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Chapter 1

Introduction

“Organic chemistry, indeed, in investigating more
and more complicated molecules, has come very
much nearer to that ’aperiodic crystal’ which, in my
opinion, is the material carrier of life. And
therefore it is small wonder that the organic
chemist has already made large and important
contributions to the problem of life, whereas the
physicist has made next to none.”

— E. Schrödinger, What is life?

The relative importance of genes and environments on complex human traits remains contro-
versial in fields like medicine, neuroscience, social sciences and evolutionary biology [1]. Coarse
morphological traits such as organs and body plan, but also finer structures such as the overall
organization of the neocortex are controlled to a large extend by genetic information. The neo-
cortex, in particular, is parceled into cytoarchitectonically defined areas and six laminar layers
with stereotypical inter-laminar connectivities that are considered to be mainly shaped by genes,
cell fate and cell autonomous developmental programs [2, 3]. Various functional features, how-
ever, are thought to be strongly influenced by neuronal activity. While functional traits such
as learning, memory and executive control require neuronal activity, cognitive traits such as
bird migration [4], early face recognition [5] and the notion of a universal grammar in language
acquisition [6] are granted to be influenced by genes. This indicates that the influence of genetic
mechanisms might reach further in the development of functional traits than expected.

The debate of nature versus nurture is perhaps most advanced at the first visual cortical
processing stage, the primary visual cortex (V1). The functional architecture of V1 is set up
by orientation selective neurons that respond preferentially to visual stimuli with contours of a
specific orientation in visual space. In both primates and placental carnivores, orientation pref-
erence is arranged into continuous and roughly repetitive iso-orientation domains. Exceptions
are pinwheel centers that are topological singularities surrounded by all orientation preferences.
Iso-orientation domains are linked by long-range patchy connections [7–16] that are shaped by
neuronal activity as they preferentially connect neurons with correlated activity [17]. On the
other hand, these long-range horizontal connections are a general feature of cortical architec-
ture and are observed in other cortical areas such as somatosensory and prefrontal cortex [18].
Upper layer neurons and long-range horizontal connections are hence a core machinery of the
neocortex. Other aspects of visual cortical architecture are clearly influenced by genes [19, 20],
but it is suspected that neuronal activity is an instructive mechanism for the development of
its functional architecture [21]. Therefore, visual cortical architecture shares general features of
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1. Introduction

the neocortical architecture, but is suspected to be mainly shaped by neuronal activity.
Visual cortical architecture in V1 follows quantitative layout rules across different species

and thus constitutes a unique circuit for probing the influence of genetic information on func-
tional traits. In primates and placental carnivores, the pinwheel configuration of the functional
architecture adheres to quantitative species-invariant statistics, the common design [22–24], and
most strikingly also emerges in the absence of any visual experience [22]. The quantitative
layout rules pose an ideal framework for benchmarking putative models. Moreover, the com-
mon design likely evolved independently at least twice in the course of the past 65 million
years [22], which might indicate a functionally advantageous trait. The possible acquisition of
environment-dependent functional traits by genes, the Baldwin effect, makes it conceivable that
visual cortical architecture is partially or redundantly encoded by genes. In this conception,
genetic mechanisms support the emergence of visual cortical architecture or even establish it
under unfavorable environments. Recent experimental evidence in fact hints at the importance
of genetic mechanisms for functional cortical development. For instance, a molecular correlate
of the neuronal response feature ocular dominance is present weeks before ocular dominance
forms [25]. Intriguingly, genetic mechanisms are not confined to local areas as homeoprotein
transcription factors get transported from the retina to V1 and are there involved in regulating
a period of high cortical plasticity, the critical period [26].

The development of visual cortical architecture raises numerous theoretical questions.
Whereas activity-dependent mechanisms have been theoretically examined in depth, genetic
mechanisms were excluded from theoretical research, mostly because the information capacity
of the genome appeared too small to contain a blueprint for wiring up the cortex [27]. Is it
theoretically conceivable that a genetic mechanism may quantitatively prescribe visual cortical
architecture? What are the biological prerequisites for such a mechanism? Model benchmarking
against the quantitative layout rules is a powerful approach towards answering these questions
and is, more generally, required for any model of visual cortical architecture. What is the link
between the common design and orientation domain ensembles? In the analysis of experimental
pinwheel configurations noise sources are attenuated but not eliminated. What effect has
measurement noise on the observed pinwheel configuration? Although two-dimensional func-
tional architectures of primates and placental carnivores adhere to the common design, their
three-dimensional layouts are distinct, most notably, in their columnar orientation selectivity
profile. What are the implications of three-dimensional functional architectures? Do they
contain information about transitions between states of functional architecture?

In this thesis, we utilize analytical and numerical techniques from dynamical systems, pat-
tern formation theory [28, 29] and statistical physics [30, 31] to examine the capability of genetic
mechanisms for encoding visual cortical architecture and to examine the pinwheel configuration
under measurement noise as well as in different geometries. For the first time, we provide a
biologically plausible scheme for genetically encoding a complex cortical architecture that cir-
cumvents the alleged information bottleneck. These findings together with recent experimental
advances in transcriptome sequencing [32–36] will allow to systematically seek for such a molec-
ular basis and may help to clarify the relative importance of genes and environments on complex
human traits. We analyze orientation domain ensembles and examine their link to the species-
invariant pinwheel statistics of the common design. We further provide a theoretical analysis
of the susceptibility of the pinwheel configuration to measurement noise that facilitates high-
precision measurements and enhances benchmarking for devising more accurate models of visual
cortical development. Finally, we theoretically investigate three-dimensional functional archi-
tectures and find that highly convoluted cortices are prone to non-columnar organizations and
are thus expected to be informative about evolutionary transitions. The advent of three-photon
imaging makes these regions experimentally accessible [37] and can thus foster the understanding
of the evolution of visual cortical architecture.

2



In Chapter 2, we briefly summarize the biological and theoretical foundations of this the-
sis. The first part reviews the development of visual cortical architectures together with their
dynamic and descriptive models. The second part summarizes the mechanisms and theoretical
modeling of gene regulation and their role in biological tissue patterning such as the neocor-
tex. Finally, the scientific questions addressed in this thesis are motivated and embedded in the
current state of research.

In Chapter 3, we devise a transcellular genetic network model that can quantitatively
encode functional visual cortical architecture. This mechanism might support neuronal activity
and serve as a redundant plan in the absence of instructive neuronal activity. We find that
active transport and trans-neuronal signaling as well as joined dynamics of morphogens and
connectome are key ingredients for such a genetic mechanism. This theory provides predictions
for experimental tests and can thus guide research to identify genetic mechanisms that shape
cortical architecture on large scales.

In Chapter 4, we review previous work on the link between pinwheel configurations and
orientation domain ensembles and extend it to all observed species-invariant pinwheel statistics
of the common design. This examination highlights informative measures of pinwheel configu-
rations and their link to orientation domain ensembles.

In Chapter 5, we first review theoretical arguments for the salience of pinwheels and sub-
sequently examine their configuration under measurement noise. The results give rise to an
extrapolation method of pinwheel densities to the zero noise limit and provide an approximated
analytical expression for confidence regions of pinwheel centers. The precise quantitative de-
termination of pinwheel positions and their confidence regions provides a paradigm benchmark
framework for the development of quantitative models.

In Chapter 6, we examine maximum entropy models of three-dimensional functional visual
cortical architectures in different geometries. We show that this approach describes entire model
classes in a broad parameter regime and thus provides a profound theoretical understanding of
three-dimensional functional architectures. This theory enables the examination of possible
evolutionary transitions between different functional architectures for which intermediate orga-
nizations might still exist.

Finally, in Chapter 7, we conclude this thesis with a discussion of the main findings, their
relation to previous work and an outlook for fruitful prospective research directions.
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Chapter 2

Fundamentals

“Thus the number of critical physical events
necessary in the retina in order to produce a visual
effect lies between 5 and 7. . . . We must therefore
consider them as the actual number of quanta
absorbed by the retina for the initiation of a visual
act.”

— S. Hecht et al., [38]

2.1 The primary visual pathway

Visual information sensed by the retina is processed by three major pathways that are associated
with different tasks. The primary visual pathway is mainly involved in visual perception and
projects from the retina over the lateral geniculate nucleus (LGN) to the primary visual cortex
(V1). The second visual pathway conveys visual information to the superior colliculus and
is important for eye movement. The third visual pathway is involved in pupillary reflexes and
transmits visual signals to the pretectal area of the midbrain. This thesis is exclusively concerned
with the primary visual cortex and therefore highlights key aspects of the primary visual pathway
in the following.

The primary visual pathway combines visual signals from both eyes by an elaborated con-
nectivity pattern, Fig. 2.1A. The pathway begins in the eyes’ retina, where axons from retinal
ganglion cells (RGCs) form the optic nerve. Optic nerve fibers extend to the optic chiasm, where
axons from the nasal hemiretina cross to the contralateral hemisphere and axons from the tem-
poral hemiretina continue to the ipsilateral hemisphere. Thus, optical signals get separated
such that one hemisphere receives only visual inputs from the visual field of its opposite side.
After the optic chiasm, the axons from the temporal and nasal hemiretina join in the optic tract
that terminates in the LGN. The LGN keeps both eye signals separated and relays the retinal
signals to V1 through the optic radiation, where neurons get for the first time input from both
eyes, Fig. 2.1B. The output of neurons in V1 are projected over two major pathways to higher
cortical areas: the ventral and dorsal pathway, Fig. 2.1C. The ventral pathway is concerned
with what objects in the visual world are (“what” pathway) and the dorsal pathway with where
objects are located in the visual world (“where” pathway).

The functional properties of neurons vary substantially along the primary visual pathway.
Neurons respond to stimuli in localized regions of the visual field termed receptive fields. In
general, receptive field sizes vary with visual field eccentricity and position in the visual pathway.
Receptive fields with the same eccentricity usually become successively larger with the level of
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2. Fundamentals
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Figure 2.1: Schematic illustration of the primary visual pathway of humans. A, B Signals
from retinal ganglion cells (RGC) of both retina are projected along the optic nerve, get partially divided
at the optic chiasm and transmitted over the optic tract to the lateral geniculate nucleus (LGN). Relay
neurons in the LGN further project the signals to layer IVC of the primary visual cortex (V1) over the
optic radiation. C Cortical neurons, for the first time, respond to stimuli of both eyes and project finally
into two major pathways: the ventral and dorsal pathway. The dorsal pathway is concerned with the
position (where?) and the ventral pathway with the structure or kind (what?) of a visual stimulus.
Figure based on [39].

the visual processing stage. At the first stage, RGCs have center-surround receptive fields with
either an ON- or OFF-center. At the second stage in the LGN, neurons have similar receptive
fields as RGCs and are therefore often called relay cells. At the third stage in V1, neurons
for the first time receive input from both eyes. The response dominance of a neuron to input
from one specific eye is called ocular dominance. A key organization principle of V1 is that the
visual field is systematically represented along its cortical surface, a property called visuotopic
(retinotopic) organization. In many mammalian species, neurons in V1 develop for the first
time non-concentric receptive fields that allow contour detection, a property called orientation
selectivity, Fig. 2.2A.

2.2 Functional architecture of the primary visual cortex

Orientation selective neurons in V1 are observed in several mammalian species with different
spatial functional organizations. In this thesis, the spatial arrangement of orientation prefer-
ence is referred to as the functional architecture following [40]. The spatial arrangement of
orientation preference is observed in two distinct types of horizontal organizations, Fig. 2.2B.
An interspersed, salt-and-pepper, organization of orientation preference is observed in the clade
Glires or rodents, e.g. rats [41], gray squirrels [42], mice [43] and rabbits [44–48]. In the clades
Laurasiatheria and Euarchonta, or primates and placental carnivores, orientation preference is
smoothly organized and segmented into iso-orientation domains or short orientation domains.
More precisely, they are observed in species of the primate order such as macaques [49–53],
galagos [54], squirrel monkeys [53, 55, 56], owl monkeys [53, 57] and humans [58], in the order
carnivora comprising cats [59–67] and ferrets [14, 15, 67, 68] as well as in the order scadentia
in tree shrews [12]. The typical spacing between orientation domains with the same orientation
preference is referred to as the typical scale or column spacing. Both functional architectures
are organized on a cellular level, Fig. 2.2C. Orientation domains are additionally organized
coarsely into columns such that vertically aligned neurons respond preferentially to similar ori-
entations [69]. They are therefore also called orientation columns in analogy to the columns of

6



2.2. Functional architecture of the primary visual cortex

Figure 2.2: Functional visual cortical architecture of different mammalian species. A Visual
information are projected from the retina over the LGN to V1. Neuronal responses (ticks on line) to
the presentation of oriented bars (solid thick lines) in the receptive field (dashed circle) are summarized
by the tuning curve that assigns preferred orientations to neurons. Brain illustration based on [39].
B Orientation preference of neurons in V1 is observed in different mammalian species. The horizontal
spatial arrangement of orientation preference divides into two distinct functional architectures: an or-
dered arrangement into iso-orientation domains found in the evolutionary clades of Laurasiatheria and
Euarchonta and an interspersed layout observed in the clade Glires. Reprinted from [24]. C Orientation
preference is precisely organized on a cellular level in orientation domains at, e.g. pinwheel centers (top),
and in interspersed orientation layouts (bottom) as revealed by two-photon calcium imaging. Reprinted
with permission from [41, 71].

cat’s somatosensory cortex [70].
Orientation domains are typically measured by optical imaging of intrinsic signals1. This

technique records the change in light reflectance of V1’s cortical surface E(x|φj) evoked by
drifting gratings of different orientations, e.g. φj ∈ {0◦, 45◦, 90◦, 135◦}. The change in light
reflectance is due to blood oxygenation changes caused by neural activity. After noise attenuation
of the signal, orientation domains are mathematically summarized by the complex orientation
director field or short orientation field

Ψ(x) =
∑
j

E(x|φj)e2iφj = S(x)e2iϑ(x). (2.1)

The preferred orientation of the orientation field is then given by ϑ(x) and orientation selectivity
by S(x), which result from the vector average of the neuronal responses. Orientation preference
varies smoothly along the cortical surface except at point singularities called pinwheels that are
surrounded by all orientation preferences, Fig. 2.2C and Fig. 2.3A. In the mathematical de-
scription, pinwheels are simply defined by the roots of the orientation field S(x) = 0. Depending
on the ordering of orientation preference around a pinwheel at position xi, different topological
charges can be assigned to it by

qi =
1

2π

∮
Ci

dr · ∇ϑ(xi), (2.2)

where Ci denotes a closed path around only that pinwheel. As orientation preference ϑ(x) is
π-periodic, topological charges can only assume multiples of half integer values qi ∈ Z/2. In
experiments, only single charged pinwheels qi = ±1/2 are observed, Fig. 2.3C, and are highly
organized on a cellular level as revealed by two-photon calcium imaging in cats, Fig. 2.2C.

Pinwheel configurations determine a substantial part of orientation domains. However, ori-
entation domains are heterogeneous and their typical scale varies substantially across V1. Com-
parative quantification of pinwheel configurations that neglected this heterogeneity hence found

1See [72] for a detailed description of optical imaging of intrinsic signals, [59] for a comparison of this technique
to electrode and voltage sensitive dye recording and [73, 74] for a discussion of its limitations.
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2. Fundamentals

Figure 2.3: Pinwheel configurations of primates and placental carnivores adhere to a com-
mon design and are linked to long-range patchy connections. A Orientation domains of tree
shrew (Scadentia order), ferret (Carnivora order) and galago (Primate order) obtained by intrinsic signal
imaging with subsequent noise filtering (see Eq. (2.1) and main text). B Long-range patchy connections
(black dots labeled by biocytin) span several millimeters of cortex and link preferentially neurons with
similar orientation preference. C Orientation domains posses pinwheels that are points surrounded by
all preferred orientations. Depending on the order of surrounding orientation preference, pinwheels have
different topological charges (green and red dots, see Eq. (2.2)). D-G Pinwheel configurations of primates
and placental carnivores, more precisely, of tree shrews, galagos, ferrets and cats (not shown) adhere to
a common design [22–24]. D Pinwheel density, E Pinwheel density fluctuation of subregions (standard
deviation) with inset: number variance versus typical scale area. F Nearest neighbor distribution of
pinwheels, G Nearest neighbor distribution of pinwheels with equal d++ and opposite d+− topological
charge. B, C Adapted with permission from [12]. A, D-G Adapted with permission from [22].

statistically distinct pinwheel patterns with substantial pinwheel density variations across species
[56, 67, 75]. The typical scale heterogeneity can be accounted for by a semi-local wavelet analy-
sis. This approach revealed strikingly that the pinwheel configurations in the four species cats,
ferrets, galagos and tree shrews adhere to a quantitative species-invariant common design [22–
24], see Fig. 2.3C-G. This common design is suggested to be an evolutionary convergent trait
(see Fig. 2.2B for tree of mammal evolution), because of two main reasons: (i) the last common
ancestor of the four species was a small shrew-like mammal and hence, most likely, possessed an
interspersed orientation layout in V1 [22, 76]. (ii) these mammals have distinct neuronal circuits
for orientation selectivity generation [24, 77]. For instance, tree shrews generate orientation se-
lectivity mostly intracortically [78, 79], whereas cats generate it mostly thalamocortically [69,
80].

An additional visual cortical feature shared by different species is an elaborate horizontal
connectome in V1, Fig. 2.3B. These horizontal connections extend over several millimeters up
to the entire primary visual cortex and are organized in patches linking neurons with similar
preferred orientations [7–16]. Intriguingly, these long-range patchy connections are not only
found in V1, but throughout the neocortex in cortical areas such as the motor area, prefrontal
area or inferotemporal area [18].
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2.3. Development and plasticity of orientation domains

2.3 Development and plasticity of orientation domains

Although orientation selectivity and their spatial arrangement is subject to extensive research,
the precise underlying mechanisms of orientation domain emergence are yet unresolved. A
major question that arose during this research is to what extend functional visual cortical
architecture is determined by genetic and activity-depend mechanisms. The initial claim of
an innate (genetic) predetermination proposed by Hubel and Wiesel [40] developed into a long
debate that is still unsettled [81]. In order to refine the question of a genetic or activity-dependent
cause of orientation domains, it is pivotal to differentiate between endogenously and exogenously
caused activity-dependent mechanisms as well as activity-independent mechanisms such as cell
fate specification by genetic factors.

In the following a brief summary of the major developmental stages of V1 and the primary
visual pathway of the two most studied species cats and ferrets will be given (reviewed in e.g.
[21, 82–84] and illustrated in Fig. 2.4). Notice that ferrets are more immature at birth than cats
and are therefore better suited for early developmental research. In both species, anatomical
and physiological maturation of the retina precedes that of LGN, which in turn precedes that
of V1 [21]. Axons from LGN grow at an early stage to V1, where they reach the subplate of V1
at E36 in cats [85] and E36 in ferrets [21]. The afferent LGN axons remain in the subplate for
a couple of weeks before innervating the cortex. Shortly after LGN afferents reach the subplate
around E43 in cats and P0 in ferrets [21], the first functional retinogeniculate synapses emerge.
In the following time endogenous retinal waves appear that are accompanied by LGN laminar
segregation. Thalamocortical axons begin to innervate V1’s input layer 4 at about P0 in cats
and P12 in ferrets [86, 87]. In the following time (P22-P28), spontaneous long-range correlated
cortical activity is observed in ferrets [88]. At the same time (P24-P27) in ferrets, LGN’s left-eye
and right-eye layers exhibit correlated activity that is shown to require cortical feedback [89].
In ferrets, orientation selectivity is already present in V1 at P23 with about 25 % orientation
selective cells that gradually matures over the course of a month (P49) to roughly 75 % [90].
A landmark event in visual cortical development is eye-opening at P7 in cats [81] and P31-P36
in ferrets [68, 91] from where on the animals can first experience normal exogenously driven
neuronal activity. However, as early as two weeks before eye-opening, visual stimuli presented
through closed eyelids can already drive neuronal activity in LGN and V1 of ferrets [92]. In both
species orientation domains are already observed shortly after eye-opening and are rather robust
over the following two weeks [64, 66, 68]. The emergence of orientation domains coincides roughly
with the elaboration of long-range horizontal connections to long-range patchy connections [10,
14, 82, 91, 93]. Intriguingly, layer 2/3 neurons in cats finish their neural migration and arrive
at their final positions only at P21 [86]. In cats, the visual cortical area increases substantially
over the first 14 postnatal weeks [94–97], while basically preserving the typical spacing [19, 20]
of ocular dominance and orientation selectivity bands during most of that time implying cortical
reorganization [97–99].

The influence of experience driven activity on orientation domains is commonly dissected
by exposing animals to abnormal visual developmental environments such as dark rearing, lid
suture and stripe rearing. Stripe rearing in cats expands orientation domains devoted to the
orientation of the striped environment, but is permissive to orientation selectivity emergence of
unseen orientations [100]. In ferrets, lid-suture2 destroys or even prevents orientation domain
emergence [14]. Lid suture in cats does not affect crude clustering of horizontal connections,
but prevents their refinement [101]. Most strikingly, the total lack of visual experience leads
to weaker orientation selectivity, but generates orientation domains in ferrets that adhere to

2Notice that as early as 2 weeks before eye-opening, visual stimuli presented through closed eyelids can
drive neuronal activity in LGN and V1 of ferrets [92]. Hence lid-sutured animals experience a disturbed visual
environment.
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Figure 2.4: Timeline of visual development and plasticity of the primary visual cortex. A
and B list the major developmental stages of cats and ferrets during their embryonic (E) and postnatal
(P) age in days, respectively. Ferrets are more immature at birth than cats and are therefore better
suited for early development research. Figure based on [21].

the common design [14, 22]. These results suggest that initial orientation domain emergence is
independent of visual experience, while susceptible to inappropriate visual input.

What is the effect of endogenous activity on the formation of orientation domains? Silenc-
ing cortical activity of V1 with the neurotoxin TTX in an early developmental stage of ferrets
(P21-P28) completely abolishes maturation of orientation selectivity and clustering of horizon-
tal connections [90, 93]. Similarly, blocking NMDA receptors at P21 in ferrets’ V1 prevents
orientation selectivity maturation [102]. Intriguingly, bilateral enucleation at P21 in ferrets does
not prevent clustering of horizontal connections [93]. Subplate ablation prevents formation of
functional architecture even if LGN axons already entered V1 [103]. Infusion of TTX in LGN of
fetal cats between E42 and E56 prevents topographically organized thalamocortical projections
[104]. Stimulation of the optic nerve over a course of two weeks weakens orientation selectivity
but does not prevent normal appearing orientation domains [105]. Electric focal stimulation
paired with a preceding visual stimulation of V1 in cats changes orientation preference strongly
locally and weakly globally [106], see [107]. In the light of these experimental findings, it can
be summarized that activity-dependent mechanisms appear necessary for orientation selectivity
emergence and elaboration of horizontal connections, but it is unclear whether they are sufficient
for this task.

Initial orientation domains have a bias in orientation preference representation towards car-
dinal orientations. An analysis of more than 4000 recorded neurons of cat’s V1 revealed such a
cardinal bias [108]. Optical imaging demonstrated a cardinal bias in cats [67, 100, 109, 110] and
ferrets [67, 68, 111–113]. A comparison between dark reared and normal raised ferrets suggests
that the cardinal bias is endogenous and that normal visual experience equalizes the orientation
selectivity distribution [113]. Finally, fMRI recordings show the existence of a cardinal bias also
in humans [114].

In total, it can be summarized that (i) visual experience is not necessary for orientation
domain emergence, (ii) activity-dependent mechanisms are necessary for orientation selectivity
emergence and elaboration of horizontal connections and (iii) a cardinal bias appears to be
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2.4. Modeling development and organization of orientation domains

present in initial orientation domains, but equalizes during development. However, it is unclear
whether activity-dependent mechanisms are sufficient for the emergence of orientation domains.

2.4 Modeling development and organization of orientation
domains

Modeling orientation domains has been a challenging task since their first experimental discov-
ery. The main difficulties in modeling are due to the high dimensional nature of the visual
cortical architecture and the limited knowledge of their development. First models proposed
by Hubel and Wiesel qualitatively argued how orientation selectivity and the spatial arrange-
ment can be generated by genetic mechanisms [40]. This view of genetic predetermination as
an explanation for orientation domains emergence changed to activity-dependent models due
to various experiments listed in the previous section. Additionally, it was pointed out that the
genetic information required for a predetermination of the connectome for orientation domains
is insufficient and likely exceeds the information capacity of the DNA3 [27]. Developmental
models of orientation domain emergence were therefore based on neuronal activity with mostly
Hebbian learning rules. An alternative class of models were formulated more abstract and is
neither related to neural activity nor to genetic mechanisms. The merits and shortcomings of
these models will be listed in the following.

The development of orientation domains was modeled in various ways in the past. One class
of models uses numerous neurons in a network with a dynamic connectome that is typically
rearranged by an activity-dependent learning rule, see e.g. [27, 115–121]. These models have
typically many parameters, can be mostly evaluated numerically and thus make it difficult to
reveal underlying principles of orientation domain emergence. Another model class interprets
the emergence of orientation domains as a pattern forming system and models their emergence in
an abstract and phenomenological manner [22, 122–131]. Orientation selectivity and preference
is typically treated as the only dynamical variable. The dynamics are then constrained by
phenomenology and symmetry assumptions. These models are hence relatively simple and
often analytically tractable to a high degree thus revealing underlying principles of orientation
domain emergence. For instance, it was shown that for a universality class of orientation domain
development, long-range interactions are necessary for stabilization of quasiperiodic orientation
preference layouts that are in agreement with the common design [22, 128]. The drawback of
these models is clearly their lack of information about biological mechanisms and the functional
role of orientation domains. The interactions could be for instance mediated by the visual
environment, internal neural activity or even by genetic mechanisms.

Throughout this thesis the spatial arrangement of orientation preference will be summarized
by an orientation field

Ψ(x, t) = S(x, t)e2iϑ(x,t) (2.3)

as proposed in [122, 132] and analogously to Eq. (2.1), whose phase summarizes the preferred
orientation ϑ(x, t) and the amplitude its orientation selectivity S(x, t). We will devise a dynamic
model for their emergence during development and descriptive models for which the basics of
both will be elucidated in the following sections.

3The human brain consists of around 1011 neurons communicating through about 1014 synapses. Hardwiring
the brain by a blueprint would thus require 1015 ≈ 1014 log2(1011) bits, however, the maximal information capacity
of the human DNA with its 3.2 billion bases is only about 1010 ≈ 3.2 · 109 log2(4) bits posing an information gap
of a factor 105.
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2. Fundamentals

2.4.1 Long-range interaction model

The development of visual cortical architecture is reminiscent of dynamic pattern generation
in physical systems [28, 29]. This analogy inspired a symmetry based model for the dynamic
emergence of orientation fields: the long-range interaction model [128]. The long-range interac-
tion model is the only developmental model that is shown to be in good quantitative agreement
with the common design. The central concept is based on the idea to constrain all possible
variational dynamics

∂tΨ(x, t) = F̂ [Ψ] (2.4)

governed by a nonlinear operator F̂ [Ψ] through symmetry principles and phenomenology of
visual cortical development. Symmetry principles require equivariance of the operator F̂ under
a set of symmetry operators Ŝ that is

ŜF̂ [Ψ] = F̂ [ŜΨ]. (2.5)

In the long-range interaction model the system is invariant under translation T̂y, rotation R̂α,
reflection P̂ , phase shift Ŝθ and conjugation Ĉ with the symmetry operators defined by

T̂yΨ(x) = Ψ(x+ y), R̂αΨ(x) = e2iαΨ (Ωαx) , P̂Ψ(x) = Ψ (x̃) ,

ŜθΨ(x) = Ψ(x)eiθ, ĈΨ(x) = Ψ̄(x),
(2.6)

where Ωα denotes the rotation matrix of angle α and x̃ = (x,−y) the reflection at the x axis.
These symmetry principles imply a homogeneous unselective state Ψ(x, t) = 0 and a power
series consisting of odd terms only

∂tΨ(x, t) = L̂[Ψ] + N̂3[Ψ,Ψ, Ψ̄] +O
(
Ψ5
)
. (2.7)

A linear operator of Swift-Hohenberg type [28] defined by L̂[Ψ] = (r−(k2
c +∆)2)Ψ(x, t) provides

the system with a typical scale Λ = 2π/kc for r > 0 due to unstable modes on the critical circle
at kc = ‖k‖. Close to the symmetry breaking point of r = 0, that is the range 0 < r � 1,
the field dynamics can be analyzed by weakly nonlinear analysis [28, 29]. In weakly nonlinear
analysis (see section 3.5.2 for details) the field Ψ(x, t) is expanded in a power series of

√
r around

its homogeneous unselective state leading to dynamics confined to the critical circle. Measuring
time in units of the intrinsic timescale 1/r and discretizing the orientation field equidistantly on
the critical circle

Ψ(x, t) =
N∑
j=1

Aj(t)e
ikjx with kj = kc

(
cos 2πj

N

sin 2πj
N

)
(2.8)

leads to the variational amplitude equations

∂tAi(t) = rAi(t)−Ai(t)
N∑
j=1

gij |Aj(t)|2 − Āi−(t)
N∑
j=1

fijAj(t)Aj−(t). (2.9)

Here, the notation i− = i+N/2 and the coefficients gij , fij that depend on the cubic operator N̂3

was used. Without any further symmetry principles stable closed-form solutions of the amplitude
equations can cause visual scotoma containing only two preferred orientations. Stable visual
scotoma solutions ought to be absent in any biophysically relevant model and indeed become
unstable by the additional symmetry principle of permutation-symmetric cubic operators

N̂3[u, v, w] = N̂3[w, u, v]. (2.10)
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2.4. Modeling development and organization of orientation domains

Figure 2.5: Closed-form solutions (ECPs) of the long-range interaction model. A ECP
orientation fields and their active mode configurations of example solutions are depicted for different
numbers of active modes n. B Phase diagram of the minimal energy regions of the ECPs for a Gaussian
long-range interaction kernel (color-code serves illustration purposes). C Asymptotic stability region
(gray area) for large n is shown for a Gaussian interaction kernel. D Example ECP together with its
long-range patchy connectivity of a neuron (orange dot). The interaction kernel is Gaussian.

Notice that this is not a sufficient condition, since example cubic operators can typically be
written as both permutation and non-permutation symmetric operators.

Closed-form solutions of permutation symmetric models that contain all preferred orien-
tations are essentially complex planforms (ECPs) defined by n = N/2 active modes of equal
amplitude A ∈ R

Ψ(x) = A
n∑
j=1

ei(ljkjx+φj) (2.11)

with lj ∈ {−1, 1} as illustrated in Fig. 2.5A. The energy corresponding to the variational
amplitude equations in Eq. (2.9) is degenerated in its phases φj of closed-form solutions with n
active modes. Thus, ECP closed-form solutions represent n-tori Tn in phase space. The number
of distinct n-tori4 is given by [133, 134]

NECP(n) =
1

4n

∑
2-k|n

ϕ(k)22n/k + 2b(n−3)/2c (2.12)

with ϕ(·) the Euler totient function that scales for large n as NECP(n) ∼ 2n−2/n. The closed-
form solution set of ECPs are in quantitative agreement with the common design for large
numbers of active modes [22]. In fact, the closed-form solutions predicted a mean pinwheel
density close to π for large n that was later discovered in distinct species. The mean pinwheel
densities cluster around π for small n and converge to it from below for large n as verified by
a random field approximation (see next section and Fig. 2.6D) yielding a pinwheel density of
ρ(ζ) =

√
π2 − 8ζ2 and ζ = ‖

∑
j ljkj‖/(4n) ≤ 1 [128, 135].

4Solutions defined by l1 and l2 are distinct if they cannot be transformed to each other by symmetries. For
instance, the solutions l = (1,−1, 1) can be transformed by a rotation of π/3 to l = (−1, 1,−1), but is distinct to
the solution l = (1, 1, 1).
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In order to stabilize ECPs, an example permutation symmetric cubic operator was phe-
nomenologically motivated. In the primary visual cortex, neurons with similar preferred orien-
tation preferences are preferentially linked by long-range patchy connections. This motivated an
orientation preference selective connectivity W (x,y) ∝ K(‖x − y‖) exp(−|Ψ(x) − Ψ(y)|2/σ2

z)
with variable interaction range K(‖x‖) = exp(−‖x‖2/2σ2), see Fig. 2.5D. The long-range in-
teractions together with local interactions result in the relevant third order terms for orientation
field selection

N̂3[Ψ,Ψ, Ψ̄] =(1− g)Ψ(x)|Ψ(x)|2 − 2− g
2πσ2

∫
d2ye−‖x−y‖

2/2σ2

(
|Ψ(y)|2Ψ(x) +

1

2
Ψ(y)2Ψ̄(x)

)
(2.13)

and only depends on the interaction range σ and the weighting between local and non-local
interactions g. The example operator was generalized in [136] by different long-range interaction
kernels K(‖x‖). The region of minimal energy of an ECP is centered at large interaction ranges
for a large number of active modes as shown in Fig. 2.5B for the Gaussian kernel. The
closed-form ECP solutions are multistable in regions of their minimal energy and converge
asymptotically to the stability regions depicted in Fig. 2.5C for large n.

This orientation domain model type was generalized to models with higher-order interaction
terms of Eq. (2.7) [137], orientation domains lacking shift-symmetry Ŝθ (see Eq. (2.6)) [138, 139],
ocular dominance coupled orientation domains [129–131, 137] and models producing interspersed
orientation layouts [140].

2.4.2 Orientation field ensembles

Statistical features of orientation field ensembles can be analyzed by descriptive models. In this
framework orientation field ensembles are described by a probability functional P[Ψ] that as-
signs a statistical weight to the occurrence of a specific orientation field Ψ(x). Orientation fields
thus become infinite dimensional random variables. The challenge for an accurate description
of orientation field ensembles consists in the specification of the probability functional. Sam-
pling this distribution from experimentally measured orientation domains without any further
constraints is not feasible.

Maximum entropy models provide a systematic and agnostic approach for approximating
probability functionals under the constraint of limited knowledge [141, 142]. The resulting
maximum entropy distribution is the least structured distribution that fulfills a set of provided
statistical quantities. For instance, the maximum entropy distribution of a random variable
u = (Ψ(x1),Ψ(x2), . . . ,Ψ(xd))

T with known mean µ = 〈u〉 and covariance Σ = 〈uuT 〉 is a
multivariate Gaussian distribution

p(u) =
1√

(2π)d det Σ
e−

1
2

(u−µ)TΣ−1(u−µ). (2.14)

In the limit of an infinite dimensional random variable Ψ(x), the field is called Gaussian process
or Gaussian (random) field [143]. Marginal distributions of a Gaussian random field for Ψ(x1)
and Ψ(x2) are then given by a multivariate Gaussian distribution.

Historically, Gaussian random fields as a proxy for orientation fields became known under
the name of band-pass filtered white noise [144–146]. In these models, white noise was band-
pass filtered with a kernel Kbp(k) and subsequently Fourier transformed. Thus, these models
are Gaussian random fields with a vanishing mean 〈Ψ(x)〉, vanishing first correlation function
〈Ψ(x)Ψ(x)〉 and a translation invariant second correlation function C(x) = F−1[|Kbp|2](x) =
〈Ψ(0)Ψ̄(x)〉 due to the Wiener-Khinchin theorem. These descriptive models were shown to
be equivalent to developmental dynamics of orientation fields in their transient linear regime
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2.4. Modeling development and organization of orientation domains

and frozen noise models [56, 147]. Hence, these descriptive models account for developmental
dynamic models such as [122, 148]. Gaussian random fields as descriptive models are particularly
powerful and are extensively used in singular optics [149] as well as in quantum billiards [150–
152] and allow us to derive various analytical expectations of intrinsic features.

The pinwheel configuration can be quantified analytically in these descriptive models. Pin-
wheels are points in two-dimensional fields and lines in three-dimensional fields defined by van-
ishing amplitudes |Ψ(x)| = 0. In the Gaussian random field literature, these points are known
as topological defects, dislocations, nodal points or singularities. The topological charge qi of a
pinwheel (see Eq. (2.2)) in Gaussian random fields is a positive or negative half integer and typi-
cally +1/2 or −1/2 [30, 153]. Notice that in the Gaussian random field literature the topological
charges are full integers, since the phase is defined as 2π periodic. For a two-dimensional system,
statistics of pinwheel centers xi (roots of the complex field) can be evaluated by expressing these
centers in terms of the real and imaginary part of the orientation field Ψ(x) = ξ(x) + iη(x) as

∑
i

δ(x− xi) = δ(ξ(x))δ(η(x))

∣∣∣∣∂(ξ(x), η(x))

∂(x, y)

∣∣∣∣︸ ︷︷ ︸
ν(x)

. (2.15)

The orthogonality measure ν(x) = |∂xξ(x)∂yη(x) − ∂yξ(x)∂xη(x)| that measures the area of
the spanned parallelogram of ∇ξ(x) and ∇η(x) is required for normalization. The ensemble
average of this quantity results in a Kac-Rice type formula and counts the average number of
pinwheels per area that is the pinwheel density

ρ(x) = 〈δ(ξ(x))δ(η(x))ν(x)〉 = 〈ρ̃(x)〉. (2.16)

The ensemble average 〈·〉 can be obtained by averaging over the Gaussian multivariate distribu-
tion with the state vector composed of real and imaginary parts ξ(x), η(x) and their gradients
∇ξ(x), ∇η(x). Topological defect averages can be obtained by

〈F [Ψ(x)]〉pinwheel =
1

ρ(x)
〈F [Ψ(x)]ρ̃(x)〉 . (2.17)

In three-dimensional systems the normalizing orthogonality measure is simply replaced by
|∇ξ(x) × ∇η(x)|. The topological defect average can be further extended by incorporating
higher topological defect correlations. The resulting n-point topological defect correlation func-
tions are then given by

ρ(n)(x1,x2, . . . ,xn) = 〈ρ̃(x1)ρ̃(x2) · · · ρ̃(xn)〉 . (2.18)

Weighting every topological defect in the n-point correlation function with its topological charge
gives the charge correlation function. The pair correlation function (n = 2) is cumbersome to
solve and was calculated for isotropic Gaussian fields in [30, 154]. Derivation of the charge
correlation function is much simpler and is solved for arbitrary n-point charge correlations of
isotropic Gaussian fields in [155]. The pair charge correlation function (n = 2) is solved for
general Gaussian fields with vanishing mean [30, 156]. The n-point correlation functions are
tightly related to the nearest neighbor distribution of topological defects [157–159]. The effect
of boundaries on topological defect distributions was examined in [160–165]. The statistics of
topological defects in Euclidean geometry was extended to e.g. extremal point statistics [166,
167], possible temporal dynamics of topological defects [168] and to topological defect statistics
on a sphere [169]. A review of topological defect statistics in Gaussian fields is provided in [31]
and a widespread collection of corresponding calculations in [30].
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Figure 2.6: Maximum entropy model of orientation domain ensembles. A The correlation
function C(r) = 〈Ψ(x1)Ψ̄(x2)〉 with r = ‖x1 − x2‖ of an orientation domain ensemble [171] together
with the radial part of its Fourier transform P (k) = F [C](k) for different power-spectral density widths
∼ 1/β. B Synthesized orientation domain examples corresponding to the correlation functions of A.
C Analytical pinwheel density of the orientation domain ensemble in A-B from [171] (solid line) that
converges to a pinwheel density of π (dashed line) for small power-spectral density widths. D Pinwheel
density of closed-form ECP solutions (black dots) is depicted together with its maximum entropy model,
that is a Gaussian random field, (gray area) and its limit for n→∞ of π (dashed line) [135].

The pinwheel density of isotropic orientation domains was found to be bounded from below
by π that lead to the prediction of pinwheel annihilation during visual development [147]. No-
tice that the lower bound is not valid for anisotropic orientation domains that can assume any
pinwheel density as shown in [170]. A descriptive model with variable power-spectral density
width that mimics orientation domains in the transient linear regime is provided in [171] and
depicted together with its correlation function and pinwheel density in Fig. 2.6A-C. The pin-
wheel density of the anisotropic ECP was calculated and shown to converge to π from below for
an increased number of active modes [135] as shown in Fig. 2.6D. The variance of the typical
scale in orientation domains was calculated in a similar manner in [172]. Orientation domains
and pinwheel densities were further studied in hyperbolic and spherical geometries [173].

In all these models centered Gaussian random fields with vanishing mean were considered.
In three-dimensional geometries the analysis was restricted to isotropic Gaussian random fields.
In this thesis, we extend the examination of Gaussian random fields to ensembles with non-
vanishing, spatially heterogeneous means and to non-isotropic three-dimensional geometries.

2.5 Gene regulation

Proteins, the molecular machinery and structuring molecules of biological tissue, are encoded by
specific DNA sequences called genes. Protein-encoding genes are decoded in two major steps:
(i) RNA-polymerase docks to the promoter of a gene and transcribes the DNA sequence to an
mRNA polymer and (ii) Ribosomes translate the mRNA to a sequence of amino acids that folds
into a specific conformation and thus constitutes the protein. Although almost all cells carry
the same DNA, their protein composition and their function varies substantially in different
body areas and within the same tissue. This well-orchestrated control of gene regulation is
influenced on various processing stages, see Fig. 2.7. While the paramount control point lies
at the regulation of transcription [174–176], gene activity can be altered by RNA processing,
translational and transport control, mRNA degradation control and protein activity control
[174, 177]. A class of proteins called transcription factors bind to specific DNA sequences in
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Figure 2.7: Cellular mechanisms for regulating gene expression in eukaryotes. In eukaryotes,
gene regulatory mechanisms can be grouped into six stages. The first and major mechanism controls
transcription of DNA directly (see main text). For further details on the other gene regulation mechanisms
consult e.g. [174]. Figure based on [174].

the regulatory region of a gene that influences RNA-polymerase transcription and thus protein
expression. In humans, 10 % transcription factor encoding genes of about 21 000 protein-coding
genes indicates gene regulation as a key driving force in evolution [174, 178]. In fact, gene
regulation is thought to be one of the main evolutionary driving forces for phenotypic variation
between eukaryotic species rather than the protein code [179].

Transcription factors are grouped by their structural motifs into families and are called
activator or repressor depending on their transcriptional control [174, 178]. In prokaryotes, the
ability of RNA-polymerase to initiate transcription is nonrestrictive, in contrast to eukaryotes
where DNA is packed into chromatin templates restricting the access of RNA-polymerase to
DNA [180]. Transcriptional regulation is typically controlled by a few transcription factors
in prokaryotes, whereas in multicellular eukaryotes the regulation is commonly combinatorial
and requires the coordinated interaction of multiple transcription factors [178]. Regulatory
regions are correspondingly comprised by only a few binding sites in prokaryotes in contrast to
multicellular eukaryotes, where 10–50 binding sites in the regulatory regions, called cis-regulatory
elements, for 5–15 different transcription factors is not unusual [181]. Transcription factor
binding affinities are weak in eukaryotes, but increase by transcription factor dimerization,
oligomerization and agglomeration through cooperative binding. Multiple transcription factors
usually assemble in groups at their cis-regulatory-elements together with proteins called co-
activators and co-repressors. Through the combinatorial regulation of the co-activators and
co-repressors, a single transcription factor can be involved in both activation and repression.

Mutual gene regulation of transcription factors paves the way for patterning biological tissue
both in space and time. In bacteria, gene regulation can be precisely organized in temporal cas-
cades, for instance, during cell cycles [182] or the assembly of flagella in E. coli [183]. Regulation
in combination with diffusion can generate spatial patterns during morphogenesis that is known
as Turing mechanism [184]. The mechanism relies on transcription factors called morphogens
with a rapidly diffusing repressor and a slowly diffusing activator. However, the required diffu-
sion coefficients for such a mechanism appeared biologically implausible [185–187], but see [188].
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Although the Turing mechanism might be implausible in many biological systems, a Turing
type mechanism is suspected to shape, for instance, skin patterning [186, 189–193]. Candidate
morphogens such as Bicoid, Decapentaplegic and Activin were later discovered in the fruit fly
Drosophila melanogaster [194] and the frog Xenopus laevis [195]. Blastoderm patterning of
Drosophila melanogaster during embryogenesis is probably the most famous example for body
segmentation caused by genes [196]. A suspected universal design principle for body segmenta-
tion is the segmentation clock that temporally oscillates and thus segments growing tissue [197,
198]. The most famous temporal oscillation is probably the circadian clock [199] that coordi-
nates the day-night cycle. A spectacular effect of this rhythm is discovered in spiders, where
light sensitivity during night is increased by a factor of 1000 [200]. Remarkably, the circadian
clock is very robust as in the cyanobacterium Synechococcus elongatus it appears to function
without transcriptional and protein degradation feedback for at least several days [201].

In the neocortex, many developmental aspects are thought to be mainly shaped by genes.
Neocortical parcellation into Brodmann areas, the “organs of the brain”, but also the organi-
zation into six laminar layers and the stereotypical wiring between laminar layers are thought
to be mostly genetically specified [2, 3]. Similarly, sensory projections that contribute to define
Brodmann areas by innervation are guided by genes [202, 203]. Long-range patchy connections,
a large-scale circuit motif within the neocortex, that in the primary visual cortex is tightly linked
to the functional architecture, is suspected to be shaped by genes [18]. Axon guidance by chem-
ical cues was already early proposed for topographic mapping in the developing nervous system
[204] and later supported by various experiments [205–211], although the role of spontaneous
activity is still a matter of debate, see [83]. While contact-dependent exchange over several cell
bodies expands the repertoire of diffusive and systemic signaling, the spatial complexity and
specificity of the neuronal connectome and its contribution to cell fate is unique in the animal
body [212]. This complexity in principle additionally allows for a genetic encoding of neural
response properties. The arguably most spectacular example is homeobox protein Otx2 that is
transported from the retina to V1 and involved in regulating the critical period of high cortical
plasticity [26]. Only recently, a molecular correlate for eye-specific neuronal response patterns in
the primary visual cortex was discovered [25]. These findings indicate that genetic mechanisms
can be an important ingredient for structuring complex cortical architectures.

2.6 Modeling gene regulation

Gene regulation is typically modeled as transcriptional regulation on different levels of details
depending on the scientific question. The major model classes are logical, continuous and
single-molecule models that increase in the level of modeled details [213–217]. In multicellular
eukaryotic organisms, transcription factors are expressed at high concentrations of about 10 000–
300 000 molecules/cell, which suggests to neglect stochastic molecule fluctuations and to use
continuous models [218].

A paradigm continuous model of genetic control is a thermodynamic model with pair-wise in-
teractions [219]. Thermodynamic models assume thermodynamic equilibrium during binding of
transcription factors and RNA polymerase onto DNA. The rate of expression is then taken to be
proportional to the promoter occupancy of RNA polymerase in the thermodynamic equilibrium
denoted as pbound. This promoter occupancy will be derived in the following.

Consider a single gene with a promoter for RNA polymerase and n binding regions for
transcription factors. Each binding energy of the molecules is composed of a specific energy Ei
and a contribution from the chemical potential µi = µ0

i +ln(ci/c̃i)/β, where µ0
i is a concentration-

independent contribution to the potential, β = kBT and ci/c̃i the ratio of the concentration of
a substance ci to a reference concentration c̃i. The total energy of a molecule required to bind
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on the region is therefore without any interaction between molecules given by

Etot
i = Ei + µi. (2.19)

Including pair-wise interactions between the bounded substances i and j extends the energy by
Eij . Introducing the promoter occupancy vector σ = (σ0, σ1, . . . , σn) for which each entry can
assume the value 0 for unoccupied or 1 for occupied, the total energy for a specific configuration
of occupancy can be written as

H(σ) =

n∑
i=0

σiE
tot
i +

∑
i<j

σiσjEij . (2.20)

The probability that RNA polymerase is bound to its promoter is given by the probability of all
possible occupancy configurations, where RNA polymerase occupies its promoter σ0 = 1. The
RNA polymerase binding probability is then given by

pbound =
ZON

ZOFF + ZON
=
ZON

Z
(2.21)

with the partition function ZON of bound RNA polymerase and ZOFF of unbound RNA poly-
merase

ZON =
∑

{σ|σ0=1}

e−βH(σ), ZOFF =
∑

{σ|σ0=0}

e−βH(σ). (2.22)

Notice that this model class of transcriptional regulation is equivalent to a Boltzmann machine
[220]. In the simplest case of a single RNA polymerase binding to a promoter without tran-
scription factors, i.e. n = 0, the probability of RNA polymerase bound to the promoter is given
by

pbound =
e−β(E−µP )

1 + e−β(E−µP )
=

cP /K

1 + cP /K
(2.23)

where E defines the binding energy of RNA polymerase to the promoter, µP = µ0 +ln(cP /c̃P )/β
is the chemical potential, cP the concentration of RNA polymerase and K = c̃P e

β(E−µ0) the
effective equilibrium dissociation constant of RNA polymerase. This function is the well-known
Hill function that was already derived for oxygen binding on hemoglobin [221]. The key concep-
tual outcome of the consideration of more complex interacting transcription factors and RNA
polymerase is that the simple case of RNA polymerase binding is altered only by a single, so
called, regulation factor Freg

pbound =
FregcP /K

1 + FregcP /K
. (2.24)

An increase of the regulation factor Freg > 1 leads to an effective increase in RNA polymerase
molecules and thus to an increase in gene expression and vice versa. In this conceptual framework
various cases can be examined based on the regulation factor. A simple activator A results in
the regulation factor

Freg =
1 + fcA/KA

1 + cA/KA
(2.25)

where the factor f = e−βEAP gives a measure of the interaction between RNA polymerase and
transcription factor by their interaction energy EAP . A simple repressor R gives

Freg =
1

1 + cR/KR
. (2.26)
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The combinatorial control of N independently acting activators or repressors gives a regulation
factor of

Freg =
N∏
i=1

F ireg, (2.27)

where F ireg denotes the regulation factor of the ith activator/repressor. The combinatorial
regulation effects are not limited to these cases and it can be shown that all logical operation
can be implemented within this scheme [220] as also experimentally observed in, e.g. sea urchin
[222].

Notice that this model is equivalent to the Monod-Wyman-Changeaux (MWC) model [223–
225] in the case where transcription factors only interact with RNA polymerase. In the limit of
high transcription factor binding affinity and strong interactions between n transcription factors
and RNA polymerase the binding probability of RNA polymerase becomes

pbound = =
cP /K(cA/KA)n

1 + cP /K(cA/KA)n
, (2.28)

which is again a Hill function.
Typical protein-protein interaction energies are in the range NAEij ≈ 1–4 kcal/mol [220],

which gives a pair-wise interaction of f = e−βEij ≈ 5–786. The effective dissociation constant of
transcription factors to bind on DNA is in the range of Ki ≈ 1–10 000 nM for bacteria [220]. As
the number of regulating transcription factors is very high in eukaryotes, the regulatory control
on protein expression can be fairly complex.

2.7 Overview of this thesis

This thesis is concerned with the development and precise quantification of functional visual
cortical architecture. The work is divided into four chapters: Chapter 3 Genetic assimilation
of visual cortical architecture, Chapter 4 Pinwheel configuration in maximum entropy models
of orientation domains, Chapter 5 The pinwheel configuration: theoretical significance and
precision measurement and Chapter 6 Three-dimensional organization of orientation selectivity
in cortical tissue. The motivation of these projects will be briefly summarized by contextualizing
the afore-reviewed fundamentals.

Genetic assimilation of visual cortical architecture

Despite a vast collection of experimental findings, the underlying biological mechanisms for
visual cortical architecture development remain unclear. In primates and placental carnivores,
functional architectures adhere to a common design that likely evolved independently in the
course of evolution. Convergent evolution might indicate a functional advantageous trait that
can be genetically assimilated. This so called Baldwin effect makes it conceivable that visual
cortical architecture is at least partially encoded genetically. In fact, experience driven neuronal
activity is not necessary for the emergence of the common design [14, 22], but can impair visual
cortical architecture [100]. Thus, the initially raised question of nature versus nurture refines to
how genes initiate the emergence of functional visual cortical architecture, i.e. by endogenous,
spontaneous neuronal activity or by direct genetic mechanisms. Although neuronal activity is
critical for its development, it is unclear whether it has an instructive or merely a permissive
role for the functional architecture [21, 226]. Recent findings indicate that neuronal activity is
an important, but not the only mechanism involved in shaping the visual cortical architecture,
e.g. a molecular correlate for ocular dominance bands [25] and the homeoprotein Otx2 that
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is actively transported from the retina to the primary visual cortex and involved in regulating
the critical period, a period of high cortical plasticity [26]. From a theoretical point of view, a
genetic mechanism was excluded due to an apparent limited information capacity of the genome
for hardwiring the cortex [27]. However, utilizing findings of the long-range interaction model,
we show in Chapter 3 that this information bottleneck can be circumvented by a transcellular
genetic network.

Pinwheel configuration in maximum entropy models of orientation domains

The pinwheel configuration of primates and placental carnivores follows species-invariant quan-
titative laws [22–24]. A theoretical understanding of these invariant statistics is crucial for a
deeper understanding of the design principles of functional visual cortical architecture. However,
the theoretical link between pinwheel configuration statistics and orientation domain ensembles
is so far only studied for the pinwheel density [135, 147, 170, 171]. In Chapter 4, we extend the
theoretical analysis of orientation domain ensembles to an analytical treatment of all pinwheel
configuration statistics of the common design.

The pinwheel configuration: theoretical significance and precision
measurement

The common design of functional visual cortical architecture in primates and placental carnivores
shows the experimental significance of the pinwheel configuration. In the experimental analysis
of pinwheel configurations, measurement noise was reduced by semi-local wavelet filtering. This
filtering method leaves noise components similar to the ground truth signal unchanged. In
order to establish a high precision analysis of functional visual cortical architectures and a
model benchmarking framework, it is inevitable to examine the effect of measurement noise on
the pinwheel configuration. In Chapter 5, we first review the theoretical significance of the
pinwheel configuration and subsequently examine their configurations under measurement noise
by utilizing non-centered Gaussian random fields.

Three-dimensional organization of orientation selectivity in cortical tissue

Columnar structure of neocortical tissue is a mammalian organization principle found in many
species and different brain areas. In the primary visual cortex (V1) of primates and carnivores,
the functional architecture is composed of orientation selective neurons that are horizontally or-
ganized into orientation domains. In cats, orientation domains are present in all laminar layers,
while the preferred orientation selectivity is the same along association fibers. In contrast to
cats, a substantially varying columnar orientation selectivity profile was observed in macaques.
In rodents, functional architecture of V1 is also composed of orientation selective neurons but
they lack any spatial organization principle. These different organization principles of orienta-
tion selectivity in V1 are most remarkable in the light of evolution, since they originated from
one single species, the last common ancestor, more than 65 millions years ago. To shed light
on possible evolutionary paths of V1’s functional architecture, the full three-dimensional orga-
nization ought to be considered. In Chapter 6, we examine maximum entropy ensembles of
three-dimensional functional visual cortical architectures in different geometries.
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Chapter 3

Genetic assimilation of visual cortical
architecture

“Nothing in biology makes sense except in the light
of evolution”

— C. T. Dobzhansky, Evolution versus Creationism

Original contribution

J. Liedtke, W. Keil and F. Wolf conceived and designed the study. J. Liedtke performed the
theoretical analysis and numerical simulations. M. Schottdorf provided analyzed experimental
data. J. Liedtke wrote the main manuscript and supplementary material.
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3. Genetic assimilation of visual cortical architecture

3.1 Abstract

Although genetic information is critically important for brain development and structure, it is
widely believed that neocortical functional architecture is largely shaped by activity-dependent
mechanisms. The information capacity of the genome appears too small to contain a blueprint
for hardwiring the cortex. We found theoretically that genetic mechanisms can circumvent
this apparent information bottleneck. Using our prior research on universality classes of cir-
cuit self-organization in the visual cortex, we devised mathematical models of genetic networks
of neurons interacting by long-range axonal morphogen transport. Neurons dynamically gen-
erate morphogen patterns that prescribe the layout of orientation domains as experimentally
observed in the primary visual cortex (V1) of primates and placental carnivores. We find that
active transport and trans-neuronal signaling as well as joined dynamics of morphogens and
the connectome are crucial for orientation domain development. Furthermore, we scan for spe-
cific genetic networks that produce orientation domains, which are the best compatible with
experimental data. Our theory, for the first time, shows how a complex cortical processing
architecture can be specified using a genetic mechanism of small bandwidth and opens a novel
perspective on the experimentally observed robustness of V1’s architecture against radically
abnormal developmental conditions.

3.2 Introduction

The evolution of the neocortex, the seat of our conscious experience, cognition, memory and
executive control capabilities constitutes a critical innovation in mammalian history. Its par-
cellation into Brodmann areas, the “organs of the brain”, but also the organization into six
laminar layers and the stereotypical wiring between and across regions are thought to be mostly
genetically specified [2, 3]. Similarly, sensory projections that contribute to define Brodmann
areas by innervation [202, 203] as well as the presence of long-range patchy connections [18], a
large-scale circuit motif within the neocortex, are guided by genes.

In the primary visual cortex of primates and placental carnivores, Brodmann area 17, these
long-range patchy connections are tightly linked to a specific spatial arrangement of feature
selective neurons [12, 227–229]. This functional architecture fulfills several species invariant
quantitative layout rules that likely evolved independently in several branches of the mam-
malian tree over the past 65 million years indicating a functional advantage of this trait [22–24].
Whether this trait is acquired during development or genetically specified is a long-standing de-
bate. While the refinement of circuits and development of the functional architecture critically
depends on neural activity [90, 93, 104], several reports discovered a normal initial development
of feature selective neurons without visual input [14, 66], stereotypical visual responses in abnor-
mal visual environments [100], a molecular correlate for eye-specific neuronal response patterns
[25] and a tight coupling of molecular and neuronal dynamics [230–233]. Therefore, the early
development of visual cortical architecture is hard to reconcile with a single, activity-dependent
cause. Additionally, acquired functionally advantageous traits can become genetically encoded,
as if they “sunk into the hereditary substance” , a mechanism known as the Baldwin effect, and
it is therefore conceivable that this functional architecture is at least in parts encoded geneti-
cally. A genetic cause was typically excluded as the limited information capacity of the genome
appeared too small to contain a blueprint for hardwiring the cortex [27]. However, here we show
how this information bottleneck can be overcome by an area-spanning genetic network.

Cell types, their morphology and position in the central nervous system are mostly specified
genetically both by intrinsic factors and by molecular exchange of neurotransmitters and signal-
ing cues across synapses. While contact-dependent exchange over several cell bodies is observed

24



3.2. Introduction

Figure 3.1: The spatial organization of feature selectivity can be determined by gradient
read-out or self-organizing genetic networks. A Orientation preference, a key aspect of neuronal
feature selectivity, is determined by the read-out of gradient concentrations. Thus, gradients determine
cortical positions that control expression of orientation preference encoding morphogens. The number
of morphogens and their concentration is indicated by colored dots. B Orientation preference of cells
is determined via a self-organizing genetic network with interacting genes. Cells co-regulate their ori-
entation preference encoding morphogen expressions and form patterns via a Turing type instability. A
typical feature of pattern forming systems are boundary effects as experimentally observed in orientation
preference layouts [12]. Orientation domains adapted with permission from [12].

in other instances, like wing disc and the air sac primordium of Drosophila melanogaster [234]
expanding the repertoire of diffusive and systemic signaling observed in blastoderm patterning
[196], the spatial complexity and specificity of the neuronal connectome and its contribution
to cell fate is unique in the animal body. This complexity in principle additionally allows for
a genetic encoding of neural response properties. The arguably most spectacular example is
homeobox protein Otx2 that is transported from the retina to the primary visual cortex and
involved in the regulation of the critical period, a period of high neural plasticity [26]. Diffu-
sive gradients and the exchange of signaling molecules over an elaborated connectome might
therefore be key ingredients to genetically determine functional visual cortical architecture.

In a first scenario, neurons can determine their feature preference by extracellular gradient
read-out, Fig. 3.1A, similar to blastoderm patterning in developing Drosophila melanogaster.
While viable in small systems [235, 236] gradient read-out has a number of drawbacks (see
methods): (i) Heterogeneous feature layouts require typically a high number of genes, (ii) Cell
fate determination is highly susceptible to gradient fluctuations, (iii) Experimentally observed
boundary effects [12] together with a conserved typical scale, the distance between neurons with
similar feature preferences, during ontogenesis [98] is difficult to reconcile in this model class.
Alternatively, the layout of feature selective neurons can be determined by a self-organizing
genetic network with inter-cellular interactions, Fig. 3.1B. Key intrinsic characteristics of self-
organizing pattern forming systems are boundary effects and a typical scale invariant to cortical
area growth. Thus, the second scenario of self-organizing genetic networks appears to be more
compatible with the experimental findings, but adds a level of mathematical complexity.

Recent progress in quantitative characterization of functional visual cortical architecture al-
lows us to benchmark models with high precision [22–24]. Here we show that an area-spanning
transcellular genetic network is capable of specifying key ingredients of this architecture: the
spatial organization of the selective neuronal response to contour orientations and its recur-
rent connectome. We construct a self-organizing genetic network class with a dynamic con-
nectome that can quantitatively encode orientation preference layouts in the concentration of
morphogens. This genetic network class requires contact dependent active transport and trans-
neuronal signaling as well as joined dynamics of connectome and morphogens. It circumvents
the information bottleneck by self-organization and makes specific predictions for experimental
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Figure 3.2: Genetic network class encoding visual cortical architecture. A Example genetic
subnetwork illustrating how morphogens mutually regulate their expression rates in nuclei of neurons.
Interneuronal translocation of morphogens induces a signaling cascade, which exerts regulatory control
on morphogen expression. B Neurons actively transport morphogens and translocate them over dynamic
axons. C The number of morphogens in a neuron is illustrated by the colored dots. The concentration
difference of two morphogen pairs encode the selectivity strength to cardinal and oblique orientations,
respectively. D Dynamic axons preferentially link neurons with similar morphogen complements. See
main text and section 3.5.1 for details.

tests to identify these genetic networks and to distinguish between different genetic determina-
tion types.

3.3 Results

Genetic network class encoding visual cortical architecture

How can the neuronal molecular inventory encode visual cortical architecture of V1? We propose
a minimal model comprising four orientation preference encoding morphogens that are transcrip-
tion factors, see methods for details. The concentration difference of two morphogen pairs encode
the selectivity for cardinal and oblique orientations, Fig. 3.2C, respectively. On a neuronal level,
morphogens mutually regulate their gene expression according to a genetic network, Fig. 3.2A.
The repertoire of gene regulatory control can encompass activation, repression and combinato-
rial control that is expanded to an effective regulation. In adults, neurons are interconnected
over short-range isotropic and long-range patchy connections extending several millimeters [12].
Morphogens utilize these connections to translocate either directly between different neurons or
by exchanging signaling cues, Fig. 3.2B. As both mechanisms are mathematically identical in
a biologically plausible regime, we use morphogen transport as the representing mechanism in
the following. In the course of cortical development, the presence of molecular cues can initiate
molecular processes in axons, for instance, mRNA localized in axons gets locally translated in
response to molecular cues [237, 238]. This mechanism is incorporated by a signaling cascade
generating proteins upon interneuronal morphogen transport. These proteins can exert an ef-
fective negative transport feedback on the morphogen concentration by their gene regulatory
control. Long-range patchy connections are dynamic and elaborate in the course of ontogenesis
[82]. Therefore, the connectome consisting of short- and long-range connections is dynamic in
our model. Short-range connections dynamically contact their surrounding isotropically, while
long-range patchy connections target neurons with similar morphogen complements, Fig. 3.2D.
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Figure 3.3: Axonal range of patchy connections organize closed-form solution selection in
symmetry-confined canonical genetic network. A For short-range patchy connections the param-
eter space spanned by a gene regulatory related local effective parameter and a morphogen transport
related nonlocal effective parameter parcels into regions of repetitive Turing patterns with a typical scale
Λ. B Long-range patchy connections expand the repertoire to spatially complex quasiperiodic orientation
preference layouts. C Orientation domains are entirely determined by the ratio of the local and nonlocal
parameter. Phase diagram indicates ground states of orientation domain closed-form solutions. Inset:
The asymptotic stability region of closed-form solutions with many active modes n. See main text and
method section 3.5.3 for details. Parameters, see Eq. (3.120): Gaussian kernel with axonal range σ and
local and nonlocal interactions γ6 and γ1, respectively.

Thus, transport and exchange of morphogens through long-range connections is combined with
long-range connections targeting cells with similar morphogen concentration profiles. The con-
nectome and visual cortical architecture is known to be modulated by neuronal activity [17, 100],
but survives in the absence of visual experience under dark rearing [14, 22]. Activity dependence
of axonal morphogenesis [14] and axonal trafficking [26] might thus be a component to couple
activity dependent mechanisms to circuit wide morphogen dynamics.

Long-range transport stabilizes realistic orientation domains

The complexity of the genetic network class can be reduced by biologically plausible assumptions
resulting in a model that we term canonical genetic network model. First, we simplify the system
by rapid rearrangements of the connectome in comparison to morphogen concentration dynam-
ics. Thus, the model state is fully determined by the total concentration and concentration
difference of morphogen pairs. The concentration difference determines the layout of orientation
preference. Second, weak anisotropy of patchy connections and orientation encoding dynamics
that are independent of total concentrations result in the analytically tractable canonical ge-
netic network. The canonical genetic network still depends on several parameters that determine
for instance regulatory control, transport ranges and transport rates. Varying these parame-
ters alters steady-state morphogen concentrations and encoded orientation domains. Symmetry
principles reduce the number of parameters drastically. We demand symmetries that guaran-
tee the presence of all orientation preferences and an equal occurrence of orientation domains,
where cardinal and oblique encoding morphogens are interchanged. The dynamics of orientation
preference encoding morphogen concentration difference is then mathematically equivalent to a
universality class of pattern forming systems [128]. The remaining parameters determine the
total morphogen concentrations and the emergence of a non-uniform morphogen pattern with
typical scale Λ. Near the transition to a non-uniform morphogen pattern we obtain closed-form
orientation domain solutions. The closed-form solutions are composed of active modes (Fourier
components) and are highly multistable. The closed-form solutions parcel the parameter space
spanned by a gene regulatory related local and a morphogen transport related nonlocal parame-
ter into regions of ground states. Varying the range of patchy connections to short ranges results
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Figure 3.4: Orientation domains of symmetry-confined canonical genetic network model
adhere to the common design. A The common design is defined by statistics of the pinwheel con-
figuration of orientation domains. Pinwheels are points surrounded by all preferred orientations and
have a positive or negative topological charge (green and red dots) depending on the arrangement of
the surrounding orientation preference. Species invariant pinwheel configuration statistics are pinwheel
density, pinwheel density standard deviation (SD) scaling with area and nearest neighbor distribution of
pinwheels. B Temporal evolution of pinwheel densities for short- and long-range axons. For long-range
axons, pinwheel densities cluster around the experimentally observed density (dashed line), whereas for
short-range axons pinwheel-free solutions emerge. See method section 3.5.8 for numerical details. C
Average pinwheel density of closed-form solutions from symmetry-confined canonical genetic network
model. For a large number of active modes n the pinwheel density converges to π (dashed line: ex-
perimental mean, green area: confidence interval from ferret). D, E and F Pinwheel density SD and
nearest neighbor distributions of solution set with n = 9 active modes (blue diamonds and lines) together
with experimentally fitted curves (black lines) from [22]. G Pinwheel configuration statistics of model
solutions are combined to a single distance measure to the configuration of ferrets, see section 3.5.7 for
details.

in a segmentation of ground states with a typical repetitive Turing patterns and a low number
of active modes, Fig. 3.3A. Long-range patchy connections expand the repertoire to spatially
complex quasiperiodic orientation domains with large numbers of active modes, Fig. 3.3B.
In fact, the ground states of the closed-form solutions are organized by the range of patchy
connections and the ratio of the local and nonlocal parameter, Fig. 3.3D. Thus long-range
patchy connections are essential for quasiperiodic orientation preference layouts that resemble
experimentally observed orientation domains.

Canonical genetic network adheres to common design

Orientation domains of the symmetry-confined canonical genetic network resemble experimen-
tally observed orientation domains of V1 not only qualitatively, but also quantitatively. In
primates and placental carnivores, the spatial organization of points surrounded by all orien-
tations called pinwheels follow species-invariant quantitative statistics [22–24]. This common
design consists of the pinwheel density, the pinwheel density fluctuation in cortical subareas and
nearest neighbor distributions between pinwheel pairs of equal, opposite and independent of
topological charge, Fig. 3.4A. The temporal evolution of pinwheel densities in the symmetry-
confined canonical model reveals for short-range patchy connections annihilation of pinwheel
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Figure 3.5: Orientation domain layout sensitivity on kinetic parameters. The distance to the
common design pinwheel configuration from ferrets (mean and 95% confidence interval of 1000 boot-
strapped pinwheel configurations from 30 initial conditions) and the KL divergence between the orien-
tation preference representation and a uniform distribution is computed for varying effective parameters
originating around a working point of n = 9 active modes, see section 3.5.8 for numerical details. A
Neutral common design parameter direction that generates and orientation preference bias. B Neutral
parameter direction that retains the pinwheel configuration and orientation preference representation. C
Sensitive parameter direction that generates hexagonal biased orientation domains that are incompatible
with the experimentally observed pinwheel configurations. D Overview of common design susceptibility
to 25 free parameters. Neutral parameters (6) result in the same or similar pinwheel configurations (A
and B), sensitive parameters (10) exhibit a clear tendency to different pinwheel configurations (C and
axonal range) and independent parameters (9) are not involved in orientation encoding, but control the
total concentration of morphogens.

pairs and for long-range patchy connections a clustering around the experimentally observed
value 3.14, Fig. 3.4B. In fact, the average pinwheel density of closed-form solutions converges
from below to π for large numbers of active modes [135] and is statistically indistinguishable
from the experimental value [22], Fig. 3.4C. The pinwheel density fluctuation in subareas
obeys a power law with an exponent of approximately 1/2 for experimentally observed pin-
wheel configurations and a slightly higher exponent for closed-form solutions with n = 9 active
modes, Fig. 3.4D. The pinwheel nearest neighbor distributions of pinwheel pairs independent
of topological charge and of opposite topological charge are virtually identical for the closed-
form solutions with n = 9 active modes and experimentally observed pinwheel configurations,
Fig. 3.4E,F. However the nearest neighbor distribution of pinwheel pairs with equal topolog-
ical charge of the closed-form solutions with n = 9 active modes shares the same shape with
the experimentally observed nearest neighbor distribution, but is shifted to larger pinwheel pair
distances, Fig. 3.4F. The quantitative agreement of the model pinwheel configuration with the
common design can be condensed to a single quantity that we term common design distance
(see methods). The agreement of the closed-form solutions successively improves with increasing
active modes, see Fig. 3.4G. In total, the closed-form solutions quantitatively adhere to the
common design to a large extent already for a small number of active modes.

Evolution of genetic networks

How much genetic pressure is exerted on the molecular mechanisms? In the course of evolution
proteins can acquire multiple and independent functional roles in different cell types a property
called mosaic pleiotropism. Essential for the acquisition of novel functional traits is the evolution
of the regulatory control element [179]. In the genetic network we can vary these regulatory
control elements and additionally other molecular mechanisms. We utilize the common design
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distance as a proxy for inverse fitness to directly probe the evolutionary fitness landscape of
the canonical genetic network. For that we investigate the parameter space of the canonical
genetic network around the previously investigated working point of closed-form solutions with
n = 9 active modes. From the 25 free parameters, 9 parameters are independent from orienta-
tion domain specification and are involved in regulation of the total steady-state concentrations.
Varying a parameter that can be associated with the balance between morphogen autoregulation
and transport rate leads to orientation domains with invariant pinwheel configurations, but with
an orientation bias, Fig. 3.5A. Such an orientation bias is experimentally observed in juvenile
ferrets, but disappears during development [113]. Varying a parameter that is associated with
the imbalance of a combinatorial control between morphogens is neutral and retains pinwheel
configuration and orientation preference representation, Fig. 3.5B. However, there exist sensi-
tive effective parameter directions that drastically departure from the common design and the
orientation preference distribution, Fig. 3.5C. From an evolutionary perspective, there exist
therefore neutral and even independent directions on the evolutionary fitness landscape that
can mutate without functional disadvantage, but also sensitive directions where strong genetic
pressure must be present for preserving functionality.

Dynamic connectome and active transport is essential for visual cortical
architecture

A dynamic, co-evolving connectome and active transport is essential for realistic orientation
domain layouts. In the previously analyzed symmetry-confined canonical genetic network, the
connectome rapidly rearranges to the dynamic morphogen concentration profiles. This ideal-
ization allowed the derivation of closed-form orientation domain solutions. Reducing the rear-
rangement time of the connectome slightly retains the orientation field solutions, but destabi-
lizes them for sufficiently slow dynamic connectomes. In the limiting case of a frozen long-range
morphogen-dependent connectome that is isotropic the impact on orientation domain emergence
is detrimental. In fact, this scenario is mathematically equivalent to diverging local/nonlocal in-
teraction ratios in Fig. 3.3C. Thus the morphogen concentrations are either diverging or encode
unrealistic pinwheel free orientation fields for positive and negative local/nonlocal interaction
ratios, Fig. 3.6A, respectively. Freezing synapses to a long-range patchy static connectome
yields frustrated orientation domains with a stripy organization, Fig. 3.6B. In the intermediate
regime with finite connectome rearrangement time, orientation fields retain stability up to a
critical connectome rearrangement time of about half of the regulation time scale, Fig. 3.6C.
In this stable regime perturbations around the closed-form solutions lead to damped oscillations
of morphogen concentrations and the connectome, Fig. 3.6D,E,F. For rapid connectomes, but
fixed long-range transport delay closed-form solutions destabilize for transport delays larger
than about 0.8 of the regulation time scale, Fig. 3.6G. Transport delays larger than the critical
transport delay result in sudden orientation preference shifts, Fig. 3.6H, and oscillations in
morphogen concentrations and connectome, Fig. 3.6I,J. This shows the importance of joined
dynamics of morphogens and the connectome as well as the requirement of sufficiently fast active
transport for establishing realistic orientation domains.

Perspectives on predictions for experimental tests

Although many details of the genetic network model are variable, generic features exists and are
suitable for experimental tests and predictions. Four morphogens for the genetic determination
of visual cortical architecture is likely neither the largest nor lowest number of morphogens for
this task. A probable lower bound are two morphogens, since a single orientation encoding
morphogen concentration is necessarily discontinuous due to orientation preference singularities
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Figure 3.6: Rapid dynamic connectome and fast axonal transport is essential for stable
visual cortical architecture. A Static isotropic long-range connectome leads to artificial orientation
domains consisting of plane waves. B Static long-range patchy connectome generates orientation domains
with stripy orientation preference layouts. C, G Critical rearrangement times and transport delays (color
code) in symmetry-confined canonical genetic model solutions of minimal energy (solid black lines separate
minimal energy solutions, see Fig. 3.3C, respectively. Exceeding critical times destabilizes the orientation
domain solutions. Grey areas indicate regions that eluded a direct calculation of critical transport delays,
but is numerically found to be similar to its surrounding. D-F, H-J Left: Orientation preference,
morphogen concentration and connection dynamics for critical rearrangement time and slightly above
critical transport delay of neurons indicated by dots on the right, respectively. Right: Orientation
domains, total concentration and connectome of neuron in the center for t0 = 0τ , t1 = 10τ , t2 = 20τ .
Scale bar indicates the typical scale Λ of the orientation domain. See section 3.5.8 for numerical details.
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Figure 3.7: Focal and dual transfections leading to localized morphogens overexpression.
A A focal overexpression of a single morphogen determines the emerging orientation preference at this
spot due to the increased concentration of the morphogen. Reorganization of the surrounding to the
increased central morphogen concentration leads to a transient concentric orientation preference pattern
and connectome. Eventually, the system converges to quasiperiodic orientation domain layouts. See
method section 3.5.8 for numerical details. B A dual overexpression of a single morphogen determines
the emerging orientation preference at these spots due to the increased concentration of the morphogen.
After a transient, the system converges to quasiperiodic orientation domain layouts. See section 3.5.8 for
numerical details.

at pinwheels. An essential feature of this model is long-range active transport that suggests
to experimentally dissect the signaling endosome proteome for putative candidate morphogens.
Additionally, the coding scheme that concentrations determine feature neuronal response prop-
erties suggests to experimentally examine functionally targeted transcriptomes. Qualitatively,
they key characteristic of this genetic network model is that cell fates are neither specified by
a single source as bicoid gradient in Drosophila nor are they predetermined by their cortical
positions. Instead, cell fates are dynamically self-organized and collectively react to perturba-
tions. For instance, an early focal transfection of neurons leading to an overexpression of one
morphogen leads to orientation domains that are organized around this spot, Fig. 3.7A. A
dual site transfection resulting in an overexpression of a morphogen also reorganizes the orienta-
tion domains, while retaining the quasiperiodic intrinsic orientation domain layout, Fig. 3.7B.
This result qualitatively distinguishes genetic cell fate predetermination by position from self-
organizing genetic networks.

3.4 Discussion

In this article, we showed that a self-organizing genetic network can determine functional visual
cortical architecture that is in quantitative agreement with experimental data. This shows for
the first time how to circumvent the information bottleneck for genetically determining complex
cortical processing architecture. We find that active long-range transport and trans-neuronal
signaling as well as joined dynamics of connectome and morphogens is decisive for functional
visual cortical architecture determination. Finally, we propose experiments for differentiation
between possible genetic networks that specify functional visual cortical architecture.

What kind of genetic cell fate determination is proposed here? In our proposed genetic
network, neuronal cell fates are not inherited in detail by for instance their cortical position
as observed in blastoderm patterning in Drosophila melanogaster [196], but are dynamically
generated by the collective molecular interactions in V1. This dynamical self-organization of cell
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fates circumvents the genetic information bottleneck of specifying every neuron and connection
by a blueprint [27]. A surplus is that the salient boundary features of experimentally observed
orientation domains [12] are generated naturally in these types of pattern forming models [28].

What is the relation to activity-dependent mechanisms? It is intriguing to speculate that
such genetic networks might contribute to maintenance of memories. A key feature of such a
mechanism is to preserve favorable functional architectures even under unfavorable developmen-
tal environments. This view of a redundant mechanism for functional architecture specification
is supported by the robustness of V1 under abnormal developmental environments. Under stripe
rearing the cortical area devoted to the orientation of the environment is overrepresented, but
shows also orientation preferences of unseen orientations with an overall normal appearing orien-
tation layout [100]. More strikingly, ferrets raised in darkness generate orientation domains that
adhere to the common design of primates and placental carnivores [14, 22, 24]. Nevertheless,
neural activity is indispensable for development of visual cortical architecture as silencing exper-
iments prevent the ermergence of or even destroy the functional architecture [90, 93, 104]. On
the other hand, active axonal transport mechanisms can be regulated by neural activity suggest-
ing activity as permissive control in the genetic network model [26, 239]. Guidance molecules
can be modulated by neural activity [230, 231], but guidance molecules can also influence neural
activity [232, 233]. In the presence of instructive neuronal activity, the genetic network might
support targeting and pruning of axons similar to synapse formation by chemoaffinity [2, 83,
204]. Hence, this genetic mechanism might serve as a redundant plan or as a supportive agent
for neuronal activity in visual cortical development.

Which cells are potentially involved in such a genetic mechanism? An indispensable trait
of neurons that encode orientation preference with the proposed genetic mechanism are long-
range patchy connections. A promising candidate are upper layer pyramidal neurons that are
interconnected via clustered horizontal connections that elaborate during development to link
neurons with similar response profiles [10, 12]. Another possible candidate are transient sub-
plate neurons with their long-ranging horizontal connections [84]. Ablation of subplate neurons
prevent formation of functional architecture even if LGN axons already entered V1 [103]. Po-
tentially both neuron types that are interconnected during ontogenesis build the substrate for
the proposed genetic mechanism.

What is the evolutionary perspective on neocortical development? As a consequence of the
possibility that visual cortical architecture can be genetically determined, the long-standing
nature versus nurture view should be called into question. Instead, genetic assimilation of
acquired traits known under the name Baldwin effect should be considered [240]. As the genetic
network depends on the connectome it does not overrule activity, but serves as redundant
mechanism for visual cortical architecture generation in the absence of instructive developmental
environments. This is particularly interesting for the evolution of the common design that likely
evolved independently at least two or three times [22]. Our theory indicates that the cause is
rather convergent evolution than developmental constraints.

Emerging pinwheel arrangements depend on the organization of gene-regulatory circuits.
Molecular mechanisms need to be adjusted to fulfill the quantitative conditions of the common
design. Without selective pressure on the precise cortical architecture such tuning is not expected
to emerge. The invariant architecture of orientation domains, pinwheel centers and long-range
connectome is realized by different cells and synaptic circuits in different mammalian lineages. If
the development of the common design in these cells is canalized by tissue wide genetic networks,
it is thus expected that distinct systems of morphogens are recruited for the genetic circuit.

What causes the initiation of orientation domain emergence? In the genetic network model a
single parameter determines the onset of pattern formation. This parameter can be interpreted
as the concentration of a master organizing morphogen. Thus, upon the presence of this master
morphogen, orientation domains begin to emerge. It is intriguing to hypothesise that this
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master morphogen is not expressed in the primary visual cortex, but subcortically and actively
transported to V1 such as Otx2. Active afferent transport of the master morphogen hence leads
to neocortical identification of the inputs that ought to be processed and initiates orientation
domain development. This mechanism neatly meets the experimental observation of inducing
orientation domains in the primary auditory cortex by rewiring of the primary visual pathway
[241].

How can the neurons acquire orientation preferences as prescribed by the morphogen con-
centrations? A prerequisite for establishing orientation selective cells is a topographic mapping
from the retina over the LGN to V1, a property called retinotopy. The development of retino-
topy is initially guided by molecular cues that are gradually expressed and subsequently refined
by neural activity in the primary visual cortex [83]. Thus, afferent fibers already project to
their local vicinity of their correct retinotopic cortical positions. Orientation selectivity can
be established by selective pruning of the local initial projections according to the morphogen
concentrations and the retinotopic positions. This mechanism can be potentially combined with
activity-dependent mechanisms and eye-specific segregation into ocular dominance columns as
pioneered in [242].
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3.5.1 Genetic network construction

The underlying concept of determining visual cortical architecture genetically lies in encoding
orientation preference in the concentration of four morphogens denoted by ci with i ∈ {1, 2, 3, 4}.
Typical sizes of the primary visual cortex (V1) are on the order of hundreds to thousands of
mm2, while neurons have a diameter of ∼ 10 µm2, suggesting continuous cortical positions
x = (x, y)T . The morphogen concentration is modeled as a continuous variable due to the
fact that most animal transcription factors are expressed at 10 000–300 000 molecules/cell [218].
Thus, the morphogen concentrations constitute a continuous dynamic morphogen concentration
field ci(x, t) ∈ R with t denoting time. In order to encode the neuronal response feature of a
preferred orientation ϑ(x, t) in a concentration field, it should be noted that ϑ(x, t) is a cyclic,
π-periodic, variable. Hence, orientation preference can be conveniently encoded by the difference
of concentrations leading to the orientation director or short orientation field

Ψ(x, t) = (c1(x, t)− c2(x, t)) + i(c3(x, t)− c4(x, t)). (3.1)

Orientation preference ϑ(x, t) is then given by Ψ(x, t) = S(x, t)e2iϑ(x,t). The morphogen con-
centration fields are fully specified by the orientation field together with the total concentration
field

Σ(x, t) =(c1(x, t) + c2(x, t)) + i(c3(x, t) + c4(x, t)). (3.2)

In the following, dynamics of the morphogen concentrations will be specified.

Inter-neuronal transport

On a cellular level, diffusion is a key mechanism for protein transportation. Typical diffusion
constants of proteins are on the order of 10 µm2/s (0.05–18.9 µm2/s) [243]. Therefore, diffusion
is efficient for neurotransmitters to overcome nanometer wide synaptic clefts in microseconds or
proteins to traverse micrometer thick cells in seconds. In morphogenesis, diffusion is well suited
for establishing short-range gradients in developmental time scales, but not for transporting
proteins over long ranges such as a 1 mm distance that takes about half a day [185]. This
makes diffusion as transport mechanism inappropriate for large distances and active transport
mechanisms can take over to circumvent this temporal bottleneck.

Neuronal active transport comes in two different flavors, the retrograde transport goes from
post- to pre-synaptic neurons (mediated by dynein in the axon) and anterogradely in the opposite
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direction (mediated by kinesin in the axon). In axons and dendrites, it is widely accepted that
vesicular-based transport of a signaling endosome is the predominant signaling mechanism [244].
Endosomes are small vesicles build by lipid bilayers with molecules in their interior. They are
transported by kinesin and dynein along microtubuli with a speed of about 1–5 µm/s [238, 245,
246]. Thus, the time to transport cargo over a distance of 1 mm is dramatically reduced to
around 3–15 min in contrast to the diffusion time of 14 h. In comparison to the transport speed,
peripheral axonal growth rates after an injury can reach 0.02–0.06 µm/s [247].

Active transport is typically highly selective for particular proteins. For instance, dynein
intermediate chain isoforms transport is highly selective for specific cargo like TrkB signalling
endosomes [248]. Dynein selectivity of La is mediated by SUMO, which attaches to the RNA-
binding protein La and gets thus retrogradely transported [249]. In contrast, La in absence of
SUMO gets anterogradely transported in axons. It is hypothesized that this mechanism plays a
role in targeting other proteins for retrograde transport [244, 249].

Retrograde transport conveys proteins such as growth factors, neurotrophins and transcrip-
tion factors that regulate, for instance, apoptosis. An intriguing example for anterograde trans-
port is the transcription factor Otx2, which is transported from the retina to V1. Interestingly,
Otx2 plays a crucial role for the regulation of the critical period in V1 [26].

An upper bound for the transport rate can be estimated by assuming that vesicles are
transported densely in the axon as a chain. The typical vesicle diameter is around 50 nm [250],
which would yield a transport rate of 20–100 vesicles/s. In fact, measured transport rates in
fruit flies range between 2–100 molecules/min [251].

In the model, active transport is assumed to be mediated over axons and dendrites. It can
be described by a dynamic connectivity w(x,y, t) and a transport rate ν. The outgoing flux of
a substance with concentration c(x, t) from x to y at time t is given by

joutx→y(t) = ν w(y,x, t)c(x, t). (3.3)

The incoming flux from y to x at time t is given by the outgoing flux from y to x at time t
subtracted by the transportation time of substances over the distance ‖x− y‖ with velocity v

jiny→x(t) = jouty→x

(
t− ‖x− y‖

v

)
. (3.4)

Hence, the change in concentration is given by

∂tc(x, t) =

∫
d2y jiny→x −

∫
d2y joutx→y(t)

=ν

∫
d2y w

(
x,y, t− ‖x− y‖

v

)
c

(
y, t− ‖x− y‖

v

)
− ν

∫
d2y w(y,x, t)c(x, t) (3.5)

The retarded part of the equation is negligible if the remaining dynamics act on a timescale τ
that is larger than the transportation time ‖x − y‖/v � τ . The typical transport time over
1 mm axon is about 3–15 min. In the limit of instantaneous transport the expression simplifies
to

∂tc(x, t) = −νc(x, t)
∫

d2y w(y,x, t) + ν

∫
d2y w(x,y, t)c(y, t). (3.6)

In our model, two possible scenarios of how inter-neuronal transport might be implemented
exist: (i) morphogens get directly transported over synapses or (ii) morphogens trigger signaling
cues that effectively mediate morphogen transport. In both scenarios, transport is mediated
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over a symmetric connectome w(x,y) = w(y,x) with individual transport rats νi > 0 for
i ∈ {1, 2, 3, 4}. In the first scenario, the transport of morphogens results in the transport terms

τs∂tci(x, t) ∝ νi
∫

d2y (ci(y)− ci(x))w(x,y, t). (3.7)

In the second scenario, signaling cues si(x, t) trigger a signaling of

τs∂tci(x, t) ∝ νi
∫

d2y(si(y)− si(x))w(x,y, t) (3.8)

that results in the same dynamics if signaling cues adapt rapidly to the concentration of mor-
phogens ci(x, t).

Dynamic connectome

We assume that the four morphogens get transported along two different types of synaptic con-
nections an isotropic connection w+(x − y, t) and an anisotropic connection w−(x,y, t). The
anisotropic connections depend on the morphogen concentration profiles. Both connection types
are symmetric w(x,y) = w(y,x) such that retrograde and anterograde transport is indistin-
guishable. The synaptic connections are dynamic

τm∂tw+(x− y, t) =w∞+ (x− y)− w+(x− y, t) (3.9)

τm∂tw−(x,y, t) =w∞− (x,y, t)− w−(x,y, t) (3.10)

with a typical rearrangement constant of τm < 1 h [252, 253]. Synapse rearrange exponentially
to their asymptotic steady-state connection profiles

w∞+ (x− y) = j+
u K+(‖x− y‖), (3.11)

w∞− (x,y, t) = j−u K−(‖x− y‖)

+ j−K(‖x− y‖)e
− (c1(x,t)−c2(x,t)−c1(y,t)+c2(y,t))2

σ2
Ψ e

− (c3(x,t)−c4(x,t)−c3(y,t)+c4(y,t))2

σ2
Ψ . (3.12)

The morphogen-dependent part of the connectivity is phenomenologically motivated from patchy
connections in V1 that preferentially link neurons with similar orientation preferences. The
connectivity range can be given by different types of synaptic kernels K(‖x‖) that must have the
properties of (i) positive connections K(‖x‖), K±(‖x‖) ≥ 0 for all x, (ii) normalized connections
K̃(0) = K̃±(0) = 1 with the Fourier transform K̃(‖k‖) = F{K}(‖k‖) and (iii) positive Fourier
transform K̃(‖k‖), K̃±(‖k‖) ≥ 0 for all k and a maximum at k = 0. A typical choice for the
connections is a Gaussian profile

K+(‖x‖) =
1

2πρ2
u

e
− ‖x‖

2

2ρ2u , K−(‖x‖) =
1

2πσ2
u

e
− ‖x‖

2

2σ2
u , K(‖x‖) =

1

2πσ2
e−
‖x‖2

2σ2 . (3.13)

Transportation triggers local protein synthesis

Transcription factors may have a dual function of an additional translational control. A promi-
nent example for a dual function of transcription factors is the homeodomain protein Bicoid. It
is found that Bicoid exerts translational control on Caudal by the binding of its homeodomain
to the Caudal mRNA [254–256]. It has been proposed that over 200 homeodomain proteins,
which are normally thought to regulate transcription, can additionally regulate translation [257].
Translation control is also observed in distal-axon NGF stimulation that induces axonal CREB
translation. The axonal derived transcription factor CREB is retrogradely trafficked to the
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soma, where it is responsible for NGF-dependent neuronal survival [237]. As this mechanism
appears to be crucial in neurogenesis, we include this mechanism in our model.

In the first scenario, morphogens translocating synapses of w−(x,y, t) cause local synthesis
of proteins that subsequently get transported to the soma and degraded over time

τf∂tgc1(x, t) =

∫
d2y

[
µ2

1c2(y, t) + µ1
1c1(x, t)

]
w−(x,y, t)− gc1(x, t)/τ1 (3.14)

τf∂tgc2(x, t) =

∫
d2y

[
µ2

2c1(y, t) + µ1
2c2(x, t)

]
w−(x,y, t)− gc2(x, t)/τ2 (3.15)

τf∂tgc3(x, t) =

∫
d2y

[
µ2

3c4(y, t) + µ1
3c3(x, t)

]
w−(x,y, t)− gc3(x, t)/τ3 (3.16)

τf∂tgc4(x, t) =

∫
d2y

[
µ2

4c3(y, t) + µ1
4c4(x, t)

]
w−(x,y, t)− gc4(x, t)/τ4. (3.17)

The degradation rates and the translation efficiencies are positive by definition, i.e. µ1
i , µ

2
i , τi ∈

R+ for i ∈ {1, 2, 3, 4}. The time τf of a ribosome to translate a typical gene is approximately
1–6 min (translation rate is 1–8 aa/s [258] with median protein length of 375 aa [259]). In the
second scenario, where signaling cues mediate effective transport, the signaling cues act either
in the same way as transported morphogens or they exert additionally an effective regulatory
control as the locally synthesized proteins gci .

Local gene regulation

Genetic networks can be modeled in various ways that are most distinct by the level of detail
considered, reviewed in [213–217]. Three major genetic network modeling approaches are (i)
Logical models: These are the simplest models with discrete states and logic-based circuits (ii)
Continuous models: These models assume continuous states and continuous interactions and
(iii) Single-molecule models: Continuous models extended with stochastic effects.

Here, we model gene regulation of the four morphogens as a continuous model in a very
general way that ensures positive definiteness of concentrations. We expand possible dynamics
caused by a combination of Hill function in the unsaturated concentration regime, see section
3.5.1, by

τs∂tci(x, t) ∝ξigci(x, t) + ci(x, t)

(
ρi + κi · c(x, t) +

1

2
c(x, t)TQic(x, t)

)
(3.18)

with

c(x, t) =


c1(x, t)
c2(x, t)
c3(x, t)
c4(x, t)

 , κi =


κ1
i

κ2
i

κ3
i

κ4
i

 and Qi =


2ω1

i ω2
i ω3

i ω4
i

ω2
i 2ω5

i ω6
i ω7

i

ω3
i ω6

i 2ω8
i ω9

i

ω4
i ω7

i ω9
i 2ω10

i

 . (3.19)

The linear coefficient ρi is the combined degradation and regulation coefficient. All coefficients
can assume positive and negative values except for the positive ξi. Generically, the power of
the single terms in concentrations indicates the degree of cooperativity of the morphogen in
regulation.

The time for RNA polymerase to transcribe a typical mammalian gene takes about 2–3 min
and up to 16 h for long intron containing human genes [260]. Incorporating the typical exporta-
tion time from the nucleus to the soma and translation time, the typical time for regulation is
about τs > 1 h [261].
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Genetic network model

The full genetic network model is composed of local regulation, a dynamic connectome and
locally synthesized substances. The dynamics of the morphogen concentration ci(x) with i ∈
{1, 2, 3, 4} are composed of local regulation and of active axonal transport

τs∂tci(x, t) =ξigci(x, t) + ci(x, t)

(
ρi + κi · c(x, t) +

1

2
c(x, t)TQic(x, t)

)
+ νi

∫
d2y [ci(y, t)− ci(x, t)] (w+(x− y, t) + w−(x,y, t)). (3.20)

The dynamic connectome is symmetric and composed of two synaptic connection types. A
local isotropic connectivity w+(x − y, t) and a morphogen concentration specific connectivity
w−(x,y, t) with the dynamics

τm∂tw+(x− y, t) =w∞+ (x− y)− w+(x− y, t), (3.21)

τm∂tw−(x,y, t) =w∞− (x,y, t)− w−(x,y, t). (3.22)

Active transport over the connections of w−(x,y, t) leads to a local translation of mRNA and a
subsequent transportation of the products to the soma

τf∂tgc1(x, t) =

∫
d2y

[
µ2

1c2(y, t) + µ1
1c1(x, t)

]
w−(x,y, t)− gc1(x, t)/τ1, (3.23)

τf∂tgc2(x, t) =

∫
d2y

[
µ2

2c1(y, t) + µ1
2c2(x, t)

]
w−(x,y, t)− gc2(x, t)/τ2, (3.24)

τf∂tgc3(x, t) =

∫
d2y

[
µ2

3c4(y, t) + µ1
3c3(x, t)

]
w−(x,y, t)− gc3(x, t)/τ3, (3.25)

τf∂tgc4(x, t) =

∫
d2y

[
µ2

4c3(y, t) + µ1
4c4(x, t)

]
w−(x,y, t)− gc4(x, t)/τ4. (3.26)

The model has in total 64 regulation coefficients, 8 coefficient of the local translation rate, 4
degradation times, 4 transport efficiencies, 3 transport rates, 3 transport ranges, 1 coefficient
for selectiveness of axonal connections and 3 timescales - in total 90 parameters. Note that the
concentrations of all fields are positive by construction for positive time constants and parameters
of ξi, µ

j
i , νi > 0 for i ∈ {1, 2, 3, 4}.

Appendix: Modeling transcriptional gene regulation phenomenologically

In eukaryotic genetic circuits, the combinatorial regulation involves more complex regulatory
mechanisms than simple activation or repression of a gene. Since in thermodynamical models
typically only pair-wise interactions of transcription factors (TFs) are considered, another, phe-
nomenological, approach used in [224] will be pursuit here that allows a higher complexity of
combinatorial control.

The regulation of a gene with relative concentration c is assumed to have the shape of a Hill
function, which results for an activator and inhibitor in

hn(c) =
cn

cn +Kn
, hn(c) =

Kn

cn +Kn
, (3.27)

respectively, where n indicates the number of binding sites or cooperativity and K is the half-
occupancy concentration leading to the interpretation of the free binding energy F = −kBT lnK.
In order to account for the combinatorial regulation of two TFs with concentrations c1 and c2,
regulation can be modeled as a logical AND or as a logical OR

hnm(c1, c2) = hn(c1) · hm(c2), hnm(c1, c2) = hn(c1) + hm(c2), (3.28)
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respectively. This phenomenological combination of TFs generalizes naturally to larger genetic
networks.

If binding affinities K are equal, the concentration can be measured in units of K leading to
the simplified Hill functions

hn(c) =
cn

cn + 1
, gn(c) =

1

cn + 1
= 1− hn(c), (3.29)

which can be combined by multiplication and addition. Given a polynomial

f(c) =αc+ βc2 + γc3 (3.30)

and assuming that the concentrations are small c < 1, the aim is to find Hill functions producing
this polynomial. The Hill functions can be approximated by

h1(c) =c− c2 + c3 +O(c4) (3.31)

h2(c) =c2 +O(c4) (3.32)

h3(c) =c3 +O(c4) (3.33)

hn>3(c) =O(c4). (3.34)

Multiplication of the Hill functions gives only leading terms for h1h1,h1h1h1 and h1h2 which
will not be considered here. Assuming a superposition of Hill functions f = ah1 + bh2 + ch3,
the coefficients of f can be chosen arbitrarily by using the monomial as basis for a vector space.
This results in the linear equationαβ

γ

 =

 1 0 0
−1 1 0
1 0 1

ab
c

 (3.35)

The generalization to multiple TFs is analogous. Thus an explicit combination of Hill functions
can be assigned to an expanded genetic network. However, the combination is not unique as an
activator and inhibitor regulate gene expression similarly.

3.5.2 Complexity reduction to canonical genetic network

The complexity of the genetic network will be reduced here for analytical tractability. This
complexity reduction results in an analyzable genetic network that we term canonical. The
robustness of the findings in the canonical genetic network to assumptions used in the complexity
reduction will be examined subsequently.

Separation of time scales

The first step in reducing the complexity of the genetic network is to notice three different
time scales: local regulation (on the order of τs > 1 h), axonal rearrangement (on the order of
τm < 1 h) and local translation (on the order of τf = 5 min). Separating timescales τf , τm � τs
simplifies the model to four concentration fields

τs∂tc1(x, t) =F̂ c1 [c1, c2, c3, c4], τs∂tc2(x, t) =F̂ c2 [c1, c2, c3, c4],

τs∂tc3(x, t) =F̂ c3 [c1, c2, c3, c4], τs∂tc4(x, t) =F̂ c4 [c1, c2, c3, c4]. (3.36)
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As the factor ξiτi always emerges as a product the factor will be absorbed as ξiτi → ξi. In the
following the dynamics of the concentration fields will be analyzed by the convenient choice of
two complex fields - an orientation (encoding) field Ψ and a total concentration field Σ

Ψ(x, t) =(c1(x, t)− c2(x, t)) + i(c3(x, t)− c4(x, t)) (3.37)

Σ(x, t) =(c1(x, t) + c2(x, t)) + i(c3(x, t) + c4(x, t)), (3.38)

where the dynamics are given by

τs∂tΨ(x, t) =F̂Ψ[Ψ,Σ], τs∂tΣ(x, t) =F̂Σ[Ψ,Σ]. (3.39)

The operators F̂Ψ and F̂Σ are omitted here for the sake of clarity. The derivation of the operators
is basic algebra.

Weak anisotropy of selective axonal connections

The morphogen selective connections are assumed to be weakly anisotropic due to a small
concentration difference compared to σΨ, which leads to the approximation of

w∞− (x,y, t) =j−u K−(‖x− y‖) + j−K(‖x− y‖)e
− |Ψ(x,t)−Ψ(y,t)|2

σ2
Ψ

'j−u K−(‖x− y‖) + j−K(‖x− y‖)

(
1− |Ψ(x, t)−Ψ(y, t)|2

σ2
Ψ

)
. (3.40)

This approximation truncates the operators of the dynamics up to third order

F̂Ψ[Ψ,Σ] =ˆ̃LΨ
1 [Ψ] + ˆ̃LΨ

2 [Σ] + ˆ̃QΨ
1 [Ψ,Ψ] + ˆ̃QΨ

2 [Ψ,Σ] + ˆ̃QΨ
3 [Σ,Σ]+

ˆ̃CΨ
1 [Ψ,Ψ,Ψ] + ˆ̃CΨ

2 [Ψ,Ψ,Σ] + ˆ̃CΨ
3 [Ψ,Σ,Σ] + ˆ̃CΨ

4 [Σ,Σ,Σ], (3.41)

F̂Σ[Ψ,Σ] =L̂Σ
1 [Ψ] + L̂Σ

2 [Σ] + Q̂Σ
1 [Ψ,Ψ] + Q̂Σ

2 [Ψ,Σ] + Q̂Σ
3 [Σ,Σ]

+ ĈΣ
1 [Ψ,Ψ,Ψ] + ĈΣ

2 [Ψ,Ψ,Σ] + ĈΣ
3 [Ψ,Σ,Σ] + ĈΣ

4 [Σ,Σ,Σ]. (3.42)

For the sake of clarity the operators are omitted again as the calculation involves only basic
algebraic manipulations.

Decoupling orientation encoding from total concentration

The orientation field Ψ(x, t) is assumed to decouple from the field of total concentrations Σ(x, t).
In this case, the encoding strategy is more robust to global factors impairing the dynamics of
genetic expression, e.g. global heat fluctuations. The decoupling, which is defined by

ˆ̃LΨ
2 [Σ] = ˆ̃QΨ

2 [Ψ,Σ] = ˆ̃QΨ
3 [Σ,Σ] = ˆ̃CΨ

2 [Ψ,Ψ,Σ] = ˆ̃CΨ
3 [Ψ,Σ,Σ] = ˆ̃CΨ

4 [Σ,Σ,Σ] = 0, (3.43)
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results in the identities

κ1
4 =κ1

3, κ2
1 =κ1

2 − 2κ1
1, κ2

2 =− κ1
1,

κ2
3 =− κ1

3, κ2
4 =− κ1

3, κ3
2 =κ3

1,

κ4
1 =− κ3

1, κ4
2 =− κ3

1, κ4
3 =κ3

4 − 2κ3
3,

κ4
4 =− κ3

3, ν2 =ν1, ν4 =ν3,

ρ2 =ρ1, ρ4 =ρ3, ω1
4 =ω1

3,

ω2
3 =− 2ω1

3, ω2
4 =− 2ω1

4, ω4
1 =− ω3

1,

ω4
3 =ω3

4 − 2ω3
3, ω4

4 =− ω3
3, ω5

1 =3ω1
1 − 2ω10

1 + 2ω10
2 + ω2

2,

ω5
2 =ω1

1 − ω10
1 + ω10

2 , ω5
3 =ω1

3, ω5
4 =ω1

4,

ω6
1 =ω3

2 − 2ω3
1, ω6

2 =− ω3
1, ω6

3 =− ω3
3,

ω7
1 =2ω3

1 + ω4
2, ω7

2 =ω3
1, ω7

3 =2ω3
3 + ω6

4,

ω7
4 =ω3

3, ω8
1 =ω10

1 , ω8
2 =ω10

2 ,

ω8
3 =ω1

3 − ω1
4 + ω10

4 , ω9
1 =− 2ω10

1 , ω9
2 =− 2ω10

2 ,

ω9
3 =− 2ω1

3 + 2ω1
4 − 3ω10

4 + ω8
4, ω9

4 =− ω1
3 + ω1

4 + ω10
3 − 3ω10

4 , ω10
2 =ω10

1 ,

µ1
2 =

µ1
1ξ1

ξ2
, µ1

4 =
µ1

3ξ3

ξ4
, µ2

2 =
µ2

1ξ1

ξ2
,

µ2
4 =

µ2
3ξ3

ξ4
. (3.44)

Pattern formation in orientation field

The linear operators separate into a local part that depends only on x and a non-local part that
also depends on the surrounding of x. The non-local linear operators of the orientation field
Ψ(x, t) are given by

L̂Ψ
non−local[Ψ] =

1

2

[
−
(
µ1

1ξ1 + µ1
3ξ3

) (
j−u K− + j−K

)
+ (ν1 + ν3)

(
j−u K− + j+

u K+ + j−K
)]
?Ψ(y, t) (3.45)

L̂Ψ
non−local[Ψ̄] =

1

2

[
−
(
µ1

1ξ1 − µ1
3ξ3

) (
j−u K− + j−K

)
+ (ν1 − ν3)

(
j−u K− + j+

u K+ + j−K
)]
? Ψ̄(y, t). (3.46)

For the sake of simplicity we assume that L̂Ψ
nl[Ψ̄] = 0, which leads to the parameter identities

µ1
1ξ1 =µ1

3ξ3, ν3 =ν1. (3.47)

This choice of parameters fixes a single critical wavelength of the Turing instability for the real
and imaginary part of the orientation field Ψ(x, t). With the additional parameter choice, the
orientation encoding field is given by

τs∂tΨ(x, t) =L̂Ψ[Ψ] + Q̂Ψ[Ψ,Ψ] + ĈΨ[Ψ,Ψ,Ψ] (3.48)

with the operators that can be decomposed into

L̂Ψ[Ψ] =L̂Ψ
1 [Ψ] + L̂Ψ

2 [Ψ̄], (3.49)

Q̂Ψ[Ψ,Ψ] =Q̂Ψ
1 [Ψ,Ψ] + Q̂Ψ

2 [Ψ, Ψ̄] + Q̂Ψ
3 [Ψ̄, Ψ̄], (3.50)

ĈΨ[Ψ,Ψ,Ψ] =ĈΨ
1 [Ψ,Ψ, Ψ̄] + ĈΨ

2 [Ψ, Ψ̄, Ψ̄] + ĈΨ
3 [Ψ̄, Ψ̄, Ψ̄] + ĈΨ

4 [Ψ,Ψ,Ψ]. (3.51)
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The individual operators are given by the linear operators

L̂Ψ
1 [Ψ] =α1Ψ(x, t)− γ1σ

2
Ψ

(
j−u
j−
K− +K

)
?Ψ(y, t) + ν1j

+
u K+ ?Ψ(y, t),

L̂Ψ
2 [Ψ̄] =α2Ψ̄(x, t), (3.52)

the quadratic operators

Q̂Ψ
1 [Ψ,Ψ] =− (β1 + iζ1)Ψ(x, t)2,

Q̂Ψ
2 [Ψ, Ψ̄] = (β2 − β1 + i(ζ1 − ζ2)) |Ψ(x, t)|2,

Q̂Ψ
3 [Ψ̄, Ψ̄] =(β2 + iζ2)Ψ̄(x, t)2 (3.53)

and the cubic operators

ĈΨ
1 [Ψ,Ψ, Ψ̄] =K ? (γ1Ψ(y, t)− γ2Ψ(x, t)) |Ψ(x, t)−Ψ(y, t)|2 + (γ6 − iη1) Ψ(x, t)|Ψ(x, t)|2,

ĈΨ
2 [Ψ, Ψ̄, Ψ̄] =K ? γ3Ψ̄(x)|Ψ(x, t)−Ψ(y, t)|2 + (γ5 + iη2) Ψ̄(x, t)|Ψ(x, t)|2,

ĈΨ
3 [Ψ̄, Ψ̄, Ψ̄] = (γ4 + iη1) Ψ̄(x, t)3,

ĈΨ
4 [Ψ,Ψ,Ψ] = (γ7 − iη2) Ψ(x, t)3, (3.54)

with the substitutions

α1 =
ρ1 + ρ3

2
+
j− + j−u

2

(
µ2

1ξ1 + µ2
3ξ3

)
− ν1

(
j− + j−u + j+

u

)
,

α2 =
ρ1 − ρ3

2
+
j− + j−u

2

(
µ2

1ξ1 − µ2
3ξ3

)
,

β1 =− 1

4

(
κ1

1 + κ1
3

)
, β2 =

1

4

(
κ1

1 − κ1
3

)
,

ζ1 =
1

4

(
κ3

1 + κ3
3

)
, ζ2 =

1

4

(
κ3

1 − κ3
3

)
,

η1 =
1

8

(
ω3

1 − ω3
3

)
, η2 =

1

8

(
ω3

1 + ω3
3

)
,

γ1 =
j−

σ2
Ψ

(
µ1

3ξ3 − ν1

)
, γ2 =

j−

2σ2
Ψ

(
µ2

1ξ1 + µ2
3ξ3 − 2ν1

)
,

γ3 =− j−

2σ2
Ψ

(
µ2

1ξ1 − µ2
3ξ3

)
, γ4 =

1

8

((
ω1

1 + ω10
4

)
−
(
ω1

3 + ω10
1

))
,

γ5 =
1

8

(
3
(
ω1

1 − ω10
4

)
−
(
ω1

3 − ω10
1

))
, γ6 =

1

8

(
3
(
ω1

1 + ω10
4

)
+
(
ω1

3 + ω10
1

))
,

γ7 =
1

8

((
ω1

1 − ω10
4

)
+
(
ω1

3 − ω10
1

))
. (3.55)

Notice that all 15 effective parameters are independent and can be chosen arbitrarily.
In order to get a wavelength instability of the orientation field, consider the eigenspectrum

of the linear operator in Fourier space

F{L̂1[Ψ]} =
(
α1 + λL̂(k)

)
Ψ̃(k, t) (3.56)

λL̂(k) =− γ1σ
2
Ψ

(
j−u
j−
K̃−(‖k‖) + K̃(‖k‖)

)
+ ν1j

+
u K̃+(‖k‖). (3.57)

Since all coefficients except for γ1 are positive, K̃(‖k‖), K̃±(‖k‖) > 0 and K̃(‖k‖), K̃±(‖k‖)
have a maximum for k = 0, a necessary but not sufficient condition to obtain a non-trivial

43



3. Genetic assimilation of visual cortical architecture

wavelength instability is γ1 > 0. For a suitable parameter choice the critical wavelength is given
by

kc = argmax
{
λL̂(k)

}
(3.58)

and the parameter α1 will be chosen as

α1 = λL̂(kc) + r. (3.59)

Stability of total concentration field

In this section, it will be shown that the dynamics of the total concentration field can be chosen
to be stable for arbitrary choices of the effective parameters except for γ1.

Dynamics of the total concentration field Σ for a vanishing orientation field Ψ = 0 is given
by

τs∂tΣ(x, t) =
2∑
i=1

L̂Σ
i +

3∑
i=1

Q̂Σ
i +

4∑
i=1

ĈΣ
i (3.60)

with the individual operators defined by the linear operators

L̂Σ
1 [Σ] =α1Σ(x, t) + ν1

(
2j−K + 2j−u K− + j+

u K+

)
? Σ(y, t)

+ γ1σ
2
Ψ

(
K +

j−u
j−
K−

)
? Σ(y, t),

L̂Σ
2 [Σ̄] =α2Σ̄(x, t), (3.61)

the quadratic operators

Q̂Σ
1 [Σ,Σ] =

1

8

(
2β1 − 2β2 + κ1

2 + i
(
2ζ1 − 2ζ2 − κ3

4

))
Σ(x, t)2,

Q̂Σ
2 [Σ, Σ̄] =

1

4

(
2β1 − 2β2 + κ1

2 − i
(
2ζ1 − 2ζ2 − κ3

4

))
|Σ(x, t)|2 ,

Q̂Σ
3 [Σ̄, Σ̄] =

1

8

(
2β1 − 2β2 + κ1

2 + i
(
2ζ1 − 2ζ2 − κ3

4

))
Σ̄(x, t)2 (3.62)

and the cubic operators

ĈΣ
1 [Σ,Σ,Σ] =

1

32
[3 (γ4 + γ6)− (γ5 + γ7)

+
(
ω1

2 − ω10
3 + ω2

2 − ω8
4

)
− i
(
ω3

2 + ω3
4 + ω4

2 + ω6
4

)]
Σ(x, t)3,

ĈΣ
2 [Σ, Σ̄, Σ̄] =

1

32
[9 (γ4 + γ6)− 3 (γ5 + γ7)

+3
(
ω1

2 − ω10
3 + ω2

2 − ω8
4

)
+ i
(
ω3

2 + ω3
4 + ω4

2 + ω6
4

)]
Σ̄(x, t) |Σ(x, t)|2 ,

ĈΣ
3 [Σ,Σ, Σ̄] =

1

32
[−3 (γ4 + γ6) + 9 (γ5 + γ7)

+3
(
ω1

2 + ω10
3 + ω2

2 + ω8
4

)
− i
(
ω3

2 − ω3
4 + ω4

2 − ω6
4

)]
Σ(x, t) |Σ(x, t)|2 ,

ĈΣ
4 [Σ̄, Σ̄, Σ̄] =

1

32
[− (γ4 + γ6) + 3 (γ5 + γ7)

+
(
ω1

2 + ω10
3 + ω2

2 + ω8
4

)
+ i
(
ω3

2 − ω3
4 + ω4

2 − ω6
4

)]
Σ̄(x, t)3. (3.63)

The parameters ωji and κji that appear in these operators can be chosen arbitrarily without
changing the pattern of the orientation field. However, the dynamics of the total concentration
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field determine the total concentration of the pattern and can lead to substantially different
dynamics of the concentrations. The choice of the model guarantees that the concentrations
are always positive and hence arg{Σ} ∈ [0, π/2]. An important model class consists of choosing
the remaining parameters in such a way that Σ has a stable single fixed point with |Σ| > 0 and
arg{Σ} ∈ (0, π/4) for Ψ = 0. This leads to finite concentration dynamics.

A convenient way to construct such a stable fixed point is to choose the parameters such
that

ĈΣ
i = 0 (3.64)

for all i ∈ {1, 2, 3, 4}. The fixed points for the choice of vanishing cubic order of Σ and Ψ = 0
separates real and imaginary part of Σj = Aj + iBj and results in the fixed points

Σ1 =0, Σ2 =
a1 + a2

b1
, Σ3 =i

a1 − a2

b2
, Σ4 =

a1 + a2

b1
+ i

a1 − a2

b2
(3.65)

with the parameters

a1 =α1 + ν1

(
2j− + 2j−u + j+

u

)
+ γ1σ

2
Ψ

(
1 +

j−u
j−

)
(3.66)

a2 =α2 (3.67)

b1 =−
(
2β1 − 2β2 + κ1

2

)
/2 (3.68)

b2 =
(
2ζ1 − 2ζ2 − κ3

4

)
/2. (3.69)

The stability of the fixed points is determined by the eigenvalues of the linearized dynamics of
the real and imaginary part (∂tAi ∝ eλit and ∂tBi ∝ eµit ) and gives

λ1 = −λ2 = λ3 = −λ4 = a1 + a2, µ1 = µ2 = −µ3 = −µ4 = (a1 − a2). (3.70)

Thus, the fixed points are stable for a1 < 0 and |a2| < |a1|, a2 > 0 and |a1| < |a2|, a2 < 0 and
|a1| < |a2|, a1 > 0 and |a2| < |a1| for the first, second, third and fourth fixed point, respectively.
Notice that for the coefficient a1 a lower bound can be calculated

a1 = α1 + ν1

(
2j− + 2j−u + j+

u

)
+ γ1σ

2
Ψ

(
1 +

j−u
j−

)
≥ ν1

(
2j− + 2j−u

)
+ r > r. (3.71)

Thus, upon symmetry breaking r > 0 the first trivial fixed point becomes unstable. Depending
on the specific parameters the non-trivial fixed points of the total concentration field Σ remain
stable in linear order since Σ does not influence Ψ and Ψ is small. As stability of the total con-
centration field is guaranteed and the fixed point can be chosen to arbitrary total concentrations
in this specific setting, the exact dynamics of the total concentration field will be omitted here
for the sake of clarity.

Weakly nonlinear analysis of third order field dynamics

In order to dissect the patterns that emerge from the orientation field dynamics, we use a pertur-
bation method, called weakly nonlinear analysis [28, 29]. This allows an analytical treatment of
a homogeneous solution close to its instability of pattern formation, see Fig. 3.8. The dynamics
of the orientation field can be written as

τs∂tΨ(x, t) =L̂Ψ[Ψ] + Q̂Ψ[Ψ,Ψ] + ĈΨ[Ψ,Ψ,Ψ], (3.72)
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Figure 3.8: Scheme of weakly nonlinear analysis of pattern forming field dynamics. A Field
dynamics are initially governed by a linear operator with an rotation symmetric eigenspectrum. The
eigenspectrum λ(‖k‖) of the linear operator possesses a single maximum of amplitude r. The amplitude
of the maximal eigenvalue is 0 < r � 1 at the wave vector k with kc = ‖k‖ defines the critical circle. B
Expanding the field dynamics (gray area) in powers of the maximal eigenvalue r simplifies the dynamics
to amplitudes on the critical circle (gray dashed circle). C Resonant quadratic and cubic modes on the
critical circle fulfill the geometrical constraints of kj forming a triangle and parallelogram, respectively.
See main text for further details.

where the linear, quadratic and cubic operators can be decomposed into

L̂Ψ[Ψ] =L̂0
1[Ψ] + rΨ(x, t) + α2Ψ̄(x, t), (3.73)

Q̂Ψ[Ψ,Ψ] =Q̂Ψ
1 [Ψ,Ψ] + Q̂Ψ

2 [Ψ, Ψ̄] + Q̂Ψ
3 [Ψ̄, Ψ̄], (3.74)

ĈΨ[Ψ,Ψ,Ψ] =ĈΨ
1 [Ψ,Ψ, Ψ̄] + ĈΨ

2 [Ψ, Ψ̄, Ψ̄] + ĈΨ
3 [Ψ̄, Ψ̄, Ψ̄] + ĈΨ

4 [Ψ,Ψ,Ψ], (3.75)

respectively. The eigenspectrum λ(k) of the linear operator L̂0
1, Fig. 3.8A, is assumed to be

rotation symmetric and to possess a wavelength instability with vanishing maximal eigenvalue,
i.e. maxλ(‖k‖) = λ(kc) = 0. At pattern onset, i.e. 0 < r � 1, the field dynamics can
be analyzed analytically by expanding the control parameter r, the field Ψ(x, t) and the time
constant τs in powers of a small positive parameter 0 < ε� 1 as

r =εr1 + ε2r2 +O
(
ε3
)

(3.76)

Ψ(x, t) =
√
εΨ1(x, t) +

√
ε
2
Ψ2(x, t) +

√
ε
3
Ψ3(x, t) + +O

(√
ε
4
)

(3.77)

τs =ετ1 + ε2τ2 +O
(
ε3
)

(3.78)

Here, the additional simplifying assumption of small quadratic terms βi →
√
εβi, ζi →

√
εζi and

small linear terms α2 → εα2 is made. Plugging the ansatz into the field dynamics and sorting
by the order of

√
ε leads to

0 =
√
εL̂0

1[Ψ1] + εL̂0
1[Ψ2]

+
√
ε
3
(

(r1 − τ1∂t)Ψ1(x, t) + L̂0
1[Ψ3] + α2Ψ̄1(x, t) + Q̂Ψ[Ψ1,Ψ1] + ĈΨ[Ψ1,Ψ1,Ψ1]

)
+O

(√
ε
4
)
. (3.79)

In order to fulfill this equation, each order in
√
ε must vanish. This leads to the finding that

the first two orders of the orientation field must be in the kernel of the linear operator, i.e.
Ψ1(x, t),Ψ2(x, t) ∈ ker L̂0

1. The condition for the third order term is more conveniently written
as

−L̂0
1[Ψ3] =− τ1∂tΨ1(x, t) + α2Ψ̄1(x, t) + r1Ψ1(x, t) + Q̂Ψ[Ψ1,Ψ1] + ĈΨ[Ψ1,Ψ1,Ψ1]. (3.80)
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This equation can be analyzed by the Fredholm alternative that corresponds to a projection
onto the kernel of the linear operator ker L̂0

1. Denoting the projection operator by P̂c results in

0 =− τ1∂tΨ1(x, t) + α2Ψ̄1(x, t) + r1Ψ1(x, t) + P̂cQ̂
Ψ[Ψ1,Ψ1] + P̂cĈ

Ψ[Ψ1,Ψ1,Ψ1]. (3.81)

Measuring time in units of τ1/r1 and the amplitude of Ψ(x, t) in units of r1 leads to the equation

∂tΨ1(x, t) = Ψ1(x, t) + α2Ψ̄1(x, t) + P̂cQ̂
Ψ[Ψ1,Ψ1] + P̂cĈ

Ψ[Ψ1,Ψ1,Ψ1], (3.82)

where all coefficients were scaled by 1/r1. By construction, the solution of Ψ1(x, t) is an element
of the kernel ker L̂0

1 and can therefore be written as a superposition of Fourier modes

Ψ1(x, t) =

2n−1∑
j=0

Aj(t)e
ikjx (3.83)

with the wave vector k = kc (cos(πj/n), sin(πj/n))T . Thus the field dynamics are reduced to
dynamics of the amplitudes Aj(t), see Fig. 3.8B. Explicit amplitude dynamics can be derived
through projection onto the jth mode by the operator P̂j . This results in

∂tAj(t) =Aj(t) + α2Aj−(t) + e−ikjxP̂jQ̂
Ψ[Ψ1,Ψ1] + e−ikjxP̂jĈ

Ψ[Ψ1,Ψ1,Ψ1], (3.84)

where j− = j−n denotes the index of the Fourier mode on the opposite side of the critical circle
to the jth Fourier mode. Plugging the solution into the operators gives for the quadratic term

Q̂Ψ
1 [Ψ1,Ψ1] =

∑
lm

Al(t)Am(t)q1
lme

i(kl+km)x (3.85)

Q̂Ψ
2 [Ψ1, Ψ̄1] =

∑
lm

Al(t)Ām(t)q2
lme

i(kl−km)x (3.86)

Q̂Ψ
3 [Ψ̄1, Ψ̄1] =

∑
lm

Āl(t)Ām(t)q3
lme
−i(kl+km)x (3.87)

and for the cubic term

ĈΨ
1 [Ψ1,Ψ1, Ψ̄1] =

∑
lmn

Al(t)Am(t)Ān(t)c1
lmne

i(kl+km−kn)x (3.88)

ĈΨ
2 [Ψ1, Ψ̄1, Ψ̄1] =

∑
lmn

Al(t)Ām(t)Ān(t)c2
lmne

i(kl−km−kn)x (3.89)

ĈΨ
3 [Ψ̄1, Ψ̄1, Ψ̄1] =

∑
lmn

Āl(t)Ām(t)Ān(t)c3
lmne

−i(kl+km+kn)x (3.90)

ĈΨ
4 [Ψ1,Ψ1,Ψ1] =

∑
lmn

Al(t)Am(t)An(t)c4
lmne

i(kl+km+kn)x (3.91)

with amplitude coefficients qilm, cilmn that depend on the quadratic and cubic operators, respec-
tively. For the quadratic terms, the projections onto the jth mode selects only wave vector
combinations that span a triangle, Fig. 3.8C, giving the resonance conditions

j∆
q1
lm =e−ikjxP̂je

i(kl+km)x = δl,j−νδm,j+ν + δl,j+νδm,j−ν (3.92)

j∆
q2
lm =e−ikjxP̂je

i(kl−km)x = δl,j−νδm,j−2ν + δl,j+νδm,j+2ν (3.93)

j∆
q3
lm =e−ikjxP̂je

−i(kl+km)x = δl,j+2νδm,j−2ν + δl,j−2νδm,j+2ν (3.94)
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with ν = n/3. For the cubic terms, the projections onto the jth mode selects only wave vector
combinations that span a parallelogram, Fig. 3.8C, giving the resonance condition

j�
c1
lmn =e−ikjxP̂je

i(kl+km−kn)x

=δjmδln

(
1−

δjl
2

)
+ δjlδmn

(
1− δjn

2

)
+ δjn−δml−

(
1− δjl − δjl−

)
(3.95)

j�
c2
lmn =e−ikjxP̂je

i(kl−km−kn)x = j�
c1
lm−n (3.96)

j�
c3
lmn =e−ikjxP̂je

−i(kl+km+kn)x = j�
c1
l−m−n (3.97)

j�
c4
lmn =e−ikjxP̂je

i(kl+km+kn)x = j�
c1
lmn− . (3.98)

The full amplitude equations are then given by

∂tAj =Aj + α2Āj− + q1Aj−νAj+ν + q2

(
Aj+νĀj+2ν +Aj−νĀj−2ν

)
+ q3Āj−2νĀj+2ν

+Aj

2n−1∑
k=0

g1
jk|Ak|2 + Āj−

2n−1∑
k=0

g2
jkAkAk− +Aj

2n−1∑
k=0

f1
jkĀk−Āk + Āj−

2n−1∑
k=0

f2
jk|Ak|2

+ Āj−

2n−1∑
k=0

hjkĀk−Āk +Aj

2n−1∑
k=0

sjkAk−Ak, (3.99)

where the temporal dependence of the amplitudes Aj(t) is omitted for the sake of brevity. The
quadratic coefficients are given by

q1 = −2(β1 + iζ1), q2 = β2 − β1 + i(ζ1 − ζ2), q3 = 2(β2 + iζ2) (3.100)

and the cubic coefficients in terms of the coefficients by

g1
jk =

(
1−

δjk
2

)(
c1
kjk + c1

jkk

)
(3.101)

g2
jk =

(
1− δjk − δjk−

)
c1
kk−j− (3.102)

f1
jk =

(
1−

δjk
2

)
c2
jk−k (3.103)

f2
jk =

(
1−

δjk
2

)
c2
kj−k +

(
1− δjk − δjk−

)
c2
kkj− (3.104)

hjk =

(
1−

δjk
2

)(
c3
kj−k− + c3

j−k−k

)
+
(
1− δjk − δjk−

)
c3
kk−j− (3.105)

sjk =

(
1−

δjk
2

)(
c4
kjk− + c4

jk−k

)
+
(
1− δjk − δjk−

)
c4
kk−j (3.106)

48



3.5. Supplementary material

that gives the final angle-interaction matrices of

g1
jk =

(
1−

δjk
2

)(
2(γ6 − iη1)− (γ1 + 3γ2) + 4(γ1 + γ2)K̃(kc)−

2γ1K̃(‖kj + kk‖)− (γ1 + γ2)K̃(‖kj − kk‖)
)

(3.107)

g2
jk =

(
1− δjk − δjk−

) (
(γ6 − iη1)− (γ1 + γ2) + 2(γ1 + γ2)K̃(kc)−

γ1 + γ2

2

(
K̃(‖kj − kk‖) + K̃(‖kj + kk‖)

))
(3.108)

f1
jk =

(
1−

δjk
2

)(
γ5 + iη2 + γ3 − 2γ3K̃(kc) + γ3K̃(‖kj + kk‖)

)
(3.109)

f2
jk =

(
1− δjk − δjk−

) (
γ5 + iη2 − 2γ3K̃(kc) + 2γ3

)
(3.110)

hjk =3

(
1−

δjk
2
−
δjk−

2

)
(γ4 + iη1) (3.111)

sjk =3

(
1−

δjk
2
−
δjk−

2

)
(γ7 − iη2) . (3.112)

Shift- and conjugation-symmetric model

Orientation field dynamics can be constrained by symmetry assumptions of the dynamics. If
orientation field dynamics are symmetric under a phase shift φ and conjugation, the operator
F̂Ψ[Ψ] must be equivariant to these symmetries, that is

F̂Ψ[eiφΨ] = eiφF̂Ψ[Ψ] and F̂Ψ[Ψ̄] = F̂Ψ[Ψ]. (3.113)

Shift-symmetry leads to a vanishing of all operators that if multiplied by Ψ have not the same
number of Ψ and Ψ̄ arguments. In our case, only odd operators L̂Ψ

1 [Ψ] and ĈΨ
1 [Ψ,Ψ, Ψ̄] fulfill this

criterion. Conjugation symmetry leads to a vanishing of complex parameters in the operators
and gives the amplitude equations

∂tAj =Aj +Aj

2n−1∑
k=0

g1
jk|Ak|2 + Āj−

2n−1∑
k=0

g2
jkAkAk− , (3.114)

where the temporal dynamics are again omitted. The angle-interaction matrices are given by

g1
jk =γ1

(
1−

δjk
2

)(
2γ6/γ1 − (6χ− 2) + 8χK̃(kc)− 2

(
K̃(‖kj + kk‖) + χK̃(‖kj − kk‖)

))
(3.115)

g2
jk =γ1

(
1− δjk − δjk−

) (
γ6/γ1 − 2χ+ 4χK̃(kc)− χ

(
K̃(‖kj − kk‖) + K̃(‖kj + kk‖)

))
(3.116)

with the permutation-symmetry breaking coefficient 2χ = 1 + γ2/γ1. For χ = 1 the cubic
operator ĈΨ

1 [Ψ,Ψ, Ψ̄] can be written as permutation symmetric in its field arguments, i.e.
ĈΨ

1 [Ψ1,Ψ2, Ψ̄3] = ĈΨ
1 [Ψ3,Ψ1, Ψ̄2] and belongs to the universality class [128]. As the amplitude

of the angle-interaction matrices can be scaled out by rescaling the amplitudes Aj → Aj/
√
γ1,

only the shape of the matrices is relevant for pattern selection. Therefore, the angle-interaction
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matrices can be simplified to

g1
jk =

(
1−

δjk
2

)(
2γ6/γ1 − (6χ− 2) + 8χK̃(kc)− 2

(
K̃(‖kj + kk‖) + χK̃(‖kj − kk‖)

))
(3.117)

g2
jk =

(
1− δjk − δjk−

) (
γ6/γ1 − 2χ+ 4χK̃(kc)− χ

(
K̃(‖kj − kk‖) + K̃(‖kj + kk‖)

))
(3.118)

leaving only two relevant parameter γ6/γ1 and χ for pattern selection.

3.5.3 Symmetry-confined canonical genetic network

Confining the canonical genetic network by symmetries will be called symmetry-confined canon-
ical genetic network. An advantage of this example genetic network is its analytical tractability.
The dynamics of the orientation field are assumed to be shift- and conjugation-symmetric and
the cubic operator should be permutation-symmetric in its arguments, that is

F̂Ψ[eiφΨ] = eiφF̂Ψ[Ψ], F̂Ψ[Ψ̄] = F̂Ψ[Ψ], ĈΨ
1 [Ψ1,Ψ2, Ψ̄3] = ĈΨ

1 [Ψ3,Ψ1, Ψ̄2], (3.119)

respectively. As previously, shift-symmetry leads to a vanishing of all operators that if multiplied
by Ψ have not the same number of Ψ and Ψ̄ arguments. In our case, only odd operators L̂Ψ

1 [Ψ]
and ĈΨ

1 [Ψ,Ψ, Ψ̄] fulfill this criterion. Conjugation symmetry leads to a vanishing of complex
parameters in the operators. Finally, permutation symmetry of the cubic operator leads to
γ1 = γ2 resulting in the orientation field dynamics of

τs∂tΨ(x, t) =L̂0
1[Ψ] + rΨ(x, t) + γ1K ? (Ψ(y, t)−Ψ(x, t)) |Ψ(x, t)−Ψ(y, t)|2

+ γ6Ψ(x, t)|Ψ(x, t)|2. (3.120)

and thus belongs to the universality class introduced in [128].
The total concentration field still exhibits various free parameters that lead to potentially

very distinct morphogen concentration dynamics. A simple shape of total concentration dy-
namics can be obtained by the parameter set of section 3.5.2 leading to the total concentration
dynamics

τs∂tΣ(x, t) =L̂Σ[Σ] + Q̂Σ
1 [Σ,Σ] + Q̂Σ

2 [Ψ,Ψ] + ĈΣ[Ψ, Ψ̄,Σ]. (3.121)

with the operators

L̂Σ[Σ] =α1Σ(x, t) +

((
2ν1j

− + γ1σ
2
Ψ

)
K + j−u

(
2ν1 +

γ1σ
2
Ψ

j−

)
K− + ν1j

+
u K+

)
? Σ(y, t),

(3.122)

Q̂Σ
1 [Σ,Σ] =− b1<{Σ(x, t)}2 − ib2={Σ(x, t)}2, (3.123)

Q̂Σ
2 [Ψ,Ψ] =b1<{Ψ(x, t)}2 + ib2={Ψ(x, t)}2, (3.124)

ĈΣ[Ψ, Ψ̄,Σ] =γ6Σ(x, t)|Ψ(x, t)|2

−K ?

((
γ1 + 2

j−ν1

σ2
Ψ

)
Σ(y, t) + γ1Σ(x, t)

)
|Ψ(x, t)−Ψ(y, t)|2. (3.125)

The additional parameters are given by

ω3
2 =ω3

4 = 0, ω1
2 =ω10

3 = γ6, b1 =− κ1
2/2, b2 =− κ3

4/2. (3.126)

The fixed points of the total concentration field in the absence of the orientation field is given
by

Σ1 =0, Σ2 =
a1

b1
, Σ3 =i

a1

b2
, Σ4 =

a1

b1
+ i

a1

b2
, (3.127)

with a1 = L̂Σ[1] and where only the last fixed point retains stability if r > 0, see section 3.5.2.
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Amplitude equations

Amplitude equations of the symmetry-confined canonical genetic network can be derived by
setting χ = 1 in the shift- and conjugation-symmetric model of Eq. (3.114) that leads to

∂tAj(t) =Aj(t) +Aj(t)
2n−1∑
k=0

g1
jk|Ak(t)|2 + Āj−(t)

2n−1∑
k=0

g2
jkAk(t)Ak−(t) (3.128)

with the simplified angle-interaction matrices

g1
jk =

(
1−

δjk
2

)
g(αjk), g2

jk =
(
1− δjk − δjk−

) g(αjk)

2
(3.129)

and the angle-interaction function

g(αjk) =2γ1

(
γ6

γ1
− 2 + 4K̃(kc)− K̃

(
kc

√
2(1 + cosαjk)

)
− K̃

(
kc

√
2(1− cosαjk)

))
(3.130)

with αjk = π(j − k)/n. Notice that the angle-interaction function is π periodic, i.e. g(α+ π) =
g(α). The amplitude dynamics can be written as gradient descend dynamics with the energy
function

E(t) =−
2n−1∑
i=0

|Ai(t)|2 −
1

2

2n−1∑
i,j=0

(
|Ai(t)|2g1

ij |Aj(t)|2 +Ai(t)Ai−(t)g2
ijĀj(t)Āj−(t)

)
(3.131)

The amplitude dynamics are then given by the functional derivative of the energy functional

∂tAj(t) = − ∂E(t)

∂Āj(t)
, (3.132)

where the functional derivative with respect to the complex amplitude Āj(t) denotes the
Wirtinger derivative. Thus, the amplitude dynamics minimize the energy functional

dE(t) =
2n−1∑
j=0

(
∂E(t)

∂Aj(t)
∂tAj(t)dt+

∂E(t)

∂Āj(t)
∂tĀj(t)dt

)
= −2

2n−1∑
j=0

∣∣∣∣ ∂E(t)

∂Aj(t)

∣∣∣∣2 dt ≤ 0. (3.133)

Stationary orientation field solutions

The symmetry-confined amplitude dynamics allow us to derive closed-form solutions. In partic-
ular, permutation-symmetry guarantees that visual scotoma solutions, that is orientation fields
with only two orientations, become unstable. In order to derive the closed-form solutions of
essentially complex planforms (ECP), we introduce the amplitude representation

Ψ(x, t) =

n−1∑
j=0

A+
j (t)eiljkjx +

n−1∑
j=0

A−j (t)e−iljkjx (3.134)

with lj ∈ {−1, 1} and kj = kc(cosπj/n, sinπj/n)T . Temporal dependence of the amplitudes
will be omitted in the following for the sake of brevity. The amplitude equations of the active
A+
j and inactive A−j modes are obtained by plugging the representation into Eq. (3.128) that

gives

∂tA
±
j = A±j +A±j

n−1∑
j=0

g1
jk|A±k |

2 +

n−1∑
j=0

g1
jk(1 + δjk)|A∓j |

2

+ 2Ā∓j

n−1∑
j=0

g2
jkA

+
k A
−
k . (3.135)
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Figure 3.9: Essentially complex planform solutions and their minimal energy phase space
diagram. A The essentially complex planform (ECP) solution set ordered by the number of active
modes n, see Eq. (3.134) and Eq. (3.138). Circle with arrows represent the wave vectors of active modes
in Fourier space. Orientation fields are synthesized examples of the wave vectors with random phases.
B, C Phase diagram of minimal energy regions of ECPs solutions (see Eq. (3.139)) for a Gaussian and
exponential synaptic kernel K(‖x‖), respectively. The axonal range σ is given in units of the typical
scale Λ and the local/nonlocal interaction ratio by γ6/γ1.

Decomposing the amplitudes into a magnitude and a phase A±j → A
±
j e

iφ±j leads to the dynamics

∂tA±j =A±j +A±j

n−1∑
j=0

g1
jkA±k

2
+

n−1∑
j=0

g1
jk(1 + δjk)A∓j

2


+ 2A∓j

n−1∑
j=0

g2
jkA+

k A
−
k cos

(
φ+
k + φ−k − φ

+
j − φ

−
j

)
(3.136)

A±j ∂tφ
±
j =2A∓j

n−1∑
j=0

g2
jkA+

k A
−
k sin

(
φ+
k + φ−k − φ

+
j − φ

−
j

)
. (3.137)

Assuming that the inactive modes vanish A−j = 0 and that the active modes have a uniform,

non-vanishing amplitude A+
j = A gives the amplitude

A2 = −

n−1∑
j=0

g1
0k

−1

(3.138)

with degenerated phases φ+
k + φ−k = Φ0. The closed-form solutions are depicted in Fig. 3.9A

and are termed essentially complex planforms (ECP). The energy of ECPs with n active modes
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is degenerated in the phases and given by

E = −1

2
nA2. (3.139)

The regions of minimal energy are depicted in Fig. 3.9B,C for a Gaussian K(r) =
exp(−r2/(2σ2)) and exponential K(r) = exp(−r/σ) morphogen selective transport kernel,
respectively.

Stability of stationary orientation field

The stability consideration of ECPs can be decomposed into three separated problems (see
[128, 136, 262] for details) as illustrated in Fig. 3.10A. The reason for the separating stability
conditions is that perturbations in the active modes, inactive modes and phases mutually couple
only quadratically.

Intrinsic stability Linearizing the dynamics around ECP solutions and perturbing the active
mode by A+

j → A+ + a+
j leads to dynamics of the active mode perturbation

∂ta
+
j = 2A2

n−1∑
k=0

g1
jka

+
k . (3.140)

The stability condition is that the matrix g1
jk is negative definite.

Inactive mode stability Linearizing the dynamics around the ECP solutions and perturbing
the inactive mode by A−j → a−j leads to the dynamics of the inactive mode perturbation

∂ta
−
j = A2

n−1∑
k=0

g1
jka
−
k . (3.141)

The stability condition is again that the matrix g1
jk is negative definite.

Extrinsic stability Introducing an additional mode at k = kc(cosα, sinα)T with amplitude
b and linearizing the resulting dynamics around ECP solutions leads to

∂tb =

(
1 +A2

n−1∑
k=0

g

(
α− πk

n

))
b. (3.142)

The function
∑n−1

k=0 g
(
α− πj

n

)
is π/n periodic and therefore stability must only be considered

for the interval [0, π/n). The function assumes its maximum for α = π/2n and hence the
stability condition is given by

1 +A2
n−1∑
k=0

g

(
π

2n
− πj

n

)
< 0. (3.143)

Notice that a combination of additional modes would decouple and reduce to the problem
considered here. The stability region of ECP solutions is depicted in Fig. 3.10B-D for n = 1, 3, 5
active modes, respectively. For n > 1 active modes, the stability region occupies a larger area
than the minimal energy.
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Figure 3.10: Stability of essentially complex planforms. A ECP amplitudes illustrated by radial
extend of black lines. Red arrows represent the perturbations of three distinct types of instabilities:
intrinsic stability, inactive mode stability and extrinsic stability. B, C, D Stability region (blue area, see
text for details) of n = 1, 3, 5 active modes and their minimal energy region (black lines, see Eq. (3.139)
and Fig. 3.9C) for a Gaussian kernel, respectively. For n = 1 stability and minimal energy regions
coincide, whereas for larger n the stability region typically overlaps the minimal energy region. The
axonal range σ is given in units of the typical scale Λ and the local/nonlocal interaction ratio by γ6/γ1.
E Asymptotic stability region (blue area, see text for details) for large n together with stability boundaries
of n = 4 . . . 20 (lines with colors from yellow over red to black for increasing n).

Asymptotic stability of essentially complex planforms

As shown in the previous section, the stability consideration can be reduced to intrinsic and
extrinsic stability. Here the stability for large n will be derived, which follows closely [128, 136,
262].

For long-range transport in comparison to the typical scale σ � Λ, the angle-interaction
function can be approximated by

g(αjk) =2γ1

(
γ6

γ1
− 2− K̃ (kcαjk)− K̃ (kc(π − αjk))

)
. (3.144)

Positive amplitude The first condition is that the amplitude must be positive that is given
by

0 <A2 =

g(0)

2
−
n−1∑
j=0

g

(
πj

n

)−1

'
(
g(0)

2
− 2γ1n

(
γ6

γ1
− 2

))−1

' 1

2γ1n
(

2− γ6

γ1

) . (3.145)

Hence, the first condition for a large number of active modes n is given by

γ6

γ1
< 2. (3.146)
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Intrinsic stability ECPs are intrinsically stable if the eigenspectrum of the circulant matrix
gij is positive definite. The lth eigenvalue of the angle-interaction matrix is given by

λlg =
n−1∑
j=0

cos

(
2πj

n
l

)
g0j

'− g(0)

2
+ 2nγ1

(
γ6

γ1
− 2

)
δ0l − 2γ1

n−1∑
j=0

cos

(
2πj

n
l

)(
K̃

(
kc
πj

n

)
+ K̃

(
kc
π

n
(n− j)

))

'− γ1

(
γ6

γ1
− 3

)
+ 2nγ1

(
γ6

γ1
− 2

)
δ0l − 2γ1

∞∑
j=−∞

cos

(
2πj

n
l

)
K̃

(
kc
πj

n

)
. (3.147)

Thus, the eigenvalues have a maximum for l = n/2 and a minimum for l = 0. The condition for

intrinsic stability is hence given by 0 > λ
n/2
g that is equivalent to

γ6

γ1
> 3− 2

∞∑
j=−∞

(−1)jK̃

(
kc
πj

n

)
' 3− 2

(
1− 2K̃

(
kc
π

n

))
. (3.148)

Extrinsic stability For extrinsic stability the condition for stability can be rewritten as

0 >A−2 +
n−1∑
j=0

g
( π

2n
(1− 2j)

)

=
g(0)

2
−
n−1∑
j=0

(
g

(
πj

n

)
− g

( π
2n

(1− 2j)
))

'γ1

(
γ6

γ1
− 3

)
+ 2γ1

∞∑
j=−∞

(
K̃

(
kc
πj

n

)
− K̃

(
kc
π

n

(
1

2
− j
)))

(3.149)

The final condition for extrinsic stability is hence given by

γ6

γ1
< 3− 2

∞∑
j=−∞

(
K̃

(
kc
πj

n

)
− K̃

(
kc
π

n

(
1

2
− j
)))

' 1 + 2
(

2K̃
(
kc
π

2n

)
− 2K̃

(
kc
π

n

))
.

(3.150)

The asymptotic stability region is shown in Fig. 3.10E.

Linear response of total concentration field

For 0 < r � 1 the dynamics of the orientation field become arbitrary slow with a time constant
of τ = 1/r. Since the damping term of the dynamics is cubic, the field is of order |Ψ| ∼

√
r,

see also weakly nonlinear analysis in section 3.5.2. As the total concentration field is coupled
to a quadratic term in Ψ, a perturbation of Σ is on the order of r. Therefore, the fields will be
expanded around the homogeneous equilibrium point (Ψ,Σ) = (0,Σ0) as

Σ(x, t) ≈ Σ0 + rΣ1(x, t) (3.151)

Ψ(x, t) ≈
√
rΨ(x, t), (3.152)

where the equilibrium point is given by

Σ0 = a1

(
1

b1
+ i

1

b2

)
. (3.153)
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The dynamics of the orientation field is not altered by this transformation due to its indepen-
dence of the total concentration field. The expansion of Σ is given by

τs∂t (Σ0 + rΣ1(x, t)) =r

L̂Σ[Σ1] + 2Q̂Σ
1 [Σ1,Σ0]︸ ︷︷ ︸

L̂Σ0

+ Q̂Σ
2 [Ψ1,Ψ1] + ĈΣ[Ψ̄,Ψ,Σ0]︸ ︷︷ ︸

L̂Σ0,Ψ

+O
(√

r
3
)

(3.154)

For small r, the equation can be solved in Fourier space by the Green function resulting in

Σ1(k, t) =

∫ t

−∞

ds

τs
e
t−s
τs
F{L̂Σ0}(k)F

{
L̂Σ0,Ψ [Ψ]

}
(k, s) (3.155)

with the steady-state solution of

Σ1(x, t) = −(L̂Σ0)−1L̂Σ0,Ψ[Ψ]. (3.156)

The operators are given by

F{L̂Σ0} =α1 + ν1

(
2j−K̃(‖k‖) + 2j−u K̃−(‖k‖) + j+

u K̃+(‖k‖)
)

+ γ1σ
2
Ψ

(
K̃(‖k‖) +

j−u
j−
K̃−(‖k‖)

)
− 2a1 (3.157)

L̂Σ0,Ψ[Ψ] =b1<{Ψ(x, t)}2 + ib2={Ψ(x, t)}2 + γ6Σ0|Ψ(x, t)|2

−
(

2γ1 + 2
j−ν1

σ2
Ψ

)
Σ0K ? |Ψ(x, t)−Ψ(y, t)|2. (3.158)

3.5.4 Slow dynamic connectome

The previously employed separation of time scales of the local regulation (on the order of
τs > 1 h) and axonal rearrangement (on the order of τm < 1 h) is obviously an idealization.
What morphogen dynamics can be expected if we loosen this idealization and slow down the
rearrangement time of the connectome? In order to shed light on the impact of a slow connec-
tome, morphogen dynamics of the symmetry-confined canonical genetic network together with
a variable rearrangement time of the connectome will be analyzed in the following.

The connectome dynamics of the isotropic and morphogen concentration profile specific
synapses are given by

τm∂tw+(x− y, t) =w∞+ (x− y)− w+(x− y, t), (3.159)

τm∂tw−(x,y, t) =w∞− (x,y, t)− w−(x,y, t). (3.160)

If the initial time lies sufficiently far in the past, i.e. t0 → −∞, the isotropic synaptic connections
are already given by their asymptotic time-independent steady-state w∞+ (x − y). Thus, the
analysis reduces to a variable rearrangement time of the morphogen selective connections

τm∂tw−(x,y, t) = w∞− (x,y, t)− w−(x,y, t) (3.161)

with the time-dependent steady-state selective connectome

w∞− (x,y, t) = j−u K−(‖x− y‖) + j−K(‖x− y‖) e
− |Ψ(x,t)−Ψ(y,t)|2

σ2
Ψ . (3.162)

56



3.5. Supplementary material

The dynamics of the selective connectome can be formally solved by its Green function. Thus
the connectome is given by

w−(x,y, t) =

∫ t

−∞

ds

τm
e−

t−s
τm w∞− (x,y, s) = M̂ t

sw
∞
− (x,y, s), (3.163)

where the operator M̂ t
s is a short-hand notation and endows the connectivity with a memory.

The assumption of a weakly anisotropic connectome leads to an approximation of the selective
connectome up to second order in the orientation field

M̂ t
sK(‖x− y‖)e

− |Ψ(x,s)−Ψ(y,s)|2

σ2
Ψ ≈K(|x− y|)

(
1− M̂ t

s

|Ψ(x, s)−Ψ(y, s)|2

σ2
Ψ

)
. (3.164)

This time-dependent connectome is plugged into the field equations of the symmetry-confined
canonical genetic network in Eq. (3.120), which leads to

τs∂tΨ(x, t) =L̂[Ψ] + Ĉslow
1 [Ψ,Ψ, Ψ̄] + Ĉslow

2 [Ψ,Ψ, Ψ̄] (3.165)

with the modified nonlinear operators

Ĉslow
1 [Ψ,Ψ, Ψ̄] =γ1

∫
d2y [Ψ(y, t)−Ψ(x, t)]K(‖x− y‖)M̂ t

s|Ψ(x, s)−Ψ(y, s)|2 (3.166)

Ĉslow
2 [Ψ,Ψ, Ψ̄] =γ6Ψ(x, t)|Ψ(x, t)|2. (3.167)

Amplitude equations

The amplitude equations can be derived by weakly nonlinear analysis as already shown in section
3.5.2. However, in the case considered here, the time dependence of the amplitudes must be
taken into account. The amplitude equations are given by

∂tAj(t) =Aj(t) +

2n−1∑
k=0

g̃1
jk

(
Ak(t)M̂

t
sAj(s)Āk(s) +Aj(t)M̂

t
s|Ak(s)|2

)
+

2n−1∑
k=0

g̃2
jkAk(t)M̂

t
sAk−(s)Āj−(s)

+ 2γ6

2n−1∑
k=0

(1− δjk/2)Aj(t)|Ak(t)|2 + γ6

2n−1∑
k=0

(1− δjk − δjk−)Ak(t)Ak−(t)Āj−(t).

(3.168)

with the angle-interaction matrices

g̃1
jk =

(
1−

δjk
2

)
g̃(αjk), g̃2

jk =
(
1− δjk − δjk−

)
g̃(αjk) (3.169)

and the modified angle-interaction function

g̃(αjk) =
1

2
g(αjk)− γ6

=γ1

(
−2 + 4K̃(kc)− K̃

(
kc

√
2(1 + cosαjk)

)
− K̃

(
kc

√
2(1− cosαjk)

))
. (3.170)
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Stationary orientation field solutions

Transforming to the essentially complex planform representation

Ψ(x, t) =
n−1∑
j=0

A+
j (t)eiljkjx +

n−1∑
j=0

A−j (t)e−iljkjx (3.171)

gives by the use of the π-periodicity of g̃(α)

∂tA
±
j (t) =A±j (t) +

n−1∑
k=0

g̃1
jk

(
A±k (t)M̂ t

sA
±
j (s)Ā±k (s) +A±j (t)M̂ t

s|A±k (s)|2
)

+
n−1∑
k=0

(1 + δjk) g̃
1
jk

(
A∓k (t)M̂ t

sA
±
j (s)Ā∓k (s) +A±j (t)M̂ t

s|A∓k (s)|2
)

+

n−1∑
k=0

g̃2
jk

(
A±k (t)M̂ t

sA
∓
k (s)Ā∓j (s) +A∓k (t)M̂ t

sA
±
k (s)Ā∓j (s)

)
+ 2γ6

n−1∑
k=0

(1− δjk/2)A±j (t)|A±k (t)|2 + 2γ6

n−1∑
k=0

A±j (t)|A∓k (t)|2

+ 2γ6

n−1∑
k=0

(1− δjk)A±k (t)A∓k (t)Ā∓j (t). (3.172)

The absolute values of the amplitudes and phases can be separated by A±j → A
±
j e

iφ±j leading
to the amplitude dynamics

∂tA±j (t) =A±j (t) +

n−1∑
k=0

g̃1
jkA±k (t)M̂ t

sA±j (s)A±k (s) cos(φ±k (t)− φ±k (s) + φ±j (s)− φ±j (t))

+
n−1∑
k=0

g̃1
jkA±j (t)M̂ t

sA±k (s)
2

+
n−1∑
k=0

(1 + δjk) g̃
1
jkA±j (t)M̂ t

sA∓k (s)
2

+

n−1∑
k=0

(1 + δjk) g̃
1
jkA∓k (t)M̂ t

sA±j (s)A∓k (s) cos(φ∓k (t)− φ∓k (s) + φ±j (s)− φ±j (t))

+
n−1∑
k=0

g̃2
jkA±k (t)M̂ t

sA∓k (s)A∓j (s) cos(φ±k (t) + φ∓k (s)− φ∓j (s)− φ±j (t))

+

n−1∑
k=0

g̃2
jkA∓k (t)M̂ t

sA±k (s)A∓j (s) cos(φ∓k (t) + φ±k (s)− φ∓j (s)− φ±j (t))

+ 2γ6

n−1∑
k=0

(1− δjk/2)A±j (t)A±k (t)
2

+ 2γ6

n−1∑
k=0

A±j (t)A∓k (t)
2

+ 2γ6

n−1∑
k=0

(1− δjk)A±k (t)A∓k (t)A∓j (t) cos(φ±k (t) + φ∓k (t)− φ∓j (t)− φ±j (t)) (3.173)
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and the phase dynamics

A±j (t)∂tφ
±
j (t) =

n−1∑
k=0

g̃1
jkA±k (t)M̂ t

sA±j (s)A±k (s) sin(φ±k (t)− φ±k (s) + φ±j (s)− φ±j (t))

+

n−1∑
k=0

(1 + δjk) g̃
1
jkA∓k (t)M̂ t

sA±j (s)A∓k (s) sin(φ∓k (t)− φ∓k (s) + φ±j (s)− φ±j (t))

+

n−1∑
k=0

g̃2
jkA±k (t)M̂ t

sA∓k (s)A∓j (s) sin(φ±k (t) + φ∓k (s)− φ∓j (s)− φ±j (t))

+
n−1∑
k=0

g̃2
jkA∓k (t)M̂ t

sA±k (s)A∓j (s) sin(φ∓k (t) + φ±k (s)− φ∓j (s)− φ±j (t))

+ 2γ6

n−1∑
k=0

(1− δjk)A±k (t)A∓k (t)A∓j (t) sin(φ±k (t) + φ∓k (t)− φ∓j (t)− φ±j (t)).

(3.174)

The ECP solutions A+
j = A, A−j = 0 and φ+

j + φ−j = Φ0 are retained by a slow connectome as

the memory kernel becomes M̂ t
s → 1 for constant arguments. The amplitudes are given by

A2 = −

(
2
n−1∑
k=0

g̃1
jk + 2γ6

n−1∑
k=0

(1− δjk/2)

)−1

= −

(
n−1∑
k=0

g1
jk

)−1

(3.175)

and the phases by

φ+
k + φ−k − (φ+

j + φ−j ) = Zπ. (3.176)

Stability of linear equations with memory kernel

The stability conditions of the ECP solutions are derived from the linearized equations that are
of the type

∂ta(t) = Da(t) +HM̂ t
sa(s) (3.177)

with a ∈ Rd and D,H ∈ Rd×d. The matrices D and H are circulant and have therefore a
common eigenbasis. The transformation onto these eigenbasis leads to a scalar stability problem,
which is in Laplace space (or equivalently for a test mode ‖a‖ ∝ eλt) given by

λlD + λlH
1

1 + λτm
− λ = 0, (3.178)

where λlX denotes the lth eigenvalue of the matrix X. The eigenvalue λ is given by

λl1/2 = −
1
τm
− λlD
2

(
1±

√
1 + 4

λlD + λlH
(λlD −

1
τm

)2

)
. (3.179)

Decomposing the eigenvalue into real and imaginary part λl = αl + iβl and solving for the
critical time τ lc and imaginary amplitude βl for which αl = 0 leads to

τ lc =
1

λlD
, βl = ±

√
−λlD

(
λlD + λlH

)
. (3.180)
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Hence, the system is stable if

τm < minl,τ lc>0

{
τ lc

}
and maxl

{
λlD + λlH

}
< 0. (3.181)

Notice that the latter condition is exactly the same condition as previously derived for rapid
axonal rearrangement (τm = 0), because the eigenvalues of D and H sum up to the eigenvalue
of the angle-interaction matrix g1

ij from Eq. (3.129), i.e. λlD + λlH = λlg.

Stability of stationary orientation field

The linearized equations of a perturbation around the essentially complex planforms of A+
j (t)→

A(t) + a+
j (t) and A−j (t)→ a−j (t) decouple from the phases and are given by

∂ta
±(t) =D±a±(t) +H±M̂ t

sa
±(s) (3.182)

for the amplitudes and

∂tϕ
+(t) =D+

ϕϕ
+(t) +H+

ϕM̂
t
sϕ

+(s) (3.183)

for the phases (ϕ±)j = φ±j . The stability consideration of the phases ϕ− can be neglected due

to the vanishing amplitudes A−j .

Intrinsic stability For intrinsic stability the matrices are given by

(D+)jk =δjk

(
1

2
+A2γ6(n− 2)

)
+A2

(
g1
jk

2
+ 3γ6

)
(3.184)

(H+)jk =− δjk
(

1

2
+A2γ6(n− 2)

)
+ 3A2

(
g1
jk

2
− γ6

)
. (3.185)

Diagonalizing the matrices and considering the lth circulant eigenbasis leads to

λlD =
1

2
+A2γ6(n− 2) +A2

(
λlg
2

+ 3δ0lnγ6

)
, λlD + λlH = 2A2λlg, (3.186)

where λlg denotes the lth eigenvalue of g1
ij . The last stability condition of λlD + λlH < 0 is hence

equal to the case of rapid axonal rearrangement, i.e. τm = 0.

Inactive mode stability For inactive mode stability, the stability matrices are given by

(D−)jk =δjk

(
1

2
+A2γ6(n− 1)

)
+A2

(
g1
jk

2
+ γ6

)
(3.187)

(H−)jk =− δjk
(

1

2
+A2γ6(n− 1)

)
+A2

(
g1
jk

2
− γ6

)
(3.188)

with the lth eigenvalues

λlD =
1

2
+A2γ6(n− 1) +A2

(
λlg
2

+ δ0lnγ6

)
, λlD + λlH = A2λlg. (3.189)

The last stability condition of λlD +λlH < 0 is hence equal to the case of rapid axonal rearrange-
ment.
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Extrinsic stability In the case of an arbitrary plane wave, the stability of the system

Ψ(x, t) =
n∑
j=1

A+
j (t)eiljkjx +B(t)eihx (3.190)

for B = 0, |Aj | = A and h = kc(cosα, sinα)T will be considered. The linearization around the
fixed point is similar as above and given by

∂tb(t) =

(
1 +A2

n−1∑
k=0

(
1

2
g

(
α− πk

n

)
− γ6(1− δjk/2)

)
+ 2γ6A2n

)
b(t)

+A2
n−1∑
k=0

(
1

2
g

(
α− πk

n

)
− γ6(1− δjk/2)

)
M̂ t
sb(s), (3.191)

which leads to the stability scalars

D =1 +
1

2
A2

n−1∑
j=0

g

(
α− πj

n

)
+A2γ6n, H =

1

2
A2

n−1∑
j=0

g

(
α− πj

n

)
−A2γ6n. (3.192)

For α = π/(2n) the scalars assume their maximum and therefore only this scalar has to be
evaluated.

Phase stability In contrast to the case of rapid axonal rearrangement, a slow connectome
requires examination of the phase stability leading to the stability matrices(

D+
ϕ

)
jk

=A2

(
δjk

(γ6

2
− 1
)

+
g1
jk

2
− γ6

)
(3.193)(

H+
ϕ

)
jk

=−
(
D+
ϕ

)
jk
. (3.194)

The eigenvalues of the matrices are given by

λlD = A2

((γ6

2
− 1
)

+
λlg
2
− δ0lγ6n

)
, λlD + λlH = 0. (3.195)

The result of critical delays is depicted in Fig. 3.11A,B,C,F.

Asymptotic stability of essentially complex planforms

The condition for the critical delay of the rearrangement of axonal connections is given by

τc = minl,λlD>0

{
1

λlD

}
, (3.196)

where D is the matrix corresponding to the different stability considerations. In this section a
stability criterion for the limit of large n will be derived. The asymptotic stability region for
rapid axonal rearrangement is retained, that is

λlg < 0, 1 +A2
n−1∑
j=0

g

(
π

2n
− πj

n

)
< 0, (3.197)

with the lth eigenvalue λlg of the angle-interaction matrix g1
jk. The stability region is hence

restricted to 1 < γ6/γ1 < 2. As shown previously in the symmetry-confined genetic network,
λlg has a minimum for l = 0 and a maximum for l = n/2. For l 6= 0, the eigenvalues of D are

proportional to the eigenvalues λlg except for a constant shift. For l = 0, the eigenvalue of D is
additionally shifted. Since extrema are invariant to constant shifts, the maximal eigenvalue of
D is for all stability conditions either given by the l = 0 or l = n/2 eigenvalue.
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Figure 3.11: Stability of essentially complex planforms with slow dynamic connectome A,
B, C Critical rearrangement times of connectome for n = 1, 3, 5 active modes (see text for details)
and their minimal energy region (black lines, see Eq. (3.139) and Fig. 3.9C) for a Gaussian kernel,
respectively. D Asymptotic critical rearrangement times for large n, see Eq. (3.205). E Cross-section
of asymptotic critical rearrangement time (black line, see Eq. (3.205)) for large n together with critical
rearrangement times of n = 4 . . . 20 (dots with colors from yellow over red to black for increasing n). E
Critical rearrangement times of minimal energy ECP solutions.

Intrinsic stability The eigenvalues for intrinsic stability are given by

λ0
D =

1

2
+A2γ6(n− 2) +A2

(
λ0
g

2
+ 3nγ6

)
= A2γ6(4n− 2) '

2γ6

γ1

2− γ6

γ1

, (3.198)

λ
n/2
D =

1

2
+A2γ6(n− 2) +A2λ

n/2
g

2
≤ 1

2
+A2γ6(n− 2) ' 1

2− γ6

γ1

≤ λ0
D, (3.199)

where again the asymptotic amplitude of Eq. (3.145) was used and the fact that λ0
g = −A−2.

Inactive mode stability The eigenvalues for inactive mode stability are given by

λ0
D =

1

2
+A2γ6(n− 1) +A2

(
λ0
g

2
+ nγ6

)
= A2γ6(2n− 2) '

γ6

γ1

2− γ6

γ1

, (3.200)

λ
n/2
D =

1

2
+A2γ6(n− 1) +A2λ

n/2
g

2
≤ 1

2
+A2γ6(n− 1) ' 1

2− γ6

γ1

≤ λ0
D, (3.201)

where the asymptotic amplitude of Eq. (3.145) was used and the fact that λ0
g = −A−2.

Extrinsic stability The eigenvalue for extrinsic stability is given by

D =1 +
1

2
A2

n−1∑
j=0

g

(
π

2n
− πj

n

)
+A2γ6n,≤

1

2
+A2γ6n '

1

2− γ6

γ1

(3.202)
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Phase stability The eigenvalues for phase stability are given by

λlD ≤ A2
((γ6

2
− 1
)
− δ0lγ6n

)
' − δ0l

2− γ6

γ1

(3.203)

Therefore the critical τc is given by the intrinsic instability of the zeroth mode

λ0
D '

2γ6

γ1

2− γ6

γ1

, (3.204)

such that the critical delay is simply given by

τc =
γ1

γ6
− 1

2
. (3.205)

The result and the comparison to the explicitly calculated critical delays is depicted in
Fig. 3.11D,E.

Linear response of total concentration field

The only operator for the total concentration field dynamics that changes in the case of a slow
connectome is the cubic operator

ĈΣ,slow[Ψ, Ψ̄,Σ] =γ6Σ(x, t)|Ψ(x, t)|2−

γ1K ?

((
γ1 + 2

j−ν1

σ2
Ψ

)
Σ(y) + γ1Σ(x)

)
M̂ t
s|Ψ(x, s)−Ψ(y, s)|2. (3.206)

For 0 < r � 1 the dynamics of the Ψ field become arbitrary slow with a time constant of
τ = 1/r. Since the damping term in the Ψ dynamics are cubic, the field is of order |Ψ| ∼

√
r. As

the Σ field is forced by a quadratic factor in Ψ, a perturbation of Σ is of the order r. Therefore
the fields will be expanded around the equilibrium point (Ψ,Σ) = (0,Σ0) as

Σ(x, t) ≈ Σ0 + rΣ1(x, t), Ψ(x, t) ≈
√
rΨ(x, t), (3.207)

where the equilibrium point is given by

Σ0 = a1

(
1

b1
+ i

1

b2

)
. (3.208)

The equation for the Ψ field are not altered by this transformation. The expansion of Σ is given
by

τs∂t (Σ0 + rΣ1(x, t)) =r

L̂Σ[Σ1] + 2Q̂Σ
1 [Σ1,Σ0]︸ ︷︷ ︸

L̂Σ0

+ Q̂Σ
2 [Ψ1,Ψ1] + ĈΣ,slow[Ψ̄,Ψ,Σ0]︸ ︷︷ ︸

L̂Σ0,Ψ

+O
(√

r
3
)

(3.209)

For small r, the equation can be solved in Fourier space by the Green function resulting in

Σ1(k, t) =

∫ t

−∞

ds

τs
e
t−s
τs
F{L̂Σ0}(k)F

{
L̂Σ0,Ψ [Ψ]

}
(k, s) (3.210)

with the steady-state solution of

Σ1(x, t) = −(L̂Σ0)−1L̂Σ0,Ψ[Ψ]. (3.211)
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The operators are given by

F{L̂Σ0} =α1 + ν1

(
2j−K̃(‖k‖) + 2j−u K̃−(‖k‖) + j+

u K̃+(‖k‖)
)

+ γ1σ
2
Ψ

(
K̃(‖k‖) +

j−u
j−
K̃−(‖k‖)

)
− 2a1 (3.212)

L̂Σ0,Ψ[Ψ] =b1<{Ψ(x, t)}2 + ib2={Ψ(x, t)}2 + γ6Σ0|Ψ(x, t)|2

−
(

2γ1 + 2
j−ν1

σ2
Ψ

)
Σ0K ? |Ψ(x, s)−Ψ(y, s)|2. (3.213)

3.5.5 Delayed axonal transport

The neglected delay of axonal transport of about τ = 15 min in comparison to the local reg-
ulation time scale τs > 1 h is rather justified. Nevertheless, it is essential that the genetic
network is robust against small axonal delay times. Therefore the morphogen dynamics with a
delayed axonal transport of the symmetry-confined canonical genetic network is analyzed in the
following.

The connectome is given by short-range isotropic and rather long-range morphogen selective
connections. We assume that the delay over short-range isotropic connections is negligible. A
realistic account for delays in axonal transport of velocity v is given by Eq. (3.5) that gives for
the individual morphogen transport

τs∂tci(x, t) ∝
∫

dy2 ci

(
y, t− ‖x− y‖

v

)
w−

(
x,y, t− ‖x− y‖

v

)
(3.214)

and the thus retarded local protein synthesis

τf∂tgc1(x, t) =

∫
dy2 µ2

1c2

(
y, t− ‖x− y‖

v

)
w−

(
x,y, t− ‖x− y‖

v

)
+ µ1

1c1(x, t)

∫
dy2w− (x,y, t)− gc1(x, t)/τ1. (3.215)

The remaining local protein synthesis terms of Eq. (3.26) are analogously defined. The orien-
tation field with delayed transport and rapid connectome rearrangement has then the altered
third order term

∂tΨ(x, t) ∝−
∫

d2yΨ

(
y, t− ‖x− y‖

v

)
w∞−

(
x,y, t− ‖x− y‖

v

)
+ Ψ(x, t)

∫
d2yw∞− (x,y, t),

(3.216)

where the connectome is given by

w∞− (x,y, t) = j−u K−(‖x− y‖) + j−K(‖x− y‖) exp

(
−|Ψ(x, t)−Ψ(y, t)|2

σ2
Ψ

)
. (3.217)

In the following calculation three assumptions will be made:

1. The delay of the long-range transport K(‖x‖) is approximated by a constant delay
‖x−y‖
v → τ .

2. Only terms up to third order in Ψ will be considered.

3. Range of long-range transport is larger than the typical wavelength exp(−σ2k2
c/2)� 1.
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Introducing the notation s = t− τ ,the first three assumptions yield the equation

∂tΨ(x, t) =ˆ̃L[Ψ] + γ6Ψ (x, t) |Ψ (x, t) |2

− γ1σ
2
Ψ

∫
d2yΨ(y, s)K(‖x− y‖)

(
1− |Ψ(x, s)−Ψ(y, s)|2

σ2
Ψ

)
+ γ1σ

2
ΨΨ(x, t)

∫
d2yK(‖x− y‖)

(
1− |Ψ(x, t)−Ψ(y, t)|2

σ2
Ψ

)
. (3.218)

The linear term in Ψ(y, s) will be neglected due to assumption three. The second linear term

resulting from the long-range transported will be absorbed in the linear operator by ˆ̃L → L̂.
The final equation is given by

∂tΨ(x, t) =L̂[Ψ] + Ĉdelay
1 [Ψ,Ψ, Ψ̄] + Ĉdelay

2 [Ψ,Ψ, Ψ̄]. (3.219)

The cubic operators can be decomposed to

Ĉdelay
1 [Ψ,Ψ, Ψ̄] =γ1

∫
d2yΨ(y, s)K(‖x− y‖)|Ψ(x, s)−Ψ(y, s)|2 (3.220)

Ĉdelay
2 [Ψ,Ψ, Ψ̄] =γ6Ψ (x, t) |Ψ (x, t) |2 − γ1Ψ(x, t)

∫
d2yK(‖x− y‖)|Ψ(x, t)−Ψ(y, t)|2

(3.221)

Amplitude equations

The amplitude equations can be derived analogously to the calculation in section 3.5.2. However,
the time dependence of the amplitudes must be taken into account here. The resulting amplitude
equations are given by

∂tAj(t) =Aj(t) +Aj(t)
2n−1∑
k=0

gtjk|Ak(t)|2 + Āj−(t)
2n−1∑
k=0

f tjkAk(t)Ak−(t)

+Aj(s)
2n−1∑
k=0

gsjk|Ak(s)|2 + Āj−(s)
2n−1∑
k=0

fsjkAk(s)Ak−(s) (3.222)

with the angle-interaction matrices

gtjk =γ1

(
1−

δjk
2

)(
−3 + 2

γ6

γ1
+ 4K̃(kc)− K̃(‖kj − kk‖)

)
(3.223)

f tjk =γ1

(
1− δjk − δjk−

)(
−1 +

γ6

γ1
+ 2K̃(kc)− K̃(‖kj − kk‖)

)
(3.224)

gsjk =γ1

(
1−

δjk
2

)(
−1− K̃(‖kj − kk‖)− 2K̃(‖kj + kk‖) + 4K̃(kc)

)
(3.225)

f sjk =γ1

(
1− δjk − δjk−

) (
−1− K̃(‖kj + kk‖) + 2K̃(kc)

)
. (3.226)

Rescaling the amplitudes by A → A/
√
γ1 cancels the dependence on γ1. The quotient γ6/γ1

remains for pattern selection.

Stationary orientation field solutions

The amplitude equations are transformed to the representation

Ψ(x, t) =
n−1∑
j=0

A+
j (t)eiljkjx +

n−1∑
j=0

A−j (t)e−iljkjx (3.227)
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with lj ∈ {−1, 1} and kj = kc(cos(πj/n), sin(πj/n))T . The amplitude equations for this repre-
sentation are given by

∂tA
±
j (t) =A±j (t) +A±j (t)

(
n−1∑
k=0

gt±mj ,±mk |A
±
k (t)|2 +

n−1∑
k=0

gt±mj ,∓mk |A
∓
k (t)|2

)

+ Ā∓j (t)

n−1∑
k=0

(
f t±mj ,mk + f t±mj ,−mk

)
A+
k (t)A−k (t)

+A±j (s)

(
n−1∑
k=0

gs±mj ,±mk |A
±
k (s)|2 +

n−1∑
k=0

gs±mj ,∓mk |A
∓
k (s)|2

)

+ Ā∓j (s)

n−1∑
k=0

(
f s±mj ,mk + f s±mj ,−mk

)
A+
k (s)A−k (s), (3.228)

where the short-hand notation of ±mj = j±lj was used. Separating the amplitudes and phases

by A±j → A
±
j e

iφ±j leads to the dynamics of the amplitudes

∂tA±j (t) =A±j (t) +A±j (t)

(
n−1∑
k=0

gt±mj ,±mkA
±
k (t)2 +

n−1∑
k=0

gt±mj ,∓mkA
∓
k (t)2

)

+A∓j (t)
n−1∑
k=0

(
f t±mj ,mk + f t±mj ,−mk

)
A+
k (t)A−k (t) cos

(
Ω±kj(t, t) + Ω∓kj(t, t)

)
+A±j (s)

(
n−1∑
k=0

gs±mj ,±mkA
±
k (s)2 +

n−1∑
k=0

gs±mj ,∓mkA
∓
k (s)2

)
cos
(

Ω±jj(s, t)
)

+A∓j (s)
n−1∑
k=0

(
fs±mj ,mk + fs±mj ,−mk

)
A+
k (s)A−k (s) cos

(
Ω±kj(s, s) + Ω∓kj(s, t)

)
(3.229)

and the dynamics of phases

A±j (t)∂tφ
±
j (t) =A∓j (t)

n−1∑
k=0

(
f t±mj ,mk + f t±mj ,−mk

)
A+
k (t)A−k (t) sin

(
Ω±kj(t, t) + Ω∓kj(t, t)

)
+A±j (s)

(
n−1∑
k=0

gs±mj ,±mkA
±
k (s)2 +

n−1∑
k=0

gs±mj ,∓mkA
∓
k (s)2

)
sin
(

Ω±jj(s, t)
)

+A∓j (s)

n−1∑
k=0

(
f s±mj ,mk + f s±mj ,−mk

)
A+
k (s)A−k (s) sin

(
Ω±kj(s, s) + Ω∓kj(s, t)

)
,

(3.230)

with the abbreviation Ω±jk(s, t) = φ±j (s) − φ∓k (t). The fixed point of A+
j = A and A−j = 0 is

given by

A2 = −

(
n−1∑
k=0

gtmj ,mk + gsmj ,mk

)−1

= −

(
n−1∑
k=0

g1
0k

)−1

(3.231)

and the phases are

φ+
k + φ−k − (φ+

j + φ−j ) = Zπ. (3.232)

Note that the function gjk = gtmj ,mk + gsmj ,mk is π-periodic and hence the fixed points are
independent of the choice of lj .
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Stability of linear delayed differential equations

The general type of linear equation that have to be analyzed is

∂ta(t) = Da(t) +Ha(s). (3.233)

Plugging in the ansatz a(t) = veλt or equivalently applying a Laplace transform to the equation
leads to

0 =
(
−λ1 +D +He−λτ

)
v. (3.234)

The stability criterion of the equation is given by det
(
−λ1 +D +He−λτ

)
= 0 only for λ with

negative real part, that is <{λ} < 0. The equation has typically infinitely many solutions for λ
and therefore the simplified case of a scalar equation will be considered.

0 = −λ+D +He−λτ . (3.235)

Decomposing this equation into real and imaginary part, where λ = α+ iβ and solving for the
delay time for which α = 0 leads to the critical delay time of

τc = −
cos−1

(
−D
H

)
+ 2Zπ

H

√
1−

(
D
H

)2 . (3.236)

In general, the transformation of D and H to a common eigenbasis is not possible for delayed
transport. In contrast to the previously discussed cases, D and H are not circulant matrices,
because the angle-interaction function is not π-periodic. However, the special case of isotropic
ECP solutions with lj = (−1)j and n = 2Z + 1 transforms the matrices D and H of the
intrinsic and inactive mode suppression discussion to circulant matrices. For circulant matrices
the eigenvectors of D and H are identical and the stability consideration can be transformed
onto them reducing the equations to n independent scalar equations. These equations can then
be treated by the equation above.

Stability of stationary orientation field

The linearized equations around the ECP solution with a perturbation of A+
j (t)→ A(t) +a+

j (t)

and A−j (t)→ a−j (t) decouple from the phases and are given by

∂ta
±(t) =D±a±(t) +H±a±(s) (3.237)

for the amplitudes and

∂tϕ
+(t) =D+

ϕϕ
+(t) +H+

ϕϕ
+(s) (3.238)

for the phases. The phases ϕ− can be neglected due to the vanishing amplitudes A−j .

Intrinsic stability The stability matrices for intrinsic stability are given by

(D+)jk =δjk

1 +A2
n−1∑
f=0

gtmj ,mf

+ 2A2gtmj ,mk (3.239)

(H+)jk =δjk

A2
n−1∑
f=0

gsmj ,mf

+ 2A2gsmj ,mk (3.240)
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Figure 3.12: Stability of essentially complex planforms with delayed axonal transport A, B
Critical transport delays of n = 3, 5 active modes (see text for details) and their minimal energy region
(black lines, see Eq. (3.139) and Fig. 3.9C) for a Gaussian kernel, respectively. C Critical transport
delays of minimal energy ECP solutions. Notice that the transport delay of the minimal energy regions
for an even number of active modes (gray regions) eluded a calculation, but are numerically found to be
similar to their surrounding critical delay times from uneven number active mode solutions.

Inactive mode suppression The stability matrices for inactive mode stability are given by

(D−)jk =δjk

1 +A2
n−1∑
f=0

gt−mj ,mf

+A2
(
f t−mj ,mk + f t−mj ,−mk

)
(3.241)

(H−)jk =δjk

A2
n−1∑
f=0

gs−mj ,mf

+A2
(
fs−mj ,mk + fs−mj ,−mk

)
(3.242)

Extrinsic stability The linearized equations for extrinsic stability are given by

∂tb(t) = Db(t) +Hb(s) (3.243)

with the scalars

D =1 +A2
n−1∑
f=0

g̃tx,mf , H =A2
n−1∑
f=0

g̃sx,mf . (3.244)

Here x denotes the direction of the test mode, which can point in an arbitrary direction. The
most unstable direction has to be determined numerically.

Phase stability The stability matrices of the phases are given by

(D+
ϕ )jk =− δjkA2

n−1∑
k=0

gs±mj ,±mk , (H+
ϕ )jk =− (D+

ϕ )jk. (3.245)

Notice that for the phase stability no critical delay time exists. The result of critical delays is
depicted in Fig. 3.12.

Linear response of total concentration field

The only operator of the total concentration field that changes in the case of delayed transport
is the cubic operator

ĈΣ,delay[Ψ, Ψ̄,Σ] =γ6Σ(x, t)|Ψ(x, t)|2 −K ?

((
γ1 + 2

j−ν1

σ2
Ψ

)
Σ(y, s)|Ψ(x, s)−Ψ(y, s)|2

+ γ1Σ(x, t)|Ψ(x, t)−Ψ(y, t)|2
)
. (3.246)
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For 0 < r � 1 the dynamics of the orientation field become arbitrary slow with a time constant
of τ = 1/r. Since the damping term in the orientation field dynamics is cubic, the field is of order
Ψ ∼

√
r. As the total concentration field is coupled to a quadratic factor in Ψ, a perturbation

of Σ is of the order r. Therefore, the fields will be expanded around the equilibrium point
(Ψ,Σ) = (0,Σ0) as

Σ(x, t) ≈ Σ0 + rΣ1(x, t), Ψ(x, t) ≈
√
rΨ(x, t), (3.247)

where the equilibrium point is given by

Σ0 = a1

(
1

b1
+ i

1

b2

)
. (3.248)

The dynamics of the Ψ field are not altered by this transformation. The expansion of Σ is given
by

τs∂t (Σ0 + rΣ1(x, t)) =r

L̂Σ[Σ1] + 2Q̂Σ
1 [Σ1,Σ0]︸ ︷︷ ︸

L̂Σ0

+ Q̂Σ
2 [Ψ1,Ψ1] + ĈΣ,delay[Ψ̄,Ψ,Σ0]︸ ︷︷ ︸

L̂Σ0,Ψ


+O

(√
r

3
)

(3.249)

For small r, the equation can be solved in Fourier space by the Green function resulting in

Σ1(k, t) =

∫ t

−∞

ds

τs
e
t−s
τs
F{L̂Σ0}(k)F

{
L̂Σ0,Ψ [Ψ]

}
(k, s) (3.250)

with the steady-state solution of

Σ1(x, t) = −(L̂Σ0)−1L̂Σ0,Ψ[Ψ]. (3.251)

The operators are given by

F{L̂Σ0} =α1 + ν1

(
2j−K̃(‖k‖) + 2j−u K̃−(‖k‖) + j+

u K̃+(‖k‖)
)

+

γ1σ
2
Ψ

(
K̃(‖k‖) +

j−u
j−
K̃−(‖k‖)

)
− 2a1 (3.252)

L̂Σ0,Ψ[Ψ] =b1<{Ψ(x, t)}2 + ib2={Ψ(x, t)}2 + γ6Σ0|Ψ(x, t)|2−(
γ1 + 2

j−ν1

σ2
Ψ

)
Σ0K ? |Ψ(x, s)−Ψ(y, s)|2 − γ1Σ0K ? |Ψ(x, t)−Ψ(y, t)|2. (3.253)

3.5.6 Extended solution set of canonical genetic network

In order to appreciate the potential of the canonical genetic network model for visual cortical ar-
chitecture specification, the full amplitude equations, Eq. (3.99), for orientation field emergence
needs to be considered. Here, the linear perturbation of the orientation field

∂tAj = Aj + α2Āj− +Aj

2n−1∑
k=0

g1
jk|Ak|2 + Āj−

2n−1∑
k=0

g2
jkAkAk− (3.254)

by its complex conjugate is analyzed analytically, see [139] for a similar calculation. The time
dependence is and will be omitted in the following for the sake of clarity.
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Stationary orientation field solutions

In order to diagonalize the linear part of the amplitude equations the transformed amplitudes
of ECPs from Eq. (3.134)

B±j =
1

2

(
A+
j e
−iφ ± Ā−j e

iφ
)

(3.255)

are introduced with the phase of the perturbation α2 = ae2iφ and a > 0. The amplitude
equations are then given by

∂tB
±
j =(1± a)B+

j +B±j

n−1∑
k=0

g1
jk(2 + δjk)

(
|B+

k |
2 + |B−k |

2
)
− g1

00B
∓
j (B+

j B̄
−
j + B̄+

j B
−
j )

± 2B±j

n−1∑
k=0

g2
jk

(
|B+

k |
2 − |B−k |

2
)
∓ 2B∓j

n−1∑
k=0

g2
jk

(
|B+

k |
2 − |B−k |

2
)
. (3.256)

Separating the amplitudes and the phases of a single mode B±j = B±j e
iφ±j and introducing the

phase difference variable Ωj = φ+
j − φ

−
j leads to an equation of motion for the amplitudes and

the phases

∂tB±j =(1± a)B±j + B±j
n−1∑
k=0

g1
jk(2 + δjk)

(
B+
k

2
+ B−k

2
)
− g1

00B±j B
∓
j

2
(1 + cos 2Ωj)

± 2B±j
n−1∑
k=0

g2
jk

(
B+
k

2 − B−k
2
)

+ 4B∓j sin Ωj

n−1∑
k=0

g2
jkB+

k B
−
k sin Ωk (3.257)

∂tΩj =g1
00

(
B+
j

2
+ B−j

2
)

sin 2Ωj + 4
(
B−j B

+
j
−1

+ B+
j B
−
j
−1
)

cos Ωj

n−1∑
k=0

g2
jkB+

k B
−
k sin Ωk. (3.258)

Stationary solutions of the transformed amplitude equations can be easily found by assuming
B±j = B±. The condition on the phases is then given by

∂tΩj = 0 =
(
B+2

+ B−2
)(

g1
00 sin 2Ωj + 4 cos Ωj

n−1∑
k=0

g2
jk sin Ωk

)
, (3.259)

which can be solved by Ωj = Zπ. This results in the fixed point equations for the amplitudes

∂tB±j = 0 =(1± a)B± + B±
(
B+2

+ B−2
) n−1∑
k=0

g1
0k(2 + δjk)− 2g1

00B±B∓
2

± 2B±
(
B+2 − B−2

) n−1∑
k=0

g2
0k (3.260)

leading with the stationary amplitude of an ECP denoted by A (see Eq. (3.138)) to three distinct
solutions

B+ = A ·


√

(1 + 2a)/4 , a ∈ [0, 1/2]√
(1 + a)/3 , a ∈ [0,∞)

0 , a ∈ [0, 1]

, B− = A ·


√

(1− 2a)/4 , a ∈ [0, 1/2]
0 , a ∈ [0,∞)√

(1− a)/3 , a ∈ [0, 1]

.

(3.261)
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The validity range of the solutions result from the fact that the amplitudes must be real numbers
and a ≥ 0. From these solutions the amplitudes of the orientation field can be obtained by noting

|A±j |
2 =

∣∣∣B+
j ±B

−
j

∣∣∣2 =
(
B+
j

)2
+
(
B−j
)2
± 2B+

j B
−
j cos Ωj , (3.262)

which gives for the non-trivial first case

|A±j |
2 =
A2

2

(
1± cos Ωj

√
1− (2a)2

)
. (3.263)

We require that for a→ 0 only the active mode A+ remains that results in the phase condition
Ωj = 2Zπ. In order to obtain the phases of the amplitudes corresponding to the orientation
field for the non-trivial case the pair-wise correlation is considered

A+
j A
−
j = |A+

j |e
iψ+
j |A−j |e

iψ−j =e4iφ
(
B+
j

2 − B−j
2
)

= e4iφaA2. (3.264)

This leads to the phase condition of ψ+
j + ψ−j = 4φ. To sum up, the closed-form solution of the

orientation field is given by

A±j = Ae2i(φ±ψj) ·


√(

1±
√

1− (2a)2

)
/2 , a ∈ [0, 1/2]√

(1 + a)/3 , a ∈ [0,∞)

i
√

(1− a)/3 , a ∈ [0, 1]

(3.265)

with ψj = (ψ+
j − ψ

−
j )/2. An explicit solution of the orientation field, Fig. 3.13A, is given by

Ψ(x) =2e2iφA
n−1∑
j=0

(ξ cos(ljkjx+ 2ψj) + iη sin(ljkjx+ 2ψj)) (3.266)

with

ξ =


(γ+ + γ−)/

√
2 , a ∈ [0, 1/2]√

(1 + a)/3 , a ∈ [0,∞)

i
√

(1− a)/3 , a ∈ [0, 1]

, η =


(γ+ − γ−)/

√
2 , a ∈ [0, 1/2]

0 , a ∈ [0,∞)
0 , a ∈ [0, 1]

(3.267)

and

γ± =

√
1±

√
1− (2a)2. (3.268)

Stability of stationary orientation field

The stability of the stationary solutions can be decomposed into an intrinsic and extrinsic
stability. For intrinsic stability consider the perturbation around the stationary state

B±j → B
± + b±j and Ωj → 2Zπ + ωj . (3.269)

Linearizing the amplitude Eq. (3.257) and the phase Eq. (3.258) around the closed-form solution
leads to a decoupling of the linearized amplitude equations from the phase equations

∂tb
±
j =

(
1± a− (3B±2

+ B∓2
)A−2

)
b±j + 6B±2

n−1∑
k=0

g1
jkb
±
k + 2B±B∓

n−1∑
k=0

g1
jkb
∓
k (3.270)

∂tωj =2(B+2
+ B−2

)
n−1∑
k=0

g1
jkωk. (3.271)

71



3. Genetic assimilation of visual cortical architecture

The system is intrinsically stable if all eigenvalues of the system are negative. Transforming the
phase equation in the circulant eigenbasis of g1

jk and denoting its lth eigenvalue by λlg leads to

the phase stability condition of λlg < 0. The amplitude equations can be written as

∂t

(
b+

b−

)
=

(
M1 M2

M2 M3

)(
b+

b−

)
= M

(
b+

b−

)
(3.272)

with the vectors b± = (b±1 , b
±
2 , . . . , b

±
n )T and the matrices

(M1)jk =6B+2
g1
jk + δjkλ

+ (3.273)

(M2)jk =2B+B−g1
jk (3.274)

(M3)jk =6B−2
g1
jk + δjkλ

− (3.275)

λ± =1± a− (3B±2
+ B∓2

)A−2. (3.276)

Since the matrix M is symmetric, there exists an orthogonal transformation matrix, which
diagonalizes the matrix such that on the diagonal there are formally the two eigenmatrices

λ±M =
1

2

(
M1 + M3 ±

√
(M1 −M3)2 + 4M2

2

)
. (3.277)

This formal solving onto eigenmatrices is justified, because g1
jk is a circulant matrix and hence

the matrices Mi for i = 1, 2, 3 have all the same eigenbasis. Denoting the lth eigenvalue of Mi

as λli the eigenvalues of the matrix M finally become

λ±M
l

=
1

2

(
λl1 + λl3 ±

√
(λl1 − λl3)2 + 4λl2

2
)
. (3.278)

The stability condition for the amplitudes is given by

λl1 + λl3 ≤ 0, λl1λ
l
3 − λl2

2 ≥ 0. (3.279)

or equivalently expressed by the eigenvalues of g1
jk by

32λlg
2B+2B−2

+ 6λlg

(
B+2

λ− + B−λ+2
)

+ λ+λ− > 0, 6λlg

(
B+2

+ B−2
)

+ λ+ + λ− < 0.

(3.280)

The coefficient λ± of the three solutions is given by

λ+ =


0 , a ∈ [0, 1/2]
0 , a ∈ [0,∞)
2(1 + 2a)/3 , a ∈ [0, 1]

, λ− =


0 , a ∈ [0, 1/2]
2(1− 2a)/3 , a ∈ [0,∞)
0 , a ∈ [0, 1]

(3.281)

The first stability condition gives a < 1/2, a > 1/2 and a > 1 for the three closed-form solutions,
respectively. The second stability condition on the amplitudes of the three closed-form solutions
is

λlg < 0, λlg <
2a− 1

3A2(a+ 1)
λlg <

2a+ 1

3A2(a− 1)
. (3.282)

that is always fulfilled by plugging in the first stability condition and the phase stability condi-
tion.

72



3.5. Supplementary material

For extrinsic stability it suffices to consider an additional mode at the angle π/(2n) to an
active mode. The linearized equation for such a mode b± is given by

∂tb
± =

(
1± a+

(
(2± 1)B+2

+ (2∓ 1)B−2
) n−1∑
k=0

ḡ0k

)
b± = λ±b± (3.283)

with the angle-interaction function

ḡ0k = g

(
π

2n
− πk

n

)
. (3.284)

The stability condition is hence

λ+ = (1 + a)

(
1 +A2

n−1∑
k=0

ḡ0k

)
< 0 and λ− = (1− a)

(
1 +A2

n−1∑
k=0

ḡ0k

)
< 0 (3.285)

for the first solution,

λ+ = (1 + a)

(
1 +A2

n−1∑
k=0

ḡ0k

)
< 0 and λ− = (1− a) + (1 + a)

A2

3

n−1∑
k=0

ḡ0k < 0 (3.286)

for the second solution and

λ+ = (1 + a) + (1− a)
A2

3

n−1∑
k=0

ḡ0k and λ− = (1− a)

(
1 +A2

n−1∑
k=0

ḡ0k

)
< 0 (3.287)

for the third solution. If extrinsic stability of ECPs is assumed, see Eq. (3.143), the resulting
conditions on a are given by a < 1, a > 1/2 and a < −1/2 for the three solutions, respectively.
To conclude, the first solution is stable for a < 1/2, the second for a > 1/2 and the third is
always unstable since a ≥ 0, see Fig. 3.13B.

Pinwheel stability in stationary orientation field

Notice that the pinwheel configuration is stable over the range of the parameter a ∈ [0, 1/2).
This stems from the fact that the real and imaginary part at pinwheels vanish, which is for the
explicit stable solution given by the condition

n−1∑
j=0

cos(ljkjx+ 2ψj) = 0 and

n−1∑
j=0

sin(ljkjx+ 2ψj) = 0. (3.288)

However, for a ∈ [1/2,∞) the orientation field generated visual scotoma without any pinwheels.

Orientation preference bias distribution

The orientation field solutions exhibit a progressively increasing orientation bias for increasing
linear shift-symmetry breaking perturbations that eventually leads to visual scotoma with only
two preferred orientations, Fig. 3.13A. How strong is the orientation bias with respect to the
linear perturbation?

The stable orientation field with no visual scotoma is given by

Ψ(x) =
√

2Aei2φ
n−1∑
j=0

((γ+ + γ−) cos(ljkjx+ 2ψj) + i(γ+ − γ−) sin(ljkjx+ 2ψj)) . (3.289)
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Figure 3.13: Linear perturbation in symmetry-confined canonical genetic network. A Solu-
tions of amplitude Eq. (3.254) that originate from ECP solutions (a = 0) with different numbers of active
modes n = 1, 3, 15 to an orientation field solution with only two preferred orientations, see Eq. (3.266).
Varying the phase of the linear perturbation leads to an orientation bias towards this phase. B Ampli-
tude solutions from Eq. (3.265) of diametrically placed amplitudes on the critical circle. Stable amplitude
solutions are indicated by solid lines and unstable amplitude solutions by a dotted line. C Orientation
preference distribution (Eq. (3.292)) for varying linear perturbation amplitudes a and fixed phases (Dia-
monds: measurement of synthesized orientation fields with n = 8 active modes, 17Λ× 17Λ and 256× 256
pixels, solid lines: Gaussian random field approximation).

For a large number of active modes n, the field can be approximated by a Gaussian random
field, since the phases ψj ∈ [0, π) are randomly selected by the dynamics. Decomposing the real
and imaginary part of the orientation field Ψ(x) = R(x) + iI(x), the moments are calculated
for the special case φ = 0. Other cases can be obtained by a global phase-shift of the orientation
field Ψ → Ψe2iφ. The average over the random phases ψj leads to vanishing first moments
〈R(x)〉 = 〈I(x)〉 = 0, vanishing cross-correlations 〈R(x)I(x)〉 = 0 and constant second moments

σ2
R = 〈R(x)2〉 = 4πnA2(γ+ + γ−)2, σ2

I = 〈I(x)2〉 = 4πnA2(γ+ − γ−)2. (3.290)

The diagonal covariance matrix defines the probability distribution of the orientation field

p(Ψ) =
1

2πσRσI
e
− R2

2σ2
R

− I2

2σ2
I . (3.291)

The distribution of orientation preference representation is given by a wrapped Cauchy distri-
bution

P (θ) =

〈
δ

(
1

2
arctan

(
R

I

)
− θ
)〉

=
1

2πσRσI

∫
dR

∫
dI exp

(
− R2

2σ2
R

− I2

2σ2
I

)
δ

(
1

2
arctan

(
R

I

)
− θ
)

=
1

2π

∫
dφδ

(
1

2
arctan

(
σR
σI

tanφ

)
− θ
)

=
1

π

1
σR
σI

cos2 2θ + σI
σR

sin2 2θ
. (3.292)

The orientation preference distribution for arbitrary φ is obtained by the transformation P (θ−φ).
The ratio of the real and imaginary standard deviation can be simplified to

σR
σI

=

√
1 + 2a

1− 2a
. (3.293)

The comparison between the numerical and the random field approximation is depicted in
Fig. 3.13C for n = 8 active modes.

74



3.5. Supplementary material

A

Ferret+1/2 -1/2

d++

d+-

B

P
in

w
he

el
 d

en
si

ty

2

3

4

P
in

w
he

el
 S

D

0.1
1

1

10 10.50
0

2

4

Fr
eq

ue
nc

y 
(n

or
m

al
iz

ed
) d

10.50

d++

d+-

C D E

Nearest neighbor dist. Nearest neighbor dist.Area

Pinwheel density
in subregions

Distance 
distributions

Figure 3.14: Common design of pinwheel configuration. A Orientation field is reduced to pin-
wheels of two different topological charges (green and red dots). The number of pinwheel per typical
scale area gives the pinwheel density in B. The standard deviation of pinwheel densities in subregions
has a power law scaling that can be summarized by the fitting parameter c and γ. The nearest neighbor
distances between pinwheels, pinwheels of opposite topological charge and between pinwheels with equal
topological charge (inset) are summarized by their distribution in D and E. Data of ferrets (green lines)
and fits (dotted and dashed lines) from [24].

3.5.7 Benchmarking orientation fields of canonical genetic network

Pinwheel configurations of orientation fields from the symmetry-confined canonical genetic net-
work were shown to be compatible to experimentally observed pinwheel configurations of the
common design [22]. In contrast, many other models converge to pinwheel crystals that are
incompatible to the experimentally observed pinwheel configurations [27, 126, 129–131, 263–
266]. This raises the questions whether the parameters of the symmetry-confined model are
fine-tuned. Hence, we will explore the possible pinwheel configurations in the full parameter
space and benchmark the orientation layouts.

In order to benchmark orientation fields, the layout of orientation preference is reduced to
their pinwheel configuration. Pinwheels are points in orientation fields which are surrounded
by all orientation preferences and come in two different topological charges depending on the
surrounding of the pinwheel, Fig. 3.14A. The number of pinwheels per typical scale area is called
the pinwheel density, Fig. 3.14B. The standard deviation scaling of the pinwheel density with
typical scale area is called pinwheel density SD, Fig. 3.14C. The nearest neighbor distribution
between pinwheels can be decomposed by consideration of the topological charge. It can be
decomposed into nearest neighbor distributions between pinwheels independent of topological
charge, with equal topological charge and with opposite topological charge, Fig. 3.14D,E.

Distance measure for common design

The common design is summarized by bootstrapping the pinwheel density, pinwheel density
standard deviation scaling and the first four cumulants of the nearest neighbor distribution,
Fig. 3.15A-O. This results in distributions of 15 parameters χ ∈ R15 for the description of the
common design. Notice that not all species possess a unimodal probability distribution due to
the limit amount of orientation layouts. Therefore, we use the smooth distribution of ferrets,
Fig. 3.16A-O, as a representative distribution for the common design. The distribution of the
parameters χ is approximated by the maximum entropy model with fixed mean µ = 〈χ〉 and
covariance Σ = 〈χχT 〉 that is equal to the multivariate Gaussian distribution

P (χ) =
1√

(2π)15 det Σ
e−

1
2

(χ−µ)TΣ−1(χ−µ). (3.294)

In order to measure the compatibility of model orientation fields with the common design,
the distribution was rotated onto the principal vectors such that the inverse of the covariance
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becomes diagonal Λ = UTΣ−1U with Λ = diag(λ1, λ2, . . . , λ15). The multivariate Gaussian
distribution is hence in every principal direction χ̃ = UTχ reduced to an independent univariate
Gaussian distribution. The two-tailed p-value in the ith principal direction of a point χ with
the distance vector to the mean ν = UT (χ− µ) is given by

pi = 1−
∫ |νi|
−|νi|

dχ̃i

√
λi
2π
e−

1
2
χ̃iλiχ̃i = erfc

(√
λi
2
|νi|

)
. (3.295)

The compatibility of model orientation layouts was assessed by the average log p-value along
the principal directions

p = − 1

15

15∑
i=1

log pi. (3.296)

This measure weights pinwheel configurations according to the common design and is indepen-
dent on the number of dimensions. In fact, pinwheel configurations drawn from the distribution
P (χ) generate an average log p-value of p = log 2. Departure from the mean leads to higher
values of the log p-value.

The pinwheel configuration statistics of closed-form ECP solutions are depicted in Fig. 3.17.

Distance measure for orientation bias

The orientation bias, which is is not captured by the pinwheel configuration, is measured by the
Kullback-Leibler (KL) divergence

D(P (θ)||π−1) =

∫ π

0
dθP (θ) log πP (θ). (3.297)

In the case of the extended closed-form solutions with an orientation bias, see Eq. (3.292), the
divergence is given by

D(P (θ)||π−1) = log
(

1− e−2arcsec(2a)
)
. (3.298)

Thus for a = 0, this measure is 0 and diverges for the visual scotoma solutions at a = 1/2.

Probing the canonical genetic network

In order to benchmark the canonical genetic network model, we scan the free parameters and
quantify the quality of their solutions by the afore-mentioned distance measures.

Notice that in the canonical genetic network model of Eq. (3.48) and Eq. (3.60) there are
25 free parameters. Two parameters are required for a wavelength instability on the critical
circle at a specific spatial frequency. As this condition for the wavelength stability can not be
solved analytically, we assume that σu and ρu suffice for that task. The 25 free parameters are
then: (i) 16 orientation encoding parameters: α1, α2, β1, β2, ζ1, ζ2, η1, η2, γ1, γ2, γ3, γ4, γ5,
γ6, γ7, σ and (ii) 9 orientation encoding independent parameters: a1, b1, b2, ν1, j−, j−u , j+

u ,
σ2

Ψ, τs. Alternatively, the number of free parameters can be calculated by starting with the 90
free parameters of the full model and subtract the fixed parameters resulting from the reduction
to the canonical genetic network: (i) separation of timescales 2, (ii) weak anisotropy 0, (iii)
decoupling orientation encoding from total concentration 42, (iv) symmetry breaking 2 and (v)
pattern onset 1.

The parameter α1 only rescales the amplitude dynamics and hence leaves the encoded ori-
entation domains invariant. For non-permutation symmetric cases γ1 6= γ2, orientation domains
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Figure 3.15: Distribution of common design cumulants from five species. Distribution of
10 000 bootstrapped common design cumulants of five species from [24], see text for details. Dotted lines:
Gaussian distribution corresponding to the experimentally observed cumulants. A Pinwheel density, see
Fig. 3.14A, B-M the first four cumulants of pinwheel nearest neighbor distributions, see Fig. 3.14D-E.
N, O Parameters that summarize the pinwheel density standard deviation scaling with cortical area, see
Fig. 3.14C. Data from [24].
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Figure 3.16: Distribution of common design cumulants from ferrets. Distribution of 10 000
bootstrapped common design cumulants of ferrets from [24]. Dotted lines: Gaussian distribution cor-
responding to the experimentally observed cumulants. A Pinwheel density, see Fig. 3.14A, B-M the
first four cumulants of pinwheel nearest neighbor distributions, see Fig. 3.14D-E. N, O Parameters
that summarize the pinwheel density standard deviation scaling with cortical area, see Fig. 3.14C. Data
from [24].
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Figure 3.17: Pinwheel configuration statistics of ECPs. Pinwheel configuration statistics of
ECP solutions with random anisotropies lj . Dark lines indicate mean and standard deviation of 100
synthesized samples on a grid of 2048 × 2048 pixels with 22 × 22 typical scales. Green area indicates
95% confidence interval from ferrets pinwheel distributions. A Pinwheel density, see Fig. 3.14A, B-M
the first four cumulants of pinwheel nearest neighbor distributions, see Fig. 3.14D-E. N, O Parameters
that summarize the pinwheel density standard deviation scaling with cortical area, see Fig. 3.14C.

develop visual scotoma, i.e. only two orientation preferences, that we exclude from our analysis
[137]. Varying the parameter from the amplitude dynamics of the canonical genetic network
around the point γ1 = γ2 = 1 and γ6/γ1 ≈ 1 and σ = 1.7Λ with a Gaussian selective transport
kernel leads to 11 free parameters for pattern selection. The results are shown in Fig. 3.18. We
group these parameters into orientation encoding: (i) sensitive: β1, β2, η1, η2, γ3, γ4, γ5, ζ1, ζ2,
σ, γ2, (ii) neutral α1, α2, η1, γ1, γ6, γ7 and the remaining (iii) 9 insensitive parameters.
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Figure 3.18: Orientation layout sensitivity on kinetic parameters. Varying the parameter from
the amplitude dynamics of the canonical genetic network around the point γ1 = γ2 = 1, γ6/γ1 ≈ 1 and
σ = 1.7Λ with a Gaussian selective transport kernel leads to 11 free parameters for pattern selection,
see text for details. The distance to the common design of ferrets (mean and 95% confidence interval of
1000 bootstrapped pinwheel configurations from 30 initial conditions) and KL divergence to an equally
distributed orientation preference is shown in A-K for the 11 different free parameters. Simulation time
was T = 105τ .

3.5.8 Numerical methods

The simulation of the coupled field dynamics followed the scheme developed for uncoupled
fields in [267]. The orientation field equations are stiff partial differential equations of Swift-
Hohenberg type that we simulate by a fully implicit integration scheme to avoid impractically
small integration time steps that arise in explicit schemes [268]. The field dynamics

∂tΨ(x, t) =L̂Ψ[Ψ] +NΨ[Ψ] (3.299)

∂tΣ(x, t) =L̂Σ[Σ] +NΣ[Σ] (3.300)

with their linear L̂ and non-linear operators N̂ are discretized in time ∆t and space ∆x such
that time and space is given by an integer t and i, respectively. The discretized field dynamics
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are given in the Crank-Nicolson integration scheme as

Ψi
t+1 −Ψi

t

∆t
=

1

2

(
L̂iΨ[Ψt+1] + N̂ i

Ψ[Ψt+1] + L̂iΨ[Ψt] + N̂ i
Ψ[Ψt]

)
(3.301)

Σi
t+1 − Σi

t

∆t
=

1

2

(
L̂iΣ[Σt+1] + N̂ i

Σ[Σt+1] + L̂iΣ[Σt] + N̂ i
Σ[Σt]

)
, (3.302)

where the operators are discretized as well. The operators are evaluated in Fourier space and
real space depending on their computational efficiency. The Crank-Nicolson scheme is iteratively
solved by finding the root of the function G(t+ 1) = (GΨ[Ψt+1],GΣ[Σt+1])T , where

GiΨ[Ψt+1] =L̂iΨ[Ψt+1] + N̂ i
Ψ[Ψt+1]− 2

∆t
Ψi
t+1 + L̂iΨ[Ψt] + N̂ i

Ψ[Ψt] +
2

∆t
Ψi
t (3.303)

GiΣ[Σt+1] =L̂iΣ[Σt+1] + N̂ i
Σ[Σt+1]− 2

∆t
Σi
t+1 + L̂iΣ[Σt] + N̂ i

Σ[Σt] +
2

∆t
Σi
t (3.304)

with the Newton method. The kth Newton iteration is then given by

DG(t+ 1)(uk)(uk+1 − uk) = −G(uk) (3.305)

with DG(t+1) the Jacobian of G(t+1) and u the discretized fields. The Jacobian is calculated
by a matrix-free method using finite differences. The remaining linear system of the Newton
iteration is then solved by the Generalized Minimum Residual (GMRES) algorithm that uti-
lizes the Arnoldi process to efficiently approximate Krylov subspaces. The convergence of the
integrator is additionally improved by preconditioning the system with the inverse of its shifted
linear operator. As the convergence of Newton’s method is only guaranteed in the vicinity
of the solution a line search algorithm is used to ensure global convergence [269]. Finally, an
adaptive step size control was implemented to improve convergence in the neighborhood of an
attractor as described in [270]. The integrator is implemented in C++ using the PetSc library
http://www.mcs.anl.gov/petsc/petsc-as/.

Field dynamics were only simulated for the symmetry-confined canonical genetic network
of section 3.5.3 and slightly modified versions of it. The parameters of the linear kernel L̂Ψ

were chosen such that the eigenspectrum has a maximum of r > 0 for wave vectors k on the
critical circle kc = ‖k‖. In order to achieve this parametrization, the scaling parameters of the
kernels K+, K− and K in Eq. (3.120) were fixed to 4, 10 and 1, respectively. Setting α1 = r,
σu = 1 and σ to the desired axonal range leaves the last free parameter ρu of the linear operator
undetermined. This parameter was then automatically adjusted such that the afore-mentioned
condition was met. Notice that the parametrization is permitted as sufficient free parameters
exist in the field dynamics of Eq. (3.120).

In Fig. 3.4, Eq. (3.120) was integrated by the described algorithm with Gaussian kernels,
r = 1/τ = 0.05, γ6 ≈ 0.56 and for long-range γ1 = 0.51, σ = 1.7Λ and short-range with no
patchy connections γ1 = 0. The field was discretized to 256 × 256 pixels with an aspect ratio
of 22Λ × 22Λ. Two of 20 simulations were excluded for illustration purposes. In Fig. 3.5, the
amplitude Eq. (3.99) were integrated by the MATLAB internal Runge-Kutta (4,5) formula with
adaptive step-size control ode45. Fixed parameters were σ = 1.7Λ, n = 9, γ6/γ1 = 1.5 and
b1 = b2 = 15. Simulation time was T = 105τ and number of modes N = 18. In Fig. 3.6A,B,
the connectome was fixed to an isotropic Gaussian and patchy connectome from a previous
simulation, respectively. The parameters used to integrate modified Eq. (3.120) were for both
Gaussian kernels, r = 1/τ = 0.05, σ = 1.7Λ and b1 = b2 = 15 with the additional parameters
for A of γ6 ≈ 0.56, γ1 = 0.51 and for B of γ6 ≈ −0.25, γ1 = 0.25 and σ = 1.7Λ. The field was in
both cases discretized to 128× 128 pixels with an aspect ratio of 22Λ× 22Λ. In Fig. 3.6D-F,
the amplitude Eq. (3.168) were integrated again by ode45 as for Fig. 3.5 with a connectome
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timescale equal to the critical timescale τm = τc. The total concentration field was obtained by
linear response of Σ to Ψ. In Fig. 3.6H-J, the delay differential amplitude Eq. (3.226) were
integrated by the MATLAB internal method dde23 with delay slightly larger than the critical
delay τ = 1.001τc. The total concentration field was obtained by linear response of Σ to Ψ. In
Fig. 3.7, Eq. (3.120) was modified by a focal and dual overexpression of a single morphogen
with strength 0.1r and simulated with the same parameters as for Fig. 3.4 with the additional
parameter of b1 = b2 = 15.

3.5.9 Alternative model: positionally specified orientation preference

An alternative mechanism for cell fate specification is a position-dependent cell fate. In contrast
to self-organizing models, cells are typically not interacting and simply read out their position
by concentration gradients. We will first approximate the number of required gradients for
determining orientation domains by information theory. Subsequently, we devise an explicit
model for that task and increase gradually the level of complexity.

In order to encode the spatial organization of orientation preference uniquely, every iso-
orientation domain must be determined by morphogen gradients. The number of iso-orientation
domains increases with the number of pinwheels N . The number of pinwheels scales with the
area A of V1 as N ≈ πA/Λ2 [22–24] with Λ the typical scale. If four different iso-orientation
domains are required to be encoded per pinwheel, the information content required to encode
orientation preference in V1 is given by the logarithm of the number of encoded states

IV 1(A) = log2

(
4πA/Λ2

)
bit. (3.306)

The typical scale is typically about Λ ≈ 1 mm [23]. Cortical areas of V1 vary substantially be-
tween different species, for instance, for macaque Am =1200 mm2 and for human Ah =3000 mm2,
see e.g. [271]. The required information is then about Im ≈ 14 bit and Ih ≈ 15 bit. This in-
formation content must be provided by morphogen gradients. In fruit flies, it was shown that
morphogen gradients during embryogenesis carry 1–2 bit of information [235]. Thus the number
of morphogen gradients should be at least on the order of 7–15. This range of required mor-
phogen gradients is in a biologically realistic regime. In order to examine how such a mechanism
could be biologically realized, we examine an explicit model in the following.

In a two-dimensional cortical tissue two orthogonally oriented gradients

g1(x) = x g2(x) = y (3.307)

suffice to specify cortical positions x ∈ [0, 1]2, see Fig. 3.19A. Orientation preference is as
before encoded by four morphogens through the difference in concentrations

Ψ(x) = (c1(x)− c2(x)) + i(c3(x)− c4(x)). (3.308)

In order to encode morphogen concentrations by their cortical position or equivalently gradient
concentration, the expression of morphogens must be controlled by the gradient concentrations.
The simplest expression control is given by a single gene regulatory element whose regulatory
control can be phenomenologically modeled by Hill functions, see section 3.5.1. A more flexible
model that incorporates combinatorial control is given by the logistic function

φβ,µ[c(x)] =
1

1 + e−β(c(x)−µ)
(3.309)

that possesses a similar shape to Hill functions, but is mathematically more convenient. The
parameter µ and β are similar to the binding affinity and the cooperativity of the gene regulatory
element, respectively.
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Figure 3.19: Orientation encoding by cortical position and non-interacting genes. A Cell fates
are specified by their cortical position, which can be read out from gradients. B Orientation encoding
morphogens expression is controlled by gene regulatory element affinities to gradient concentrations.
C The expression rates are combinatorial Hill functions with equidistantly placed affinities for both
gradients, see text for more details. D Target orientation domain that gene regulatory elements specify
by their cortical positions. E Relative error of morphogen concentrations versus the number of gene
regulatory elements and for different orientation domain sizes. F Optimal orientation domain specification
by cortical position of the orientation domain in D.

Orientation encoding by non-interacting genes

The simplest genetic network that encodes orientation preference by cortical position can be
solved analytically. In order to encode the morphogen concentrations ci(x) with i ∈ {1, 2, 3, 4},
a genetic expression response to the gradients is required that exactly reproduce the morphogen
concentrations at every cortical position. The simplest control over a gene regulatory element
is given by combinatorial Hill functions with different binding affinities, Fig. 3.19B, given by

φij(x) = φβ,µj [g1(x)]φβ,µ̃j [g2(x)]. (3.310)

A superposition of Hill functions with different binding affinities results in the equilibrium mor-
phogen concentration of

ci(x) =
M∑
j=0

ωijφ
i
j(x). (3.311)

For a given concentration field at positions xk the coupling parameters ωj can be derived by
minimizing the error function

E =
1

2

N∑
k=0

ci(xk)− M∑
j=0

ωijφ
i
j(xk)

2

. (3.312)

This is mathematically equivalent to linear regression with the basis functions φij(x). The
solution for the weights is given by the multiplication of the orientation encoding concentration
with the design matrix, i.e.

ωi =
(
φi

T
φi
)−1

φi
T
ci (3.313)
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3. Genetic assimilation of visual cortical architecture

with the abbreviations (ωi)j = ωij , (ci)k = ci(xk) and

φi =


φi0(x0) φi0(x1) . . . φi0(xN )
φi1(x0) φi1(x1) . . . φi1(xN )

...
...

. . .
...

φiM (x0) φiM (x1) . . . φiM (xN )

 . (3.314)

For a simple orientation field specified by an ECP with n = 8 active modes, Fig. 3.19D, with
equidistantly spaced Hill functions for both gradients, Fig. 3.19C, the relative error of the mor-
phogen concentrations declines rapidly for small orientation field areas by increasing the number
of gene regulatory elements, Fig. 3.19F. However, for biologically plausible visual cortical areas
of the size of a thousand Λ2 [272, 273] in macaques, the number of gene regulatory elements
per morphogen is exceedingly high and unrealistic, Fig. 3.19E. This shows that orientation
preference specification by cortical position read out requires a biologically unrealistic number
of gene regulatory elements in this type of genetic networks.

Orientation encoding by interacting genes

The required large number of gene regulatory elements can be circumvented by including addi-
tional genes that combinatorially control the morphogen concentrations. Here, the concentration
of genes are mutually regulated in a hierarchical scheme. The first stage is composed of the gra-
dient concentrations g1(x) and g2(x) and the last stage of the morphogen concentrations ci(x),
Fig. 3.20A. Thus at every regulatory level l the ith concentration cli(x) is given by the equilib-
rium concentration through a superposition of gene regulatory elements that are controlled by
the equilibrium concentrations of the previous regulatory level cl−1

j (x)

cli(x) =

M∑
j=0

ωlijφβ,µlij
[cl−1
j (x)] (3.315)

as illustrated in Fig. 3.20B. As the binding affinities µlij and cooperative control β are implicitly

determined by the superposition of weights ωlij , the model is simplified to µlij = 0 and β = 1.
Thus the gene regulatory element affinities are not equidistantly distributed, but are specifically
selected. This is similar to the previous model, but with additional regularization though without
combinatorial control of the gradients. Notice that for a generic superposition of weights, the
concentrations can become negative. However, negative concentrations can be cured by assuming
an additional baseline gene expression and adapted binding affinities of that concentration. This
would compensate for the negative concentration while retaining the regulatory control of that
gene. Thus the superposition of weights can be chosen to any value without loosing biological
meaning.

The final genetic network is given by

cli(x) =

M∑
j=0

ωlij

1 + e−c
l−1
j (x)

(3.316)

and is equivalent to an artificial neural network. These networks can be trained to a specific
output for a given input by a backpropagation algorithm. This algorithm minimizes the squared
error between the network output and the desired output by gradient descent. Normal gradient
descent is intrinsically unsuited to minimize a complex energy landscape as it often stucks
in local minima. Therefore, backpropagation algorithms were extensively enhanced by various
techniques that resulted in a fast minimization of the squared error between desired and network
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Figure 3.20: Hierarchical genetic network encoding orientation preference by cortical posi-
tion. A Two orthogonally oriented cortical gradients determine cortical position by their concentrations.
Morphogens are expressed according to the gradient concentration and encode orientation preference by
their difference in concentrations, see text for details. B The hierarchical genetic network consists of
genes that are organized in layers with gradient concentration as input in the first (internal) layer and
morphogen concentrations encoding orientation preference in the last layer. The number of genes and
inner layers are adjustable. C For one internal layer, orientation domains can be encoded by about 30
genes. Two internal layers reduce the number of genes required for orientation domain encoding to about
15 genes. D Gradient fluctuations with standard deviation of a few percentage of the maximal gradient
amplitude severely affects the encoded orientation domains (Network of one layer with 32 genes). E Vary-
ing the gradient magnitude as expected during ontogenesis changes the typical scale of the orientation
domains (Network of one layer with 32 genes).

output without stucking in every local minimum, see e.g. [274–276]. Here we use the iRprop+
algorithm with standard values to efficiently train the superposition weights [274]. The genetic
networks are trained until the minimal error of 500 learning iterations drops less than 10−3 of
the minimal error of the last 500 learning iterations.

As the number of additional genes increases, the encoded orientation domain appears more
and more realistic, Fig. 3.20C. Increasing the area of orientation domains requires certainly
more genes, but this could be in a biologically realistic regime. Using only two morphogens ci
slightly reduces the number of genes, while retaining orientation domain specification. Thus a
hierarchical genetic network might be able to encode orientation domains with a high though
realistic number of genes and gene regulatory elements under ideal conditions. Including small
shot noise fluctuations to the gradient of the order of a few percentage of the maximal gradi-
ent amplitude severely affects the smooth progression of orientation preference, Fig. 3.20D.
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3. Genetic assimilation of visual cortical architecture

Asumming noise integration from the dendritic tree of about Λ/10 ≈ 100 µm leads to correlated
noise with a correlation length of about the dendritic tree that also severly affects orientation
preference layout for small noise strengths (not shown). Generically, the noise sensitivity further
increases with visual cortical area if the maximal gradient concentration and the noise level are
retained. This is in stark conflict to the experimentally observed highly ordered cellular arrange-
ment of orientation preference around pinwheels [71]. Increasing the gradient amplitude changes
the typical scale of the orientation domain, Fig. 3.20E. Thus the effect on the typical scale of a
growing visual cortical area accompanied with a gradient increase could compensate such that
the typical scale is conserved during ontogenesis as experimentally observed [98]. However, this
scheme is difficult to reconcile with typical boundary effects of orientation domains [12] as only
two boundaries can be fixed in this hierarchical genetic network scheme, Fig. 3.20E. From an
evolutionary perspective it is hard to explain similar typical scales in different visual cortical
area sizes [23] with such a static mechanism. In total, the high number of required genes, the
noise susceptibility and the inability of a fixed typical scale with fixed boundary orientation pref-
erence layouts makes this type of genetic network with non-interacting cells unlikely to account
for orientation domain specification.
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Nomenclature

3.5.10 Nomenclature

Genetic network

Λ Typical scale of orientation domains

Ψ(x, t) Orientation encoding field or short orientation field

σ Range of morphogen selective connections

Σ(x, t) Total concentration field

Σ0 Total concentration field fixed point

ci(x, t) Morphogen concentration field

Mathematical symbols

F Two dimensional Fourier transformation F{K} =
∫

d2yK(y)e−iky

<, = Real and imaginary part of a complex variable <{a + ib} = a and ={a + ib} = b,
respectively

? Two dimensional convolution operator K ?Ψ(y) =
∫

d2yK(x− y)Ψ(y)

‖ · ‖ Euclidean norm ‖x‖ =
√
xTx
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Chapter 4

Pinwheel configuration in maximum
entropy models of orientation domains

4.1 Motivation

The pinwheel configuration of orientation domains observed in primates and placental carni-
vores adhere to quantitative species-invariant statistics. This common design is composed of
the pinwheel density, pinwheel density fluctuations in subareas and nearest neighbor distribu-
tions of pinwheels with equal, opposite and independent of topological charge, see Fig. 2.3.
The common design is a non-trivial mammalian trait as shown by comparisons to surrogate
data and theoretical analysis of pinwheel densities in orientation field ensembles. Other sta-
tistical measures of the pinwheel configuration were so far not examined theoretically. In this
chapter, we derive an analytical expression for the pinwheel density fluctuations and an approx-
imated analytical expression for the nearest neighbor distribution for maximum entropy models
of orientation domains.

4.2 Maximum entropy models of orientation fields

In order to investigate pinwheel configurations in maximum entropy models of orientation fields,
the preferred orientation ϑ(x) together with its selectivity S(x) of a neuron at cortical position
x = (x, y)T is combined to an orientation director field

Ψ(x) = S(x)e2iϑ(x) (4.1)

or short orientation field with a real ξ(x) and imaginary η(x) part. Maximum entropy
models of orientation field ensembles with vanishing mean are then given by centered Gaus-
sian random fields. Marginal distributions of orientation field components, for instance,
χ = (ξ, η, ξx, ξy, ηx, ηy)

T with the derivative ∂xξ = ξx and omitted spatial dependence are
described by a multivariate Gaussian distribution

p(χ) =
1√

(2π)6 det Σ
e−

1
2
χTΣ−1χ (4.2)

with the covariance Σ = 〈χχT 〉. In the following, we will focus exclusively on orientation fields
with a vanishing mean 〈χ〉 = 0.

The pinwheel configuration statistics constituting the common design will be derived ana-
lytically in the following for maximum entropy models. For the simplest quantity, the pinwheel
density, a formula for generic centered Gaussian random fields will be derived. For all other
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4. Pinwheel configuration in max. entropy models of orientation domains

pinwheel configuration statistics that depend on the distance between pinwheels, the analysis
will be restricted to isotropic and shift-symmetric maximum entropy models. Shift-symmetric
orientation field ensembles are defined by invariant statistics to global phase shifts of the ori-
entation field Ψ(x) → eiφΨ(x). Thus, the mean and one of the correlation functions of the
orientation field vanishes

〈Ψ(x)〉 = eiφ 〈Ψ(x)〉 = 0 〈Ψ(x1)Ψ(x2)〉 = e2iφ 〈Ψ(x1)Ψ(x2)〉 = 0. (4.3)

Shift-symmetric and isotropic orientation field ensembles are defined by the additional invariance
to rotations and translations resulting in the correlation function

C(r) =
〈
Ψ(x1)Ψ̄(x2)

〉
(4.4)

with r = ‖x1 − x2‖.
Translation invariant Gaussian random fields can be efficiently synthesized. The correlation

function C(x1−x2) = 〈Ψ(x1)Ψ̄(x2)〉 is diagonal in Fourier space and given by P (k). The Fourier
transform of an orientation layout Ψ̃(k) with the specified correlation function is synthesized
by drawing Gaussian random numbers u, v ∼ N (0, 1) for all k and scaling them by Ψ̃(k) =√
P (k)(u+ iv).

4.3 Pinwheel density

The total number of pinwheel centers xi in an area A is given by the spatial integral over

∑
i

δ(x− xi) = δ(η(x))δ(ξ(x))

∣∣∣∣det
∂(η(x), ξ(x))

∂(x, y)

∣∣∣∣ . (4.5)

For the sake of brevity, the dependence on the spatial position will be omitted in the following.
The pinwheel density is given by the ensemble average 〈·〉 over the pinwheel center positions

ρ = 〈δ(ξ)δ(η) |ξxηy − ξyηx|〉 =
〈
δ(ξ)δ(η)

∣∣χTAχ∣∣〉 . (4.6)

with the orientation field components χ = (ξ, η, ξx, ξy, ηx, ηy)
T and the matrices

A =

(
0 0
0 A0

)
∈ R6×6, A0 =


0 0 0 1/2
0 0 −1/2 0
0 −1/2 0 0

1/2 0 0 0

 . (4.7)

Utilizing a convenient representation for the absolute value, the pinwheel density can be written
as

ρ =
1

π

∫
dt

t2

(
T (0)− T (t) + T (−t)

2

)
with T (t) =

〈
δ(ξ)δ(η)eitχ

TAχ
〉
. (4.8)

The ensemble average thus reduces to a simple Gaussian integral that can be analytically cal-
culated [277] by introducing C = (Σ−1)i>2,j>2 yielding

T (±t) =
1

2π

√
det Σ−1

detC

1√
detM∓(t)

(4.9)
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4.4. Pinwheel pair and charge correlation function

Figure 4.1: Pinwheel density of anisotropic orientation fields with finite power-spectral
bandwidth. A The Fourier transform of the translation invariant correlation function separates into a
radial and angular term F [C(x)] = P (k)G(θ). The radial term P (k) is a phenomenological model with
a power-spectral density centered around a typical wave vector k = 1 = 2π/Λ from [171]. The angular
component G(θ) = exp(κ cos θ)/2πI0(κ) is chosen to be a von Mises distribution with κ its measure of
concentration or anisotropy. B Pinwheel densities in units of Λ2 can be analytically calculated with the
formula provided in [22]. The dashed line indicates a pinwheel density of ρ = π/Λ2. C Synthesized
orientation fields with a pinwheel density of ρ = π/Λ2 together with their inverse power-spectral density
β = 1, 10, 100 and anisotropies indicated by colored dots in B (1024 × 1024 pixels and aspect ratio
5Λ× 5Λ).

withM±(t) = 1±2itC−1A0. The general solution of the pinwheel density for centered Gaussian
field ensembles hence reads

ρ =
1

2π2

√
det Σ−1

detC

∫
dt

t2

(
1− 1

2
√

detM+(t)
− 1

2
√

detM−(t)

)
. (4.10)

Notice that, without further assumptions, the pinwheel density still depends on the spatial
position x. Translation invariance of the orientation field ensemble reliefs this property and
makes the pinwheel density independent of the spatial position. Various special cases of pinwheel
densities for translation invariant orientation fields have been considered previously. In isotropic
and shift- or shift-twist-symmetric orientation fields, the pinwheel density was found to be
bounded from below by ρ ≥ π/Λ2 with the typical scale Λ [147, 171]. In shift-symmetric
anisotropic orientation fields the pinwheel density can assume any positive value as shown in
[135, 170]. As the experimental pinwheel density is found to be close to π/Λ2, anisotropic
orientation fields models from [170, 171] with a pinwheel density of π/Λ2 are illustrated in
Fig. 4.1.

4.4 Pinwheel pair and charge correlation function

Pinwheel configuration statistics constituting the common design comprise, apart from the pin-
wheel density, additionally pinwheel densities in subareas and nearest neighbor distributions.
In these statistics, higher order pinwheel correlations are implicitly summarized, which we will
examine in detail later. The second order pinwheel correlations partially capture these statistics
and will be calculated for maximum entropy models of orientation field ensembles and pinwheel
crystals in the following.

Pinwheel correlations at positions x and x′ of a translation invariant pinwheel distribution
with pinwheel density ρ, pinwheel centers located at xi and topological charges of qi can be
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4. Pinwheel configuration in max. entropy models of orientation domains

quantified by the pinwheel pair and charge correlation function

g(x− x′) =
1

ρ2

〈(∑
i

δ(x− xi)

)∑
j

δ(x′ − xj)

〉 (4.11)

gQ(x− x′) =
1

ρ2

〈(∑
i

sgn(qi)δ(x− xi)

)∑
j

sgn(qj)δ(x
′ − xj)

〉 , (4.12)

respectively. The pair correlation function converges to unity for large distances and the charge
correlation function to zero if the total topological charges of the pinwheel configuration vanish.
Notice that the pinwheel pair correlation functions are radially symmetric for isotropic Gaussian
random fields. Hence, we will focus only on the radial part r = ‖x − x′‖ of the pinwheel pair
correlation functions in the following. The pair correlation function between pinwheels of same
charge g++(r) and pinwheels of opposite charges g+−(r) are given by the relations

g++(r) =g(r) + gQ(r), g+−(r) = g(r)− gQ(r), (4.13)

which can be verified by plugging in the definitions of the pinwheel pair correlation functions.
In order to appreciate possible differences in the pinwheel correlation functions, we examine
orientation domain ensembles and pinwheel crystals in the following.

4.4.1 Isotropic and shift-symmetric orientation field ensembles

The pair and charge correlation functions of pinwheels in isotropic and shift-symmetric orienta-
tion field ensembles can be obtained by noting the identity of the pinwheel positions in Eq. (4.5)
and taking the ensemble average over the resulting terms

g(r) =
1

ρ2

〈
δ(η(x))δ(ξ(x)) |ν(x)| δ(η(x′))δ(ξ(x′))

∣∣ν(x′)
∣∣〉 (4.14)

gQ(r) =
1

ρ2

〈
δ(η(x))δ(ξ(x))ν(x)δ(η(x′))δ(ξ(x′))ν(x′)

〉
, (4.15)

with r = ‖x − x′‖ and the orthogonality measure ν(x) = ξx(x)ηy(x) − ξy(x)ηx(x) between
∇ξ(x) and ∇η(x) that is given by the signed area of their spanned parallelogram. A formula
for g(r) and gQ(r) was derived previously for isotropic and shift-symmetric Gaussian random
fields [30]. An explicit formula for g(r) can be derived, but is cumbersome due to its lengthy
expression [154]. A detailed derivation of the pair correlation functions is provided in section
8.1. Notice that the calculation of the pair correlation function is tedious in contrast to the
charge correlation function, which can be calculated for n-point correlations [155].

The pair correlation function is given in its simplest representation by

g(r) =
2c2

1(c4(c2
1 − c2

2)− c1c
2
3)

πc4(c2
1 − c2

2)2

∫ ∞
0

dt
2t4Z + t2

(
−Y 2

2 + Z + 3
)

+ Y 2

2 − Z + 3

(t2 + 1)3

√
t4Z + t2

(
−Y 2

4 + Z + 1
)

+ 1

, (4.16)
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4.4. Pinwheel pair and charge correlation function

where the spatial dependence of the parameters

Y =
2c6(c5(c2

1 − c2
2)− c2c

2
3)

(c2
1 − c2

2)c2
4 − c1c2

3c4
, Z =

(c2
4 − c2

6)(c2
1 − c2

2) detM1

((c2
1 − c2

2)c2
4 − c1c2

3c4)2
, M1 =


c1 c2 0 −c3

c2 c1 c3 0
0 c3 c4 c5

−c3 0 c5 c4


c1 =

1

2
C(0), c2 =

1

2
C(r), c3 =

1

2
∂rC(r)

c4 =− 1

2
∂2
rC(0), c5 =− 1

2
∂2
rC(r), c6 =− 1

2r
∂rC(r) (4.17)

is omitted for the sake of brevity. The charge correlation function reads

gQ(r) =
2c6c

2
1(c5(c2

1 − c2
2)− c2c

2
3)

(c2
1 − c2

2)2c2
4

. (4.18)

The pair and charge correlation function for maximum entropy models of orientation domains
[171] are in good agreement with numerically calculated correlation functions as shown in
Fig. 4.2.

4.4.2 Pinwheel crystals

In pinwheel crystals, pinwheels are arranged in a unit cell that repeats upon translation by
vectors v1 and v2. In every unit cell there exist ncell pinwheels which are separated by the
vector uk from one particular pinwheel. The pair correlation function of pinwheel crystals with
pinwheels that are indistinguishable by rotation and translation is then given by

g(r) =
1

ρ

∞∑
i,j=−∞

ncell−1∑
k=δi0δj0

δ(r − rijk)
2πrijk

with rijk =‖iv1 + jv2 + kuk‖, (4.19)

where the pinwheel correlation for zero distance was excluded. In the following, the pair corre-
lation function will be calculated for hexagonal and rhombic pinwheel crystals.

In the case of a hexagonal orientation layout

Ψ±(x) =eik1x + e±ik2x + eik3x with kj =
2π

Λ

(
cos(πj/3)
sin(πj/3)

)
, (4.20)

convenient translation vectors are given by v1 = Λ(2/
√

3, 0)T and v2 = Λ(1/
√

3, 1)T . The
hexagonal pinwheel crystal with +k2, Fig. 4.2D, has only one additional pinwheel in its unit
cell at position u1 = Λ/3(−1/

√
3, 1)T and therefore a low pinwheel density of ρ =

√
3/Λ2,

see also supplementary material of [22]. In the other hexagonal pinwheel crystal with −k2,
Fig. 4.2E, there exist five additional pinwheels in a unit cell at positions

u1 =
v1

3
, u2 =

Λ

3

(
−1/
√

3
1

)
, u3 =u1 +

v2

3
, u4 =u2 +

v2

3
, u5 =u4 + u3 (4.21)

and therefore the layout has a high pinwheel density of ρ = 3
√

3/Λ2. In the case of a rhombic
orientation layout with a variable parameter α, Fig. 4.2F,G, the orientation field reads

Ψα(x) = sin

(
2π

Λ
x

)
+ i sin

(
2π

Λ
(x cosα+ y sinα)

)
. (4.22)
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4. Pinwheel configuration in max. entropy models of orientation domains

Figure 4.2: Pair and charge correlation function of orientation domain ensembles and pin-
wheel crystals. A The correlation function C(r) and the radial part of its Fourier transform P (k)
of the maximum entropy model of isotropic and shift-symmetric orientation domain ensembles in [171]
is depicted for varying power-spectral density widths ∼ 1/β. B Synthesized orientation domains cor-
responding to the correlation functions of A. C The numerically obtained pair and charge correlation
function from synthesized examples (diamonds) is compared to the analytical result from Eq. (4.16) and
Eq. (4.18) (solid and dashed lines). D, E, F and G Pinwheel crystal layouts are depicted with their
corresponding arrangement of wave vectors on a circle in Fourier space. The dashed rhomboids mark
the unit cells of the pinwheel crystals. H The cumulative pair correlation function is shown for short
and long distances. On short distances the non-smooth step function is clearly visible, whereas on long
distances the cumulative distribution scales as the identity function, which is indicated by the dash line.

Convenient translation vectors are given by v1 = Λ(1, 1−cosα
sinα )T and v2 = Λ(0, 1

sinα)T with three
additional pinwheels per unit cells at positions

u1 =
v1

2
, u2 =

v2

2
, u3 =u1 + u3 (4.23)

and hence a pinwheel density of ρ = 4 sinα/Λ2. The obtained cumulative pair correlation
functions of these pinwheel crystal are depicted in Fig. 4.2H.

4.5 Pinwheel density fluctuations

The pinwheel density fluctuation of the common design is a measure of the regularity of pinwheel
configuration and was studied earlier in other contexts such as in randomly distributed points,
called point processes. Previously, a generic formula for the scaling of number fluctuations of
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a d dimensional point process in a regular window centered around a point was derived [278,
279]. The density standard deviation SD in a regular window scales as SDrect(A) ∝ A−γ for
large areas A and is generically smaller than γ = 3/4 except for pathological cases [280, 281].
In the case of γ = 3/4 the point patterns are termed hyperuniform in contrast to hyposurficial
point patterns with an exponent of γ = 1/2 [278]. For crystals, formulas for SDrect are provided
in [278, 282, 283]. Although the examination of the scaling behavior for rectangular windows
should hold for large areas, there has been no derivation of SD in a disk around an arbitrary
point as used in the common design.

Given a disk or radius r what is the standard deviation of pinwheel density in that disk? In
order to answer this question, it should be noted that the derived pair correlations excluded the
self-correlation component of single pinwheels, i.e. at zero distance. The general formula of the
pair correlation function is given by

gtot(r) =
1

ρ
δ(r) + g(r). (4.24)

The correlation function is related to the second moment of the pinwheel number in an area A
by

〈N(A)2〉 = ρ2

∫
A

d2y′
∫
A

d2x′gtot(r) (4.25)

The variance of the pinwheel density in a disk of area A = πR2 becomes

SD2(A) =
〈N(A)2〉 − 〈N(A)〉2

A2
=
ρ

A
+
ρ2

A2

∫
A

d2y′
∫
A

d2x′h(r′), (4.26)

where the total correlation function h(r) = g(r)− 1 is introduced. If a pinwheel is at the center
of the disk, the pinwheel variance simplifies to

SD2(A) =
ρ

A
+

2πρ2

A

∫ R

0
dr′h(r′)r′, (4.27)

which is connected to Ripley’s K function [284, 285]. For an arbitrary disk center, the integral
can be evaluated by utilizing the probability density function of distances l ∈ (0, 2R] between
two uniformly distributed random points in a disk of radius R [286, 287] that is given by

fR(l) =
2l

πR2

(
2 cos−1

(
l

2R

)
− sin

(
2 cos−1

(
l

2R

)))
. (4.28)

The variance of the pinwheel density is then

SD2(A) =
ρ

A
+ ρ2

∫ 2R

0
dr′h(r′)fR(r′), (4.29)

which leads for Poisson distributed pinwheels with a pair correlation function of g(r) = 1 to the
exact power law SD(A) =

√
ρ/A. For the orientation domain model introduced in [171] and for

pinwheel crystals the pinwheel standard deviation with its corresponding scaling is depicted in
Fig. 4.3. Notice that the pinwheel density fluctuations for crystals can be written in an elegant
way by using reciprocal lattices [278].

Depending on the total correlation function different scaling behaviors were derived in [278,
279]. For periodic pinwheel and random pinwheel layouts the total correlation function decays
exponentially h(r) ∼ exp(−λr) leading to an asymptotic scaling of the pinwheel density variation

SD(A) ∼
{
A−1/2 , 0 6= 1 + 2πρ

∫∞
0 drh(r)r

A−3/4 , else
(4.30)
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4. Pinwheel configuration in max. entropy models of orientation domains

Figure 4.3: Pinwheel density fluctuation for random orientation domains and pinwheel
crystals. A SD of random orientation domains [171] for varying power-spectral density width, see
Fig. 4.2A,B, is numerically obtained by synthesized examples (diamonds) together with the analytical
result from Eq. (4.29) (solid lines) and their limits of a scaled Poisson power law (gray dashed line).
Black dashed line corresponds to a Poisson distributed pinwheel pattern with density π. Inset shows
corresponding orientation layouts. B, C, D and E SD is depicted for various pinwheel crystals obtained
numerically by synthesized examples (diamonds) together with their analytical result from Eq. (4.29)
(solid lines), their limiting scaling (dashed line) and a reference Poisson pinwheel pattern with density
π. Inset shows corresponding orientation layout. F Theoretically obtained SD is shown for rhombic
pinwheel crystals with variable intersection angle α of their wave vectors (see inset). Black solid lines
indicate Poisson distributed pinwheels with density π.

If the total correlation function is fat tailed h(r) ∼ −1/r2+ξ with ξ ∈ (0, 1], the pinwheel density
variation asymptotically scales as

SD(A) ∼
{
A−3/4

√
lnA , ξ = 1

A−1/2−ξ/4 , ξ ∈ (0, 1)
(4.31)

and for a scaling of h(r) ∼ 1/r2+ξ with ξ ∈ (0, 1], the pinwheel density variation has the
asymptotic form of

SD(A) ∼


A−1/2 , ξ ∈ (0,∞)

A−1/2
√

lnA , ξ = 0

A−1/2+|ξ|/4 , ξ ∈ (−2, 0)

. (4.32)

4.6 Pinwheel nearest neighbor distribution

Already in 1909, Paul Hertz derived a formula for the nearest neighbor distribution of randomly
distributed points, more precisely Poisson distributed points, with fixed density in a volume
[288]. Later, the relation between the n-point correlation functions and the nearest neighbor
distribution was discovered [157]. More recentely, a Poisson and Bernoulli approach was de-
rived to approximate the nearest neighbor distribution from the pair correlation function [158].
Finally, the Poisson concept was generalized to a hierarchical scheme for estimating the nth
nearest neighbor distributions from the pair correlation function [159]. In the following, the ap-
proximation of the nearest neighbor distribution by the pair correlation function will be derived
and the approximated nth nearest neighbor distributions will be stated according to [159].
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4.6. Pinwheel nearest neighbor distribution
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Figure 4.4: Nearest neighbor distribution estimate from pinwheel pair correlation function.
Nearest neighbor distributions of pinwheels independent of charge d, of same charge d++ and of opposite
charge d+− for random orientation domains [171] with varying inverse power-spectral density width β, see
Fig. 4.2A,B. A-C, D-F, G-I First, second and third nearest neighbor distribution is computed numer-
ically (histogram) from synthesized orientation domains and theoretically (solid lines) by Eq. (4.34) and
Eq. (4.36) with g(r), g++(r) and g+−(r) for varying inverse power-spectral desnity widths β, respectively.
The nearest neighbor distributions of Poisson distributed pinwheels (dashed lines) serve as reference.

The pinwheel nearest neighbor distribution function W (r) in two-dimensional orientation
domains is defined as the probability density that the nearest pinwheel pairs are separated by
a distance r. Thus, the probability to find an additional pinwheel between r and r+ dr around
a pinwheel is given by the probability of observing no additional pinwheel at distance smaller
r times the probability to find a pinwheel in that interval. Approximating the probability of
observing no pinwheel by not observing two pinwheels in a disk of radius r, the nearest neighbor
distribution is given by

W (r)dr =

(
1−

∫ r

0
dr′r′W (r′)

)
· ρg(r)rdr, (4.33)

where g(r) is the pair correlation function and ρ the pinwheel density. This equation can be
solved and leads to the nearest neighbor distribution of

W (r) = 2πrρg(r) exp

(
−2πρ

∫ r

0
dr′r′g(r′)

)
. (4.34)

In the special case of Poisson distributed pinwheels the pair correlation function is unity g(r) = 1
and the nearest neighbor distribution

W (r) = 2πrρ exp
(
−πr2ρ

)
(4.35)

validating the result derived by Hertz [288]. For the nth nearest neighbor distribution W (n, r)
with W (1, r) = W (r) a hierarchical scheme can be derived for its approximation [159] and results
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4. Pinwheel configuration in max. entropy models of orientation domains

for a two-dimensional system in

W (n, r) = 2πrρg(r)F (n− 1, r) exp

(
−2πρ

∫ r

0
dr′r′g(r′)F (n− 1, r′)

)
(4.36)

with the approximated probability of observing n pinwheels in a disk of radius r

F (n, r) =

∫ r

0
dr′W (n, r′). (4.37)

Notice that this hierarchical scheme has to be interpreted in a mean field sense, since no explicit
pinwheel correlation functions of higher order than two are considered. However, the approach
yields reasonable results for low n in Gaussian random fields as shown in Fig. 4.4. In the first
nearest neighbor distribution the tails get typically overestimated, whereas for higher nearest
neighbor distributions the theoretical description leads to a shift to smaller distances.

4.7 Summary

In this chapter, we analytically examined the pinwheel configuration statistics that constitute the
common design [22] in maximum entropy models of orientation domain ensembles and partially
in pinwheel crystals. The common design is composed of the pinwheel density, pinwheel density
fluctuations in subareas and nearest neighbor distributions of pinwheels with equal, opposite
and independent of topological charge. We extend the systematic analytical understanding of
the species-invariant pinwheel statistics by:

• Deriving a general pinwheel density of maximum entropy models for orientation domains
with vanishing mean.

• Recapitulating the derivation of the pinwheel pair and charge correlation function of these
ensembles [30].

• Based on the pair correlation functions, providing and exact and approximated analytical
expression for the pinwheel density fluctuations in subareas and nearest neighbor distri-
butions, respectively.

Thus, all species-invariant pinwheel statistics that have been observed so far can be exactly or
approximately related to the correlation function C(r) of maximum entropy models of orientation
field ensembles. This extends previous analytical work that only considered the pinwheel density
[135, 147, 170, 171].

We reviewed that the scaling of pinwheel number fluctuations has an upper bound of 3/4
for hyperuniform and 1/2 for hyposurficial point processes [278, 280, 281], while experimentally
observed exponents are around 0.4 [24]. These small exponents are probably due to a smoothing
of pinwheels before calculating their pinwheel density fluctuations (not shown here). In fact,
small exponents vanish in the case of less smoothing and appear to approach an exponent of
1/2 [22].

The difference in the analysis algorithm exemplifies the challenge of the systematic noise
reduction in experimental data of orientation domains. If this problem is settled, pinwheel con-
figurations should be interpreted as a point process and analyzed by standard methods to infer
their statistical nature [284]. Typical measures are the density, nearest neighbor distribution,
void nearest neighbor distribution, pair and charge correlation function. The advantages are
that (i) for the density and (void) nearest neighbor distributions analytical results are known
for standard point processes such as Poisson, Cox and Nexman-Scott processes, (ii) the pair and
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charge correlation function is related to the pinwheel density in subregions and Ripley’s K or L
function by 2πrg(r) = ∂rK(r) and (iii) a simple parameter for quantifying short-range order is
given by M = (g(r1)− g(r2))/(r2 − r1) with r1 the first maximum and r2 the first minimum of
g(r) [284].

In total, these results extends the systematic understanding of the statistical properties of
pinwheel configurations that is crucial for model testing.
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Chapter 5

The pinwheel configuration: theoretical
significance and precision measurement

Original contribution

J. Liedtke and F. Wolf conceived and designed the study. J. Liedtke performed the theoretical
analysis and numerical simulations. J. Liedtke wrote the manuscript.
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5. Pinwheel configuration: theo. significance and precision measurement

5.1 Abstract

The functional architecture of the primary visual cortex (V1) of primates and placental carni-
vores consists of iso-orientation domains. The organizational centers of iso-orientation domains
are pinwheels that are surrounded by all preferred orientations. The pinwheel configuration in
primates and placental carnivores follows species-invariant quantitative statistics. Measurement
noise can be only partially attenuated and thus obscures the precise determination of pinwheel
configurations. Hence, precision measurement of pinwheel configurations requires theoretical
understanding of the impact of measurement noise. Here we derive an analytical pinwheel ob-
servation probability for ground truth orientation domains with additive Gaussian measurement
noise. We examine frequently observed orientation layout motifs such as linear zones, pinwheels
and pinwheel pairs. Subsequently, we dissect the impact of measurement noise on crystalline,
quasiperiodic, random orientation domains and finally on high orientation selectivity layouts.
We find strong suppression of noise effects for orientation motifs, a linear scaling of the pinwheel
density on the noise variance for heterogeneous orientation domains and a strong suppression of
noise effects on high orientation selectivity and heterogeneous orientation domains. The results
give rise to an extrapolation method of pinwheel densities to their zero noise limit. They provide
an approximated analytical expression for confidence regions of pinwheel centers. Finally, the
results quantitatively favor recording techniques capturing spiking activity for precise pinwheel
configuration measurements. This precise quantitative determination of pinwheel positions and
their confidence regions provides a paradigm benchmark framework for the development of
quantitative models of canonical circuits.

5.2 Introduction

After the greatest mass extinction in earth’s history about 250 million years ago, early mammals
branched off the therapsids and developed a neocortex with about 20 cortical areas that have
been retained over the course of more than 170 million years up to most present living mammals
[289]. During that period neocortices changed size and concomitantly the number of higher
cortical areas [271]. Interestingly, many cortical areas and structures scale allometrically with
other brain structures [290–294]. For instance, primary visual cortex (V1) size scales with
the power of 3/2 of its efferent brain structure (LGN) size hypothesized to maintain visual
resolution [292]. Most intriginguely, primary sensory area sizes scale with neocortex size, where
V1 grows the most and independent of nocturnality or diurnality [294]. The neuronal inventory
of cortical areas share remarkable commonalities between different areas and species suggesting
a notion of a canonical circuit [295, 296]. Key features of a canonical circuit are excitatory
principal neurons and inhibitory interneurons that are recurrently connected dependent on the
feature they encode. For instance, in V1 principal neurons respond to visual features such as
edge orientations [69, 297] and are preferentially connected to regions that respond to similar
visual features [12, 227–229, 298]. The orientation preference feature in V1 of primates and
placental carnivores is spatially smoothly organized with point singularities called pinwheels
that are surrounded by all orientation preferences [49, 60–62]. Pinwheels are organizational
centers of orientation domains and their configuration determine a substantial part of orientation
domains, see Fig. 5.1. Strikingly the pinwheel configuration layout in the four species cats,
ferrets, galagos and tree shrews adhere to a quantitative species-invariant common design [22–
24]. This common design is suggested to be an evolutionary convergent trait, because of two main
reasons: (i) The last common ancestor of the four species was a small shrew-like mammal that is
likely to have possessed an interspersed orientation layout [22, 76]. (ii) These mammals possess
distinct neuronal circuits for orientation selectivity generation [24, 77]. For instance, tree shrews

102



5.2. Introduction

(x1,q1)
(x2,q2)

(x3,q3)

(x4,q4)

A Pinwheel configuration Pinwheel constrained
IOD geometry

Orientation gage 
point

IOD patternDCB

Figure 5.1: Pinwheel configurations contain substantial information about iso-orientation
domains (IOD). A The pinwheel configuration is composed of the pinwheel center positions and their
topological charges. B Including iso-orientation contour lines reveals the spatial arrangement of iso-
orientation domains except for a global change of orientation preference. C The additional knowledge of
a single iso-orientation domain is sufficient to complete the entire iso-orientation domain (short orientation
domain) of D.

generate orientation selectivity mostly intracortically [78, 79], whereas cats generate it mostly
thalamocortically [69, 80]. The facts of cortical organizational principles such as allometric
scaling, the notion of a canonical circuit and a convergent common design in V1 suggests that
evolution optimizes this primary visual processing stage and possibly other primary areas with
respect to an unknown cost function. If cortical structure were genetically determined, then
optimization is exerted by genetic variation. However, optimization may also occur during the
ontogenetic maturation of organisms by activity-dependent mechanisms. This is in line with the
finding that V1 implements an optimal internal model adapting gradually during development
to the statistical structure of natural visual environment [299]. Most likely none of these views
are entirely correct instead nature and nurture shape V1 in collusion [300].

From a theoretical point of view, the optimization of V1 might be modeled by a dynamical
system that settles onto an attracting invariant manifold, Fig. 5.2A,B, as suggested in [301].
In a finite dimensional system, the attracting invariant manifold becomes an inertial manifold
[302]. V1 is a high dimensional system constituted on a coarse scale on the order of 10 thousand
synapses per neuron of about 140 million in a single human brain hemisphere [303]. The initial
dynamics are clearly confined to a subspace of possible connections summarized by the concept
of a canonical circuit. In fact, after ferrets open their eyes long-range connections elaborate over
the course of months and preferentially connect regions with similar orientation preferences [14,
82]. Orientation selectivity is already present at eye-opening and gradually matures over the
course of a month in ferrets, in contrast to direction selectivity that emerges after eye-opening
and matures in about two weeks [82, 304–306]. Orientation domains are rather robust in the
first two weeks after eye-opening [68] arguing for slow long-term dynamics. In cats, the visual
cortical area increases substantially over the first 14 postnatal weeks [94–97], while preserving
the typical spacing [19, 20] of ocular dominance and orientation selectivity bands during most of
that time implying cortical reorganization [97–99]. In macaques a reorganization of orientation
selectivity and ocular dominance with age was suggested based on a smaller dataset [52]. More
evidence for long-term dynamics is found in rodents. In mice, neurons are already orientation
selective at eye-opening in the second postnatal week [307–309]. However, the maturation of
orientation selectivity is controversial: a gradual increase in responsiveness and selectivity over
two postnatal months was observed [308, 310–313], whereas other studies found almost mature
orientation selectivity at eye-opening [314–316]. The period of juvenile plasticity extends beyond
the third postnatal month [309, 317, 318] or even further in an enriched environment [319]. The
alignment of orientation selectivity in the binocular zone, called binocular matching, continues
up to five weeks postnatally [307]. In juvenile mice the distribution of preferred directions
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Figure 5.2: Primary visual cortex (V1) as a dynamical system and feature states of V1.
A The primary visual pathway of a cat. Retinal ganglion cells in the eye project signals from the
visual stimulus over the lateral geniculate nucleus (LGN) and the subsequent optic radiation fibers wTC

to the primary visual cortex (V1). Principal neurons with a feature orientation preference response Ψ
interact with interneurons recurrently over connectivities wCC,exc and wCC,inh. Adapted from [24]. B
The dynamical system of V1 is spanned by connectivities. Optimization of V1 corresponds to a settling
on the attractive invariant manifold and a subsequent convergence to the attractor state. The feature
field changes along the trajectory. C Example attractor states (ECP solution class, see Eq. (5.26)) of the
long-range interaction model [22, 128]. Left: A point attractor composed of three active modes, right: a
two-dimensional torus attractor composed of five active modes.

and orientations is biased at eye-opening and equalizes in the subsequent days [308, 316]. The
equalization can be due to (i) an increase of responsive neurons as [308], (ii) a reorganization
of responsive neurons [316] or (iii) a mixture of (i) and (ii). Finally, in the barrel cortex the
preferred direction of whisker deflection emerges in juvenile rats and reorganizes to a single
pinwheel over the course of the first four postnatal months [320]. Together these experimental
findings support the proposed view of rapid dynamic convergence to an attracting invariant
manifold with subsequent slow dynamics on this manifold. On the theory side, the convergence
to optimal orientation domains and long-term reorganization was proposed based on long-range
order of orientation domains [321]. This optimal solution might be given by a single point
attractor that exists under a set of symmetries [127], but can be also a more complex attractor
state. A dynamical model based on symmetries and assuming an optimization process of V1
correctly predicts orientation layouts that are in quantitative agreement with the common design
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[22, 128, 135]. More strikingly it supports the view of an attractive invariant manifold composed
of high dimensional tori and thus allowing numerous visual cortical states, Fig. 5.2C.

An attractive invariant manifold greatly reduces the high dimensional dynamical system
while retaining most of its dynamics. Feature parameter fields are a characteristic component
of these manifolds and are hence convenient for parametrization. But which feature parameter
field is the best suitable for parametrization? A candidate criterion for the natural feature field
is homotopy theory [322], because every feature is mapped continuously on the surface of V1
in primates and placental carnivores. As the feature space has a certain topology, only specific
defects are topologically stable. A defect is topologically stable if a surrounding path on the cor-
tical surface can not be continuously deformed to a single point in the feature space. Candidate
features in V1 are orientation preference, direction preference or the more subtle feature of the
phase of a simple cell receptive field [323, 324], i.e. the relative position of its ON and OFF re-
ceptive fields, together with orientation preference, Fig. 5.3A. The simplest topological defects
are single charged pinwheels for orientation preference, double charged pinwheels for direction
preference and single charged pinwheels and phase defects for the phase and orientation feature,
Fig. 5.3B. Single charged pinwheels are the only experimentally observed topological defects,
Fig. 5.3C. Double charged pinwheels are incompatible with the experimentally observed well
separated single charged pinwheels and topologically unstable direction fractures [41, 325–327],
see Fig. 5.3C. Phase defects also disagree with the experimental finding of strong spatial phase
differences between neighboring V1 neurons in cats [328, 329] and a bias to OFF-dominated sim-
ple cell receptive fields in tree shrews [330] and cats [331, 332], see Fig. 5.3C. In fact, preferred
orientation is locally more smoothly organized than preferred direction and spatial frequency
[333]. In total this favors orientation preference as an informative feature parameter field and
questions models that predict phase ordering and phase maps [118, 334, 335] rather than peri-
odicity of orientation preference. Mathematically, the preferred orientation ϑ(x) of a neuron at
cortical position x = (x, y)T is a cyclic, π-periodic quantity and is hence conveniently represented
together with its selectivity S(x) by a complex field Ψ(x) = S(x)e2iϑ(x) as already suggested in
[122, 132]. This representation where pinwheels are roots of Ψ(x) reveals that topological stabil-
ity does not imply dynamic stability. In fact, arbitrary pinwheel configurations can be stabilized
by relaxing exponentially against the fixed point Ψ(x) =

∏
i(x−xi + sign(qi)i(y− yi)), where qi

denotes the topological charge of a pinwheel located at position xi = (xi, yi)
T . If pinwheels are

at the same position, multiple charged pinwheels can be stabilized. However, many theoretical
models only have single charged pinwheels as a dynamical solution and in random field models
only single charged pinwheels exist. In total, topological and dynamical stability argues for ori-
entation domains as the natural feature parameter field to parametrize the attractive invariant
manifold.

Pinwheel configurations already contain substantial information about the layout of orien-
tation domains [321, 336] and are convenient for benchmarking orientation domain models. In
contrast to experimentally observed quasiperiodic pinwheel configurations that are also found in
some models, e.g. [22, 128, 337], many other models converge to pinwheel crystals [27, 126, 129–
131, 263–266], including models of orientation domains seeded by a retinal bias [24, 338–340]
that quantitatively disagree with the common design. The pinwheel configuration constrains
orientation layouts, but in general not uniquely defines them and thus not uniquely defines the
attractive invariant manifold. Instead, the pinwheel configuration determines a subset of pos-
sible orientation domains and attractive invariant manifolds. However, there exists perfectly
reducible model solutions [128, 137] for which pinwheel configurations uniquely define orien-
tation domains except for a global orientation shift and they in turn uniquely determine the
network state except for a coupling ratio. Hence, there is a one-to-one mapping from an equiva-
lence class in the network state to a feature field and a one-to-one mapping from an equivalence
class of a feature field to a pinwheel configuration, Fig. 5.1.
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Figure 5.3: Topologically stable feature singularities and their experimental evidence in the
primary visual cortex. A The topology of the order parameter manifold. Orientation and direction
preference is π- and 2π-periodic with a circle manifold S1

O and S1
D, respectively. The union of orientation

preference and receptive field phase is π-periodic in both quantities and its manifold is topologically
equivalent to a Klein bottle K2. B The elementary singularities are the simplest topological defects that
arise if the order parameter manifold is continuously mapped on a two-dimensional cortex (see main
text for details). For orientation and direction preference the elementary singularities correspond to a
closed clockwise and counter-clockwise path in the order parameter manifold. The upper elementary
singularities of the Klein bottle correspond to paths along its tube, the lower left singularity corresponds
to a path perimetric to the tube and the lower right to the combination of both. C Experimentally
observed singularities. Only topological defects of orientation preference (pinwheels) are experimentally
observed. Direction fractures and a strong repulsion of equally charged pinwheels questions the direction
preference as order parameter. The diversity of receptive field phases and its OFF domination argues
against the union of orientation preference and receptive field phase as order parameter. (We thank David
Whitney for providing experimental data of orientation and direction preference from ferret. Pinwheel
nearest neighbor distribution adapted from [24]. Receptive field figures are adapted with permission from
[330].)

The approach of reducing dimensionality of the system description while keeping the crucial
information relies heavily on the exact determination of pinwheel positions in experiments. The
conventional measuring technique for orientation domain recording is optical imaging of intrinsic
signals. Optical imaging of intrinsic signals records the change in light reflectance of neural tissue
caused by a number of biological mechanisms [72, 341]. The predominant contribution of intrinsic
signals is believed to be activity-induced oxygen delivery of blood vessels [342]. Thus, the signal
is additionally composed of activity-independent hemodynamic artifacts including heart beat,
respiration rate, vasomotor signal [343] and others such as ongoing activity from an internal
state of the cortical tissue [344]. These rather low temporal frequency noise components can
be reduced (e.g. by averaging over multiple trials, temporal filtering or synchronized recording
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with noise frequencies), but can not be entirely removed [72]. A high temporal frequency noise
component is the stochastic fluctuation of light emission called shot noise [72]. A theory for
measurement errors is only partially available. For instance, the spatial resolution of intrinsic
signal imaging was claimed to be about 50–100 µm by Grinvald, colleagues and others [50, 62, 72,
345, 346] based on reproducibility of orientation domains [50, 62] and the enhancement of spatial
resolution by differential maps [62]. However, an inaccurate measurement caused by a systematic
error can be exactly reproducible. In fact, measurements and theoretical estimates of photon
scatter and absorption in brain tissue poses the spatial resolution of optical imaging to about
200 µm [73, 74, 347]. Differential maps generically increase signal-to-noise ratios, but spatial
resolution improvement can only be achieved by deconvolution methods [73]. The measured
orientation domains are thus smoothed versions of the ground truth orientation domains [73].
Apart from this systematic error, the overall orientation layout is precisely reproducible, e.g.
root-mean-square error of difference between two total recordings (about 50 single condition
response recordings) is about 6.5% of the total range of the recording [62]. Therefore, pinwheel
densities were measured with high precision by a variable spatial local bandpass approach [22–
24]. This analysis observed a pinwheel density plateau for a broad range of spatial low-pass
filter positions, but kept spatial noise components with similar frequencies to the signal. This
remaining noise did not allow the determination of the exact pinwheel positions. In order to
quantify orientation domains more rigorously, insight on the impact of the remaining noise on
the pinwheel density and exact pinwheel center positions is crucial.

The presentation of our results is organized as follows. First, we derive a pinwheel observa-
tion probability for orientation domains with additive isotropic and shift-symmetric Gaussian
measurement noise. We identify three general noise effects on pinwheels: displacement of pin-
wheels, pinwheels hidden by noise and the generation of spurious pinwheels. Second, we dissect
the contribution of these effects on three abundant orientation layout motifs: (i) linear zones
of progressive orientation preference change along a line, (ii) single pinwheels and (iii) pinwheel
pairs of same and opposite topological charge. In the third part, we proceed to crystalline, quasi-
periodic and random orientation domains and show how the pinwheel observation probability
scales in the small noise limit. Finally, orientation domains with spatially uniform orientation
selectivity are examined. The results shed light on the confidence regions of pinwheel positions,
give rise to an improved scheme for pinwheel density analysis and favor measuring techniques
that record neuronal activity directly for a precise determination of pinwheel configurations.

5.3 Results

Observation of pinwheels and orientation domains with additive noise

The preferred orientation ϑ(x) of a neuron at cortical position x = (x, y)T is a cyclic, π-periodic
quantity and is hence conveniently represented together with its selectivity S(x) by a complex
orientation preference director field

Ψ(x) = S(x)e2iϑ(x) (5.1)

or short orientation field. In measurements, the observed orientation field Ψ(x) = ξ(x) + iη(x)
is in general a mixture of the ground truth orientation field Ψ0(x) = ξ0(x) + iη0(x) and a noise
field Ψn(x) = ξn(x) + iηn(x). We consider the impact of additive noise on orientation fields in
measurements

Ψ(x) = Ψ0(x) + Ψn(x). (5.2)
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The ground truth orientation field Ψ0(x) is presumably composed of isotropic spatial frequencies
centered around a typical scale of Λ = 0.6–1 mm [23]. The composition of the noise field depends
on the specific measurement technique.

Usually, orientation fields are measured with optical imaging of intrinsic signals. Optical
imaging of intrinsic signals measures the change in light reflectance of neural tissue predomi-
nantly caused by activity-induced oxygen delivery of blood vessels [72, 341, 342]. The signal is
however more correlated to membrane potential changes than to the activity of neurons [346].
The merit of this technique is a large field of view on the order of 100 mm2. The spatial resolution
is limited by light scatter and absorption of brain tissue and debated in the literature. Grinvald
and colleagues claimed a spatial resolution of 50–100 µm [50, 62, 72, 345, 346], whereas others
estimated it to be 200 µm [73, 74, 347]. Calcium imaging measures intra-neuronal calcium con-
centration by fluorescent calcium indicators that correlates stronger with the activity of neurons
than their subthreshold membrane potential change [348–351]. The resolution, field of view and
noise sensitivities depend on the imaging device used. Two-photon imaging allows single-cell
recordings on submicrometer resolutions in small field of views of about one mm2. In contrast,
epi-fluorescence imaging records field of views of about 10 mm2 with a spatial resolution that
is similar to intrinsic signal imaging and limited by light scattering of cortical tissue [352]. In
order to obtain smooth orientation fields, two-photon recordings must be additionally low-pass
filtered due to the submicrometer resolution.

The different measurement techniques are all subject to artifacts from an internal state
of the cortical tissue [344] and movement artifacts such as heart beat and breathing related
vibrations [72, 344, 352]. For instance, stronger pulsation of high density blood vessels introduce
spatially correlated noise. Intrinsic signals are additionally composed of noise originating from
activity-independent hemodynamic artifacts such as vasomotor signals [343]. An additional
noise component dominant on small spatial scales and limited by the Nyquist frequency of the
camera is photon shot noise that is substantial in intrinsic signal imaging due to the small signal
strength. Shot noise is rather small in calcium imaging [352].

All these different noise sources are superimposed culminating in a noise field Ψn(x). For
uncorrelated or weakly correlated noise sources with finite variance the noise ensemble has Gaus-
sian statistics due to the central limit theorem. The noise ensemble is called shift-invariant and
isotropic if the noise is statistically equal for all measured orientations and at every cortical po-
sition, respectively. Without further assumptions, the noise field is a centered Gaussian random
field entirely defined by its non-vanishing and vanishing correlation function (see methods for
further details):

C1(‖x1 − x2‖) =
〈
Ψn(x1)Ψ̄n(x2)

〉
= 2 〈ξn(x1)ξn(x2)〉 = 2 〈ηn(x1)ηn(x2)〉 (5.3)

C2(‖x1 − x2‖) = 〈Ψn(x1)Ψn(x2)〉 = 0. (5.4)

A fraction of noise components can be efficiently removed by locking measurements to intrinsic
noise frequencies [72, 353], Fourier analysis of continuous recording [344] and high-pass filtering
[22]. The dominant remaining noise component is a white noise floor resulting from shot noise
that can be removed by low-pass filtering. Gaussian low-pass filtered white noise introduces a
spatial noise correlation length and might be defined by the correlation function

C1(r) = σ2e−r
2/(2l2c). (5.5)

As the filter is applied to both the ground truth signal and noise, Gaussian filters are particularly
unsuitable as they impair the signal significantly in contrast to Fermi filters with a sharp low-pass
frequency [22]. Infinitely sharp Fermi filters for both low- and high-pass frequency of k1 = 2π/Λ1
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Figure 5.4: Ground truth orientation field properties determine pinwheel observation prob-
ability map. A Measured orientation field of ferret used as ground truth orientation field for illustration.
B Ground truth orientation field properties that determine noise sensitivity of pinwheel observation prob-
ability. White indicates weak noise sensitivity regions and dark green strong noise sensitivity regions. In
small orientation selectivity |Ψ0(x)|2 regions that are typically centered around pinwheels, the pinwheel
observation probability is high. Strong gradients ‖∇Ψ0(x)‖2 increase the pinwheel observation probabil-
ity. The pinwheel observation probability increases with the orthogonality measure ν0(x). This shows a
non-redundant contribution in large areas of the three fields to the pinwheel observation probability.

and k0 = 2π/Λ0, respectively, lead to the correlation function

C1(r) =
2σ2

r(k2
1 − k2

0)
(k1J1(k1r)− k0J1(k0r)). (5.6)

For noise without an obvious correlation an effective spatial correlation length of leff
c =√

−2C1(0)/∆C1(0) can be assigned that leads to leff
c = 2/

√
k2

0 + k2
1 and leff

c = lc for the
band-pass and low-pass filtered noise, respectively. In both noise examples, the noise strength
or variance 〈|Ψn(x)|2〉 = σ2 is controlled by a single parameter and added on orientation
domains of average orientation selectivity 〈|Ψ0(x)|2〉 = 1. Intrinsic signal imaging measurement
noise from [62] suggests a noise strength of about σ2 ≈ 0.2 in units of the average orientation
selectivity. Data size scaling utilizes the technique-independent approach of repetitive measure-
ments of trials with the same stimulus set. Considering subsets of trials increases the amount
of noise in an observed orientation field. For independent inter-trial noise, the variance of the
noise scales inversely with the number of trials σ2 ∝ 1/Ntrial.

The pinwheel observation probability map

The pinwheel configuration is given by the roots xi of the orientation field Ψ(x). The microscopic
pinwheel density can therefore be written as

ρ̂(x) =
∑
i

δ(x− xi) = δ(η(x))δ(ξ(x))

∣∣∣∣det
∂(η(x), ξ(x))

∂(x, y)

∣∣∣∣ (5.7)

and is a random variable due to the additive measurement noise. The pinwheel observation
probability map is obtained by the expected microscopic pinwheel density over the ensemble of
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noise realizations Ψn(x)

ρ(x) =

〈
δ(η(x))δ(ξ(x))

∣∣∣∣det
∂(η(x), ξ(x))

∂(x, y)

∣∣∣∣〉 . (5.8)

For a specific position x and a small surrounding area dA the probability of observing a pinwheel
in that area is thus given by ρ(x)dA. The apparent pinwheel density in an area A is given by

ρ =
1

A

∫
A

d2xρ(x) (5.9)

with the total number of pinwheels N = ρA. The noise average of Eq. (5.8) can be evaluated
by the multivariate Gaussian probability density function of the noise and its spatial derivatives
(see methods for further details) leading to

ρ(x) =
cG

2πcA
e
− |Ψ0(x)|2

2cA
1

π

∫
dt

t2

(
1− 1

t2 + 1
e
− t2

t2+1

‖∇Ψ0(x)‖2
2cG cos

(
t

t2 + 1

ν0(x)

cG

))
. (5.10)

Here cA = C1(0)/2 is proportional to the noise strength, cG = −∆C1(0)/4 proportional to the
spatial noise correlation decay and ν0(x) = |∂xξ0(x)∂yη0(x)− ∂xη0(x)∂yξ0(x)| an orthogonality
measure between∇ξ0(x) and∇η0(x) that is given by the area of their spanned parallelogram. In
total, three fields |Ψ0(x)|2/cA, ‖∇Ψ0(x)‖2/cG and ν(x)/cG determine the pinwheel observation
probability map. The pinwheel observation probability grows with a decrease of the first and an
increase of the latter two fields in a broad parameter regime. The ground truth orientation field
reveals non-redundant large areas that increase the pinwheel observation probability, Fig. 5.4.

In the absence of ground truth orientation fields the pinwheel observation probability map
is independent of the spatial position and given by the noise pinwheel density ρn = cG/(2πcA).
This expression was derived already earlier in other contexts, see [30, 147, 171]. The low- and
band-pass correlation functions yield the same parameter cA = σ2/2, but different cG = σ2/(2l2c )
and cG = σ2(k2

0 +k2
1)/8, respectively. Notice that the noise pinwheel density of band-pass filtered

noise is similar to the ground truth signal due to similar spatial frequencies.
Interestingly, the pinwheel observation probability only depends on two parameters of the

noise correlation function and is independent of its specific shape. Noise ensembles can hence
be described by cA and cG, by the noise strength σ2 and (effective) correlation length lc or by
the noise strength σ2 and noise pinwheel density ρn.

The effect of measurement noise on the observed layout of orientation domains and pinwheel
centers consists of three components illustrated in Fig. 5.5. Pinwheels are generally displaced
by noise, noise can generate spurious pinwheel pairs of topologically opposite charge and pin-
wheels can be hidden by noise. Furthermore, the probability of spurious pinwheel creation and
annihilation of pinwheel pairs can be approximated for time-varying measurement noise and
identifies similar orientation field regions that are susceptible to noise (see methods for details).

Generation of spurious pinwheels in pinwheel free orientation layouts

An important concern in the assessment of measured orientation domain arrangements is the
potential presence of spurious pinwheels, i.e. pinwheel centers caused by measurement noise
in a genuine pinwheel free region. Purely random orientation layouts generically possess more
pinwheels than ordered orientation layouts [147]. This observation and common intuition sug-
gests that spurious pinwheels generically proliferate monotonically with noise strength. To test
this hypothesis, we examine the impact of noise on ground truth orientation fields with spa-
tially uniform selectivity |Ψ0(x)|2 = s2 and hence without any pinwheels. Typical pinwheel free
motifs with spatially uniform selectivity are experimentally observed linear zones [12, 51, 354]
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5.3. Results

Figure 5.5: Spurious, displaced and hidden pinwheels in orientation domain measurements.
Observed orientation fields can exhibit noise induced spurious pinwheels that consist of pinwheel pairs
with opposite topological charge. Ground truth pinwheels are typically displaced by noise. Two ground
truth pinwheels of opposite topological charge that are displaced to the same location by noise are
hidden in measurements. The pinwheel observation probability summarizes the combination of the three
effects for a given noise ensemble and a ground truth orientation field. A In high noise regimes spurious
pinwheels can emerge, while ground truth pinwheels can be hidden and displaced. Varying the noise
strength and correlation length alters the pinwheel observation probability. B In low noise regimes
pinwheel displacements are mostly observed. Hence, the pinwheel observation probability map is peaked
around ground truth pinwheels and converges to the ground truth pinwheel positions.

characterized by a progressive change in orientation preference along a single direction. Linear
zones can appear with different selectivity s and typical wavelengths Λ in orientation fields. The
simplest model of a linear zone is a plane wave

Ψ0(x) = seikφx (5.11)

with the wave vector kφ = k0(cosφ, sinφ)T and k0 = 2π/Λ, Fig. 5.6A. For Eq. (5.11) the
orthogonality measure ν0 vanishes and the gradient is given by ‖∇Ψ0(x)‖2 = s2k2

0. The van-
ishing orthogonality ν0 is valid for all constant orientation selectivity layouts and simplifies the
pinwheel observation probability to

ρ(x) =
cG

2πcA
e
− |Ψ0(x)|2

2cA e−β(x) (I0 (β(x)) + 2β(x) (I0 (β(x)) + I1 (β(x)))) , (5.12)

where β(x) = ‖∇Ψ0(x)‖2/(4cG) and Il denotes the modified Bessel function of the lth kind (see
methods). In the plane wave case, the pinwheel observation probability map is constant and
therefore equal to the pinwheel density

ρ(x) =ρne
− s2

σ2

(
1+ 2π2

λ2

)(
I0

(
2π2

λ2

s2

σ2

)
+

4π2

λ2

s2

σ2

(
I0

(
2π2

λ2

s2

σ2

)
+ I1

(
2π2

λ2

s2

σ2

)))
. (5.13)

with the noise pinwheel density ρn, the signal-to-noise ratio s2/σ2 and the dimensionless param-
eter λ = Λ/lc. Spurious pinwheels are strongly suppressed in the small noise regime σ2/s2 . 0.5
such that the pinwheel density decreases with the non-analytic function ρ ∼ e−s

2/σ2
/σ, see

Fig. 5.6B inset. In the intermediate noise strength regime 0.5 . σ2/s2 . 2 the pinwheel den-
sity monotonically increases. For large noise regimes 2 . σ2/s2 the pinwheel density converges
to the noise pinwheel density, see Fig. 5.6B dashed line. Noise with correlation lengths smaller
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Figure 5.6: Measurement noise induces exclusively spurious pinwheels in spatially uniform
selectivity layouts. A Three linear zone examples (Eq. (5.11)) of spatially uniform orientation selectiv-
ity s and different additive noise strengths σ2/s2. B The pinwheel observation probability map of linear
zones (Eq. (5.13)) is constant and hence equals its pinwheel density. The pinwheel density is strongly
suppressed for small noise strengths (inset). For noise correlation lengths lc ≤ Λ/(

√
2π) the pinwheel

density increases monotonically and for lc > Λ/(
√

2π) non-monotonically with noise strength. In the limit
of strong noise strength, the pinwheel density converges to the noise pinwheel density ρn = 1/(2πl2c). The
maximal pinwheel density for large noise correlation lengths is assumed at a strength σ2/s2 = 2. (solid
line: pinwheel observation probability, diamonds: numerical results).

than lc < Λ/(
√

2π) induce monotonically increasing pinwheel densities with noise strength σ2/s2.
For larger noise correlation lengths the number of spurious pinwheels can decrease with noise
strength such that the pinwheel density is greater than the noise pinwheel density in a noise
strength regime. The maximum pinwheel density is reached at the noise strength σ2/s2 = 2 in
the limit of large correlation lengths lc � Λ, see Fig. 5.6B dotted line. The strong suppression
of spurious pinwheels in the small noise regime and its subsequent increase in the intermediate
noise regime makes linear zones in the small noise regime particularly favorable in measurements
of pinwheel configurations.

Displaced and spurious pinwheels near true pinwheel centers

To understand conditions for precise localization of pinwheel centers and the prolifera-
tion/suppression of spurious pinwheels near genuine pinwheel centers, we examine isolated
ground truth pinwheels, Fig. 5.7A,B, under measurement noise of different correlation lengths.
In order to dissect the noise effect on pinwheels, we note that any pinwheel can be represented
up to a coordinate system rotation as

Ψ0(x) =ξ0(x) + iη0(x) (5.14)

(ξ0(x), η0(x))T =sΩT
φΣΩφx (5.15)

with the rotation matrix Ωφ, selectivity scale s and the matrix Σ = diag(1, a) with the anisotropy
parameter a. This is found by linearizing Ψ0(x) in the vicinity of a pinwheel center. For a = 1
pinwheels are isotropic, Fig. 5.7A, and for a 6= 1 anisotropic, Fig. 5.7B. For σ2 6= 0 the
ground truth pinwheel is typically displaced by noise and additional spurious pinwheels can
emerge, Fig. 5.7C. The pinwheel observation probability map is given by

ρ(x) =
1

2πl2c
e
−

xTΩTφΣTΣΩφx

σ2/s2
1

π

∫
dt

t2

(
1− 1

t2 + 1
e
− t2

t2+1

l2c(1+a2)

σ2/s2 cos

(
t

t2 + 1

2l2ca

σ2/s2

))
(5.16)

and composed of the ground truth pinwheel and additional spurious pinwheels with a total
Gaussian profile that is for φ = 0 proportional to exp(−(x2 + a2y2)/(σ2/s2)), Fig. 5.7D. The
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Figure 5.7: Measurement noise displaces pinwheels and induces spurious pinwheels. A
and B depicts an isotropic a = 1 and anisotropic a = 1/2 pinwheel with selectivity scale s (Eq. (5.15)),
respectively. C Measurement noise typically displaces the isotropic pinwheel of A for small noise strengths
σ2/s2 (top) and induces additional spurious pinwheels for stronger noise strengths (bottom). D The
spatial dependence of the pinwheel observation probability map is given by an isotropic and anisotropic
Gaussian profile for A and B, respectively. E The total number of pinwheels (Eq. (5.17)) increases
monotonically with the noise strength σ2/s2 and inversely with the pinwheel anisotropy a and the noise
correlation length lc. For small noise strengths, spurious pinwheels are strongly suppressed (inset). (solid
line: pinwheel observation probability, diamonds: numerical results).

total number of pinwheels is given by the integral over the pinwheel observation probability map
and yields

N =
α

π

∫
dt

t2

(
1− 1

t2 + 1
e
− t2

t2+1

(1/a+a)
2α cos

(
t

t2 + 1

1

α

))
(5.17)

with the dimensionless parameter α = σ2/s2

2al2c
, Fig. 5.7E. In the special case of isotropic pinwheels

a = 1, the expression simplifies to N = 1+α exp(−1/(2α)). For every α the number of pinwheels
in the isotropic case a = 1 is a critical point and numerical analysis indicate that it is a minimum
everywhere. This suggests that the number of pinwheels of isotropic pinwheels is a lower bound
to the number of pinwheels of anisotropic pinwheels. In general, spurious pinwheels increase
monotonically, Fig. 5.7E, and are strongly suppressed for small noise strengths σ2/s2, see
Fig. 5.7E inset. Asymptotically, spurious pinwheels scale with the noise strength and inversely
with the anisotropy and noise correlation length as N ∼ α. In total, we find favorable conditions
near isolated ground truth pinwheels of strong suppression of spurious pinwheels. The displaced
ground truth pinwheel and the spurious pinwheels form a Gaussian cloud and concentrate at
the ground truth pinwheel position. The total number of observed pinwheels can decrease for
pinwheel free orientation layouts in a certain noise regime, but can only increase for single ground
truth pinwheels.

Noise hidden pinwheels and spurious pinwheel generation at pinwheel pairs

Absolute pinwheel densities are typically ∼ 3 pinwheels/Λ2 such that pinwheels are often not
isolated but in the vicinity of neighboring pinwheels. This opens the possibility of more complex
noise effects. We thus used Eq. (5.10) to examine the impact of noise on two distinct pinwheel
pair configurations of the same (++) and opposite (+−) topological charge. A pair of isotropic
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Figure 5.8: Noise hidden pinwheels and spurious pinwheel generation near pinwheel pairs.
A and D Three examples of pinwheel pairs of equal and opposite topological charge separated by the
distance d for different noise strengths σ2/s2, respectively. B and E Pinwheel observation probability
for three different noise strengths for the pinwheel pairs of A and D, respectively. Dots mark the
positions of ground truth pinwheel centers and the color their topological charge. Dotted, solid and
dashed lines indicate the pinwheel observation probability contour lines of 25%, 50% and 75% of the
maximum, respectively. C and F Pinwheel number of A and D for three different correlation lengths
and over three different scales of noise strengths (solid line: pinwheel observation probability, diamonds:
numerical results).

pinwheels separated by the distance d and with a selectivity scale s can be modeled by

Ψ++
0 (x) =s

(
−d

2
+ x+ iy

)(
d

2
+ x+ iy

)
, (5.18)

Ψ+−
0 (x) =s

(
−d

2
+ x+ iy

)(
d

2
+ x− iy

)
(5.19)

as illustrated in Fig. 5.8A, D, respectively. The pinwheel observation probability maps in the
coordinates with radial distance r and angle φ from the center of the pinwheel pair are given by

ρ++(r, φ) =
1

2πl2c
e
−
d4

16−
1
2 d

2r2 cos 2φ+r4

σ2/s2

(
8l2cr

2

σ2/s2
+ e
− 4l2cr

2

σ2/s2

)
, (5.20)

ρ+−(r, φ) =
1

2πl2c
e
−
d4

16−
1
2 d

2r2 cos 2φ+r4

σ2/s2

1

π

∫
dt

t2

(
1− 1

t2 + 1
e
− t2

t2+1

l2c(d2+4r2)

σ2/s2 cos

(
t

t2 + 1

4l2cdr cos(φ)

σ2/s2

))
, (5.21)

respectively. The pinwheel observation probability is spatially localized around the ground
truth pinwheel centers for (++) and (+−) pinwheel pair configurations. With increasing noise
strength σ2/s2 the two highest probability peaks increase in distance as shown in Fig. 5.8B,
E. In the small noise regime, the noise effect on the pinwheel observation probability is strongly
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suppressed, Fig. 5.8C, F inset. For a (++) pinwheel pair configuration, increasing noise
strength induces a monotonic proliferation of spurious pinwheels on all noise strength regimes,
Fig. 5.8C. In contrast, for small noise strengths the observed number of pinwheels in a (+−)
pinwheel pair configuration first decreases with increasing noise strength indicating that the
pinwheel pair is hidden by noise, Fig. 5.8F. For large noise strengths the total number of
pinwheels increases for the (+−) pinwheel pair configuration similar to the (++) configuration.

Pinwheel pairs that are very close to each other can be idealized by a vanishing distance
d→ 0 for which the pinwheel observation probability map can be derived exactly. In that case
the pinwheel observation probability is radially symmetric and becomes

ρ++(r) =
1

2πl2c
e
− r4

σ2/s2

(
8l2cr

2

σ2/s2
+ e
− 4l2cr

2

σ2/s2

)
(5.22)

ρ+−(r) =
1
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2l2cr

2
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. (5.23)

The total number of pinwheels is then given by

N++ =2 +

√
πσ/s

4l2c
e

4lc4

σ2/s2 erfc

(
2l2c
σ/s

)
(5.24)
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where 2F2 is the generalized hypergeometric function.

Spurious and noise hidden pinwheels in hexagonal pinwheel crystals

The examination of specific orientation motifs revealed strong suppression of pinwheels in noise
strength regimes that are small compared to the selectivity scale. In orientation domain layouts
these motifs are combined with different selectivity scales to a total pinwheel configuration.
Orientation fields with a finite repertoire of motifs are crystalline layouts. Crystalline layouts
are interesting because they pose an orientation field of intermediate complexity and they are
stable dynamically generated solutions of a very general model class, e.g. [24, 27, 126, 129–131,
263–266]. While at current, experimental analysis [22–24] provides clear evidence against these
models, it is interesting to examine how ground truth pinwheel crystals might be transformed by
measurement noise. Example pinwheel crystals are given by special cases of essentially complex
planforms (ECP) solutions defined by the superposition of n active modes

Ψ0(x) =
1√
n

n∑
j=1

ei(ljkjx+φj) (5.26)

with the wave vectors kj = k0(cos(πj/n), sin(πj/n))T and k0 = 2π/Λ, phases φj and the binary
variables lj ∈ {−1, 1}. These are closed-form solutions of a universality class for visual cortical
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Figure 5.9: Spurious and noise hidden pinwheels in crystalline orientation layouts. A Ex-
amples of two orientation preference crystals with a low (upper,

√
3) and high (lower, 3

√
3) pinwheel

number per Λ2. B Pinwheel observation probability for both crystals and three different noise strengths
with noise pinwheel density ρn = ρ0. C Pinwheel density of observed orientation domains as a function
of the noise strength σ2 and three different noise correlation lengths (solid line: pinwheel observation
probability, diamonds: numerical results).

development [22, 128, 135]. Gradient and orthogonality of these orientation fields are

‖∇Ψ0(x)‖2 =
k2

0

n

n∑
j,m=1

ljlm cos

(
π(j −m)

n

)
cos ((ljkj − lmkm)x+ φj − φm) (5.27)

ν0(x) =
k2

0

n

∣∣∣∣∣∣
n∑

j,m=1

ljlm sin

(
π(j −m)

n

)
sin (ljkjx+ φj) cos (lmkmx+ φm)

∣∣∣∣∣∣ . (5.28)

For n = 3 active modes there are two distinct ECP solutions with high and low pinwheel density
defined by (l1, l2, l3) = (1, 1, 1) and (l1, l2, l3) = (1,−1, 1) shown in the upper and lower part
of Fig. 5.9A, respectively. The crystals are most notably distinguished by their number of
pinwheels per Λ2 of

√
3 and 3

√
3 for the first and second case, respectively. Notice that all

pinwheels have the same selectivity s =
√

3π/Λ and anisotropies of a = 1/3 and a = 1 in the
first and second crystal, respectively.

The pinwheel observation probability is centered around pinwheel centers with a non-elliptic
profile already for a noise strength of σ2 = 0.1, Fig. 5.9B. This indicates that the linear ap-
proximation discussed above is insufficient for small noise regimes on the order of σ2 = 0.1. The
non-elliptic pinwheel observation probability profile is in both cases caused by low orientation
selectivity regions and additionally mainly shaped by the orthogonality or gradient in the low
and high pinwheel density crystal, respectively. In the low pinwheel density crystal, pinwheels of
opposite topological charge are separated by high orientation selectivity barriers such that there
are no hidden pinwheel pairs for small noise strengths. Only spurious pinwheels are present for
small noise strengths and noise pinwheel densities similar to the ground truth pinwheel density,
Fig. 5.9C. In the high pinwheel density crystal, some pinwheel pairs of opposite topological
charge are closely spaced such that the pinwheel density decreases for small noise strengths with
noise pinwheel densities similar to the ground truth crystal pinwheel density, Fig. 5.9C. In
general, the pinwheel density shows a strong suppression of spurious and noise hidden pinwheels
for noise strengths smaller than σ2 < 0.1, Fig. 5.9C, for these arrangements.
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Figure 5.10: Spurious and noise hidden pinwheels in quasiperiodic orientation layouts.
A Examples of an anisotropic (upper) and isotropic (lower) quasiperiodic orientation domain. B The
pinwheel observation probability for both orientation domains and three different noise strengths with
noise pinwheel density ρn = ρ0. C Pinwheel density of observed orientation domains as a function
of the noise strength σ2 and three different noise correlation lengths (solid line: pinwheel observation
probability, diamonds: numerical results).

Spurious and noise hidden pinwheels in quasiperiodic orientation fields

A more thorough account for the experimentally observed orientation fields are quasiperiodic
orientation fields. ECP orientation fields of Eq. (5.26) with n > 3 active modes are qausiperiodic
and account quantitatively for experimentally observed pinwheel configuration with n ≈ 10 and
random lj [22]. The pinwheel configuration is only weakly dependent on n and sensitive to lj .
Here we examine low lj = 1 and high lj = (−1)j pinwheel density ECP orientation fields with
n = 8 active modes depicted in Fig. 5.10A.

The pinwheel observation probability is already for small noise strengths of σ2 < 0.1 centered
around pinwheels and present at low orientation selectivity and high orthogonality and gradient
regions, Fig. 5.10B. This effect becomes more severe for larger noise strengths and is stronger
for low pinwheel density quasiperiodic orientation fields. The total effect on the low pinwheel
density orientation field is an increase in the pinwheel density for small noise strengths and
noise pinwheel densities similar to the ground truth pinwheel density, Fig. 5.10C, similar to
the low pinwheel density hexagonal pinwheel crystal. In the high pinwheel density field, spurious
pinwheels emerge and pinwheels are hidden by noise such that for small noise strengths and noise
pinwheel densities similar to the ground truth pinwheel density, the pinwheel density appears to
increase or decrease, Fig. 5.10C, similar to the crystalline case. However, the noise dependence
of quasiperiodic orientation fields is substantially different from hexagonal pinwheel crystals.
For small noise strengths, quasiperiodic orientation fields depend linear on the noise strength,
whereas crystals revealed a strong nonlinear suppression.

Spatial averaging of pinwheel heterogeneity linearizes low noise suppression
of noise artifacts

Strong suppression of spurious and noise hidden pinwheels should in principle generalize
to arbitrary finite domains as only ground truth pinwheel centers contribute for very low
noise strengths and the pinwheel observation probability is at every position proportional to
∝ exp(−|Ψ0(x)2|/σ2). For hexagonal pinwheel crystals this generalization holds true, while
for quasiperiodic orientation fields there is no apparent strong suppression. A key difference
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5. Pinwheel configuration: theo. significance and precision measurement

Figure 5.11: Area dependence of pinwheel density in heterogeneous orientation domains.
A Quasiperiodic ground truth orientation domain with a pinwheel and a linear zone of low and high
progressive phase change in the center of concentric circles of different areas. B, C, D The observed
pinwheel densities in areas of different sizes with the pinwheel or one of the linear zones in their center.
The four areas correspond to the concentric circles of A and the last area to the depicted rectangular
orientation domain. Line colors correspond to the orientation layout motifs of A. Dashed line marks the
ground truth pinwheel density ρ0 of that area. E The total absolute curvature (Eq. (5.29)) and relative
slope deviation (Eq. (5.30)) of pinwheel densities over the range of noise strengths σ2 ≤ 1/2 (solid line:
mean, shaded area: standard deviation). The curvature of pinwheel density noise scaling decays for
increasing areas indicating a linear scaling. The relative slope deviation is on average constant, while its
standard deviation decreases with increasing area size (Noise pinwheel density is ρn = 2ρ0).

of hexagonal pinwheel crystals and quasiperiodic orientation field is the repertoire of different
orientation motifs. Most notably hexagonal pinwheel crystals comprise up to a coordinate ro-
tation and an orientation shift only one distinguished pinwheel, in contrast to a large repertoire
of different pinwheels in quasiperiodic orientation fields. This suggests pinwheel heterogeneity
as the crucial ingredient for the apparent lack of strong suppression.

In order to dissect the role of heterogeneity on the low noise strength regime, heterogeneity
was varied by measuring pinwheel densities in different area sizes, Fig. 5.11A. For small areas
around a pinwheel or a linear zone, pinwheel densities are substantially different in small noise
regimes due to the presence or absence of a ground truth pinwheel and converge eventually to
the noise pinwheel density in the strong noise limit, Fig. 5.11B. Noise artifacts are generically
strongly suppressed in low noise regimes, but the extent of these regimes varies depending on
the motif, Fig. 5.11C. In particular, the noise artifacts of the second motif of Fig. 5.11A is
strongly suppressed over the entire noise range σ2 < 0.5, Fig. 5.11B. Increasing the area leads
to a convergence of ground truth pinwheel densities to the ground truth pinwheel density of the
entire orientation field, Fig. 5.11C, D. The standard deviation of the ground truth pinwheel
density scales approximately as σρ ∝ A−γ with γ ≤ 3/4 except for pathological cases [280, 281].
The scaling depends on the pinwheel configuration and is typically γ = 3/4 for pinwheel crystals,
γ = 1/2 for random pinwheel patterns and 1/2 < γ < 3/4 for quasiperiodic pinwheel patterns
[22, 278, 279]. The noise artifact scaling becomes linear with noise strength for increasing areas
in the regime σ2 ≤ 0.5, Fig. 5.11B, C, D. The increase in linearity is quantified by the total
absolute curvature

κ(A) =

∫ 1/2

0
dσ2

∣∣∂2
σ2ρ(σ2, A)

∣∣ (5.29)

of observed pinwheel densities ρ(σ2, A) from different areas A with respect to the noise strength
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σ2 that declines for increasing areas, Fig. 5.11E. The relative deviation of the average slope

m(A) =

∫ 1/2

0
dσ2∂σ2ρ(σ2, A) (5.30)

of the pinwheel densities with respect to noise strength is on average constant with decreasing
standard deviation. The apparent linear noise artifact scaling of pinwheel densities is hence due
to the spatial heterogeneity of orientation fields and is typically a good approximation for areas
on the order of 10Λ2.

Linear noise scaling for Gaussian random orientation fields

The examined strong suppression of noise artifacts for single orientation motifs culminating in
an apparent linear suppression for heterogeneous superpositions of these motifs remain quan-
titatively paradoxic. In order to elucidate this paradox, we dissect noise artifacts in an exact
solvable class of orientation fields, that is Gaussian random fields.

Isotropic and shift-symmetric orientation field ensembles are defined by a single correlation
function C0

1 (r) (see methods for further details). We notice that additive noise leads to an
altered correlation function specified by C1(r) = C0

1 (r) +Cn1 (r). Denoting the pinwheel density
of the ground truth orientation field by ρ0 and of the noise field by ρn, the observed pinwheel
density becomes (see methods section for further details)

ρ = ρ0 +
σ2

1 + σ2
(ρn − ρ0) . (5.31)

For vanishing noise σ → 0 the observed pinwheel density converges to the ground truth pinwheel
density ρ = ρ0. A lower bound for the pinwheel density ρ ≥ ρ0/(1 + σ2) is given by a spatially
uniform noise offset, that is noise with vanishing pinwheel density ρn = 0. In small noise regimes
σ2 � 1, the observed pinwheel density is approximately given by

ρ = ρ0 + σ2 (ρn − ρ0) (5.32)

revealing the exact linear noise scaling.
We confirmed this result numerically by synthesis of the ECP solution class (Eq. (5.26))

with lj = (−1)j , n = 101 active modes and random phases φj as shown in Fig. 2.6A. For
large numbers of active modes n, ECPs converge to Gaussian random fields due to the central
limit theorem (see methods). The pinwheel observation probability map, Fig. 2.6B, appears
qualitatively similar to the high pinwheel density quasiperiodic orientation field of Fig. 5.10B.
The pinwheel density, Fig. 5.12C, is again similar to the high pinwheel density quasiperiodic
orientation field and fits the analytically predicted pinwheel density from Eq. (5.31). This resem-
blance to the high pinwheel density quasiperiodic orientation field suggests that the Gaussian
random field approximation for noise artifacts is already valid for a few active modes n ≈ 10.

In small noise regimes, only the vicinity of pinwheel centers should contribute to the pinwheel
observation probability. The pinwheel observation probability at a pinwheel center position xi
can be derived analytically (see methods) by noting that the amplitude is given by

Ψ0(x) = (∇Ψ0(xi))
T (x− xi) (5.33)

and averaging the pinwheel observation probability (Eq. (5.10)) over the distribution of gradi-
ents at the pinwheel centers. The pinwheel observation probability map is radially symmetric
around pinwheel centers with a long tail that increases with noise strength σ2, Fig. 5.12D. The
amplitude of the pinwheel probability map declines and the full width at half max increases with

119



5. Pinwheel configuration: theo. significance and precision measurement

Figure 5.12: Measurement noise in orientation domains with Gaussian selectivity statistics.
A An example orientation domain drawn from an isotropic ECP solution (see Eq. (5.26)) with n = 101
modes. B The pinwheel observation probability for the orientation domain and three different noise
strengths with noise pinwheel density ρn = ρ0. C Pinwheel density of observed orientation domains
as a function of the noise strength σ2 and three different noise correlation lengths (solid line: theory
see Eq. (5.31), diamonds: numerical results). The lower bound on the pinwheel density is given by
ρ ≥ ρ0/(1 + σ2). D The average pinwheel observation probability profile at a pinwheel center is radially
symmetric with a long tail (ρ0 = ρn). E The average pinwheel observation probability amplitude at the
pinwheel center (solid lines) together with the full width at half max (FWHM) of the average pinwheel
observation probability at a pinwheel center (dashed lines). Line colors correspond to C. F Pinwheel
density (solid line) and linear pinwheel approximation (dotted lines) for small noise strengths.

noise strength, Fig. 5.12E, respectively. The total number of observed pinwheels per ground
truth pinwheel was derived earlier and given by Eq. (5.17). For isotropic shift-symmetric Gaus-
sian random fields the joint distribution of the anisotropy a ≥ 1 and selectivity s2 at pinwheel
centers can be derived (see methods) and yields

P
(
s2, a

)
=
a(a2 − 1)s4

2π3ρ3
0

e
− 1+a2

2πρ0
s2
. (5.34)

The average number of observed pinwheels at a ground truth pinwheel is given by the average
of Eq. (5.17) leading to the pinwheel density

ρ = ρ0〈N〉 = ρ0 + σ2ρn (5.35)

and is depicted in Fig. 5.12E. This shows that the generation of spurious pinwheels near ground
truth pinwheel centers is an upper bound on the pinwheel density for Gaussian random fields
in the small noise regime. However, the linear approximation does not account for noise hidden
pinwheels in low noise regimes. In total, the paradoxical linear noise scaling can be attributed
partially to the heterogeneity of isolated and linear approximated pinwheels for small noise
strengths. Pinwheels that are hidden by noise are presumably due to the non-linear orientation
field in the vicinity of pinwheels.

Strong pinwheel suppression in high orientation selectivity layouts

Previously, orientation selectivity varied across the visual cortex reminiscent of intrinsic signal
imaging that measures mostly signals correlated to membrane potential changes [346]. However,
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Figure 5.13: Strong pinwheel suppression in high orientation selectivity layouts. A Orienta-
tion selectivity distribution of orientation domain layout in Fig. 5.12A that is modified by Eq. (5.36) to
increase orientation selectivity globally (upper: λ = 0.1, middle: λ = 1, lower: λ = 5). B Pinwheel ob-
servation probability maps corresponding to orientation selectivity distribution from A for three different
noise strengths with noise pinwheel density ρn = ρ0. Pinwheel observation probability localize stronger
around pinwheel centers for increasing λ. C Pinwheel densities corresponding to the rows of A and B
show a stronger suppression of spurious pinwheels and pinwheels hidden by noise for larger λ. D In the
limit of uniform orientation selectivity, spurious pinwheel generation is given by Eq. (5.38) and shows
a strong suppression of spurious pinwheels similar to the linear zones shown in Fig. 5.6. The vertical
dashed line indicates the peak of spurious pinwheels in the limit of small noise pinwheel densities. The
dashed horizontal curve shows the limiting spurious pinwheel density for high noise pinwheel densities.

the spiking activities of neurons are sharply tuned at pinwheels and their selectivity is statis-
tically indistinguishable from iso-orientation domains [71, 355–357], but see [358]. What effect
does a constant orientation selectivity have on the pinwheel observation probability?

The transition to uniform distributions of orientation selectivity is examined on the orien-
tation layout Ψ0(x) of the previous section, Fig. 5.12. The orientation selectivity is altered by
an orientation selectivity strength parameter λ

Ψ′0(x) =
1

λ
tanh (λ|Ψ0(x)|) ei arg Ψ0(x) (5.36)

and subsequently normalized leading to an orientation selectivity distribution shown in
Fig. 5.13A. Thus for λ → 0 orientation domains are given by Ψ′0(x) = Ψ0(x) and for λ → ∞
by Ψ′0(x) = Θ(|Ψ0(x)|)ei arg Ψ0(x) with Θ(·) denoting the Heaviside function. The pinwheel
observation probability map localizes to pinwheel centers for increasing orientation selectivity,
Fig. 5.13B. This results in a stronger suppression for small noise regimes, Fig. 5.13C.
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In the limiting regime of constant orientation selectivity Ψ′0(x) = Θ(|Ψ0(x)|)eiϑ(x), the
pinwheel observation probability in pinwheel free regions is given by

ρ(x) =ρne
− 1
σ2 e
− ‖∇ϑ(x)‖2

4πσ2ρn(
I0

(
‖∇ϑ(x)‖2

4πσ2ρn

)
+
‖∇ϑ(x)‖2

2πσ2ρn

(
I0

(
‖∇ϑ(x)‖2

4πσ2ρn

)
+ I1

(
‖∇ϑ(x)‖2

4πσ2ρn

)))
(5.37)

with the noise pinwheel density ρn. As the pinwheel observation probability is monotonically
increasing with ‖∇ϑ(x)‖, it is particularly noise sensitive in the vicinity of phase singularities,
i.e. pinwheels. The average over the phase gradient can be computed analytically (see methods)
and gives

ρ = ρne
− 1
σ2(

1√
π

σ2ρn
ρ0

G2,2
2,3

(
ρ0

σ2ρn

∣∣∣∣ 1, 5
2

2, 2, 2

)
+

√
π

2

(
1 +

ρ0

σ2ρn

)
U

(
1

2
, 0,

ρ0

σ2ρn

))
(5.38)

with the ground truth pinwheel density ρ0, G denoting the Meijer G function and U the confluent
hypergeometric function. Spurious pinwheels are thus strongly suppressed by spatially uniform
orientation selectivity in orientation domains, Fig. 5.13D, similar to the linear zone motif,
Fig. 5.6.

5.4 Discussion

In this article, we presented the theoretical significance of pinwheel configurations, developed an
analytical approach of their susceptibility to measurement noise and examined different orien-
tation layouts under measurement noise. We identified three distinct noise effects on pinwheels:
displacement of pinwheels, pinwheels hidden by noise and the generation of spurious pinwheels.
In small noise regimes, we found strong suppression of spurious and noise hidden pinwheels for
pinwheel free orientation layouts, single pinwheels, pinwheel pairs, crystalline orientation layouts
and orientation layouts with constant selectivity. In contrast, pinwheel densities of quasiperiodic
orientation domains scaled virtually linear in small noise regimes of strength σ2 < 0.2 and noise
pinwheel densities that are similar to the ground truth pinwheel density. Finally, orientation
domains composed of infinitely many independent random active modes revealed an exact linear
scaling of pinwheel density in small noise regimes.

The observed linear scaling behavior in small noise regimes allows to improve the pinwheel
density analysis of experimentally observed orientation domains [22–24] by an extrapolation to
the zero noise limit. In this analysis, orientation domains are bandpass filtered such that all
spatial noise frequencies except for frequencies similar to the ground truth signal are removed.
The remaining noise has thus a similar pinwheel density as the ground truth signal and a noise
strength on the order of σ2 = 0.2. Although strong suppression of spurious and noise hidden
pinwheels in principle generalizes to arbitrary finite domains as only ground truth pinwheel cen-
ters contribute in the small noise limit, already simple quasiperiodic orientation domains scale
virtually linear in small noise regimes of strength σ2 < 0.2 and noise pinwheel densities that
are similar to the ground truth pinwheel density. The range of linear scaling is even larger for
isotropic layouts that are more similar to experimentally observed layouts. This approximately
linear behavior is due to the diversity of spatial orientation selectivity organization and holds
for cortical area sizes on the order of 10Λ2 and sufficiently quasiperiodic orientation domains,
Fig. 5.11B. Thus, for sufficiently large, bandpass filtered orientation domains a zero noise limit
extrapolation can be achieved by: (i) Estimating pinwheel densities of bandpass filtered orien-
tation domains from subsets of stimulus repetitions. (ii) Plotting estimated pinwheel densities
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against the inverse number of stimulus repetitions 1/N (this scales with σ2 for independent
noise). (iii) Linearly extrapolate the pinwheel density to obtain the zero noise limit 1/N → 0.

This theory sheds light on the confidence regions of pinwheel positions under additive noise
and thus contributes to an improved benchmark scheme for models of orientation domains.
Generically, pinwheel observation probability scales with the noise pinwheel density ρn, with the
scaled gradient lc‖∇Ψ0‖/σ and orthogonality measure l2c |ν0|/σ2 and inversely with the scaled
orientation selectivity |Ψ0|/σ. Thus pinwheels observed in low selectivity regions and high
gradients should be handled with care, whereas pinwheels surrounded by high selectivity regions
should be trusted the most. The confidence regions of pinwheel positions can be quantitatively
approximated by calculating the mean orientation domain of a given set of stimulus repetition
recordings, estimate noise strength and correlation length by either bootstrapping or similar
techniques and finally use Eq. (5.10) to calculate the pinwheel observation probability map.

The strong suppression of spurious and noise hidden pinwheels for spatially uniform orienta-
tion selectivity domains suggests the recording of activity responses to obtain precise pinwheel
configurations. Conventional intrinsic signal imaging allows us to image large cortical areas, but
suffers from signal recordings that are rather related to the membrane potential than to neuronal
activity [346]. However, the membrane potential shows only weak selectivity in the vicinity of
pinwheel centers, whereas orientation selectivity measured by neuronal activity showed statis-
tically indistinguishable selectivity in iso-orientation domains and in the vicinity of pinwheel
centers [71, 355, 356], but see [358]. Epi-florescence imaging of neurons expressing fluorescent
dyes such as GCaMP6 offers an alternative that overcomes this noise sensitivity.

Apart from the theoretical significance of the pinwheel configuration, the precise determina-
tion of their position provides additionally robust anchors for a chronic comparison of orientation
layouts. In [147] pinwheels are predicted to annihilate and therefore move during development.
An experimental confirmation of this prediction requires a profound understanding of the noise
impact on pinwheel positions. In total, precise pinwheel configurations are the first step of intro-
ducing a benchmark system for the development of quantitative models of a paradigm canonical
circuit.

5.5 Methods

Pinwheel observation probability map for a general Gaussian ensemble

The layout of orientation domains can be completely specified by a complex field Ψ(x) = ξ(x)+
iη(x) with x = (x, y)T . The total number of pinwheel centers xi in an area A is given by the
spatial integral over ∑

i

δ(x− xi) = δ(η(x))δ(ξ(x))

∣∣∣∣det
∂(η(x), ξ(x))

∂(x, y)

∣∣∣∣ . (5.39)

For the sake of brevity, the dependence on the spatial position will be omitted in the following.
If the complex field has a random component, the pinwheel observation probability is given by
the ensemble average 〈·〉 over the pinwheel center positions

ρ = 〈δ(ξ)δ(η) |ξxηy − ξyηx|〉 , (5.40)

where derivatives are abbreviated by ∂xξ = ξx. A convenient notation for the pinwheel density
can be achieved by introducing the matrix

A =

(
0 0
0 A0

)
∈ R6×6, A0 =


0 0 0 1/2
0 0 −1/2 0
0 −1/2 0 0

1/2 0 0 0

 (5.41)
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that allows to rewrite the averaging term as |ξxηy − ξyηy| = |χTAχ| with the vector χ =
(ξ, η, ξx, ξy, ηx, ηy)

T . The pinwheel observation probability can thus be written as

ρ =
1

π

∫
dt

t2

(
T (0)− T (t) + T (−t)

2

)
with T (t) =

〈
δ(ξ)δ(η)eitχ

TAχ
〉
. (5.42)

Evaluation of the average requires the knowledge of the ensemble probability density function
P (χ). The least structured probability density function P (χ) that fixes a set of statistical
quantities is the maximum entropy ensemble [141, 142]. For fixed one- and two-point correlation
functions µ = 〈χ(x)〉 and Σ = 〈δχ(x)δχ(x)T 〉 it is given by a Gaussian multivariate distribution

P (χ) =
1√

(2π)6 det Σ
e−

1
2

(χ−µ)TΣ−1(χ−µ) (5.43)

with at most 27 parameters. The ensemble average is then a simple Gaussian integral that can
be calculated [277] by introducing C = (Σ−1)i>2,j>2 and µ0 = (µ)i>2, which gives

T (±t) =
e−

1
2
µTΣ−1µ

2π

√
det Σ−1

detC

e
1
2
µ0

TM−1
∓ (t)Cµ0√

detM∓(t)
(5.44)

withM±(t) = 1±2itC−1A0. This leads to the most general solution of the pinwheel observation
probability of Gaussian field ensembles

ρ =
e−

1
2
µTΣ−1µ

2π2

√
det Σ−1

detC

∫
dt

t2

(
e

1
2
µ0

TCµ0 − e
1
2
µ0

TM−1
+ (t)Cµ0

2
√

detM+(t)
− e

1
2
µ0

TM−1
− (t)Cµ0

2
√

detM−(t)

)
. (5.45)

The pinwheel observation probability reduces drastically in complexity by assuming a ground
truth orientation field with a rotation-, translation- and shift-symmetric additive noise field. The
mean of the multivariate Gaussian distribution is then equal to the ground truth orientation
field and the covariance matrix is given by

Σ = diag (cA, cA, cG, cG, cG, cG) (5.46)

where cA = C1(0)/2 is the noise strength and cG = −∆C1(0)/4 the noise correlation decay. The
pinwheel observation probability is given by

ρ =
cG

2πcA
e
− |Ψ0|

2

2cA
1

π

∫
dt

t2

(
1− e−

t2

t2+1

‖∇Ψ0‖
2

2cG cos

(
t

t2 + 1

ν0

cG

)
/(t2 + 1)

)
, (5.47)

with ν0 = |∂xξ0∂yη0 − ∂xη0∂yξ0| the orthogonality between ∇ξ0 and ∇η0 given by the area of
their spanned parallelogram. A small noise approximation is given by

ρSN =
e
− |Ψ0|

2

2cA

2πcA

(
ν0 erf

(
ν0√

2cG‖∇Ψ0‖2

)
+

1√
π
e
− ν02

2cG‖∇Ψ0‖2
√

2cG‖∇Ψ0‖2
)
, (5.48)

where terms of order O(ξ2
n) and O(η2

n) and their derivatives in |ξxηy−ξyηx| are neglected during
the derivation.

In the case of vanishing orthogonality ν0 = 0, the integral can be solved analytically. Using

the abbreviation a = ‖∇Ψ0‖2
2cG

and transforming the coordinate of the integral in Eq. (5.47) by
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t = tanu leads to

2πρcA
cG

e
|Ψ0|

2

2cA =

∫ π/2

−π/2

du

π

1

sin2 u

(
1− e−a sin2 u cos2 u

)
=(1 + ∂a)

∫ π/2

−π/2

du

π

1

sin2 u

(
1− e−a sin2 u

)
=(1 + ∂a)

∫ a

0
dx

∫ π/2

−π/2

du

π
e−x sin2 u

=(1 + ∂a)

∫ a

0
dxe−x/2I0

(x
2

)
=e−

a
2

(
I0

(a
2

)
+ a

(
I0

(a
2

)
+ I1

(a
2

)))
, (5.49)

where Il denotes the modified Bessel function of the lth kind. The pinwheel observation proba-
bility for vanishing orthogonality is hence given by

ρν0=0 =
cG

2πcA
e
− |Ψ0|

2

2cA e
− ‖∇Ψ0‖

2

4cG

·
(
I0

(
‖∇Ψ0‖2

4cG

)
+
‖∇Ψ0‖2

2cG

(
I0

(
‖∇Ψ0‖2

4cG

)
+ I1

(
‖∇Ψ0‖2

4cG

)))
. (5.50)

Pinwheel creation/annihilation rate

The event of a spurious pinwheel generation and a ground truth pinwheel that is hidden by
noise corresponds to pinwheel creation and annihilation events of pinwheel pairs, respectively.
In the following, this rate will be derived in the small noise approximation for spatio-temporal
measurement noise

Ψ(x, t) = Ψ0(x) + Ψn(x, t). (5.51)

At points where pinwheels create or annihilate, the real and imaginary part of the orientation
field must vanish and the gradients of the real and imaginary part must be co-linear, i.e. the
orthogonality measure ν = |∂xξ∂yη−∂yξ∂xη| must vanish as illustrated in Fig. 5.14. Thus, the
number of creation/annihilation events at position xi and times tj is given by the integral over∑

i,j

δ(x− xi)δ(t− tj) = δ (η(x, t)) δ (ξ(x, t)) δ (ν(x, t))

∣∣∣∣det
∂(η(x, t), ξ(x, t), ν(x, t))

∂(x, y, t)

∣∣∣∣ , (5.52)

where the determinant serves as a normalization factor. Notice that the normalization term
is of quartic order in the noise field components in contrast to the quadratic order of the nor-
malization term of the pinwheel observation probability. The spatio-temporal dependence of
the field components will be omitted in the following for the sake of brevity. The pinwheel
creation/annihilation rate ρc/a(x) is given by the expectation over the noise field ensemble

ρc/a(x, t) =

〈
δ (η) δ (ξ) δ (ν)

∣∣∣∣det
∂(η, ξ, ν)

∂(x, y, t)

∣∣∣∣〉 . (5.53)

The relevant noise field components appearing in this formula are

χT =(ξn, ∂xξn, ∂yξn, ∂tξn, ∂x∂tξn, ∂y∂tξn), (5.54)

νT =(ηn, ∂xηn, ∂yηn, ∂tηn, ∂x∂tηn, ∂y∂tηn). (5.55)
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Figure 5.14: Normal form of two oppositely charged pinwheels that annihilate/create.A
Separated pinwheels of opposite topological charges are depicted and defined by the intersections of
the contour lines of vanishing real and imaginary amplitude. B At the creation/annihilation event, the
zero-amplitude contour lines meet in a single point that is equivalent to the gradients of the real and
imaginary part to be co-linear. These events are counted by the creation/annihilation rate in Eq. (5.53).
C Pinwheels are annihilated and zero-amplitude contour lines have no intersection.

The noise field ensemble is chosen to be isotropic in space, translation invariant in time and
shift-symmetric that leads to the maximum entropy distribution of

p(χ,ν) =
1√

(2π)12 det Σ
exp(−1

2
(χ,ν)TΣ−1(χ,ν)) (5.56)

with the covariance matrix

Σ = diag(cA, cG, cG, cC , cT , cT , cA, cG, cG, cC , cT , cT ) (5.57)

and the parameters

cA =
1

2
C(0), cG =− 1

4
∆C(0), cC =− 1

2
∂2
tC(0), cT =

1

4
∆∂2

tC(0) (5.58)

with the 2-point correlation function C(x, t) = 〈Ψn(0, 0)Ψ̄n(x, t)〉. Due to the translation in-
variance in time, the pinwheel creation/annihilation rate is stationary in time and thus only
depends on the spatial position ρc/a(x). The exact pinwheel creation/annihilation rate eluded
a direct calculation and therefore a small noise approximation will be derived here. For that,
the orthogonality measure can be expanded and approximated by

ν =|∂xξ∂yη − ∂yξ∂xη|
=| ∂xξ0∂yη0 − ∂yξ0∂xη0︸ ︷︷ ︸

=ν0

+ ∂xξ0∂yηn − ∂yξ0∂xηn + ∂xξn∂yη0 − ∂yξn∂xη0︸ ︷︷ ︸
=ω

+ ∂xξn∂yηn − ∂yξn∂xηn︸ ︷︷ ︸
=νn

|

.
=|ν0 + ω|, (5.59)

where in the last expression all terms of quadratic order or higher in the noise field O(ξ2
n) and

O(η2
n) are neglected. The normalization factor simplifies in the small noise regime to∣∣∣∣det

∂(η, ξ, ν)

∂(x, y, t)

∣∣∣∣ =

∣∣∣∣ν∂tν + ∂tξn det

(
∂xη ∂xν
∂yη ∂yν

)
− ∂tηn det

(
∂xξ ∂xν
∂yξ ∂yν

)∣∣∣∣
.
=

∣∣∣∣∣∣∣ν0∂tω + ∂tξn (∂xη0∂yν0 − ∂yη0∂xν0)︸ ︷︷ ︸
=α

−∂tηn (∂xξ0∂yν0 − ∂yξ0∂xν0)︸ ︷︷ ︸
=β

∣∣∣∣∣∣∣
= |ν0∂tω + α∂tξn − β∂tηn| . (5.60)
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With this small noise approximation, the argument of the pinwheel creation/annihilation rate
is linear in the random noise field

ρSN
c/a(x) = 〈δ(η)δ(ξ)δ(ν0 + ω) |ν0∂tω + α∂tξn − β∂tηn|〉 , (5.61)

allowing a direct evaluation with the average over the probability density function to

ρSN
c/a(x) =

√
2

π

√
cC (α(x)2 + β(x)2) + cT ν0(x)2|∇Ψ0(x)|2

1√
2πcG|∇Ψ0(x)|2

e
− ν0(x)2

2cG|∇Ψ0(x)|2
1

2πcA
e
− |Ψ0(x)|2

2cA . (5.62)

The pinwheel creation/annihilation rate is positive and measured in units of one over area
and time as expected, since it counts creation/annihilation events per area and time. Notice the
similarity to the small noise approximation of the pinwheel observation probability of Eq. (5.48).

Pinwheel density of orientation domain ensembles

Dynamically generated orientation domains in the linear regime are Gaussian random fields [359]
and can be parameterized by the model of [171]. After the transient linear regime nonlinearities
select specifically organized orientation domains such as essentially complex planforms (ECP)
[22, 128] or circular phase progression (CPP) solutions [137]. The noise effect on the pinwheel
density can be computed exactly for the transient regime and approximated for ECPs and CPPs
in the limit of many modes.

In the transient linear regime, isotropic and shift-symmetric orientation domain ensembles
can be parametrized by their power-spectral density width. A useful model ensemble is defined
by a parameter β inversely scaling with power-spectral density width and the correlation function

C0
1 (r) = 1F1

(
2 + β

2
; 1;− r2

4B

)
with B =Γ

(
2 + β

2

)2

/Γ

(
1 + β

2

)2

. (5.63)

The ECP solution class is defined by n equidistantly placed plane waves on a semi-circle in
Fourier space kj = (cos(jπ/n), sin(jπ/n))T with random phases φj and binary spin-like variables
lj ∈ {−1, 1}. The normalized orientation domains and their correlation function are given by

Ψ0(x) =
1√
n

n−1∑
j=0

ei(ljkjx+φj) and C0
1 (x) =

1

n

n−1∑
j=0

eiljkjx. (5.64)

The CPP solution set is defined by the superposition of 2n equidistantly placed plane waves on
a circle in Fourier space with random phases φj and the phase progression of θj = πjd/n + ϑ0

with d ∈ {0, 1, . . . , n − 1}. The normalized orientation domains and their correlation function
are given by

Ψ0(x) =
1√
n

n−1∑
j=0

2eiθj cos (kjx+ φj) and C0
1 (x) =

1

n

n−1∑
j=0

cos (kjx) . (5.65)

The number of pinwheels per typical scale area Λ2 = (2π)2 of the transient random field and
specific solutions with many modes n is given by

ρtrans
0 =π

(2 + β)Γ
(

1+β
2

)2

2Γ
(

2+β
2

)2 , ρCPP
0 =π, ρECP

0 =π

√
1− 2ζ2 (5.66)
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with the anisotropy parameter ζ = 1
n

∑
j ljkj [22, 171]. Notice that for the CPP solutions, the

random field approximation only holds for d 6= 0 in the large n limit. The anisotropy of ECP
solutions |ζ| is bounded for many modes by 2/π and vanishes for large n on average leading to
the same result as for CPPs.

In the presence of noise the pinwheel density ρ0 of these fields changes to

ρ = ρ0

(
1− σ2 1− ρn/ρ0

1 + σ2

)
.
= ρ0

(
1− σ2

(
1− ρn

ρ0

))
(5.67)

in the isotropic case of the transient and CPP orientation domains with the noise pinwheel
density ρn and strength σ2. In the anisotropic case of ECPs the pinwheel density ρ0 is altered
to

ρ =ρ0

(
1− σ2

(
1−

√
1− 2ζ2 ρn

ρ0

))
√√√√√1 +

2ζ2
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√
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.
=ρ0

(
1− σ2
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(
1− ζ2 −

√
1− 2ζ2(1− 3ζ2)

ρn
ρ0

))
. (5.68)

Pinwheel observation probability at pinwheel centers in Gaussian random
fields

The spatial average of a functional F [Ψ0(x)] at pinwheel centers xi with pinwheel density ρ0 is
defined by the spatial average over

1

ρ0

∑
i

F [Ψ0(x)]δ(x− xi) =
1

ρ0
F [Ψ0(x)]δ(ξ0(x))δ(η0(x))ν0(x). (5.69)

Notice that ν0(x) accounts for correct normalization under the change of variables in the integral.
Isotropic and shift-symmetric Gaussian random fields can be described by the multivariate
Gaussian distribution

P (ξ0(x), η0(x),∇Ψ0(x)) =
e−ξ0(x)2−η0(x)2

π

e
− ‖∇Ψ0(x)‖2

2πρ0

(2π2ρ0)2
. (5.70)

At pinwheel centers xi the amplitude vanishes such that the linear approximation around a
pinwheel center is given by

Ψ0(x) = (∇Ψ0(xi))
T (x− xi) . (5.71)

The probability distribution at a pinwheel center is hence given by

P (∇Ψ0) =
1

4π5ρ3
0

ν0e
− ‖∇Ψ0‖

2

2πρ0 =
1

4π5ρ3
0

e
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2

2πρ0
1

π

∫
ds

s2

(
1− eiν0 + e−iν0

2

)
. (5.72)

The average of the pinwheel observation probability map (Eq. (5.10)) at pinwheel centers is then
a Gaussian integral that can be evaluated (see [30, 154] for a similar calculation used for pair
correlation functions) and leads to a radially symmetric observation probability map

〈ρ(r)〉 = ρ0X

∫ ∞
0

dt
2t4Z + t2(−2Y + Z + 3) + 2Y − Z + 3

(t2 + 1)3
√
t4Z + t2(−Y + Z + 1) + 1

(5.73)
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with the dimensionless parameters

X =
2σ2
√

(1 + σ2ρn/ρ0) (1 + σ2ρn/ρ0 + 2πρnr2)

π (2πρ0r2 + σ2)2 , (5.74)

Y =
1

(1 + σ2ρn/ρ0) (1 + σ2ρn/ρ0 + 2πρnr2)
, (5.75)

Z =
σ2
(
2πρ0r

2 + σ2
)
ρ2
n/ρ

2
0

(1 + σ2ρn/ρ0) (1 + σ2ρn/ρ0 + 2πρnr2)
. (5.76)

This integral can be solved by a complicated sum of elliptic functions provided by [154].
The total number of pinwheels can be computed by utilizing Eq. (5.17) that requires the

distribution of anisotropy and selectivity at pinwheel centers. The probability distribution for
the spatial average at pinwheel centers in terms of ν0(x) and ‖∇Ψ0(x)‖2 is given by

P (ν, g) =
1

ρ0

〈
δ(ξ0(x))δ(η0(x))ν0(x)δ (ν − ν0(x)) δ

(
g − ‖∇Ψ0(x)‖2

)〉
. (5.77)

The Fourier representation of the δ distribution for the last two terms leads to the solution of

P (ν, g) =
ν

2π3ρ3
0

e
− g

2πρ0 Θ (g − 2ν) (5.78)

with Θ(·) denoting the Heaviside function. As the linear approximation of a single pinwheel
can be transformed to ν = s2a and ‖∇Ψ0(x)‖2 = s2(1 + a2) the probability distribution can be
transformed to these coordinates that gives

P
(
s2, a

)
=
a(a2 − 1)s4

2π3ρ3
0

e
− 1+a2

2πρ0
s2

(5.79)

with the anisotropy a ≥ 1 and selectivity s2, see [360]. The average number of spurious pinwheels
around a pinwheel center given by Eq. (5.17) is then a standard integral.

Pinwheel observation probability of spatially uniform selectivity layouts

The gradient of the phase θ = arg Ψ0 of an orientation domain ensemble is distributed as

P
(
‖∇ϑ‖2

)
=
〈
δ
(
‖∇ϑ‖2 − ‖∇θ‖2

)〉
, (5.80)

where the phase gradient is given by

‖∇θ‖2 =
1

|Ψ0|2
(

(∂xη0 cos θ − ∂xξ0 sin θ)2 + (∂yη0 cos θ − ∂yξ0 sin θ)2
)

=
f2

|Ψ0|2
. (5.81)

For isotropic and shift-symmetric orientation domains the average over the gradient with the
probability distribution p(‖∇Ψ0‖) = exp(− 1

2cG
‖∇Ψ0‖2)/((2π)2c2

G)) can be separated from the
amplitude. Thus, the integral over the amplitude can be evaluated as
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(5.82)

129



5. Pinwheel configuration: theo. significance and precision measurement

The remaining integrals over derivatives of the field is a multi-dimensional Gaussian integral
that reads

P
(
‖∇ϑ‖2

)
=
cA∂‖∇ϑ‖2

2π

∫ 2π

0
dθ

‖∇ϑ‖2
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cAcG
(cA‖∇ϑ‖2 + cG)2

(5.83)

and is a Student’s t-distribution with three degrees of freedom. As the orthogonality vanishes
ν0 = 0 for spatially constant selectivity layouts, the pinwheel observation probability is given by

ρ =
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with G denoting the Meijer G function and U the confluent hypergeometric function.

Numerical evaluation of pinwheel observation probability

For single pinwheels, the pinwheel observation probability Eq. (5.10) was numerically evaluated
by the MATLAB 2015b internal integral function that attempts to keep integration errors smaller
than the absolute error of 10−10 and the relative error of 10−6 [361]. In the case of pinwheel
pairs, the three-dimensional integral was computed in polar coordinates by the MATLAB 2015b
internal integral3 function with the same error bounds [361, 362]. Due to the oscillatory nature of
orientation domains, a direct spatial integration of them was not feasible. Instead, orientation
domains were numerically approximated on a grid of 4096 × 4096 pixels with 22Λ × 22Λ for
quasiperiodic orientation domains, 32768×32768 pixels with 22Λ×22Λ for orientation domains
with high selectivity and on the discretized unit cell with 745 pixels per Λ for the pinwheel
crystal. The gradient and orthogonality was calculated by a first-order divided difference scheme
and subsequently binned by the MATLAB 2015b internal and automated histogram2 function.
For each bin value, the integral of the pinwheel observation probability was computed in the
same way as for the single pinwheel. Finally, the total pinwheel observation probability was
calculated by summing over the non-integral part of Eq. (5.10) in every pixel and scaling with
the corresponding integral value of the binned data.

Numerical synthesis of random orientation layouts

For translation invariant orientation layouts the correlation function C(x1−x2) = 〈Ψ(x1)Ψ̄(x2)〉
is diagonal in Fourier space and given by P (k). The Fourier transform of a random orientation
layout Ψ̃(k) with the specified correlation function is synthesized by drawing Gaussian random
numbers u, v ∼ N (0, 1) for all k and scaling them by Ψ̃(k) =

√
P (k)(u+ iv).
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Chapter 6

Three-dimensional organization of
orientation selectivity in cortical tissue

“Names are a menace in evolutionary history.
. . . The obsession with discrete names is an example
of what I call the tyranny of the discontinuous
mind.”

— R. Dawkins, [363]

Original contribution

J. Liedtke and F. Wolf conceived and designed the study. J. Liedtke performed the theoretical
analysis and numerical simulations. M. Schottdorf analyzed power-spectra of experimentally
measured orientation domains. J. Liedtke wrote the manuscript.
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6. Three-dimensional organization of orientation selectivity in cortical tissue

6.1 Abstract

Columnar structure is a neocortical organization principle present in many species and across
brain areas. In primates and placental carnivores, the functional architecture of the primary vi-
sual cortex (V1) is composed of orientation selective neurons that are horizontally grouped into
(iso-) orientation domains and vertically into columns. In cats, orientation selectivity is constant
along association fibers, while a substantially varying columnar orientation selectivity profile was
observed in macaques. In rodents, functional architecture lack any apparent spatial structure
and is organized in an interspersed layout. These different organization principles of orientation
selectivity in V1 are most remarkable in the light of evolution, since they originated from a single
species, the last common ancestor, more than 65 million years ago. To shed light on possible
evolutionary paths of V1’s functional architecture, examination of the full three-dimensional
organization of orientation selectivity is inevitable. We provide the theoretical basis for a sys-
tematic examination of orientation selectivity in three-dimensional geometries that captures an
entire model class of random wiring and frozen noise models in a broad parameter regime. Key
characteristics of orientation domains are pinwheel centers that are surrounded by all preferred
orientations. In three dimensions, pinwheel points generalize to pinwheel strings. We provide an
exact formula for the average pinwheel string length in flat cortices and show that it is invariant
to a columnar orientation selectivity profile such as an unselective layer 4C. A curved cortex
with a fixed typical scale bends pinwheel strings and favors U shaped pinwheel string motifs.
Finally, we provide two different scenarios for the transition between an interspersed layout
and orientation domains. This work sets the stage for a profound theoretical understanding of
three-dimensional functional architectures of V1 and putative transitions between interspersed
and organized functional layouts for which intermediate organizations might still exist.

6.2 Introduction

The neocortex is a 1–3 mm thick cortical tissue composed of 6 horizontal layers and vertical
columns [364]. Cortical columns range from the pial surface to the white matter by traversing
horizontal layers orthogonally. The concept of cortical columns goes back to Mountcastle’s dis-
covery in the 50s, who measured, for the first time, that neurons in the somatosensory cortex
respond either to superficial or deep stimulation in one vertical electrode penetration [70]. This
columnar organization was subsequently discovered for different neuronal response specificities
such as ocular dominance, light contrast and orientation selectivity in V1 [365, 366]. Orienta-
tion selective neurons respond preferentially to contours of specific orientations in their receptive
fields. More specifically, orientation selectivity was found to be organized in orientation domain
columns in V1 of cats [69, 80, 367–372], macaques [297, 373], ferrets [374], tree-shrews [375,
376], minks [377] and perhaps sheep [378], Fig. 6.1A. Orientation domains with the same ori-
entation are separated by a typical column spacing or typical scale. The columnar organization
of orientation domains is not uniform across laminar layers, for instance, a weakly selective
or even unselective layer 4C was found in macaques [297, 379, 380] and tree shrews [79, 375],
Fig. 6.1A. Although details of this observation are debated [381, 382], all findings have a sub-
stantially varying orientation selectivity profile in the columnar direction in common. A drastic
deviation of columnar organization was found in rodents with the total absence of orientation
preference organization [41], Fig. 6.1A, but see [383]. Most remarkable, the lack of organization
seems not to correlate with function, because no apparent organization of orientation selectivity
was found in highly visual gray squirrels [42]. Despite the variety of different functional archi-
tectures in V1, the columnar organization of orientation selectivity was neglected in theoretical
models except for [120]. From an evolutionary point of view, the distinct organizations raise the

132



6.2. Introduction

Figure 6.1: Evolution of the functional architecture in the primary visual cortex (V1). A
Three distinct three-dimensional functional architectures composed of orientation selective neurons in V1
are observed in different mammalian species. Mice, members of the clade Glires, have an interspersed
layout, while cats, members of the clade Laurasiatheria, have orientation domains in all laminar layers
and macaques, members of the clade Euarchonta, have orientation domains in all layers but layer 4C.
The functional architecture of their last common ancestor’s V1 is unknown and suspected to be an
interspersed layout. The transition between these different functional architectures is unclear. B The
cladistic tree of mammals splits into Laurasiatheria and Euarchonta with orientation domains and Glires
with an interspersed layout. The functional architecture of intermediate species is unknown. Adapted
from [24].

question: what type of functional architecture might have served as an intermediate (missing
link) organization principle, Fig. 6.1A?

In primates and placental carnivores, the horizontal organization of orientation selectivity
in V1 adheres to a common design. Orientation preference varies smoothly across the surface
except at point singularities termed pinwheels that are surrounded by all preferred orienta-
tions. The configuration of pinwheels follows species-invariant quantitative statistics [22–24].
The emergence of this common design is suggested to be an evolutionary convergent trait, be-
cause of two main reasons: (i) The last common ancestor of the investigates species cat, ferret,
treeshrew and galago, Fig. 6.1B, was a small shrew-like mammal that therefore likely possessed
an interspersed orientation layout [22, 76]. (ii) Mammals from different evolutionary branches
generate orientation selectivity through distinct neuronal core circuits [24, 77], see Fig. 6.2.
Thus, at least two likely transitions of visual functional architecture occurred in the course of
Laurasiatheria and Euarchonta branching, see Fig. 6.1B.

Distinct neuronal precursor cells and core circuits are involved in orientation selectivity gen-
eration of macaques, cats and mice. During early ontogenesis of the central nervous system,
the brain is constituted of three primary brain vesicles: the forebrain, midbrain and hindbrain.
In later embryonic development the anterior and posterior part of the forebrain specializes into
the telencephalon and diencephalon, respectively. The diencephalon compartmentalizes into
functionally distinct domains such as the thalamus and retina. Neurons generated in the tha-
lamic domains subsequently cluster to form nuclei such as the dorsal lateral geniculate nucleus
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6. Three-dimensional organization of orientation selectivity in cortical tissue

Figure 6.2: Core circuits for orientation selectivity generation and their developmental
precursors. A-C Illustration of core circuits for orientation selectivity generation in macaques, cats
and mice, respectively. A In macaques, orientation selectivity is generated by intracortical projections
from layer 4 to layer 2/3 in the primary visual cortex (V1). The dorsal lateral geniculate nucleus (dLGN)
and layer 4C of V1 are orientation unselective or weakly selective. B In cats, orientation selectivity is
generated by thalamocortical projections. Layer 4C is orientation selective, while dLGN is orientation
unselective. C In mice, direction selective and hence orientation selective retinal ganglion cells project
di-synaptically over the lateral shell of dLGN to V1 neurons [384]. Additionally, orientation selectivity
is generated by thalamocortical projections. D-F Precursor cells of neurons building core circuits for
orientation selectivity generation in species from A-C, respectively. D In macaques, precursor cells
generating orientation selectivity are developing in the telencephalon, while dLGN precursor cells are not
involved. E In cats, orientation selectivity generating precursor cells develop in the diencephalon. F In
mice, orientation selectivity generating precursor cells develop as for cats in the diencephalon.

(dLGN), see [385, 386] for details on the genetic mechanisms involved in patterning of the di-
encephalon. Thalamocortical and corticothalamic projections between V1 and dLGN involves
multiple combinatorially acting genes [387, 388]. In macaques, orientation selectivity is gener-
ated intracortically by the projection of layer 4 neurons, Fig. 6.2A. In contrast, orientation
selectivity generation originates in thalamocortical projections in cats and mice, Fig. 6.2B-C,
with an additional separate pathway in mice that relays direction selective responses from retinal
ganglion cell to V1 [384]. The distinct mechanisms of orientation selectivity generation become
more striking in the light of ontogenesis. If the generation of orientation selectivity is determined
by genetic mechanisms, it poses a major theoretical challenge to elucidate how precursor cells
from the telencephalon in macaques and diencephalon in cats can generate orientation domains
that adhere both to the common design, Fig. 6.2D-E. In contrast, precursor cells in the di-
encephalon of mice generate an interspersed orientation layout. How can such an evolutionary
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transition of cell fate specification occur?

Neocortical columnar organization becomes more accessible with the advent of non-invasive
imaging techniques such as two/three photon-excited fluorescence laser-scanning microscopy
(2PLSM/3PLSM), optical coherence tomography (OCT) and high-resolution fMRI. Early dis-
sections of columnar organizations commonly used electrode penetrations and 2-deoxyglucose
imaging with poor spatial resolution of about 100 µm in comparison to the ∼1 mm column spac-
ing of orientation domains. Thus, precision measurements of the columnar organization were
not feasible with these techniques. More recent techniques such as intrinsic signal imaging and
fluorescence imaging provide better axial resolution, but lack a good depth resolution. In con-
trast to traditional linear fluorescence microscopy, where the maximal imaging depth is limited
to less than 100 µm due to scattering, 2PLSM/3PLSM techniques allow imaging at depths of a
mm scale [37, 389–392]. The recording technique OCT allows an imaging depth of 2–3 mm. It
is widely used for imaging internal structure of biological systems and materials, but can also
be used for functional imaging by utilizing the absorption change of oxy- and deoxy-hemoglobin
for recording analogously to intrinsic signal imaging [393–395]. Lastly, high-resolution fMRI
characterized by a sub-millimeter resolution has already resolved orientation domains in cats
[120, 396] as well as in humans [58] and is capable to record their columnar organization. These
three techniques with an imaging depth of about the neocortical thickness are suitable to dissect
the detailed three-dimensional functional architecture of V1.

Key questions arising in the consideration of three-dimensional cortical organizations are:
what is the effect of curvature on the functional organization? Do evolutionary intermediate
organizations still exist and how could they be organized? Here, we devise maximum entropy
models for the three-dimensional spatial organization of orientation selectivity and show that
(i) pinwheel strings (the three-dimensional generalization of pinwheels) are generally curved, (ii)
pinwheel string length is invariant to different columnar orientation selectivity profiles (iii) for
large curvatures closed loops and reconnecting pinwheel strings appear and (iv) for small corre-
lation lengths novel transitions to a rodent-like interspersed organization emerge. The maximum
entropy model for orientation domain ensembles is a generic description for a whole model class
in the early phase of orientation selectivity emergence and for random wiring schemes. This ap-
proach was used previously in two-dimensional orientation domains for the analytical calculation
of the pinwheel density [135, 171].

6.3 Results

Orientation director fields

In order to examine the spatial arrangement of orientation selectivity in three-dimensional ge-
ometries, the spatial position will be treated continuously and the neuronal response properties
will be summarized as suggested in [122, 132]. More specifically, the preferred orientation ϑ(x)
of a neuron at cortical position x = (x, y, z)T is a cyclic, π-periodic, quantity and is hence
conveniently represented together with its selectivity S(x) as an orientation director field

Ψ(x) = S(x)e2iϑ(x) (6.1)

or short orientation field. In the following, the real and imaginary part of the complex field will
be denoted by ξ(x) and η(x), respectively.

Previous models suggest different types of orientation selectivity emergence. For instance,
random wiring schemes suggest that the spatial arrangement of orientation selectivity emerges
by feed-forward connections. In contrast, self-organizing models suggest that the spatial ar-
rangement of orientation selectivity is generated dynamically. In the following, we show that
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Figure 6.3: Developmental models generating orientation domains. A Schematic illustration
of the visual pathway in a cat. In a random wiring scheme the ensemble of orientation selectivity in V1
has maximal entropy (see main text for details). Adapted from [24]. B Orientation domains produced
by a Turing-type instability. If dynamics are frozen in the linear regime, the ensemble of orientation
selectivity has maximal entropy (see main text for details).

both model types can be described by maximum entropy models of orientation domain ensem-
bles in a broad parameter regime, Fig. 6.3. These maximum entropy models are Gaussian
random fields (see methods for details).

Orientation fields seeded by random wiring

A model class that favors a feed-forward type of orientation field emergence similar to the Hubel
and Wiesel scheme is a random wiring scheme examined in [24, 338, 339, 397] and illustrated in
Fig. 6.3A.

The receptive field of a retinal ganglion cell at position xj = (xj , yj)
T in retinal space can

be modeled by a radially symmetric function f

GRFj(x) = ±f(‖x− xj‖), (6.2)

with a global maximum of f at the origin. This function is weighted by a plus or minus for
ON or OFF center retinal ganglion cells, respectively. A shape used for the retinal ganglion cell
receptive field in [24, 338, 397] is a Gaussian function

f(‖x− xj‖) = exp

(
−‖x− xj‖

2

2σ2
r

)
. (6.3)

The receptive field of a visual cortical neuron at position y can be obtained by pooling over
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several retinal ganglion cell receptive fields

RFyi(x) =
∑
j

wijGRFj(x), (6.4)

where wij is a positive variable with a distribution that decays with distance ‖yi − xj‖. The
received input of neurons in cat’s V1 can be estimated to about 10–25 retinal ganglion cells
[24] by the findings of about 20–40 cortical inputs from LGN X-relay cells [398, 399] and an
expansion of 1.5–2 from X-cells in the retina to X-relay cells in the LGN [400, 401]. The response
of a visual cortical neuron to a stimulus I(x) can be described by an energy model

Ryi =

∣∣∣∣∫ d2xRFyi(x)I(x)

∣∣∣∣2 . (6.5)

For a stimulus of oriented bars with the wave vector k the response is given by the Fourier
transformation

Ryi(k) =

∣∣∣∣∫ d2xRFyi(x)e−ikx
∣∣∣∣2 ∝ ∣∣∣f̃(‖k‖)

∣∣∣2∑
j,l

wijwil cosk(xj − xl). (6.6)

If the number of retinal ganglion cells with uncorrelated positions is large at distances where
the average strength of w is sufficiently large, the response Ry(k) is Gaussian distributed. To
be more precise, if the correlation length of retinal positions L and the average support area
A of w fulfills the condition

√
A � L then Ry(k) is Gaussian distributed. Alternatively, the

response Ryi(k) is filtered by a smoothing kernel that leads to Gaussian statistics even for small
support of w as in [24, 338, 339]. For a support area size B of the smoothing kernel, the previous
condition generalizes to

√
A2 +B2 � L.

In the random wiring scheme, orientation domains can be obtained by

Ψ(yi) ∝
∫ ∞

0
dkk

∫ π

0
dθRyi(k)e2iθ (6.7)

and measure the average response to oriented bars with wave vector k = k(cos θ, sin θ)T . Since
the integral over different orientations of the stimulus is a linear operator and sums over Gaus-
sian distributed variables, the orientation field Ψ(y) is a Gaussian random field in the limit of
continuous space, i.e. the ensemble is described by the first and second non-vanishing cumulants.
If the distance distribution of RGC positions is translation invariant and radially symmetric,
the mean of the orientation domains vanishes 〈Ψ(y)〉 = 0. Furthermore, the 2-point correlation
becomes rotation and translation invariant 〈Ψ(y1)Ψ̄(y2)〉 = C(‖y1 − y2‖). Three-dimensional
models can be obtained by assuming identical or similar visual inputs to V1 neurons along a
vertical tract.

Dynamically generated orientation fields in the transient linear regime

In the following, we will show that for a large class of dynamic orientation domain models,
the transient from an orientation unselective to selective state can be described by a Gaussian
random field as already proposed for two-dimensional models in [147, 359]. Here, we extend the
two-dimensional consideration to three-dimensional models.

The dynamics of a three-dimensional orientation field Ψ(x, t) with x = (x, y, z)T might be
given by

∂tΨ(x, t) = F̂ [Ψ] + ζ(x, t), (6.8)
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6. Three-dimensional organization of orientation selectivity in cortical tissue

where F̂ denotes a nonlinear operator and ζ(x, t) spatiotemporal noise fluctuations. Orientation
fields in which orientation preference contain no information about spatial arrangement might be
obtained by the equivariance of F̂ under shift symmetry by an angle φ, that is F̂ [eiφΨ] = eiφF̂ [Ψ].
This symmetry implies an unselective stationary orientation field Ψ(x) = 0 in the absence of
noise and suggests a first order approximation around a small amplitude random initial state
Ψ(x, 0) = Ψ0(x) by

∂tΨ(x, t) = L̂[Ψ] + ζ(x, t). (6.9)

This approximation is valid for time scales in which the dynamics are dominated by the linear
operator. For the sake of clarity, we assume that the linear operator L̂ is translation invariant
and separable in horizontal and columnar directions, i.e. L̂ = L̂c + L̂h.

The phenomenological emergence of orientation fields can be specified by the eigenspectrum
of the linear operator. In order to gain isotropic orientation fields with a typical scale Λ in
horizontal layers, the horizontal eigenspectrum µh of the linear operator L̂h must be rotation
invariant µh(k) with k = ‖(kx, ky)T ‖ and positive in an interval [kl, kr] with a peak at the
typical wave vector kc = 2π/Λ. Columnar organization is achieved by requiring the columnar
eigenspectrum of µc(kz) to be positive in a region around the origin kz ∈ [−k0

z , k
0
z ]. A specific

model example with these eigenspectra is a mexican hat interaction in the horizontal layer and
a Gaussian interaction in the columnar direction

L̂h [Ψ] =

∫
dx′
∫

dy′

(
e
− (x−x′)2+(y−y′)2

2σ2
1 − e

− (x−x′)2+(y−y′)2

2σ2
2

)
Ψ
(
(x′, y′, z)T

)
(6.10)

L̂c [Ψ] =

∫
dz′ e

− (z−z′)2

2σ2
z Ψ

(
(x, y, z′)T

)
(6.11)

with the interaction ranges σ1 < σ2 and σz.
In the linear regime, the orientation field dynamics can be solved by Green’s functions. Due

to translational symmetry of the linear operator, the Green’s function is a convolution operator
that separates to G(x, t) = Gh(r, t)Gc(z, t) with

Gh(r, t) =
1

2π

∫
dk kJ0(kr)eµh(k)t and Gc(z, t) =

1

2π

∫
dkz e

−ikzz+µc(kz)t (6.12)

with the horizontal radial coordinate r =
√
x2 + y2 and J0 denoting the Bessel function of first

kind. The characteristic timescale of the dynamics is the fastest growth rate and given by

τ = min
µh>0,µc>0

{
1

µh(k) + µc(kz)

}
. (6.13)

The time-dependent orientation field is then solved by

Ψ(x1, t) =

∫
d3x

∫ t

0
dsG(x1 − x, t− s) (ζ(x, s) + Ψ0(x)δ(s)) . (6.14)

Therefore, the orientation field is a random variable at every cortical position and time that
depends on the statistics of the spatiotemporal noise ζ(x, t) and the initial field Ψ0(x).

Specifying noise statistics and initial field statistics determine the statistics of the orientation
field. The temporal noise fluctuations and the initial random field are assumed to possess
a vanishing mean and second correlation function and are defined by horizontally isotropic,
stationary and separable correlation functions

Cζ(x1,x2, t1, t2) =
〈
ζ(x1, t1)ζ̄(x2, t2)

〉
= Chζ (r)Ccζ(z1, z2)Ctζ(t2 − t1) (6.15)

C0(x1,x2) =
〈
Ψ0(x1)Ψ̄0(x2)

〉
= Ch0 (r)Cc0(z1, z2) (6.16)
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with the distance r =
√

(x2 − x1)2 + (y2 − y1)2. The moments of the orientation field are related
to the noise field and lead to a vanishing mean and second moment

〈Ψ(x, t)〉 = 〈Ψ(x1, t1)Ψ(x2, t2)〉 = 0. (6.17)

The remaining correlation function is given by

C(‖∆xh‖, z1, z2, t) =
〈
Ψ(x1, t)Ψ̄(x2, t)

〉
=

∫
d3x′

∫
d3x

∫ t

0
ds′
∫ t

0
dsG(x′, t− s′)Ḡ(x, t− s)(

Chζ
(
‖∆xh − xh + x′h‖

)
Ccζ
(
z1 − z′, z2 − z

)
Ctζ
(
s− s′

)
+

Ch0
(
‖∆xh − xh + x′h‖

)
Cc0
(
z1 − z′, z2 − z

))
(6.18)

with the horizontal vector xh = (x, y)T and horizontal distance vector ∆xh = (x2−x1, y2−y1)T .
Notice that the correlation function is radially symmetric in the horizontal layer due to the
coordinate choice of x′h−xh pointing in the direction of ∆xh together with the radially symmetric
horizontal Green’s function. This correlation function is in general not separable into a horizontal
and columnar correlation function due to sustained interactions of neurons within and between
horizontal layers.

The correlation function is separable into a horizontal and columnar correlation function
in the limiting case where the columnar eigenvalue spectrum is constant µc(kz) = µc. If the
columnar eigenspectrum is constant for a range of wave vectors kz ∈ [−k0

z , k
0
z ] and zero elsewhere,

the correlation function can be decomposed to

Ch(‖∆xh‖, t) =

∫
d2x′h

∫
d2xh

∫ t

0
ds′
∫ t

0
dsGh(‖x′h‖, t− s′)eµc(t−s

′)Gh(‖xh‖, t− s)

eµc(t−s)
(
Chζ
(
‖∆xh − xh + x′h‖

)
Ctζ
(
s− s′

)
+ Ch0

(
‖∆xh − xh + x′h‖

))
(6.19)

and for k0
z →∞ and k0

z → 0 to the columnar correlation function

Cc(z1, z2) =Ccζ (z1, z2) + Cc0 (z1, z2) (6.20)

Cc(z1, z2) =

(
k0
z

π

)2 ∫
dz′
∫

dz
(
Ccζ
(
z′, z

)
+ Cc0

(
z′, z

))
, (6.21)

respectively. This shows that for weak columnar organization, the correlation is dictated by
the noise correlation and for strong columnar organization, the columnar correlation function is
constant indicating perfect columnar organization.

The field Ψ(x, t) is a Gaussian random field in a broad range of parameters as long as the
dynamics are dominated by the linear operator. To make this more explicit, we assume that the
correlation functions of the noise can be approximated by

Chζ (r) ∼e−r/L, Ccζ(z) ∼e−|z|/Lz , Ctζ(t) ∼e−t/τζ (6.22)

and of the random initial field by

Ch0 (r) ∼e−r/L0 , Cc0(z) ∼e−|z|/Lz,0 . (6.23)

Thus the orientation field is composed of many independent random components if the orien-
tation field is mainly composed of: (i) temporal noise for τζ � τ , L� 1

|kl−kr| or Lz � 1
2k0
z

and
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6. Three-dimensional organization of orientation selectivity in cortical tissue

(ii) the random initial field for L0 �
√
t/τ/|kl − kr| or Lz,0 �

√
t/τ/k0

z , see [359] for the two-
dimensional case. Due to the central limit theorem, the field Ψ(x) is a Gaussian random field
in these parameter regimes, i.e. the ensemble is described by the first and second non-vanishing
cumulants. The first condition is biologically plausible by noting that the afferent activity pat-
terns can be correlated over timespans of a few hundred milliseconds, whereas the layout of
orientation domains is formed on the timescale of hours to days. In this case the contribution
of the noise fluctuations is likely to be large, which results in the statistical properties of Ψ(x, t)
being a Gaussian distribution [359].

In total, dynamically generated orientation fields are Gaussian random fields in the transient
linear and, in particular, in the frozen noise regime (dynamics freeze in the linear regime) for a
broad range of model parameters.

Model unification: Symmetry constrained maximum entropy orientation
field ensembles

The previous models assume explicit mechanisms for the emergence of orientation selectivity.
An agnostic approach for the description of orientation fields is to consider ensembles and
utilize symmetry principles. Experimentally observed orientation domains exhibit an astonishing
diversity of different spatial layouts, while retaining specific layout characteristics such as a
typical scale and pinwheels. The diversity and characteristics of orientation domains suggests
to view single orientation domain observations as a randomly chosen example of an orientation
domain ensemble, see [171]. Thus, the probability of observing a specific orientation domain
layout Ψ(x) can be described by a probability functional P[Ψ]. This functional is in general
unknown, but can be equivalently defined by all its moments

cnm(x1,x2, . . . ,xn+m) = 〈Ψ(x1)Ψ(x2) . . .Ψ(xm)Ψ̄(xm+1), . . . Ψ̄(xn+m)〉, (6.24)

or cumulants, where 〈·〉 represents the ensemble average. The representation of the probability
functional in terms of its moments suggests an approximation by specifying only a subset of
moments or cumulants. Maximum entropy models are the least structured probability distri-
butions that determine a set of statistical quantities (see methods). If only first and second
moments are determined in an maximum entropy ensemble, the individual realization of orien-
tation domains are known as Gaussian random fields. These statistical descriptions are exact
for the afore-mentioned limiting cases of transient pattern formation regimes and random wiring
schemes in a broad parameter regime.

Moments of the probability functional can be further confined by symmetries principles. The
assumption that no distinguished preferred orientation exists on average can be incorporated by
the invariance of moments under a shift transformation of a fixed angle φ

Ψ(x)→ Ψ(x)eiφ. (6.25)

Due to this shift-symmetry the first and one of the second moments vanish

〈Ψ(x)〉 =eiφ〈Ψ(x)〉 → 〈ξ(x)〉 =〈η(x)〉 = 0 (6.26)

〈Ψ(x1)Ψ(x2)〉 =e2iφ〈Ψ(x1)Ψ(x2)〉 →
(
〈ξ(x1)ξ(x2)〉
〈ξ(x1)η(x2)〉

)
=

(
〈η(x1)η(x2)〉
−〈η(x1)ξ(x2)〉

)
, (6.27)

where Ψ(x) = ξ(x) + iη(x). The remaining second moment can be simplified by noting the
identities obtained from the vanishing second moment

CΨ(x1,x2) = 〈Ψ(x1)Ψ̄(x2)〉 =2〈ξ(x1)ξ(x2)〉 = 2〈η(x1)η(x2)〉. (6.28)
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For flat cortical geometries, we assume that the correlation function separates into an horizontal
and a columnar part

C(x1,x2) = C̃h(x1, x2, y1, y2)Cc(z1, z2). (6.29)

In the horizontal direction, we further assume that the statistics of the field are invariant under
a translation by a fixed displacement (∆x,∆y)

C̃h(x1, x2, y1, y2) = C̃h(x1 + ∆x, x2 + ∆x, y1 + ∆y, y2 + ∆y), (6.30)

reflecting the implicit assumption that no special location exists in orientation domains on
average. By choosing (∆x,∆y) = −(x1, y1) one coordinate of the horizontal correlation function
can be eliminated, thus reducing the parameters of the correlation function to a difference of
coordinates

C∗h(x, y) = C̃h(0, x, 0, y). (6.31)

Finally, we assume that the statistics of the fields are invariant under a rotation in the horizontal
plane by a fixed angle β

C∗h(x, y) = C∗h(r cos(α+ β), r sin(α+ β)), (6.32)

where α = tan−1(y/x) and r =
√
x2 + y2. By choosing β = −α the horizontal correlation

function simplifies to
Ch(r) = C∗h(r, 0) (6.33)

and is termed an isotropic orientation field ensemble. The simplified correlation function thus
reads

C(r, z1, z2) = Ch(r)Cc(z1, z2). (6.34)

Notice that for discretized space, the covariance matrix C(x1,x2) can not be chosen arbitrarily,
but instead must be a symmetric and semi-definite matrix.

Pinwheel string density for flat geometries

Experimentally observed two-dimensional orientation fields of primates and placental carnivores
adhere to a common design [22–24]. The common design is defined by a species-invariant set
of pinwheel statistics, most strikingly, by the common pinwheel density. In three-dimensional
orientation fields, pinwheels generalize to pinwheel strings and pinwheel densities to pinwheel
string densities. What is the expectation of the pinwheel string density in maximum entropy
models of orientation domain ensembles?

The pinwheel string density of orientation fields Ψ(x) = ξ(x) + iη(x) with a columnar
dimension can be calculated analytically for Gaussian random fields. The mean length of a
pinwheel string per unit volume is given by the pinwheel string density

ρ3(x) = 〈δ(ξ(x))δ(η(x))‖∇ξ(x)×∇η(x)‖〉 , (6.35)

where the last term accounts for the length of a segment along a pinwheel string [30]. The unit
of the pinwheel string density is length per volume and therefore one over area.

In order to evaluate the pinwheel string density, the joint probability distribution of the field
variables

χT (x) =(ξ(x), ∂xξ(x), ∂yξ(x), ∂zξ(x)) (6.36)

νT (x) =(η(x), ∂xη(x), ∂yη(x), ∂zη(x)) (6.37)
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summarized by µ(x)T = (χT (x),νT (x)) is required. For Gaussian random fields with shift-
symmetry the mean vanishes and the joint probability distribution is given by

P (µ) =
1√

(2π)8 det Σ(x)
e−

1
2
µT (x)Σ−1(x)µ(x) (6.38)

with the covariance matrix

Σ(x) = diag(〈χ(x)χT (x)〉, 〈ν(x)νT (x)〉). (6.39)

For isotropic orientation domains in the horizontal plane with separating horizontal and colum-
nar correlation functions, the covariance is independent of the horizontal position and therefore
given by

〈χ(z)χT (z)〉 = 〈ν(z)νT (z)〉 =
1

2


cA(z) 0 0 cD(z)

0 cG(z) 0 0
0 0 cG(z) 0

cD(z) 0 0 cC(z)

 (6.40)

with the parameters

cA(z) =Ch(0)Cc(z, z), cD(z) =
1

2
Ch(0)∂zCc(z, z),

cC(z) = Ch(0)∂z1∂z2Cc(z1, z2)|z1=z2=z , cG(z) =− 1

2
Cc(z, z)∆Ch(0), (6.41)

where ∆ denotes the Laplace operator. In the special case of straight pinwheel strings ∂zξ(x) =
∂zη(x) = 0, the pinwheel string density is called pinwheel density and counts the number of
pinwheel strings piercing a layer of unit area. Isotropic orientation domains in flat geometries
have a constant pinwheel density of

ρ2 = −∆Ch(0)

4πCh(0)
, (6.42)

see [30, 147, 171]. The pinwheel density of isotropic orientation domains with a typical scale Λ
is bounded from below by ρ2Λ2 ≥ π [147]. This lower bound on the pinwheel density suggests
to measure pinwheel densities per typical scale area ρ̂2 = ρ2Λ2 that is a unit-less quantity.

In general, plugging the covariance matrix into the probability distribution and evaluating
the integral of the pinwheel string density over ξ(x), η(x) and the radial parts of the Gaussian
distribution leads to the integral

ρ3(z) =ρ2
25

π2
κ(z)

∫ π

0
dθ1

∫ π

0
dθ2

∫ 2π

0
dφ

(
1− φ

2π

)
sin θ1 sin θ2√

sin2 θ2

(
sin2 θ1 sin2 φ+ cos2 θ1

)
− 1

2 sin 2θ1 sin 2θ2 cosφ+ sin2 θ1 cos2 θ2

((κ(z)− 1) cos 2θ1 + κ(z) + 1)2((κ(z)− 1) cos 2θ2 + κ(z) + 1)2
(6.43)

that depends on the single dimensionless parameter

κ(z) =− Cc(z, z)∆Ch(0)

2Ch(0)

(
∂z1∂z2Cc(z1, z2)|z1=z2=z −

(∂zCc(z, z))
2

4Cc(z, z)

)−1

. (6.44)

The pinwheel string density can be evaluated for isotropic ensembles in all directions where
κ(z) = 1 giving a constant pinwheel string density of ρ3 = 2ρ2. For short columnar correlation
lengths κ(z) � 1, the pinwheel string density scales as ρ3(z) ∼ ρ2/

√
κ(z). A lower bound for

the pinwheel string density is given by the pinwheel density ρ3(z) ≥ ρ2 and is reached for long
columnar correlation length κ(z)� 1.
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Figure 6.4: Orientation domains in three-dimensional flat geometries with finite columnar
correlation length. A-C Left: Synthesized example orientation domains (see Eq. (6.45) and Eq. (6.51))
with finite horizontal typical scale Λ, cortical thickness 1.6Λ and varying finite columnar correlation
lengths of λ = 10Λ, λ = Λ and λ = 0.1Λ, respectively. Right: Pinwheel strings from left orientation
domain examples. Pinwheel strings typically penetrate the entire cortex for large columnar correlation
lengths and increase to bend (upper inset, I-motif) and eventually form loops (lower inset, O-motif)
with declining columnar correlation length. D Columnar correlation functions Cc(z) from Eq. (6.45) for
synthesized orientation domain examples of A-C. E Pinwheel string density or mean string length in
units of pinwheel density versus columnar correlation length in units of typical scale Λ, β = 10 (solid
black line: theory from Eq. (6.43), diamonds: measured pinwheel string length of synthesized example
orientation domains, see methods, dashed gray lines and gray circle: analytical limits, see main text).
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Orientation domains in three-dimensional flat cortices

Orientation domains are highly organized in a columnar fashion, but what effect can be expected
by relaxing this organization? In order to dissect these effects, a columnar correlation length λ
is introduced by the translation invariant columnar correlation function

Cc(z1 − z2) = e−(z1−z2)2/2λ2
. (6.45)

In the horizontal layer, a phenomenological orientation domain model defined by a typical scale
Λ and a measure of power-spectral density width ∼ 1/β from [171] is used, see methods for
details. The parameter is fixed to β = 10 in the following. In Fig. 6.4A-C, explicit realizations
of three-dimensional orientation domains and their pinwheel strings are depicted for nearly
perfect, good and almost vanishing columnar organizations (see Fig. 6.4D for corresponding
correlation lengths). The pinwheel strings are straight lines (I-motif) for perfect columnar
organization, but are generically curved and even form loops (O-motif) for finite correlation
lengths.

The dependence of the pinwheel string length on the columnar organization can be evaluated
with the previously derived formula by noting the identities

ρ̂2 = Λ2ρ2 = π
(β + 2)Γ

(
β+1

2

)2

2Γ
(
β+2

2

)2 and κ =
λ2(β + 2)Γ

(
β+1

2

)2

4Γ
(
β+2

2

)2 . (6.46)

The numerically integrated analytical expression for the pinwheel string density together with
the pinwheel string density obtain from synthesized examples is shown in Fig. 6.4E.

Orientation domains in flat cortices with nearly unselective layer 4C

In macaques and tree shrews, it was observed that neurons in layer 4C of the primary visual
cortex are weakly or even not orientation selective [79, 297, 375, 379–382]. This raises the
question of how three-dimensional organization of orientation domains is altered by a variable
columnar orientation selectivity profile. Here we consider the extreme case of an orientation
unselective layer 4C.

Hence, we extend the previous model by a variable orientation selectivity profile σ(z) in the
columnar correlation function

Cc(z1, z2) = σ(z1)σ(z2)e−(z1−z2)2/2λ2
(6.47)

and investigate the limiting-case scenario of the total absence of orientation selectivity in layer
4C. The combination of the unselective layer 4C with three different columnar correlation lengths
(see Fig. 6.5D) shows an evident difference of orientation domains and their columnar covari-
ance in the synthesized examples, Fig. 6.5A-C, but a seemingly invariant behavior of the
pinwheel strings. In fact, the average pinwheel string length is unaffected by the variable ori-
entation selectivity profile σ(z)2 as the same previously derived identities of Eq. (6.46) hold for
the pinwheel string length as validated numerically in Fig. 6.5E.

Orientation domains in gyri-type geometries

The neocortex is intrinsically curved and in many species folded resulting in a relative inflation
of deep cortical layers at gyri and deflation of deep layers at silci. How does a curved cortex
affect the spatial organization of orientation selectivity? In order to examine the impact of a
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Figure 6.5: Orientation domains in three-dimensional flat geometries with finite columnar
correlation length and nearly orientation unselective layer 4. A-C Left: Synthesized example
orientation domains (see Eq. (6.47) and Eq. (6.51)) with finite horizontal typical scale Λ, cortical thickness
2Λ, nearly orientation unselective layer 4 (black stripe) and varying finite columnar correlation lengths
of λ = 10Λ, λ = Λ and λ = 0.1Λ, respectively. Center: Pinwheel strings from left orientation domain
examples. Right: Columnar covariance of orientation selectivity Cc(z1, z2) from Eq. (6.47). Selectivity
profile is given by σ(z) = 1 − (1 + exp(−(z − z0)/γ))−1 + (1 + exp(−(z − z1)/γ))−1, γ = 0.5 · 10−2Λ,
z0 ≈ 1.49Λ and z1 ≈ 0.9Λ. D Columnar correlation functions Cc(0, z) for synthesized orientation domain
examples of A-C. E Pinwheel string density or string length in units of pinwheel density versus columnar
correlation length in units of typical scale Λ, β = 10 (solid black line: theory from Eq. (6.43), diamonds:
measured pinwheel string length of synthesized example orientation domains, see methods , dashed gray
lines and gray circle: analytical limits, see text).
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Figure 6.6: Three-dimensional orientation domains in cylindrical, gyri-type geometries. A-
C Synthesized example orientation domains (see Eq. (6.54)) in cylindrical geometry with fixed typical
scale Λ, columnar correlation length λ = 10Λ and different curvatures. The area of the outer shell is
fixed to 2Λ× 2Λ in all examples. The opening angles are A φ = π/8, B φ = π/4, C φ = π/2. D Means
(solid lines) and 90% confidence intervals (shaded areas) of U-motif (see inset of A) fraction and their
penetration depth in 100 orientation domains of cylindrical geometry versus varying curvature with a
cortical thickness of Λ, columnar correlation length λ = 10Λ, outer shell area of 8Λ × 8Λ and opening
angles φ ∈ [0, 2π]

curved cortex, a gyri-type cortex in shape of a cylindrical geometry is utilized as a paradigm
model.

The correlation function in each horizontal layer equals the previously chosen correlation
function if the curved cortex is flattened to a horizontal plane. The typical scale in each layer is
fixed such that the number of typical scales shrinks for deeper layers. Thus, perfect columnar
correlation becomes impossible due to the shrinking cortical area with depth. In the limit of
large cylindrical radii or equivalently vanishing curvature the correlation functions are equal to
the previously used flat cortex with constant columnar orientation selectivity profile (for details
see methods). Synthesized examples of large columnar correlation combined with three different
curved cortices are depicted in Fig. 6.6A-C. Although orientation domains seem to change only
weakly on the surface, pinwheel strings follow more intricate paths for increased curvature. One
particular frequently observed pinwheel string path is the U-motif (see inset of Fig. 6.6A) that
proliferates and migrates towards the surface for increasing curvature, see Fig. 6.6D.
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Figure 6.7: Transition between orientation domains and interspersed layout by shrinking
correlation lengths. A Synthesized orientation domain layout with typical scale Λ and columnar
correlation length λ = 10Λ, see Eq. (6.48) with s = 0. B Synthesized intermediate orientation domain
layout with clusters due to decreased correlation lengths, see Eq. (6.48) with s = 0.95. C Synthesized
interspersed orientation layout, see Eq. (6.48) with s → 1. D Pinwheel strings corresponding to A. E
The 95% confidence interval of different pinwheel motif fractions (see Fig. 6.4 and Fig. 6.6) depending
on the transition parameter s in 100 different realizations per s. Grey area indicates the region that was
computationally too exhaustive due to pinwheel string proliferation. F Pinwheel string and pinwheel
density (see Eq. (6.43), Eq. (6.46) and Eq. (6.53)) in units of cell density of 0.002/µm2 and Λ = 1 mm
versus the transition parameter s, see Eq. (6.48). In all examples, the cortical thickness is 1.6Λ0.

Transitions between orientation domains and interspersed layout

Spatially organized orientation domains are a feature of the primary visual cortex of primates
and placental carnivores [49, 60–62]. In contrast, orientation selective neurons in the primary
visual cortex of rodents are not spatially organized referred to as interspersed or salt-and-pepper
layout [41]. The distinct spatial organizations of orientation preference in these species raises the
question of what kind of transitions may have occurred between these organizations in evolution?

Mathematically, a transition between these distinct layouts corresponds to a continuous
change of the spatial correlation lengths Λ and λ from a finite value (orientation domains)
to zero (interspersed layout). Despite the vast number of possible transitions, two paradigm
transitions appear to be idealized extremes: (i) Decay of spatial correlation lengths and (ii)
Invasion of an interspersed layout.

In the first scenario, Fig. 6.7, the transition parameter s ∈ [0, 1) linearly controls the spatial
correlation lengths by

λ(s) =(1− s)λ0, Λ(s) = (1− s)Λ0 (6.48)
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6. Three-dimensional organization of orientation selectivity in cortical tissue

Figure 6.8: Transition between orientation domains and interspersed layout by invasion. A
Synthesized orientation domain layout with typical scale Λ and columnar correlation length λ = 10Λ,
see Eq. (6.49) with s = 0. B Synthesized intermediate orientation domain layout with clusters due to
decreased correlation lengths, see Eq. (6.49) with s = 0.07. C Synthesized interspersed orientation layout,
see Eq. (6.49) with s → 1. D Pinwheel strings corresponding to B. E The 95% confidence interval of
different pinwheel motif fractions (see Fig. 6.4 and Fig. 6.6) depending on the transition parameter s in
100 different realizations per s. Grey area indicates the region that was computationally too exhaustive
due to pinwheel string proliferation. F Pinwheel string and pinwheel density (see Eq. (6.43), Eq. (6.46)
and Eq. (6.53)) in units of cell density of 0.002/µm2 and Λ = 1 mm versus the transition parameter s,
see Eq. (6.49). In all examples, the cortical thickness is 1.6Λ0.

with λ0 = 10Λ0 and Λ0 = 1. Increasing the transition parameter s leads to a decline of
orientation domain size and a clustering along the columnar direction that eventually reaches
sub-cellular scale and thus is equal to an interspersed layout, see Fig. 6.7A-C. Initial pinwheel
strings with strong columnar organization, Fig. 6.7D, are typically penetrating the entire cortex.
The frequency of this I-motif decreases with increasing transition parameter s. In contrast, the
U-motif (pinwheel strings with both ends at vertical boundaries) and O-motif (closed pinwheel
strings) fraction increase with the transition parameter s, Fig. 6.7E. Pinwheel and pinwheel
string density increase monotonically with the transition parameter until orientation domains
reach sub-cellular sizes, Fig. 6.7F.

In the second scenario, Fig. 6.8, the transition parameter s ∈ [0, 1) interpolates between
both layouts by

C(r,∆z, s) =(1− s)Cdomains(r,∆z) + sCintersp.(r,∆z) (6.49)

with Cdomains the previous correlation function with λ0 = 10Λ0, Λ0 = 1 and Cintersp.(r,∆z) = 0
except for Cintersp.(0, 0) = 1. Initial orientation domains with columnar organization are invaded
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6.3. Results

Figure 6.9: Is there evidence for intermediate orientation domain layouts based on orienta-
tion difference distributions of laminar layers? A Left: Synthesized orientation domain example,
where the Pearson correlation between surface and deeper layers is given by a Gaussian function. Right:
Pair-wise orientation difference distributions between surface neurons and at deeper laminar layers with
specified Pearson correlations sampled numerically (bins) and analytically (dashed lines). B Orientation
difference distributions of surface neurons and 200 µm deep neurons recorded by electrode penetrations
along a vertical tract indicated by the bars (n=115 for cat and n=83 for rabbit). Figure based on
[48]. Dashed lines indicate the mean of least square fits of the analytical distribution in Eq. (6.50) to
bootstrapped data. Shaded areas are the corresponding 95% confidence intervals. C Left: Small iso-
orientation clusters were found in gray squirrels. Reprinted with permission from [42]. Right: Average
pair-wise preferred orientation difference as a function of vertical distance. Figure based on [42]. D
Estimated Pearson correlation coefficients obtained from average orientation change in C (Eq. (6.50)).

by an interspersed layout. The invaded regions are at low orientation selectivity domains and
increase in size with the transition parameter until the total absence of spatial organization,
see Fig. 6.8A-C. Ordered pinwheel strings, penetrating the entire columnar direction, form
a pinwheel string foam in regions with low orientation selectivity, Fig. 6.8D. The frequency
of the I-motif correspondingly decays strongly with the increase of the transition parameter
s. For finite spatial resolutions, pinwheel strings are typically not closed such that the U-motif
frequency strongly increases, while the O-motif frequency decreases with s, Fig. 6.8E. Pinwheel
and pinwheel string density increase monotonically with the transition parameter and approach
cell area density in a regime, where orientation domains are still discernible, Fig. 6.8F.

Is there evidence for intermediate orientation layouts?

In the framework of orientation field ensembles, the question of intermediate orientation lay-
outs can be posed more precisely. For instance, what shape has the distribution of the pair-wise
difference in preferred orientation at two different positions θ = ϑ(x1)−ϑ(x2) and which param-
eters define this distribution? This question can be answered precisely (for details see methods)
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6. Three-dimensional organization of orientation selectivity in cortical tissue

for Gaussian random fields and leads to the distribution of orientation change

P (θ) =

(
1− ρ2

)
2π (1− ρ2 cos2(2θ))3/2(

2
√

1− ρ2 cos2(2θ) + 2ρ cos(2θ) tan−1

(
ρ cos(2θ)√

1− ρ2 cos2(2θ)

)
+ πρ cos(2θ)

)
, (6.50)

which depends solely on the Pearson correlation coefficient between the considered neurons
ρ = C(x1,x2)/

√
C(x1,x1)C(x2,x2). The spatial dependence of ρ is omitted for the sake

of brevity. A synthesized example of orientation domains with decaying correlation in the
columnar direction together with the corresponding distribution of orientation change between
the surface and three marked laminar layers is depicted in Fig. 6.9A. The formula can be used
to analyze a comparative electrode penetration study of cats and rabbits, where the orientation
difference of 200 µm vertically separated neurons was recorded [48]. Least square fits to the
measurements result in Pearson correlation coefficients of ρ = 0.71 with the 95% bootstrapped
confidence interval [0.61, 0.78] for cats and ρ = 0.28 with the 95% bootstrapped confidence
interval [0.09, 0.54] for rabbits as shown in Fig. 6.9B. The corresponding columnar correlation
lengths are λ = 0.24Λ (0.20Λ, 0.28Λ) for cats and λ = 0.13 mm (0.09 mm, 0.18 mm) for rabbits
for a columnar Gaussian correlation profile (see Eq. (6.45)) and a typical scale of Λ =1 mm (see
Fig. 6.11C for typical scale estimation). A similar study of gray squirrels in [42] reported a
rarely occurring clustering of orientation selectivity in the columnar direction from which a weak
shift of mean orientation change remained for small distances along vertical electrode tracts as
shown in Fig. 6.9C. The corresponding Pearson correlation coefficients can be obtained from
the mean orientation change and are depicted in Fig. 6.9D.

6.4 Discussion

In this article, we presented a framework for the systematic examination of orientation selectivity
and their intrinsic statistical properties in three-dimensional geometries. We show explicitly that
maximum entropy models of orientation domain ensembles describe random wiring and frozen
noise models in a broad range of parameters. For flat cortices, we derived an analytical expression
for the average pinwheel string length and its dependence on the columnar correlation length.
We showed explicitly that a varying columnar orientation selectivity profile has no influence
on the pinwheel string length. In a gyri-type cylindrical geometry, we synthesized orientation
domains numerically and found that the U-pinwheel string motif occurred more frequently for
large curvatures than for flat cortices. Finally, we presented possible scenarios for the transition
from orientation domains to an interspersed rodent-like orientation layout.

The assumption of orientation domains possessing Gaussian statistics brings the advantage
of being valid for a model class in its transient and a random wiring scheme, but neglects long
term optimization mechanisms of the visual cortex. Supposedly, orientation domains optimize
the fine structure of their layout and are thus not accurately described by Gaussian random
fields. Assigning a probability for an orientation domain Ψ by a functional P[Ψ] is still a valid
approach for an optimization scheme. However, the probability functional might depend on
more moments than merely the first two as in the case of Gaussian statistics. Furthermore,
the assumed symmetries of orientation domains might be too idealized. In particular shift-
symmetry requires an average equal representation of all orientations, which is incompatible
with the observed cardinal bias [67, 68, 100, 108–114]. Shift-symmetry is also not expected to
retain natural scene statistics [126] such as an increased probability of collinear contours [402],
see [138, 139, 171] for more details.
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6.4. Discussion

Previously, orientation domains were only treated statically in two-dimensional planes [135,
145, 147, 171, 173] and dynamically in self-organizing models [27, 118, 122, 128, 130, 131, 263,
266] except for one mechanistic three-dimensional model in [120]. In the static two-dimensional
models a simple scheme for constructing orientation domains was provided for Euclidean [145]
and non-Euclidean geometry [173] and an analytical formula for the pinwheel density was de-
rived in [135, 147, 171]. In two-dimensional dynamical models orientation domains produced
hexagonal [27, 118, 122, 130, 131, 263, 266] and quasiperiodic patterns [22, 128]. In the three-
dimensional model [120] a mechanistic model was used that minimizes a specific energy func-
tional. We additionally contribute a scheme for constructing three-dimensional orientation do-
mains in flat and curved geometries and provide an analytical formula for their mean pinwheel
string length in flat geometries. For the dynamical models, we contribute the behavior of the
models in the linear regime not only for two dimensions but for three. Finally, this models
generalized the results obtained in the mechanistic three-dimensional model to an entire model
class in the linear regime and random wiring models.

The proliferation of U-pinwheel string motifs in cylindrical geometries can be experimentally
dissected preferably in highly convoluted cortices. The assumption of a constant interlaminar
typical scale is crucial for this observation as for a variable typical scale proportional to the
laminar layer area is equivalent to deformed flat cortices. In the case of a curved cortex in two
directions with constant typical scale, i.e. spherical instead of cylindrical geometry, the U-motif
is expected to occur more frequently as well, but with no favored orientation of the motifs.
The conservation of the typical scale across layers can be best investigated in gyrencephalic
cortices (strongly folded) rather than in lissencephalic cortices (smooth). As the cortical folding
correlates with brain weight and cortical surface area [403], species with large brains are favored
for that enterprise. More specifically, sheep, macaques, cats and ferrets are highly gyrencephalic,
whereas tree shrews, rabbits, gray squirrels and galagos are rather lissencephalic, see [404, 405].
Finally, the cortical folding can be quantified by a gyrification index, which shows that ungulates
is the mammalian clade with the highest investigated cortical folding [406].

In [147], it was shown that experimentally observed pinwheel densities are smaller than the
lower bound π of isotropic random orientation domains with Gaussian statistics suggesting pin-
wheel annihilation to occur during development. More generally, it is assumed that correlation
lengths increase during development. If this is true, then in the three-dimensional framework
pinwheel annihilation corresponds to a straightening of lines and, in particular, to the movement
of pinwheel strings. An intriguing question arising from moving pinwheel strings is whether there
are dedicated columnar layers in which this movement is reduced? Such regions are thus orga-
nizational layers, which would suggest these are the originating layers of orientation selectivity
and that other layers align according to them.

Where is it expected to find a transition between an interspersed and orientation domain
layout? Developmental studies of orientation domains such as [68] suggest that a transition
from interspersed to orientation domain layout is unlikely to occur on a developmental time
scale. However, on the timescale of million years it was shown that such a transition likely
occurred at least twice [22] and all the intermediate organizations must have had a functional
advantage. If the transition was continuous and not discontinuous, there should be species with
mixture states of orientation domains with columnar organization and an interspersed layout.
One putative candidate for a mixture state is the rabbit for which a clustered organization of
orientation selectivity was found [44, 46, 47] that clearly differed from the functional columnar
organization of cats and macaques [48]. The reevaluation of vertical electrode penetrations in
rabbits, Fig. 6.9B, resulted in small columnar correlation lengths. This is probably due to non-
vertically aligned electrodes, since small columnar correlation length were also found for cats
that have rather strong columnar organization. Unfortunately, the examination of orientation
selectivity in rabbits do not allow conclusive statements of their organization. Independent of
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6. Three-dimensional organization of orientation selectivity in cortical tissue

species, intermediate states should be best discernible in highly curved cortical areas.
For future work, it would be constructive to extend the simplified Gaussian assumption of

the ensemble functional P[Ψ] to more realistic functionals. Based on experimentally observed
orientation domains of adult animals belonging to one species the ensemble probability P[Ψ]
could be estimated by including higher moments, which would shed light on the fine structure
of orientation domains. The experimental accessibility of three-dimensional orientation domains
with 2PLSM/3PLSM, OCT and high-resolution fMRI opens an exciting new research field of
functional columnar organization for which this theoretical study provides a generic model.

6.5 Methods

Model correlation function in the horizontal plane

A phenomenogically motivated correlation function for orientation domains in a two-dimensional
layer was proposed in [171] that is determined by a typical scale Λ = 2π/〈k〉 = 2π and a power-
spectral density width ∼ 1/β. The correlation function in real and Fourier space is defined
by

Ch(r) = 1F1

(
2 + β

2
, 1,− r2

4B

)
and Ph(‖k‖) = A‖k‖βe−‖k‖2B, (6.51)

respectively, with the normalization constants
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(

2+β
2
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Γ
(
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2
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Γ
(
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2

)2

Γ
(

1+β
2

)2 . (6.52)

In Fig. 6.10A the correlation function and its Fourier transform is depicted with three synthe-
sized examples shown in Fig. 6.10B. The pinwheel density per typical scale area for this model
is shown in Fig. 6.10D and given by the formula

ρ̂2 = Λ2ρ2 = π
(β + 2)Γ

(
β+1

2

)2

2Γ
(
β+2

2

)2 . (6.53)

A value of β = 10 corresponds approximately to the power-spectral density of galagos, Fig. 6.11,
and is therefore used throughout this article.

Three-dimensional model in cylindrical geometry

In order to account for orientation domains on a gyrus, we idealize a gyrus by a cylindrical
geometry. The laminar distance has to be redefined to a distance on the shell of a cylinder.
Thus, two points on the same shell of a cylinder xi = (r cosφi, r sinφi, zi) with i = 1, 2 have a
laminar distance of

√
r2(φ1 − φ2)2 + (z1 − z2)2. This motivates the separation of the cylindrical

correlation function into a horizontal (laminar) and a radial (columnar) part

C(r1, r2, φ1, φ2, z1, z2) = Ch

(√
r̄2∆φ2 + ∆z2

)
Cc(∆r) (6.54)

with the mean position r̄ = (r1 + r2)/2, the radial distance ∆r = r1 − r2, the phase difference
∆φ = φ1 − φ2 and the axial distance ∆z = z1 − z2. The horizontal and columnar correlation
functions are chosen as in the flat cortex (see Eq. (6.45) and Eq. (6.51)) to

Cc(∆r) = e−
∆r2

2λ2 , Ch(r) = 1F1

(
2 + β

2
, 1,− r2

4B

)
. (6.55)
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Figure 6.10: Gaussian random field model for two-dimensional orientation domains. A
Right: Correlation function C(r) = 〈Ψ(0)Ψ̄(r)〉 of the orientation field Ψ is shown for different power-
spectral density widths ∼ 1/β, see Eq. (6.51). Left: Fourier transform of the correlation function is
depicted, showing that the parameter β tunes the power-spectral density widths, while retaining the
typical scale. B Synthesized example orientation domains from the correlation function in A for different
power-spectral density widths. The power-spectral density width of β = 10 is the default parameter
for all other illustrations, see methods. C Two different types of pinwheels indicated by the gray and
black dot, which are surrounded by all orientations in their vicinity. The pinwheel indicated by the
gray dot changes preferred orientations clockwise, whereas the other pinwheel (black dot) changes them
counterclockwise. D The analytically derived pinwheel density ρ̂2 for this orientation domain model from
Eq. (6.53).

Notice that the eigenfunctions of the correlation function are given by

Φlk(φ, z,∆r, r̄) = eilφeikzψlk(∆r, r̄). (6.56)

The correlation function is hence diagonal in Fourierspace of φ and z

〈eilφeikz, Ch〉φ1,z1 =

∫ ∞
−∞

dz1

∫ π

−π
dφ1e
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∫ ∞
−∞

dz

∫ π

−π
dφe−ilφe−ikzCh

(√
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ye−ikzCh
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r̄
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√( l
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)2

+ k2

 , (6.57)

where in the last step it is assumed that the correlation length of Ch is much smaller than
πr̄ and Ph denotes the Fourier transform of Ch. With that we identify the total non-diagonal
eigenfunction as

ψlk(∆r, r̄) =
1

r̄
Ph

√( l
r̄

)2

+ k2

Cc(∆r). (6.58)
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Figure 6.11: Power-spectral density width estimation of orientation domains. A High-pass
filtered orientation domain from galago and its power-spectral density. B Radially averaged power-
spectral densities of individual galagos (light lines) and their mean (dark line). C Means of radially
averaged power-spectral densities from different species. Inset: Mean typical scales Λ and 95% confidence
intervals of animals in species. D Power-spectral densities from C with normalized area in rescaled length
scale (solid lines) together with model power-spectral density from Eq. (6.51) with β = 10 (dotted line).
Inset: Average β and 95% confidence intervals from least square fits of model to individual animals.

Orientation difference distribution

The orientation difference distribution at two different positions are defined by

P (θ) =

〈
δ

(
1

2
tan−1

(
ξ(x1)

η(x1)

)
− 1

2
tan−1

(
ξ(x2)

η(x2)

)
− θ
)〉

. (6.59)

For shift-symmetric fields with vanishing first moment the probability distribution is equal for
real and imaginary part p(ξ(x1), ξ(x2)) = p(η(x1), η(x2)) and given by

p (ξ(x1), ξ(x2)) =
1√

(2π)2 det Σ(x1,x2)
exp

(
−1

2
(ξ(x1), ξ(x2))Σ−1(x1,x2)(ξ(x1), ξ(x2))T

)
(6.60)

with the covariance matrix

Σ(x1,x2) =
1

2

(
C(x1,x1) C(x1,x2)
C(x1,x2) C(x2,x2)

)
(6.61)

and the correlation function C(x1,x2) = 2〈ξ(x1)ξ(x2)〉 = 2〈η(x1)η(x2)〉. Evaluating the inte-
gral leads to

P (θ) =

(
1− ρ2

)
2π (1− ρ2 cos2(2θ))3/2(

2
√

1− ρ2 cos2(2θ) + 2ρ cos(2θ) tan−1

(
ρ cos(2θ)√

1− ρ2 cos2(2θ)

)
+ πρ cos(2θ)

)
, (6.62)

where the spatial dependence of the Pearson correlation coefficient

ρ = C(x1,x2)/
√
C(x1,x1)C(x2,x2) (6.63)

is omitted for the sake of brevity.

Gaussian ensembles are maximum entropy models

The maximum entropy principle goes back to the seminal work of Jaynes [141, 142] and seeks
for the least structured probability distribution that fulfills a set of statistical properties. The
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probability distribution has maximal entropy, while in our case reproduces a given covariance.
In discrete space with the abbreviations Ψi = Ψ(xi), Ψ = (Ψ1,Ψ2, . . . ,ΨN ) and the correlation
function (Σ)ij = C(xi,xj), the following Lagrangian

L =−
∫ ∞
−∞

(
N∏
k=1

dΨk

)
p(Ψ) log p(Ψ)− µ

[∫ ∞
−∞

(
N∏
k=1

dΨk

)
p(Ψ)− 1

]

−
∑
i,j

λij

[∫ ∞
−∞

(
N∏
k=1

dΨk

)
p(Ψ)ΨiΨj − (Σ)ij

]
(6.64)

needs to be maximized with respect to the multivariate distribution p(Ψ) and the Lagrangian
multipliers µ and λij for normalization and the correlation function, respectively. Optimizing
the expression with respect to the probability distribution δL/δp = 0 gives

p(Ψ) = e−1−µ−
∑
ij λijΨiΨj . (6.65)

The normalization conditions ∂µL = 0 can be evaluated by noticing that (λ)ij = λij is a
symmetric matrix. Then by the unitary transformation of the field onto the eigenbasis of the
matrix UλUT = diag(λ̃1, λ̃2, . . . , λ̃N ) and Ψ̃ = UΨ the normalization condition becomes

1 =

∫ ∞
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detλ
. (6.66)

This defines the first Lagrange multiplier to µ = log πN/2 − log
√

detλ − 1. The remaining
Lagrange multipliers are defined by ∂λijL = 0. This can be solved again by the rotation onto
the eigenbasis of λ
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This equation can be solved by λ = 1
2UΣ−1UT with (U)ij = Uij yielding the final shape of the

distribution

p(Ψ) =
1√

(2π)N det Σ
e−

1
2
ΨTΣ−1Ψ (6.68)
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that defines a Gaussian random field in the limit of continuous space (N →∞). Notice that in
the continuous limit N →∞, the integrals become path integrals∫ ∞

−∞

(
N∏
k=1

dΨk

)
→
∫
DΨ (6.69)

and limits have to be taken after computing an expectation value.

Numerical methods

For translation invariant fields the correlation function C(x1 − x2) is diagonal in Fourier space
and given by P (k). The Fourier transform of a field with the specified correlation function is
synthesized by drawing Gaussian random numbers u, v ∼ N (0, 1) for all k and scaling them by
Ψ̃(k) =

√
P (k)(u+ iv).

If the correlation function is not diagonalizable, a brute-force method was used for field
synthesis. In discrete space, the correlation function C(x1,x2) becomes a covariance matrix
(Σ)mn = C (xm1 , x

n
2 ) with the spatial variable xi = (x1

i , x
2
i , . . . , x

N
i ) for i = 1, 2. A Gaussian

random field with the specified covariance matrix is obtained by transforming Gaussian random
vectors u, v ∼ N (0,1) by Ψ(x) =

√
Σ(u+ iv).

For a d dimensional field with N points per dimension, the computational complexity for
the first method is O(Nd log(Nd)) due to the fast Fourier transform and for the second method
O(N3d) due to the diagonalization required for

√
Σ.

Orientation domains were synthesized by 256 × 256 × (128 · Lctx) pixels (length x width x
depth) with an aspect ratio of 2Λ×2Λ×LctxΛ and a cortical depth of Lctx = 1.6 and Lctx = 2 for
Fig. 6.4A-C and Fig. 6.5A-C, respectively. Numerical computations of the pinwheel string
density, Fig. 6.4E , were conducted with periodic boundary conditions and required a refined
discretization of 256× 256× 512 pixels in an aspect ratio of 8Λ× 8Λ× LzΛ with Lz = 160λ/Λ.
The variable cortical thickness allowed a calculation of the pinwheel string density in a single
synthesized orientation domain. For mathematical convenience, the same procedure was applied
to the case of an unselective layer 4C, Fig. 6.5E, where the relative size of the unselective layers
to the cortical depth remained fixed, while the depth was varied. Thus the actual size of the
unselective layer 4C varied that should lead to an amplified difference to the analytical pinwheel
string density if such a difference is present. However, no deviation between the numerical
and analytical pinwheel string density are observed that justifies this approach. In cylindrical
geometries, Fig. 6.6A-C, the resolution was 256× 256× 128 pixels (height x azimuth x radius)
with an aspect ratio of the outer shell 2Λ × 2Λ and a depth of Λ. The calculation of U-motif
frequencies and their depth was conducted with the same parameters except for the aspect ratio
of the outer shell that was adjusted to 8Λ × 8Λ. In order to depict realistic cellular sizes in
the synthesized orientation fields of the transitions, Fig. 6.7A-C and Fig. 6.8A-C, the length
of a pixel was adjusted to cell densities of 105 cells/mm2 with a typical scale of Λ = 1mm.
The resolution hence became 93 × 93 × 75 pixels with an aspect ratio of 2Λ × 2Λ × 1.6Λ. For
the calculation of the pinwheel string motifs, Fig. 6.7E and Fig. 6.8E, an enhanced spatial
resolution of 256× 256× 102 pixels with an aspect ratio of 4Λ× 4Λ× 1.6Λ was used.
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Chapter 7

Discussion

In this thesis, we theoretically examined the dynamic emergence, three-dimensional layout and
the susceptibility to measurement noise of visual cortical architectures with analytical and nu-
merical techniques from dynamical systems, pattern formation theory [28, 29] and statistical
physics [30, 31].

The relative importance of genes and environments is a long-standing question in various
fields. The answer to this question is unknown in general and in the nervous system perhaps most
advanced at the first visual processing stage, the primary visual cortex (V1). Developmental
mechanisms of visual cortical architecture are debated and both experimental and theoretical
research is mostly focused on neuronal activity. Therefore, it is crucial to fill the theoretical gap
and investigate possible genetic mechanisms for the determination of visual cortical architecture.
In order to assess the quality of models during this endeavor, it is inevitable to quantitatively
examine their functional architecture.

The core theoretical finding of this thesis is that a biologically plausible genetic mechanism
can quantitatively encode visual cortical architectures by a small number of morphogens. This
is the first time to our knowledge that such a mechanism has been identified. Importantly, it cir-
cumvents the alleged information bottleneck of the genome for hardwiring the cortex by a small
number of self-organizing morphogens. The encoded functional architectures were found to be
in good quantitative agreement with experimental data based on the comparison of their pin-
wheel configurations. Species-invariant pinwheel configuration statistics, constituting a common
design, were theoretically examined in maximum entropy models of two-dimensional orientation
domains. We further established a theoretical framework for high-precision measurements of
pinwheel configurations under measurement noise. This paves the way for an improved model
benchmarking framework for functional visual cortical architectures and informs future experi-
ments. Finally, orientation domains in three-dimensional geometries pointed to cortical regions
of high curvature that are prone to non-columnar organizations and are thus expected to be
informative about evolutionary transitions of the functional architecture.

In the following, the results of the chapters will be recapitulated and related to previous
work. Subsequently, future fruitful research directions that originated from or are related to
this work will be discussed.

7.1 Summary and relation to previous work

Genetic assimilation of visual cortical architecture

In Chapter 3, we devised a transcellular genetic network that can quantitatively encode func-
tional visual cortical architecture. In this model, the spatial organization of orientation pref-
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erence is encoded in the difference of morphogen concentrations. We identified active neural
transport and trans-neuronal signaling as well as joined dynamics of morphogens and the con-
nectome as key ingredients for such a genetic mechanism. The mechanism might support visual
cortical development caused by neuronal activity and can serve as a redundant plan in the ab-
sence of instructive neuronal activity. This theory provides predictions for experimental tests
of morphogen focal and dualsite overexpressions to differentiate between distinct genetic mech-
anisms based on self-organization and gradient read-out. The results thus help to clarify the
relative importance of genes and environmental factors.

This work shows that the apparent information bottleneck of the genome for wiring up the
cortex [27] can be circumvented by a small number of self-organizing morphogens. It is thus con-
ceivable that complex cortical circuits are supported or even shaped by genes. In the presence of
instructive neuronal activity, the genetic network might support targeting and pruning of axons
similar to synapse formation by chemoaffinity [2, 83, 204]. In the absence of instructive neu-
ronal activity, the mechanism might serve as a redundant plan for visual cortical development
and thus provides a novel view on the extreme robustness of visual cortical architecture under
dark-rearing [14]. Hence, genetic information potentially extends the repertoire of synapse for-
mation by chemoaffinity [2, 83, 204] and neuronal activity [407, 408]. Along that line of thought
that genetic information reach further in cortical development is the experimental discovery of
(i) a molecular correlate for ocular dominance bands [25] and (ii) the homeoprotein Otx2 that
is activity-dependent transported from the retina to V1 and involved in regulating the critical
period, a period of high cortical plasticity [26]. More generally, the feasibility of transcellular
genetic networks generating complex patterns supports the idea of an important role of contact-
dependent long-range transport not only in the brain but also in organ development and function
[212]. The basis of the devised genetic network model is a universality model class for visual
cortical development [22, 128–131, 136–139, 262] that we extended by a biologically plausible,
genetic mechanism. Since the orientation encoding part of the genetic network is equivalent to
this universality class, previous work such as a coupling to ocular dominance [129–131, 137] and
a transition to an interspersed orientation layout [140] can be easily incorporated. We found
that joined dynamics of the connectome and morphogens are essential for the emergence of
functional architectures. This finding transfers directly to the universality class [128] by substi-
tuting morphogen dynamics with orientation preference dynamics. Therefore, joined dynamics
of orientation preference and the connectome appears to be a general requirement for visual
cortical development.

Pinwheel configuration in maximum entropy models of orientation domains

In Chapter 4, we reviewed previous work on the link between pinwheel configuration statistics
and orientation domain ensembles and extended it to all pinwheel configuration statistics of the
common design. This examination highlights informative measures of pinwheel configurations
and their link to orientation domain ensembles.

This research generalized the pinwheel (topological defect) density of orientation fields (Gaus-
sian random fields) with vanishing mean that was previously only derived for ensembles with a
specific set of symmetries [30, 31, 135, 147, 170, 171]. Pinwheel correlation functions of isotropic
and shift-symmetric orientation fields derived earlier in another context [30] were combined with
an approximated scheme of the nearest neighbor distribution, see [159]. The pinwheel corre-
lation was further used to derive an exact expression for the pinwheel density fluctuations in
subregions extending previous work [278, 279].
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7.1. Summary and relation to previous work

The pinwheel configuration: theoretical significance and precision
measurement

In Chapter 5, we reviewed theoretical arguments for the complexity reduction of the functional
visual cortical architecture to the pinwheel configuration and subsequently examined its suscep-
tibility to measurement noise. The results provide a formalism for an extrapolation method
of the pinwheel density to the zero noise limit. They also provide an approximated analytical
expression for confidence regions of pinwheel centers. Finally, the results enable better estima-
tions from available data, provide a framework to discuss measurement strategies and highlight
recording techniques capturing spiking activity for precise pinwheel configuration measurements.
The precise quantitative determination of pinwheel positions and their confidence regions will
provide an enhanced framework for model benchmarking.

Mathematically, this work extends previous studies on maximum entropy ensembles with
vanishing means [31] to ensembles with means given by stationary orientation fields. It extends
specific calculations of pinwheel densities [135, 147, 170, 171] to a general analytical formula. The
finding of pinwheel confidence regions and more generally the pinwheel observation probability
can be further used to identify informative regions of transitions between distinct states of
functional architecture presented in Chapter 6. The pinwheel observation probability directly
transfers to orientation domain regions that may initially be invaded by an interspersed layout.

Three-dimensional organization of orientation selectivity in cortical tissue

In Chapter 6, we systematically examined maximum entropy models of three-dimensional
functional visual cortical architectures in different geometries. In three dimensions, pinwheels
generalize to pinwheel strings and are generically curved for finite columnar correlation lengths.
In flat geometries, we derived an analytical expression for the average pinwheel string length
and its dependence on the columnar correlation length. We showed explicitly that a varying
columnar orientation selectivity profile has no influence on the pinwheel string length. In gyri-
type cylindrical geometries, we synthesized orientation domains numerically and found that the
U–pinwheel string motif emerges more frequently for large curvatures than for flat cortices.
Finally, we presented scenarios for the transition from orientation domains to an interspersed
rodent-like orientation layout (salt-and-pepper). This work describes universal transient states
of entire model classes in a broad parameter regime and thus provides a thorough theoreti-
cal understanding of three-dimensional functional architectures. The theory enables examining
possible evolutionary transitions between different functional architectures. Intermediate or-
ganizations that are neither organized smoothly in orientation columns nor in an interspersed
layout, but instead are composed of, for instance, iso-orientation clusters may still exist.

Although two-dimensional upper layer functional architectures adhere to the common design
in primates and placental carnivores, their three-dimensional architectures differ substantially,
most notably, by distinct columnar orientation selectivity profiles. While two-dimensional mod-
els have been investigated extensively, only one model examined the three-dimensional architec-
ture to our knowledge [120]. We generalized this specific model of three-dimensional functional
architectures [120] to maximum entropy ensembles. We corroborate their finding of a frequently
occurring U-motif in curved geometries and extend the numerical results for the change of pre-
ferred orientations along vertical tracts to an exact analytical expression. The exact calculation
of pinwheel string densities for isotropic field ensembles in the horizontal plane with a separable
vertical dimension extends previous work that only evaluated this quantity for isotropic field
ensembles [30, 31]. The work further extends two-dimensional maximum entropy models for
orientation domains [135, 147, 171] to a third dimension and confirms their pinwheel density for
isotropic field ensembles.
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7.2 Outlook

The results from this thesis encourage further experimental and theoretical investigations of
visual cortical architectures to clarify their underlying developmental mechanisms and advance
their precise theoretical modeling.

Screening for genetic mechanisms of functional architecture

The proposed genetic network model of this thesis shows that the functional architecture of the
primary visual cortex can be genetically encoded by a biological plausible mechanism comprising
only a small number of morphogens. Therefore, the next logical step in this endeavor is to
experimentally investigate whether such a mechanism is implemented in primates and placental
carnivores. The most promising approach is transcriptome sequencing in combination with the
recording of neuronal response properties. A feasible experimental setup would be to determine
orientation preference by intrinsic signal imaging and apply transcriptome sequencing on cells
from domains that differ the most in orientation preference. A similar experimental paradigm
was used previously, where a molecular correlate for ocular dominance bands was found [25].
If a molecular correlate for orientation preference exists, further studies of focal or dualsite
overexpression of these morphogens could be used to identify the type of genetic mechanism.
In these experiments, genetic networks exhibiting self-organization, as proposed in this thesis,
globally reorganize their functional architecture, while genetic networks based on gradient read-
out reorganize only locally.

Screening for genetic mechanisms of the development of functional architecture could be fur-
ther extended to rodents. Since the orientation encoding part of the genetic network is equivalent
to a universality class of visual cortical development [22, 128–131, 136–139, 262], previous work
of a transition to an interspersed orientation layout [140] can be easily incorporated. Due to the
interspersed layout of orientation preference, screening requires a more elaborate experimental
setup, where orientation preference is first determined on a cellular level by, e.g. calcium imag-
ing. Afterwards, the transcriptome of the recorded cells can be sequenced following established
protocols [32–36].

Dichotomy of functional architectures

Comparative studies of various mammalian species suggest a dichotomy of function visual cor-
tical architectures. On the one hand an ordered arrangement of orientation preference into
orientation columns and on the other hand an interspersed layout without or only minimal
columnar order [41, 71, 383]. The insight gained from our study of three-dimensional functional
architectures indicates a possible modification of this view that suggests to revisit the experi-
ments from rabbits [44–48] and gray squirrels [42] in order to identify possible mixture states.
These experimental studies found small columnar clusters of orientation preference that might
constitute intermediate evolutionary states. The advent of three-photon calcium imaging makes
this endeavor more exciting than ever as the columnar structure can be investigated with cel-
lular resolution [37]. Of course, other functional architectures of mammalian branches such as
marsupials should be precisely quantified as well to clarify how functional architecture evolved
as already pointed out [23, 136].

Developmental model of orientation domain emergence

Devising a genetic mechanism for the development of visual cortical architecture is only one
aspect of visual cortical development. As shown in several experiments, neuronal activity can
alter visual cortical architecture, which suggests an interaction between neuronal activity and
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genetic mechanisms. It is therefore worthwhile to explore an analytically tractable neuronal
circuit that is driven by spontaneous neuronal activity and develops orientation domains that
are in agreement with the common design. A first step towards this direction was already
pioneered, but only analyzed numerically [121]. After establishing a neuronal activity based
model and identifying their necessary ingredients such as statistics of spontaneous activity, these
models can be coupled to genetic networks in order to gain a comprehensive understanding of the
development of visual cortical architecture. A possible coupling candidate is activity-dependent
transport as observed for the homeodomain transcription factor Otx2 [26]. The mechanisms
based on neuronal activity and on genes might run in parallel and act synergistically. Axons
that establish specific synapses by targeting and pruning can get more information by collusion
of both mechanisms and are therefore expected to be faster in circuit selection.

Pinwheel configurations in confined cortical areas

Pinwheel configurations of primates and placental carnivores follow species invariant quanti-
tative rules summarized under the term common design [22–24]. Remarkably, the long-range
interaction model predicted a pinwheel density that is virtually identical to the observed pin-
wheel density [128, 135]. Provoked by this quantitative discovery and the theoretical success,
the common design was subsequently used as model benchmark in [22–24, 121, 130, 131, 266]
and further extended in this thesis. However, experimentally observed pinwheel configurations
are confined by the boundaries of the visual cortical area and exhibit typically pinwheel sparse
zones close to the boundaries [12]. In this thesis and in a variety of other models, boundaries
are often excluded mainly due to their mathematical complexity and under the assumption
that their contribution can be negligible in large domains. In the long-range interaction model,
boundary effects were numerically explored and revealed a significant change of the orientation
domain layout, albeit the pinwheel configuration was not systematically investigated [267]. A
first glimpse of boundary effects can be appreciated by previous studies of Gaussian random
fields. In these studies, the effect of a single boundary with Dirichlet and Neumann condition
on the topological defect density, i.e. pinwheel density for orientation domains, was examined
[160, 161], see also [163]. Surprisingly, a single boundary leads to a total excess of pinwheels for
large areas despite low pinwheel densities close to the boundary. This approach was extended
to compact systems in numerical [162] and experimental quantum billiard systems [150, 151],
where similar effects have been observed. Therefore, the pinwheel density of models in confined
cortical areas would be expected to increase or decrease depending on the size of the area. It
is also plausible that other pinwheel configuration measures, such as nearest neighbor distribu-
tions, change through boundary effects. Perhaps, confined cortical areas also partially resolve
the open challenge of model class orientation domain solutions to have finite power-spectral
density widths [409]. Reviews for analytical approaches in dynamical systems can be found
in [28, 410]. Hence, in order to establish a more stringent benchmarking framework, it will
be important to analytically and numerically dissect the qualitative and quantitative boundary
effects on the pinwheel configuration.

Finite power-spectral density width

The common design of primates and placental carnivores is a remarkable mammalian brain
trait discovered in a large-scale comparative analysis. The pinwheel configuration of closed-form
solutions from the long-range interaction model [128] and the proposed genetic network model
are in good quantitative agreement with the common design for sufficiently large interaction
and transport ranges [22], respectively. However, discrepancies remain that are so far not ex-
plained by this model. One discrepancy was already pointed out and concerns the power-spectral
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density width that is much thinner for stable model solutions than in experimentally observed
orientation domains [409]. Another perhaps related discrepancy is the invariance of the average
pinwheel density to phase shuffling of closed-form model solutions in contrast to an increased
pinwheel density in experimentally observed orientation domains [22, 411]. The dependence
of the pinwheel density on phase shuffling is a clear deviation to orientation domains that are
modeled by Gaussian random fields. This indicates that higher order correlation moments are
present in experimentally observed orientation domains. Possible explanations for both discrep-
ancies are, for instance, the heterogeneity of the typical scale and the aforementioned confined
cortical area. While the treatment of confined cortical areas was described in the previous
section, heterogeneity of the typical scale can be tackled in various ways. Dynamical models
could be extended by a heterogeneous connectome that can result in a spatially variable typical
scale. The analysis might then be pursuit by (i) an analytical approach with a spatial depen-
dence of amplitude equations, (ii) numerical studies of corresponding field equations and (iii)
spatially non-stationary Gaussian random fields. The understanding of the emergence of finite
power-spectral density widths will endow the universality class of visual cortical development
and related models with more theoretical depth and breadth.

Functional architecture in visually deprived humans

A more distant but very exciting research direction that might clarify the functional role of
visual cortical architecture is suggested by findings in visually deprived humans. Monocular
deprivation became an animal model for amblyopia almost immediately after the discovery of
orientation selectivity in the primary visual cortex [69, 412]. This experimental paradigm was
extended to binocular visual deprivation, stripe rearing and dark rearing that lead to the dis-
covery that visual experience can impair, prevent or even destroy the functional architecture
[14, 66, 100]. The extension of monocular deprivation in humans used for the treatment of am-
blyopia lack a deep biological justification. Intriguingly, only recently a humanitarian mission
was initiated that generated numerous new observations without any ethical concerns. In the
humanitarian project Prakash [413], blind children with treatable eye problems, but without
sufficient financial resources, are cured. Due to their condition, the children experienced an
extended period of early-onset blindness starting before the first year of life and lasting for 8–17
years due to bilateral cataracts. Over 6 month after surgical cataract removal, the patients
showed a surprising improvement of contrast sensitivity [413, 414]. Before cataract removal,
their visual acuity was poor of at most finger counting at a distance of a meter. Postsurgical
contrast sensitive assessments demonstrated an up to thirty-fold improvement of peak contrast
thresholds and an enlarged sensitivity for higher spatial frequencies. How is this visual depri-
vation and a subsequent improvement of visual acuity reflected in the functional architecture of
humans? Fortunately, the answer to that question can be non-invasively examined by high-field
fMRI that was already used previously to examine orientation domains in cats and humans [58,
120, 396]. This may constitute a unique opportunity to dissect the functional architecture in
visually deprived humans. A glimpse on the outcome of the experiments can be appreciated by
comparison to dark rearing [14] and binocular deprivation experiments in animals [66]. In both
cases, orientation domains emerge initially despite the lack of visual experience, but their orien-
tation selectivity decrease after an extended period of visual deprivation. The increase in visual
acuity after cataract removal is hence surprising and might be similar to natural eye-opening.
A genetic mechanism as proposed in this thesis might again serve as a redundant or supportive
mechanism for visual cortical development.
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Chapter 8

Appendix

8.1 Derivation of pair and charge pinwheel correlation function

In this section a detailed analytical derivation for the pinwheel pair correlation function

g(r) =
1

ρ2

〈
δ(η(x))δ(ξ(x)) |ν(x)| δ(η(x′))δ(ξ(x′))

∣∣ν(x′)
∣∣〉 (8.1)

with r = ‖x−x′‖ and ν(x) = ξx(x)ηy(x)−ξy(x)ηx(x) of isotropic and shift-symmetric Gaussian
random fields Ψ(x) = ξ(x) + iη(x) will be derived following [30].

In order to evaluate the expectation value, the marginal distribution of the field components

χT =(ξ(x), ξ(x′), ∂xξ(x), ∂x′ξ(x
′), ∂yξ(x), ∂y′ξ(x

′)) (8.2)

νT =(η(x), η(x′), ∂xη(x), ∂x′ξ(x
′), ∂yη(x), ∂y′η(x′)) (8.3)

is required. For isotropic orientation fields, the analysis simplifies by choosing the x-axis to lie
along the difference vector x−x′. As the off-diagonal elements of the covariance matrix vanish
〈νχT 〉 = 0 due to shift-symmetry, the probability density function is given by

p(χ,ν) =
1√

(2π)12 det Σ2
exp

(
−1

2
(χTΣ−1χ+ νTΣ−1ν)

)
(8.4)

with the covariance matrix Σ = 〈χχT 〉 = 〈ννT 〉. The coefficients of the covariance matrix are
related to the correlation function of the orientation field ensemble C(r) = 〈Ψ(x1)Ψ̄(x2)〉 with
r = ‖x1 − x2‖ by

c1 =〈ξ(x)ξ(x)〉 =
1

2
C(0)

c2 =〈ξ(x)ξ(x′)〉 =
1

2
C(r)

c3 =〈ξ(x)∂x′ξ(x
′)〉 = −〈∂xξ(x)ξ(x′)〉 = 〈η(x)∂x′η(x′)〉 = −〈∂xη(x)η(x′)〉 =

1

2
∂rC(r)

c4 =〈∂xξ(x)∂x′ξ(x)〉 = 〈∂yξ(x)∂y′ξ(x)〉 = 〈∂xη(x)∂x′η(x)〉 = 〈∂yη(x)∂y′η(x)〉 = −1

2
∂2
rC(0)

c5 =〈∂xξ(x)∂x′ξ(x
′)〉 = 〈∂xη(x)∂x′η(x′)〉 = −1

2
∂2
rC(r)

c6 =〈∂yξ(x)∂y′ξ(x
′)〉 = 〈∂yη(x)∂y′η(x′)〉 = − 1

2r
∂rC(r), (8.5)
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where the spatial dependence of the moments are omitted for the sake of brevity. The covariance
matrix is then given by

Σ =

(
M1 0

0 M2

)
with M1 =


c1 c2 0 −c3

c2 c1 c3 0
0 c3 c4 c5

−c3 0 c5 c4

 , M2 =

(
c4 c6

c6 c4

)
. (8.6)

The inverse of the covariance matrix then reads

Σ−1 =

(
M−1

1 0

0 M−1
2

)
, M−1

1 =

(
N2 N3

NT
3 N1

)
, M−1

2 =N4 (8.7)

and

N1 =
1

detM1

(
c4(c2

1 − c2
2)− c1c

2
3 −c5(c2

1 − c2
2) + c2c

2
3

−c5(c2
1 − c2

2) + c2c
2
3 c4(c2

1 − c2
2)− c1c

2
3

)
(8.8)

N2 =
1

detM1

(
c1(c2

4 − c2
5)− c4c

2
3 −c2(c2

4 − c2
5) + c5c

2
3

−c2(c2
4 − c2

5) + c5c
2
3 c1(c2

4 − c2
5)− c4c

2
3

)
(8.9)

N3 =
1

detM1

(
c3(c2c4 − c1c5) c3(c2

3 − c1c4 + c2c5)
−c3(c2

3 − c1c4 + c2c5) −c3(c2c4 − c1c5)

)
(8.10)

N4 =
1

detM2

(
c4 −c6

−c6 c4

)
. (8.11)

The next part of the calculation consists of performing the average in Eq. (8.1) with the given
probability density function. The delta distributions change the probability density function to
a product of a scaling term and a modified probability density function p̃

p(χ) =
p̃(χ̂)

(2π)2(c2
1 − c2

2)
(8.12)

p̃(χ̂) =
1

(2π)4
√

det Σ̃
exp(−1

2
χ̂T Σ̃

−1
χ̂) (8.13)

with the newly introduced random variable

χ̂ =(∂xξ(x), ∂x′ξ(x
′), ∂yξ(x), ∂y′ξ(x

′), ∂xη(x), ∂x′η(x′), ∂yη(x), ∂y′η(x′))T (8.14)

and the covariance matrix

Σ̃
−1

=diag(N1,N4,N1,N4). (8.15)

The pair correlation function can thus be simplified to an average over the modified probability
density function

g(x,x′) =
1

(2π)2(c2
1 − c2

2)ρ2

〈
|ν(x)|

∣∣ν(x′)
∣∣〉
p̃
. (8.16)

The Gaussian average over an absolute value is a typical problem in statistical theory [30, 277]
and can be solved by utilizing an identity of the absolute value that leads in the case considered
here to 〈

|ν(x)|
∣∣ν(x′)

∣∣〉
p̃

=
1

π2

∫
dt

t2

∫
ds

s2

〈
(1− cos(ν(x)t))(1− cos(ν(x′)s))

〉
p̃
. (8.17)

164



8.1. Derivation of pair and charge pinwheel correlation function

The solution of the expectation value can be obtained by rewriting the orthogonality measure
as

ν(x)t = χ̂TA(t, 0)χ̂

ν(x′)s = χ̂TA(0, s)χ̂
(8.18)

with the anti-diagonal matrix

A(t, s) =


0 0 0 B(t, s)
0 0 −B(t, s) 0
0 −B(t, s) 0 0

B(t, s) 0 0 0

 , B(t, s) =− 1

2

(
t 0
0 s

)
. (8.19)

The solution of the expectation value is given by〈
(1− cos(ν(x)t))(1− cos(ν(x′)s))

〉
p̃

=T (0, 0)− T (t, 0)− T (0, s) +
1

2
(T (t, s) + T (t,−s))

(8.20)

with

T (t, s) =<
{〈

ei(ν(x)t+ν(x′)s)
〉
p̃

}
= <

{〈
exp

(
iχ̂TA(t, s)χ̂

)〉
p̃

}
= <

 1√
det(1− 2iΣ̃A(t, s))


(8.21)

The covariance matrix is given by

Σ̃ =diag(N−1
1 ,N−1

4 ,N−1
1 ,N−1

4 ), (8.22)

N−1
1 =

 c4 −
c1c23
c21−c22

c5 −
c2c23
c21−c22

c5 −
c2c23
c21−c22

c4 −
c1c23
c21−c22

 , N−1
4 =M2 =

(
c4 c6

c6 c4

)
. (8.23)

The determinant becomes√
det(1− 2iΣ̃A(t, s)) =| det(1 + 4N−1

1 B(t, s)N−1
4 B(t, s))|

=1 + c4(c4 −
c1c

2
3

c2
1 − c2

2

)(s2 + t2) + 2c6(c5 −
c2c

2
3

c2
1 − c2

2

)st

+
detM1 detM2

c2
1 − c2

2

s2t2. (8.24)

Notice that due to Silvester’s criterion, the upper sub-covariance matrices are positive semi-
definite and the prefactors of t2 are positive. By rescaling the integration variables t and s the
solution becomes

g(r) =
c2

4(c2
1 − c2

2)− c1c
2
3c4

4π4(c2
1 − c2

2)2ρ2∫
dt

t2

∫
ds

s2

(
1− 1

1 + t2
− 1

1 + s2
+

1 + s2 + t2 + Zs2t2

(1 + s2 + t2 + Zs2t2)2 − Y 2s2t2

)
(8.25)

with

Y =
2c6(c5(c2

1 − c2
2)− c2c

2
3)

(c2
1 − c2

2)c2
4 − c1c2

3c4
, Z =

detM1 detM2(c2
1 − c2

2)

((c2
1 − c2

2)c2
4 − c1c2

3c4)2
. (8.26)
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One of the integrals can be evaluated by residuum theory yielding

g(r) =
2c2

1(c4(c2
1 − c2

2)− c1c
2
3)

πc4(c2
1 − c2

2)2

∫ ∞
0

dt
2t4Z + t2

(
−Y 2

2 + Z + 3
)

+ Y 2

2 − Z + 3

(t2 + 1)3

√
t4Z + t2

(
−Y 2

4 + Z + 1
)

+ 1

. (8.27)

The solution of the last integral is provided in [154], but is rather cumbersome and therefore
not shown here.

The charge correlation function can be similarly defined by

gQ(x,x′) =
1

ρ2

〈
δ(η(x))δ(ξ(x))ν(x)δ(η(x′))δ(ξ(x′))ν(x′)

〉
. (8.28)

The derivation is the same until the averaging that can be rewritten as

〈
ν(x)ν(x′)

〉
p̃

= ∂α∂β

〈
eαν(x)+βν(x′)

〉
p̃

∣∣∣∣
α=β=0

. (8.29)

For a vanishing static field the result reads

gQ(x,x′) =
1

(2π)2(c2
1 − c2

2)ρ2
∂α∂βT (α, β)|α=β=0 =

2c6(c5(c2
1 − c2

2)− c2c
2
3)

(2π)2(c2
1 − c2

2)2ρ2
(8.30)
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who supported me in the compilation of this project.

My office mate Rainer Engelken deserves credits for loads of discussions about science, news
and all other important subjects that exist in the world. It was a blast to spend all that time
with him in our nearly aseptic little office.

I thank Manuel Schottdorf for scientific discussions, exploration of remote places around the
world and a joint successful commitment to challenges in science, sports and other things. It
was a pleasure.

Thank you, Juan Daniel Florez-Weidinger a.k.a. Chepe for scientific discussions, your critical
mindset and the best coffee in the world.

I thank all remaining people from the second floor of the MPI DS building for their helpful
answers to questions, discussions, critics and the working atmosphere.

A decisive factor for the excellent working environment was the smoothly working com-
puter infrastructure including the computer cluster. I want to thank Denny Fliegner, Hecke
Schrobsdorff and Yorck-Fabian Beensen for their fabulous support.

I am grateful for the administrative work from Victoria Novak, Regina Wunderlich and Ayse
Bolik, who facilitated the daily routine and special events such as the advanced computational
neuroscience summer school.

Many eyes see better than two. Therefore, I want to thank all people, who proof-read the
thesis or parts of it: Fred Wolf, Manuel Schottdorf, Johannes Zierenberg, Rainer Engelken,
Jonas Franz, Juan Daniel Florez-Weidinger, Alexander Schmidt, Sonja Sommerfeldt and Ralf
Riedinger.

Special thanks to Sonja and Harry who laid the foundation for my logical thinking and
efficient working, respectively.

I would like to thank Jessica Grebe for supporting me non-scientifically during the entire
time of my PhD.

Finally, I want to thank all my friends and my family for the support.

189





Curriculum Vitae

Personal Information

Name
Date of birth
Place of birth
Citizenship

Joscha Liedtke
17th March 1988
Marburg (Wehrda)
German

Education

06/2014–06/2017

01/2014–06/2017

10/2011–09/2013

08/2010–03/2011

03/2008–08/2011

10/2007–03/2008

06/2007

Georg-August University, Göttingen, Germany
Doctoral studies in Physics, Theoretical and Computational Neuro-
science at the GGNB
MPI for Dynamics and Self-Organization, Göttingen, Germany
Research fellow
Georg-August University, Göttingen, Germany
M. Sc. (graduate) studies in Physics
Gothenburg University/Chalmers, Gothenburg, Sweden
Exchange student (Erasmus) in Physics
Philipps University Marburg
B. Sc. (undergraduate) studies in Physics
TU Darmstadt, Darmstadt, Germany
Undergraduate studies in Machine Engineering
Adolf-Reichwein-Schule, Marburg, Germany
High school graduation (“Abitur”)

Fellowships

01/2015–06/2017
03/2012–09/2013

GGNB Excellence Stipend
German National Academic Foundation

191


	Introduction
	Fundamentals
	The primary visual pathway
	Functional architecture of the primary visual cortex
	Development and plasticity of orientation domains
	Modeling development and organization of orientation domains
	Long-range interaction model
	Orientation field ensembles

	Gene regulation
	Modeling gene regulation
	Overview of this thesis

	Genetic assimilation of visual cortical architecture
	Abstract
	Introduction
	Results
	Discussion
	Supplementary material
	Genetic network construction
	Complexity reduction to canonical genetic network
	Symmetry-confined canonical genetic network
	Slow dynamic connectome
	Delayed axonal transport
	Extended solution set of canonical genetic network
	Benchmarking orientation fields of canonical genetic network
	Numerical methods
	Alternative model: positionally specified orientation preference
	Nomenclature


	Pinwheel configuration in max. entropy models of orientation domains
	Motivation
	Maximum entropy models of orientation fields
	Pinwheel density
	Pinwheel pair and charge correlation function
	Isotropic and shift-symmetric orientation field ensembles
	Pinwheel crystals

	Pinwheel density fluctuations
	Pinwheel nearest neighbor distribution
	Summary

	Pinwheel configuration: theo. significance and precision measurement
	Abstract
	Introduction
	Results
	Discussion
	Methods

	Three-dimensional organization of orientation selectivity in cortical tissue
	Abstract
	Introduction
	Results
	Discussion
	Methods

	Discussion
	Summary and relation to previous work
	Outlook

	Appendix
	Derivation of pair and charge pinwheel correlation function

	Bibliography

