Fe3+ reduction and the associated P release 

during anaerobic conditions play a fundamental role in plant and 

microorganism nutrient status by releasing inaccessible P during dry 

conditions. However, this microbially-mediated reductive dissolution of ferric 

oxides was apparently determined by the SOM content, as it is a source of the 

C and energy required for microorganisms to efficiently reduce Fe3+. 

Therefore, management practices should be improved to provide higher 

biomass SOM input while mitigating soil erosion in order to attenuate P 

depletion.     
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Figure S9 Synthesis of the main results. Positive (+) and negative (-) signs indicate increases 

and decreases, respectively, in P availability and content. 
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2.1.1 Abstract 
33P labeling has high sensitivity to trace soil P dynamics and the fate of added P 

fertilizers across various P pools. Nonetheless, only a few studies used this 

approach. This study was designed to investigate the P dynamics and to assess the 

effects of biological and physicochemical processes on P availability in acidic P-

limited soil. We followed the incorporation of 33P-labeled KH2PO4 in available P 

(PAEM), microbial biomass P (Pmic) and Fe/Al-bound P (PNaOH) pools in Cambisol – 

depending on the presence of carbon and nitrogen sources applied as glucose and 

ammonium sulfate, respectively. Not all applied P fertilizer is available for plant 

uptake; instead, it was distributed to poorly-available pools. We recorded fast, almost 

instantaneous P fixation by the Fe and Al oxides and immobilization by microbial 

uptake. Applying glucose boosts microbial growth and demand for P, resulting in 

increased 33P recovery (20% of the applied 33P) and P content in Pmic. The negative 

relationship between Pmic and PAEM (P < 0.05; R2 = 0.46) emphasizes that P 

availability is influenced by microbial uptake. The high 33P recovery (45% of applied 

33P) in PNaOH and the strong negative relationship (P < 0.001; R2 = 90-96) between 

PNaOH and PAEM show the dominance of P adsorption by Fe and Al oxides on the fate 

of P. Therefore, P availability are strongly controlled both by physicochemical and 

biological reactions. These two process groups – biotic (microbial P immobilization) 

and abiotic (adsorption) – sustain long-term P fertility after the turnover of microbial 

biomass and desorption of fixed P, respectively.  
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2.1.2 Introduction 

The limited availability of phosphorus (P) is often the main constraint for plant 

growth and productivity, especially in acidic soils (Bünemann et al. 2004; 

Turner et al. 2012, 2013; Maranguit et al. 2017). This P limitation for crop 

production puts considerable pressure on farmers to supply the soil with P 

fertilizer in order to meet demand. However, the decreasing rock phosphate 

resources suitable for fertilizer production (Cordell et al. 2009) make P 

fertilizer increasingly expensive. This calls for a better understanding of P 

dynamics in soil. The aim is to plan more effective soil management practices 

to increase the efficiency of P fertilizers (Aulakh et al. 2003) and achieve 

optimum plant growth (Damon et al. 2014).  

The fate of P in soils is mainly governed by anthropogenic, biotic and abiotic 

processes that either increase or decrease the soil P content and availability 

(Frossard et al. 2000; Nannipieri et al. 2002; Maranguit et al. 2017). Biotic 

processes such as microbial immobilization, re-mineralization of immobilized 

P and mineralization of non-microbial organic P by microorganisms are crucial 

for P cycling in soil (Nannipieri et al. 1978, 2011; Frossard et al. 2000, 2011; 

Bünemann 2015; Yevdokimov et al. 2016). Although microbial biomass P 

(Pmic) is one of the insoluble P forms in soil, it is a potentially available P 

source for plant uptake (Blackwell et al. 2010; Spohn and Kuzyakov 2013; 

Damon et al. 2014; Yevdokimov et al. 2016). This pool plays a key role in the 

P dynamics in soils by immobilizing inorganic P, which may then be released 

slowly and taken up by crops more efficiently during microbial biomass 

turnover (Brookes et al. 1984; Joergensen et al. 1995) or upon microorganism 

death. P availability also depends partly on abiotic processes that mainly 

reduce P availability (Frossard et al. 2000). These include phosphate fixation 

to the solid phase, e.g., formation and precipitation of Fe3+, Al3+, Ca2+ and 

Mg2+ phosphates, binding phosphates in complexes with SOM, sorption on 

clay minerals, etc. (Frossard et al. 2000).  
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The “Isotopic Labeling Technique” has the potential and very high sensitivity 

to elucidate soil P dynamics and the fate of P across the various P pools. This 

technique consists of two approaches: labeling and tracing the fate of a P 

source, and isotopic dilution. By applying the 33P as a tracer in incubation 

experiments, the contribution of physicochemical processes delivering 

available P into the soil solution can be differentiated from biological P 

processes and the respective gross P fluxes (Oehl et al. 2001; Bünemann et 

al. 2004, 2007; Dijkstra et al. 2015). Nonetheless, only a few studies have 

used this approach to assess the fate of P, its transformation and the rate of 

the reactions as influenced by biological and physicochemical processes in 

acidic P-limited soil. The objective of this study was to trace the fate of P and 

investigate if biological and physicochemical processes determine P 

availability in acidic P-limited soil. 

We used the isotopic labeling technique in an incubation experiment to 

compare the fate of P applied at increasing rates to acidic P-limited soil – 

depending on the presence of C and N sources applied as glucose and 

ammonium sulfate, respectively. We followed the incorporation of 33P from 

KH2PO4 as a P source into various P pools (i.e. microbial P (Pmic), available P 

(PAEM) and Fe-bound P (PNaOH)). Application of solely 33P tracer added in 

distilled water was used as a control to determine soil P dynamics in the 

absence of P additions. We hypothesized that: (1) P availability is greatly 

influenced by microbial activity and by P adsorption by Fe and Al oxides; (2) 

available P will be (re)distributed quickly to P pools with less availability; (3) 

carbon and nitrogen addition will boost microbial growth and activity, further 

affecting microbial P uptake and, thus, the P dynamics.  

2.1.3 Materials and Methods 

2.1.3.1  Site and soil sampling 

Soil samples were taken at site Unterluess (Luess) located in the district Celle 

of Lower Saxony (Germany) in the Lueneburg Heath (52°50.32 ′N, 10°16.0
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′E) at 115 m a.s.l. The mean annual rainfall 

is 780 mm, the mean annual temperature 

8.0 0C. The soil type is a Hyperdystric Folic 

Cambisol developed from Pleistocene 

sediments. The vegetation is formed by 

European beech (Fagus sylvatica L.). The 

total P in the soil is very low (Table 1; 

Bergkemper et al. 2016). This site therefore 

well represents acidic soils with very low P 

availability. A bulk sample of the Ah horizon 

at 0-10 cm depth was collected with a shovel 

after removal of the organic layer. The 

sample was sieved (2 mm) and stored at +4 

0C.  

2.1.3.2  Experimental design 

The fate of P fertilization combined with C 

and N in Cambisol was studied in laboratory 

incubation. The experiment was full factorial, 

composed of 12 experimental units. The main 

factor was the rate of P addition, which 

includes 0%, 10% and 50% of the initial total 

P content. Each P level was amended with 

the following (second factor):  (1) glucose 

(C6H12O6) as a C source in a one-time and 

staggered application, (2) ammonium sulfate 

[(NH4)2SO4] as an N source and (3) distilled 

water as a control. Each treatment was 

replicated four times. Fifteen grams of dry weight equivalent soil (sieved at 2 

mm) were placed into glass jars with caps and pre-incubated at 25 0C and 

50% water holding capacity (WHC) in the dark to stabilize microbial activity 



2 Publications and Manuscripts: Study 1 

27 

 

until a constant CO2 rate was reached on three consecutive days.  After pre-

incubation P, C, N and distilled water were added.  

Potassium dihydrogen phosphate (KH2PO4) labeled with 33P was used as P 

fertilizer. Three P levels were added: i) no P = 0.3 mL deionized water + 33P 

tracer only (P0); ii) 10% P from initial extractable soil P (0.2 mg g-1) = 0.3 mL 

solution of 4.4 mg KH2PO4 dissolved in 1 mL of deionized water (P10); iii) 50% 

P from initial extractable soil P = 0.3 mL solution of 21.95 

mg KH2PO4 dissolved in 1 mL of deionized water (P50). An addition of 10% P 

and 50% P increases initial extractable P by 20 µg g-1 and 100 µg g-1, 

respectively. 33P labelling resulted in an addition of 80 Bq per gram soil.  

Each level of P received: i)  deionized water (control); ii) 50 µg C g-1 soil in a 

one-time application = 0.3 mL solution of 6.25 mg glucose dissolved in 1 mL 

of deionized water (C50); iii) 5 times each day in the total amount of 10 µg C g-

1 soil day-1 =  0.3 mL solution of 1.25 mg glucose dissolved in 1 mL of 

deionized water (C10x5); iv) 50 µg N g-1 soil = 0.3 ml solution of 3.53 mg 

(NH4)2SO4 dissolved in 1 ml of deionized water (N50) . 

 To maintain constant WHC at 10 µg C g-1 soil day-1 (C10x5) treatment, plastic 

caps with Silica gel with indicator (Merck Millipore, Germany) were placed into 

each jar and replaced every day after addition of glucose solution. The 

amount of silica gel needed to decrease WHC by 20% in 15 g soil was 

determined in a preliminary experiment. Incubation lasted for 6 days at 70% 

WHC and 25 0C in the dark. Two samplings were done: after 24 h and 120 h 

of incubation.  

2.1.3.3  Phosphorus fractionation  

Microbial P was determined by simultaneous liquid chloroform-fumigation and 

extraction with anion exchange resin membranes (AEM) (BDH no. 551642S, 

1.5 x 6.25 cm – with a reactive area of 18.75 cm2 per strip) in bicarbonate 

form (Kouno et al. 1995). Briefly, 3 g of subsamples were put in a 50 ml 

centrifuge tube and mixed with 0.3 ml chloroform and 30 ml deionized water 

(fumigated soil). Another 3 g of subsamples were mixed with only 30 ml 
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deionized water as a control (unfumigated soil). AEMs were added to both 

samples (fumigated and unfumigated) and tubes were shaken for 24 h in an 

orbital shaker. After exposure to test solution, the membranes were removed 

with tweezers, washed 4 times in deionized water and shaken dry to remove 

excess water. Thereafter, P from the membranes was desorbed with 45 mL of 

0.25 M H2SO4 by shaking for 3 h. Phosphate and 33P activity in the extract 

were measured (see section 2.4 and 2.5). 

The soil samples (fumigated sample) remaining after fumigation-extraction 

were further extracted using 30 ml of 0.1 M NaOH to extract the P pool that 

was adsorbed by Fe/Al oxides (Hedley et al. 1982; Maranguit et al. 2017). 

Samples were shaken for 24 h in an orbital shaker, centrifuged at 5000 rpm 

for 15 min and filtered using Whatman no. 42 filters. Extracts for P 

measurement were acidified using 0.9 M H2SO4 to precipitate dissolved 

organic matter that could interfere in color development and in the 

measurement.  Phosphate and 33P activity were also measured in the extract 

(see section 2.4 and 2.5). 

2.1.3.4  Phosphate measurement 

Phosphate in the fumigated, unfumigated and NaOH-extracts was determined 

by the malachite green (MG) colorimetric method (D’Angelo et al. 2001). 

Briefly, 150 µl of extracts was mixed with 30 µl of the first reagent (ammonium 

molybdate tetrahydrate and sulfuric acid) in a disposable 96-well polysterene 

microtiter plate. It was shaken for 10 min in an orbital shaker at low speed 

(<90 rev min-1). Thereafter, we added 30 µl of the second reagent, which was 

a mixture of MG carbinol hydrochloride and polyvinyl alcohol. The plate was 

shaken for an additional 20 min. Thereafter, samples were exposed to 40 0C 

for 40 min. Absorbance was read after 1-1.5 h using a spectrophotometer 

(TECAN; Infinite M200 pro) with 630 nm wavelength. To decrease the 

variability of the replicates, microplates were left overnight and read again for 

absorbance. Standards were also prepared in triplicate and treated the same 

way as the samples. Pmic (mg P kg-1) was calculated as: 

Pmic = (Pfumigated – Punfumigated) / Kp,                                                                   [1] 
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where Pfumigated = PAEM in fumigated samples in mg P kg-1, Punfumigated = PAEM in 

unfumigated samples in mg P kg-1 and Kp is the correction factor to account 

for the effect of sorption and isotopic exchange and extraction efficiency. Rsorp 

and Rexch are equal to 0.9 (Bergkemper et al. 2016; Yevdokimov et al. 2016). 

The soil specific correction factor (Kp = 0.69) was determined for the soil used 

in this experiment. 

2.1.3.5  33P activity measurement and calculations 

One ml of the fumigated, unfumigated and NaOH-extract were transferred into 

6 ml vials and mixed with 3 ml of scintillation cocktail Rotiszint EcoPlus (Carl 

Roth Company, Germany)  and were measured using a HIDEX 300 SL Liquid 

Scintillation Counter (Hidex Oy, Finland). The recovery of 33P (%) in a specific 

P pool was calculated as: 

33P recovery (%) = (r/R) x 100,                                                                       [2] 

where r and R is the radioactivity (Bq g-1 soil) in the extracted pool and the 

total amount of added 33P activity, respectively (Bünemann et al. 2004). The 

relative specific activity (SA) was calculated as: 

rel. specific activity (%) = (r/R) / Qp,                                                               [3] 

where r and R is the radioactivity (Bq g-1 soil) in the extracted pool and the 

total amount of added 33P activity, respectively. Qp is the amount of P (mg P 

kg-1 soil) in a given pool. 

The recovery of 33P in Pmic was corrected for the effect of sorption, isotopic 

exchange and extraction efficiency. 33P recovery in Pmic was calculated as: 

 33Pmic = (33Pfumigated – 33Punfumigated) / Kp                                                            [4] 

where Kp = 0.69 is the correction factor to account for the effect of sorption, 

isotopic exchange and extraction efficiency as mentioned above. 

2.1.3.6  Data analysis 

The results given are arithmetic means of four replicates in each treatment 

and expressed on an oven-dry weight basis. Normality and homogeneity of 

variance were checked using Shapiro-Wilk’s W test and Levene tests, 
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respectively. For each sampling time (24 h and 120 h) of the incubation 

experiment, data were tested by two-way analysis of variance (ANOVA) with 

(3) P levels and (4) substrates as the factors. Interaction between P levels x 

substrates was tested. Data were also subjected to three-way (ANOVA) with 

(3) P levels, (4) substrates and (2) sampling times as a factors. All possible 

interactions were also tested. Multiple comparisons (all-pairwise comparisons) 

using Tukey’s test were performed whenever the ANOVA indicated significant 

differences at P ≤ 0.05. Relationships between P pools were evaluated using 

Multiple Linear Regression. All statistical analyses were carried out using 

STATISTICA 12 (StatSoft Inc., USA). 

2.1.4 Results  

2.1.4.1  Microbial P pool 

Microbial biomass P (Pmic) was higher (P < 0.05) after adding labile P as 

KH2PO4, regardless of the level (either low (P10) or high (P50)) compared to no 

P (Fig. 1a; Table 2). Pmic increases (P < 0.05) exponentially after P addition by 

about 3-fold compared to soil with no P after 24 h. The average difference 

recorded between P0 and P10 was 5.1 mg P kg-1 soil and remained constant 

for P0 and P50. After 120 h, however, Pmic in P0 slightly increased (P < 0.05), 

which resulted in a smaller difference (3.9 mg P kg-1 soil) compared to P10 and 

P50. Nonetheless, the increase in P0 across all soils was not identical to those 

recorded in P10 and P50 and did not even reach the 24 h Pmic content of soils 

with P addition. In contrast, P10 and P50 had more or less the same Pmic 

content across all soils after 24 h, with an average of 6.0 mg P kg-1 soil (Fig. 

1a). This reveals that microorganisms were more rapidly saturated with P 

even at low P addition (P10); therefore, a constant Pmic content was recorded. 

The soil amended with C and N behaved similarly to control soil after 24 h at 

all P levels, showing that substrate addition did not influence microbial uptake 

of P during the early incubation period. However, after 120 h, C addition 

affected microbial P uptake in the soil regardless of the method of glucose 

application, i.e. either one-time addition (C50) or staggered (C10x5) (Fig. 1a). 

The effects were greater (P < 0.05) in soil with the highest P level (P50), where 

Pmic was about 9.5 mg P kg-1 soil and almost twice the content at 24 h. This 
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reveals that soil microorganisms were limited by C, which affects microbial 

growth and activities such as P uptake. Indeed, microbial biomass C 

increased after C addition (Fig. S1 Supplementary Material).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 (a) Phosphorus content, (b) 33P recovery and (c) relative specific activity (SA) in 
microbial phosphorus (Pmic) after the addition of 33P tracer alone (P0), 33P-labeled fertilizer as 
KH2PO4 applied to soil as 10% (P10) and 50% (P50) of the initial P content and combined with 
substrates: i.e. distilled water as control, glucose and ammonium nitrate as carbon and 
nitrogen source, respectively. Bars indicate standard error of four replicates. Arrows indicate 
significant increase or decrease between 24 and 120 h 
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33P recovery in Pmic was greater (P < 0.05) after addition of labile P (either P10 

or P50) than without P addition (P0), in which the 33P recovered was negative 

after 24 h (Fig. 1b). An average of 9.2 and 11.0% of applied 33P were 

recovered in soils amended with C and N in P10 and P50, respectively. These 

values were 3 to 4 times higher than in soils which received distilled water 

only. Therefore, C and N addition affect microbial P uptake, as noted above.  

 

Table 2 Main treatment effects on 33P recovery and phosphorus content in the P pools after 
sequential fractionation 

      Recovery of 33P   Phosphorus content 

   (% of applied)  (mg P kg-1 soil) 

Factor    Pmic PAEM PNaOH   Pmic PAEM PNaOH 

        
P level (P)         
 0  6.43c§ 15.0b 34.7b  2.56b 6.08c 27.8a 
 10%  8.96b 33.4a 44.1a  6.71a 13.9b 27.5a 
 50%  15.1a 33.5a 42.3a  6.93a 28.1a 20.0b 
          
Substrate (S)         

 H2O  3.05c 29.1a 40.1ns‡  4.63b 16.3ns 24.4ns 
 C50  7.01a 26.4ab 4.34ns  6.84a 15.8ns 25.1ns 
 C10 x 5  8.45a 26.2b 39.9ns  5.41ab 15.5ns 25.4ns 
 N50  5.03b 27.7ab 40.9ns  4.72b 16.6ns 25.4ns 
          
Time (T)         
 24 h  1.18b 35.4a 38.0b  4.50b 20.4a 23.1b 
 120 h  13.0a 19.2b 42.7a  6.30a 11.7b 27.0a 
          
Significance of Interactions       
 P x S  ns ns ns  ns ns ns 
 P x T  *** *** ns  ns *** * 
 S x T  ns ns ns  ns ns ns 
  P x S x T   ns ns ns   ns ns ns 
*P < 0.05; *** P < 0.001  
§ Means within columns and factors followed by the same letter are not significantly different 
(P = 0.05) by Tukey’s multiple range test.  
‡ ns = not significant 

After 120 h, the 33P recovered in soils with no P (P0) greatly increased (P < 

0.05), averaging 7.3% of applied 33P across all soils. The increase (P < 0.05) 

in P0 across all soils after 120 h more or less reached the mean level of 33P 

recovery in P10 and P50 for 24 h and 120 h (Fig. 1b). In contrast, P10 and P50 

had a constant level of recovered 33P, except for soils with C addition in P50, 

which increased the content recovered after 24 h by almost twice (Fig. 1b). 

Furthermore, an average of 10.0% of the applied 33P recovered across all 
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soils went to the microbial biomass pool after 120 h (Fig. 1b); this value 

increased to as much as 26% if C was present (P50; Fig. 1b). This reveals that 

microorganisms are an important factor affecting the P dynamics in soils.  

2.1.4.2 Available P pool (PAEM) 

We recorded a clear trend in available P content (PAEM) as related to (P < 

0.05) the amount of P and to incubation time (Fig. 2a; Table 2). PAEM was 

always greater (P < 0.05) in soils with a higher amount of labile P addition (P0 

< P10 < P50) throughout the incubation. In 24 h, the average difference 

between P0 and P10 was 11.9 mg P kg-1, whereas the difference was 28.1 mg 

P kg-1 between P0 and P50 across all soils (Fig. 2a). Nonetheless, the PAEM 

content decreased (P < 0.05) by about 27%, 52% and 40% in P0, P10 and P50, 

respectively, after 120 h. We hypothesized that a decreased PAEM content 

after 120 h was primarily due to the distribution of labile P to other pool(s) as a 

consequence of microbial P uptake and P sorption by Fe and/or Al oxides 

present in the soil.    

The percentage recovery of applied 33P in the PAEM pool was almost the same 

as in the PNaOH pool for P10 and P50 in the first 24 h (Fig. 3). Recovery was 

always higher (P < 0.05) at 24 h – by as much as 45% of applied 33P – 

compared to 120 h for all P levels. After 120 h, 33P recovery decreased (P < 

0.05), and this drop was very pronounced in P10 and P50 compared to P0 (Fig. 

2b). The decrease was about half of the 33P recovered at 24 h. This indicates 

that available P was redistributed faster to another P pool(s) within 120 h. The 

relative SAs in PAEM decreased (P < 0.05) because the rate of P addition 

increased during the incubation period (Fig. 2c).  

2.1.4.3  Poorly available P pool (PNaOH) 

The P pool extracted with 0.1 M NaOH corresponds to the P associated with 

Al and Fe oxides in the acidic soil (Hedley et al. 1982; Maranguit et al. 2017). 

This P pool involves long-term release and acts as a very slow buffer for labile 

P in acidic P-limited soils. Like Pmic and PAEM, the P content in PNaOH 

increased (P < 0.05) after P10 and P50 addition compared to P0, with an 

average increase across all soils of 4.9 and 5.9 mg P kg-1 soil, respectively  
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Figure 2 Phosphorus content, 33P recovery and relative specific activity (SA) in available P 
(PAEM) (a-c, respectively) and Fe/Al-bound P (PNaOH) (d-f, respectively) after the addition of 33P 
tracer alone (P0), 33P-labeled fertilizer as KH2PO4 applied to soil as 10% (P10) and 50% (P50) 
of the initial P content and combined with substrates: i.e. distilled water as control, glucose 
and ammonium nitrate as carbon and nitrogen source, respectively. Bars indicate standard 
error of four replicates. Arrows indicate significant increase or decrease between 24 and 120 
h. Note the different scale of the y-axis (a & d; b & e; c & f) 
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(Fig. 2d). Nonetheless, during the first 24 h, less added P was incorporated 

into the PNaOH pool, showing less difference of P10 and P50 to P0. After 120 h, 

however, a large increment (P < 0.05) – twice the increase as at 24 h – was 

recorded in soils with both low and high P addition. Nonetheless, the increase 

in P10 and P50 across all soils was almost the same, ranging from 9 to 11 mg 

P kg-1 soil (Fig. 2d). The increasing PNaOH content after 120 h supports our 

hypothesis on available P (PAEM), i.e. that part of it was distributed to the less 

available pool such as PNaOH after 120 h. 

Finally, the proportion of 33P recovered in PNaOH, the average ranging from 28 

to 42% of the applied 33P, was almost the same as that in PAEM in the first 24 h 

(Fig. 3). However, the proportion changed after 120 h due to the re-

distribution of 33P-labeled fertilizer; this re-distribution caused a decline of 

PAEM and an increase of PNAOH (Fig. 2b, 2e & 3).  Indeed, a slight increase of 

33P recovered in PNaOH ranging from 1-10% of the applied 33P after longer 

incubation time was recorded across all soils (Fig. 2e). 33P recovery in P10 and 

P50 had almost the same percentage in 24 h and in 120 h. The relative SA 

generally dropped after the higher P rate application and decreased 

throughout incubation period (Fig. 2f).   

 

Figure 3 Total 33P recovery by sequential extraction of soil after the addition of  33P tracer 
alone (P0), 10% (P10) and 50% (P50) of initial P content using KH2PO4 labeled with 33P to soils 
with combined application of glucose and ammonium nitrate as carbon and nitrogen source, 
respectively. Letters in each column indicate differences between P pools (P < 0.05) based 
on Tukey’s multiple range tests. 
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2.1.4.4  Relationship between P pools 

The P pools were interrelated with each other. A strong negative relationship 

(P < 0.05) between Pmic and PAEM – with R2 ranging from 0.46-0.96 across all 

P levels – was recorded (Fig. 4a). Likewise, a strengthened negative 

relationship was found between PNaOH and PAEM with increasing P amendment 

(P0<P10<P50; R2= 0.39ns<0.90***<0.96***; Fig. 4b). The correlation between 

PNaOH and PAEM was much more pronounced than that between Pmic and PAEM 

in the P-amended soils. Therefore, the fast decline of PAEM is strongly 

associated with P adsorption by Fe and Al oxides and to a lesser extent with 

microbial P uptake.   

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Linear relationship between phosphorus pools: (a) Pmic and PAEM; (b) PNaOH and 
PAEM. Each point corresponds to the mean of four replicates  
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2.1.5 Discussion 

2.1.5.1 Distribution of P among fractions and dynamics over time 

Tracing the fate and distribution of added P to various pools was simple and 

fast using 33P-labeled phosphate. Inorganic P fertilization changes the size of 

soil P pools (Fig. 5) and also reveals a distinct temporal pattern in the P pool 

content over the 120 h incubation period (Table 2). Basically, the high rate of 

P application yielded the greatest available P content (PAEM) in the soil 

compared to low P (P10) and no P addition (P0) (Fig. 2a). Importantly, not all 

the applied P remains in the available pool for plant uptake.  

       

Figure 5 The fate of inorganic phosphorus applied to acidic P-limited soil. The distribution of 
P fertilizer in P pools is affected by biological and physicochemical reactions. Box size 
indicates the proportion of P fertilizer recovered in each pool throughout the incubation period. 
The susceptibility of each pool to leaching and surface run-off is determined by the strength of 
binding in the soil. The rate of susceptibility is indicated by the intensity of the red color in the 
arrow (e.g., intense red = highly susceptible). Values in bold inside the box: P content in 
respective pool (mg P kg-1); values in italics: 33P recovery in respective pool (% of applied 
33P); underlined values: the total increase of P content (mg P kg-1) immobilized and adsorbed 
at 120 h. Values above and below horizontal dashed line represent contents at 24 h and 120 
h, respectively. 
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Instead, it is rapidly distributed to less available pools: both high and low P 

application resulted in strong P immobilization by microorganisms and fixation 

by Fe and Al oxides, as is evident in the elevated Pmic (Fig. 1a) and PNaOH 

(Fig. 2d) content compared to no P addition. Nonetheless, these pools are 

very important P reserves; buffering available P.  

33P recovery in PAEM (Fig. 2b) was in accordance with the principles of isotopic 

exchange (Fardeau 1996; Bünemann et al. 2004): it diminished steadily, with 

the greatest decrease at 120 h. Our findings agree with the trends observed 

during the incubation of temperate soils amended with 33P-labeled soybean 

residues (Daroub et al. 2000), in highly weathered Oxisols from Colombia 

(Bühler et al. 2002) and in kaolinitic Oxisols from Kenya (Bünemann et al. 

2004). Furthermore, a significant fraction of the added labeled P was 

irreversibly fixed in soils that sorb very high P amounts, thereby reducing the 

33P fraction actually participating in the isotopic exchange (Wolf et al. 1986). In 

our study, the lower 33P recovery in PAEM (Fig. 2b) was accompanied by a 

simultaneous increase in the Pmic (Fig. 1b) and PNaOH (Fig. 2e) after 120 h of 

incubation. This reverse trend of 33P recovered in different P pools after 120 h 

suggests that 33P-labeled phosphate was distributed from the labile pool 

(PAEM) to the immobilized pool by microorganisms (Pmic) and by mineral 

sorption (PNaOH).  

The 33P recovered in Pmic after 120 h – with a strong increase at P0 compared 

to no increase at P10 and less increase in P50 (Fig. 1b) – can be explained by 

the microorganism response to labile P. We hypothesized that 

microorganisms fully trap the limiting resource (P) until P becomes totally 

restricted.  During the first 24 h at P0, microorganisms were actually P-limited 

and not fully activated even though the addition of C and N led to less 

consumption and saturation of 33P in the microbial biomass. After the longer 

incubation period (120 h), the increasing microbial activity and growth resulted 

in greater (P < 0.05) 33P recovery. In P10, although labile P was increased only 

minimally (e.g. 10% of initial P content (0.2 mg g-1)), it was apparently enough 

for microorganisms to become activated and saturated with P during the first 

24 h. These results suggest that, when new labile P is applied in the system, 



2 Publications and Manuscripts: Study 1 

39 

 

P can be rapidly immobilized by soil microorganisms under limiting P 

conditions (Bünemann et al. 2012). Accordingly, the P concentration in the 

soil solution is strongly influenced by microbial P immobilization (Frossard et 

al. 2000). We hypothesized that, after being saturated with P and initial 

stimulation, microorganisms return to dormancy. Our results support this 

hypothesis, explaining why the 33P recovered in the microbial biomass has 

been found to be rather constant over time (Bünemann et al. 2004, 2012; 

Oberson et al. 2001). This increases the chance for the remaining label 

fertilizer to be adsorbed/fixed by Fe/Al oxides, which is reflected in the slight 

increase of 33P recovered (Fig. 2e) and of the P content (Fig.2d) in the PNaOH 

pool after 120 h. A longer incubation study (34 days) showed a subsequent 

movement of the label from the labile pool to the PNaOH pool (Daroub et al. 

2000).  

In contrast to P0 and P10, P50 almost tripled the labile P content of the soil 

available for microorganisms and for plant-uptake. This explains the higher 

microbial activity even during the first 24 h, which led to the greatest 33P 

recovery in microbial biomass (Fig. 1b). Nonetheless, the 33P recovered in P10 

and P50 was almost the same in all soils throughout the incubation time, 

except for soils amended with glucose as a source of C. Therefore, 

microorganisms will be easily saturated at a certain P level regardless of how 

high the available P content is in the soil. Consequently, in P50, part of the 33P-

labeled fertilizer not taken-up by microorganisms went to the PNaOH pool. 

Likewise, free Fe and Al for P binding also had a saturation point. This 

explains the more or less identical P content and 33P recovery in the PNaOH  

pool in soil with P10 and P50 (Fig. 2e). In the experiment without plants, the 

excess of label fertilizer in soils with P50 remains in the labile pool, free to be 

accessed again by microorganisms. Under natural conditions, however, 

competition between plant and microorganisms will influence the availability 

and depletion of available P. At any rate, the synthesis of microbial biomass is 

stimulated by adding any substrate as a C source (Ayaga et al. 2006; Spohn 

and Kuzyakov 2013). In fact, very small amounts of labile C substrate (5-15 

µg g-1) can activate soil microorganisms (De Nobili et al. 2001; Mason-Jones 
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and Kuzyakov 2017). This increases the demand for P, boosting the recovery 

of label in the 33P microbial pool (Bünemann et al. 2004). Therefore, 

microorganisms took up the remaining labile P from solution, and 33P recovery 

increased in the Pmic pool in soils amended with C in P50 after 120 h (Fig. 1b; 

Fig. S2 Supplementary Material). A high 33P recovery of 66% was recorded in 

chloroform-labile P after 2 d when soils were amended with glucose and 

ammonium nitrate, compared with 8% in the absence of easily available 

sources of C and N (Oehl et al. 2001).  

In our study, 86% of the total applied 33P was recovered by the sequential 

fractionation after 120 h (Fig. 3). Consequently, the unrecovered label is 

incorporated into non-extractable pools. 

2.1.5.2  P availability and ecological relevance of microbial P and the PNaOH 

pool  

The negative relationships between Pmic and PAEM (P < 0.05; R2 = 0.46-0.53; 

Fig. 4a) after labile P addition and the significant recovery of 33P in microbial 

biomass (Fig. 1b) indicates that P availability in the soil solution is influenced 

by microorganisms. Our findings support the hypotheses that microbial P 

utilization and mobilization are important for improving the synchrony between 

plant nutrient demands and the P-supplying capacity of high-P-fixing soils 

(Picone et al. 2003; Richardson and Simpson 2011; Koutika et al. 2013). The 

addition of P to P-limited soils, coupled with adding organic matter as a 

substrate for microorganisms, will boost microbial growth and activity (De 

Nobili et al. 2001; Ayaga et al. 2006; Spohn and Kuzyakov 2013). The result 

is that significant amounts of P are incorporated in microbial cells. The 

significant microbial P pool in our study (Fig. 1a), coupled with the rapid 

turnover time of soil microbial P, suggest that it is an increasingly important 

source of plant-available phosphorus as soils age and become P-limited 

(Brookes et al. 1984; Kouno et al. 2002). Likewise, the significant amount of 

33P recovered in the PNaOH pool (Fig. 2e & 3) and the strong negative 

relationship between PNaOH and PAEM (P < 0.001; R2 = 0.90-0.96; Fig. 4b) 

reflect the importance of P sorption on sesquioxides (Bünemann et al. 2004). 

This buffers the available P supply (Hedley et al. 1982; Maranguit et al. 2017). 
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At the same time, we observed significant depletion of the PAEM fraction. 

Although the transformation of this pool to the labile pool requires a long time, 

the long-term release of the PNaOH reserve is very important. It protects P from 

leaching and surface run-off and potentially buffers available P for plant-

uptake.  According to our results (Fig. 5), the amounts of P in various pools 

measured by sequential P extraction and the fluxes of P between pools are 

controlled by several mechanisms: (1) physicochemical, i.e. 

sorption/desorption (Turner et al. 2013), which is more pronounced in highly 

acidic soil, which has  a high P fixing ability, and (2) biological/biochemical 

reactions, i.e. immobilization/mineralization (Turner et al. 2013; Bünemann et 

al. 2016), which are very important in retaining P and returning it back to the 

soil after a fast turnover. These results have important implications for the 

development of sustainable management systems, especially in light of the 

impending depletion of rock phosphate reserves for fertilizer production 

worldwide, and for fertilizer-use efficiency (Cordell et al. 2009).  

2.1.6 Conclusions 

We traced the fate and the rate of distribution of labile P to various pools 

using the 33P isotope labeling technique. Our experimental results confirmed 

our first hypothesis that the amounts of P in various pools (measured by 

sequential P extraction procedures) and the fluxes of P between pools are 

controlled both by physicochemical factors, i.e. sorption/desorption, and by 

biological reactions, i.e. immobilization/mineralization processes. When P 

fertilizers are applied to soil, phosphate ions are released into the solution, 

followed by a fast and almost instantaneous fixation by the Fe and Al oxides 

and immobilization by microbial uptake. The extent to which P remains in the 

soil solution depends on the degree to which it is adsorbed, desorbed and 

mineralized. High P application (50% of the initial total P) enhanced the 

available content (≈35 mg P kg-1 soil) for plant-uptake, but only for a short 

time. Applied P, if not directly taken-up by plants, will be distributed quickly to 

less available pools. This proves our second hypothesis. Indeed, both high 

and low P application led to strong P immobilization by microorganisms (≈10-

20% of applied 33P), and fixation by Fe and Al oxides (≈45% of applied 33P) 
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caused the amount of available P to drop. Applying glucose as a C source 

boosts the microbial activity, growth and demand for P, which increases the 

microbial biomass P pool (≈10 mg P kg-1 soil). This confirms our third 

hypothesis. Nonetheless, the turnover of microbial biomass P and desorption 

of fixed P sustains long-term P fertility. Furthermore, P fixation by Fe and Al 

oxides also important in keeping the P in the soil system and protects it from 

leaching and from surface run-off.  
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2.2.1 Abstract 

Deforestation and land-use change in tropics have increased over the past decades, 

driven by the demand for agricultural products. Although phosphorus (P) is one of the 

main limiting nutrients for agricultural productivity in the tropics, the effect of land-use 

change on P availability remains unclear. The objective was to assess the impacts of 

land-use change on soil inorganic and organic P fractions of different availability 

(Hedley sequential fractionation) and on P stocks in highly weathered tropical soils. 

We compared the P availability under extensive land-use (rubber agroforest) and 

intensive land-use with moderate fertilization (rubber monoculture plantations) or high 

fertilization (oil palm monoculture plantations) in Indonesia. The P stock was 

dominated by inorganic forms (60 to 85%) in all land-use types. Fertilizer application 

increased easily-available inorganic P (i.e., H2O-Pi, NaHCO3-Pi) in intensive rubber 

and oil palm plantations compared to rubber agroforest. However, the easily-

available organic P (NaHCO3-extractable Po) was reduced by half under oil palm and 

rubber. The decrease of moderately available and non-available P in monoculture 

plantation means that fertilization maintains only the short-term soil fertility that is not 

sustainable in the long run due to the depletion of P reserves. The mechanisms of 

this P reserve depletion are: 1) soil erosion (here assessed by C/P ratio), 2) 

mineralization of soil organic matter (SOM) and 3) P export with yield products. 

Easily-available P fractions (i.e., H2O-Pi, NaHCO3-Pi and Po) and total organic P 

were strongly positively correlated with carbon content, suggesting that SOM plays a 
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key role in maintaining P availability. Ecologically based management is therefore 

necessary to mitigate SOM losses and thus increase the sustainability of agricultural 

production in P-limited, highly weathered tropical soils. 

Key words: Land-use change, Rainforest deforestation, Phosphorus fractions and 

stocks, Carbon-to-Phosphorus ratio, Hedley fractionation, Erosion consequences, 

Agroforestry 
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2.2.2 Introduction 

Land-use change and intensification of cultivation are the predominant global 

changes of this century. This is mainly because of the global socio-economic 

demand for food, feed, fiber and biofuel driven by population growth (Geissen 

et al., 2009; Guillaume et al., 2015). Intensification of agriculture involving 

high-yielding crop varieties, fertilization, irrigation, and pesticides causes soil 

degradation. As agriculture land becomes degraded, more forests are cut and 

converted for the needed agricultural production. This has led to a strong 

decrease of tropical rainforest area worldwide, especially in Southeast Asian 

countries (Gatto et al., 2015; Tarigan et al., 2015).  

Indonesia is one of the tropical countries with highest deforestation rates, 

surpassing the rate in Brazil in 2012 (Hansen et al., 2013; Margono et al., 

2014). Sumatra (Indonesia) lost more than half of its remaining natural 

rainforest between 1985 and 2007 due to deforestation and land-use 

intensification (Laumonier et al., 2010; Wilcove and Koh, 2010). Deforestation 

and agricultural intensification on the island is ongoing. Natural rainforests are 

converted to extensively managed agroforest (jungle rubber), then to 

intensively managed monoculture plantations (i.e., oil palm, rubber). These 

conversions are among the main drivers of deforestation aside from mining, 

timber and pulp industries (Guillaume et al., 2015; Villamor et al., 2014; Violita 

et al., 2015). However, extensive transformation of natural ecosystems to 

plantation leads to the decreased of soil fertility indicators and to subsequent 

soil degradation in Sumatra (Guillaume et al., 2016a, 2016b). 

Land-use change significantly modifies the physical, chemical and biological 

soil properties, affects soil fertility, and increases erosion and compaction 

(Giessen et al., 2009; Matson et al., 1997; Moges et al., 2013). Phosphorus 

(P) is a key nutrient requiring attention in response to land-use change 

(Garcia-Montiel et al., 2000): it is the most limiting nutrient for plant 

productivity, especially in tropical regions (Dieter et al., 2010; Holford, 1997; 

Sanchez, 1976; Spohn et al., 2013; Vitousek, 1984). The highly weathered 

acidic soils and large quantities of sesquioxides adsorb and chemically fix P, 

leading to P limitations in tropical ecosystems (Bucher et al., 2001; Holford, 
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1997). Soil available P is mainly supplied by parent material, is recycled by 

decomposition of organic matter, and added by fertilizer inputs that enrich 

different P forms (i.e., available, moderately available, non-available inorganic 

and organic). When available P is depleted, replenishment from other P forms 

becomes important (Henriquez, 2002). 

Land-use changes affect P availability for plant uptake either by increasing P 

losses or by transforming it to more recalcitrant pools. This leads to potentially 

significant effects on the distribution of P within chemically-defined pools, in 

turn determining availability and stability (Wright, 2009). Some studies on the 

partitioning of total soil P revealed effects of land-use change (Cassanova et 

al., 2002; Solomon et al., 2002). The fires – forest burning during plantation 

establishment – also impact soil P. They release P into the available pool, 

where it can be taken up by microorganisms, sorbed on the mineral matrix, 

leached or removed by runoff (Sanchez, 1976). At medium to high fire 

intensities (>300 oC), however, P mobilization is restricted and fixation 

increases. This is due to a heat-induced increase in mineral surface area, the 

production of Fe oxides free of organic matter and high affinity for P sorption 

(Ketterings et al., 2002). Short-term P fertilization is enhanced by ash of forest 

fires coupled with root decomposition of the original vegetation (Groppo et al., 

2015). Nonetheless, fertility is not sustainable. Nutrient depletion occurs as 

plantations age (Numata et al., 2007; Townsend et al., 2002), reflecting 

nutrient removal with yield products. Furthermore, tremendous changes in 

plant biomass production and nutrient cycling due to vegetation conversions 

have a great negative or positive influence on soil properties and nutrient 

availability (Chen et al., 2003). The conversion of P from available to non-

available (e.g., Al-P, Fe-P) and organic forms occurs in less than 50 years 

after land-use change, much faster than the thousands of years required 

under natural conditions (Garcia-Montiel et al., 2000). The conversion of 

forest to cropland decreased the P amount and increased the proportion of 

non-available P forms (Chacon and Dezzeo, 2004). Accelerated soil erosion 

due to land-use change reduced organic matter by half or more (Zheng et al., 
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2005), which is a source of organic substrate for nutrient release such as 

available P (Groppo et al., 2015; Pimentel et al., 1995).  

Various approaches have been developed to study the forms, amount and 

dynamics of P cycling (Bowman and Cole, 1978; Chang and Jackson, 1957; 

Hedley et al., 1982; Tiessen and Moire, 1993). The sequential chemical 

fractionation developed by Hedley et al. (1982) has been widely used in 

recent decades to study soil P fractions and thus soil P dynamics (Chimdi et 

al., 2014). The chemical fractionation method evaluates the location and 

bonding type of P within the soil matrix (Guo et al., 2000; Yang and Post, 

2011), and investigates the effects of land-use change on the distribution of P 

fractions. Hedley fractionation assumes that extractants of varying strength 

estimate inorganic phosphorus (Pi) and organic phosphorus (Po) fractions of 

different availability and chemical bindings (Guo et al., 2000; Hedley et al., 

1982). The following fractions respond to extractants and are available: (i) 

H2O-Pi and NaHCO3-Pi, which are considered the most biologically and 

readily available Pi form. (ii) NaHCO3-Po, which is easily mineralizable and 

may contribute to the plant-available Pi. (iii) NaOH-P, which is associated with 

P and is strongly adsorbed via a covalent bond between phosphate oxygen 

and the aluminum (Al) and iron (Fe) in clays, which are involved in long-term 

P transformations. (iv) HCl-Pi, which is relatively insoluble P, often associated 

with Ca-P. HCl-Po has not been measured in most sequential P fractionation 

studies. It is reported that this fraction is Ca-bound hydrolysable Po.     

Most studies in Sumatra (Indonesia) on the effects of land-use change and 

deforestation deal with soil carbon contents and stocks. This reflects the 

importance of low-carbon agriculture, climate change and general soil fertility 

issues. Nonetheless, only few studies focus on the effect of land-use change 

on soil P availability; no studies are available on P fractionation of various 

forms of inorganic and organic P. Our study is designed to assess the effects 

of land-use change on inorganic and organic P forms of different availability 

and on the P stocks in highly weathered tropical soils. We hypothesized that 

inorganic and organic P fractions of different availability will strongly decrease 
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after land-use change. Likewise, P stocks – the total of all P fractions – will 

also decrease. 

2.2.3 Materials and Methods 

2.2.3.1  Study area and soil sampling 

The study was carried out in Jambi Province in Sumatra, Indonesia. The 

climate is tropical humid with an average temperature of 27 °C and an 

average precipitation of 2200 mm yr-1 and 112–259 mm month-1 (Guillaume et 

al., 2015). Aside from tropical rainforest, the area had three dominating land-

use types: (1) jungle rubber, (2) rubber plantation, and (3) oil palm plantation. 

Jungle rubber is an extensively-managed agroforest (minimum age of 16 yrs) 

in which rubber trees are planted in a partially logged forest. Tree species 

namely: Alstonia spp., Artocarpus spp., Fabaceae sp., Macaranga spp., 

Porterandia sp., and Hevea sp. are the most common tree species in the 

agroforest system.  On the other hand, rubber (Hevea brasiliensis) and oil 

palm (Elaeis guineensis) plantations were intensively managed monocultures 

of similar average age (14 yrs), ranging from 12 to 17 years (Guillaume et al., 

2016a). Rubber and oil palm plantation received high NPK fertilization at a 

rate of 100-300 kg ha-1 yr-1 and 300-600 kg ha-1 yr-1, respectively. Fertilization 

happens twice a year once in the rainy season (October to March) and once 

in dry season (April to September). Herbicides were also applied in both 

plantations every 6 months (Kotowska et al., 2015).  

To assess the effects of land-use change, three replicate sites for each land-

use type were selected within a distance of 16 km with an elevation varied 

between 50 and 100 m a.s.l. The soil was Acrisols with sandy loam texture. It 

is a highly weathered soil with strongly acidic soil pH ranged between 3.9 and 

5.1. The base saturation ranged between 16 and 28 % and effective CEC 

ranged between 40 and 46 mmolc kg-1 (Allen et al., 2015). At each site, 

samples were collected in one pit by horizons down a maximum depth of 1 m. 

Soils were air-dried and sieved at 2 mm. Plant debris and stones were 

removed. Soils were brought to the laboratory of the Department of Soil 

Science in Temperate Ecosystem in Göttingen University, Germany, for 
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further analysis. A detailed description of the study area and soil sampling are 

available in Guillaume et al. (2015). Further information on land-use history, 

management and soil characteristics can be found in Allen et al. (2015) and 

Kotowska et al. (2015). 

2.2.3.2  Soil incubation and preparation  

Five grams of air-dried soil was placed in a glass bottle and incubated at field 

capacity at 24 ± 2oC for 14 days prior to the sequential extraction in order to 

reach equilibrium after sampling, drying and sieving disturbances (Hedley et 

al., 1982). After the incubation, soils were stored at 4 oC and equilibrated at 

room temperature overnight prior to P sequential fractionation analysis.  

2.2.3.3  Phosphorus sequential fractionation  

The Hedley et al. (1982) sequential fractionation method as modified by 

Tiessen and Moir (1993) was used to fractionate soil P. This method uses a 

sequence of increasingly strong extractants that removed labile inorganic 

phosphorus (Pi) and organic phosphorus (Po) forms first, then stable P forms 

(Fig. A.1).  

One gram of soil was placed into a 50 ml screw cap centrifuge plastic tube 

and sequentially extracted with the following extractants in sequential order: 

(i) 30 ml deionized water, which extracts fairly labile Pi (mobile P) that is 

directly exchangeable with the soil solution, (ii) 30 ml 0.5 M NaHCO3 at pH 

8.5, which extracts relatively labile Pi and Po sorbed onto soil surfaces, plus a 

small amount of microbial P, (iii) 30 ml  0.1 M NaOH, which extracts 

amorphous and some crystalline Fe and Al phosphates, as well as P strongly 

bound by chemisorption to Fe and Al compounds; ultrasonification of soil for 2 

min at 75 W in 0.1 M NaOH enabled extraction of P held at the internal 

surfaces of soil aggregates, (iv) 30 ml  1 M HCl, which extracts relatively 

insoluble Ca-P minerals including apatite, Al-P and Fe-P in more weathered 

soils. After every addition of extractant, samples were shaken continuously for 

16 h using an end-to-end shaker, and the soil suspension was centrifuged at 

3500 rpm for 15 min. Supernatant was filtered using Whatman no. 42 filter 

paper into small vials and stored at 4 oC for phosphate determination. Finally, 
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soil residues were digested using concentrated H2SO4 and 30% H2O2 to 

extract more chemically stable Po forms and relatively insoluble Pi forms 

(Residual-P). We omitted the addition of an anion exchange membrane and 

chloroform from the original methodology.  

2.2.3.4  Phosphate determinations 

Total P (TP) and Pi were measured directly from the extracts, while Po was 

calculated as the difference between the TP and Pi. TP was determined in 5 

ml aliquots of each extract after ammonium-persulfate and H2SO4 digestion to 

oxidize dissolved Po to Pi forms, and TP was measured as soluble reactive P 

(Environmental Protection Agency, 1971). Another 5 ml aliquot of each extract 

was acidified using 0.9 M H2SO4 to precipitate organic matter and then used 

to measure Pi. The pH of final extracts for both TP and Pi was adjusted to pH 

3 using dinitrophenol (2,4-DNP) as indicator. If yellow coloration formed after 

2,4-DNP addition, diluted HCl was added drop by drop until the extracts 

turned colorless. Otherwise, if the extract remained colorless after 2,4-DNP 

addition, NaOH was added first until the colors changed to yellow and then 

dilute HCl until it became colorless again. Standards with increasing P 

concentrations were prepared. Phosphate concentrations for both standards 

and soil extracts were determined by molybdate colorimetry (Murphy and 

Riley, 1962) at 880 nm using a calibrated spectrophotometer (Specord 40). 

Po in the deionized water fractions and in the HCl-extractable fraction was not 

determined because preliminary investigations had shown values below the 

detection limit. 

2.2.3.5  Bulk density and Carbon content determination 

Bulk density has been measured by another research group. It was done by 

core method using cylinders measuring two hundred and fifty cm3. Cylinders 

were inserted horizontally at 5, 20, 40 and 75 cm depth from the side of the 

pit. Samples were air-dried and weighed. Carbon content was measured 

using an Elemental Analyser (Eurovector) after weighing 5 to 40 mg of 

grinded soil in tin capsules.  
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2.2.3.6 Data analysis 

P fractions are expressed as the mean of the three field replicates and are 

presented in mg P kg-1 of the fine earth (< 2 mm) fraction. All results are 

expressed based on oven-dried soil (105 oC, 24 h). In order to facilitate 

interpretations, P fractions were classified into three main groups (Tiessen et 

al., 1984): easily-available P, moderately-available P and non-available P. 

Easily-available Pi is the sum of H2O-extractable and NaHCO3-extractable 

phosphate.  Moderately-available P is the sum of P extracted from 0.5 M 

NaOH before and after sonification. Likewise, non-available P is the sum of P 

extracted by 1 M HCl and concentrated H2SO4 and 30% H2O2 during soil 

digestion. P stocks expressed in kg P ha-1 were calculated for the soil depth 

intervals 0–20 and 0–60 cm using the following equation: 

S = x. ρ. z                                                                                        (1) 

where S is the P stock for fixed depths and (x) is the soil P content at the 

designated depth (z), and ρ is the soil bulk density.  

Differences in the P fractions, total P, P stocks and C/P ratio between 

agroforest and monoculture plantations were tested by one-way analysis of 

variance (ANOVA). Correlations between soil carbon content and P fractions 

were assessed by calculating linear regression. All analysis was performed 

using Statistix v8.1 statistical software.  

2.2.4 Results 

2.2.4.1  Concentrations of sequentially extracted phosphorus fractions 

We recorded clear effects of land-use change of jungle rubber to oil palm and 

rubber plantations on inorganic and organic P fractions (Fig. 1). The content 

of easily-available, moderately-available and non-available Pi and Po varied 

markedly among land-use types (Fig. 2). The change of land-use strongly 

decreased the content of P fractions in the topsoil (Ah horizon; 0–10 cm).  

Easily-available Pi, the sum of H2O-extractable and NaHCO3-Pi, was the only 

P fraction that increased after land-use change (P <0.05), indicating the effect 

of NPK fertilization applied twice a year. The oil palm plantation, which 
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received 2–3 times more NPK fertilizer than rubber, had more easily-available 

Pi (8.5 ± 1.2 mg P kg–1) in the top horizon than the rubber plantation (7.1 ± 0.7 

mg P kg–1). The P increase due to fertilization was more notable in available 

Pi (labile-Pi) than in other P fractions. In contrast, jungle rubber, which did not 

 

Figure 1 Effects of land-use change on soil P. (+) increase P availability; (-) decrease P 
content and availability for plant uptake. Colors: yellow = H2O-Pi; yellow-green = NaHCO3-Pi; 
green = NaHCO3-Po; violet = NaOH-Pi; light brown = NaOH-Po; dark brown = HCl-Pi; red = 
residual P. Red dashed line (----) shows P losses after land-use change. 

receive any fertilization, had only 5.0 ± 0.9 mg P kg-1. However, easily-

available Po (NaHCO3-extractable Po), which is the most important P reserve, 

decreased (P <0.05) in plantations by almost 50% compared to the jungle 

rubber.  

Moderately-available Pi (NaOH-Pi) had the same content in all soils across all 

horizons. However, moderately-available Po decreased in the top horizon by 

18% under oil palm and by 23% under rubber plantations compared to the 

jungle rubber. Differences between jungle rubber and the intensive plantations 

were significant (P <0.05) only in the Ah horizon (0–10 cm) but not at the 
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lower depths.  Nonetheless, organic P fractions were almost twice as high as 

the inorganic P in all soils across depths. Non-available P in the topsoil 

(extracted by 1 M HCl and Residual-P) also decreased (P <0.05) by 47% 

under oil palm and by 24% under rubber plantations compared to jungle 

rubber, but there were no differences below 10 cm. Our results (Figs. 1 & 2) 

suggest that land-use change caused the redistribution of P forms.  

 

Figure 2 Inorganic and organic soil phosphorus fractions (mg P kg -1) depending on land use. 

Values represent means ± SE (n=3). 

2.2.4.2  Total phosphorus content and phosphorus stocks 

Most of the total P in soils of each land-use type was inorganic. It ranged 

between 39 and 106 mg P kg–1, which represented between 68 and 83% of 

the total P (Fig. 2). Jungle rubber had more total Pi in the Ah horizon than in 

intensive monoculture plantations (i.e. oil palm and rubber). Total Po was also 
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higher (P <0.05) in the Ah horizon in jungle rubber than in the intensive 

monoculture plantations.  

The soil P stock decreased after conversion of jungle rubber to an intensively 

managed oil palm plantation at the 0–20 cm depth by about 31%, and slightly 

increased by 5% at the 0–60 cm depth (Fig. 3). Soil P stocks also gradually 

decreased in the rubber plantation by 20% from 0 to 60 cm depth. P stocks 

were lost in both plantation systems (P <0.05) compared to jungle rubber at 

0–20 cm depth. Consequently, land-use change strongly decreased P stocks, 

especially in the topsoil. 

 

Figure 3 Soil phosphorus stocks (kg P ha-1) at the 0-20 and 0-60 cm soil depth layer 
depending on land use. Values represent means ± SE (n=3). Means followed by different 
letters within the same depth differ significantly (t-test at P<0.05). 

 

2.2.4.3  Carbon to phosphorus ratio 

The carbon:organic P (C:Po) ratio calculated using total organic P content 

ranged between 695 ± 342 and 742 ± 88 in surface soils, being greatest in 

soils with the least total soil Po (Fig. 4). The lowest C:Po ratio (335 ± 181) was 

measured at 35 cm depth in the rubber plantation. Moreover, the ratio 

declined from the surface down to 35 cm and stabilized in the subsoil, but not 
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under oil palm. Likewise, the C:TP ratio calculated using the total P (sum of all 

P fractions) had the same pattern as the C:Po ratio in all land-use types. Both 

ratios declined from the surface down to 35 cm depth and tended to stabilize 

in the lower depth. The C:TP ratio ranged between 57 ± 34 and 220 ± 12, 

being highest in jungle rubber across all soil depths. 

 

Figure 4 Ratio of (left) soil carbon to organic phosphorus, and (right) soil carbon to total 
phosphorus depending on land use. Values represent means ± SE (n=3). 

 

2.2.4.4  Correlation between phosphorus fractions and soil carbon 

Total Po was correlated with soil C (R2 = 0.29–0.84; P <0.001) (Fig. 5). The 

correlation was strongest in jungle rubber (R2 = 0.84) compared to 

monoculture plantations. Easily-available P fractions (H2O, NaHCO3 Pi and 

Po) were also strongly correlated (R2 = 0.79–0.82; P <0.001) with soil C in all 

land-use types. Easily-available P was dominated by NaHCO3-extractable Po, 

and had the strongest correlation to soil C (R2 = 0.37–0.68; P <0.001) 

compared to H2O-P and NaHCO3-Pi in all land-use types. Easily-available P 

correlated well with C in jungle rubber and rubber compared to oil palm 

plantation. This suggests that SOM contributes to the P fertility in the soil. 
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Figure 5 Relationship between soil carbon content and (top) NaHCO3-Po, (middle) available-
P (i.e., H2O-extractable P, NaHCO3-extractable inorganic and organic P), (bottom) total Po 
depending on land use. Very close correlation between all land uses for NaHCO3-Po, 
available-P and total-Po to soil carbon reflects P losses by erosion. 
 

2.2.5 Discussion 

2.2.5.1  Effect of land-use change on the forms and distribution of soil P 

Inorganic and organic P forms of different availability are influenced by 

anthropogenic, biotic and abiotic processes that either increase or decrease 

the soil P content (Fig. 1 & Table 1). The higher concentrations of easily-
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available Pi (i.e., H2O-Pi and NaHCO3-Pi) (Fig. 2) that we found in intensive 

plantations are explained by the adsorption of P from fertilizers in the surface 

layer (Henriquez, 2002; Neufeldt et al., 2000). The increase in P content due 

to fertilization is more notable in available Pi (labile Pi) than in other P 

fractions (e.g., Neufeldt et al., 2000). At the same time, the depletion of easily-

mineralizable Po (NaHCO3-Po) could be attributed to the decrease of litterfall 

accumulated in the plantation. The aboveground litterfall of rubber (3.84 Mg 

ha –1 year–1) and oil palm (6.23 Mg ha–1 year–1) plantation was lower than 

jungle rubber litterfall (7.66 Mg ha–1 year–1) (Kotowska et al., 2016). 

 

 

Table 1 Direct effects of abiotic, biotic and anthropogenic processes on P fractions in soil. 

 

Processes/Mechanism 

Easily- 

available 

 Moderately- 

available 

 Non-

available 

  Pi   Po      Pi     Po  Pi + Po 

Anthro-

pogenic 

P fertilization 

(Inorganic & 

Organic) 

                              

Biotic Litter input        

Mineralization        

Plant uptake              

Immobilization in              

      microorganism 

 

       

Abiotic Erosion              

 Leaching        

 Fixation/Adsorption              

 Desorption        

 

 

The high accumulation of litterfall in jungle rubber resulted to high easily-

mineralizable Po. Soil without tillage for 20 years builds up a considerable 

amount of Po from accumulated SOM (Magid, 1993). Furthermore, the vertical 

distribution of Po is related to the distribution of SOM in the soil profile 

(Sarapatka, 2003). Vertical trends of easily-available P that declined from the 

surface to the lower depths is explained by a process termed “nutrient 

pumping” (Kautz et al., 2013). This means that trees are able to absorb 

nutrients from lower soil horizons and then redistribute them to the surface 

     strong increase;       moderately increase;      slight increase 

    strong decrease;       strong decrease;   slight decrease 
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soil through litterfall and throughfall (Farley and Kelly, 2004). Easily-available 

P content was dominated by NaHCO3-Po and strongly correlated with soil C 

(Fig. 5). This highlighted the potential importance of SOM in maintaining 

fertility in tropical ecosystems (Tiessen et al., 1994).  

P extracted by 0.1 M NaOH before and after ultrasonification is associated 

with humic compounds and mostly adsorbed to Al and Fe oxides in acidic 

soils (Hedley et al., 1982; Schoenau et al., 1989). This fraction is considered 

to be moderately-available P that involves long-term soil P transformation 

(Hedley et al., 1982; Tiessen et al., 1984) and acts as a buffer for labile Pi in 

highly weathered soils (Guo et al., 2000). Reduced moderately-available Po 

(Fig. 2) in plantations is also due to less litter input than in jungle rubber. As 

litter inputs dropped, the soil capacity to retain P in the form of NaOH-

extractable Po diminished (Zamuner et al., 2008). In contrast, P fixation by Al 

and Fe is repressed, reducing available P in the long term (Dieter et al., 2010; 

Groppo et al., 2015). Nonetheless, Po fractions were almost twice as more as 

the Pi fractions in all soils across all depths. This highlights the importance of 

Po as P reserves that involve long-term soil P transformation and in P cycling 

when soil Pi reserves are limited (Buehler et al., 2002). 

The importance of plant non-available P forms has been frequently reported 

(Neutfeldt et al., 2000; Reddy et al., 1999; Sharpley, 1985; Tiessen et al., 

1984; Zheng et al., 2002). Depending on soil type and management, non-

available P forms could be mobilized and become available for plant uptake, 

depending on P form, undergoing desorption, weathering, and mineralization 

processes. Land-use change decreases non-available P (Fig. 2), which 

suggests lower P reserves compared with agroforest systems.  

2.2.5.2  Phosphorus status and long-term sustainability 

Soil total P represents the long-term potential of the P supply, whereas easily-

available Pi represents the short-term bioavailability. Moderately available and 

non-available P (Figs. 1 & 2) decreased after land-use change, which 

contributes to the decrease of total P in intensive monoculture plantations. 

Land-use change, however, increases only easily-available Pi (H2O-Pi and 
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NaHCO3-Pi) due to fertilization, which merely maintains short-term soil 

fertility. Nonetheless, it is not sustainable in the long run due to the depletion 

of soil P reserve fractions (i.e., NaHCO3-Po, moderately-available P and non-

available P). The higher correlation (Fig. 5) between total Po and soil C was 

mainly attributable to NaHCO3-extractable Po versus NaOH-extractable Po. 

This further indicates that litter mineralization significantly contributes to the 

available P content (Fig. 2).   

The decreased soil P stocks at 0–20 cm depth (Fig. 3) suggests that the 

addition of NPK fertilizer did not compensate for the amount of P lost after 

conversion of extensively managed (jungle rubber) to intensive plantations. 

The strong soil P loss after intensification is closely linked to soil erosion. This 

interpretation is supported by Guillaume et al. (2015), who estimated strong 

soil erosion under rubber and oil palm plantations. Accelerated soil erosion 

due to land-use change reduced SOM by half or more (Zheng et al., 2005), 

which is a source of available P when mineralized. About 50% of total P is 

contained in SOM (Pimentel et al., 1995). The soil removed by erosion is 1.3 

to 5 times richer in OM than the remaining soil (Matson 1997; Pimentel et al., 

1995). A combination of decreasing litter inputs (when plantation crops are 

replaced rainforest) and increasing soil erosion leads to a decrease of SOM 

and P in the long run (Chimdi et al., 2014). Another contribution to the P 

depletion in plantation soils is nutrient export with the yield (Kotowska et al., 

2015). This pertains especially to the reproductive parts of oil palm trees that 

are removed from the ecosystem and not returned back to the soil (Violita et 

al., 2015). Indeed, three years of litter removal resulted in a marked reduction 

of Po in the surface soil (Vincent et al., 2010). At the same time, the slight 

increase (5%) of P stocks under oil palm at 0–60 cm depth might be attributed 

to leaching. Some of the fertilizers applied at the soil surface were leached or 

removed by erosion. Such leached P fertilizers accumulated at lower depths 

(≥ 35 cm depth) where Al and Fe accumulation were high. This slightly 

boosted (5%) P stocks of oil palm in the lower depth compared with jungle 

rubber. The P fixation, however, decreased the availability of P for plant 

uptake.  
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2.2.5.3  The importance of organic phosphorus for P availability 

In tropical ecosystems, the turnover of OM is a very important source of Po 

that is widely considered to be fundamental in maintaining the P supply 

(Condron and Tiessen, 2005). Available P in highly weathered soils is 

generally low and depends on Po mineralization (Tiessen et al., 1984). Po in 

the available pool (NaHCO3-Po) is very important because it increases the 

apparent P availability (Johnson et al., 2003). Likewise, Po, which occurred in 

moderately-available (NaOH-Po), is as important as NaHCO3-Po because it 

contributes to P reserves. Both Po fractions decrease after land-use change 

(Figs. 1 & 2), mainly due to soil erosion and yield export.  

The C:Po ratios can be used to assess the nutrient status of a site. An 

adequate supply of available phosphate for plant growth prevents Po 

mineralization by phosphatases. This result in an accumulation of soil Po and 

a reduced C:Po ratio (Dieter et al., 2010; Zhao et al., 2008). If available P is 

insufficient for plant growth, phosphatase synthesis increases (Spohn and 

Kuzyakov, 2013). This, in turn, enhances Po mineralization compared to C 

mineralization and increases the C:Po ratio (Dieter et al., 2010; McGill and 

Cole, 1981). If soil has a high available P content, then the C:Po ratio is <100, 

whereas the ratio in soils with insufficient available P is >200 (Dieter et al., 

2010; Smeck, 1985). Based on the above considerations, the declining C:Po 

ratio of plantation soils (Fig. 4) indicates the effect of available P from the 

added NPK fertilizer. Nonetheless, the C:Po ratio in each land-use type 

(>200) confirms that the soils in the study area are P limited. The low 

available P in all land-use types is due to the inherently low-P status of the 

parent material and erosion losses (Henriquez, 2002; Moges et al., 2013).  

2.2.6 Conclusions 

The forms and distribution of P in various land-use systems is determined by 

anthropogenic, biotic and abiotic processes. The proportion of Pi was higher 

than Po in soil under each land-use type. Pi was mainly composed of 

chemically more stable (NaOH-Pi) and relatively insoluble P forms (i.e., HCl-

Pi and Residual-P) rather than available-Pi in all land-use types. The effects 

of the management after land-use change of jungle rubber to oil palm and 
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rubber plantations on Pi and Po fractions were underlined. Short-term high 

NPK fertilization increased easily-available Pi in intensive monoculture 

plantations. At the same time, easily-mineralizable Po decreased due to 

depletion of SOM. Moderately-available P and non-available P also 

decreased after land-use change of jungle rubber to oil palm and rubber 

plantations. Land-use change leads to an overall reduction of P stocks due to 

a strong decrease of SOM caused by erosion and yield export of rubber or of 

oil palm seeds. Fertilization did not compensate for the P losses. Fertilization 

increases solely the available Pi in the topsoil. This maintains or increases 

fertility only over the short term, but decreases it over the long term by 

depleting P reserves (e.g., moderate or non-available P). The positive strong 

correlation between soil C and Po and the C:Po ratio indicates that 

mineralization from SOM strongly contributes to the available P content. This 

highlights the potential of SOM in maintaining P reserves. This calls for proper 

plantation management practices to stop SOM losses. 
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2.2.9 Supporting Information 

 

 

Appendix 1 Diagram of Hedley P sequential fractionation scheme as modified by Tiessen 
and Moir (1993). 
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2.3.1 Abstract 

The strong affinity of phosphorus (P) to iron (Fe) oxides and hydroxides in highly 

weathered tropical soils limits P availability and therefore plant productivity in tropics. 

In flooded soils, however, P fixed by Fe oxides and hydroxides can be released into 

more available forms because of Fe3+ reduction to Fe2+. These P dynamics in flooded 

soils are well documented for rice paddies. Such effects are much less studied in 

other land-use types influenced by seasonal flooding, especially in the tropics during 

heavy monsoon rains. The aim of this study was to investigate the P mobilization 

during flooding leading to anaerobic conditions in topsoil and subsoil depending on 

land-use type. Samples were collected in highly weathered Acrisols from four 

replicate sites under natural rainforest, jungle rubber, rubber and oil palm plantations 

in Sumatra, Indonesia. Topsoil and subsoil were taken to ensure a wide range of soil 

organic matter (SOM) and P contents. Soils were incubated under anaerobic, flooded 

conditions at 30 ± 1 o C for 60 days. Our results confirmed the hypothesis that soil 

flooding mobilizes P and increases P availability. Two distinct and opposite periods 

were observed during the flooding. During the first three weeks of flooding, the 

dissolved P (DP) concentration peaked, simultaneously with the peak of dissolved 

Fe2+ (DFe2+) and dissolved organic carbon (DOC). After three weeks, P availability in 

soils decreased, although Fe-P (PNaOH) and available P (PNaHCO3) did not reach the 

initial, pre-flooding levels. The impacts of flooding on P and Fe forms was strong in 
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the topsoil, where P dissolution and availability were generally higher under forest 

and, to a lesser extent, under jungle rubber. A positive correlation between DOC and 

DFe2+ (R2 = 0.42) in topsoil indicates that the intensity of microbially-mediated Fe3+ 

reduction is limited by the amount of available carbon (C) as an energy source for 

microorganisms and as electron donor. Microbial mineralization of organic P from 

SOM also increases P availability, and this process requires available C. This 

interpretation was supported by the strong correlation (R2 = 0.58) between available 

P and DOC, as well as between DP and DOC (R2 = 0.56) in topsoil.  The increasing 

pH in topsoil and subsoil after flooding of all land-use types may also influence the P 

release over time. In summary, the increase of available P and DP during flooding is 

due to three main mechanisms: (1) P release via the microbially-mediated reductive 

dissolution of Fe3+ oxides; (2) P release during SOM mineralization and (3) solubility 

of Fe phosphate due to increasing pH. These mechanisms are relevant not only in 

riparian areas, where flooding occurs, but also in soils waterlogged after regular 

heavy rainfalls during the wet season. Therefore, we speculate that the P turnover is 

faster in compacted soils under plantations because of regular changes of oxic and 

anoxic conditions. Consequently, more P is pumped by the vegetation and then 

removed from plantations due to yield export.  

Keywords: Phosphorus mobilization; Flooding; Anaerobic conditions; Iron reduction; 

Tropical agroforest; Phosphorus pools 

Corresponding Author: Deejay Maranguit, maranguitdeejay@gmail.com 
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2.3.2 Introduction 

Phosphorus (P) in most soils and especially in the tropics is limited for plant 

uptake due to its immobilization on iron (Fe) and aluminum (Al) oxides (Dieter 

et al., 2010; Holford 1997; Maranguit et al., 2017). These bonds are very 

stable. Nonetheless, P sorption with Fe oxides might be reversible under 

anaerobic conditions, e.g., after flooding (Parker and Beck, 2003; 

Ponnamperuma, 1972; Rakotoson et al., 2015, 2016). Large seasonal 

fluctuations in rainfall, typical of tropical forested ecosystems, can change 

available P and are highest directly after the onset of the wet season (Wood 

et al., 2015; Wood and Lawrence, 2008). Flooding increases the available P 

content by 1.4–60 mg P kg -1 compared with aerobic soils (Rakotoson et al., 

2014). This is indicated by the increase of extractable P such as NaHCO3-

extractable P (Verma and Tripathi, 1982; Zhang et al., 2003).  

Once flooded, soils rapidly become anaerobic, resulting in a decline in the 

redox potential (Eh) (Ponnamperuma, 1972). The microbial community 

structure shifts to microbes capable of anaerobic respiration (Unger et al., 

2009). Microorganisms utilize alternative electron acceptors such as NO3
-, 

Mn4+, Fe3+ and SO4
2- to maintain their metabolism (Loeb et al., 2008; Unger et 

al., 2009). They use the electron acceptor that yields the highest energy or 

that is most readily available. In highly weathered acidic soils, Fe3+ hydroxides 

are very abundant. Thus, microorganisms such as Geobacter sulfurreducens 

(Sánchez-Alcalá et al., 2011) will use Fe3+ as the terminal electron acceptor 

(Weber et al., 2006). Hence, Fe3+ will be reduced to Fe2+, releasing 

substantial quantities of associated P (Amarawansha et al., 2015; Loeb et al., 

2008; Ponnamperuma, 1972). Therefore, the P concentration in the soil 

solution will increase together with soluble Fe2+ (Kirk, 2004; Quintero et al., 

2007). This mechanism, leading to an increase of P and Fe solubility under 

anaerobic respiration, is known as microbially-mediated reductive dissolution 

of Fe3+ oxides. 

The amount of P released into the soil solution depends on: soil 

characteristics involved in reduction processes: 1) abundance of Fe oxides 

and their crystallinity; 2) soil organic matter (SOM) content and its microbial 
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availability as electron donors (Quintero et al., 2007; Scalenghe et al., 2002) ; 

3) total P content and its forms (Amarawansha et al., 2015) and 4) soil pH 

neutralization as a result of soil flooding, which increases the P availability by 

increasing the solubility of Fe- and Al-P compounds in acid soils (Chacon et 

al., 2005; Zhang et al., 2003). Additionally, SOM is used as a source of 

carbon (C) and energy by microorganisms to fuel and stimulate the 

microbially-mediated reductive dissolution of Fe3+ minerals (Rakotoson et al., 

2015; Scalenghe et al., 2002; Zhang et al., 1994). Hence, we hypothesize that 

P released by Fe3+ reduction is stimulated in soil with high labile C availability. 

Furthermore, we hypothesize that P release is influenced by land-use 

changes because of their impacts on SOM and P contents.  

Land-use conversion is the predominant global change in this century, driven 

by the high demand for food, fiber and other products (Geissen et al., 2009; 

Guillaume et al., 2015). In the tropics, for example in Indonesia, agricultural 

intensification is ongoing mainly for rubber and oil palm at the expense of 

primary and secondary forest (Gibbs et al., 2010; Guillaume et al., 2016). 

Forest conversion in general, strongly changes soil physical, chemical and 

biological properties (Geissen et al., 2009; Moges et al., 2013) as well as 

ecosystem functioning (Barnes et al., 2014) especially after conversion to 

rubber and oil palm monoculture plantation. Indeed, almost 70% SOC in the 

topsoil of oil palm and rubber plantations has been lost compared to rainforest 

in Indonesia (Guillaume et al., 2015). P forms changes from easily available to 

non-available forms due to P fixation by Fe and Al oxides. Organic P which is 

considered as reserve pool buffering available inorganic P becomes depleted 

and total P decreases after conversion of forest to oil palm and rubber 

plantations (Maranguit et al., 2017).  Moreover, rubber and especially oil palm 

plantations suffer from soil compaction, resulting in higher bulk density and 

less water infiltration (Guillaume et al., 2016; Merten et al., 2016). Plantation 

soils are therefore quickly waterlogged by regular heavy rainfalls. This results 

in a series of biogeochemical changes that profoundly influence P status and 

availability. No studies are available on transformed systems in Sumatra, 

Indonesia, in particular studies focusing on the mobilization of P forms (Fe-
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bound P) that are normally retained by well-drained soils when these become 

partly waterlogged or flooded by regular heavy rainfalls during the wet 

season. Moreover, most of the literature on Fe dynamics and P availability 

after soil flooding pertains to rice paddies (e.g., Ponnamperuma, 1972; 

Rakotoson et al., 2015; Zhang et al., 2003). 

In this study, we investigated the effects of flooding on the P and Fe dynamics 

in topsoil (0–10 cm) and subsoil (20–30 cm) horizons of Acrisol under forest, 

agro-forest (jungle rubber) and monoculture plantations of rubber and oil palm 

on Sumatra, Indonesia. The study was designed to assess changes in Fe and 

P solubility and mobility under flooded anaerobic incubation. We hypothesized 

that under flooding: (1) Fe3+ will be reduced to Fe2+, thereby liberating P 

adsorbed on Fe3+, as indicated by P in the solution and NaHCO3-Extractable 

P in the soil; (2) the content of P bound to Fe oxides, which is measured by 

NaOH-Extractable P, will decrease; and (3) Fe2+ and P in the soil solution will 

increase and will be higher in the topsoil under forest and jungle rubber, which 

have a higher SOM content than soils under monoculture plantations.  

2.3.3 Materials and Methods 

2.3.3.1  Study site and soil sampling 

The soil samples were collected in Jambi Province in Sumatra, Indonesia. 

The climate is tropical humid with an average temperature of 27 °C and an 

average precipitation of 2200 mm year-1 and 112–259 mm month-1 (Guillaume 

et al., 2015). Experiments were carried out in (1) tropical rainforest and three 

land-use types dominating in the study region: (2) jungle rubber, (3) rubber 

plantations and (4) oil palm plantations. Jungle rubber is an extensively-

managed agroforest in which rubber trees are planted in a partially logged 

forest. Rubber and oil palm plantations were intensively managed 

monocultures. A detailed description of the study site is available in Guillaume 

et al., 2015.   

To assess the effects of soil flooding on P mobilization, four replicate sites for 

each land-use type were selected. The soil was Acrisols with sandy loam 

texture. At each site, samples were collected in the topsoil (Ah horizon; 0–10 
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cm) and in the subsoil (20–30 cm) by digging a pit. These topsoil and subsoil 

samples were taken to ensure a wide range of soil properties with regard to 

SOM and P content (Table 1). Soil samples were air-dried and sieved at 2 

mm. Plant debris and stones, if present, were removed.  

Table 1. Characteristics of the soils use (means ± SE; n = 4). 

Land-use 

Soil Parameter 

pH C  Avail-Pi a     Fe-Pi b HCl-Fe(II) 

1:2.5 (%) (mg kg-1) (mg kg-1 ) (mg kg-1) 

Topsoil (0-10 cm)      
 

Forest 3.8 6.77±0.64 10.0±0.10 15.9±0.41 2.01±0.25 
 

Jungle rubber 4.2 4.03±0.57 5.03±0.85 17.6±0.49 5.23±0.19 
 

Rubber 4.4 2.56±0.32 7.13±0.65 18.2±0.72 5.02±0.26 
 

Oil palm 4.3 2.05±0.47 8.49±1.16 16.9±0.51 3.68±0.20 

Subsoil (20-30 cm) 

 Forest 4.5 0.55±0.18 5.73±0.76 5.49±0.38 2.02±0.51 

 Jungle rubber 4.4 0.74±0.30 4.37±0.15 8.22±0.91 3.23±0.19 

 Rubber 4.3 0.87±0.19 3.61±0.29 9.23±0.53 2.02±0.65 

  Oil palm 4.3 0.62±0.18 3.35±0.36 8.59±0.62 1.68±0.70 
a Available inorganic P that was extracted using 0.5 M NaHCO3 at pH 8.5 
b Fe-bound inorganic P that was extracted using 0.1 M NaOH 
 

2.3.3.2  Soil flooding and incubation 

2.5 g of soil sample were filled into a 12 ml glass tube (Labco Exetainer). Six 

milliliters of purified distilled water were added in each tube and air was driven 

out by purging N2 gas. The suspension was then covered with a rubber 

stopper to prevent O2 diffusion, evaporation losses and to ensure anaerobic 

conditions. Four field replicates of each land-use type and depth for each 

determination were incubated in the dark at 30 ± 1 o C. Directly after water 

addition (1 h) and after 7, 14, 21, 28, 45, and 60 days of continuous soil 

flooding, samples were shaken and pH was determined. Then, samples were 

filtered using a syringe filter with 0.45 µm pore size (Labsolute, Germany). 

The extracts for dissolved P (DP) and dissolved Fe2+ (DFe2+) determination 

were acidified immediately with 1 ml of 0.1 M HCl per 2 ml of solution to 

prevent oxidation. The remaining extracts were analyzed for dissolved organic 
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C (DOC) (see section 2.3). The samples were further analyzed for available-P 

and Fe-P (see section 2.4).  

2.3.3.3  Determination of DOC, DP and DFe2+ in the soil solution  

Dissolved C was measured using a ‘multi N/C 2100’ (Analytik jena) analyzer. 

Dissolved C corresponds to DOC because no carbonates were present in the 

soil (Guillaume et al., 2015).  

DP was determined by the malachite green (MG) colorimetric method 

(D’Angelo et al., 2001; Yevdokimov et al., 2016). Briefly, 150 µl of extracts 

was mixed with 30 µl of the first reagent (ammonium molybdate tetrahydrate 

and sulfuric acid) in disposable sterile 96-well polystyrene microtiter plates 

(Puregrade, Germany). These plates were shaken for 10 min on an orbital 

shaker at low speed (<90 rev min-1). Thereafter, 30 µl of the second reagent, 

which was a mixture of MG carbinol hydrochloride and polyvinyl alcohol 

(Sigma Aldrich Co), was added. The plate was shaken for an additional 20 

min. After shaking, samples were exposed to 40 0C for 40 min. To decrease 

variability between the replicates, microplates were left overnight at room 

temperature. Thereafter, absorbance was read using a spectrophotometer 

(TECAN; Infinite M200 pro) with 630 nm wavelength. Standards were also 

prepared in triplicate and treated the same way as the samples.  

Fe2+ was determined by ferrozine assay (Stookey, 1970). In principle, the Fe2+ 

ions in the solution form complexes with the ferrozine and form a magenta-

colored solution. In brief, 1 ml of extract was mixed with 100 µl ferrozine 

solution and then with 50 µl buffer solution (ammonium acetate adjusted to pH 

9.5 with ammonium hydroxide) in a 24-well polystyrene microplate 

(Puregrade, Germany). Then, the microplate was read in a spectrophotometer 

(TECAN; Infinite M200 pro) with 562 nm wavelength after color developed 

fully, normally after 5 min.   

2.3.3.4  Determination of available-P and Fe-P in the soil 

Soil samples after filtration were measured for NaHCO3- and NaOH-

extractable P. In this experiment, NaHCO3-extractable P and NaOH-



2 Publications and Manuscripts: Study 3 

76 

 

extractable P refer to available-P and Fe-bound P (Fe-P), respectively. The 

available-P and Fe-P was assessed following the Hedley P fractionation 

method (Hedley et al., 1982; Maranguit et al., 2017). Briefly, 1 g of wet soil 

sample was placed into a 50 ml screw cap centrifuge plastic tube. Samples 

were sequentially extracted with 30 ml of 0.5 M NaHCO3 (pH 8.5) to extract 

available-P and, thereafter, with 0.1 M NaOH to extract P bound with Fe. 

Samples were shaken for 16 h in an orbital shaker, centrifuged at 3500 rpm 

for 10 min and then filtered. Phosphorus was determined in all extracts and 

standards by the malachite green colorimetric method (D’Angelo et al., 2001; 

Yevdokimov et al., 2016) (as mentioned in section 2.3).  

2.3.3.5  Data analysis 

Results of all parameters were expressed as the mean of four field replicate 

samples and were presented as mg kg-1 or mg g-1 of the dry fine earth (< 2 

mm) fraction. Normality and homogeneity of variance were checked using 

Shapiro-Wilk’s W test and Levene tests, respectively. Differences of the soil 

parameter between land-use types for each sampling period were tested 

using one-way analysis of variance (ANOVA). To check the influence of land-

use on the changes of soil parameters between two time points, two-way 

repeated measures ANOVA were tested with (4) land-use and (2) time as the 

factors. For the changes between two sampling periods of one land-use, 

single sample t-tests (testing means against zero) on the rate of DFe2+, DP 

and DOC were conducted. A t-test result not significantly different to 0 means 

no changes between the two sampling period. Relationships between P 

availability indices (i.e., avail-P, Fe-P, DP) and associated soil parameters 

(i.e., DOC, DFe2+) were evaluated using Multiple Linear Regression. 

Relationships between two parameters were tested on the values recorded 

after 21 days of soil flooding; the time when Fe2+ reduction and P release 

peaked. Significance was accepted at a probability level of p ≤ 0.05. All 

statistical analyses were carried out using STATISTICA 12 (StatSoft Inc., 

USA) 
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2.3.4 Results  

2.3.4.1  Fe3+ reduction and Fe2+ mobilization 

The Fe2+ concentration in the soil solution was used as an index of Fe3+ 

reduction (Stookey, 1970). An increasing concentration of DFe2+ in the soil 

solution (Fig. 1) indicates the intensity of reduction. Soil flooding reduces Fe3+  

 

Figure 1 Effects of soil flooding on DFe2+ under forest, jungle rubber, rubber and oil palm 
plantations. We compared the DFe2+ of the topsoil (A) and subsoil (B). The computed rates of 
DFe2+ production in the topsoil (C) and subsoil (D) are also shown. DFe2+ on day 0 indicates 
the initial content determined after 1 h of soil flooding. Values represent means ± SE (n=4).  
Asterisks in (A) and (B) show significant differences (one-way ANOVA; p < 0.05) to rubber 
and oil palm soils at a given sampling time.  
 
 

to Fe2+ under anaerobic conditions already within a few days. The reduction of 

Fe3+ to Fe2+ had already started one week after soil flooding, as highlighted by 

an increased (p < 0.001) DFe2+ concentration after 7 days (Fig. 1).  

DFe2+ in topsoil reached its maximum after 21 days of flooding in all land-use 

types. The highest DFe2+ peak (p < 0.05) was in forest (22.6 ± 0.1 mg Fe2+ kg-
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1), followed by jungle rubber (21.1 ± 0.1 mg Fe2+ kg-1), oil palm (20.2 ± 0.1 mg 

Fe2+ kg-1) and rubber (17.6 ± 0.5 mg Fe2+ kg-1) (Fig. 1). The highest Fe2+ 

production rate was about 4 days after soil flooding in all land-use types 

except for oil palm, in which highest production occurred at about 11 days. 

Note, however, that the DFe2+ production in all land-use types diminished 

over time until the last flooding day. In fact, the rate was negative between 

days 26 and 38 of flooding (t-test; n = 4; p < 0.05), indicating re-precipitation 

of DFe2+. In contrast, subsoils reached their maximum accumulation of DFe2+ 

in the last week (60 days) of soil flooding in all land-use types, showing that 

reduction processes in the subsoil were slower. The highest production rate of 

DFe2+ in subsoil was recorded about 11 days after flooding (Fig. 1). Jungle 

rubber showed higher rates (p <0.05) than other land-use types throughout 

the soil flooding period. In all land-use types, topsoil had higher (p < 0.01) 

DFe2+ than subsoil throughout the flooding period (Fig. 1). This shows that the 

DFe2+ production rate is much faster in the topsoil, indicating the importance 

of SOM and microorganisms in Fe reduction. 

2.3.4.2  Phosphorus mobilization and availability 

Soil flooding increases P availability (p < 0.05), as shown by the increase of 

NaHCO3- extractable P in both topsoil and subsoil in all land-use types after 

one week of flooding (Fig. 2). The available P content of the forest and jungle 

rubber topsoil started to increase after the first week of soil flooding and 

continued until it peaked after 21 days, i.e. at the same time when the DFe2+ 

(Fig. 1) in the soil solution was at its maximum. The maximum increase of 

available P in forest (21 days = 17.9 mg P kg-1 ± 1.6) and jungle rubber (14 

days = 14.7 mg P kg-1 ± 1.0) was about 50–70% of the initial content before 

flooding (Fig. 2). Forest and jungle rubber had higher (p < 0.05) available P 

compared to monoculture plantations throughout the flooding period. In 

contrast, the topsoil of monoculture plantations had a more or less stable 

available P content after an increase (p < 0.05) in the first week of flooding  
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Figure 2 Effects of soil flooding on the available P (PNaHCO3) of topsoil (A) and subsoil (B) 
under forest, jungle rubber, rubber and oil palm plantations. Available P on day 0 indicates the 
initial content before soil flooding. Values represent means ± SE (n=4). Asterisks show 
significant differences (one-way ANOVA; p < 0.05) to rubber and oil palm soils at a given 
sampling time. 
 

(Fig. 2). The same pattern was observed in the subsoil of all land-use types; 

the subsoil showed an increase in available P only after one week and then 

stabilized until the last day of flooding. 

The effect of land-use type on DP production was similar to that on DFe2+ 

production (forest > jungle rubber > oil palm > rubber) throughout the flooding 

period. DP release started one week after soil flooding (Fig. 3), at the same 

time when Fe3+ reduction and DFe2+ production also started (Fig. 1). In all 

land-use types, the DP rates in the topsoil were highest 4 days after flooding 

(Fig. 3). The land-use influence on DP production was evident in the early 
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stage of flooding (Table A.1). The topsoil of forest showed the highest (p < 

0.05) DP concentration (1.61 mg P kg-1 ± 0.13) of all land-use types. DP 

production ceased 26 days after soil flooding, after which constant values 

were recorded (Fig. 3). A different trend was observed in the monoculture 

plantation in both topsoil and subsoil. DP increased only after 7 days of soil 

flooding with a peak of 6.0 mg P kg-1 and 5.0 mg P kg-1 in topsoil and subsoil, 

respectively, and it remained stable thereafter (Fig. 3).  

 

Figure 3 Effects of soil flooding on DP under forest, jungle rubber, rubber and oil palm 
plantations. We compared the DP of the topsoil (A) and subsoil (B). The computed rates of 
DP production in the topsoil (C) and subsoil (D) are also shown. DP on day 0 indicates the 
initial content determined after 1 h of soil flooding. Values represent means ± SE (n=4).  
Asterisks in (A) and (B) show significant differences (one-way ANOVA; p < 0.05) to rubber 
and oil palm soils at a given sampling time.  
 

2.3.4.3 Changes of Fe-bound phosphorus (Fe-P)  

The Fe-P (Fig. 4), which was determined by NaOH-extractable P, clearly 

decreased after flooding. The maximum decrease of about 50% (p < 0.05) 

was observed in the third week, at about the time when maximum P was 

liberated. The highest P released (p < 0.05) in the topsoil versus subsoil in all  
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land-use types (Fig. 3) corresponds to the Fe-P content (Fig. 4) in the initial 

state of soil flooding: less Fe-P was present (p < 0.05) in the subsoil than in 

the corresponding topsoil, and thus the P release in subsoil was less (p < 

0.05) than in topsoil throughout the flooding period. Nevertheless, a sharp 

decline (p < 0.05) in available P and DP after one month caused the Fe-P 

content to increase towards its initial level.  

2.3.4.4  Changes of DOC and soil solution pH 

Soil flooding also influenced the DOC concentration (Fig. 5). DOC (p < 0.05) 

was highest in the topsoil of both forest and jungle rubber during the early 

stage of flooding. This reflects the high SOM content under forest and jungle 

rubber compared to plantation soils (Table 1). This also explains the 10 times 

higher DOC (p < 0.05) in the topsoil versus subsoil in all land-use types 

throughout the flooding period.  

 
Figure 4 Effects of soil 
flooding on the Fe-
bound P (PNaOH) of 
topsoil (A) and subsoil 
(B) under forest, jungle 
rubber, rubber and oil 
palm plantations. Fe-P 
on day 0 indicates the 
initial content before 

soil flooding. Values 
represent means ± SE 
(n=4).  
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Figure 5 Effects of soil flooding on DOC under forest, jungle rubber, rubber and oil palm 
plantations. We compared the DOC of the topsoil (A) and subsoil (B). The computed rates of 
DOC production in the topsoil (C) and subsoil (D) are also shown. Values represent means ± 
SE (n=4). Asterisks in (A) and (B) show significant differences (one-way ANOVA; p < 0.05) to 
rubber and oil palm soils at a given sampling time.  

 

The soil solution pH declined in the first flooding week (Fig. 6). Afterwards, it 

marginally increased (average of 1 unit) in all soils until 45 days and then 

started to decline again. The trend was similar in both topsoil and subsoil of all 

land-use types. These results suggested that, in flooded acidic soils, pH will 

increase and stabilize at a new level after an initial decline. Consequently, this 

pH change appears to be one of the prerequisites for the solubilization and 

release of adsorbed P.  

 



2 Publications and Manuscripts: Study 3 

83 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6 Effects of soil flooding on soil pH of topsoil (A) and subsoil (B) under forest, jungle 
rubber, rubber and oil palm plantations. pH on day 0 indicates initial value before soil flooding. 
Values represent means ± SE (n=4). 
 

2.3.5 Discussion 

Our data confirmed the results of the previous investigations that soil flooding 

mobilizes P and increases P availability (e.g., Ponnamperuma, 1972). 

Interestingly, we found two distinct and opposite phases occurred upon 

flooding which were not found in the previous investigations. In the first phase 

during the first three weeks (with maximal intensity in the first week), DFe2+, 

DP and DOC accumulated in the soil solution (Figs. 1, 3 and 5, respectively). 

In parallel, the P availability in soil increased, as indicated by a decrease in 

Fe-P (Fig. 4) and an increase in available-P (Fig. 2). This shows that the 
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impacts of flooding are fast and not limited to P release; rather, soil P forms 

were also modified to more available fractions. Microbially- mediated 

reductive dissolution of Fe3+ oxides was important during the first three weeks 

of flooding, as indicated by the significant increase of DFe2+ during this period. 

The similar trend of Fe2+ and P release in the soil solution (Figs. 1 and 3, 

respectively) and the decrease of Fe-P (Fig. 4) confirmed that the reduction 

and dissolution of Fe(hydr)oxides releases their adsorbed or occluded 

phosphate (Rakotoson et al., 2015). Our results are in line with the findings of 

Ponnamperuma (1985), who reported that soil flooding resulted in a decline of 

Fe-P content and an increase of DP as a result of Fe3+ reduction, hydrolysis 

and dissolution of Fe-P in flooded soil. The increase of the available P fraction 

in soil suggests that part of the Fe-P affected by iron oxide reduction was not 

directly released in the soil solution but remained adsorbed on soil particles in 

a form available for plants, thus reducing potential P losses through leaching. 

The Fe-P pool is the main source from which P is released during reduction 

(Loeb et al., 2008; Zhang et al., 2003). This reduction is influenced by flooding 

duration. Despite the sharp increase of DFe2+ (Fig. 1) during the first three 

weeks, a significant DP (Fig. 3) release occurred mainly in the first week 

(except under forest, where a slight but significant accumulation lasted two 

additional weeks). Accordingly, Fe3+ oxides with high Fe-P content were 

exhausted after a week of flooding, and the subsequent microbially-mediated 

reductive dissolution of Fe3+ oxides occurred on Fe3+ oxides with lower Fe-P 

content. It is also possible that a larger fraction of Fe-P affected by the 

reduction of Fe3+ oxides in a later stage of flooding was not released as DP 

but contributed to the more available soil P pool. 

Land-use types influenced the impacts of flooding on P and Fe forms mainly 

in the topsoil, where P dissolution and availability were generally higher under 

forest and, to a lesser extent, under jungle rubber. Faster solubility in topsoil 

and especially under forest is connected with a higher C content there 

(Guillaume et al., 2015), leading to faster microbial consumption of O2 and 

consequently faster and more intensive Fe3+ to Fe2+ reduction. Land-use type 

effects were not related to initial differences in P or Fe forms because the 
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differences in P and Fe forms were generally much bigger after three weeks 

of flooding than the initial differences. This indicates that process intensities 

during flooding were affected by land-use type. The different P concentration 

between land-use types (Fig. 3) released after soil flooding is explained by the 

amount of SOM influencing microorganisms. SOM is used as a source of C 

and energy by the microorganisms and stimulates the microbially-mediated 

reductive dissolution of Fe3+ minerals (Rakotoson et al., 2015; Scalenghe et 

al., 2002; Zhang et al., 1994). The presence of high native SOM in forest and 

jungle topsoil drove Fe3+ reductions and increased the reduction intensity. 

Indeed, we recorded a positive relationship (R2 = 0.42; p < 0.01; Table 2) 

between DFe2+ and DOC of the topsoil during early flooding. Furthermore, the 

high DOC in forest and jungle rubber (Fig. 5) highlighted an efficient Fe3+ 

reduction and high release of sorbed P in both forest and jungle rubber topsoil 

compared to rubber and oil palm soil. Nonetheless, it remains unclear whether 

DOC was a source of C for microorganisms, thereby enhancing Fe3+ 

reduction, or whether it was a by-product of SOM decomposition during Fe3+ 

reduction, thereby being an indicator of the microbially-mediated reductive 

dissolution of Fe3+ minerals. The direct effect of the low SOM in subsoil in all 

land-use types resulted to a smaller release of P and Fe compared to topsoil.  

In conclusion, the extent of microbially-mediated Fe3+ reduction was 

apparently limited by C availability, as observed in other studies (Loeb et al., 

2008; Rakotoson et al., 2014, 2015). Accordingly, land-use types affected P 

mobilization and availability under flooding conditions mostly because forest 

conversion to plantations strongly decreased SOM. 

Part of the P release may originate from mineralization of P bound in SOM, 

especially during lengthier flooding. Microbial decomposition of SOM to 

scavenge organic C as an energy source for Fe3+ reduction was accompanied 

by the mineralization of organic P. Several studies have hypothesized that 

organic P mineralization from SOM is mainly driven by the microorganisms’ 

need for C as their energy (e.g., Achat et al., 2012; Spohn and Kuzyakov, 

2013). This hypothesis was verified in the topsoil of all those land-use types 

with high SOM concentrations, strengthening the land-use effects on P 
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release. This was supported by a strong correlation between available P and 

DOC (R2 = 0.58; p < 0.001; Table 2) and between DP and DOC (R2 = 0.56; p 

< 0.001; Table 2) in the topsoil of all land-use types during early flooding. 

Nonetheless, the doubling of the DOC concentration in forest between the 

second and third week of flooding was not followed by the same increase in 

DP, indicating that DP accumulation was also triggered by factors beyond an 

accumulation of organic P bound to DOC or released from SOM. 

 

Table 2. Correlation coefficient (R2) between concentrations of P forms and associated soil 

attributes after 21 days (maximum P release) of soil flooding.   

   DOC   DFe2+ 

   Avail-P   
      Surface    0.58***    0.53** 
      Subsoil    0.29ns    0.08ns 

   DP   
      Surface    0.56***    0.38* 
      Subsoil    0.18ns    0.13ns 

   DOC   
      Surface      ----    0.42** 
      Subsoil      ----    0.10ns 

*** p < 0.001; ** p < 0.01; * p < 0.05; ns=not significant; ---- not applicable 

 

The increasing soil solution pH in topsoil and subsoil across all land-use types 

may also have influenced the release of P over time. Most reduction reactions 

consume H+, increasing the pH in acid soils; e.g., Fe(OH)3 + 3H+ + e   Fe2+ 

+ H2O (Narteh and Sahrawat, 1999; Ponnamperuma, 1972). The 

neutralization of soil pH as a result of reduction processes during flooding 

increases the solubility of Fe- and Al-P compounds and the desorption of 

surface P in acid soils (Ponnamperuma, 1972). According to (Kashem and 

Singh, 2001), soil pH will approach neutrality (6.5 to 7.5) regardless of the 

initial value before flooding. In our experiments, soil pH increased with 

flooding time. However, the first week of flooding caused a pH to decline (Fig. 

6). This was due to the accumulation of CO2 produced by respiration of 

aerobic bacteria (Ponnamperuma, 1972) and the influence of continuous 

production of organic acids because forest and jungle soils contain abundant 

SOM. The lower pH of forest and jungle topsoil throughout the incubation 

period was due to the buffering effect of SOM that were abundant in both soils 

compared to plantation soils. Nonetheless, the influence of soil pH on P 
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release was likely low because pH increased only after one week, when most 

P was already released.  

Long-term incubation showed that iron dissolution and P mobilization were 

reversible processes. In the second phase, after three weeks, P availability in 

soils decreased, although Fe-P (Fig. 4) and available P (Fig. 2) did not reach 

initial levels. The decrease of DFe2+ (Fig. 1) indicates that microbial reduction 

of Fe3+ eventually stopped or was strongly reduced and that the produced 

Fe2+ underwent secondary chemical reactions, which lead to the precipitation 

of Fe2+. Our results confirmed the findings of Wood et al. (2015), in which soil 

solution P increase after flooding is only temporary and restricted to the early 

reducing conditions, after which it decreased again. We hypothesized that 

some of the P released via Fe3+ reduction would be re-adsorbed to freshly 

precipitated Fe2+ oxides because of their larger adsorptive surface area per 

unit soil volume (Chacon et al., 2006; Wright et al., 2001). This process, 

however, was not significant because DP did not decrease following Fe2+ 

precipitation. We were unable to identify the exact cause of changes in Fe3+ 

reduction and P availability, but it was not related to changes in soil pH. One 

potential explanation is an exhaustion of easily available C sources for 

microbial reduction. Indeed, DOC concentrations (Fig. 5) decreased in a 

pattern similar to DFe2+ concentrations (Fig. 1). In conclusion, even if the 

increase of available P fractions in soils after flooding is fast but reversible, 

the P released during initial flooding is not, as long as flooding lasts. Finally, 

the second phase might only rarely occur in natural conditions because 1) 

water movements would prevent the establishment of the physico-chemical 

conditions favoring precipitation and 2) C input by rhizodeposition would 

prevent C limitation of the microbially-mediated reductive dissolution of Fe3+ 

minerals. 

Ecological relevance 

In most tropical soils, P is widely believed to limit plant growth (Cleveland et 

al., 2006; Townsend et al., 2002; Vitousek, 1984). This is both because of the 

relatively low total soil P concentrations and because the high Fe and Al oxide 
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content causes a strong fixation of plant available inorganic P into forms 

unavailable for biota (Bucher et al., 2001; Holford, 1997; Maranguit et al., 

2017). Microbially-mediated Fe3+ reduction and the associated P release 

during anaerobic conditions play a fundamental role in the nutrition of plants 

and microorganisms by releasing inaccessible P during dry conditions. This 

mechanism is relevant not only in riparian areas or paddy soils, where 

flooding occurs, but also in well-drained soil partly waterlogged by regular 

heavy rainfalls during the wet season. 

Surprisingly, intensive rubber and oil palm plantations were already strongly 

depleted in their most refractory P pool a decade after forest conversion and 

despite P fertilization (Maranguit et al. 2017). This unexpected fast effect of 

land-use changes on the presumably least reactive P fractions could be 

driven by a synergy between increased P mobilization by microbially-

mediated Fe3+ reduction and a higher P output. On one hand, rubber and 

especially oil palm plantations suffer from soil compaction, resulting in higher 

bulk density and lower water infiltration and leading to strong erosion 

(Guillaume et al., 2016; Merten et al., 2016). Consequently, these intensive 

plantations are more subject to waterlogging and lengthier anaerobic 

conditions than are more porous soils (e.g., forest and jungle rubber); this 

makes the cycle turnover of P availability faster (Fig. 7). On the other hand, 

mobilized P can be exported from the site through runoff/erosion in the 

plantation. Indeed, strong soil erosion was estimated under rubber and oil 

palm plantations (Guillaume et al., 2015). Another very important output of 

mobilized P is through harvested biomass or leaching in groundwater if the P 

sink capacity of Fe3+ oxide in the subsoil is reduced due to Fe3+ reduction. Oil 

palms have a dense rooting system down to 30 cm depth, but fewer roots 

than forest in deep soils (Kotowska et al., 2015; Nelson et al., 2006). Hence, 

oil palms might be less efficient than forest in pumping P mobilized during 

waterlogged conditions in deep soil, leading to P losses (Fig. 7).  
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Figure 7 Conceptual figure showing that reducing conditions mobilize bound P through 
microbially-mediated Fe reduction and P dissolution making P available for plant uptake. In 
plantations, anaerobic conditions are more frequent and longer: this increases P availability, 
accelerates the P cycling, and increased the P uptake by vegetation. Three important P 
losses are responsible for P depletion: (1) biomass export with yield; (2) soil runoff/erosion 
and (3) P leaching if the vegetation cannot pump it because of fewer roots in deep soils or 
less active roots because of anaerobic conditions. 

 

2.3.6 Conclusions 

The increase of available P and DP during flooding is due to three main 

mechanisms that were strongly influenced by land-use types: (1) P release via 

the microbially-mediated reductive dissolution of Fe3+ oxides; (2) P release 

during SOM mineralization and (3) solubility of Fe phosphate due to 

increasing pH.  

Fe3+ reduction and P release were pronounced in topsoil compared to subsoil 

and always higher in forest and jungle rubber than in monoculture plantations 

throughout the flooding period. The maximum increase of P concentration 

was in the early stages of flooding, simultaneously with peak DFe2+ and DOC 



2 Publications and Manuscripts: Study 3 

90 

 

in the soil solution. The increase of available P and DP in the topsoil of forest 

and jungle rubber was about 50-70% of the initial concentration before 

flooding. Consequently, flooding contributed to P mobilization and thus to its 

potential uptake by plant roots. Fe3+ reduction by microorganisms was the key 

process behind the P release. Nonetheless, the extent of the microbially-

mediated reductive dissolution of ferric oxides was apparently determined by 

the SOM content because it is a source of C and energy that enables 

microorganisms to efficiently reduce Fe3+. Hence, soils from forest and jungle 

rubber, which contains high SOM, resulted in a faster and higher P release 

than the plantation soils. Apart from being an energy source for 

microorganisms, the mineralization of SOM also contributes to the increase of 

available P. The P release was higher only in the early stage of flooding 

across all land-uses and depths. The increasing pH in topsoil and subsoil after 

flooding of all land-use types also influence the P release. After three weeks 

of flooding, both P availability in soils and DFe2+ decreased. This indicates 

that microbial Fe3+ reduction stopped or was strongly reduced and that the 

Fe2+ produced underwent secondary chemical reactions, leading to the 

precipitation of Fe2+. Nonetheless, the short-term P release via Fe3+ reduction 

provided an important source of available P in flooded ecosystems and in 

well-drained, highly weathered soil partly waterlogged after seasonal flooding. 

Anaerobic conditions occur more often in compacted plantation soils 

compared to forest, and so, the increase P availability under plantations. This 

accelerates the P cycling: more P is pumped by the vegetation. Three 

important P losses are responsible for P depletion: (1) soil runoff/erosion; (2) 

biomass export from yield and (3) P leaching. 
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Table A.1. Influence of land-use on the change in DP, DFe2+ and DOC of topsoil between two time points as indicated by the p-value of 

significance evaluated using a Repeated measures ANOVA model. 

a p-value within land-use effect 
b p-value of the changes between two time points (e.g., between day 0 and 7; corresponding p-value indicated on day 7) 
c p-value of the influence of land-use on the change of parameters between two time points 
 

Time 
Dissolved P   Dissolved Fe2+   Dissolved Org C 

LUa Δtimeb LU*Δtimec   LU Δtime LU*Δtime   LU Δtime LU*Δtime 

0 - - -  - - -  - - - 

7 0.108ns 0.000*** 0.212ns  0.498ns 0.000*** 0.488ns  - - - 

14 0.041* 0.978ns 0.001***  0.295ns 0.000*** 0.352ns  0.000*** 0.000*** 0.059ns 

21 0.009** 0.024* 0.085ns  0.000*** 0.032* 0.604ns  0.000*** 0.000*** 0.000*** 

30 0.012* 0.009** 0.015*  0.037* 0.053ns 0.952ns  0.000*** 0.006** 0.042* 

45 0.009** 0.531ns 0.447ns  0.254ns 0.017* 0.993ns  0.000*** 0.126ns 0.791ns 

60 0.018* 0.596ns 0.651ns   0.559ns 0.002** 0.240ns   0.000*** 0.130ns 0.089ns 
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land-use changes:  New  concept  and  examples  from  conversion  of  

Indonesian rainforest  to  plantations 

 

Thomas Guillaumea,b,c,*,  Deejay Maranguita,  Kukuh 

Murtilaksonod,  Yakov Kuzyakovae 
 

Status: Published online in Ecological Indicators 
 
a Department  of  Soil  Science  of  Temperate  Ecosystems,  and  

Department  of  Agricultural  Soil Science,  Georg-August-University  

of  Göttingen,  Büsgenweg  2,37077  Göttingen,  Germany 

b School  of  Architecture,  Civil  and  Environmental  Engineering  

(ENAC),  Ecole  Polytechnique Fédérale  de  Lausanne  EPFL,  Ecological  Systems  

Laboratory(ECOS),  Station  2,  1015  Lausanne, Switzerland 

c Swiss  Federal  Institute  for  Forest,  Snow  and  Landscape  Research  (WSL),  Site  

Lausanne, Station  2,  1015  Lausanne,  Switzerland 

d Department  of  Soil  Science  and  Land  Resources,  Faculty  of  Agriculture,  Bogor  

Agricultural University,  Jl.  Meranti, Darmaga Campus, Bogor 16680, Indonesia 

e Institute  of  Environmental  Sciences,  Kazan  Federal  University,  420049  Kazan,  Russia 

 

3.1.1 Abstract 

Tropical  forest  conversion  to  agricultural  land  leads  to  a  strong  

decrease  of  soil  organic  carbon  (SOC) stocks.  While  the  decrease  of  

the  soil  C  sequestration  function  is  easy  to  measure,  the  impacts  of  

SOC losses  on  soil  fertility  remain  unclear.  Especially  the  assessment  of  

the  sensitivity  of  other  fertility  indicators  as  related  to  ecosystem  

services  suffers  from  a  lack  of  clear  methodology.  We developed a new 

approach  to  assess  the  sensitivity  of  soil  fertility  indicators  and  tested  it  

on  biological  and  chemical  soil properties  affected  by  rainforest  

conversion  to  plantations.  The  approach  is  based  on  (non-)linear  

regressions  between  SOC  losses  and  fertility  indicators  normalized  to  

their  level  in  a  natural  ecosystem.  Biotic indicators  (basal  respiration,  

microbial  biomass,  acid  phosphatase),  labile  SOC  pools  (dissolved  

organic carbon  and  light  fraction)  and  nutrients  (total  N  and  available  P)  

were  measured  in  Ah  horizons  from  rainforests,  jungle  rubber,  rubber  

(Hevea  brasiliensis)  and  oil  palm  (Elaeis  guineensis)  plantations  located  

on Sumatra.  The  negative  impact  of  land-use  changes  on  all  measured  
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indicators  increased  in  the  following sequence:  forest  <  jungle  rubber  <  

rubber  <  oil  palm.  The  basal  respiration,  microbial  biomass  and  

nutrients  were  resistant  to  SOC  losses,  whereas  the  light  fraction  was  

lost  stronger  than  SOC.  Microbial C use efficiency was independent on land 

use.  The resistance of C availability for microorganisms to SOC losses 

suggests  that  a  decrease  of  SOC  quality  was  partly  compensated  by  

litter  input  and  a  relative  enrichment by  nutrients.  However,  the  

relationship  between  the  basal  respiration  and  SOC  was  non-linear;  i.e.  

negative  impact  on  microbial  activity  strongly  increased  with  SOC  

losses.  Therefore,  a  small  decrease  of  C content  under  oil  palm  

compared  to  rubber  plantations  yielded  a  strong  drop  in  microbial  

activity.  Consequently,  management  practices  mitigating  SOC  losses  in  

oil  palm  plantations  would  strongly  increase soil  fertility  and  ecosystem  

stability.  We  conclude  that  the  new  approach  enables  quantitatively  

assessing the  sensitivity  and  resistance  of  diverse  soil  functions  to  land-

use  changes  and  can  thus  be  used  to  assess resilience  of  

agroecosystems  with  various  use  intensities. 

 

Keywords: SOC availability, Soil degradation, Land use, Microbial activity, Labile 

pool, Ecosystem resistance 
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3.2 Study 5: Effects of P and C inputs on microbial activities in P 

limiting bulk and rhizosphere soil 

Nataliya Bilyeraa,*, Evgenia Blagodatskayab, Deejay Maranguitb,c, Yakov Kuzyakovb 

Status: In preparation 

a Department of Radiobiology and Radioecology, National University of Life and 

Environmental Sciences of Ukraine, 03041, Kyiv Ukraine 

b Department  of  Soil  Science  of  Temperate  Ecosystems,  and  Department  of    

Agricultural  Soil Science,  Georg-August-University  of  Göttingen,  Büsgenweg  2,37077  

Göttingen,  Germany 

c   Department of Soil Science, Visayas State University, Baybay, 6521-A Leyte, Philippines 

3.2.1 Abstract 

Phosphorus (P) is the second important nutrient for plants and limiting 

element in many ecosystems. P is a nonrenewable resource, and based on its 

current rate of use, it has been estimated that the worlds known reserves of P 

rocks may be depleted within the current century. Soils with high-sorption P 

capacity require higher P additions, but, do not provide plants with sufficient 

available P. Therefore, it is necessary to reduce P application rates, but 

facilitate soil microbiological activity to maintain good P availability for plants. 

We aimed to study soil adenosine triphosphate (ATP), microbial biomass 

(MBC) and phosphatase activity as microbial response to contrasting P input 

in a low P Cambisol in a 5 days incubation experiment. The treatments were i) 

bulk soil (no C), ii) rhizosphere soil (10 µg C g-1 soil day-1 – root exudates 

imitation) and iii) glucose addition to soil (50 µg C g-1 soil – for microbial 

activation). Three rates of P as KH2PO4 were applied at each C treatments: i) 

no P (P0) – for P severe limitation; ii) 10% P from initial extractable soil P (P10) 

– low P input; and iii) 50% P from initial extractable soil P (P50) – high P input. 

We tested the following hypotheses: 1) the better response of MBC and ATP 

to P is expected to be in the rhizosphere soil, as continuous C input resulted 

in gradual microbial activation; 2) phosphatase activity will decrease with 

increasing P rates in all soils. Microbial biomass grew linear (R2 = 0.99) and 

simultaneously with incremental P addition in bulk soil. In rhizosphere and C-

amended soils, on contrary, the MBC response to P level was represented by 

quadratic model (y = -0.06x2+2.84x+37.03; R2 = 0.93). This model shows the 
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highest MBC value at P23, which indicates optimal and the most effective 

application rate for this soil type. The correlation between soil ATP content 

and P rates ascended in the order bulk soil (R2 = 0.34) > C-amended soil (R2 

= 0.51) > rhizosphere soil (R2 = 0.97). That proves our hypothesis that 

continuous C input (similar to root exudations) stimulates gradual 

microorganism activation. The soil ATP content per gram of microbial biomass 

C increased linearly (y = 5.09x + 21.4; R2 = 0.99) with increasing P rates in 

rhizosphere, whereas in bulk and C-amendment soils the effect of P was less 

pronounced. Phosphatase activity declined (57 and 64%) exponentially with 

increasing P rates for rhizosphere (R2 = 0.84) and C-amended (R2 = 0.98) 

soils, that complies with our hypothesis. In bulk soil, on contrary, phosphatase 

activity increased (35%) at P10 and remained constant at P50. P0 was resulted 

in 5-folds higher phosphatase activity in rhizosphere and C-amended soils 

compared to bulk soil. This proves the significance of root exudates in 

facilitation of microbial phosphatase production. Our results show that P 

(re)cycling can be accelerated in P-deficient soils by C addition and so, 

excessive P fertilization can be avoided to maintain ecosystem sustainability. 
 

 

Keywords: phosphorus, soil ATP, phosphatase, microbial biomass, Cambisol. 

 
 

3.2.2 Highlights 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Microbial biomass carbon (µg g-1 soil) after five days incubation of bulk, rhizosphere 
and C-amended soil with different rate of P.  
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Microbial biomass grew linear (R2 = 0.99) and simultaneously with 

incremental P addition in bulk soil. In rhizosphere and C-amended soils, on 

contrary, the MBC response to P level was represented by quadratic model(y 

= -0.06x2+2.84x+37.03; R2 = 0.93). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Phosphatase activity (nmol g-1 soil h-1) after five days incubation of bulk, rhizosphere 
and C-amended soil with different rate of P fertilizer.  

 

Phosphatase activity declined (57 and 64%) exponentially with increasing P 

rates for rhizosphere (R2 = 0.84) and C-amended (R2 = 0.98) soils. In bulk soil, 

on contrary, phosphatase activity increased (35%) at P10 and remained 

constant at P50. P0 was resulted in 5-folds higher phosphatase activity in 

rhizosphere and C-amended soils compared to bulk soil. 
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Figure 3 Soil ATP content (nmol g-1 soil) after five days incubation of bulk, rhizosphere and 
C-amended soil with different rate of P fertilizer.  
 
 

        

Figure 4 Soil ATP content per gram of microbial biomass C (mg ATP g-1 MBC) after five days 
incubation of bulk, rhizosphere and C-amended soil with different rate of P fertilizer.  

 

ATP increased linearly (y = 5.09x + 21.4; R2 = 0.99) with increasing P rates in 

rhizosphere, whereas in bulk and C-amendment soils the effect of P was less 

pronounced. 
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3.3 Study 6: Influence of earthworm on microbial biomass P and 

phosphatase activity 

Status: In preparation 

3.3.1 Background and objective of the study  

Earthworms are playing a crucial role in nutrient cycling. They influence the 

supply of nutrients through their tissues but largely through their burrowing 

activities; they produce aggregates and biopores in the soil and/or on the soil 

surface, thus affecting its physical properties, nutrient cycling, and plant 

growth. Earthworms, bury above ground litter, produces cast and mucus that 

enhances the activity of beneficial soil microorganisms colonizing in the 

biopores.  

In soil, phytate is the most abundant and recalcitrant form of organic P (Daniel 

et al., 2013). This is hydrolyzed by phosphatase enzymes to form available P 

for microbial and plant growth. Acid phosphatase in soil is produced by both 

plants and microorganisms (fungi, bacteria) (Turner et al., 2002; Lee et al., 

2008; Nannipieri et al., 2011). Phosphatase activity is increased by the 

colonization of biopores by P-solubilizing bacteria (Wan et al., 2004). 

Furthermore, since the digestive gut of earthworms secretes phosphatase, an 

increase of phosphatase activity could be predicted after soil has passed 

through the gut (Vinotha et al., 2000). Enzyme activities in burrow walls would 

be expected to reflect interactions between earthworms and microorganisms 

and clarify the role of earthworms in soil nutrient cycles. 

The objective of this study was to investigate microbial activity controlling P-

availability such as P uptake of microorganisms (microbial biomass P content 

[MBP]) and phosphatase activity in biopores.  

3.3.2 Methodology 

Briefly, topsoil and subsoil from agriculture field were packed in each of the 

four rhizoboxes. Leaf litters were put above the topsoil. Earthworms were kept 

above the leaf litters in each rhizobox. Three control rhizoboxes without 

earthworms were also included. After 3 months incubation, microbial biomass 
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P in control soil, in topsoil and subsoil pores and in undigested topsoil and 

subsoil were determined following chloroform-fumigation method (Hedley et 

al., 1982). Phosphatase activity was determined in-situ by Zymography.     

3.3.3 Highlights 

The results of the study suggest that earthworms do influence P availability. 

The MBP content was highest in soils from pores (both topsoil and subsoil) 

compared to control soil without earthworms and to undigested soils (Fig. 1). 

This increased in MBP content in pores has a relevant contribution to the 

available P content after microbial biomass turnover.     

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Microbial biomass P (µg g-1 soil) in control, pores and undigested topsoil and subsoil 
Values represent means ± SE (n=4).  
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Figure 2 a) examples of earthworms in rhizobox b) radioisotope image (14C) and c) 

zymographs showing spatial distribution of enzyme activities. Side colormaps are proportional 

to the 14C activity (KBq) and MUF calibration line.  

 

The 2D-images revealed that a) earthworms distribute litter and C in top- and 

sub-soil, b) enzyme activity was mainly associated with the biopore and 

detritusphere. This high activity is primarily attributed to the inputs of easily 

degradable organic compounds from the earthworm casts, litters and resulting 

stimulation of microorganisms, and the direct release of enzymes by 

earthworms.  
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Figure 3 a) examples of control rhizobox without earthworms and b) corresponding 

zymogram. High phosphatase activity attributed to the detritusphere is visible in the top of 

control box. 
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Figure 4 Phosphatase activity is accelerated in top- and sub-soil under effect of 

earthworms. 

 

                             

Figure 5 Phosphatase activity is accelerated in vicinity of detritusphere created by 

plant residue. Thereafter phosphatase activity slightly declined from top- to sub-soil. 
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3.4 Study 7. Effect of land-use change on P availability in sub-tropical 

soil in Nepal 

Status: In Preparation  

3.4.1 Background and objective of the study 

The increasing population in Nepal, for example in Chitwan districts lying in 

Terai region with current population growth rate of 1.75% the highest in Nepal, 

is continuously giving pressure to forest areas (Maharjan et al., 2017, 

FRA/DFRS, 2014 ). Massive deforestation and conversion to agricultural land-

use occurred in order to meet food demand in the region. However, 

consequences to soil P were never given attention. Therefore, the objective of 

the study was to investigate the effects of land-use conversion on P and its 

various fractions of different availability.  

3.4.2 Methodology 

Soil samples were collected in Chitwan district (27o 35’N 84o 30’E) of Nepal in 

three land-use types: forest, organic and conventional farming. Samples were 

collected in topsoil (0–10 cm) and subsoil (10–20 cm). Fresh samples were 

brought to the laboratory of the Department of Soil Science in Temperate 

Ecosystem in Göttingen University, Germany for P fractionation and other 

further analyses. Phosphorus fractionation was done following Hedley et al. 

(1982) P sequential fractionation method. Phosphate in every fraction was 

quantified following malachite green colorimetric method (D’Angelo et al., 

2001)  

3.4.3 Highlights 

Forest conversion to organic and conventional farming in Chitwan district of 

Nepal affects the forms, distribution and availability of P in the soil. The easily-

available Pi content in organic and conventional farming was higher compared 

to forest soil. This is due to the application of organic residues and inorganic P 

fertilizer in organic and conventional farming, respectively. Unexpectedly, the 

easily-available Po content in organic farming was found to be very low (Fig. 

1).  Probably, there was a fast decomposition and mineralization of easily-
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available Po in the organic farming system, contributing to the easily-available 

Pi content. Aside from fast mineralization of easily-available Po, most of Po in 

organic farming is in moderately-available (topsoil ≈ 80 mg P; subsoil ≈ 60 mg 

P kg-1 soil; Fig. 2) and non-available form (topsoil ≈ 250 mg P; subsoil ≈ 150 

mg P kg-1 soil; Fig. 3). Consequently, in the long-run, moderately-available Po 

form sustains long-term P fertility after mineralization buffering easily-available 

Pi.  

On the other hand, forest soil has the lowest content of easily-available P, 

obviously because it was never fertilized. Most of the P was bound with Fe 

oxide (moderately-available form). Nonetheless, it is very important in 

sustaining long-term P fertility after desorption.    

   

  

 
 
Figure 1 Easily-available Po (left) 
and Pi (right) (mg P kg-1 soil) in soil 
under different land-use types 
extracted by 0.5 M NaHCO3.   

 
 
 
 
 

 
 
Figure 2 Moderately-available Po 
(left) and Pi (right) (mg P kg-1 soil) 
in soil under different land-use 
types extracted by 0.1 M NaOH.   

 
 
 
 
 
 
 
Figure 3 Non-available Po (left) 
and Pi (right) (mg P kg-1 soil) in soil 
under different land-uses types 
extracted by 1 M HCl.   
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4 Appendix 

4.1 Contributions to the studies 

This PhD thesis comprises seven studies which were successfully done in 

cooperation with several coauthors. The contributions of these coauthors are 

as follows: 

Study 1.  Biotic and abiotic processes of phosphorus cycling in acidic P-

limited soil: 33P tracer assessment 

Status: Under review in Biology and Fertility of Soil (since March 2017) 

Deejay Maranguit:  60% (experimental design, accomplishment of 

experiment, laboratory analyses, data preparation 

and interpretation, manuscript preparation) 

Nataliya Bilyera:  30% (experimental design, discussion of 

manuscript structure, comments to improve the 

manuscript) 

Yakov Kuzyakov:  10% (discussion of manuscript structure; 

comments to improve the manuscript) 

Study 2. Land-use change affects phosphorus fractions in highly 

weathered tropical soils 

Status: Published online in Catena 

Deejay Maranguit: 70% (data collection, analysis and interpretation; 

manuscript preparation) 

Thomas Guillaume:    20% (soil collection, discussion of manuscript 

structure; comments to improve the manuscript) 

Yakov Kuzyakov:     10% (discussion of manuscript structure; 

comments to improve the manuscript) 

 

Study 3.  Effects of flooding on phosphorus and iron mobilization in 

highly weathered soils under different land-use types: Short-

term effects and mechanisms 
 

Status: Under review in Catena (since March 2017) 

Deejay Maranguit: 70% (data collection, analysis and interpretation; 

manuscript preparation) 
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Thomas Guillaume:    20% (soil collection, discussion of manuscript 

structure; comments to improve the manuscript) 

Yakov Kuzyakov: 10% (discussion of manuscript structure; 

comments to improve the manuscript) 

 

Study 4.  New approach for sensitivity of soil fertility indicators to land-

use changes: Theory and examples from conversion of 

Indonesian rainforest to plantations 

Status: Published online in Ecological Indicators 

Thomas Guillaume: 50% (soil sampling, experimental design, 

accomplishment of experiment, data preparation 

and interpretation, manuscript preparation) 

Deejay Maranguit:   20% (laboratory analyses, comments to improve 

the manuscript) 

Kukuh Murtilaksono:   10% (comments to improve the manuscript) 

Yakov Kuzyakov:      20% (experimental design, data interpretation, 

discussion of manuscript structure, comments to 

improve the manuscript) 

 

Study 5.  Effects of P and C inputs on microbial activities in P limiting 

bulk and rhizosphere soil 

Status: In preparation  

Nataliya Bilyera: 50% (experimental design, accomplishment of 

experiment, data preparation and interpretation, 

manuscript preparation) 

Evgenia Blagodatskaya:  20% (experimental design, interpretation of data, 

comments to improve the manuscript) 

Deejay Maranguit:  20% (laboratory analyses, data preparation and   

interpretation, comments to improve the 

manuscript) 

Yakov Kuzaykov:  10% (interpretation of data, comments to improve 

the manuscript) 
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Study 6. Influence of earthworm on microbial biomass P and 

phosphatase activity 
 

Status:  In preparation 

Duyen Hoang:   40% (experimental design, accomplishment of the 

experiment, data preparation and interpretation, 

manuscript preparation) 

Bahar Rasavi:  30% (experimental design, accomplishment of the 

experiment, data preparation and interpretation, 

comments to improve the manuscript) 

Deejay Maranguit:    20% (laboratory analyses, data preparation and 

interpretation) 

Yakov Kuzyakov:        10% (discussion on experimental design) 
 

Study 7.  Effect of land-use change on P availability in sub-tropical soil 

in Nepal 
 

Status: In preparation 

Menuka Maharjan:  50% (experimental design, accomplishment of the 

experiment, data preparation and interpretation, 

manuscript preparation) 

Deejay Maranguit:     45% (laboratory analyses, data interpretation, 

discussion of manuscript structure) 

Yakov Kuzyakov:      5% (discussion on experimental design) 
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