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1. Overview of the project 
 

I begin with a brief account of the topic of mechanosensation, followed by an outline of how the 

project evolved. The experimental techniques used and their rationale are described. The section 

ends with a short description of the thesis structure. 

 

Out of all sensory modalities, mechanosensation is of special interest to biophysicists, since its 

transduction mechanism in most cases involves a direct mechanical gating of ion channels, as 

opposed to gating by a chemical messenger. One important class of mechanosensory organs are 

the chordotonal organs. These perform proprioceptive and other mechanosensory functions in 

insects and crustaceans. There is a wide diversity of chordotonal organs across species and also 

within a single species, but there is a great deal of structural overlap. This makes them rather 

interesting to study, because results obtained by studying the mechanics of one type of 

chordotonal organ can in principle be applied to others. The mechanical properties of these organs 

are thought to be correlated to the sensory functions. Mutant studies, laser Doppler vibrometry and 

other techniques have given us some information on the functioning of these organs, but direct 

mechanical probing of their components had hitherto not been carried out. This was the motivation 

for my project, in which I measured mechanical properties of a particular chordotonal organ – the 

lateral pentascolopidial (lch5) organ – that plays a key role in proprioceptive locomotion control 

in Drosophila larvae. 

 

In the early stages of the project, the mechanical properties of Johnston’s organ – the antennal 

hearing organ in the adult fruit fly Drosophila melanogaster – appeared attractive, because it 

functions using an active process very similar to that operating in the vertebrate ear. The idea was 

to measure active fluctuations from the sensory cilia of the organs, which are believed to be the 

main transducing element. This would involve initially measuring forces at the arista, which is the 

external sound receiver of the antenna, and then moving inwards. Attempts to measure forces at 

the arista using optical tweezers were unsuccessful owing to thermal damage. There were also 

other difficulties, mainly that optical trapping requires a water sample and the fly does not survive 

under water. We also understood that probing the internal structures of Johnston’s organ would not 

yield conclusive results, since this would require perforating the cuticle and would impact the 

mechanics. We then shifted our attention to the lch5 organ since it is also a chordotonal organ, 

albeit simpler in structure than Johnston’s organ. We first decided to repeat the bead-trapping 

experiment on the lch5 organ. For these experiments I used a dissected fillet preparation of the 

larva. Here the muscles presented an obstacle to bringing the bead in contact with the organ. This 

was overcome by digesting the muscles with collagenase. However, once the bead was stuck to 
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the organ it could not be trapped, and no fluctuations could be measured. Since the ciliary 

mechanics appeared inaccessible, we shifted to whole-organ mechanics. 

 

Since the lch5 organ is believed to regulate the crawling mechanism, we decided to focus on this 

aspect. We captured detailed videos of the deformation of the cuticle as the larva crawls. Also, I 

obtained high-resolution images of the lch5 organ using DIC microscopy and a self-designed 

preparation. This involved flattening the larva between a slide and a coverslip, such that the gut 

was squeezed out and the sample was rendered transparent. This “squished prep” proved highly 

useful to us in the laser ablation experiments that we performed in the later stages of the project. 

 

The next set of experiments was to measure the mechanics of the lch5 organ in a fillet prep using 

a tungsten needle. We applied tension to the whole organ in situ by transverse deflection. Upon 

release of force, the organ displayed overdamped relaxation with two widely separated time 

constants, tens of milliseconds and seconds respectively. When the muscles covering the lch5 

organ were excised, the slow relaxation was absent and the fast relaxation became faster. We also 

observed the change in shape of the organ as it was deformed by the needle. A cusp-like shape 

was seen. The ends of the organ were fixed during the entire process, which meant that the length 

of the organ increased, and once the needle was released, relaxed back to its original value. 

Interestingly, most of the strain in the stretched organ is localized in the cap cells, which account 

for two-thirds of the length of the entire organ, and could be stretched to nearly a 10% increase in 

length without apparent damage.  

 

Next, laser ablation experiments on the lch5 organ were carried out. For this, the earlier mentioned 

“squished prep” was employed. Using a UV laser, the organ was then severed at different points, 

and its retraction was observed. It was found that cap cells retracted by over 100 µm after being 

severed from the neurons, indicating considerable steady state stress and strain in these cells. 

Also, in a myosin knockdown mutant, a much smaller retraction in comparison to the control was 

seen. Given the fact that actin as well as myosin motors are abundant in cap cells, the results point 

to a mechanical regulatory role of the cap cells in the lch5 organ, and a significant contribution of 

myosin motors to this process. 

The final set of experiments was to develop a technique to measure forces in the lch5 organ using 

calibrated glass needles. We have optimized the method and made it suitable for future 

investigations.  
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This thesis is structured as follows:  

Scientific Background gives a short introduction to mechanosensation, followed by a description 

of mechanosensory organs in insects with special reference to chordotonal organs. Next, 

Johnston’s organ, the lch5 organ, and the crawling mechanism of the Drosophila larva are 

described, along with a short note on non-muscle myosin II, a molecular motor that is important in 

many organs of Drosophila including in the lch5 organ.  

Materials and Methods describes in detail the various techniques and materials that have been 

used for this research. 

Results and discussion details the results obtained from our experiments and the inferences 

drawn from them. The results from the relaxation kinetics and shape experiments, as well as the 

laser ablation experiments, were submitted for publication to the Biophysical Journal in March 

2017, as follows: Prahlad, A., C. Spalthoff, D. Kong, J. Großhans, M. C. Göpfert, and C. F. 

Schmidt. 2017. Mechanical properties of a Drosophila larval chordotonal organ. The manuscript is 

currently under revision. Some text in this thesis has been quoted verbatim from the paper (details 

in Appendix A2). 

Conclusions and outlook discusses next steps in this particular project, and suggests possible 

future directions in this line of research. 
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2. Scientific background  
 

2.1. Mechanosensation 
 

Mechanosensation (1) is one of the most basic sensory modalities, found in all living organisms 

ranging from minute bacteria to colossal blue whales. It involves processing of mechanical stimuli, 

as opposed to optical, electrical or chemical ones. It is important to study because it has far-

reaching applications. Examples are understanding how cancer cells migrate in order to prevent 

metastasis (2), understanding locomotion in insects for the purpose of designing robots modeled 

on them (3), dissecting the mechanism of hearing to produce improved hearing aids (4), et cetera. 

If we compare mechanosensation to, say, vision or olfaction, we see that not only are the stimuli 

different, but the transduction mechanism – i.e. the mechanism by which a sensory stimulus is 

converted to an electrical signal (5-12) or in some cases leads to gene regulation (13, 14) – also 

differs. In vision, a light stimulus changes the conformation of rhodopsin, which eventually results 

in secondary messengers being activated and ion channels opening (7-10). In chemosensation, 

which includes olfaction (11) and gustation (15), the ion channels are either directly activated by an 

odorant or taste agent, or it could also be that the stimulus molecules bind to receptors that then 

activate the channels. However, in mechanosensation, it is the mechanical stimulus itself that 

gates the ion channel (1, 6, 16-18). A good example is the mscL channel in the bacterium 

Escherichia coli (6, 17). When the bacterial cell is placed in a hypo-osmotic environment, water 

flows into it and it begins to swell. This deformation of the membrane opens the mscL channels, 

and excess solutes are removed via the channel, in order to prevent cell wall rupture and bring the 

organism back to its original state. Another important difference between some mechanical senses 

(especially the auditory sense) and other modalities such as vision (7-10) and olfaction (11) is the 

following: the amplification of the signal takes place actively and mechanically (5, 12, 19-25), as 

opposed to a chemical amplification that would take place e.g. by a large number of secondary 

messenger molecules being activated by one rhodopsin molecule in vision (26). An active process 

is defined as one that takes place through the sustained conversion of stored energy, usually 

chemical or electrical, into movement. For example, stereocilia in hair cells in the vertebrate ear 

spontaneously generate additional forces through the action of the motor proteins prestin 

(19) and myosin. Passive processes include fluctuations due to thermal energy or the response to 

externally imposed forces (27).  

What constitutes a mechanical stimulus? The answer to this question is different for different 

organisms. For a single cell, these typically include turgor pressure (6), stiffness of substrates (28), 

mechanical obstacles (29), or liquid flow (27). For a plant, it could be wind direction (30), touch (31), 

gravity (32), or bending of the stem (33). In animals, the following senses are most commonly talked 
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about: touch, hearing (5, 12, 19-25), mechanical pain, balance, and proprioception (34-36). 

Proprioception can be explained as gauging the relative positions of body parts. It shall subsequently 

be discussed in some detail in section 2.5, since it forms the basis for the mechanism of locomotion 

of our animal of interest – the Drosophila larva (35, 37-44). But before that, let us have a look into 

the diversity of mechanosensory organs and their functions in this and other insects.  

2.2. Types of mechanosensors in insects 
 

Insect mechanosensory organs can be classified as ciliated and non-ciliated. The main types of non-

ciliated organs are the multipolar receptors (45, 46) and campaniform sensilla (47-49). Ciliated 

mechanosensors can be further divided into tactile hairs (46, 50, 51) and chordotonal organs (46, 

50, 52). Out of all these categories, I will be concerned mainly with the ciliated organs, and 

specifically the chordotonal organs, which we shall discuss in greater detail.  

Multipolar receptors consist of single multidendritic neurons that innervate diverse tissues and 

internal organs (45, 46, 53-56). They perform a variety of functions, e.g. regulation of gut contractions 

in the blowfly (57), or regulation of terrestrial and aerial locomotion in moths (54, 55) or locusts (53, 

56). Some multipolar receptors in the Drosophila larva are involved in nociception (46, 58), and 

others in proprioception (46, 59).  

Campaniform sensilla (47-49) are rounded internal organs that respond to forces within the body 

wall of insects. Their basic structure is a dome-like apparatus that is innervated by one bipolar neuron 

(60-62). They are involved mainly in the regulation of walking (61, 63) or flight (60, 64). 

Measurements of decrease in the strain compliance upon application of highly directed mechanical 

stimuli using a piezo-controlled tungsten needle in the campaniform sensilla of the cockroach 

Blaberus discoidalis have been described (65).  

Tactile hairs are found all over an insect’s body (66). The most commonly studied tactile hairs are 

the mechanosensory bristles of Drosophila (67). The construction is of a hollow shaft – the hair – 

protruding outward from the cuticle, with a monodendritic neuron at its base. The neuron terminates 

in a cilium, which is the main element in the mechanotransduction process. When the shaft is 

deflected, it displaces the tip of the neuron, causing mechanosensory channels to open and an ion 

current to flow into the neuron (46).  

Chordotonal organs are a family of specialized mechanoreceptors that are found in all insects, and 

also in crustaceans, where they perform a variety of sensory functions (38, 42, 44, 49, 50, 52, 68-
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70). They are unique to these two classes of arthropods (50). They generally are stretch receptor 

organs, bound into proprioceptive or other specialized mechanosensory organs (50, 52). Examples 

of proprioceptive chordotonal organs are the lateral pentascolopidial chordotonal organ (lch5 organ) 

in the body wall of the larva of the fruit fly Drosophila melanogaster (44, 49, 71-73), the femoral 

chordotonal organ in the leg of Locusta migratoria (50) etc. In Drosophila, lch5 organs are suspended 

between two attachment points at the cuticle, one on each side of the dorsal half of the larva in each 

segment in a tense straight conformation. The lch5 organs do not appear to be directly coupled to 

contractions of individual muscles. Rather, they sense deformations of the cuticle caused by muscle 

contraction – which is then transduced into a neural signal via the sensory neurons that are part of 

the organ. This finds mention in Halachmi et al., 2016 and Klein et al., 2010, though references for 

this have not been cited by them (71, 72).  

Literature from the late 19th and early 20th century (74-76) shows that the name “chordotonal organ” 

arose from a belief that these organs oscillate like the strings of a musical instrument. However, it is 

likely that this is not the case, given the degree to which the organ is damped by the embedding 

muscle tissue and the haemolymph. 

The basic unit of a chordotonal organ is the scolopidium (Fig. 2.4.1) (25, 44, 49, 50, 52, 77). The 

number of scolopidia in chordotonal organs varies, as does the number of neurons in a scolopidium, 

depending on the organ and the insect species. The antennal auditory organ (Johnston’s organ) of 

the adult fruit fly Drosophila melanogaster, contains around 250 scolopidia (49, 77), with two or three 

neurons in each – while the lch5 or pentamere organ of the larva of the same species, consists of 

five scolopidia (44, 49), each containing a single neuron. A scolopidium consists of 1 to 3 sensory 

neurons, integrated into the following accessory structures: one ligament cell forming one connection 

to the cuticle via an attachment cell, one cap cell forming the other connection to the cuticle via 

another attachment cell, and one scolopale cell from which a capsule called the scolopale emerges. 

The neurons each possess a single dendrite that terminates in a sensory cilium consisting of 9 

peripheral microtubule doublets without a central doublet (25, 52). The cilium is activated by dyneins 

(78). These are divided into two categories: modulators and force generators. They have been 

shown to be involved in promotion and regulation of active amplification. The cilia in each 

scolopidium are enclosed in the scolopale (Fig. 2.4.1), which is comprised mainly of a dense actin 

cytoskeleton including a few microtubules. In scolopidia containing more than one neuron, all 

sensory cilia are enclosed in the same scolopale. The fluid in the scolopale cavity has a high 

concentration of potassium ions, similar to the endolymph in the inner ear of vertebrates (25, 52, 77). 

Attached to the apex of each scolopale is a cap cell, a strongly elongated cell that, in the case of the 

lch5 organ, accounts for more than two thirds of the total length of the organ. This cell is connected 

to the scolopale by a structure known as the dendritic cap, which is conspicuously visible in electron 

microscopy (52). On the opposite end of the organ, closer to the initial segment of the neuronal axon 
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is the ligament cell, which is much shorter than the cap cell in the lch5 organ. The cap cells and 

ligament cells are both firmly fixed to the cuticle by means of attachment cells (69, 71, 72) (Fig. 2.1). 

The lch5 organ has one attachment cell for all five ligaments, and one attachment cell for all five cap 

cells (69).  

In some chordotonal organs such as Johnston’s organ (JO), the hearing organ in the adult fruit fly 

Drosophila, the sensory cilium contains an accumulation of intraflagellar transport proteins known 

as the ciliary dilation, which is believed to have a strategic role in the transduction process (79, 80). 

The dilation helps maintain the compartmentalization of two distinct classes of mechanosensory 

channels, whereby the key channel NOMPC is confined to the apex of the cilium (80). 

Almost 90 years ago, in 1931, Heinrich Hertweck published a thesis (49) that describes the detailed 

structures of several different classes of chordotonal organs in Drosophila, from the embryo to the 

adult. In more recent times, there have been numerous discoveries about the sensory function of 

two chordotonal organs in Drosophila: Johnston’s organ (JO), the hearing organ in the adult fruit fly, 

and the lch5 organ, the larval proprioceptor studied in this thesis (22, 24, 25, 44, 46, 73, 77, 78, 81, 

82).  

What is lacking is detailed information about the internal mechanics of chordotonal organs, i.e. which 

parts of the scolopidia deform and how when impacted by a mechanical stimulus, and how these 

deformations activate ion channels and are transduced to a neural signal. Field and Matheson 

mention in their 1998 review (50)  that the femoral chordotonal organ in the locust Locusta migratoria 

obeys Hooke’s law within an elastic limit, but do not provide quantitative information. They suggest 

that the elongated cap cells, which they refer to as the attachment cells, must play a pivotal role in 

the transduction mechanism, and suggest that the mechanism must involve microtubules sliding 

past one another. Measurements of the response of the femoral chordotonal organ in the stick insect 

to electrical stimulation (83), and the impact of changes in length on the tension of the muscle 

adjoining a stretch receptor organ in the crayfish Pacifastacus leniusculus (84), have also been 

reported.  

Direct measurements of the compliance of the chordotonal organs of Drosophila have, to our 

knowledge, not yet been reported. Drosophila is a particularly useful animal model (85), due to its 

ease of availability and maintenance. Its short life cycle affords greater speed in generating mutant 

and transgenic lines as compared to vertebrate models. Also, many of its physiological processes 

have analogies with vertebrates. An advantage specific to our project is that the Drosophila larva is 

transparent and the chordotonal organs are readily visible in a “squished prep” (section 3.6), and 

can also be directly probed in a fillet preparation (43). 
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Fig. 2.2.1. Diagram showing the positions of some important mechanosensory organs in the adult fly 

Drosophila (46, 50, 77, 86-88).  

 

 

 

 

 

Mechanosensory 
bristles

Multipolar receptors

FCOJohnston’s organ

Arista

Funiculus

Campaniform
sensilla



16 
 

2.3. Johnston’s organ 
 

J. E. Yack, in her 2004 review on auditory chordotonal organs (52), states that the line between 

auditory and proprioceptive organs is often very thin – since many proprioceptors respond to sound 

stimuli (89), and proprioceptive signals could often occur within the response range of auditory 

organs (90, 91). This ambiguity, according to her, can be resolved by choosing to define an auditory 

organ as that which produces a coherent behavioral response to a sound stimulus. 

Johnston’s organ (JO) is an exteroceptive chordotonal organ present at the base of the antenna, in 

a region known as the pedicel (12, 25). Its auditory function has been studied extensively in Diptera 

such as drosophilid flies (25, 77) and mosquitoes (92, 93), and Hymenoptera such as honeybees 

(94). It can also act as a gravity sensor, e.g. in Drosophila (95, 96). In Drosophilae and mosquitoes, 

its predominant function is to detect what are known as “courtship songs”. These are characteristic 

sound patterns emitted from the wings of a fly of one sex to attract an individual of the opposite sex 

for mating. In Drosophilae, the courtship song is produced by the male (97), while in mosquitoes it 

is the female that produces it (93).  

Each Drosophila species has a song pattern that is unique to that species. It may often be the case 

that many species of fruit fly congregate in the same place, such as around a rotting fruit. It is of 

prime importance for a Drosophila female to identify the male of the same species, since cross-

species mating would produce sterile offspring. The antennae of the female are uniquely tuned to 

the song frequency of conspecific males (97), unlike in mosquitoes where it is the male that detects 

the song of the female (93). 

The auditory apparatus in Drosophila, and also in other insects that possess JOs, consists of the 

entire antenna (25, 77, 98). The external sound receiver is the outermost portion of the antenna – a 

feathery extension known as the arista, described as a “sail” by A. Manning in 1967 (98). This is 

attached to a pear-shaped segment called the funiculus. The funiculus is in turn pivoted in a 

depression in the pedicel. The chordotonal neurons of JO are arranged with their cilia in direct 

contact with this pivot. There are two opposing groups of neurons, arranged at an obtuse angle to 

each other. The total number of neurons is approximately 500, and they are partitioned into around 

250 scolopidia. The mechanism of function has been studied extensively by Göpfert, Robert, 

Nadrowski and others (25, 77), mainly using laser Doppler vibrometry on the arista coupled with 

electrophysiology on the antennal nerve. In response to an external sound stimulus, the arista is 

deflected in such a way that it moves as one unit. This in turn produces a rotation in the funiculus 

(98). It has been hypothesized that when the funiculus rotates to one side, it compresses the sensory 

cilia of one of the opposing sets of neurons, and stretches those of the other set. These two sets 
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would then be differentially stimulated, and the signal would be transduced into an electrical signal. 

A sound stimulus would manifest itself as a side-to-side oscillation of the arista, while a gravitational 

stimulus would result only in a deflection of the arista in one direction (25). Different groups of JO 

neurons have been shown to be involved in sound, wind and gravity sensing (99). There have also 

been extensive studies on the various mechanically activated ion channels (MACs) and other 

proteins involved in the process, and the effects of mutations in these proteins on JO function (82, 

100-102). What has not yet been studied is how exactly the neurons and their cilia deform in 

response to a stimulus, and how this leads to opening of ion channels.  

What makes JO especially interesting is that properties such as compressive non-linearity, frequency 

selectivity and spontaneous otoacoustic emissions, which have pointed towards an active 

amplification process in the vertebrate ear (5, 19, 20, 103), have also been observed for JO (25, 77). 

Light microscopy, electron microscopy, genetics and molecular biology have provided detailed 

information about the structure, the identity and the function of various proteins that play a role in 

insect hearing and mechanosensing (12, 24, 25, 77, 82, 104, 105). Karak et al.  (78) have 

investigated the role of the ciliary dyneins in the functioning of the JO. They describe two axonemal 

dynein genes – Dmdnah3 and Dmdnai2. Null alleles of both these genes result in absence of neural 

response to auditory stimuli. Mutations in the former promote active amplification, while mutations in 

the latter eliminate it.  

The advantage of studying JO was that the sound receiver is external and can be easily monitored 

by laser Doppler vibrometry. However, the disadvantage is that there does not yet exist a method to 

directly probe the scolopidial, neuronal and ciliary mechanics and the responses of individual ion 

channels without damaging the mechanics of the antenna. The lch5 organ (section 2.4) is a good 

candidate to study the mechanics of the scolopidial components, given that although it is not an 

auditory organ, it still functions using the same proteins as JO (44), and is more accessible to direct 

mechanical manipulation.  
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2.4. The lch5 organ  
                                                                                                   
The Drosophila larva is a segmented animal (Fig. 2.4.1). Excluding the head, there are 10 segments 

– 3 thoracic and 7 abdominal (49, 69). In each abdominal segment there are two lch5 organs, one 

each on the left and the right side. The scolopidia in an lch5 organ are oriented parallel to each other 

(Fig. 2.4.2). The whole organ is about 300 µm in length, and held taut by means of the attachment 

cells. The cap cells point dorsoposteriorly at an angle of approximately 45 degrees to the body axis 

(Fig. 2.4.3). The larval tissue is constructed in layers: The cuticle is the outermost layer, then comes 

the lch5 organ, followed by 3 lateral muscles (42, 49, 69) that are perpendicular to the body axis, 

followed by the dorsal and ventral muscles that are either parallel or at acute angles to the body axis 

(Fig. 2.4.3). 

lch5 organs are suspended between two attachment points at the cuticle, one on each side of the 

dorsal half of the larva in each segment in a tense straight conformation (69, 71, 72). The lch5 organs 

do not appear to be directly coupled to contractions of individual muscles. Rather, they sense 

deformations of the cuticle caused by muscle contraction – which is then transduced into a neural 

signal via the sensory neurons that are part of the organ (Halachmi et al., 2016 and Klein et al., 

2010) (71, 72). A kink has been observed to form in the cap cells of lch5 organ as its corresponding 

segment contracts during fictive crawling (106).  

Zhang et al.  describe an increase in calcium influx into the lch5 organ in response to vibration stimuli, 

and the roles of mechanosensory ion channels in this process (44).They claim that the organ 

responds to sound stimuli, and that this process is governed mainly by the NOMPC channel with 

downstream modulation by the channels NANCHUNG and INACTIVE. Their experiments involved 

placing larvae on agar in a petridish, and playing recordings of the sounds emitted by yellow jacket 

wasps – natural predators of the larvae – from a loudspeaker placed below. They coupled this 

technique with electrophysiology and calcium imaging. Whether or not the lch5 organ is constructed 

to responds to sound stimuli is still debated, but it is still an interesting observation that the 

mechanically activated channels (MAC) and other proteins that play a major role in the lch5 organ 

are the same as those governing the functioning of Johnston’s organ.  
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In a study by Caldwell et al., mutations in chordotonal organs have been demonstrated to lead to 

locomotor defects in the larva, such as longer periods of time spent on turning and changing direction 

than on linear crawling in one direction (73). These results indicate that the chordotonal organs of 

the Drosophila larva provide feedback to the central nervous system to aid in muscle coordination 

necessary for crawling. The crawling mechanism is discussed in section 2.5. 

 

Fig. 2.4.1. Schematic representation of a fillet preparation (43) of a Drosophila larva, showing positions of 

various chordotonal organs including the lch5 organ (42, 49). The heads of the arrows represent neuronal 

somata, and the tails represent cap cells.  
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Fig. 2.4.2. Schematic of the lch5 organ of the Drosophila larva (49, 69, 72), depicting its various 

components. One of the 5 scolopidia has been darkened for easy identification. 
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Fig. 2.4.3. Schematic of the lch5 organ of the Drosophila larva (49, 69, 72). Lateral view of a right hemi-

segment of the larva, oriented such that the rostral end (R) of the larva is to the left and the caudal end (Cd) 

is to the right. LA: Ligament attachment cell, L: ligament cell, N: neuronal somata, D: dendrites, A: axons, Sc: 

scolopales, C: cap cell, CA: cap attachment cell. Rectangles indicate locations of the muscles that overlay 

the lch5 organ towards the inside of the larva: Lateral transverse muscles LT1-4, lateral longitudinal muscle 

LL1, lateral oblique muscle LO1, ventral longitudinal muscle VL1 (there are 3 more VL muscles, as well as 

more oblique and LL muscles, which are not shown here).  
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2.5. Peristaltic crawling in the Drosophila larva 
 

The periodic peristaltic wave of body segments is the basis of crawling not only in the Drosophila 

larva, but also in many other soft-bodied animals such as earthworms, leeches and caterpillars. This 

wave can either travel in the same direction as the movement of the animal, or in the opposite 

direction. The former case applies to maggots such as the Drosophila melanogaster larva (38, 39, 

42, 73) and caterpillars such as Manduca sexta, while the latter applies to annelids such as 

earthworms. e.g. Lumbricus (107), and leeches, e.g. Hirudo medicinalis (108). Some propose that 

networks in the central nervous system, known as central pattern generators (CPG), are responsible 

for generating the oscillations that result in this periodic motion (40, 73, 109, 110). The CPG is said 

to accomplish this even in the absence of sensory input (111). Others suggest that the CPG may not 

be the dominant factor for locomotion in soft-bodied animals, and attribute a greater role to sensory 

feedback – such as Paoletti and Mahadevan (112), who in 2014 published a mathematical model for 

crawling locomotion that functions using not a CPG, but what they refer to as a “local feedback 

mechanism”. This would involve interactions between the body of the animal and the surface on 

which it crawls, and local proprioception that presents feedback to the central nervous system. For 

the Drosophila larva, there does exist evidence of a CPG, but sensory feedback is of prime 

importance in coordinating the movement, as we shall see in the following paragraphs. 

In Drosophila and Manduca, terms used to describe the crawling mechanism are “toothpasting” and 

“visceral piston”. The visceral pistoning in the Drosophila larva has been described in great detail by 

Heckscher et al.  in 2012 (42). These authors cite an earlier reference on Manduca crawling (113), 

and state that in order for a crawling mechanism to be called a visceral piston, it must have the 

following two features:  

(a) The gut and the caudal end should move simultaneously as one unit, and 

(b) The abdominal segments must not move during gut and caudal end motion. 

They state that they have indeed observed such a mechanism. First the gut thrusts forward, and the 

rostral and caudal end move along with it. Then, a peristaltic wave begins at A7 and A8 (the seventh 

and eighth abdominal segments), and propagates forward, with two segments contracting at any 

given moment (42). Thus, there is no net increase or decrease of the length of the animal at any 

instant. 

The Drosophila larva is capable of crawling in both forward and reverse directions (42, 73, 109, 114). 

There is a slight difference in the pattern of muscle contractions in these movements (42). In both 

cases, the dorsal oblique muscle 1 (DO1) and ventral longitudinal muscle 1 (VL1) contract before 
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the lateral transverse (LT) muscles. In the case of the forward crawl, the DO1 and VL1 muscles 

contract simultaneously, followed by the LT muscles. In the other case, the DO1 muscle contracts 

with a slight delay as compared to the VL1 muscles, but still before the LT muscles. 

Several studies show that the CPG of the Drosophila larva cannot function without feedback from 

mechanosensors. Hughes and Thomas stated in their 2007 paper that there is “effectively no 

independent CPG” in Drosophila larval crawling (115), meaning that sensory feedback is 

indispensable. A study by Caldwell et al.  in 2003 (73) demonstrates that Drosophila larvae with 

chordotonal organ mutations have impaired locomotion, including phenotypes such as crawling in a 

zigzag fashion as opposed to linearly, difficulties in finding a suitable crawling direction, etc. Their 

results indicate that chordotonal organs, including our organ of interest – the lch5 organ, are involved 

in providing sensory feedback to the CPG for coordinated crawling. In close correlation with these 

observations are the findings of Suster and Bate, published in Nature in 2002 (109), which 

demonstrate that crawling-like patterns can be elicited in Drosophila embryos and larvae even if 

sensory feedback is completely eliminated, but in such a situation, the polarity of these patterns is 

disturbed and the reverse crawl predominates. Studies such as these have indeed proven that 

chordotonal organs are crucial to the crawling mechanism, but what remains to be seen is how the 

organs mechanically function. This would require direct physical probing of their viscoelastic 

properties. In this thesis we have undertaken to obtain an understanding of the lch5 mechanics, as 

I describe in greater detail in the sections on experimental methods and results. 

We used a dissected (fillet) preparation (43) of the larva that was immersed in Ringer’s solution – a 

buffer solution similar in composition to the animal’s haemolymph. To apply additional tension to the 

organ, we applied lateral force near the middle of the organ with a tungsten needle controlled by a 

micromanipulator. After rapid release of the needle, we recorded the free relaxation of the deformed 

organ to its initial conformation. From the stretched state, we could obtain estimates of the elastic 

deformation of the components of the lch5 organ. We furthermore used UV laser ablation to sever 

the organ in different places to observe the elastic recoil of the different components of the organ.   
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2.6. Non-muscle myosin II in Drosophila  
 

There is only one type of non-muscle myosin II in Drosophila. Its heavy chain is encoded by a gene 

known as zipper (116, 117). The gene is so named because it plays a crucial role in the dorsal 

closure mechanism in the Drosophila embryo; mutations in this gene negatively impact not only 

dorsal closure but also head involution and patterning of axons (117). The basic structure of myosin 

II is hexameric, with two heavy chains and four light chains (118). In Drosophila non-muscle myosin 

II, one pair of light chains is known as cytoplasmic myosin light chain (mlc-c), and the other pair is 

known as regulatory spaghetti squash (sqh) (116, 118). In some of our experiments (laser ablation 

in the lch5 organ), we have used a fly line where sqh has been labeled with GFP. This means that 

the ligaments and cap cells (section 2.4, and Fig. 2.1) are fluorescent when illuminated with blue 

light. Details are given in Materials and Methods (section 4.1) and Results and Discussion (section 

5.6).  

 

Non-muscle myosin II performs several functions in Drosophila. It is part of the actomyosin ring that 

contracts to repair wounds in the embryo (119). In the neuromuscular junction, it is present at the 

presynaptic terminal, and regulates the transport of synaptic vesicles (120). In the early embryo, it is 

involved in a barricading mechanism by which actomyosin actively blocks cells in one compartment 

from mingling with cells in other compartments (121). E-cadherin and actomyosin work together to 

produce polarized flows that drive morphogenesis (122). Myosin II has central roles in several types 

of cell deformation operating in development (123).  

 

In chordotonal organs such as the lch5 organ, non-muscle myosin II is present in the cap cells and 

the ligaments in greater quantity than in the neurons (124-126). Also, the scolopales are said to 

contain actin but not myosin (124-126). Our results point to an important role of myosin II in the 

mechanics of the lch5 organ. I describe these in sections 4.5 and 4.6.  
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3. Materials and methods 
 

3.1. List of chemicals 
 

Chemical Manufacturer or source Catalog number 

Sylgard 184 silicone elastomer 

kit – consisting of elastomer 

and curing agent 

Dow Corning, Wiesbaden, 

Germany 

000000000001064291 

NaCl Merck, Darmstadt, Germany 106404 

KCl Carl Roth, Karlsruhe, Germany 6781 

NaHCO3 Honeywell Riedel de Haën, 

Seelze, Germany 

000000015541 

Trehalose Sigma-Aldrich, Munich, Germany T9531 

Sucrose AppliChem A2211 

MgCl2 Carl Roth, Karlsruhe, Germany KK36 

CaCl2 Carl Roth, Karlsruhe, Germany CN93 

HEPES Carl Roth, Karlsruhe, Germany HN77 

Oil for objectives:  

ImmersolTM 518F 

Carl Zeiss, Oberkochen, 

Germany 

12-624-66A 

Fly food Prepared at the lab of Prof. Dr. 

Martin Göpfert, Schwann-

Schleiden Research Center, 

University of Göttingen, 

Germany.  

Not applicable 

Agarose Carl Roth, Karlsruhe, Germany 2267 

Collagenase Sigma-Aldrich, Munich, Germany C0130 

Superglue UHU GmbH & Co, Bühl (Baden), 

Germany 

4026700455700 

Epoxy glue Liqui-Moly GmbH, Ulm, Germany 6183 
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3.2. Maintenance of fly stocks: 
 

All flies were bred on food prepared at the laboratory of Prof. Dr. Martin Göpfert, Schwann-Schleiden 

Research Center, University of Göttingen, Germany. They were maintained in plastic vials that were 

quarter-filled with food, and stored at a temperature of 25°C or 18°C. The food was prepared using 

the following standard protocol (81):  

102g agar was soaked overnight in 5L tap water. The following mixtures were prepared:  

1. 100g soybean flour and 180g yeast in 1L tap water 

2. 800g cornmeal in 2L water 

3. 220g treacle in 1L water 

The above mixtures were boiled together at 100°C, in the Varioklav® Steampot DT44580604 

machine. Once the mixture cooled to 55°C, the two following mixtures were added to it: 

1. 800g malzin in 1L water 

2. 62mL propionic acid and 150g nipagin in 80mL ethanol 

Using an Isomatic MCP pump, the warm food was filled into plastic vials. Once it cooled down, it 

congealed. The vials were closed with mite-proof sponge plugs, and stored at 4°C for up to 4 weeks. 

If they were used immediately, they could also be stored at room temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

3.3. Fly lines used: 
 

Experiment Fly line 

Crawling assays (3.5) elaV-GCaMP 

DIC imaging of the lch5 organ (3.7) 

Relaxation dynamics/ shape analysis (3.8) 

Measurement of force using calibrated glass 

pipettes (3.10) 

Wild-type: Canton-S (CS), OregonR (OrR) 

 

 

 

 

 

 

 

 

Laser ablation (3.9) 

1. OrR, CS (wild type) 

2. w[-];PBac[20XUAS-

6XGFP]VK00018;iav-GAL4,w[+]/+: 

Exhibits GFP fluorescence in lch5 

neurons (axons, somata, dendrites, 

scolopales). These animals are 

heterozygous, and therefore need to be 

checked for fluorescence prior to use. 

This was done using a Leica MZ FLIII 

microscope, with the appropriate filter 

for GFP fluorescence.  

3. Sqh-GFP: In this line, non-muscle 

myosin has been labeled with GFP. 

Hence it exhibits GFP fluorescence in 

the cap cells and ligaments but not in 

the neurons.   

4. UAS Sqh-RNAi X Pinta-GAL4 (myosin 

knockdown mutant): In this mutant, the 

non-muscle myosin is partially knocked 

down in the chordotonal organs, 

however not completely eliminated. 

5. w118 X Pinta-GAL4: This was used as a 

control for the myosin mutant larvae. 
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3.4. Optical trapping 
 

Optical trapping is a technique by which a finely focussed laser is used to hold an object at its focal 

point by optical forces (127, 128). One may either use an optical trap to measure forces, or to 

deliver known forces. Earlier trapping techniques used two lasers, or depended on gravity. But 

later on, the single-beam gradient trap, also known as optical tweezers, was designed (127). This 

makes use of a single laser beam, and only optical forces are used to trap the object.  

 

The single-beam optical trap was originally designed to trap particles in the Rayleigh range, i.e. of 

size smaller than the wavelength λ of the laser (128). Examples of such particles could be atoms 

and molecules. In this case, the particle can be represented as a dipole (127). Then there are two 

forces acting on the particle, which shall be now described. When laser light is focused into a 

diffraction-limited focus, the light intensity strongly increases as one moves closer to the focus. The 

force arising from this intensity gradient is known as the gradient force. The other force points in 

the direction of the incident light, and is known as the scattering force (127). (Ashkin 1992, 

Gordon 1973, Gordon and Ashkin 1980). The gradient force pulls the particle into the laser focus, 

while the scattering force tends to eject it from the trap. More details of these forces can be found 

in (129) and  . 

 

For a Rayleigh particle, trapping is achieved when the gradient force is stronger than the scattering 

force. It was later discovered that even particles whose sizes are in the micron range can be 

trapped by a laser (130). These could be silica (27) or polystyrene beads (131), or even biological 

samples such as living cells (eukaryotic cells, bacteria, viruses) (132). In biological optical trapping 

experiments, one typically traps dielectric beads and uses them as probes, or traps whole cells. 
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Fig. 3.4.1. A diagram of an optically-trapped bead, showing the direction of gradient force for different 

positions of the laser focus. Image modified from the following sources: (133) and (127). 

In biophysical experiments, optical trapping is generally used to measure forces. This force could 

be exerted by the flagellum of a bacterium (134) or a sperm cell as it swims (135). Other examples 

are the forces exerted by migrating cells in a developing Drosophila embryo (133), or by a kinesin 

molecule walking on the surface of a microtubule (136). Alternatively, one could use an optically 

trapped probe such as a polystyrene bead to deliver forces to the system, and measure the 

response say by calcium imaging or electrophysiology. Forces delivered are typically of the order 

of a few pN (129). An example of such an experiment is to displace the non-motile primary cilia of 

a Madin-Darby Canine Kidney (MDCK) cell with an optically trapped bead, and measure the 

calcium influx (27). Another such experiment involves two optical traps with beads in them placed 

at either end of a cell (131). This dual optical trap has been used to measure viscoelastic 

properties of fibroblasts and cardiomyocytes (131). 

 

Results from optical trapping experiments can be presented as a plot of power spectral density 

versus frequency (27, 137). For a dielectric bead trapped at a laser focus in an aqueous medium, 

the power spectral density is the square of the Fourier transform of the Brownian fluctuations of the 

bead.  

 

It is important to note that infrared lasers are preferred for biological optical trapping experiments, 

since they cause the least radiation damage (138). However, even this may be too intense for a 

highly absorbing system like the arista of Drosophila flies (see section 4.1). 
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My experiments were carried out on an optical tweezer set-up that had been built and aligned by 

Dr. Christopher Battle (27) while he was working at the group of Prof. Dr. Schmidt (Fig. 3.4.2). The 

set-up consists of an upright microscope. I used the following objectives: W Plan-Apochromat 

40x/1.0 DIC (Carl Zeiss AG, Göttingen, Germany) and LUMPlanFl 60x/1.0 water-dipping objectives 

(Olympus Europa SE & Co. KG, Hamburg, Germany). Videos were recorded using a CCD camera 

(Photometrics Coolsnap EZ, Roper Scientific GmbH, Göttingen, Germany).   

 

3.4.1. Experiments on adult flies 

 

The trapping experiments were carried out as follows:  

The head of an adult fly (or in some cases an entire fly) was fixed at the bottom of a petridish using 

superglue. The arista was located using the microscope. The petridish was filled with water, and 

polystyrene or silica beads (4 µm) were injected using a pipette. The IR laser (an ytterbium fiber 

laser, 1064 nm, from IPG Laser GmbH, Burbach, Germany) was switched on and a bead was 

trapped at its focus. This bead was then moved close to the arista.  
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Fig. 3.4.2. The set-up used for my optical trapping experiments. Figure courtesy Dr. Christopher Battle. 
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3.4.2. Experiments on larvae 

 

Here we used a fillet preparation of the larva, described in detail in section 3.8.4. After locating an 

lch5 organ, I injected beads into the Ringer solution using a pipette. Muscles presented an 

obstacle to measurements. Hence, I used an apparatus made of a glass pipette filled with 

concentrated collagenase solution, attached at the opposite end to a rubber tube and a plastic 

pipette, to blow collagenase onto the muscles. This pipette was attached to a micromanipulator 

(Scientifica UI-1000-i, Multichannel Systems, Reutlingen, Germany). I also used the same pipette 

to tear away the remnants of the muscles. Once the lch5 organ was free of muscles, I injected 

beads into the Ringer solution. When a bead came in contact with the lch5 organ, I switched on the 

laser and attempted to trap it. Since the desired effect was not observed, we changed our 

methodology, as is described in subsequent sections, and in more detail in Results and 

Discussion. 
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3.5. Crawling assay 
 

A 30% agarose gel was prepared by dissolving agarose in a glass flask in a microwave oven. Then 

a glass slide was taken, coated with the agarose solution and allowed to cool. Once the gel formed, 

a groove was made in it, in which a third instar larva was placed and allowed to crawl. Images were 

recorded using a Zeiss Observer Z.1 microscope and an Andor Zyla camera. The following 

objectives were used: ACHROPLAN 10x/0.25 and LD ACHROPLAN 20x/0.40 (Carl Zeiss AG, 

Göttingen, Germany).  The set-up is shown in Figs. 3.5.1 and 3.5.2. 

 

The gels had to be freshly prepared each time, since they dry out within a few hours. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5.1. Agarose-coated slide used for crawling assay 
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Fig. 3.5.2. Set-up used for crawling assay, showing relative placement of components 

 

3.6. The “squished prep”  
 

This preparation was used for DIC imaging of the lch5 organ (section 3.7 in Materials and Methods, 

and section 4.3 in Results) and laser ablation experiments (section 3.9 in Materials and Methods, 

and  section 4.6 in Results). 

This method of preparing the larva sample was developed as follows: In order to obtain detailed 

images of the components of the lch5 organ, described in section 2.4 in Scientific Background, trans-

illumination DIC microscopy is the method of choice, since it yields images with sufficient contrast. 

DIC microscopy requires thin and transparent samples. Mounting the fillet preparation (section 3.8.4) 

on a slide was not feasible, since the fillet was observed to get damaged when detached from the 

PDMS slab. Hence, I devised the preparation described below. This so-called “squished prep” has 

proved highly useful also in the laser ablation experiments. 

Before carrying out the experiment, the larvae were squeezed between a glass slide and a coverslip 

along with some Ringer’s solution, such that the gut was removed and the interior of the larva 

became transparent (Fig. 3.6.1). This method leaves the chordotonal organs well-preserved and 
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clearly visible, albeit not accessible to direct mechanical manipulation. One slide and coverslip can 

accommodate several larvae. 

 

Fig. 3.6.1. Depiction of the larval preparation used for the DIC imaging and the UV laser cutting experiments. 

In this diagram, the larva has been enlarged several times from its actual size relative to that of the coverslip, 

in order to make its placement clear. The larva was not always placed parallel to the long axis of the slide as 

shown. It could be at any angle. 

 

3.7. DIC images of the lch5 organ 
 

The larva was prepared using the “squished prep” method as described in the previous section. A 

Zeiss Axiovert 200 microscope was used, with the DIC-II prism. The sample was viewed using a 

Plan-APOCHROMAT 100x/1.46 objective (Carl Zeiss AG, Göttingen, Germany). A drop of oil was 

placed on the objective, and the sample was placed on the microscope. An lch5 organ was located, 

and the stage was gradually moved from one end of the organ to the other, intermittently recording 

and saving snapshots using a CCD camera (Photometrics Coolsnap EZ, Roper Scientific GmbH, 

Göttingen, Germany) and the WinSpec/32 software (Princeton Instruments, New Jersey, USA). 
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3.8. Relaxation kinetics and shape analysis 
 

3.8.1. Preparation of Ringer buffer  

 

To prepare Ringer’s solution, the following ingredients were dissolved in high purity Millipore water - 

NaCl 0.07 M, KCl 5 mM, NaHCO3 0.1 M, trehalose 5 mM, sucrose 0.115 M, CaCl2 2 mM, MgCl2 0.02 

M, HEPES 4.2 mM. 1L solution was prepared in a glass bottle, and was constantly stirred using a 

magnetic stirrer till the contents dissolved. The pH was adjusted to 7.2. The Ringer’s solution was 

poured into 20 Falcon tubes each of 50 mL capacity, stored frozen, and thawed before use. It was 

important to freeze the solution, because if it was stored at room temperature or even in a refrigerator 

for a very long time, the presence of large amounts of sucrose in the solution would lead to 

contaminations. 

 

3.8.2. Preparation of PDMS slabs  

 

Elastomer and curing agent (Sylgard 184 silicone elastomer kit) were thoroughly mixed at a ratio of 

10:1 (4 mL elastomer, 0.4 mL curing agent) in a borosilicate glass beaker of 30 mm inner diameter 

and baked for 10 min in an oven preheated to 150°C, followed by freezing at -20°C for 5 min to help 

detach the PDMS from the beaker walls. Through adhesion to the beaker walls before 

polymerization, the PDMS slabs developed slightly elevated edges that helped to retain the buffer 

solution under the microscope. The slabs were carefully extricated from the beakers using a scalpel. 

The method was modified from the following source: 

http://www.digitaladdis.com/sk/PDMS_Mold_Preparation_Kassegne_MEMSLab.pdf (accessed May 

7, 2016).  

 

3.8.3. Preparation of tungsten needles 

 

Tungsten wire (0.2 mm diameter) was purchased from Goodfellow GmbH, Bad Nauheim, Germany. 

Fine-tipped tungsten needles were produced by electrolytically sharpening pieces of this wire on a 

machine custom-designed for the purpose by Dr Bart Geurten in the group of Prof. Dr. Martin Göpfert 

(Fig. 3.8.1 A). The sharpening was carried out by repeatedly dipping the wire into concentrated KOH 

solution (2M) using a rotary mechanism, while pausing the procedure intermittently to check the 

needle for sharpness via a microscope.  

http://www.digitaladdis.com/sk/PDMS_Mold_Preparation_Kassegne_MEMSLab.pdf
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The two components of the epoxy glue were mixed, and the blunt end of the needle was immersed 

in it. Then the blunt end of the needle was affixed to a glass capillary, and left for 5 minutes while 

the glue hardened. Then the tip of the needle was bent at an angle of approximately 90° for a length 

of about 2 mm (Fig. 3.8.1 B), so that it could be hooked into the lch5 organ vertically. This was done 

as follows: The portion of the needle that protruded from the capillary was inserted into another 

capillary, and bent by moving the second capillary, taking care not to damage the sharp tip.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8.1. (A) Depiction of the 

set-up for electrolytic sharpening 

of tungsten wire (B) A 

representation of the needle used 

for the relaxation kinetics and 

shape experiments.  
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3.8.4. Preparation and dissection of Drosophila larvae  

 

Tool Application Catalog number  

(if applicable) 

Dissection pins: Pieces of steel 

wire of 0.1 mm diameter. These 

were sourced from the machine 

workshop at the DPI, Faculty of 

Physics, University of 

Göttingen. 

(OR) 

Austerlitz Insect Pins®, 0.1 mm 

 

 

 

To pin the larva in place during 

dissection 

Steel wire: not applicable 

 

 

 

 

Insect pins: catalog 

number  26002-10 

DuMont #55 Forceps Holding the dissection pins: for 

this, old forceps that had become 

blunt were used (new forceps 

were reserved for gut removal, 

since using them for pin holding 

would damage them) 

 

Pulling out the gut of the larva 

fillet: for this I used new, sharp 

forceps. 

11295-51 

Ultra-Fine Clipper Scissors To cut open the larva along its 

midline 

15300-00 

Vannas Spring Scissors To cut away the muscles of the 

larva 

15000-04 

 

Table 3.8.1. The various dissection tools, and their uses. All tools were sourced from Fine Science Tools 

(FST), Heidelberg, Germany, unless otherwise mentioned in the table. 

 

I used third instar CS or OrR wild type larvae for all experiments and essentially followed published 

procedures for dissection (43). Dissection was carried out on circular PDMS slabs of 30 mm diameter 

and ~4 mm edge height with a shallow central depression of ~2 mm, which were prepared as 
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described in section 3.8.2. The dissected larva thus prepared is known as a fillet (43). The dissection 

procedure was as follows:  

 

1. The PDMS slab was placed in a plastic petri dish of 10 cm diameter, and pressed down so 

that its bottom adhered to the petri dish. Then the following steps were carried out using a 

stereomicroscope (Leica M80, Leica Microsystems, Wetzlar, Germany) at 2.5X 

magnification. 

2. The larva was pinned at its caudal end, approximately in the middle of the PDMS slab. 

3. Next, the larva was held taut – but not stretched excessively – and pinned at its rostral end. 

4. Ringer solution was added with a plastic dropper till the PDMS slab was filled and the larva 

was completely submerged. 

5. Using the Ultra-Fine Clipper Scissors, a cut was made close to the caudal end. The gut was 

seen to float upwards. It was partly pulled out, and then the cut was extended till it reached 

the rostral end. Ringer solution was taken out of the PDMS slab and sprayed back on the 

sample, till the gut was partly disengaged from the cuticle and rendered easy to remove. 

6. Using sharp forceps, the gut was gently pulled out, taking care not to damage the fillet. 

7. 4 more pins were used to open out the fillet and make it flat (Fig. 3.8.2). 

8. The preparation (fillet) was washed 2-3 times using Ringer’s solution. 

9. The larvae were then kept under fresh Ringer’s solution and used in the experiments within 

10 min after beginning the preparation and for not longer than 2 h. 

 

In some preparations, I additionally excised muscles using Vannas Spring Scissors. This was done 

to expose the lch5 organs and compare the relaxation properties to the case where the muscles 

were intact. The same stereo-microscope was used, and the excision was done at 6X magnification. 

This method was learnt from Dr Chonglin Guan in the group of Prof. Dr. Christoph F. Schmidt, Third 

Institute of Physics – Biophysics, Faculty of Physics, University of Göttingen.   
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3.8.5. Imaging and mechanical manipulation 

 

The fillet preparation was viewed using a 20X water-dipping objective (W Plan-Apochromat 20x/NA 

1.0, Carl Zeiss Microscopy AG, Göttingen, Germany) in the upright microscope on the set-up 

described in section 3.4 that had been originally designed for optical trapping experiments (27). For 

the purpose of these experiments, we replaced the CCD camera, which could only achieve a 

maximum frame rate of 20 fps, with a high-speed camera (Photron Fastcam, VKT Video 

Kommunikation GmbH, Pfullingen, Germany). The sample was placed on a stage that could be 

moved along X, Y and Z axes, from Newport Corporation, Irvine, USA. The following software was 

used for imaging: MicroManager (https://micro-manager.org) (139) which works in combination with 

ImageJ (https://imagej.nih.gov/ij/) (140). 

 

First, the meniscus of the Ringer solution layer on the fillet was brought in contact with the objective. 

Then the larva sample was observed, and moved into focus such that an lch5 organ was visible. 

Then the sample was rotated such that the lch5 organ was oriented roughly parallel to the long axis 

of the image window of MicroManager (Fig. 3.8.2, lower part, also Fig. 4.5.1 in Results). After 

focusing on the lch5 organ, the sample was lowered. Then, using a micromanipulator (Scientifica UI-

1000-i, Multichannel Systems, Reutlingen, Germany), the tungsten needle was brought into focus 

(in air). The sample stage was raised and the lch5 organ was focused on once again. The needle, 

which had by now gone out of focus, was lowered to bring it back in focus and in contact with the 

lch5 organ. Once this was done, a lateral pushing or a pulling force was exerted at an angle of 90° 

to the lch5 organ, to deform and stretch the organ. The needle was then rapidly disengaged using 

the “step” function of the manipulator. Videos were recorded at frame rates of 250 and 1000 fps. For 

the larval preparations with intact muscles, the fast time constant was resolved equally well at both 

frame rates. For the preparations with muscles excised, a frame rate of 1000 fps was used, since 

the fast time constant was smaller than in the previous case. Details are given in section 4.4. The 

videos were analyzed using the Manual Tracking plugin on ImageJ 

(https://imagej.nih.gov/ij/plugins/track/track.html), either by tracking several points along the organ 

or by specifically tracking the motion of the distinctive scolopales.  

 

In the preparations with intact muscles, four lch5 organs, each from a different animal, were tested 

(Animal 1: 2 trials – A1 & A2, Animal 2: 3 trials each from 2 different organs –  B1-B3 and C1-C3, 

Animal 3: 5 trials – D1-D5, Animal 4: 5 trials – E1-E5). The results from these trials are depicted in 

Figs. 4.4.4 - 4.4.5 and Table 4.4.1. For the case with excised muscles, three trials each were 

performed on two organs from two different animals (Animal 1: W1 - W3, Animal 2: X1 - X3). The 

results from these trials are depicted in Figs. 4.4.4 - 4.4.5 and Table 4.4.2. The position data obtained 

from ImageJ was fitted by single or double exponentials in OriginPro 

https://micro-manager.org/
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/plugins/track/track.html
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(http://www.originlab.com/Origin). Some further videos were recorded at 20 fps, using the CCD 

camera. These were used to analyze the shape change of the organ as it was deformed by the 

needle and then released. The set-up is depicted in Figs. 3.8.2 and 3.8.3. 

  

Fig. 3.8.2. Schematic depiction 

of the relaxation kinetics and 

shape experiments as described 

in sections 4.4 and 4.5. The 

green curve in the inset depicts 

the change in shape of the lch5 

organ as it is displaced by the 

needle. For more details, refer 

Fig. 4.5.1 in Results. 

Larva fillet

PDMS slab

Ringer 

solution

Pins

Tip of tungsten 

needle in contact 

with lch5 organ

Not to scale

CA & LA: end points of lch5 organ

Needle

Needle

CA LA

CA

CA

LA

LA

http://www.originlab.com/Origin


41 
 

 

Fig. 3.8.3. Depiction of the set-up used for the relaxation and shape experiments described in sections 5.4 

and 5.5, showing the relative placement of various components. Image modified from Dr Christopher Battle. 

 

3.9. Laser ablation 
 

 Laser ablation can be defined as using a high-power laser to create an incision or a hole in a 

material, whether biological or not. The technique is practically as old as lasers themselves, with 

several discoveries in the 1960s paving the way for ablation techniques that are in use today (141). 

In the life sciences, laser ablation has a wide range of applications, which we shall discuss in some 

detail below, before moving on to an introduction to the laser ablation experiments that form a part 

of this thesis. Vogel and Venugopalan, in their 2003 review, define ablation in a biological context 

as “any process of tissue incision or removal, regardless of the photophysical or photochemical 

processes involved” (142). 

 

The foundation for lasers in experimental science was laid by Maiman in 1960, and researchers 

were quite keen to delve into the possibilities of manipulating and destroying biological tissues 

using lasers (142, 143). Since then, several investigations were carried out especially in the fields 

of dermatology and ophthalmology (142, 144-147). However, the first experiment that was 

medically feasible was carried out in the 1970s (142, 148). In more recent times, several 
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biophysical experiments have been conducted in connection to the actomyosin cortex. Examples 

of such investigations are discussed below. 

 

Many discoveries in developmental biology have been made using laser ablation. Mechanical 

responses to laser ablation of various tissues in the Drosophila embryo have been studied, and the 

role of these tissues in dorsal closure has been investigated (149). In the nematode worm 

Caenorhabditis elegans, four specific actin-rich cells have been shown to be required for the 

process of ventral closure, by the fact that laser inactivation of these cells abolishes ventral closure 

(150). Laser nano-dissection has been used to examine the mechanics of Drosophila embryonic 

elongation (151). Laser ablation has also been used to create an opening in the zona pellucida of 

the mouse embryo without interfering with formation of the blastocyst (152). Wound healing in the 

Drosophila embryo has been shown to have striking parallels to the mechanism of dorsal closure 

(153). 

 

Stress fiber mechanics have been extensively studied by ablation. Ablating a single stress fiber 

has been shown to be more detrimental to cell shape and cytoskeletal mechanics than ablating 

multiple fibers at once (154). Laser nanosurgery has been employed to map variance in stress 

fiber mechanics in different regions of the cell (155). The data from Kumar et al.  (154) has been 

the basis of a predictive model of stress fiber mechanics (156). 

 

Microtubule mechanics have also been investigated (157). Forces arising due to friction and dynein 

motors have been shown to have a greater effect on microtubule shape than elastic forces do 

(158). In the mitotic spindle, it has been shown that severing kinetochore fibers using a laser leads 

to them growing back towards the outside (159). Rates of growth, contraction and rescue of 

microtubules have been measured concurrently in living cells (160). 

 

Cell deformation and migration is another area where laser ablation has found far-reaching 

application. Focal laser ablation has been used to generate blebs at different positions on a cell 

and find that bleb expansion is cortical tension-dependent and requires a minimum threshold 

tension to take place (161). MDCK cells have been shown to migrate actively under the guidance 

of a “leader” MDCK cell, and laser ablation has shown that the tensile stress is greatest at the 

position of this “leader” cell (162). A laser has been used to induce inflammation in the Drosophila 

embryo, and enzymes known as Rho-family small GTPases have been found to be critical to the 

motility of haemocytes migrating towards the site of inflammation (163).  
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The laser ablation experiments in this thesis were done in collaboration with Deqing Kong in the 

group of Prof. Dr. Jörg Großhans at the Institute of Developmental Biochemistry, University 

Medical Centre, University of Göttingen, and also with Dr. Chonglin Guan (specifically the 

experiments related to Sqh-GFP and Sqh-RNAi X Pinta GAL4 larvae).  

 

The larva was prepared by squeezing between a slide and a coverslip (as described in section 3.6 

in Materials and Methods). A spinning disc confocal microscope (CSU-X1, Carl Zeiss) was used to 

visualize the lch5 organ with a 100X oil objective (NA 1.4, Plan-APOCHROMAT, Carl Zeiss). Some 

experiments were performed with a 40X oil objective (NA 1.3, EC Plan-NEOFLUAR, Carl Zeiss), to 

obtain a large enough field of view to image the complete retraction of the cap cells (see Results and 

Discussion). The slide was placed such that the coverslip was in contact with the oil on the objective 

(Fig. 4.6.2). Ablation was carried out using a 355 nm pulsed YAG UV laser, average power 14 mW 

(Rapp OptoElectronic, Wedel, Germany) in click-and-fire mode, with 20% intensity and 300 ms pulse 

duration per click. The energy delivered was ~0.84 mJ/pulse. The experiments were controlled by 

the ROE SysCon-Zen software (Rapp OptoElectronic). 

 

The laser was focused either just in front of the scolopales, at the initial part of the cap cells, on the 

neuronal dendrites between the scolopales and the neuronal somata, or on the ligament cells. The 

laser was aimed either at one scolopidium at a time (point focus) or at all scolopidia together (line 

focus). Videos of the recoil of the organ following ablation were recorded with an AxioCam MRm 

camera (Carl Zeiss) at a rate of 1 fps.  

 

We used fluorescence microscopy, so that only the neurons and the scolopales were visible in the 

larvae (in case of Sqh-GFP larvae, it was the cap cells and ligament cells that were visible). However, 

In case of the myosin mutants and controls, we used brightfield illumination, since the lch5 organs 

were not labeled. While this did not give us as clear a view as in case of the fluorescence imaging, 

we could still see the important structures, and easily compare the videos to the ones recorded using 

fluorescence. The set-up is shown in Fig. 3.9.2. 
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Fig. 3.9.2. Set-up used for the UV laser cutting experiments, showing the relative placement of components. 
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3.10. Force measurements using calibrated needles 
 

This is the last set of experiments that was performed, in collaboration with Christian Kreis in the 

group of Prof. Dr. Oliver Bäumchen at MPI-ds, Göttingen, and Dr. Chonglin Guan. For this, a large 

glass slide was taken, and a PDMS layer was coated on it (see section 3.8.2 for details on PDMS 

preparation). A larva fillet with excised muscles (section 3.8.4) was prepared and oriented as shown 

in Fig. 3.10.2 A. Two cut O-rings were placed around the fillet. The space was filled with Ringer 

solution, and another glass slide of similar size as the first one was clamped on top (Fig. 3.10.1). 

Into the fluid cell, a specially-made L-shaped glass pipette, prepared by C. Kreis, was inserted using 

a micromanipulator. The pipette had a long arm, a short arm, and a microscopic tip perpendicular to 

both arms. Figs. 3.10.1 and 3.10.2 illustrate the shape of this pipette. The tip of the pipette was 

brought in contact with the lch5 organ as shown in Fig. 3.10.2 B. Then, the sample stage was moved 

in a direction perpendicular to the lch5 organ, such that the lch5 organ was pushed against the 

pipette tip. At some point, the pipette tip automatically disengaged from the lch5 organ, and the organ 

relaxed back. In an ideal situation, the pipette tip would get deflected and from this deflection one 

can measure the force exerted by the organ on the pipette. Some preliminary results were obtained 

(section 4.7).  

Videos were recorded using a custom-made set-up at the lab of Prof. Bäumchen. Some videos were 

additionally recorded at a set-up built by Dr. Guan at the Third Institute of Physics. Here, we used 

the inbuilt software provided by Scientifica to operate the micromanipulator. Rather than move the 

stage, we moved the glass pipette and deflected the lch5 organ by known distances. 

 

 

 

Fig. 3.10.1. Set-up used for the force measurement experiments. CD is the long arm of the pipette. The short 

arm is perpendicular to CD at D, and goes into the plane of the paper. The tip is bent downwards, 

perpendicular to both the long arm and the short arm. A: glass slides, B: rubber O-ring. The larva sample is 

on the lower glass slide. Figure modified from Haefner, Bäumchen et al., 2015 (164). 
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Fig. 3.10.2. (A) Orientation of the larva sample relative to the glass pipette (view from above). In this 

diagram, the larva has been enlarged several times from its actual size relative to that of the other 

components, in order to make its orientation clear. The bent tip of the pipette is not shown, since it goes into 

the plane of the paper. (B) A closer look at the glass pipette in contact with the lch5 organ (view from 

below). In practice, only the tip of the pipette is visible in the videos. The short arm is well above the focal 

plane. 
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4. Results and discussion  
 

4.1. Measuring forces using optical tweezers 
 

We attempted to use optical trapping to (a) measure active fluctuations in the cilia of Johnston’s or 

lch5 organ using a trapped bead, and (b) deliver forces to these systems and measure the response 

by calcium imaging or electrophysiology. For these experiments, I used elaV-GCaMP6 flies and 

larvae. GCaMP6 is a calmodulin-tagged version of GFP, which increases its fluorescence upon 

encountering a calcium signal (165), and is thus specially suited for calcium imaging. The 

experiments did not yield the desired outcome, the reasons for which are discussed below.  

 

One initial direction we explored was to measure fluctuations from Johnston’s organ (JO) in the 

adult fly (Section 2.3). The origin of this idea lay in literature describing active amplification in the 

Drosophila ear that produces very similar results to what is observed in the vertebrate ear (5, 19, 

20, 103). Several molecular motors are involved in this process, and we believed that the active 

fluctuations assumed to be generated by these motors in the chordotonal cilia of JO could be 

measured using optical trapping or a similar technique.  Before taking a closer look into the 

mechanics of the JO, we thought of studying the arista, since that is the structure that first receives 

the auditory stimulus before passing it on to the JO. We had hoped that an optically trapped bead 

would suffice for this purpose. I attempted the following experiment (Section 4.3.1): A fly head, or 

in some cases an intact fly, was stuck to the bottom of a petridish using a small amount of 

superglue, and the petridish was filled with water. We then added polystyrene beads using a 

pipette. Beads of 4 µm and 8 µm diameter were used. The beads were trapped using the IR laser, 

and the arista, visible as a branched structure, was moved closer to the trapped bead. However, as 

soon as the arista came in contact with the laser, there was a large bubble, owing to thermal 

damage (Fig. 4.1.1). Also, the arista is large in size and rigid, and we could not use an optically 

trapped bead to displace it. Another issue was that when placed under water, the antenna was not 

in an alive state anymore, and so the experiment did not yield any useful information. We also 

repeated the experiment with the somatosensory bristles on the mouth parts (Fig. 4.1.2). 
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Fig 4.1.1. The arista before and after bringing in contact with the optically-trapped bead. (A) Before trapping 

(B) A bubble formed on the arista at the point where it was in contact with the bead, indicating thermal damage. 

Scale bar = 80 µm. 
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Fig 4.1.2. A bristle on the mouthparts indicated by the red rectangle (A) Before trapping (B) The bristle in a 

bent configuration, indicating thermal damage. Scale bar = 80 µm. 
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As for probing the mechanics of the JO neurons directly, we soon understood that this would not 

be possible using optical tweezers. In order to come in direct contact with the neurons, we would 

have to puncture the pedicel of the antenna, in which the JO is housed. This would alter the 

mechanics of the organ. We then decided to change our approach. After detailed discussions with 

our collaborators (the group of Prof. Dr. Martin Göpfert at the Schwann-Schleiden Center, Faculty 

of Biology, University of Göttingen), and a study of literature, mainly Zhang et al.  2013 (44), we 

changed gears and shifted our interest to the lch5 organ, which one can access much more easily 

in a filleted larva (Section 4.4.4). Since this is a chordotonal organ as well, albeit less complex than 

the JO, we assume that understanding its mechanics will give us a better understanding of the 

functioning of chordotonal organs in general. Given that active amplification is thought to be the 

basis of functioning of the JO, we speculated whether such a process exists in the lch5 organ and 

whether the fluctuations arising from molecular motors can be measured directly in this organ. 

Since the cilia were located inside the scolopales, we could not get direct access to them. Hence 

we needed a method to measure the fluctuations externally. 

We proceeded to try to measure these fluctuations using optical tweezers, with the aim of placing a 

bead near the scolopales and trapping it. In our initial trials we were not successful, because the 

muscles acted as a barrier between the lch5 organ and the bead, and once the bead came in 

contact with the muscles it could not be trapped anymore. The power spectra (refer section on 

optical trapping) of the bead floating in the Ringer buffer and closer to the scolopales of the lch5 

organ were not highly different from one another (Fig. 4.1.3). If there were active mechanical 

fluctuations emanating from the chordotonal cilia, the power spectrum closer to the scolopales 

would have appeared different from the case where the bead was away from the scolopales, 

because the fluctuations from the cilia would have added to the passive Brownian fluctuations 

(137). However, this was not observed. 
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Fig 4.1.3. Power spectral densities of optically-trapped beads (A) Bead floating in the Ringer buffer (B) Bead 

trapped nearer to the lch5 organ 
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Our next attempt was to reach the lch5 organ by pushing a glass pipette under the muscles and 

injecting beads onto the organ. This was done by “weaving” the pipette through the muscles (as per 

Dr. Ben Warren at the group of Prof. Dr. Göpfert) (Figs. 4.1.4 and 4.1.5), but here too we failed to 

trap them with the laser.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1.4. The glass pipette in contact with the lch5 organ. Polystyrene beads are also visible. Scale bar = 50 

µm. 
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Fig. 4.1.5. Weaving the pipette through the muscles. Scale bar = 50 µm. 
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Fig. 4.1.6. (A) A longitudinal muscle partially digested by collagenase. (B) Muscle fully digested, but a 

transparent band of tissue was still left behind. Scale bar = 50 µm.  

In one of our trials we were indeed successful in freeing the organ, after collagenase treatment and 

pulling and pushing of the muscles with the glass pipette, and we also managed to get a bead in 

contact with the organ, but this bead could not be trapped anymore once it was stuck to the organ 

(Fig. 4.1.7), and thus no fluctuations could be measured. Also, we did not have direct access to the 
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cilia - since they are enclosed in the scolopales. Furthermore, the chordotonal organs are much 

larger than typical sizes of beads used in trapping experiments. We then decided to modify our 

approach and study the mechanics of the entire lch5 organ, using laser ablation and mechanical 

manipulation with tungsten needles. 

 

 

 

Fig. 4.1.7. A 4 µm polystyrene bead in contact with the dendrites of the lch5 organ. We observe that it is 

stuck to the organ and cannot be trapped anymore. Scale bar = 50 µm. 
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4.2. Study of crawling motion in the larva 
 

We placed larvae in a groove in an agarose gel coated on a glass slide (Fig. 4.3.1 in Materials and 

Methods), and observed the deformations of the cuticle in the segments, on the ventral side. At 

every segment boundary, there are rows of spike-like structures called cuticular denticles (166) 

(Fig. 4.2.1 A). These denticles presumably provide the larva with a grip on the substrate as it 

crawls. The denticle rows were seen under the microscope (details) to undergo torsion and move 

closer together to form bunches. These denticle bunches were instrumental in pulling the segment 

boundaries closer together by undergoing torsion and exerting a push. The segment size was seen 

to reduce by ~50% (Fig. 4.2.1 B&C, Fig. 4.2.2 B). Also, a groove was seen to form on 

approximately the midline of the segment, and to deepen as the segment contracted (Fig. 4.2.1 

A&B). To assess how these segment contractions influence the lch5 organ would require a 

mechanical model for their coupling. I initially used objective oil (section 3.1) as a substrate with 

reduced friction for the larva to crawl, and obtained some videos this way, but since it is better to 

have a situation closer to what the larva would experience in nature, I switched to using agarose 

gel (section 3.5). The videos obtained this way were of sufficient quality.  
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Fig. 4.2.1. Segment deformation in the Drosophila larva during crawling. The ventral side of a third instar larva 

is pictured, viewed under 20X magnification. It is crawling on objective oil. Scale bar = 0.2 mm. (A) Prior to 

segment contraction. Cuticular denticles and segments are visible. (B) Contraction of the segments. The 

denticle rows have bunched up and there is torsion in the bunches. The segment length has reduced. (C) 

Kymograph indicating the contraction of the segment with time, plotted along the larva’s body axis (yellow line 

in (A)). The double-headed red arrows denote the segment length. (D) Kymograph of the segment deformation, 

plotted along the axis of the segment boundary (blue line in (A)). 

 

 

 

 

T
im

e
 



58 
 

 

  

Fig. 4.2.2. Segment deformation in the Drosophila larva during crawling (lateral view). (A) The red circle 

indicates the position of the contracting segments, and shows the direction of the propagating peristaltic 

wave. (B) The red flower bracket depicts the segment boundaries moving closer together as the segment 

contracts. Scale bar = 0.5 mm. 

 

4.3. DIC images of the lch5 organ  
 

We next wished to obtain high-magnification and high-contrast images of the cuticle, and different 

components of the lch5 organ (section 3.7 in Materials and Methods. Differential Interference 

Contrast (DIC) microscopy was the best imaging method for this purpose. The fillet preparation was 

not suitable for these experiments, since pins were used for it, and detaching it from the PDMS dish 

would damage it. I therefore devised an alternative preparation method, the “squished prep” 

described in section 3.6. This way a thin enough sample was obtained for the purpose of carrying 

out DIC microscopy.  

 

In these images, the attachment cells for the ligament and cap cells were visible as brush-like 

structures. High-contrast images of the ligament, neurons, cap cells and scolopales were obtained 

(Figs. 4.3.1-4.3.8). The scolopales were observed to be marked with dot-like structures (Fig. 4.3.3) 

at the end in contact with the cap cells (49). These dot-like structures were presumably the ciliary 

dilations (section 2.2).  
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In one video which I recorded using this technique, I observed the muscles contracting and relaxing. 

The longitudinal muscles did not affect the lch5 organ in any way, but when the lateral transverse 

muscles contracted, the middle muscle was seen to exert a push on the scolopales of the organ. 

This appeared to indicate that the LT muscles were somehow directly influencing the lch5 organ. I 

did not observe this in subsequent experiments, however. Recent literature (167) suggests that it is 

only the cuticle that exerts force on the lch5 organ as it contracts, hinting at an indirect, more subtle 

influence of the muscles.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3.1. The ligament attachment cell of the lch5 organ. Scale bar = 15 µm. 
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Fig. 4.3.2. (A) The ligament cells of the lch5 organ (B) The ligament flanked by the neuronal somata, with 

the dendrites emerging from them. Scale bar = 15 µm. 
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Fig. 4.3.3. The dendrites of the lch5 neurons, covered in scolopale cells. At their apices, the scolopales are 

visible, as are the dot-like structures (most probably the ciliary dilations) . The cap cells are seen to emerge 

from the apices of the scolopales. Scale bar = 15 µm. 
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Fig. 4.3.4. (A) Scolopales and cap cells. (B) Cap cells alone. Scale bar = 15 µm. 
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Fig. 4.3.5. (A) Distal part of cap cells. (B) Sometimes the cap cells are seen to split into two branches 

containing 2 and 3 cap cells respectively. 
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Fig. 4.3.6. (A) Cap cell attachment cells (2 in number). (B) Denticle-like structures seen at the segment 

boundary on the dorsal side. Scale bar = 15 µm.  
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Fig. 4.3.7 (A) and (B). Denticle-like structures seen at the segment boundary on the dorsal side. Scale bar = 

15 µm.  
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Fig. 4.3.8. Cuticular denticles on the ventral boundary (section 4.2). Scale bar = 15 µm. 
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4. Relaxation dynamics of the intact lch5 organ  

 

We next observed the relaxation dynamics of the deformed organ. I displaced the lch5 organ 

perpendicular to its long axis with a tungsten needle placed against the cap cells adjacent to the 

Fig. 4.4.1. (A) Incomplete disengagement of the lch5 organ from the tungsten needle, indicated by 

a plateau in the graph at around 0.5 sec. Displacement values are in pixels. (B) Data points 

missing from the displacement vs time plot, owing to low frame rate of the camera. In this plot, 

displacement is in pixels, and the X-axis represents the frame number of the video. 
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scolopales. I then rapidly released the needle and tracked the relaxation of the organ to its original 

straight shape, in the form of displacement versus time plots. I fitted the data as an exponential 

curve. A fast snap-back and a slow relaxation were obtained (Fig. 4.4.1-4.4.3). 

In our initial experiments, there were the following difficulties: 

1. I was lifting the needle by manually rotating the dial of the manipulator. This meant that the 

needle was not immediately released from the lch5 organ, resulting in a creep represented 

as a plateau on the displacement versus time plot (Fig. 4.4.1A). The exponential fit was 

inaccurate due to this reason. To counteract this problem, we changed the method. I shifted 

to using the “step” button on the micromanipulator, which rapidly lifts the pipette and needle 

by a finite distance. Sometimes, quickly pressing the button twice was required for complete 

release of the needle. When this was done, I did not observe the plateau anymore.  

 

2. I was using the CoolSnap camera, with which one can achieve a maximum frame rate of only 

22 fps. Due to this, many points on the displacement versus time plot were missing (Fig. 

4.4.1B). The initial fast snap-back of the organ could not be captured at all. To solve this, we 

replaced the CoolSnap camera with the Photron FastCam which can capture images at a 

maximum of 1000 fps. I was then able to track the motion of the lch5 organ during the fast 

snap-back.  

 

3. Often I found that the needle was slipping against the muscles, because it was not properly 

bent at the tip. Producing a bent-tipped needle proved difficult. We eventually succeeded in 

producing such a needle, by using a combination of glass capillaries (section 3.8.3). I used 

the same needle for all subsequent experiments. 

 

4. I was initially using 40X magnification. This meant that in the CoolSnap camera, only a small 

part of the organ could be observed (Fig. 4.4.2) in the relaxation experiments, since a small 

region of interest had to be chosen to make the frame rate higher. We then ordered a special 

20X water-dipping objective from Zeiss, with which the entire organ became visible during 

the experiment, after rotating the sample so that it was parallel to the image plane.  
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Fig. 4.4.2. View of the lch5 organ under 40x magnification, (A) engaged with the tungsten needle, and 

(B) released from it. Only the dendrites and scolopales are visible, unlike in 20X where the entire organ 

is visible from the ligament attachment cells to the cap cell attachment cells. 

 

5. We were using ivTrace to track the movement of the scolopales as they were released from 

the tungsten needle. ivTrace detects conspicuous structures and tracks their movement, and 

yields XY data. For this we needed to use larvae with GFP-fluorescent lch5 organs, from the 

fly line w[-];PBac[20XUAS-6XGFP]VK00018;iav-GAL4,w[+]/+. However the contrast was too 

poor when fluorescence was being used, in the sense that the organ was visible as a bright 

patch, but individual components could not be discerned (Fig. 4.4.3). We then reverted to 

A 

B 
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using bright-field videos, and used the ImageJ Manual Tracking plug-in to track the scolopale 

movements manually.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In fillet preparations with the muscle layers above the organ left intact, we observed an initial rapid 

snap-back after retraction of the needle, followed by a slow relaxation back to a straight conformation 

(Fig. 5.4.3 A and Fig. 5.4.4). The displacement time course was well fitted by a double exponential, 

which was verified by comparing a double-exponential fit with a single-exponential fit using Akaike’s 

information criterion (168). In all cases – except for two recordings for one of the lch5 organs 

observed – the AIC value for the double exponential was lower, indicating that this was the better fit 

(Table 5.4.1). The two time constants obtained from this fit, τ1 and τ2, ranged from 10 ms to 150 ms 

for the initial fast relaxation, and 100 ms to 3 s for the slow relaxation (Fig. 5.4.3 C). In fillet 

preparations with the muscles excised, in contrast, a single exponential was sufficient to fit the data, 

because only a rapid snap-back was observed which was faster than in the preparations with intact 

muscles (Fig. 5.4.3 B, and Table 5.4.2). The time constants obtained in this case were about an 

order of magnitude smaller than the τ1 values for the fillets with intact muscles, and ranged from 3 

 

Fig. 4.4.3. View of the lch5 organ 

in GFP larvae. (A)&(C) engaged 

with the tungsten needle, and 

(B)&(D) released from it. 
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ms to 15 ms (Fig. 5.4.3 C and Fig. 5.4.5 A). The lch5 organs are embedded between muscle layers 

and the cuticle and bathed in haemolymph. In this situation, a rather high elastic stiffness would be 

needed to produce an underdamped or oscillatory response as has been speculated in the literature 

(74-76). Although the lateral deformation we applied with the tungsten needles is arguably non-

physiological, it is likely that the viscous damping in the system is similar to what occurs when 

muscles deform the cuticle and stretch the organ axially. The fact that we observe exponential 

relaxation and no sign of oscillatory response thus argues for overdamped dynamics. In contrast to 

a resonant response, an overdamped response would make the organ sensitive to perturbations 

over a broad frequency range, rather than only near a well-defined resonance frequency.  

 

Most biological materials show a strongly non-linear elastic response (169, 170). To probe for non-

linear response of the lch5 organs, we analyzed the dependence of the relaxation times on the 

amplitude of the lateral displacement. Within the margins of experimental error, we could not 

observe an amplitude dependence of these time constants (Fig. 5.4.3 D and Fig. 5.4.5 B). This 

means that nonlinearities are not strong enough to show clear effects, even at strains of ~20%. 

This is large compared to the strain for which actin filaments in typical cortical cytoskeletal 

networks become non-linear (~5%) (171) and might reflect a geometry of the elastic elements in 

the cap cells that is optimized for a broad linear response range.   

Since the muscle tissue is arranged in layers above the lch5 organ, it might be possible that at least 

the outermost muscle layer (the lateral muscles) could directly attach to and activate the lch5 organs. 

This possibility is already discounted in the literature (71, 72), but we nevertheless displaced the 

muscles with the tungsten needle to see if there was any direct coupling between muscle and lch5 

displacements. We could not discern any movement of the lch5 organ directly elastically coupled to 

the movement of the muscles. Our data suggest, however, that there is a viscous coupling between 

the musculature and the lch5 organ, given that the relaxation dynamics are markedly slower in the 

presence of muscles than those of the bared lch5 organs.  
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Fig. 4.4.4. Relaxation dynamics of the lch5 organ. (A) Relaxation of the midpoint of the organ after lateral deflection 

and release with intact muscle layers. Each curve is for a different organ in a different animal.  Red lines are double-

exponential fits with the two time constants τ1 and τ2 given. The grey line in the bottom graph is a single exponential 

fit. (B) Relaxation of the midpoint of the organ after lateral deflection and release with excised muscle layers. Red 

lines are single-exponential fits with the time constants τ given. The bottom and middle left plots are for the same 

lch5 organ from one larva, and the top and middle right plots are for the same lch5 organ from a different animal.   

(C) Relaxation time constants of lch5 organs with the covering muscles excised (blue triangles), and for lch5 organs 

covered by intact muscles, τ1 (black carets) and τ2 (red circles). Preparations with intact muscles: 4 animals studied. 

A total of 5 lch5 organs were investigated. Animal #1: 1 organ, 2 repeats. Animal#2: 2 organs, 3 repeats each. 

Animal #3: 1 organ, 5 repeats. Animal #4: 1 organ, 5 repeats. Preparations with excised muscles: 2 organs studied, 

each from a different animal, with 3 repeats per organ. (D) Amplitude dependence of lch5 relaxation time constants 

with muscle layers intact (same experiments as the black and red plots in C). 
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Fig. 4.4.5. Relaxation curves of laterally deflected lch5 organs for all the relaxation experiments in larval 

preparations with intact muscles, showing double exponential fits (red curves) and single exponential fits 

(grey curves). Akaike information criterion (172) values for single and double exponential fits are given in 

Table 4.2.1 on the next page.  

A1, A2: Animal 1, lch5 organ 1  

B1, B2, B3: Animal 2, lch5 organ 1  

C1, C2, C3: Animal 2, lch5 organ 2  

D1-D5: Animal 3, lch5 organ 1  

E1-E5: Animal 4, lch5 organ 1 
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Experimental 

animal 

lch5 

organ 

Trial AIC values 

Double exponential fit Single exponential fit 

1 A A1 48.5 163.3 

A2 96.4 255.4 

2 B B1 -4.2 67.6 

B2 -29.9 71.7 

B3 -18.0 89.9 

C C1 50.1 116.6 

C2 41.1 97.9 

C3 105.3 261.2 

3 D D1 160.0 165.3 

D2 569.4 984.0 

D3 136.8 149.2 

D4 128.8 129.6 

D5 153.9 280.0 

4 E E1 71.5 70.3 

E2 25.1 107.0 

E3 148.9 147.8 

E4 48.8 59.2 

E5 183.3 307.3 

 
Table 4.4.1. Exponential fits of the relaxation curves of laterally deflected lch5 organs. Quality of fit is judged 
by the Akaike information criterion (172). AIC values for double and single exponential fits for the data plots 
from relaxation experiments for lch5 organs in larval preparations with intact muscles. AIC values indicate  
the relative goodness of fit. The model that has a lower AIC value is considered as a better fit for the data. In 
all the cases except two, the double exponential model was seen to be the better fit.  
 

 



76 
 

Experimental 

animal 

lch5 

organ 

Trial AIC values 

Double 

exponential 

fit 

Single 

exponential 

fit 

1 W W1 19.2 16.6 

W2 191.56 226.75 

W3 40.3 121.7 

2 X X1 73.8 71.9 

X2 54.4 44.7 

X3 71.7 66.2 

 

 

Table 4.4.2. Exponential fits of the relaxation curves of laterally deflected lch5 organs. Quality of fit is judge 

by the Akaike information criterion (172). AIC values for double and single exponential fits for the data plots 

from relaxation experiments for lch5 organs in larval preparations with excised muscles. AIC values indicate 

the relative goodness of fit. The model that has a lower AIC value is considered as a better fit for the data. In 

all the cases except two, the single exponential model was seen to be the better fit.  
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Fig. 4.4.6. Time constants for all relaxation experiments. W and X represent the larval preparations with 

muscles excised (time constants shown as inverted triangles), and A, B, C, D, E refer to the experiments on 

preparations with intact muscles (see Fig. 4.4.5 and tables 4.4.1 and 4.4.2). In this case, diamonds represent 

the first time constant τ1 and circles represent the second time constant τ2. (A) Distribution of time constant 

values (refer Fig. 4.4.4 C). (B) Plot of time constants versus amplitude for the preparations with intact muscles 

(refer Fig. 4.4.4 D). 

 

 

 

 



78 
 

4.5. Static elastic deformation of the lch5 organ 
 

We studied the static deformation of the lch5 organ under stretching by a lateral force applied using 

a tungsten needle controlled by a micromanipulator (Fig. 4.5.1). The needle was placed near the 

midpoint of the organ, against the cap cells. From video recordings, we tracked the positions of the 

scolopales and of the two attachment cells to map the motion and deformation of the entire organ. 

Lateral displacement near the middle of the organ could have different effects on the organ and its 

embedding structures: If the organ itself were rather rigid to axial stretching, the cuticle could deform, 

with the attachment cells moving inward to accommodate this deformation. Alternatively, or in 

addition, the different cells making up the organ could stretch to various degrees, increasing the 

length of the organ. In all experiments in which we observed the attachment cells, we could not 

detect any displacement of the cuticle and the attachment cells when we deformed the lch5 organs 

(Fig. 4.5.1). The organ itself is therefore distinctly more stretch compliant than the cuticle is to 

bending and indentation.  

 

If we consider a third instar larva as a cylinder of diameter 1mm, then given that the lch5 organ can 

be upto 400 µm long in the fillet, we obtain only a 3% increase in the length of the lch5 organ from 

the intact larva to the fillet. For details, see Appendix A1. 

 

When the lch5 organ was displaced by the tungsten needle, we measured a substantial, 

approximately 10% increase in the length of the organ (from ~320 to ~350 µm for a lateral deflection 

of 80 µm). This stretch was reversible and the organs relaxed back to their original lengths when the 

needle was released (Figs. 4.5.1-2). The length increase was almost entirely confined to the cap 

cells. This is demonstrated by tracking 4 points: the end points of the ligament (LA) and the cap cells 

(CA), the point of contact of the needle with the lch5 organ (T) and the position of the scolopales (S). 

We define the axis of the chordotonal organ – the line from CA to LA – as the X-axis (Fig. 2D). The 

portion from S to CA corresponds to the cap cells. The length from CA to LA ranged between 300 

and 400 μm. The portion between LA and S, i.e. the part of the organ consisting of the ligaments, 

neuronal somata, dendrites and scolopales, had a length between 90 and 100 μm before lateral 

deflection. We observed that during stretches, LA and CA remained fixed (no detectable movement 

along the X or Y axes), while T moved along a straight line parallel to the Y-axis, further away from 

the position of rest. The length from LA to S also slightly increased, but much less than the length of 

the cap cells. The cap cells reportedly contain more myosin motors and actin filaments than the 

sensory neurons, and the scolopales lack myosin while actin is present (124-126). Myosins 

interacting with actin filaments might provide a mechanism to tense the cap cells and to create stretch 

elasticity to allow for substantial elongation and subsequent recovery. The observation that the 
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largest part of the elastic strain in the stretched organ occurs in the cap cells implies that they might 

play an important role in the stretch-sensing mechanism and might be in charge of setting the pre-

strain and providing adaptation. The relative length increase of the lch5 organ as a function of the 

relative lateral displacement was reproducible between several organs from different larvae (Fig. 

4.5.2 B). 

 

The shape of the deformed organ allows us to draw qualitative conclusions about the elastic 

properties of the organ and of the embedding tissue. In the most stretched conformations, the lch5 

organ assumed a concave cusp-like shape in the cases where the muscle layers were not removed 

(Fig. 4.5.1 B&C). This implies that the bending stiffness of the organ is low compared to the stretching 

stiffness. The shape of the organ would be convex if resistance to bending was dominant. 

Furthermore, the fact that we observe concave rather than straight shapes points to some coupling 

to the elastic embedding tissue layers (173). 
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Fig. 4.5.1. Lateral deflection of the lch5 organ. (A) Relaxed, (B) weakly deflected (34 µm), and (C) strongly 

deflected (86 µm) configurations. The dark tip is the tungsten needle. The organ is oriented parallel to the long 

side of the image (neuronal cell bodies on the right). Scale bar: 20 μm. CA: attachment cell for cap cells, LA: 

ligament attachment cell, S: scolopales, T: point of contact of needle and lch5 organ.  
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Fig. 4.5.2. Static elastic deformation of the lch5 organ. (A) Increase of total length with lateral deflection, 

entire organ (black squares), cap cells (red circles) and neuronal part (blue triangles). (B) Relative increase 

in length versus relative lateral deflection amplitude for 4 different lch5 organs, each from a different larva. 

(C) Shapes of a representative lch5 organ (same as Fig. 4.5.1) traced from a video recording while the 

organ was increasingly deflected. (D) Shapes of another representative lch5 organ traced from a video 

recording while the organ was increasingly deflected (black squares and red cubic spline interpolation line) 

and during relaxation (red circles and blue cubic spline interpolation line).  

In (C), part of the last curve has been shown as a dotted line, since this part of the organ was obscured by 

the needle in the frame of the video corresponding to this curve. The last points in (A) and (B) are encircled 

in green for the same reason, and represent a lower bound for the value of the length of the organ at that 

point. 
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4.6. Relaxation of the lch5 organ after laser ablation 
 

For these experiments, I did not use the fillet preparation, because the imaging had to be carried out 

using slides and coverslips. Instead, I used the “squished” prep described in section 3.6,  where the 

entire larva was squeezed between a slide and a coverslip. The gut was removed, and the larva was 

rendered transparent. We carried out most of the experiments using fluorescence, but even in bright 

field the lch5 organs were clearly visible.  

 

The straight conformation of the lch5 organ, appearing like a bundle of tense chords (which also 

inspired the name “chordotonal organs” (74-76) suggests that there is substantial axial pre-tension 

in the cells making up the organ. Tension is balanced along the whole organ, but the ensuing elastic 

strain might be different for the different cell types. To characterize the pre-strain in the different 

components of intact lch5 organs, we used a UV laser to cut the organ in different planes – through 

the cap cells near the scolopales (Fig. 4.6.1 A and Fig. 4.6.2), through the ligament cells (Fig. 4.6.1 

B), and through the dendrites (Fig. 4.6.1 D and Fig. 4.6.3). The response of the organ was observed 

via the displacement of the GFP-expressing neurons (fly line: w[-];PBac[20XUAS-

6XGFP]VK00018;iav-GAL4,w[+]/+)  in a fluorescence microscope. We cut the cap cells one by one, 

by slowly moving the laser focus across the organ (Fig 4.6.2). When the cap cells were completely 

severed, the scolopales and neurons retracted towards the ligament cells by about 20 µm (Figs. 

4.6.1 A & 4.6.2 A&D), indicating a resting strain of ~20-25% in this section of the organ. The neuronal 

somata did not deform noticeably, which indicates that the axons anchoring the somata in the 

surrounding tissue also relax with motion toward the ligament side of the organ, as shown in the 

sketch by the angled attachment of the axons (Fig. 1). The severed dendrite retracted and a kink 

formed where the dendrite enters the scolopale (Fig. 4.6.2). With each cap cell cut, the neurons 

retracted further. When the ligament cells were severed after cutting the cap cells, we observed a 

slow retraction of the neurons towards the cap cells by ~30 µm (Fig. 4.6.1 B). In the case where the 

ligament cells were severed leaving the cap cells intact, the neuronal somata were still anchored by 

their axons, and there was practically no retraction (Fig. 4.6.1 C). However, when the axons were 

severed, there was rapid retraction in the direction of the cap cells (section 7.3 in the appendix). 

When, in the third group of cutting experiments, the dendrites were severed, we could observe the 

relaxation of both sides of the organ by following the retracting fluorescent neuronal somata towards 

the ligament cell side and the retracting fluorescent dendritic fragments towards the cap cell side. 

We performed two types of cutting experiments, now cutting the dendrites all at once (Fig. 4.6.1 D), 

or one by one (Fig. 4.6.3). Either way, when the dendrites were all cut, the severed dendritic 

fragments, and the scolopales along with the cap cells retracted rapidly by ~100 µm – corresponding 

to a pre-strain of ~50% in this section of the lch5 organ. When the cap cells were cut, the dendrites 

and scolopales also retracted by about 30% of their initial length, but the neuronal somata remained 
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more or less stationary. This points to a role of the cap cells as the dominant elastic elements in the 

lch5 organs, consistent with what we found when we overstretched the organ by lateral deflection, 

where the additional strain was again mostly localized to the cap cells. Since the cap cells also 

contain substantial amounts of myosin and actin, it is intriguing to speculate that these cells build up 

– and regulate – organ tension.  

 

We also carried out similar experiments on 2 other fly lines: Sqh-GFP (myosin labelled with GFP in 

cap cells and ligaments), and UAS Sqh-RNAi X Pinta GAL4 (myosin knockdown mutant). In Sqh-

GFP we were mainly observing the retraction of the cap cells – which was not visible in the earlier 

case since in that fly line it was only the neurons that were fluorescent. Of course, when we severed 

the dendrites, the cap cell retraction was indicated by the movement of the scolopales, which were 

labelled. But in Sqh-GFP larvae we could directly observe the motion of the cap cells. Here we 

observed slightly less retraction (~80 µm as opposed to ~100 µm) (Fig. 4.6.3). It is possible that the 

labelling has a slight effect on the functioning of the myosin. In the knockdown mutant (Fig. 4.6.5 B), 

the retraction was much smaller (~50 µm) as compared to the control w118 X Pinta GAL4 (Fig. 4.6.5 

A), which is a very interesting observation. These results correlate well with our hypothesis that 

myosins in the cap cells must play the dominant role in mechanical regulation. It is worth noting that 

while these last two fly lines exhibit no fluorescence, it is still possible to conduct ablation experiments 

on them. The only disadvantage is that the apparatus settings make it not possible to take very long 

videos if one does not use fluorescence, but this can at least be partially overcome by taking “before” 

and “after” images. 
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BEFORE BEFORE

AFTER

AFTER

BEFORE

BEFORE

AFTERAFTER

Fig. 4.6.1. Pre-strain in the lch5 organ 
probed by laser ablation. All experiments 
were done in w[-];PBac[20XUAS-
6XGFP]VK00018;iav-GAL4,w[+]/+ larvae 
unless mentioned otherwise. The 
schematics under the sub-figures indicate 
the geometry of laser cutting. Cap cells are 
not visible, because the animals expressed 
GFP only in the neuronal part of the lch5 
organs. (A) Cap cells severed near the 
scolopales. The cap cells are not visible 
because they are not fluorescent, but their 
positions are known because they extend 
from the scolopales. (B) Ligament cells cut 
after severing the cap cells. Some 
retraction is seen. (C) If the same is carried 
out when the cap cells are still intact, there 
is a small retraction, less than in B, but no 
other change in the lch5 organ. The fly line 
used for this was Sqh-GFP, where the 
ligaments and cap cells are fluorescent due 
to labelling of myosin, but not the neurons. 
(D) Dendrites of the neurons severed 
between somata and scolopales. The 
vertical dotted line shows the position of the 
scolopales before ablation, and the 
diagonal arrow pointing towards the top 
right indicates their new position after they 
have retracted by ~100 µm.  

A B C 

D 
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Fig. 4.6.2. Relaxation of lch5 organ 

during sequential severing of cap cells 

by laser ablation near the scolopales (cf. 

Fig. 4.6.1 A). Only the neurons express 

GFP. (A) Before ablation. Panels (B) to 

(D) show retraction of the neuronal 

dendrites as the cap cells are severed 

one by one. (B) After severing one cap 

cell from the bottom. (C) After severing 

three cap cells from the bottom (D) after 

severing all five cap cells. 
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Fig. 4.6.3. Time course of 
laser ablation. Here, the 
dendrites of the lch5 organ in 
a w[-];PBac[20XUAS-
6XGFP]VK00018;iav-
GAL4,w[+]/+ larva were 
severed one by one. The 
ablation began at ~20 sec, 
and by 120 sec the rapid 
retraction had already begun.  
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D 

A B 

 

 Fig. 4.6.4. Relaxation of lch5 organ in Sqh-GFP larvae during laser ablation. 

GFP is expressed in ligaments and cap cells. (A) After severing the cap cells 

alone (B) After severing the dendrites. The retraction in (A) is comparable to 

that in Fig. 4.6.1 D, while in (B) it is slightly less.  

 

B BEFORE

AFTER

BEFORE

AFTER

A B 
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Fig. 4.6.5. (A) Relaxation of lch5 organ in the control: w118 X Pinta GAL4, after severing the 

dendrites. Here the retraction is so strong that the cap cells leave the image plane. (B) Relaxation of 

lch5 organ in the myosin knockdown mutant, after severing the dendrites. There is no fluorescence in 

these two cases. The retraction in (B) is much less than that in (A).  

A B 
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4.7. Measurement of forces using calibrated glass 

pipettes 
 

For these experiments, we used fillet preparations with muscles excised (section 3.8.4). We used 

the set-up as described in section 3.10 and Figs. 3.10.1-3.10.2. The glass pipette was placed with 

its short arm parallel to the lch5 organ such that its downward-pointing tip was in contact with the 

organ. The stage was moved so that the lch5 organ pushed against the tip of the pipette. We 

expected to observe a deflection in the pipette when the lch5 organ disengaged from it, but the 

pipette was seen to be pulled along with the organ. Another problem encountered was that even 

when the muscles are excised, there is still a lot of debris in the sample, to which the pipette tends 

to adhere.  

 

We were recently able to obtain a preparation with negligible debris. We repeated the experiment, 

this time moving not the stage but the pipette by known distances, by controlling the 

micromanipulator with the inbuilt computer software. This is an improvement in the technique, and 

points to future experiments that will yield more quantitative results. Fig. 4.7.1 shows the lch5 

organ as it is displaced by the glass pipette. 

 

 

Fig. 4.7.1. (A) lch5 organ in the relaxed configuration (B) Displaced by 100 µm using the computer-controlled 

glass pipette 

 

 

A B 

Tip of pipette 

Tip of pipette 

lch5 organ 

lch5 organ 
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5. Conclusions & Outlook 
 

During my PhD thesis, I worked on several experiments focused on the mechanics of the lch5 

organ in the Drosophila larva. The results presented in this thesis led to three main conclusions.  

 

First, we found that the lch5 organs of Drosophila larvae show remarkable stretch elasticity with a 

large linear range (Fig. 4.5.1, and Fig. 4.6.1 D). When stretched and released, they relax in an 

overdamped fashion, viscously, but not elastically coupled to overlying muscle layers (Figs. 4.4.4 - 

4.4.6). Upon laser cutting, the organ recoils with a large amplitude, which demonstrates a large 

pre-strain of ~50% in the cap cells of the functioning organ. In the future, it will be interesting to 

explore the role of this pre-strain and the associated pre-tension and its regulation in the sensing 

mechanism of lch5 chordotonal organs. It is tempting to hypothesize that this tension is actively 

regulated and that it facilitates mechanotransduction in chordotonal sensory neurons, e.g. by 

maximizing the sensitivity of mechanotransduction channels through keeping their open probability 

at rest at its half maximum value, where small mechanical stimuli cause the maximal open 

probability change.  

 

Second, we show that non-muscle myosin II is the main molecular motor involved in initial 

proprioceptory signal detection in the chordotonal organs of the Drosophila larva. Given the 

abundance of non-muscle myosin II in the cap cells, we hypothesized that the greater increase in 

the length of the cap cells as compared to the neurons in our shape dynamics experiments 

(section 4.5 and Fig. 4.5.2), as well as their strong retraction in the laser ablation experiments, 

must be related to the presence of non-muscle myosin II. Indeed, when we repeated the ablation 

experiment for a myosin knockdown mutant Sqh RNAi X Pinta GAL4, we observed that the cap 

cells retracted by a much lower amount than for the control w118 X Pinta GAL4 (Fig. 4.6.5). In 

addition, the transgenic line Sqh-GFP, where the spaghetti squash light chains of myosin II are 

labeled with GFP, showed a slightly lower retraction than the control – ~80 µm as compared to 

~100 µm (Fig. 4.6.4). This could be due to a possible reduction in myosin activity induced by the 

labelling. It would be interesting to compare this with similar studies in other insects, and possibly 

mechanosensors of other animal taxa as well, such as vertebrates. 

 

Third, we have successfully devised a method to probe the lch5 organ using a glass pipette, as 

described in section 4.7. However, these experiments should still be considered preliminary, and 

indicate a potential for future investigations. It would be intriguing to investigate whether there is 

indeed a difference in the forces measured from the wild type and from the myosin knockdown 
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mutant. We expect that later investigations in this direction will lead us to a better understanding of 

the magnitude and nature of the forces at play in the functioning of the lch5 organ. 

 

Another area that is yet unexplored is the impact of myosin-inhibitory drugs on chordotonal organs. 

Blebbistatin is a commonly used myosin inhibitory drug (174, 175), but Drosophila non-muscle 

myosin II is insensitive to it (116, 176). The drug Y-27632, an inhibitor of the kinase activity of 

ROCK-I and ROCK-II, both of which phosphorylate non-muscle myosin II (177), appears to be a 

better candidate for this. This drug has already been successfully used in the Drosophila embryo to 

inhibit various mechanical aspects of development (121, 178-181), but to the best of our 

knowledge, it has not yet been applied to larvae. A suitable method to inject the drug into the lch5 

organ needs to be developed. It would indeed be interesting to repeat our experiments after 

applying this drug, and observe how the response of the organ differs from the case where the 

drug has not been applied.  
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Appendix A1 

Calculation of increase in length of lch5 organ in 

the fillet preparation 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1.1. Geometric visualization of a cross-section of a third instar Drosophila larva. Here AB represents 

the lch5 organ. 

 

The thickness of a Drosophila larva in the third instar stage is of the order of 1 mm. Let us then 

consider the larva as a cylinder of diameter 1 mm. Let us take a circular cross-section of this cylinder, 

along a plane perpendicular to the body axis and containing an lch5 organ. The organ is then a chord 

of the circle (Fig. A1.1). For convenience, we shall call the centre of the circle O, and the attachment 

points of the lch5 organ A and B. 

In the fillet prep, the larva is flattened out. The arc AEB of the circle that contains the chord would 

then become a straight line segment, and the chord AB, i.e. the lch5 organ, would get stretched. Its 

new length then equals the length of the arc. We treat this length as being equal to 0.4 mm (400 

µm), since that is the typical length of an lch5 organ in a larval fillet preparation. 

Radius ρ = 0.5 mm = OA = OB 

Arc length L = 0.4 mm 
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Angle subtended by the arc, in radians = θ = λ/L 

= 0.4/0.5 = 0.8 

Let the midpoint of the chord AB be M. Then the line segment OM is perpendicular to AB. AM = MB 

= x. Then the original length of the lch5 organ, λ, is 2x. 

AM divides the angle θ into two angles each of magnitude θ/2 = 0.4 rad. This means 

sin θ/2 = AM/OA = x/0.5 

Then x = 0.5 sin θ/2 = 0.5 sin 0.4 

λ = sin 0.4 ≈ 389.4 µm 

Increase in length = (1- λ/L) * 100  

≈ 2.6 %  
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Appendix A2 

Text and figures from the submitted manuscript 

 

The following text and figures in this thesis have been used mostly verbatim from the recently 

submitted manuscript “Mechanical properties of a Drosophila larval chordotonal organ”, with slight 

modification in some cases. The numbering of sections and figures is different from the paper. 

 

1. Figs. 2.4.2 and 2.4.3, and the accompanying captions 

2. Sections 3.8.1 - 3.8.3 (entire sections) 

3. Section 3.8.4: 

 “We used third instar Canton-S … larva thus prepared is known as a fillet” 

4. Section 3.8.5: 

i. “The fillet preparation was viewed using … camera (Photron Fastcam, VKT Video 

Kommunikation GmbH, Pfullingen, Germany).” 

ii. “using a micromanipulator (Scientifica UI-1000-i, Multichannel Systems, Reutlingen, 

Germany), the tungsten needle was brought into focus … released.”  

5. Section 3.9: 

“A spinning disc confocal microscope (CSU-X1, Carl Zeiss)… AxioCam MRm camera (Carl 

Zeiss) at a rate of 1 fps.”  

6. Section 4.4: 

i. “We observed the relaxation dynamics of the deformed organ ... fast snap-back and 

a slow relaxation” 

ii. “In fillet preparations with the muscle layers above the organ ... well-defined 

resonance frequency.” 

iii. “Most biological materials … bared lch5 organs.”  

iv. Figures 4.4.4 - 4.4.6 and the accompanying captions 

v. Tables 4.4.1 - 4.4.2 and the accompanying captions 

7. Section 4.5 (entire section) 

8. Section 4.6: 

i. “The straight conformation of the lch5 organ … regulate – organ tension.” 

ii. Fig. 4.6.1 (except part C), Fig. 4.6.2, Fig. 4.6.3 
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9. Section 5 (Conclusions and Outlook): 

“We found that the lch5 organs of Drosophila larvae … maximal open probability change.” 
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