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Advanced Data Processing
in Super—resolution Microscopy

ABSTRACT

uper-resolution fluorescence techniques enable the study of structures smaller than the diffrac-

tion limit with visible light microscopy. Their introduction and development within the last

two decades opened up the possibility to ask entirely new questions in cell biology. The field of super-
resolution microscopy is still growing rapidly, and many improvements and novel methods have been

proposed in recent years.

The major part of this thesis revolves around the advancement of Super-resolution Optical Fluctua-
tion Imaging (SOFI), a fairly new technique which enhances the spatial resolution of an image by eval-
uating the temporal fluctuations of blinking fluorescent emitters. SOFI enables optical sectioning with
wide-field microscopes and is compatible with a large range of experimental conditions. The following
SOFI-related contributions are presented: First, a comprehensive analysis of the convergence prop-
erties of SOFI and its dependence on experimental parameters is shown, including an estimation of
the necessary recording time and particle density for a targeted resolution enhancement. Second, we
present Fourier SOFI, a new approach to generate super-resolved images on a finer pixel grid than the
original camera recording. In contrast to established algorithms relying on spatial cross-cumulants, this
method is practically free of artifacts and does not require any post-processing corrections. Next, an
algorithm is laid out that corrects for the contributions of noise in zero-time-lag SOFI images. This
extends the applicability of auto-cumulant SOFI - which correlates values only in time, not in space
— to recordings where the time scale of photoblinking is on the same order as the exposure time. We
also show how the lateral microscope Point Spread Function (PSF) can be estimated from SOFI data
of thin samples. If multiple focal planes are imaged at the same time, the full three-dimensional PSF
can be recovered. The fifth contribution revolves around Fourier Preweighting, a method that increases
the resolution of SOFI images by pre-processing the original data. We show that this outperforms cur-
rent techniques and surprisingly also improves the density dependence of SOFI. A related algorithm

is presented which automatically matches the degree of resolution enhancement to the data quality,
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avoiding artifacts. The last SOFI contribution demonstrates its applicability to cells labeled with car-
bon nanodots, a fairly new cost-effective and bio-compatible class of fluorophores, and shows that their

blinking behavior is qualitatively similar to that of fluorescing semiconductor crystals (quantum dots).

Unrelated to SOFI, we show how single Atto647N molecules can be localized with sub-nanometer
precision by exploiting the increased photon yield of samples at liquid nitrogen temperature. We pro-
pose a method to resolve spectrally identical, non-blinking fluorophores spaced only few nanometers

apart with a special cryo-fluorescence setup and validate our concept with simulations.

We also developed TrackNTrace, an open-source MATLAB framework to support the development
of fluorescence imaging applications. Its design is focused on easy extensibility through plugins, sim-
plicity of coding, and rich visual feedback. We demonstrate competitive performance and execution
speed in Single-Molecule Localization Microscopy applications compared to established software and

include many state-of-the-art algorithms out-of-the-box.

Finally, we present two projects reliant on single-molecule imaging: First, we developed a model
for the intensity distribution of fluorescent molecules imaged while flowing through a nanochannel and
verified it experimentally. This can be used to extract the ratios of differently labeled species from a mea-
surement of their mixture. In the second project, we demonstrate the first simultaneous measurement

of the excitation and emission dipole axes of single molecules.

iv



Contents

INTRODUCTION 1
1.1 Fluorescence microscopy . . . . . . . . ... .o 4
1.2 The resolution limit of an optical microscope . . . . ... ... ... ... ... .. 5
1.3 Super-resolution microscopy . . . . . .. ... 10
ADVANCEMENTS IN SUPER-RESOLUTION OPTICAL FLUCTUATION IMAGING 13
2.1 Thetheoreticalbasisof SOFI . . . . . . . . . . . . . . .. . i 14
2.2 From cumulants to SOFl computation . . . . . . ... ... ... .......... 22
2.3 Convergenceofcumulants . . . . ... ... ... L L L o 26
2.4 Fourier SOFL . . . . . . . . e 45
2.5 Noise correction for auto-cumulants with zero time-lags . . . . . . .. ... ... .. 50
2.6 Estimation ofthe OTFandPSF . . . . . . . . . . . . . . . . . . ... 58
2.6.1  OTF estimation for 3D-imaging . . . . . .. ... ... ........... 58
2.6.2  OTF estimation for 2D-imaging . . . . . .. ... .. ... ......... 59
2.6.3 OTF extractioninpractice . ... ... ... ... .. ........... 60
2.6.4  Remarks on recovery of the phase information . . . .. ... ... ... .. 61
2.7 Adaptive resolution improvement of SOFILimages . . . . . . ... .......... 63
2.7.1  Conventional Deconvolution . . . .. ... ... .. ... ......... 65
2.7.2  FourierReweighting . . . . ... ... ... ... ........ . ..... 69
2.7.3 FourierPreweighting . . . . . .. ... ... ... ... ... ... .. ... 70
2.8 SOFIwithcarbonnanodots . . . .. ... ... ... .. ... .. .. .. . .... 84



SUPER-RESOLUTION CRYO-FLUORESCENCE MICROSCOPY 89

3.1 Single molecule localization with sub-nanometer precision . . . ... ... ... .. 90
3.2 Co-localization using polarized excitation & detection . . . ... ... ... .... 94
TRACKNTRACE 103
4.1 Concept. . . . .o 105§
4.2 Designofthepluginsystem . . . . ... ....... .. ... ... ... ... .. 109
4.3  Performance evaluation and experimental examples . . . . . . ... ... ... ... 113
OTHER CONTRIBUTIONS 117
5.1 Modeling the brightness distribution of molecules in nanochannels . . . . . ... .. 117

5.2 Simultaneous measurement of the three-dimensional orientation of excitation and emis-

sion dipoles of singlemolecules . . . . . ... ... . o L Lo oL 127

CONCLUSION 131

BIBLIOGRAPHY 142
APPENDICES

A Additional figuresandtables . . . ... ... ... o o o oL 145

B Computation ofjointcumulants . . . . . ... ... o Lo oL 147

C  Theoretical cumulants ofatwo-statemodel . . . . . . . .. .. ... ... .. ... 153

Cua Continuous time differential equation . . . . . . . ... ... ... ... .. 154

C.a2 Discrete time differential equation . . . . . . .. ... ... L. 154

Cs3 Calculation of joint cumulants for the two-statemodel . . . . . . . ... .. 156

D  Biasand error of the 2nd order ordinarycumulant . . . . . . ... .00 159

D.1 Bias of the variance estimator for correlated time series . . . . . . ... ... 159

D.2 Error of the variance for correlated timeseries . . . . . . . ... ....... 161

E Collectionof cumulantformulas . . . . . . . . .. .. ... ... .. ... . ... 165

ACKNOWLEDGMENTS 169

CURRICULUM VITAE 173

vi



AC-SOFI Auto-Cumulant SOFI

CND Carbon Nanodot

DFT Discrete Fourier Transform

EMCCD Electron Multiplying Charge-Coupled Device

fSNR Frequency Signal-to-Noise Ratio

fSOFI Fourier Super-resolution Optical Fluctuation Imaging

GUI Graphical User Interface

ISM Image Scanning Microscopy

MLE Maximum Likelihood Estimation

NSIM Nonlinear Structured Illumination Microscopy
OTF Optical Transfer Function

PALM Photoactivated Localization Microscopy

PSF Point Spread Function
RMS Root Mean Square (Error)

SMLM Single-Molecule Localization Microscopy
SNR Signal-to-Noise Ratio
SOFI Super-resolution Optical Fluctuation Imaging

SPT Single Particle Tracking

vii

List of Acronyms



STED Stimulated Emission Depletion

STORM Stochastic Optical Reconstruction Microscopy

TIRF Total Internal Reflection Fluorescence

TNT TrackNTrace

XC-SOFI Cross-Cumulant SOFI

viii



Afhdavit

Hereby, I declare that the presented thesis has been written independently and with no other sources

and aids than quoted.
List of Related Publications

Stein, S.C.; Huss, A.; Hihnel, D.; Gregor, I.; Enderlein, J.; “Fourier interpolation stochastic optical
fluctuation imaging”, Optics Express, 23, 16154-16163, 2015.

Stein, S.C.; Thiart, J.; “TrackNTrace: A simple and extendable open-source framework for develop-

ing single-molecule localization and tracking algorithms.”, Scientific Reports, 6, 37937, 2016.

Weixing, L.; Stein, S.C.; Hihnel, D.; Gregor, I.; Enderlein, J.; “Ultra-stable and versatile widefield

cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy’,

Optics Express, 23, 3770-3783, 2015.

Chizhik, A.M.; Stein, S.C.; Dekaliuk, M.O,; Battle, C.; Li, W.; Huss, A.; Platen, M., Schaap, I.A.T;
Gregor, I.; Demchenko, A.P,; Schmidt, C.E,, Enderlein, J.; Chizhik, A. I; “Super-Resolution
Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots”, Nano Letters, 16, 237-

242,2016.

Karedla, N.; Stein, S.C.; Hihnel, D.; Gregor, I.; Chizhik, A.; Enderlein, ].; “Simultaneous Measure-
ment of the Three-Dimensional Orientation of Excitation and Emission Dipoles”, Physical

Review Letters, 115, 173002, 2015.

Isbaner, S.; Karedla, N., Ruhlandt, D.; Stein, S.C.; Chizhik, A.; Gregor, I.; Enderlein, J.; “Dead-time

correction of fluorescence lifetime measurements and fluorescence lifetime imaging”, Optics

Express, 24, 9429-9445, 2016.

The research leading to this thesis was supported with funding from the German Research Founda-
tion (DFG) via the Collaborative Research Center SFB 937 “Collective behavior of soft and biological
matter” through project A11.

ix


https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-12-16154
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-12-16154
http://www.nature.com/articles/srep37947
http://www.nature.com/articles/srep37947
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-3-3770
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-3-3770
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b03609
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b03609
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.173002
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.173002
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-24-9-9429
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-24-9-9429




Introduction

He development of microscopy up to this day is driven by a fascination with the workings of
nature on length scales too small to be observed by the human eye. Microscopes exposed
this previously invisible microcosm, leading to countless insights in a diverse range of fields,

especially biology, medicine, and material sciences. For a long time, the desire to study ever smaller

objects was opposed by the limited quality of every microscope’s core optical instrument: the lens.

The earliest depictions of lenses are found in Egyptian hieroglyphs dating back to 800 B.C.[1]. Back
then, they were mostly known for their ability to ignite fires by concentrating sunlight, giving them the
name “burning glasses”. Only a fortunate few realized their capability to magnify objects and used this
fact to facilitate the creation of fine engravings and seals [2]. However, missing knowledge about what
determines a lens’ optical quality prevented its widespread application. In spite of this, some craftsmen
discovered early on how to fabricate lenses with impressive imaging properties, such as the Visby lenses
made by Vikings in the 11th or 12th century, the best of which come close in quality to aspherical lenses
produced today [3]. In the 13th century, the art of lens making became common practice through the
invention of spectacles, but was still entirely based on empirical knowledge [4]. Unknown in the west-
ern world, the Persian scientist Ibn Sahl was responsible for several profound advancements in optical
theory. In 984 he derived both the law of refraction and the shape of an ideal lens for the first time
(5], aknowledge not rediscovered until the 17th century. Around this time, the first compound micro-
scopes carrying multiple lenses were developed, which allowed for more detailed observations through
higher magnification. The next leap in image fidelity was made possible by the invention of achromatic
systems, which correct the color-dependency of a microscope’s magnification. Towards the end of the
19th century, new illumination methods could provide even sample lighting, improving image clarity

and contrast by removing the previously visible afterimage of the light source [6].



At this point, the best optical microscopes could resolve such small structures that two fundamental
problems were brought into focus: First, the absorption of light vanishes with decreasing size of the
specimen, making direct observation impossible. This issue was resolved by new ways to create image
contrast, such as phase contrast microscopy, which converts small variations in the traveling time of light
through the sample into perceptible brightness differences. Its inventor Frits Zernike was awarded the
Nobel Prize in Physics in 1953. One of the most important techniques for biological microscopy today,
and also the basis of this thesis, is fluorescence microscopy. Here, the sample is labeled with molecules,
which are brought to an excited state by absorbing light of a suitable wavelength. After losing a certain
amount of energy, they return to the ground state, emitting a photon of higher wavelength. This so-called
Stokes shift makes it possible to separate emission from excitation, yielding images with high contrast.
Another advantage of fluorescence microscopy is its specificity, as different binding sites on molecules

can be precisely targeted by modern labeling techniques.

The second problem was brought to attention by Ernst Abbe in 1883, who could prove that the res-
olution of an optical microscope is universally limited due to the wave properties of light [7]. Owing
to the finite wavelength and the phenomenon of diffraction, even a point-like light source appears as a
spot of finite width in the image, causing a loss of details on length scales below the spot size. In practice,
this prevents conventional far-field light microscopes from resolving features smaller than 200 nanome-
ters in size. The resolution limit was unchallenged for over 100 years, but finally circumvented around
the turn of the millennium by the invention of two fluorescence microscopy techniques: Stimulated
Emission Depletion (STED) microscopy and Single-Molecule Localization Microscopy (SMLM). The
former exploits the phenomenon of stimulated emission [ 8], while the latter relies on single-molecule
sensitive imaging and the ability to control the on/off switching behavior of fluorophores [9, 10]. In
2014, Stefan W. Hell, Eric Betzig and William E. Moerner received the Nobel Prize in Chemistry for en-
abling this breakthrough. Since the introduction of super-resolution microscopy, a plethora of different
techniques has been invented, many of which can, in principle, achieve unlimited resolution. However,
they can usually be applied only within a narrow spectrum of experimental conditions, limiting their
performance in practice. As the field of super-resolution is quite new, there is still considerable room

for improvement, which is demonstrated by its rapid development in recent years.

In consequence, the continuous improvement of fluorescence microscopy today is not tied to the re-
finement of optical components anymore, but the development of clever new experimental techniques,
better ways to control the fluorophore behavior and advanced data processing methods, the latter being

the focus of this work.

This thesis presents improvements for different super-resolution and single-molecule applications,
with a focus on Super-resolution Optical Fluctuation Imaging (SOFI, Chapter 2). First published in
2009 [11], SOFL is one of the newest super-resolution techniques. Its main advantages are its simplic-
ity — requiring only a standard wide-field microscope with a fast recording camera — and compatibility
with a wide range of experimental conditions. Chapter 3 demonstrates that single molecules can be
localized with sub-nanometer precision when imaging samples that are cooled to liquid nitrogen tem-

peratures. Additionally, a concept for the accurate co-localization of multiple fluorophores is proposed



and discussed. Chapter 4 introduces TrackNTrace (TNT), a software I developed with my colleague
Jan Thiart to facilitate the development of new data evaluation methods for fluorescence imaging appli-
cations, with a focus on Single-Molecule Localization Microscopy and Single Particle Tracking (SPT).
Chapter 5 deals with two novel single-molecule applications: The first section presents a detailed analy-
sis of the brightness distribution of single-molecules flowing through nanochannels. This precise char-
acterization is useful to determine the ratio of differently labeled samples when imaging a mixture. The
second section presents an imaging-based method for the simultaneous measurement of the excitation
and emission dipole of single fluorophores. Finally, Chapter 6 summarizes all findings and concludes

the thesis.

In addition to this general introduction, each chapter features a brief overview of the topic and current
developments. Most sections end with a list of bullet points, summarizing the most important aspects to
improve comprehensibility and facilitate quick look-up of information. The following sections explain

the basics of fluorescence and super-resolution microscopy, which are relevant to all chapters.



1.1 FLUORESCENCE MICROSCOPY
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Figure 1.1: Fundamentals of fluorescence microscopy. a) Scheme of a typical fluorescence microscope. b)
Jablonski diagram illustrating the electronic states of a typical fluorophore and the transitions between them.
Additionally, the time-scales of these transitions are depicted. Small black arrows indicate the spin state of
electrons. ¢) Absorption and emission spectra of the fluorophore BODIPY®5°/%65 | showing a stokes shift of
~18 nm. [Original images from Ishikawa-Ankerhold et al [ 12], re-edited for this figure; Creative Commons
Attribution license 3.0 (CC BY 3.0): https://creativecommons.org/licenses/by/3.0/]

In fluorescence microscopy, special molecules, called fluorophores, are attached to points of interest
in the sample and subsequently imaged with a customized microscope, as illustrated in Figure 1.1 a).
First, the excitation light travels through an optical filter that selects a specific wavelength. Next, it is
reflected by a dichroic mirror, before the objective focuses it into the specimen. A dichroic mirrors is
transparent for a range of wavelengths while reflecting others. The fluorophores absorb a certain spec-
trum of the incoming light, elevating the molecules into an excited electronic state. They can return to
the original ground state by emission of a photon of higher wavelength, leading to a color shift between
excitation and emission. As an example, Figure 1.1 b) shows the absorption and emission spectrum of
the fluorophore BODIPY®$*/¢%5, Due to this wavelength shift, the Stokes shift, the emitted light can be
separated from the excitation, passing the dichroic mirror on the return path. An additional emission
filter further reduces unwanted background light, before the signal is collected by the detector (e.g. a
camera or avalanche photodiode). As only structures of interest are labeled, the recorded signal exhibits

high contrast and specificity.

With the exception of Section §.2, the experimental data in this thesis was recorded with a wide-
field microscope, the most basic type of fluorescence microscope. Here, the sample is homogeneously
illuminated and the emission is detected by focusing the collected light on a camera. In contrast, Section
5.2 also makes use of a confocal laser scanning microscope, which scans the sample with a focused laser

beam and collects the emission on a single-pixel detector. The final image is assembled only later in


https://creativecommons.org/licenses/by/3.0/

post-processing by combing the measurements at all scan positions.

Figure 1.1 c) shows the Jablonski diagram — a scheme illustrating a molecule’s electronic states and
the transitions between them — of a typical fluorophore. Absorption of the excitation light pumps the
molecule from the ground state GS, into a high energy state, followed by a quick relaxation into the low-
est excited singlet state ES; through intramolecular energy conversion or intermolecular energy transfer.
This energy loss is responsible for the Stokes shift between excitation and emission. Subsequently, the
detected fluorescence photon is generated by a radiative transition from the first excited singlet state
ES; to the ground state GSp. The maximum rate of photons the fluorophore can emit is determined by
the lifetime of this singlet state, which is typically on the order of nanoseconds, and is reduced when
additional non-radiative relaxation channels are available. Additionally, the overall photon output of
a molecule is limited by a chance of the excited fluorophore to bleach irreversibly, where it transitions

into a new molecular structure that prohibits further fluorescence.

The transition to the excited triplet state is also of high relevance to fluorescence microscopy. This
“Intersystem crossing” requires a flip of the electron spin, changing the net spin of the system from zero
to one. The spin flip has a low probability to occur, leading to a long lifetime of the triplet state. In this
state, the molecule does not fluoresce and is thus not detectable by the microscope. The spontaneous
transition into and out of the triplet state leads to a visible blinking of the fluorophore, a phenomenon
that is exploited in certain super-resolution microscopy methods (see Section 1.3). The slow radiative
relaxation out of the triplet state is called phosphorescence, a process that is deliberately used, for ex-
ample, for the fabrication of special coatings for clock dials that glow in the dark after being “charged”
by sunlight.

The two most commonly used fluorophores are organic dyes and fluorescent proteins. Organic dyes
have a size of about 1 nm and are in general attached via immunolabeling. In this method, the fluo-
rophore is attached to an antibody that binds with high specificity to a target antigen or, to another
antibody inserted in a previous preparation step. Fluorescent proteins are incorporated via transfec-
tion, where the DNA of a living cell is manipulated, leading to the expression of the protein in a struc-
ture of interest. These dyes are slightly larger, with a size of about 3 nm to 5 nm. In the last 20 years,
semiconductor quantum dots have been established as a new dye for cell biology. Quantum dots are
comparatively huge, with sizes between 10 nm and 30 nm, but multiple times brighter and more pho-
tostable than the conventional dyes. Like organic dyes, they are attached using immunolabeling. Many
types of quantum dots also display pronounced blinking, which is however not related to triplet state

dynamics, but different mechanisms of electron charge transfer.

1.2 THE RESOLUTION LIMIT OF AN OPTICAL MICROSCOPE

In general, the emission of a fluorescent molecule is well described by an ideal electrical dipole'. Al-

though the molecule has a finite size, its emission originates from a single point on its dipole axis; a

!Usually the molecules rotate fast and freely, and the emitted electromagnetic wave shows no preferred direction.
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Figure 1.2: Two emitters spaced at different distances, illustrating the Abbe resolution limit.

fact that is also true for macroscopic antennas. Despite this, imaging this point source with an optical
microscope spreads its intensity to a blurred spot of finite size. In consequence, two emitters at a small
distance from each other are hard to distinguish (Figure 1.2). The best-known formula quantifying the

minimum resolvable distance is called the “Abbe resolution limit” or “diffraction limit”

A'eﬂ'l _ lem
2-nsin® 2-NA’

(1.1)

dabbe =

where Aer, is the wavelength of the emitted light, n the refractive index of the medium between sample
and objective® and 6 the half-angle of the largest cone of light that can enter or exit the objective lens.
Although the equation was first derived by others [ 13 ], its name-giver Ernst Abbe was the first to publish
this formula together with matching experimental findings [7]. The numerical aperture (NA) is the
most important measure to indicate the resolving power of an objective. Common NA values range
from 0.8 for air immersion objectives to 1.4 for oil immersion. This corresponds to a resolution of about
310 nm and 180 nm respectively, when fluorophores with an emission wavelength of ., = 500 nm are
imaged. Wavelengths shorter than visible light, such as UV or X-ray radiation, offer a better resolution,
but require more expensive equipment, often provide less contrast in biological specimen and damage

the sample more quickly.

The image of a point source is the microscope’s Point Spread Function (PSF) U(r). In fluorescence
microscopy, the emission from different fluorophores is incoherent and their intensities simply add up
in image space. In other words, the image formation process is linear in intensity. Furthermore, it is
common to assume that the process is shift invariant, i.e. that the PSF does not change over the field of
view>. In this case, the overall image is simply the sum of the images of all point sources, and the image

formation can be expressed as

image(r) = sample(r) ® U(r) = /sample(r') -U(r—71') dr', (1.2)

where “®” denotes convolution and the function “sample(r) = ) . §(r — r;)” is a set of delta distribu-
tions encoding the positions r; of the fluorophores. Thus, the PSF provides a complete characterization

of a shift-invariant linear imaging system.

2An objective must be used that is suitable for this refractive index.

*Due to lens imperfections, the PSF shows slight variations for emitters at different distances to the optical axis.



The PSF of a wide-field microscope is conceptually simple to compute, we follow the derivation
from [14]: Any electric field for which the Fourier transform exists can be expressed as the sum of

infinitely many plane waves

B(r) = F [E)] = / B(k) exp(ike) dk, (13)

where E(k), the Fourier transform of E(r), is the wave-vector dependent amplitude distribution. Here
we use the complex number notation for the electromagnetic waves, keeping in mind that the actual
physical waves are the real part of the expression, and we omit the factor exp(—i2xft), which encodes

their temporal evolution with the oscillation frequency f.

If we illuminate one side of the (objective) lens with a plane wave that propagates along the optical
axis, the wavefront is bent into a spherical wave section that converges at the focal point, where we place
the origin of our coordinate system. In terms of the plane wave decomposition, this spherical section
can only consist of waves that travel within the cone of light that is defined by the opening angle 0 of the
objective. Thus, the amplitude distribution E(k) is zero for wave vectors k outside this cone. The PSE
is proportional to the intensity distribution of the electric field which would be observed when moving
a screen along the light path. In turn, the intensity distribution is proportional to the magnitude of the

complex electric field

U(r) o E(r) - B(1) = [E()]” (1.4)

where a + ib = a—ib denotes the complex conjugate . Consequently, the PSF is computed by summing
up all available plane waves and calculating the squared magnitude. The Fourier transform of the PSF,
the Optical Transfer Function (OTF) U(k), provides a different look at the image formation process.

Using Eq. (1.2) and the convolution theorem, the Fourier transform of the image is given by

F [image(r)] = F [sample(r)] - F [U(r)] = F [sample(r)] - U(k). (1.5)

The OTF shows how the spatial frequencies of the sample structure are attenuated by the microscope
and how the image formation manipulates their phase. Another use of the convolution theorem com-

bined with Equations (1.3) and (1.4) shows that the OTF can be expressed as

OK) = F [U(r)] = F [E() - B)| = F [E()] @ F [E(r)| (1.6)

B(k) « E(k) = / BIOEK + k) dK, (17)

Il
esh
F
®
eshi
|
RaP
Il

where “x” denotes correlation. That is, the OTF is the auto-correlation function of the amplitude dis-
tribution. The auto-correlation has a simple geometric meaning: it reports the integrated overlap of the

original function with a shifted copy of itself as a function of the shift vector.

When imaging a monochromatic fluorophore, the wave vectors of all plane waves have the same mag-

nitude |k| = 27n/A.y,. As mentioned, the possible wave vectors are limited by the opening angle of the



objective, and the function E(Kk) is a spherical cap (section of a spherical surface) that is formed by all
vectors of length |k| inside the cone that is collected by the objective. The wide-field OTF, which is the

spatial auto-correlation of this spherical cap, and the resulting PSF are illustrated in Figure 1.3.
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Figure 1.3: Optical Transfer Function (OTF) (frequency space, color-scale in decadic logarithm) and Point
Spread Function (PSF) (real space) of an ideal wide-field microscope. The first column shows a cross-section
of the 3D functions, which are radially symmetric around the central axial direction (optical axis). The sec-
ond column shows the two-dimensional lateral PSF in the focal plane and its Fourier transform. The third
column shows a one dimensional cross-section of both. F.T. denotes a relationship by the Fourier transform.
Note that the Fourier transform of a cross-section is not equal to the cross-section of the Fourier transform,
but equal to the projection of the Fourier transform orthogonal to the slice orientation. The OTF is zero
outside of a finite support, limiting the optical resolution of the microscope. Due to the “missing cone” of
frequencies in the axial direction, a wide-field microscope cannot resolve densely labeled three-dimensional
structures, even when scanning the focal plane through the sample.

Due to the symmetry of the problem, the OTF and PSF are rotationally symmetric around the opti-
cal axis. The finite resolution of the microscope is coupled to the finite support of the Optical Transfer
Function, as structures smaller than the wavelength of the highest available spatial frequency can not
be encoded. This can also be understood from the image formation in Fourier space (Equation (1.5)),
as the multiplication with the OTF removes all spatial frequencies beyond its support. A noticable fea-
ture of the wide-field OTF is the “missing cone” of frequencies in the axial direction, which removes
all spatial frequencies of the sample structure that are close to the optical axis. As a consequence, any
densely labeled three-dimensional sample will be heavily blurred in the axial direction, prohibiting a
three-dimensional reconstruction by shifting the focal plane. In contrast, this can be achieved with a

confocal microscope — a capability called “optical sectioning” or “z-sectioning”

Note that even an infinite aperture microscope does not posses infinite resolution, as the smallest
wavelength contributing to |E(r)|* is der / (21), corresponding to the squared magnitude of waves that

travel orthogonal to the optical axis. In general, it is not possible to create structures smaller than half



the wavelength of the superposed waves*. In this sense, the name “diffraction limit” is actually a bit
confusing, as the common meaning of diffraction — the bending of light around corners into the regions
of geometrical shadow of an obstacle — is not the major problem responsible for limiting the optical

resolution of the microscope, but rather the wave-nature of light itself.

The main reason why a perfect image of the sample can not be reconstructed is the loss of near-field
information. In addition to the light that propagates into the far-field, the near-field of a dipole also con-
tains non-propagating components that decay exponentially with increasing distance from the source.
In contrast to the fixed wavelength of the propagating electromagnetic wave, these components can

carry arbitrarily high frequencies, a fact exploited in near-field scanning optical microscopy [16].

In most cases, 2D images from a sample in the focal plane are recorded. Here the two-dimensional
cross-section through the PSF has the smallest width, corresponding to the highest lateral resolution.

This two-dimensional in-focus PSF is given by the so called Airy pattern [17, 18]

2
2 (fT’;NA- |rJ_‘)

P=NA - | ’

Usiry(r1) = (1.8)

wherer is the two-dimensional vector of the lateral coordinates and J; is the Bessel function of the first
kind of order one. Its OTF is

~ NA NA
Usiry(k 1) = F (Uyiry) = circ <kL; 7L_> & circ <kl; 1_> (1.9)

1/ (ma*) |x|<a

(1.10)

with circ (x;a) = )
0 x| >a

the auto-convolution of a circular area. For displacements larger than twice the radius during convolu-
tion, the circle and its shifted copy do not overlap anymore. Thus, the highest frequency of the OTF is
kmax = 2NA/dem = 1/dabbe, the inverse of the resolution limit. Looking back at Equation (1.3), the

electric field in the focal plane at r = (x, y, 0) can be expressed in the form

B(r,) = / / / B(K) exp(i(kex + kyy)) dk, dk, dk, (1.11)

:// {/E(k) dkz] exp(i(kex + kyy))dk, dk, (1.12)

://EL(kx,ky)-exp(i(kxx—i-kyy)) k. dk,. (1.13)

If E(k) is generated by a monochromatic spherical wave, its axial projection E | (k,, k,) represents the

shape of the confining lens aperture. Thus, the two-dimensional in-focus OTF is the auto-convolution

*Thisis not strictly impossible however, as demonstrated by the curious phenomenon of superoscillations, which breaks
the resolution limit in the far field [15]. Although this can be used to create sub-diffraction structures, they carry only
a fraction of the energy of the diffraction limited structures that always surround them, which currently prohibits their
application in practice.



of the aperture, and the form of Equation (1.9) reflects the circular shape of the lens. Equation (1.13)
is identical to the Fraunhofer approximation of diffraction, in which the far-field of an illuminated ob-
stacle is simply its Fourier transform. For this reason, the PSF is also called “diffraction pattern” (of the

ap erture).

Lastly, the Airy pattern (Eq.(1.8)) is commonly approximated by a 2D Gaussian function

exp (—r—L> , (1.14)

which is simpler to treat both theoretically and numerically, and shows only minor deviations from the

Ugauss (rJ_) = 2702

true shape. In a least-squares sense, the best-fitting width of the Gaussian is given by [17]

1 lem Aem
0.21— (1.15)

2-(24/21log2) NA T NA’

which yields a full width at half maximum (FWHM) that is identical to the resolution limit

o =

Aem
2-NA

FWHM = 2,/2log2 -0 = = dabbe- (1.16)

1.3 SUPER-RESOLUTION MICROSCOPY

The classical resolution limit was derived for a static situation, where the microscope essentially takes a
snap-shot of the whole scene at one instant in time. Super-resolution techniques circumvent the diffrac-
tion limit by making use of time-dependent processes, trading time-resolution against spatial resolution.

Currently three major categories can be identified:

1. Deterministic linear-excitation-response: A temporally varying intensity pattern is used to
excite the sample. The emission intensity is still proportional to the excitation strength. Al-
though these methods achieve better resolution than the classical diffraction limit, there is an
upper bound of the lateral resolution, which is twice that of an ideal wide-field microscope. Thus,

they do not provide “true” super-resolution.

2. Deterministic nonlinear-excitation-response: Like before, a temporally varying excitation
pattern is used, but the sample has a nonlinear excitation response. The achievable resolution

is, in principle, unbounded.

3. Stochastic sample behavior: These methods utilize labels which exhibit some kind of stochastic
temporal behavior with regard to their emission. Again, there is no theoretical upper bound for

the resolution that can be achieved.

Although only methods from the third category are applied in this thesis, we give a brief overview over
all categories. Technically, the widely-used confocal laser scanning microscope is an example for the first

category. Here the sample is scanned with a focused laser beam, and the emission is refocused through

10



a small pinhole before being concentrated on a single-pixel detector. For an infinitely small pinhole,
its OTF is approximately the auto-convolution of the wide-field OTF, yielding a doubled resolution
[14]. However, very small pinhole sizes are associated with losing the major part of the signal, resulting
in a low Signal-to-Noise Ratio (SNR). The moderate pinhole sizes used in practice provide only a mi-
nor resolution improvement, but efficiently reject background light, enabling optical sectioning. Immage
Scanning Microscopy (ISM) works in a similar way, but uses a camera instead of a single-pixel detector,
which records an image at every scan position [19]. In this approach, each camera pixel is treated as a
small pinhole, which allows a doubled resolution image to be computed from the image series in post-
processing. Another technique of this category is Structured Illumination Microscopy (SIM)[20], where
a high-frequency standing wave excitation pattern is generated and scanned across the sample along dif-
ferent directions. At each excitation state an image is taken, and the output image is reconstructed from

the recorded set once the measurement is finished.

The most prominent technique of the second category is Stimulated Emission Depletion (STED) [8],
which was the first true super-resolution method. In STED the sample is scanned with two spots simul-
taneously or pulsed in short succession: a normal focused excitation spot is aligned with a donut-shaped
“depletion beam” (or STED beam), which is usually generated by passing the laser beam through a spi-
ral phase plate. The depletion beam is driven with high power and its wavelength is commonly chosen
to be in the upper tail of the emission spectrum of the utilized dye. After the sample is excited by the
diffraction limited excitation spot, the STED beam induces stimulated emission inside its donut profile,
leaving only molecules inside the “hole” in the donut center in the excited state, from which they can
fluoresce. The effective hole size is not diffraction limited and depends on the intensity of the depletion
beam. Photons from stimulated and spontaneous emission can be separated based on their wavelength,
using an optical filter. Alternatively, in time-gated STED, they can also be distinguished by their ar-
rival times at the detector, as stimulated emission is the faster process, leaving only the spontaneously
emitted photons after a certain time. Higher depletion beam intensities increase the resolution, but in-
creasingly damage the sample. While resolution in the nanometer range has been demonstrated using
highly-photostable fluorescent nitrogen vacancies in diamonds [ 21], typical values in biological system
are in the 50 nm range [22]. The second technique of this category is Nonlinear Structured Illumination
Microscopy (NSIM), which is in principle the same as normal SIM, but at such high excitation intensi-
ties that a part of the fluorophores becomes saturated [23 ]. The emission of the saturated molecules can
not be further boosted by increasing the excitation power, which effectively deforms the crests of the
originally sine-like excitation pattern to plateaus. This allows reconstructions with resolution around

sonm in practice [24].

The third category revolves around two methods that are important for this thesis. The first one
is Single-Molecule Localization Microscopy (SMLM), which is illustrated in Figure 1.4. Here the photo-
blinking of the fluorophores is tuned in a precise way, such that only a small subset of them is fluorescing
in every frame of a recorded movie. The tuning is mostly achieved by manipulating the chemical envi-
ronment of the fluorophores, or by using dyes with photosensitive behavior, which can be controlled

via excitation with additional wavelengths. A plethora of techniques for this has been invented, the first
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Figure 1.4: In Single-Molecule Localization Microscopy (SMLM), a movie of blinking fluorophores is
recorded and the fluorescence intermittency is tuned in such a way that in each frame (statistically) only
one molecule is active per diffraction limited area. In this case, the center positions of the single-molecule
patterns can be localized with much higher precision than their width, allowing sub-diffraction structures to
be captured. The example shows a simulation that was evaluated with TrackNTrace (see Chap. 4).

and most prominent being Photoactivated Localization Microscopy (PALM) [10] and Stochastic Op-
tical Reconstruction Microscopy (STORM) [25], but they all follow the same concept: The center of
an isolated diffraction limited spot can be extracted with much higher precision than its width. If the
dark state occupation time of the fluorophores is high, the chance to observe two molecules in a diffrac-
tion limited area is low. After localizing the subsequently activated spots in each frame, a super-resolved
image can be assembled from the gathered positions (e.g. using a position histogram in the simplest
case). The precision of the localization — and thus the optical resolution — increases with the number
of photons that can be collected from an emitter during the exposure time [26]. In practice, typical
resolutions are again in the sonm range [22]. SMLM techniques are applied in Chapters 3, 4 and s.
A conceptually different method is Super-resolution Optical Fluctuation Imaging (SOFI), which exploits
the fact that the photoblinking of different emitters is uncorrelated and computes high resolution im-
ages by correlating the intensity fluctuations in recorded movies. SOFI requires no special hardware,
only a normal wide-field microscope and a fast recording camera, and is compatible with a wide range
of experimental conditions [27]. SOFI also enhances wide-field microscopes with optical sectioning
capabilities and typically achieves a resolution improvement between two- and threefold. The advance-
ment of this technique is one of the main aspects of this thesis, and its basics are explained in detail in

the following chapter.
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Advancements in Super-resolution Optical

Fluctuation Imaging

uper-resolution Optical Fluctuation Imaging (SOFI) was invented in 2009 by Dertinger et al

and is thus one of the newest methods in the field of super-resolution microscopy [11]. Sim-

ilar to single-molecule-localization-based approaches [ 10, 25 ], the method exploits the fluo-

rescence intermittency of emitters to produce images with enhanced spatial resolution, but in a concep-
tually very different way. While the former methods reconstruct an image by combining the observa-
tions of spatio-temporally isolated single dyes, SOFI relies on the computation of temporal correlation
functions to disentangle the overlapping intensity patterns of molecules that are spatially close to each
other. Thus, SOFI allows higher labeling densities, works better in the presence of high background
signal and low signal-to-noise ratio, and is applicable to a wider range of photo-switching kinetics [27].
However, this comes at the cost of much lower resolution improvement compared to SMLM methods
under optimal conditions. SOFI can be used with conventional wide-field microscopes and any labels
that exhibit statistically independent fluctuations, as long as the employed camera is fast and sensitive
enough to resolve them. Furthermore it equips wide-field microscopes with the ability for optical sec-
tioning, which allows the recording of true three-dimensional images [28, 29]. The technique has been
used with quantum dots [30], photo-switching dyes [27, 28, 31] and fluorescent proteins [32-34]. A
very recent publication by Zhang et al from February 2017 used SOFI to quantify and visualize the activ-
ity of protein kinase A (PKA) in living cells [ 35 ]. This is the first reported super-resolution visualization

of dynamic biochemical activities.

Currently, there are two popular approaches to SOFIL: Auto-Cumulant SOFI (AC-SOFI) calculates
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correlations between different points in time for each pixel position individually. In contrast, Cross-
Cumulant SOFI (XC-SOFI) exploits the spatial correlation introduced by the PSF and correlates dif-
ferent pixels in the same frame. Both methods have their advantages and drawbacks, which is briefly
discussed in the first section of this chapter. However, this chapter of the thesis concentrates on im-

provements for AC-SOFL

First, the basicideas behind SOFI are explained (Sec. 2.1) and how to calculate SOFI images from the
raw movies (Sec. 2.2 ). Then, we will explore how SOFI performs under different imaging conditions
and how many frames are needed for a desired quality (Sec. 2.3). Section 2.4 shows how to calculate
artifact free virtual subpixels that increase the resolution of SOFI images beyond the pixel resolution
of the camera. Next, we demonstrate how to correct for the influences of noise in zero-time-lag SOFI
images provided that the distribution of the noise is known (Sec. 2.5). In Section 2.6 we show how
to estimate the OTF/PSF directly from the measured data. Section 2.7 deals with boosting the resolu-
tion of SOFI images and suggest a method that adapts the resolution improvement to the data quality,
avoiding artifacts. In the last section, we apply SOFI to a relatively new kind of dye, carbon nanodots,

and discuss their blinking properties.

2.1 THE THEORETICAL BASIS OF SOFI

In order to use SMLM methods such as STORM, emitters have to be spatio-temporally isolated, so that
(at best) the recorded signals of two emitters never overlap. Mostly, this is achieved by adjusting the
chemical environment of the sample to alter the blinking behavior of the utilized dye. The positional
information encoded in all images is than extracted in post-processing and collected into a single super-
resolved image. If the spatio-temporal unmixing works well and the PSF model used to extract each
emitter’s position closely matches the experimental data, this method yields the best possible position
estimates for a given photon count and thus the best possible resolution. However, although the han-
dling of overlapping signals is possible [36, 37], it is currently very limited and generally leads to a large
decrease in performance or the occurrence of artifacts. As spatio-temporal separation is a very special
case which limits recording to dyes with well adjustable blinking behavior in specific environments, a
method is desirable that makes no assumption about spatio-temporal isolation but handles the general

case of mixed signals.

In Super-resolution Optical Fluctuation Imaging, the recorded intensity of mixed signals of stochas-
tically fluctuating emitters is processed directly. In its basic form, the method is purely statistical and
does not need any assumptions about the PSF of the microscope. We want to compute a quantity with

two important characteristics:

1. The result for mixed signals should be the superposition of the results of the individual signals.

2. The resolution of the computed image should be increased compared to the original recording.

These requirements are fulfilled by a mathematical set of quantities called cumulants. Similar to mo-

ments, the set of all orders of cumulants fully determines a probability distribution. Most commonly
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known is the cumulant of second order, which is also called the variance. All camulants share certain
properties which are important for our scenario, the first one being additivity: If X and Y are indepen-

dent random variables, the n-th order cumulant «,, yields
KX+ Y) = x,(X) + x,(Y). (2.1)

Thus, the cumulant of a time trace recording two independently fluctuating emitters equals the sum of
the cumulant of their individual time traces (see Fig. 2.1), effectively treating the signals as if they were
disentangled, which meets our first requirement. Note that the assumption of independence is crucial
here and while reasonable for most imaging scenarios, one should be aware that this breaks down if two

signal sources are physically coupled in a way that their blinking behavior is influenced by one another.
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Figure 2.1: Example of additivity of the second order cumulant (the variance) for independent stochastic
processes. The top row shows two independently fluctuating signals and their sum. The bottom row shows
the individual cumulant values which were calculated using a simulation of 10000 frames length.

The second important property is that the n-th order cumulant is homogeneous of degree n. If cis a

constant, then:
n(cX) = "xu(X) (2.2)

Let us take U(r) to be the Point Spread Function of a detector which records the image of an emitter at
r = 0 whose intensity is modulated by the signal x(¢) that randomly fluctuates over time according to
P(X). Furthermore the variable ¢ is a measure of the intensity of the emitter. When computing the n-th

order cumulant over time, U(r) - € is constant and we get the result
k. (U(r)e - x(t)) = U(r)"e" - x,(x(t)). (2:3)
Temporarily assuming that the PSF can be approximated by a Gaussian, it is easy to see that this im-
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proves the resolution:

2 2

2" o _
U(r)n = <e_ﬁ> —e 22/VW: — ¢ 20% . (2.4)

The new PSF is also a Gaussian, whose standard deviation is a factor of /7 smaller than the original one,
resulting in a sharper image for each recorded emitter. This resolution increase arises naturally when
computing the n-th order cumulant. Looking at this in the Fourier domain, we see that a resolution
increase can be expected not only for a Gaussian but for every PSF with a band-limited OTF":

F(U@E)") =Uk) ® - ® Uk) (25)

J/

~
(n—1) convolutions

The new OTF is the original one convolved n — 1 times with itself. The support of this function is
now # times larger than before, which is consequently also true for the highest non-vanishing spatial
frequency. For a perfect in-focus PSF, the highest frequency is in a linear relationship with its resolu-
tion (see Section 1.2). Thus, a linear resolution increase with the cumulant order n could be expected.
However, as can be seen from the example above (Eq. (2.4)), the resolution increase for the Gaussian
is only \/n. This difference comes from the changed shape of the new OTF’s magnitude, where the
higher frequencies are dampened compared to the original shape (see Fig. 2.2). In Section 2.7 we will
discuss how a proper reweighting of the frequencies in pre- or post-processing can be used to increase

the resolution compared to the raw computation of cumulants.
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Figure 2.2: Powers of a one dimensional Airy disc point spread function and their corresponding Fourier
transforms (optical transfer functions). Higher powers lead to a smaller PSF and thus exhibit a higher res-
olution, which corresponds to higher frequencies being present in the OTF. Note that the highest available
frequencies in the OTF are more and more dampened with higher powers of the PSF.

Figure 2.3 shows a one-dimensional example of two independently blinking emitters whose signals
overlap and which become better distinguishable by the cumulant computation. This illustrates how
additivity and homogeneity together lead to higher resolution images. For higher order cumulants, the

resolution improvement is also higher (see Fig. 2.5), but more frames are needed for the cumulant to

!An OTF which is zero outside of a finite support.
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converge to a meaningful result (see Sec. 2.3).
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Figure 2.3: One dimensional simulation of two independently blinking emitters with identical blinking
statistics and brightness. The per-pixel 2nd order cumulant values are shown on the right side. The emitters
show up with a squared profile (homogeneity property) without artifacts in the mixing region (additivity
property). This results in a better distinguishability compared to the original mixture (light red, scaled to
same maximum).

One very interesting property of SOFI imaging that arises from the exponentiation of the wide-field
PSF is demonstrated in Figure 2.4. As previously discussed (see Section 1.2) the OTF of a conven-
tional wide-field microscope has a missing cone of frequencies along directions close to the optical axis,
which leads to a complete lack of z-sectioning capability. This makes it impossible to reconstruct a
three dimensional image of a sample by recording a z-stack of images with shifted focal positions. Be-
cause the OTF in SOFI imaging is an auto-convolution of the original OTF, this missing cone is closed
and z-sectioning becomes possible with an ordinary wide-field microscope. This was experimentally
demonstrated using a z-stack [29] as well as using special optics that allowed recording multiple focal

planes simultaneously [28].

wide-field 2nd order SOFI

3rd order SOFI 4th order SOFI

Figure 2.4: The OTF of a wide-field microscope compared to SOFI with horizontal axis along the lateral
Fourier coordinate and vertical axis showing the axial Fourier coordinate. The color-scale is logarithmic from
o (black) to 1 (white). SOFI removes the “missing cone” and widens the frequency support. Also visible is
the strong relative attenuation of high frequencies with increasing order, which was illustrated in Fig. 2.2 in
the one dimensional case. [Re-edit of the original image published in the article [38].]
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Another important effect is the exponentiation of the brightness € of each individual emitter, which
leads to a nonlinear intensity response in the SOFI image. A dye that is twice as bright as another in the
average image will thus appear four times brighter in second order SOFL. For higher orders the dynamic
range of the image gets very large, leaving either only the brightest dyes visible or showing a very over-
exposed image, depending on how the contrast is adjusted when viewing the image. Note that relative
brightness differences within a sample caused by inhomogeneous fluorophore density will simply carry
over to the SOFI image, and do not cause this nonlinear response due to the additivity of cumulants.
Both situations are compared in Fig. 2.5. Another parameter that influences the brightness visible in
the final image is the blinking behavior, which essentially determines the value of x(x(t)) in Eq. (2.3).
Usually the blinking behavior is assumed to be homogeneous. However, if three or more orders of cu-
mulants can be reliably extracted, the molecular brightness, on-time ratio of blinking and molecular

density can be calculated [39].

Increasing brightness Increasing density

Single Frame

Average Image

2nd order SOFI

4th order SOFI

Figure 2.5: The influence of emitter density and brightness on SOFI images is visualized using two simula-
tions showing emitters in three lines. Left: constant emitter density, emitter brightness increases by factor
of two for each step to the right. Right: emitter density increases by factor of two for each step to the right,
constant emitter brightness. Although both movies look identical in the time average, their SOFI images

are quite different. Intensity differences caused by emitter brightness are increased by SOFI (homogene-
ity), while the ratio of those due to emitter density stays untouched. Note also the increasing resolution with
higher SOFI orders, revealing individual emitters in the 4th order.
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All cumulant orders except the first (which is equivariant) are shift invariant:

kK1 (X+c¢) =x1(X) +¢c (2.6)
k(X +¢) = xk,(X), n>2 (2.7)

Thus, adding a constant to the signal does not change the higher order cumulants. In SOFI imaging this

leads to the removal of non-blinking background signal, such as contributions from autofluorescence

(see Fig. 2.6).

Figure 2.6: Demonstration of SOFIs background removal on experimental data. From left to right: First
frame of the movie, time average and second order SOFI image. The sample is a mouse hippocampal neuron
stained with quantum dots (QDso; ) recorded by Anja Huss. It is clearly visible that background fluorescence
in the center is greatly reduced.

This type of background is a problem for localization based super-resolution like STORM, as it leads
to false or missing localizations and introduces a potential bias of estimated positions towards regions

of higher background.

One last problem to address is the influence of shot noise on the estimation. Similar to the auto-
correlation of the signal at zero lag time, the cumulant value is influenced by the presence of noise in
the signal. For example, the second order cumulant (also known as the variance) for a noisy signal I at

position r in time ¢

ky (I(x, 1)) = (8I(r, £)*) = ((I(x, t) — (I(r,1)))*) = (I(r,£)*) — (I(x, t))* (2.8)

simply estimates the power of the total signal fluctuation around the mean, including the contributions
from noise. Here (®) denotes the time average. The noise contaminates the super-resolution image
with diffraction limited information (see Section 2.5). A possible solution to this problem is correlating
different points in time and/or space, for which joint cumulants K, can be used. The joint cumulant of
the n-th order is computed for a set of n random variables instead of one, but shares all properties of
ordinary cumulants that were previously discussed. For example, the second order joint cumulant can

be computed as

Ky (I(ey, t+ 11), I(xy, t 4+ 73)) = (8I(xy, t + 71)8I(r2, t + 72)) (2.9)
= (I(ry, t + 11)I(r2, t + 12)) — (I(r1, t + 171)) (I(rp, t + 12))  (2.10)
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which suppresses the shot noise contribution if r; # r, or 7; # 7, as the noise is not correlated in
time or space. The n-th order joint cumulant in SOFI can be computed for n different positions with n

time-lags. Based on this, we define the two most commonly used approaches to SOFI:

Auto-cumulant SOFI (AC-SOFI):r; =1, = - - =1, and 7; # 7;, ViVj|i # j
Cross-cumulant SOFI (XC-SOFI): r; # r;, ViVj|i # j, and 7; arbitrary

Although arbitrary time-lags could be used with cross-cumulants, in most cases they are simply set
to zero. The n-th order cross-cumulant XC, carries information about the location of the geometric

average of the positions of all correlated pixels if the PSF U(r) is a symmetric Gaussian [40]:

K, (I(ry, t+11)y o I, t+7,)) = XCo(ry, . oo 00y T1y oy Ty) =

n

. ri—r e Zrk
HU(;\/{) ,VZ;U” rv—k=; el Koy (sy(t+71), . oysy(t+ 7)) (2011)

j<l

Here ¢, is the brightness of the v-th emitter, s,(t) € [0, 1] its time dependent fluctuation, and N., the
overall number of emitters in the image. This relationship can be used to generate an image on a finer
pixel grid than the original data. Note that there are multiple pixel combinations which contribute to
the same position and the number of possibilities grows exponentially with the joint cumulant order.
For higher orders, it is computationally prohibitive to calculate every possibility and thus a finite subset
must be chosen. This subset can be combined using weighting factors to compose the final result. It
is not immediately clear how to these weights have to be chosen, leading to an optimization problem
[41]. Additionally, equation (2.11) shows that each pixel combination has an intrinsic weighting factor
based on the distance of all possible pairs of pixels. This leads to grid-like artifacts in the final image,
which have to be corrected. If the sample is in focus as well as thin, and if the PSF is homogeneous in
the field of view, a global correction of these weighting factors can be performed. Out-of-focus emitters
as well as PSF-inhomogeneities violate Eq. (2.11) and are hard to correct, leaving artifacts in the image.
However, the possibility of using different combinations to extract information on the same position

has the potential to strongly improve the SNR of the final image.

Itis also possible to generate images using different values of the time-lags 7,,. Note that for XC-SOFI

negative time-lags can be chosen, because the averages for a finite movie of T frames

T
1 1
T E 8I(xy,t)8I(ry, t + 1) # T E 8I(xy, t + 7)8I(x, t)

T
t=1 t=1

are unequal, while in AC-SOFI each set of time-lags including negative values is identical to another set
using only positive values. Potentially, images computed for different time-lags could be combined to
improve the SNR of the final image, but it is again not clear how to do this in an optimal way. Many
approaches use one fixed set of time-lags, which are usually the smallest possible values, as the signal

correlation drops exponentially over time. This reflects the time-scale of the blinking kinetics of the
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fluorophore.

XC-SOFI has the advantage of being able to use time-lags of zero without the influence of shot noise.
This is important when using dyes with very fast blinking dynamics on the order of the exposure time,

where the cumulant decays quickly with the time-lag.

To sum up this section about the theoretical basics of SOFI:

« SOFlisbased on the calculation of statistical quantities called cumulants from recordings of sam-

ples with stochastically varying intensity.

« Cumulants are additive for independent signal sources. Thus, measuring a mixture of those sig-
nals yields the same result as measuring each individual signal and adding them up later. Fluores-
cent molecules couple only in special situations, making this property useful for the analysis of

recordings in fluorescence microscopy — even if the images of molecules overlap on the sensor.

« The n-th order cumulant is homogeneous of degree n: x,(cX) = ¢"x,(X). Calculating the cumu-
lant for a movie with the PSF U(r) produces an image with the new PSF U"(r). This increases

the optical resolution, surpassing the diffraction limit.

« The SOFI PSF U"(r) corresponds to a resolution increase of factor /n for in-focus molecules,
despite having an n-fold higher cutoft frequency in Fourier space. This is caused by a disadvan-
tageous shape compared to that of the stretched PSF U(n - r), which has the same frequency
support. Thus SOFI can theoretically achieve a linear resolution increase of order n when addi-

tional processing is performed compared to the pure calculation of cumulants.

« SOFI closes the missing cone of frequencies present in the OTF of a wide-field microscope. This
enables z-sectioned 3D recordings of samples even when a wide-field microscope is used for

recordings.

« SOFIimages show non-linear brightness with respect to emitter intensity ", but scale linear with
emitter density (because cumulants are additive). Thus, molecular brightness differences of emit-

ters are exaggerated, while brightness differences caused by varying density are mapped correctly.

« Non-varying signals are removed by the cumulant calculation. This removes background signals,

for example from autofluorescence, and enhances image contrast.

« Shot noise leads to the superposition of the desired high resolution image with lower resolution
information when ordinary cumulants are calculated (see Sec.2.5 ). To circumvent this, corre-
lations between different frames (AC-SOFI) and/ or spatial positions (XC-SOFI) can be calcu-
lated using joint cumulants. This removes contributions from signals uncorrelated in time and/or

space.
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2.2 FroMm cuMuULANTS TO SOFI COMPUTATION

In order to calculate a SOFI image, we need to derive the formula for the computation of the cumulants:

The moment generating function of a random variable X is given by

c(t) = <exp(tX)> , (2.12)

where () denotes the ensemble average. The logarithm of this function

g(t) = logc(t) = log(exp(tX)) . (2.13)

is called the cumulant generating function. This is, because the cumulants are defined using a power series

expansion of g(¢):
—
gt) = Z Kn 1 (2.14)
n=1 )

The cumulant «,, contains all terms proportional to a certain power ¢ of t, times the factorial n!. Using

the series representation of the exponential function

00
"
X
et

— 1"
- EXnZlJFZﬁXn (2.15)
n=1

n=0

we rewrite eq. (2.13):

o(t) = log <1 £y %(X”>> (2.16)

We can further expand this using the Taylor series of the logarithm

1 1
log(1 4+ x) ~ x — £x2+3x3— (2.17)

log (1+Z;<Xﬂ>> A (2.18)

00 o - 1 o gtk 1 > gtk
;Hm -3 ;mwxm +3 Z; o (X () - (2.19)

Now we can read out the cumulants using the terms proportional to powers of t multiplied by n!. For

example, the first three cumulants (called mean, variance and skewness) are given by:
t — =1 (X) =(X)
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2

Although the second and third order cumulant are equivalent to the same order central moment y =
(X — (X))"), this is not true for higher orders. An alternative way to compute the cumulant is using
derivatives of the cumulant generating function evaluated at ¢ = 0.

o" o" e
t . = %log (1 + ; E<X">> (2.20)

= 580

t=0

For the first cumulant we simply get

=(Zfﬂm)@+z%m)

t=0

Using the time series of intensity recorded at one pixel as input, these (ordinary) cumulants yield the
SOFI image values without time-lag. As stated in the previous section, this calculation also includes
contributions from noise. To eliminate these contributions, we have to correlate different data points in
space and/or time, for which joint cumulants are necessary. The joint cumulant K, (X1, X;, . . ., X;,) of
m signals X; is a function that it is nonzero only if there is correlation between all signals. If one of the

variables is stochastically independent from the others, the cumulant yields always zero.

The approach for computing the joint cumulant is similar to before, but the new moment generating
function depends on the sum of all random variables with individual prefactors. To give an example, we
first compute the joint cumulant for two random variables. The joint cumulant generating function is

given by:

g(tl, tz) = IOg C(tl, tz)
== 10g<exp(t1X1 -+ thz))
= log(exp(t1X1) - exp(£,X3))

)
—log | > t?,—t%<X’IX§>>
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To get the joint cumulant, we now search for all terms proportional to t; t, in the power series expansion
of this expression. Note that in the two-variable-case, these terms can only exist up to the second order

in the expansion, which is given by:

> > & = ik
logc(ty, ) ~ Z n—1|<X'1’> + Z k_2'<X§> Z nl'k2‘< 1 §>
n=1 k=1 n,k=1
[ oo t?—f—k ) > tg-ﬁ-k 0 t"+lt§+l . l
— 3 [0 DD + D0 T @) + Y e () (XX
Ln,k=1 n,k=1 n,k,li=1 (2,.21)
= Otk = ikt — 45
w2 Y 2o + Y AR axh () + Y 2 o))
nkl=1 " nkl=1" nk=1""""

Ll
S

Only the under-braced parts contain terms proportional to t;f,. Collecting these, we get for the joint

cumulant of both variables:

K (X1, X)) = (X1X,) — (X)(X5) (2.22)
Setting X; = X, = Xyields

K(X,X) = (X*) — (X)? = x,(X), (2.23)

which is the second order ordinary cumulant for one variable, as calculated before. An easy algorithm

to compute the formulas for higher order joint cumulants is explained in Appendix E.

To ease the implementation of SOFI algorithms, we now give the first four camulant formulas. In the
simplest case with zero time-lag at one pixel position, ordinary cumulants are used. With the fluorescent
signal F = F(r, t) at pixel position r at time t and §F = F — (F) the ordinary cumulants up to order

n = 4 are given by:

n  Cumulant «, [F(r, t)]

%)

(
( (
3 (8P) = (P) = 3(F) (F) +2(F)°
( 3(8P)" = (F) —4(F) (P’) = 3(P")* + 12(F)* (") — 6 (F)"

Usually multiple points in time and/or space should be correlated to get rid of the influences of shot
noise, for which joint cumulants must be used. With F; = F(r;, t + 1;) and §F; = F; — (F;), the first

four joint cumulants are given by:
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X

Joint camulant K,, [F(ry, t + 71), . . ., F(ra, t + 7,)]

1 (Fy)

2 (SESFy) = (FiBy) — (Fy) (Fy)
(SF\SF,SFs) =

’ (FiEyF3) — (Fr) (F2Fs) — (Fy) (FiFs) — (Fs) (FiFs) + 2 (Fy) (Fy) (F3)
(SE\SF>SF3SE,) — (SF\SF,) (SFySF,) — (SF\SFs) (SFySF,) — (SFySE,) (SF3SF,)
= (F\F,F5F,)

. < (F1) (F2FsFa) + (Fa) (FiFsFy) + (Fs) (FiFoFy) + (Fa) (FiFoFs)

+ (F\F,) (F3F,) + (F\Fs) (FoFy) + (F\F,) (F,F;) )
+2- <<F1> (F2) (FsF4) + (F1) (Fs) (FaFy) + (F1) (Fa) (F3Fa)

+ (F2) (Fs) (FiF4) + (F2) (F4) (F1F3) + (F3) (F4) <F1F2>>
—6 - (F1) (F2) (F3) (Fa)

The tables show two equal formulas for every order, which differ just in the way they are computed.
From a numerical standpoint, the two-pass algorithm which first calculates the mean and then averages
the fluctuations §F; has increased stability over the one-pass summation that uses the values F; directly.
If the number of frames is very large, the roundoft error can lead to poor results for both formulas and
techniques such as compensated summation should be used. However, the number of frames is usually

sufficiently small due to the limited photostability of the sample.

The aforementioned properties of cumulants that SOFI builds upon need the underlying process of
the signal to be stationary, i.e. its statistical properties should not change over time. This is not strictly
true for fluorescent molecules whose behavior can rapidly change due to photobleaching. The change in
intensity caused by photobleaching contaminates the SOFI image with diffraction limited information,
thus lowering the image quality. For this reason, each image stack should be subdivided into sub-stacks
with N,, frames each, which are processed individually. The number of frames N,, must be smaller than
the bleaching time-scale in order to avoid artifacts, but should be greater than the typical correlation
time-scale of the emitters’ intensity fluctuations. Finally, the sub-stacks can simply be added up to the
final SOFI image. A visual comparison of this interval-based computation to a computation from all
frames is shown in Fig. 2.10 in the next section. For very short intervals the cumulant estimator gets
biased (see Appendix D), and further research is required to check if this bias can be exploited in any

useful way.

To sum up this section about the computation of SOFI images using cumulants:

« Ordinary cumulants are derived from a power series expansion of the cumulant generating func-
tionlog(exp(tX)). The n-th order cumulant is built by collecting all terms proportional to " times

the factorial n!.

« Joint cumulants are derived from a power series expansion of the joint cumulant generating func-
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tion log(exp(£,X; + - - - + t,X,)). The n-th order joint cumulant is constructed by collecting all

terms proportional to#; - - - - - [

« The important properties of cumulants only hold if the signal is stationary. To correct for bleach-
ing of the sample (non-stationary behavior), an image stack should be divided into sub-stacks
which are processed individually. The final result can be obtained by averaging. For this to work
asintended, the substack size should be smaller than the bleaching time-scale, but larger than the

typical time-scale of the emitters’ intensity fluctuations.

2.3 CONVERGENCE OF CUMULANTS

The theoretical ideas which SOFI is based on are not only built on the assumption of stationarity that
was just mentioned, but also assume an infinite recording time, i.e. that the cumulants have converged
to their theoretical values. For finite recordings, computing a statistical measure gives only an estima-
tion of the true value with some error depending on the length of the sampling and its properties. For
example, computing the average image of a recording of blinking emitters is not expected to give a good
approximation of the true average if only a handful of frames are taken, but for a few thousand frames
the result is expected to be much closer. The same is true for the computation of cumulants — the more
frames the better. The experimentally important question is how fast the cumulants converge to their
true values, as this determines how many frames have to be recorded in a given experimental setting
to achieve a certain quality of the result, which ultimately limits the imaging speed. This is also an im-
portant question for choosing the right fluorophore, as it has to live long enough and produce enough
photons for the desired result to be achievable. The performance of SOFI in different imaging condi-
tions was previously investigated by Geissbuehler et al [27] using a self-defined “visibility” measure.
We extend these results by calculations relying on fundamental statistics, and estimate the necessary
recording time for different imaging conditions and SOFI orders. More recently, Vandenberg et al pro-
posed a method to estimate the signal-to-noise ratio of SOFI images from the raw data using methods
from numerical statistics [41]. This is used to increase the SNR of XC-SOFI by optimizing the weights
of different types of spatial cross-correlations. Here, we will use a similar SNR measure to lookt at the
performance from a more general point of view and also compare different SOFI orders. Very recently,
a similar analysis was published by Wang et al, who did a quantitative analysis of the variance of cross-
cumulants of different order [42]. Their results are mostly complementary to the findings presented
here. However, the analysis has a few flaws, as their statistical analysis does not take into account that
the time series is correlated (i.e. it is only valid for very fast dynamics) and they wrongly assume that
the variance of cumulants is simply additive. This is not true, as we will illustrate by investigating the
density dependence of the statistical error. Additionally, we present some qualitative results, assuming

a two-state-model for the fluorescence intermittency.

Hereinafter we look at the quality of SOFI images with respect to blinking dynamics, time-lag, emitter
density, emitter brightness and noise. As a tool, we use a simple simulation in which each emitter is ei-

ther completely on or completely off during a frame and follows a two-state model with fixed transition
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rates between the states. The visual assessment is complemented by a new error measure to quantify the
convergence. To simplify, we start without taking shot noise into account, i.e. we analyze images that
would be expected for extremely high photon yield per emitter per frame. The color contrast for every
SOFI image in this chapter is set individually. In cases where the theoretical SOFI result is negative,
the sign of all pixel values was switched before display to ease comparison between images. If the back-
ground surrounding the emitters turns red, this is an indication for positive and negative values being
present in the image at the same time. Such images might seem worse, compared to strictly positive
images, than they really are (i.e. when showing the absolute values), but as different signs of the values
indicate bad convergence (all emitters follow the same statistics and should have the same sign) it is left
as is. The following two-state blinking dynamics set by their on-/off-state lifetimes (7., Tog) will be

considered in this section:

« Slow dynamics: 7,, = 6.67 frames, 7,4 = 10 frames, :L; ~ %
[V

2

3

o Fast dynamics: 7,, = 1.67 frames, 7,4 = 2.5 frames, :L; ~
0!

Similar on-/off -times: 7., = 1.96 frames, 7,4 = 2.04 frames, :‘; ~ 0.96

« Long off-time: 7,, = 1.67 frames, 7,4 = 25 frames, :_OI; ~ 0.067

Time is always given in frames here and can be converted into seconds by multiplication with an arbi-
trary exposure time. The sample composed of emitters arranged in three lines with increasing density
(0.4 Pix ,08 =, 1. 6 —; similar to Fig. 2.5), with all emitters having the same intrinsic brightness. The
number of emltters contrlbutlng to a single pixel is higher than the density, as the PSF spreads over

multiple pixels. The standard deviation (i.e. width) of the PSF is given by opsg = 3 pixels.

Fast dynamics
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Figure 2.7: Comparison of the convergence of different SOFI orders with respect to the recording time of a
noise-less movie. While the second order converges very quickly, achieving good quality at 500 frames, the
higher orders need 50000 frames for a similar visual impression. The performance of 3rd and 4th order is very
similar under these blinking dynamics.
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Figure 2.7 shows the convergence of different SOFI orders calculated from noise-less data with fast
dynamics. It is clearly visible that the second order converges very quickly, with almost no change in
the quality being perceptible for movies with more than soo frames. The 3rd and 4th order yield very
similar quality in this setting and are much slower in convergence, needing approximately 100 times
more frames than the second order for a comparable result. As higher orders extract higher resolution,
it is intuitive that better statistics are needed to extract this information. The similarity of the 3rd and
4th order is surprising in this context, but can be connected to the way the blinking dynamics are set up,
as we will shortly see. Additionally, the cumulant values of pixels in regions of higher emitter density

seem to converge slower. This is analyzed in more detail below.

#Frames 100 3000 12500 50000

Fast dynamics

Slow dynamics
£
‘1

Figure 2.8: Comparison of 3rd order convergence for fast and slow dynamics, where the expected period

3rd

3rd

Ton 1 Toff Of blinking events is about 4 times longer. The ratio of on-/off-state lifetimes T°“ A 2/3 is constant
. The SOFI images are calculated from a noise-less simulation. As expected, for the slower dynamics roughly
four times more frames are needed to yield a similar results.

For slower dynamics, more frames are needed, which is shown in Fig. 2.8. The expected period of
blinking events 7,, + To is about 4 times longer in the slow dynamics setting than in the fast one.
Unsurprisingly, a comparison of the 3rd order SOFI results for 3000, 12500 and s0000 frames shows
that the slow dynamics are always one image (about factor 4 in frames) behind in terms of quality. As
a consequence, fluorophores that blink faster should be preferred over slower ones, and the exposure
time should roughly match the characteristic time-scale of the blinking dynamics. However, if time-lags
greater than zero are used for computation, it can be beneficial to spread the on-state of the emitters over

multiple frames (see end of this section).

Changing the ratio of the on-/off-state times impacts the convergence of the SOFI orders as well as
the relative quality difference between them at a fixed recording time. A comparison between three
different scenarios is shown in Figure 2.9, where the 2nd order is left out, as it converges very quickly in
all cases. For very similar on-/off -times, the 3rd order does not converge within the first 50000 frames,
while the 4th order yields a good result for 12500 frames or more. As the off- and on-time become more

dissimilar, the 3rd order converges much quicker and yields quality similar to the 4th order. This is the
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Long off-time, Ton=1.67 frames, Toff= 25 frames

Figure 2.9: Comparison of SOFI convergence computed from noise-less simulations with different on-/off-
state lifetimes. The 2nd order is not shown as it converges very quickly in all cases. Top: If the on-/off-times
are very similar, no convergence is observed in the 3rd order for up to soooo frames, while the 4th order
yields good results. Mid: As the on- and off-time becomes more dissimilar the third order converges and
yields similar quality than the 4th order. Bottom: For off-times much larger than the on-time, the 3rd order
now converges much more quickly than the 4th order, giving a good image at 3000 frames. In all cases the 4th
order needs between 12500 and 50000 frames to achieve a good quality with high homogeneity of the image.

situation we already observed in Fig. 2.7. For off-times much larger than the on-time, the third order
achieves a good image with 3000 frames and thus much quicker than the 4th order. This agrees with the
results of Geissbiihler et al [27], where the quality of SOFI images was analyzed in dependence of the

on/off ratio for a fixed number of frames. According to their analysis, even cumulant orders perform
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best when the on- and off-time are equal, while odd orders perform the worst at this point and generally
profit from ratios that differ from one. For the 3rd order this is actually quite easy to see by looking at

the corresponding cumulant formula (without time-lag):

k3(F(t)) = (8F(r)) = ((E() — (F))°) (2.24)

If F(t) follows a two state model with F,, = I, F,g = 0 and the on-state is observed as often as the
off-state, then the average is exactly in the center (F) = I/2,leading to §F,g = —I/2and §F,, = +I/2.
As §F(t) takes the sign from §F, and both states are observed the same number of times, the average

adds up exactly to zero. Thus, the 3rd order will never produce a useful SOFI image in this singular case.

#Frames 100 3000 12500 50000

Computed from all frames at once

3rd

Averaged result of non-overlapping intervals with 100 frames each

lﬂll

Figure 2.10: Comparison of 3rd order SOFI computation from all available frames at once against an

3rd

interval-based approach, where an individual image is computed for successive intervals of 100 frames and
the result is calculated by averaging all interval computations. The underlying data is noise-less and shows
fast dynamics, giving 100/ (7on + Toff) & 24 observed blinking events per interval. The differences be-
tween both approaches are minor and both converge to the same result. When larger intervals are used, the
differences become imperceptible. For very small intervals the cumulant calculation becomes biased (see
Appendix D), leading to different images especially at high emitter densities. This bias could potentially be
beneficial to the reconstruction, but further research is required to check this.

Although the visual inspection of results gives a good idea on the general convergence properties, it is
useful to introduce a more broadly applicable quantitative measure for the quality of SOFI, to compare
different orders and give estimations for the expected number of frames needed for a certain quality. It
was stated in Section 2.2 that it is often useful to subdivide a movie into intervals from which individual
SOFI images are computed, and take the final result as the average of all intervals. This is usually done
to counter the effects of bleaching, which violates stationarity and leads to the mean signal decreasing
over time. For this to be useful, the interval-based approach must yield the same result as a computation
from all frames when no bleaching present. Figure 2.10 shows a comparison of these two approaches.
In this example, roughly 24 blinking events are captured per interval and the differences between both
ways of computation are minor. For even larger intervals they become imperceptible. Minor differ-

ences arise from events close to the interval border, which slightly change the observed distribution
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as the state’s occupancy time is cut to fit within the interval. Aslong as the intervals are larger than the
typical time-scale of blinking, they contain sufficient statistics and yield results very similar to the single-
block computation, making interval-based computation an acceptable way to compute SOFI images. It
is very important to note, that the cumulant calculation gets biased (see Appendix D) for very short
intervals. Simulations revealed that this bias can potentially be exploited in a useful way, improving the

convergence of higher order cumulants at high densities, but further research is required to check this.

Asshown later for the 2nd order, it is possible to derive the theoretical formulas for the statistical error
of each SOFI order for a finite measurement time. If the theoretical values of the cumulants are known
for a specific blinking model, they can be used to calculate the number of frames necessary to estimate
the true value with a defined precision. However, these formulas quickly get very extensive for higher
SOFI orders and must be adapted when the stochastic model of the fluorophore is changed. Therefore,
we first look at a simpler approach to the problem which is more general. Fortunately, the possibility of
the interval-based computation helps us in simplifying our analysis of the convergence of SOFI values:

The computation for each interval yields an estimate ; of the true value « that is obtained by averaging
T

over a large number of intervals x = lim 11, > «;. As all intervals are qualitatively the same, the «; are
T—o0

independently identically distributed. To qu;lltify the convergence of SOFI we simply need to look at
the error of the average over a finite number T of interval computations compared to the true value. This
approach to analyze the convergence is valid for all SOFI orders, as long as interval-based and single-
block computation yield similar results, i.e. it is independent of the blinking dynamics as long as the
underlying distributions can be normalized (i.e. have a finite time-scale). Let e be the index of a series
of N, experiments / simulations that we repeat under identical conditions. The squared error Eg of the

interval averaged cumulant value for one experiment is given by:

2

T

~ 1

Es (T) = T Z Kje — K (2.25)
j=1

To make the error of different SOFI orders comparable, it is useful to normalize this error with the true

value, ie. to look at the relative deviation Eg . (T) = KiZES,e (T).

ESe(T) = | — Kje— 1 (2.26)
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We can interpret each interval’s estimate as the true value plus noise ; = « +n;. Like the original values,

this noise is independently identically distributed.

1 i 1 < ’
Ese(T) = T Z(K +n)—1| = T Z Mje (2.27)
j=1 j=1
] T T T
T o Z ”]'2 +2 Z Z 1 eNi.e (2.28)
K j=1 j=1 k<j
The first term can be identified with the variance Frf of the intervals values «;
1 o 1 <
. 2
o= > (k1) = T Do (2.29)
j=1 j=1
which yields
2 1 L&
Es(T) = Kzépz + T2 ZZZ%% ' (2.30)
j=1 k<j

Averaging the squared error over a large number of experiments, the second term becomes zero, as the
n; are independent <n-nk> = &1, and the average variance approaches its true value 0. We define the
j i1/ jks

mean squared error Epg

Bas(T) = Ni S Eeu(T) (2.31)

which converges to

6,2
i Bus(T) = o

(2.32)

for a large number of experiments. We will omit the limit to keep the notation simple and assume N,

will be large enough to ensure convergence. Furthermore with the relative variance 0 = ¢*/x* we get

Ews(T) = ; (2.33)

The derivation we just followed is helpful to understand, how we calculate this error from simulations:
Take the true cumulant value « (either by deriving it analytically or by approximating it using a very
long simulation) and compute the squared error for one simulation following Eq. (2.26). Repeat this
for anumber of independent simulations N, and average the individual errors to get the final result. For
interpretation purposes it can be helpful to look at a simpler derivation of this result: The variance is

additive for independent stochastic processes and homogeneous of degree two (Sec. 2.1). Following
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T
this, the variance of the average k7 = % > «; is simply given by
=1

T T

~2 _ 1 1 Te* &
0%, = Var (%r) = Var T jgl ki | = I ]El Var (Kj) =z =7 (2-34)
1 &
I Y 2
= Jim_ e ;_1 (kn,e — x)° = Ens(T) - & (2.35)

The mean squared error is simply the (relative) variance of the average SOFI value ¥y calculated from
T available intervals. As SOFI values are computed from averaging a lot of statistically independent
events in time, it is reasonable to assume that the individual values «; follow a distribution very close to

a Gaussian, making the variance a well-suited error measure. Finally, we define the relative root mean

square error of SOFI:
2
Iea (11« o
E T)=+Eus(T) = |- E - = E Kie— K = —. 2.36
RMS( ) MS( ) ¢ - © szl jse ﬁ_, ( )

Note that the length of the regarded intervalsis arbitrary for this derivation, aslong as they are larger than
the typical time-scale of blinking. In fact, considering our core assumption, that computing SOFI val-
ues from all available frames is practically identical to the interval-based approach, we can forget about
intervals entirely and simply interpret T as the number of available frames. It is important to keep in
mind that this assumption breaks down as the interval size comes close to the time-scale of blinking. If
the standard deviation is computed using intervals of & frames, it can be converted by a simple rescaling
Olntervals/ VT = Oprames / VT - h = OFrames = Olntervals * \/E, making the result independent of the in-
terval length. To ease interpretation, all (relative) standard deviations in this section are given for T in

units of frames.

Due to the underlying Gaussian distribution, the error value can be easily interpreted. For example,
if Exms (N = 400) = 0.1, the SOFI value calculated from a simulation with 400 frames is with &~ 68%
chance within a 10% error margin off the true value. Appendix C shows the analytical derivation of the
true cumulant values «, which are necessary to compute the error function, for the two-state blinking
model used to generate the simulations. Different orders and experimental situations are compared

using their Egys directly or the associated values of the standard deviation o.

Figure 2.11 shows the RMS error calculated from N, = 1000 noise-less simulations of a time trace
capturing two equally bright independent emitters. The SOFI standard deviation o for each case is de-
termined by fitting curves to the data points using Eq. (2.36). The quantitative analysis confirms what
was qualitatively seen in Fig. 2.9: For very similar on-/off-times, the 3rd order converges much slower
than 2nd and 4th order. As the time-scales become more dissimilar, 3rd and 4th order yield almost

similar performance, the 3rd order still being a bit worse. For off-times much longer than the on-time,
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Figure 2.11: Comparison of the relative root-mean-square error for a noise-less time trace capturing two
equally bright independent emitters using three different blinking dynamics and SOFI orders. Data points
are calculated as averages from N, = 1000 simulations. The interval size for the SOFI calculation is 1000
frames. Dotted lines show fitted curves using Eq. (2.36). Left: When on- and off-times are very similar, the
3rd order shows much slower convergence compared to 2nd and 4th order (note the scale on the y-axis).
Mid: As both times become more dissimilar, the 3rd and 4th order are almost alike in terms of the error.
The 2nd order is still much faster. Right: For off-times much longer than the on-time, 2nd and 4th order
converge slower, making the 2nd and 3rd order perform similarly. Note that in the last situation, the time-
scale of blinking (7on + Tof) differs by roughly a factor of six from the others.

Ton = 1.96, Tog = 2.04 1o, = 1.67,7og = 2.5 7Ton = 1.67, 7,4 = 25

0, 2nd order 1.01 1.05 3.98
o, 3rd order 35.96 4.43 4.67
o, 4th order 3.99 3.97 8.57

Ton = 1.96, Tog = 2.04 1o, = 1.67, 768 = 2.5 7Ton = 1.67, 7,4 = 25

T,o%, 2nd order 101 111 1587
T, o0, 3rd order 129280 1885 2181
T, 0%, 4th order 1590 1572 7350

Table 2.1: SOFI standard deviation o and number of necessary frames T o, to converge to the 10% error
margin Epms(Tio%) = 0.1 when simulating a time trace of two overlapping independent emitters. The
convergence in this case is shown in Fig. 2.11.

the 3rd order now converges almost as fast as the 2nd order, while the 4th order takes much longer than
before. Note that 2nd and 4th order both converge slower in the last case than in the other two, which
is expected, as the time-scale of blinking (7., + Tog) is roughly a factor of six longer. Table 2.1 shows
the calculated standard deviations and the resulting number of frames necessary to achieve 10% error.
The 2nd order is usually quite fast, needing only about 100 frames in two of three cases. The exception
occurs at long off-times, where convergence is roughly 16 times slower. As expected, the 3rd order is
impractical for cases with 7,, ~ T,g, needing almost 130000 frames. In the other cases it needs roughly
2000 frames to converge, about a factor 20 to the best case 2nd order. Despite the factor of six between

the blinking time-scales in the two cases, the increase in necessary frames is minor. This further points

34



to the 3rd order being better suited for situations where the difference between 7,, and 7. is large.
The 2nd and 4th order show a slowdown in convergence which exceeds this factor of four (16 and 8
respectively) and thus seem less suited for this type of dynamics. Note that when comparing their best

performance, the 4th order shows faster convergence than the 3rd.

#Frames 100 3000 12500 50000

Low density
High density

i
.

-
J i

Figure 2.12: Comparison of SOFI convergence computed from noise-less simulations with different emitter
1 1

oo &4 o
12.8 1 px 10 the high density case (factor of 8). Whlle the second order is mostly unaffected by this difference,
the third converges noticeably slower. The result of the fourth order has degraded so much that the 50000

frame image is comparable to 500 frames at the lower density.

2nd

3rd

4th
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Next we look at the density dependence of the convergence. Figure 2.12 illustrates the different or-

ders in a low and a high density scenario (factor of 8 in density). The 2nd order is mostly unaffected
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by the high density. The 3rd order convergence is much slower, roughly a factor of four compared to
the low density case. Most affected is the 4th order result, which at 50000 frames with high density is
comparable to the 500 frames low density result. Increasing the density by 8-fold thus slowed down its
convergence by roughly 100-fold. The density dependence of the convergence seems to increase with

the SOFI order, and high-density-samples require longer imaging times.

2nd order 3rd order 4th order
5 x 1, =1.96, 1 =2.04 100 x1,,=1.96, 7 =2.04 500 «1,,=1.96, 1 =2.04
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Figure 2.13: Density dependent convergence of SOFI standard deviation for different orders and blinking
dynamics. For each density N, = 1000 noise-less simulations were performed and the standard deviation ex-
tracted by a fit to the root mean squared error following Eq. (2.36). The interval size for the SOFI calculation
is 1000 frames. For the second order and high off- compared to on-time, the error decreases when the num-
ber of simultaneously measured emitters increases. In every other case higher density leads to higher error.
The second order error shows asymptotic behavior, while the higher orders increase fast within the observed
range. Higher orders thus scale noticeably worse with density (note the values on the axis of ordinates). The
third order scales worse as off- and on-time become more similar.

To analyze this further, time traces for different blinking dynamics and number of simultaneously
measured emitters N, were simulated. The relative SOFI standard deviation was calculated from N, =
1000 simulations for every emitter count using Eq. (2.36). Figure 2.13 shows the results, which are
summarized in Table 2.2 together with the number of frames T, necessary to lower the RMS error
to 10%. The first peculiarity to notice is a qualitative difference in the behavior of the second order
compared to the others. As the emitter density rises, the error asymptotically approaches a constant.
Equally surprising, when the off-time is long, the error drops with density, making convergence faster,
while the opposite is seen in the other two cases. In the first case, the number of necessary frames drops
from 2711 for one emitter to 300 for 64 emitters. In the other cases roughly 200 frames are needed
for the same error. Thus, a few hundred frames seem to be enough to get a good 2nd order result if
the density of emitters is high enough. As before, the 3rd order is basically unusable for 7,, ~ o4
requiring at minimum few hundred thousand frames. It also scales worst with the density in this case,
which improves as 7, and 74 get more dissimilar. The number of needed frames rises from 1949 for
one emitter to 218940 for 64 emitters under fast dynamics, while only 6355 frames are necessary when
the off-time is long. The 4th order scales worst, quickly requiring more than 10000 frames and going up
to millions of frames for higher densities. It is important to note here, that even a few thousand frames

are often hard to achieve experimentally, as the sample bleaches. This makes SOFI orders higher than
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Ton = 1.96, 7,6 = 2.04

Nem = 1 2 4 8 16 32 64
T,0%, 2nd order 1 101 145 174 184 192 189
T,o%, 3rd order 239260 129280 623330 2-10° 4.9-106 10.6-10° 22.4-106
T,o%, 4th order 6 1590 3218 18189 102340 492570 2.2-10°

Ton = 1.67,Tog = 2.5

N, = 1 2 4 8 16 32 64

T,o%,2nd order 16 111 149 173 185 191 192
T,ou, 3rd order 1949 1885 7139 20435 47845 105100 218940

T.00, 4thorder 294 1572 4761 26084 134600 607290 2.6-10°

Ton — 167, Toff — 25

N = 1 2 4 8 16 32 64

T,o%, 2nd order 2711 1587 870 561 393 329 300
T,o%, 3rd order 1930 2181 2243 2475 2847 3802 6355

T,ox,4thorder 595 7350 14055 24777 48185 12920 484000

Table 2.2: SOFI standard deviation o and number of necessary frames T o9, to converge to the 10% error
margin Erms(T10%) = 0.1 when simulating a noise-less time trace of Nem overlapping independent emitters.
The convergence in this case is shown in Fig. 2.13. Numbers comparable or smaller than the time-scale of
blinking violate our assumption of large enough statistics, but indicate the convergence is not limited by the
cumulant calculation.

the 2nd only applicable for scenarios of comparably low density, while the 2nd order seems to be feasible
in almost all cases. Even at low densities, it is advisable to tune the blinking dynamics for the 3rd or 4th
order to make convergence as fast as possible. It will be shown in Section 2.7.3 (e.g. Fig. 2.36), that the
quality of images at high densities improves, even for higher orders, when the data is pre-processed to

extract higher resolution. However, a more detailed analysis is required to quantify the effect.

To get more insights into the convergence behavior of SOFI, we derived the standard error for the
2nd order analytically. The only assumption here is, that the time trace I(¢) is long enough to measure
the average brightness (I) with low error, i.e. that the recording time is longer than the typical blinking
time-scale. Otherwise, the estimator for the second order cumulant is biased, which makes an additional
correction necessary. For the derivation of this bias and the standard error, refer to Appendix D. A
similar formula was published very recently by Wang et al, but they did not take into account that the
recorded time series is correlated and assume that the variance is simply additive when multiple emitters
are present. This is not the case, as we will see below. As a reminder, x; denote ordinary cumulants of

i-th order and K; the joint cumulant of i signals. The variance of the second order cumulant (i.e. the
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variance of the variance) for a time-correlated stationary time series I(¢) of length T is given by

Var [x, (I(t))] = ( (())+2K2(()))
§:

(2.37)
K4 ), (), 1(t + 7), I(t + 7)) + 2K (I(¢), I(7))] ,

||M'

where the first line is the variance for an uncorrelated time series and the second line is a correction
for correlated signals. To compare to our previous results, we divide by 3 to get the relative variance.
Inserting a two-state model, where k. is the transition rate from the off- to the on-state, k_ its counter-
part, and N.,, is the number of simultaneously measured (identical) emitters, this can be written as (see

Appendix D for details)

Var [x, (I(1))] 1 ( 1

(12 — 4k ko + K] + 2)

K%(I(t)) Nemk—i-k—
5 2T1Tlt T—1 T—1—i (2.38)
Ea _ L 2(
TR T o () SR o)

G(t) = (8I(t)8I(t + 7)) / (§I*(t)) is the autocorrelation function of our process. If a continuous pro-
cess is modeled, the double sums must be converted into integrals, and Gont(7) = exp(—(k; +k_)7)
is an exponential function. For our discrete simulation, in which emitters can only be off or on dur-
ing a complete frame, but never switch in between, we have G(7) = [1 — (ky + k_)]" = a” with
a:=[1 — (ky + k_)] (see Appendix C). The double sum can be solved using the known solution for

the partial sum of the geometric series, yielding our final solution:

W:%(zjtﬁ[ki—zmkﬂtkﬂ)
2 2 {n +1 7(k+ —k_)? {a(aT— Ta+ T — 1)}

TR\ NG Kk (a—1)?

T?
. (I_Nlem) {a(a ZazTai ;r)zT_l)”'

Taking the square root of this, we get the relative standard deviation of second order SOFI, which is

(2.39)

equivalent to the relative root-mean-square error we defined above (in the limit of infinite number N,

of averaged simulations).

Std i (1(£)] _ [ Var[xa (1(1))] (2.40)
() =0) '

heo.
Eiszs(Ta New) =
Figure 2.14 shows the near perfect agreement between the theoretical convergence and our simula-
tions with respect to the recording time and density dependence. Small residual deviations are caused
by the finite sample size. Note that the result is independent of emitter brightness, because we as-

sume noise-less conditions and normalize by x*. The formula explains the peculiar properties of the
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Figure 2.14: Comparison of the relative root mean squared error between simulations (N, = 1000, interval
size for SOFI 1000 frames) and the analytically derived formula (Eq. (2.39)) for 2nd order. Left: Recording
time dependence. Right: Density dependence. As the standard deviation of simulations is computed using
an interval size of 1000 frames, the theoretical values are computed for 1000 frames and then rescaled using

Eheo: (T = 1000, Negy ) - /1000 (see Eq. (2.40)).

2nd order with respect to density: The first line of Eq. (2.39) (the variance for uncorrelated time-
series) dominates the rest for usual imaging parameters. Its rate dependent part is negative if the ratio
r:= k_/ky = Ton/Tos is between the values 2 — V3 < r < 2+ +/3, while all other parts of the
equation are always positive. In this regime, a higher density leads to a larger variance and thus slower
convergence. Outside this range the term becomes positive, lowering the variance with higher density
and thus leading to faster convergence. Another important information that we can extract from the the-
oretical formula is that second order SOFI is suitable for arbitrary high densities, as the variance quickly
approaches the asymptotic value (2/T) when the density is increased. Thus, the density can be chosen
high when imaging with second order only and must only be low when very fast imaging speeds should

be achieved. In the last case the off- and on-time should be tuned to be as similar as possible.

Similar formulas can be derived for higher order cumulants, but quickly rise in complexity. As the
expected variance of the n-th order cumulant is calculated using the squared deviation of the original
estimator from its expected value, it depends on (joint) cumulants up to order 2n. Given the complexity

of the joint cumulant formulas (see Sec. 2.2) this should be done with symbolic algebra software.

Instead of analyzing individual time traces, we can also look at movies, which is closer to the experi-
mental situation. The density can now vary locally and neighboring pixels are correlated by the spatial
extent of the PSF. As the simplest quality measure we calculate the pixel-averaged error (Epys ), where
we exclude pixels with theoretical values smaller than §% of the maximum of the theoretical image to
avoid averaging over empty regions. Figure 2.15 shows the convergence of the average error for movies
as shown in Fig. 2.9. The number of necessary frames for good quality is given in Tab. 2.3. The results
are similar to the single-pixel, two-emitters simulations (Fig. 2.11). The main difference is a larger gap
between the different orders and that the 3rd order now converges faster than the 4th for 7., = 1.67,
Tog = 2.5. As we just saw, higher orders scale worse with the emitter density (Fig. 2.13), which is
now spatially varying in the movie and higher in some parts than the two-emitter case. The calculated

number of necessary frames matches the visual impression of the convergence illustrated in Fig. 2.9.
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Figure 2.15: Comparison of the pixel-averaged relative root mean squared error for noise-less movies as
shown in Fig. 2.9. Dotted lines show fitted curves (using Eq. (2.36)) through the data points that are cal-
culated as averages from N, = 50 simulations. The interval size for the SOFI calculation is 1000 frames.
The results are similar to the single-pixel two-emitters simulations from Figure 2.11. The main difference is a
larger gap between the different orders and the 3rd order now converging faster than the 4th for 7o, = 1.67,
Toff = 2.5 (center). This is caused by higher orders scaling worse with the emitter density (Fig. 2.13), which
is spatially varying in the movie and higher in some parts than the two-emitter case.

=1.96,7,6 =2.04 7o, =1.67,7Tog =2.5 Ton = 1.67, 7.6 =25

(o), 2nd order 1.23 1.28 2.74

(o), 3rd order 117.70 12.13 5.00

(o), 4th order 11.81 13.82 14.34

=1.96,7,4 =2.04 1o =1.67,7T,6 =2.5 Ton = 1.67,7,4 =25

T,00, 2nd order 150 165 751

T, o0, 3rd order 1385300 14706 2500

T,o0, 4th order 13957 19088 20575

Table 2.3: Pixel-averaged relative SOFI standard deviation (o) and number of necessary frames T’ 49 to
converge to the 10% error margin (Erms(T10%)) = 0.1 for simulated movies as shown in Fig. 2.9. The
convergence of the error in these cases is shown in Fig. 2.15.

Thus, the calculated error seems to be a good quality criterion. The second order needs 751 frames for
convergence in the long off-time case, indicating that convergence could be sped up by higher emitter
density. In the other cases, around 160 frames are needed for the second order. The third order needs
2500 frames in the best situation (long off-time) compared to 14000 frames for the 4th order (for similar
off-/on-time). This further illustrates why higher orders will not be suitable for most imaging scenarios
which suffer from photobleaching. Note also that up to now, every simulation was performed without

noise, making the number of frames needed here a lower bound for the experimental situation.

AC-SOFI images are usually computed using nonzero time-lags 7; > 0 Vi. If all time-lags are chosen
differently, only the correlations between different points in time are calculated, which eliminates the

influence of temporally uncorrelated shot-noise. The simplest choice is to set 7; = i Vi with the n-th
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Figure 2.16: Comparison of SOFI result without and with time-lag under fast (7o, = 1.67 frames, 7,6 =

2.5 frames, ? ~ %) and slow dynamics (7o, = 6.67 frames, 7,6 = 10 frames, :ﬂ ~ %) for a movie
on on

of 3000 frames. It is easy to see that the quality of the result breaks down completely if a nonzero time-lag is
used for signals with very fast dynamics. For slow dynamics, we see slightly different images with and without
time-lag, which is caused by a slower convergence for nonzero time-lag.

order joint cumulant needing (n— 1) time-lags (equivalent to the first time-lag being zero). Although we
will see in Sec. 2.5 how to correct zero time-lag images, we first have a look how the time-lag influences
the resulting images. Figure 2.16 shows a comparison between zero and nonzero time-lag for fast and
slow dynamics. Itis easy to see that the quality of the result breaks down completely if a nonzero time-lag
is used for signals with very fast dynamics. For slow dynamics, we see slightly different images with and
without time-lag, which is caused by a slower convergence for nonzero time-lag. This intuitively makes
sense, as the correlation between two points in time drops with their distance. For a time-continuous
two-state model, the auto-correlation function is the exponential function exp(—(k; + k_)7). As
increases, the number of correlated events that we observe with this time-lag decreases, leading to worse
statistics. Therefore, more measurement time is needed. If the dynamics are very fast, we almost never
observe an emitter which stays in the on state for two frames. As the underlying process does not have
memory, the time series is essentially uncorrelated in time, and no correlation can be measured even
for the minimum time-lag 7 = 1 frame. The exposure time must be reduced well below the typical

time-scale of blinking if nonzero time-lag should be used.

As time-lag-based computation is used to remove noise, we look at the effects of nonzero time-lag in
the presence of shot noise. Figure 2.17 shows a comparison between a noise-less measurement and the
same simulation with added shot noise. The zero time-lag images look less noisy, thus giving a better vi-
sual impression. However, a closer look reveals that the nonzero time-lag images have better resolution,
yielding finer structures (compare the white dotted lines). The seemingly better quality is caused by a

superposition with images from lower cumulant orders (including the time average), which is caused
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Figure 2.17: Comparison of convergence with zero and nonzero time-lag under slow dynamics (same sim-
ulation in both cases). The brightness of each emitter is set to 200 photons per frame. The zero time-lag im-
ages look less noisy, thus giving a better visual impression. However, a closer look reveals that the nonzero
time-lag images are better resolved, yielding finer structures (compare white dotted lines). The seemingly
better quality is the result of a superposition with lower resolution images caused by the noise. While both
orders show slower convergence, the 3rd order seems to suffer more from noise than the 2nd. This is partly
because the third order result depends on the observation of events correlated over three consecutive frames
(11 = 1,72 = 2). Such events are rarer than events lasting two frames used for the second-order calculation.

by the noise. This lowers the resolution of the image for movies capturing dim emitters; for brighter
samples the effect will be less noticeable (see Sec. 2.5). While both orders show slower convergence,
the 3rd order seems to suffer more from noise than the 2nd. This is partly because the third order result
depends on the observation of events correlated over three consecutive frames (r; = 1,7, = 2). Such

events are rarer than events lasting two frames used for the second order calculation.

To isolate the impact of noise on the convergence, Fig. 2.18 shows a comparison between noise-free
and shot-noise-limited measurements when using the same time-lags for both cases. The large scale
image structure is preserved for the noisy measurements, showing differences only on the small scale.
Thus, shot noise does not seem to have alarge impact on the convergence to the final structure but rather
worsens the SNR of the final image. This matches the experiences that we got from many simulations
that were performed during this thesis. It is important to keep this in mind when analyzing the error
in the same way we did before. Figure A.1 in the appendix shows the pixel-averaged RMS error for

movies with different emitter intensities. The corresponding estimated number of needed frames is
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Figure 2.18: Comparison of convergence with nonzero time-lag in a noise-less measurement to the same
measurement subject to shot noise. The brightness of each emitter is set to 200 photons per frame. The im-
ages do not change on a larger scale, but become more noisy on the small scale. Thus, shot noise does not
seem to have a large impact on the convergence to the final structure but rather worsens the SNR of the final
image.

given in Tab. A.1. Using the same methods as before, we would estimate a large increase in the number
of frames needed to achieve good quality. Although the variance of individual pixel values is indeed
increased considerably?, the perceived image quality is much better. The spatial correlation introduced
by the size of the PSF preserves the large-scale structure of the image in the presence of higher variations
on the single pixel level. We suggest using the noise-free error as a basis when estimating the number of
necessary frames in practice, and to consider the finite emitter brightness simply as a separate source of

noise.

To sum up, from simulations and theoretical modeling of two-state blinking dynamics we learned the
following about the properties of SOFI up to the 4th order. Note that the term “density” here must be
understood as the number of emitters whose signals overlap on camera pixels (i.e. it will be bigger than

the density of fluorophores because of the extent of the PSF).

o The performance of SOFI depends on the blinking dynamics.

« Fast dynamics are generally to be preferred, as they minimize imaging time / improve the time

2For the theoretical variance of cumulants for non-correlated time series (i.e. in the approximation of very fast dy-
namics in our case) subject to Poisson noise (factorial cumulants, see Sec. 2.5) see reference [43].
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resolution of the measurement.

Computation of SOFI images by subdivision of a movie into non-overlapping intervals which
are individually processed and averaging the results is similar to processing the whole movie at
once if the interval length is multiple times larger than the typical time-scale of blinking. This is
important, as this procedure can be used to correct for bleaching in the sample as explained in

Sec. 2.2. As was shown, this property can be used to simplify the convergence analysis of SOFL

Higher orders need more frames to converge and scale worse with rising emitter density. The
blinking dynamics do not only influence the speed of convergence for a fixed number of overlap-
ping emitters, but also determines how the orders scale with the density. This makes tuning of
the blinking dynamics important for higher order SOFI. While the 2nd and 4th order work best if
the off- and on-time are the same, the 3rd order gives the worst results in this case and needs them
to be dissimilar. This is in accordance with the findings of [27], where it was reported that even
orders require similar off- / on-times, while odd orders require them to be dissimilar. Section
2.7.3 (e.g. Fig. 2.36) shows that the quality of images at high densities improves, even for higher
orders, when the data is pre-processed to extract higher resolution. However, a more detailed

analysis is required to quantify this effect.

The 2nd order shows fast convergence, usually between 150 and 300 frames. It is suitable for
arbitrarily high densities as the speed of convergence quickly approaches an asymptotic value
when the density is increased. Only when very fast imaging speed is desired, the density should
be kept low while the fluorophores must be tuned for comparable off-/on-times. Surprisingly,
when the ratio r = 7,,/7,g is outside the range 2 — V3 <r<244/3, higher densities lead to

faster convergence.

If 3rd order SOFI is targeted, tuning the blinking dynamics is very important. Otherwise the con-
vergence speed is too slow and scales very badly with rising density. In a well tuned environment,
between 1000 and 6000 frames seem plausible, depending on the density. The 4th order quickly
needs more than 10000 frames for acceptable quality and is extremely sensitive to the emitter
density. In the best case, where density is kept very low (e.g. less than four overlapping emit-
ter per pixel) and the blinking is optimally tuned, around 2000-3000 frames might be enough to
achieve acceptable results. This is already very demanding for most available fluorophores and
can not be achieved in most experimental situations. Even higher orders are infeasible in almost
every imaginable case except for special non-bleaching samples like fluorescent diamond centers

at not too high density. In most cases, only the 2nd order seems to be applicable.

Zero time-lag calculations causes a superposition of lower cumulant order to be added to the final
image if shot noise is present, which lowers the resolution of the image especially when imaging

dim samples (see Sec. 2.5 for details).

Non-zero time-lags can only be used if the exposure time is shorter than the typical blinking time-

scale, and need more frames. For typical fluorophores, the chance to spend a certain time in the
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on-state decreases (drastically) with the duration. Thus, for larger time-lags less of these events

are observed, which decreases the available statistics and increases convergence time.

« Shot noise does not influence the convergence of the SOFI image on larger spatial scales but
rather decreases its SNR. To estimate the number of necessary frames in practice, analyzing the

noise-less situation will usually suffice and gives a good lower bound.

2.4 Fourier SOFI

The resolution of SOFI increases with the order of the calculated cumulant. As shown in the previous
section, higher order cumulants need more measurement time to yield trustworthy results and are more
sensitive to increasing emitter density. In principle, however, SOFI allows arbitrarily high spatial reso-
lution limited only by the measurement time and thus the photostability of the sample. The raw input
data for the SOFI calculation are frames with pixels of finite size and this discretization is kept for the
final SOFI image. In order to fully capture a signal with discrete samples, the sampling rate must be
twice as high as the highest frequency component of the signal, a condition known as the Nyquist sam-
pling criterion. Consequently, the pixel size of a SOFI image must be at least two times smaller than the
desired resolution, or information is lost in the process. One solution to this problem is the XC-SOFI
algorithm as first proposed by Dertinger at al. in ref. [40], and later perfected by Geissbuehler et al. in
ref. [27,28, 39]. Here, virtual pixels are generated between the physical pixels of the recording camera by
cross-correlating signals from the original pixel grid (see Eq. (2.11)). Although this allows to generate
images with arbitrarily small pixels, the distance of the correlated pixels as well as the axial positions of
the fluorophores lead to different types of virtual pixels with different weighting factors for their bright-
ness. This results in grid-like artifacts which have to be corrected and usually rely on the assumption
of a Gaussian PSF and that all fluorophores are located in the focal plane. Furthermore, the number
of possible high-order cross-correlations for obtaining one desired virtual pixel increases exponentially

and there is no unambiguous way to choose which cross-correlation geometry will be optimal.

This section presents a much simpler solution which is straightforward, exact and based on the fact
that the Optical Transfer Function of a microscope has a finite support. Thus, when performinga Fourier
transform on an image, the Fourier amplitudes will drop to zero at large values of the Fourier vector.
Padding the Fourier-transformed image with zeros does not change or alter its information content, but
after back-transforming such a padded image into real space, one obtains an image with increased pixel
resolution. This procedure is a method of exact interpolation of band-limited signals, without the in-
troduction of artifacts. Using this scheme, the pixel size of the original frames of a recorded movie can
be adapted to the desired spatial resolution delivered by SOFI. We call this combination of SOFI with

Fourier-transform-based interpolation Fourier-SOFI or fSOFIL

Parts of this section have been published in the article [44]:

Stein, S.C.; Huss, A.; Hihnel, D.; Gregor, I; Enderlein, J.; “Fourier interpolation stochastic optical
fluctuation imaging”, Optics Express, 23, 16154-16163, 2015.
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Real space Fourier space Real space

Figure 2.19: Algorithm of Fourier interpolation: Each frame (example: single emitter represented by an airy
disc) is first Fourier-transformed. For sufficiently small detector pixel sizes, the Fourier transform is zero on
the borders due to finite support of the OTF. The Fourier transform can thus be padded with zeros without
changing the frequency information, here separated by a dashed white line from the original Fourier trans-
form. Transforming back into real space gives an artifact-free image with more pixels, where each “virtual”
pixel corresponds to a smaller area than that of the original detector pixels. [ This image has been published in
the article [44].]

When transforming an image with N' X N pixels using the discrete Fourier transform, the relation
between the frequency spacing Af in Fourier space and the spatial sampling frequency (i.e. pixel size)
Ax along one direction is simply given by

1 1

Ax = —— & Af= .
NAf f NAx

(2.41)

If the pixel size of the recording camera was properly adjusted to be smaller than half the available spatial
resolution, the OTF drops to zero within the observed interval, and symmetrically padding the Fourier
transform with an overall number of ANy zeros does not alter its information content. Note that im-
ages subject to noise (e.g. shot noise) usually show variations on the per-pixel level and thus contain
frequencies above the cutoff of the microscopes OTF, up to the highest available frequency. Although
this violates the assumption of a band-limited signal needed for exact interpolation, zero-padding does
not influence the noise-less portion of the signal, and the contributions from noise are removed by the
SOFI calculation, leaving an exact result if the measurement is long enough. Back-transformation into
real space after zero padding yields a new pixel size

N

Aoy = ———— .
Snew = N AN (2.42)

An example of this method of interpolation is illustrated in Figure 2.19. The interpolation is applied to

every frame of the original movie, before SOFI processing.

The new pixel size can be arbitrarily small, but must be chosen small enough to prevent information
from being lost. For a recording with the original PSF U(r), the SOFI image of n-th order produces an
image with the the new PSF U(r)". As was already shown in Eq. (2.5), the Fourier transform

F(U(r)") =Uk) ® - -- @ U(k) (2.43)

(. 7
v~

n-1 times
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', periodic padding
’ Fourier upsampling
'v cropping

unpadded Fourier upsampling

Figure 2.20: Example of periodic padding of an image for preventing boundary artifacts upon Fourier up-
sampling: Instead of Fourier-upsampling the original image, one first extends the image with mirror sym-
metric half-copies to obtain a larger and continuously periodic image (periodic padding), which is then
Fourier-upsampled, and then cropped back to the original size. The comparison between both results (un-
padded Fourier upsampling, right bottom, versus padded Fourier upsampling, right top) clearly shows that
the padding procedure leads to a perfectly artifact-free upsampling of the original image.[ This image has been
published in the article [44].]

is the (n — 1)-times auto-convolution of the OTF. For any function with finite support, the cutoff fre-
quency increases linearly with the number of auto-convolutions. If the original pixel size was well ad-
justed to the available resolution, the new pixel size must be chosen n times smaller to match the new

cutoff frequency.

Note that the Fourier space is expanded naturally if the SOFI calculation is performed in Fourier

space. For example the second order can be calculated using
(8F(r,t)) = (F ' [F(8F(r,t)) ® F(SE(r,1))]) . (2.44)

The discrete convolution of two signals of length N and M has N + M — 1 points, resulting in a larger
Fourier space image that produces finer pixels when transformed back into real space. It is also im-
portant to notice that explicitly performing the convolutions to compute §F? is identical to a Fourier
interpolation of §F via zero padding and taking the square after back-transforming into real space. For

this to hold, the padding for the SOFI order n must be chosen as such:

ANo=(n—1)-(N—1) (2.45)
AN = | ANy /2| (2.46)
ANY® = AN, — ANb™. (2.47)

Here AN is the number of zeros prepended to the part of the spectrum carrying the “negative” fre-
quencies and AN5** the number appended to the positive direction. This padding must be applied to

each spatial dimension. As zero padding requires only one copy operation for each of the N¥ data points
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Figure 2.21: Comparison between fSOFI and interpolation of SOFI image using a simulation of two close
emitters. a) Average of movie. b) 4™ order SOFI image. c) Linear interpolation of b. d) 4 order fSOFI
image. The coarseness of the pixel grid prevents standard SOFI to resolve the emitters. In contrast to interpo-

lation, the fSOFI image captures true information and correctly resolves the emitters. [ This image has been
published in the article [44].]

of a d-dimensional image, compared to O(N??) arithmetic operations for direct convolution in Fourier

space, it is computationally much cheaper and should always be the preferred method.

Zero padding is also equivalent to sinc-interpolation in real space[45]. A continuous function f(x)
can be perfectly reconstructed from samples f, spaced Ax apart if its Fourier transformf(k) is confined

to the region L?(k)| < 1/(2Ax). The reconstruction formula [45]

flx) = f: fa - sinc (x—A—;le) = f: fu - 8(x — nAx) | ® sinc (&) (2.48)

n=—oo n=—oo

uses convolution to perform the interpolation. Usually the sinc function is cut off to include only a few
of the closest pixels in practice. For small upsampling factors, this approximation can be faster than the

Fourier-based approach.

The discrete Fourier transform (DFT) intrinsically assumes an image which is periodic in all direc-
tions. Images which exhibit discontinuities at the borders when stacked periodically suffer from wave-
like artifacts in these border regions when Fourier interpolation is performed. The problem can be alle-
viated by padding the image with mirror-symmetric half-copies of itself (see Fig. 2.20) before Fourier
interpolation. In most cases this effect is negligible, especially if the sample of interest is surrounded by

label-free space.

In contrast to a simple interpolation of the final image, which cannot restore lost information, the
interpolation in fSOFI must be performed on the original recording before SOFI processing, to prevent
the loss of information. Figure 2.21 shows a comparison between simple interpolation of the result and
fSOFI for a simulation of two very close emitters. It is clear that fSOFI captures the improved spatial
resolution that can not be displayed on the original pixel grid and resolves the emitters, which is not the

case for post-processing interpolation.

The improved image fidelity as well as correct subpixel positioning is demonstrated on two simulated
examples in Fig. 2.22 and compared to conventional SOFI and raw XC-SOFI. The raw cross-correlation
images exhibits the mentioned artifacts which are inherent to the method and have to be corrected in

post-processing. An experimental proof of principle is shown in Fig. 2.23 using a rat hippocampal neu-
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Figure 2.22: Two examples from a simulated SOFI experiment illustrating the presented Fourier inter-
polation in combination with SOFL Top panels: 10 emitters in a ring. Bottom panels: Two emitters with
sub-pixel shift (1.75 px, 0.25 px). a) Time average of all frames. b) 4™ order SOFL. c) 4" order SOFI from
4x-super-sampled frames. d) Raw 4™ order cross-correlation SOFL It is easy to see that the Fourier interpola-
tion improves image quality and exposes the sub-pixel positioning of the emitters without producing artifacts
visible in the raw cross-correlation approach. [This image has been published in the article [44].]

Figure 2.23: Experimental example using fSOFL Rat hippocampal neuron with neurotransmitter receptor
subunit GABAgR1 immunostained with commercial quantum dots QDs;s (Invitrogen). The raw stack of
images contains 3000 frames recorded at 20 Hz frame rate. Fluorescence was excited at 401 nm wavelength
and about 20 W/cm? using an laser (Cube4o1, 100 mW, Coherent). The microscope used was a commer-
cial epi-fluorescence microscope (IX-71, Olympus) equipped with a 1.4NA oil-immersion objective (UP-
lanSApo, Olympus), and an EMCCD (DU-897-CSo-BV, Andor). Magnification was chosen in such a way
that the effective pixel size of the recorded images was 100 nm. (a) Time average of original images. (b) nd
order SOFL (c) 2°¢ order SOFI with 3x Fourier interpolation. The last two images show the raw 2°¢ cross-
correlation SOFI (d) and the artifact corrected image (e) calculated using publicly available software [46].
The recording was performed by Anja Huss. [ This image has been published in the article [44].]
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ron with neurotransmitter receptor subunit GABAgR1 immunostained with commercial quantum dots
QD55 as a sample. The recording was performed by Anja Huss. It is clear that fSOFI improves image
fidelity and resolution compared to the conventional calculation. For comparison, we also show cross-
cumulant based calculations and performed artifact correction using publicly available software [46].
Note that the corrected image still shows artifacts, probably because of the assumption that all emitters

are located in the focal plane.

To sum up this section about artifact-free subpixel generation for SOFI,

« Asconventional SOFI calculations yield results on the pixel-grid defined by the recording camera,
it is possible that the improved spatial resolution cannot be fully captured due to the coarseness
of the grid, and information is lost. This is the case if the final resolution is better than two times

the pixel size (the Nyquist criterion).

« fSOFIis a conceptually simple way to produce images on a finer pixel grid using Fourier interpo-
lation on the original frame stack before SOFI processing. Fourier interpolation is carried out by

zero-padding in the Fourier domain and transforming back to real space.

« Forband-limited (finite support in Fourier space) signals, the method produces exact results and
is artifact-free. Thisis in contrast to other currently used methods which rely on cross-correlation

of different pixel positions.

2.5 NOISE CORRECTION FOR AUTO-CUMULANTS WITH ZERO TIME-LAGS

Measurements of physical quantities are usually subject to some form of noise. In fluorescence mi-
croscopy the quantity of interest is the brightness of the fluorophores, which is inherently noisy as the
emission of photons is a probabilistic process. This leads to a Poisson distribution for the number of
measured photons. The detection of the photons by the imaging camera produces additional noise, de-
termined by the working principle of the measurement as well as its internal signal processing (e.g. sig-
nal amplification). The computation of ordinary cumulants of noisy signals superimposes the noise-less
value of interest with additional contributions produced by the noise. As noise present in movies pro-
duced by fluorescence microscopy is mostly shot noise, i.e. it is neither correlated in time nor space, these
contributions can be removed by using joint cumulants to correlate different time points (AC-SOFI)
or spatial positions (XC-SOFI). However, the signal-to-noise decreases with increasing spatial distance
of correlated pixels or distance of correlated frames in time, lowering the image quality. Furthermore,
while correlation of different points in time cannot be used when imaging very fast blinking samples (it
decays too fast), spatial cross-correlation produces artifacts dependent on the local PSF which have to
be corrected later. Thus, it is desirable to understand the influence of noise on ordinary cumulants and

use this knowledge to correct for it.

In this section, we take alook at the expectancy value of ordinary cumulants of noisy signals and com-
pute formulas that estimate the cumulant value of the noise-less signal. Although two specific examples

are shown, one for Poisson noise and one for the measurement with an EMCCD camera (which are
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currently used by many research groups), the general approach is the same for any noise distribution.

The correction can also be combined with fSOFI (Section 2.4) without any alterations.

Let x(t) be a randomly fluctuating signal, e.g. the intensity of a blinking fluorophore, and y(t) the

noise contaminated signal that is measured:

y(t) = y (x(t)) = Noise [x(¢)] . (2.49)

The chance to measure a certain value y can be calculated by summing up the chances of all possible

situations which can yield this value:

P(y) = /P(x)P(y|x) dux. (2.50)

Here P(y|x) denotes the conditional probability to measure y given that the value of the underlying
process is x. This is simply the probability distribution function of our noise, i.e. the distribution that

would be measured if x(f) was simply a constant. Using this relationship, the n-th moment of y reads
0) = [Py ey o

:/ [/P(x)P(y|x) dx} y" dy (2.52)
- / P(x) { / p(y|x)y”dy] du (2.53)
= / P(x) (7" norse 9 (254)

_ / P(x) m (x) dx (255)
= (m(x)) (2.56)

The n-th moment of the noisy measurement y of a random signal « is the average over the n-th moment
m,(x) of the noise distribution for fixed x. To connect the cumulants of the noisy and the noise-less
signal, we compute the relationship between their moments and replace “noisy moments” with “noise-

less moments” in the cumulant formulas.

POISSON NOISE

The first and second moment of a Poisson distribution with mean A are

mll’oiss ( A) —
mgoiss ( A) _

(2.57)

A
2242 (2.58)
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Thus, the first two moments of a signal subject to Poisson noise are:

0) = [ )i (a) (259)
_ / P() xdx = (x) (2.60)
() = [ Pla) m ) ()
_ / P(x) (4 + %) dx = () + (x) (2.62)

For the Poisson distribution, the n-th moment of y is always a linear combination of equal or lower order

moments of x. Using these moments, the first two cumulants are

O = ) = o) = (a.63)
Ko (2 ()2 (2.64)
= () = () + (x) (265)

= Ky + KOS, (2.66)
Rearranging this to calculate the cumulants of the noise-less signal «; gives

K1 = Kf"iss (2.67)

Poi Poi
Ky =Ky 0 — Ko (2.68)

Using this scheme, we can derive rules how to compute the cumulants of the signal of interest from
the cumulants of the noisy measurements. Note that the superposition with lower orders caused by
the noise (Eq. 2.65) leads to a degradation of the resolution of SOFI images. However, as the image
intensity scales with the power of the order, the highest order dominates for brighter fluorophores and

the effects of noise will be less noticeable.

The linear combinations of ordinary cumulants of the noisy signal that yield the noise-less ordinary
cumulants are called factorial cumulants. Like ordinary cumulants, factorial cumulants are additive for
statistically independent variables and homogeneous. For a Gaussian distribution all cumulants above
the second order vanish. Similarly, for the Poisson distribution all factorial cumulants above the first or-
der are equal to zero, which effectively eliminates the contribution of shot-noise. The n-th order factorial

cumulant reads [47]

n
Kn = Zs(n, i) - K]P"iss (2.69)
i=1

52



with the Stirling number of the first kind s(n, i), which can be generated using the recursion relation

s(nyi)=—(n—1)-s(n—1,i) +s(n—1,i — 1) (2.70)
withs(0,0) = 1, s(0,k) = s(k,0) =0 Vk > 0,k € N.

The first four factorial cumulants are given in Appendix E. As a side note, the variance of factorial cu-
mulants for uncorrelated time-series (i.e. in the limit of very fast dynamics) is calculated in [43]. The
variance represents the error of estimation of the cumulant and is useful for thinking about the con-
vergence of the cumulant estimator. As explained in Section 2.3, the error of the noise-less cumulant

should probably be preferred when, for example, estimating the number of necessary frames in practice.

EMCCD CAMERA NOISE

Electron Multiplying Charge-Coupled Device (EMCCD) cameras are currently used by many research
groups when imaging single molecules. The photoelectrons generated from light hitting the detector are
amplified by an additional gain register before read-out. The gain register consists of hundreds of identi-
cal stages which accelerate the incoming electrons using high voltage, leading to electron multiplication
via impact ionization. Thus, every photoelectron generates a high signal and the additional read-out
noise becomes negligible in comparison. Although this process allows the detection of single photons,
the additional random processes widens the measured intensity distribution at constant photon flux by
approximately a factor of \/2 compared to a pure Poisson process, which lowers the signal-to-noise in
the same way as halving the sensors quantum efficiency. However, at low photon fluxes the advantages

far outweigh this handicap.

The distribution of the measured input counts n;. of the camera is given by [48]

PEMCCD(”ic;lagu S, O'ro) = (2-71)
\/%,,m " €xp <_l - —(52.22:)2) + ﬁFx(Zl; 4,25 - n;/g) nie >0
snic)?
ijm " exp <_ - (2030) ) Nic S 0

where 1 is the mean number of detected photons, g the EM-gain (average number of output electrons
per photoelectron), s the sensor sensitivity (electrons per input count) and o, the standard deviation
of the read out noise. F,(21; 4, 2s - n;./g) denotes the non-central y*-distribution for 21 with 4 degrees
of freedom and the non-centrality parameter 2s - n;./g. Note that usually a constant bias is added dur-
ing readout by the camera to prevent the occurrence of negative input counts, which simply shifts the
distribution. The photon conversion factor a := g/s converts from (average) measured photons to

input counts and varies with the settings of the camera. We computed the first four moments of the
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distribution using the software Mathematica:

EMCCD(}) — 4.} (2.72)
mEMCCP (1) = g2+ (A2 4 22) (2.73)
mEMCCP (1) = o - (23 + 62% + 61) (2.74)
mEMOCD (2) — gt (A* 4 122° + 3602 4 24 - 1) . (2.75)

The EMCCD distribution is often simplified using a shifted Poisson Ppoiss (k + 2; 21) with mean A and
variance 2A. This approximation usually works very well but gives slightly different higher moments.
Using these moments, we can compute the linear combinations to extract the cumulants of the under-

lying noise-less signal. For example, the first two cumulants of the noisy signal are

xEMCCD _ <mEMCCD x)> al (2.76)
(EMCCD < mEMCCD( x)> < EMCCD > (2.77)
= o ((«*) — (x)> +2 (x )) (2.78)
(<x ) — (@)°) + 24 (x) (2.79)
Ky + 2a - KEMCCD (2.80)
Rearranging this for the cumulants of the noise-less signal yields
1
K1 = —K]fMCCD (2.81)
a
1
Ky = ) (K];‘MCCD — 2a - KfMCCD) . (2.82)

Again, using the moments given above we computed corrections for the first four cumulants, which are

given in Appendix E.

ANALYSIS AND EXAMPLES

To better understand how the noise influences the final result, we first take second order SOFI of movies
subject to Poisson noise as an example. Simulations as illustrated in Figure 2.24 are used to visualize the
discussed effects and demonstrate how well the correction performs. The noise-contaminated SOFI

signal is given by the true signal plus the average intensity.

SOFL, = SOFI, + Avg (2.83)

If the fluorophores follow a two-state model (see Appendix C), we know the average intensity

ks
Avg = N,n,e—— + b .8
vg €k+ T —+ (2 4)
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Background Emitter average Single frame

Figure 2.24: Simulation used for the demonstration of the noise correction. 10 emitters are placed in rings
of different sizes on top of a slope-like background. Images are shown here without noise (infinite photon
count) for clarity. The background count rises from b at the leftmost position to 4b at the rightmost position.

and the desired SOFI signal of the emitters to be

kok_

SOFL, = N, &> ———.
2 (ky +k_)2

(2.85)
Here k. and k_ are the transition rates from the off- to the on-state and vice versa, N,y is the number
of emitters, € their molecular brightness and b the average number of background photons. The ratio of

the average to the signal of the emitters is

AVg k+ + k_ b <k+ + k_)2 ( 86)
== 2.
SOFI, ek_ Neme?  kik_
1
=—-|(1+r+ (—+r+2> . (2.87)
~—~— Nem& \r g
emiters backgtound

For large values of this ratio, the influence of noise in the uncorrected SOFI image is stronger. To sim-
plify the analysis, we introduce the ratio of state lifetimes / transition rates r = k. /k_ = 7o/ 7o As
expected, the influence of the noise drops with increasing emitter brightness €. The first term indicates
how strong the high resolution image of each emitter is disturbed by the low resolution average image
and gets large for high r (Ton > Tog). This is easy to explain: the second order signal is strongest if the
lifetimes are equal (7o, = 7og) and is reduced in asymmetric situations. However, the average grows if
the emitters stay longer in the on-state (7o, > Tog) and more photons are collected. For the same rea-
son, the background related term grows for asymmetric 7oy, Tog. Otherwise, it depends mainly on the
ratio between the number of background photons to the number of photons collected from the emitters

Nene.

Simulations were performed using 2000 frames with the width of the PSF set to opsg = 3 px, transi-
tionrates ky = 0.4, k_ = 0.6 and varying brightness of the emitters as well as the background. Figure

2.25 shows how the resolution of the SOFI image is lowered at very low photon count rates and clearly
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Single frame SOFI corrected  Noise-less SOFI

Figure 2.25: Simulation without background and low emitter brightness ¢ A~ 40 photons (amplitude:
1 photon). At low photon count rates, the resolution of the SOFI image is noticeably lowered by the over-
lay with the average image and clearly improved by the correction.

Single frame SOFI corrected  Noise-less SOFI

Figure 2.26: Simulation with (leftmost) background b = 20 photons and emitter brightness ¢ ~
400 photons (amplitude: 10 photons). The background is clearly visible in the uncorrected image, lowering
the image contrast, but is removed by the correction.

Single frame SOFI SOFI corrected Noise-less SOFI

00|00
00|00

Figure 2.27: Simulation with (leftmost) background b = 20 photons and very high emitter brightness

€ &~ 4000 photons (amplitude: 100 photons). At higher photon count rates, the impact of noise is negligible,
making the noise correction unnecessary.

Average =0 T =0, corr. T=1

Figure 2.28: Noise correction of experimental data of a mouse hippocampal neuron stained with quantum
dots (QDso; ) recorded by Anja Huss. In the zero time-lag image(second order) the desired SOFI signal is
overlayed with the average image. This contribution is eliminated by the noise correction, giving much better
contrast and improved resolution. Due to the very long blinking time-scale of the quantum dots, the cor-
rected image can be compared with a SOFI image calculated with a time-lag of one frame. As expected both
images are virtually identical, proving the noise correction algorithm.
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improves by applying the noise correction. If noticeable background is present in the recording, it will
also be visible in the uncorrected SOFI images, but is easily removed (2.26). As Figure 2.27 demon-
strates, for very bright samples the noise correction becomes unnecessary. In general, the influence of
noise does not influence the SOFI result too much even for moderate emitter intensities because of its
quadratic dependence on the brightness. However, in situations with strong background the correction
is very useful. One experimental example of this situation is shown in Figure 2.28, where it is clear that
the noise correction improves the result. Furthermore, the long time-scale of blinking of the utilized
quantum dots allows the computation of a SOFI image with nonzero time-lag. The result is virtually

identical to the corrected zero time-lag image, proving the effectiveness of the correction.

If the noise correction is used with fSOFI, the upsampled images should be multiplied with the square
of the upsampling factor # = Nyew/Nog where N X N is the image size. Because zero padding in the
Fourier domain is energy conserving and the number of pixels in real space is increased, their values
drop. This change in number changes the statistics, and a conversion factor (similar to a for the EMCCD
above) becomes necessary. Multiplication with u* ensures that pixels falling on the positions of the

original sampling points retain the original values and the derived formulas apply.

The noise correction can be useful in many cases, but while it successfully removes the bias, the noise
still increases the variance of the cumulants [43], resulting in a lower signal-to-noise ratio. Methods
which inherently remove shot noise contributions by exploiting physical correlations (i.e. using time-
lag or spatial cross-correlation) perform better at suppressing the noise. Thus, they deliver a better SNR
of the final image as long as the blinking time-scale is not too fast or the PSF is not too small when using
time-lag or spatial cross-correlation respectively. A proper comparison of the SNR is needed to estimate

the usefulness of the correction.

To sum up this section about corrections for the effects of noise in zero-lag-time SOFI images,

« Noise causes a linear combination of lower cumulant orders to be added to a SOFI image calcu-

lated with zero time-lag (ordinary cumulants).

« If the distribution of the noise is known, formulas can be derived to correct for these contri-
butions. For Poisson as well as EMCCD camera noise, formulas are derived here and given in

Appendix E up to the 4th SOFI order.

« For moderate emitter intensities and not too high background, the influence of the noise is low

and can be neglected.

« Methods exploiting the physical correlations (time-lag / spatial cross-correlation) potentially

yield a higher SNR (if the time/length scale of the correlation relied upon is large enough).
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2.6 EstiMATION OF THE OTF AND PSF

The Point Spread Function (PSF) is one of most important characteristics of a microscope, as its shape
encodes resolution and optical aberrations. Knowing the PSF as precisely as possible is also one of the
prerequisites for successfully applying most schemes for “deconvolution”, which try to increase the im-
age resolution and remove the effect of aberrations in post-processing . Unfortunately, the PSF can vary
for different measurements, for example due to different refractive indices of the embedding medium
or different focal depth, but is hard to determine from the recorded image of the structure of interest
where no isolated emitters are present. For this reason, it is usually determined using bright fluorescent
beads under conditions as similar as possible to the measurement. However, this process is tedious and

time consuming and the conditions are hard to match in some cases.

The stochastic fluctuations emitters exhibit in SOFI recordings can be used to directly compute a
magnitude-based estimate of the OTF, even if no isolated single emitters are visible in the data. To do
this, we essentially need to compute cumulants in a similar way to a normal SOFI computation, but
apply this in Fourier space instead of the original data from the camera. After the OTF is known, the

PSF can be computed using the Fourier transform.

2.6.1 OTF ESTIMATION FOR 3D-IMAGING

Let us assume at first that we recorded a 3D-movie similar to the work shown in [28]. The Fluorescence

signal F and its Fourier transform F with PSF U(r) and OTF U(Kk) are given by:
F(r,t) = Z U(r —1j) - ¢ - 5(t) and (2.88)
j
F(kt) = ) U(k)-e 7™ - g - 5(0). (2.89)
j

Here r; is the three-dimensional position of the j-th emitter, ¢; its brightness and s;(¢) the associated time

dependent fluctuation function.

Computing the 2nd order joint cumulant of the Fourier transform with its complex conjugate yields:

= U(k) - U(k) - ‘ Z gigr e ™. (§si(1)8si(t + 7)) (2.90)
= U(k)[*- Ze,'z(&j(f)&j(“r 7)) (2.91)
= |U(K)|? - const (2.92)

With §F = F — (F) and 85 = s — (s). Note that after the cross-terms drop out due to the cumulant
computation, the terms depending on the emitter positions cancel each other because the complex con-

jugate is used here. Looking at this, we can get a magnitude-based estimate of the PSF simply by taking
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the square root of the real part (the phase information is lost):

U(k) ~ \/Re{<81~3(k, t) - SF(k, t + ‘L'))} (2.93)

= |U(K)| - const (2.94)

If the PSF is well approximated by an arbitrary rotated asymmetric Gaussian, its Fourier transform
should be purely real it can be perfectly reconstructed. However, due to the loss of phase information,
higher order aberrations are not captured by the reconstruction (a way to recover the phase information

is sketched below in 2.6.4). Back-transforming into real space gives an approximate image of the PSF.

2.6.2 OTF ESTIMATION FOR 2D-IMAGING

When imaging a 3D-structure with conventional 2D-imaging, we do not observe the three dimensional
light distribution of the emitters but rather a cut through their 3D-PSF. In this case the 2D fluorescence

signal and its 2D (lateral) Fourier transform can be described by:

F(x,y,t) ZU — %,y —¥j,%) - & - 5(t) (2.95)

F(k,, k,, t) Z/dk Ulky, ky, k,) - €9 - o7 . g 5(1). (2.96)

) —o0
Again we compute the 2nd order cumulant of the Fourier transform with its complex conjugate:
(8F(k,t) - F(k,t + 1)) =

Z / / dk,dk, Uk, ky, k.) - Ulks, ky, K,) - 5755 2(85;(1)85;(t + 7)), (2.97)

where we again used the fact that the cross-terms between different emitters drop out, which leads to
cancellation of the lateral phase factors. Assuming a large number of blinking emitters with similar in-

tensity and blinking behavior is observed, we can think of the sum over all emitters as an integral over the

o0

emitter density function » sjei(kfk;)zf — [ dzp(z)- ge’k==k)z_f the emitters are distributed uni-
j 00

formly along the axial direction, this becomes a §-function, §(k, — k), times some constant pre-factor.

In this case, above expression simplifies to

(SE(K, t) - SF(k, £+ 7)) oc (8s(£)8s(t + 7)) / dk, [Uky, ky, ko) 2, (2.08)

—00

which is the axial projection of the absolute square of the OTF. As the axial distribution of emitters
is not necessarily uniform (neither is their blinking behavior), this estimate might be bad in practice.

However, if the sample is very flat or TIRF microscopy is used, we can assume that all emitters are very
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close to the focal plane. Thus we set z; = 0 Vj in Eq. (2.97) to get:

/ dk, Ulky, ky, kz) | - / i, Ulke, ky, k) | - | D e (85(0)85(t + 7)) (2.99)
= Usp(ke, ky) - Uap ke, ky) - Zsjz(&j(t)&j(t—l— 7)) (2.100)
= |Unp (ke k) [* - Y~ e2(85;(1)85;(t + 7)). (2.101)

j

The axial projection of the OTF U,p, is the Fourier transform of the in-focus slice through the 3D-PSF
according to the Fourier slice theorem. From this, the 2D-PSF can be reconstructed similar to the 3D

casein Eq. (2.94).

2.6.3 OTF EXTRACTION IN PRACTICE

Single Frame Average Image True PSF Estimate

Figure 2.29: Extraction of the PSF from a simulated movie with 2000 frames, where all emitters are in the

same focal position. The blinking ratesare k; = 0.1,k_ = 0.2. Atime-lagof 7 = 1 frame was used
for extraction of the OTF magnitude and its shape extracted by fitting a Gaussian model to the data. The
Fourier transform yields a Gaussian PSF, which is very close to the true Airy-disc shape, but is 5.7% wider.
The difference vanishes with increasing signal-to-noise ratio.

For OTF-estimation the movie must be Fourijer-transformed first and then the covariance between
the Fourier transform at time t and its complex conjugate at frame ¢ + 7 has to be computed. Similar to
second order SOFI this processing should be done for individual intervals of N frames to counter the
effects of bleaching (see Sec. 2.2). Due to shot noise in the original signal, the resulting image should
be fitted with a suitable model to extract the OTF even for nonzero time-lag. For TIRF / thin-sample
movies this can be done simply using a 2D Gaussian with a background offset. Although the OTFs
magnitude is expected to fall to zero at high frequencies, this offset arises when applying the Fourier

transform to a signal subject to Poisson noise [49].

It was observed using simulations that the estimated OTF magnitude is narrower than the true OTF
when the signal-to-noise ratio is low due to either strong background or very dim emitters. Figure 2.29
shows an example for the recovery of the PSF from the estimated OTF, where its estimated shape is
5.7% wider then the best fitting Gaussian. This difference gets smaller as the signal to noise ratio in-

creases. So far there is no explanation for this bias, a better understanding of the effects of noise in real
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space on the calculation in Fourier space is desirable to improve the estimation.

2.6.4 REMARKS ON RECOVERY OF THE PHASE INFORMATION

The 2nd order cumulant only yields magnitude information, but if the third order cumulant can be reli-
ably computed for a movie, the phase of the OTF can be extracted as well. This allows a complete recon-
struction of the microscope’s PSF including aberrations. One way for performing this reconstruction
is very similar to the “bispectrum” method in astronomy. There, the bispectrum method is commonly
employed to reconstruct a high-resolution image from a movie of short-exposure images acquired by
a ground telescope, which are blurred by atmospheric disturbances. If the exposure time is so short
that the atmosphere is essentially “frozen”, the recorded images still carry the high frequency informa-
tion which is lost in long exposure images. In this scenario the OTF is fluctuating randomly while the

observed object (i.e. the stars) is assumed to be constant. The method is well described in [50].

In our case, the OTF is assumed to be constant, while the object fluctuates randomly. Here we briefly
sketch how the bispectrum method works following the description in [50] but adapted to our specific

scenario. The bispectrum of our SOFI movie is given by

= Z Uu)U(v)U(a + v) - e™e™me~imtv)n - (85;(t)8s;(t + 71)8s;(t + 72))  (2.102)
= U(u)U(v)U(a +v) - Z(Ssj(t)&j(t +11)85;(t + 12)) (2.103)
= f](u) f](v) f](u + v) - const. (2.104)

The vectors u, v are two- or three-dimensional Fourier space coordinates, depending on the dimension-
ality of the recorded movie. Here we again exploited the fact that cross-terms cancel due to the cumulant
calculation. The constant factor is not relevant to the problem and will be omitted for clarity of nota-
tion. Rewriting the equation above in the magnitude-phase representation of complex numbers, we see

a connection between the bispectrum phase  and the phase of the OTF ¢:

[B(w, v) [ = [U(w)[|UW)||T(w + v)| - e#MePMeiol) (2.105)
= B(u,v) = ¢(u) + ¢(v) — o(u +v) (2.106)
 ou+v) = o) +o(v) - f(u,v) (2.107)

This relationship can be used for a recursive reconstruction of the PSF phase. For simplicity of notation
we assume the problem is two-dimensional here. Because the PSF U(r) is a real function, its Fourier
transform is Hermitian U(k) = m and thus the phase at the origin must be zero ¢({0,0}) = 0.
Multiplication of f](k) with an arbitrary global phase factor exp(ik,x) - exp(ikyyo) only changes the
position of the reconstructed PSF. As we are not interested in the absolute position, we can choose

a phase factor that sets ¢({1,0}) = 0,¢({0,1}) = 0. Knowing these three starting values we can
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reconstruct all values using a recursion formula like:

p({1,1})
9({0,2})

p({1,0}) +¢({0,1}) — B({1,0},{0, 1})
(P({Ov 1}> + (P({Ov 1}) - /3({0, 1}7 {07 1})

Note that the bispectrum has twice as many dimensions as the original data, giving a 6D-bispectrum for
3D-recordings. A 3D movie with 512x512x8 pixel frames has roughly 2 million pixels per frame (ap-
prox. 16 Megabyte using 64 bit real numbers), leading to a bispectrum with over 4 trillion pixels (approx.
70 terabyte using 64+64 bit complex numbers). For a two-dimensional $12x512 image the complete
bispectrum would still take about 512 Gigabytes of memory, which is much more than common com-
puters provide today, making the computation of the full bispectrum impractical. The bispectrum can
be compressed without loss by a factor of 12 using symmetry relations [51], but it is still too large for
most applications. For this reason, calculation of bispectrum and phase values might be done using only
a restricted subset of u, v vectors [51] and there has been some work on further optimizing and paral-
lelizing the computation [52]. Completely different (non-recursive) algorithms using the bispectrum

are also used, for example based on least-squares optimization [53].

As phase recovery is outside the focus of this work, the involved algorithms are complex and take a
long time to implement correctly, an implementation of this method is not presented here. However,
using these ideas phase recovery is expected to work well given that the quality of the recorded data

allows a reliable computation of the third order cumulant.

To sum up this section about OTF-estimation,

« The 2nd order joint cumulant of the Fourier transform of one movie frame with the complex
conjugate of another (or the same) can be used to extract a magnitude-based estimate of the OTF

of the microscope and thus the PSE.

o The 3rd order joint cumulant can be used to also extract the phase, but requires more sophisti-

cated algorithms.

« Forusual 2D recordings, the reconstruction of the PSF will only yield meaningful results ifa TIRF

configuration is used and all emitters are approximately in the same plane.

« For 3D-recordings, the complete 3D-PSF can be reconstructed.
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2.7 ADAPTIVE RESOLUTION IMPROVEMENT OF SOFI IMAGES

As described in Section 2.1, SOFI works on movies of blinking fluorescent emitters
F(r,t) = Z Ulr —1;) - ¢ - 5i(t) (2.108)
j
as input and uses the n-th order cumulant to compute the high resolution image
Sulr) =) UMr—x) - & -k (55(8)) (2.109)
j

where U(r) is the point spread function, ¢; the brightness of the j-th emitter and s;(¢) its time dependent
fluctuation. While the exponentiated brightness skews the local image intensity (see Fig. 2.5 ), the power
of the point spread function yields a higher spatial resolution. If the in-focus PSF is described by a
Gaussian, the resolution is increased by factor v/n (Eq. (2.4)). However, the theoretically possible

resolution increase is linear in 7, as the Fourier transform of U"(r)

F(U(r)") = \f](k) ® - ® U(k) (2.110)

a"'g

(n—1) convolutions

has an n times broader support than the original function. The lower-than-expected resolution stems
from the (relative) attenuation of higher frequencies. This is clearly visible in Figure 2.30, which com-
pares the shape of the OTF for different orders. To ease the comparison, all OTFs are individually

compressed to the same range on the frequency axis, making their maximum frequencies equal to one.
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Figure 2.30: Comparison of the original OTF shape to different SOFI orders. To ease the comparison the
OTFs are individually compressed to map their support to the range [—1, 1]. Note that this compresses
higher order more, as the support increases linearly with the order. Optimally, all OTFs should be identi-

cal in this representation. However, it is clear that higher frequencies are strongly attenuated for higher SOFI
orders. For a comparison of the uncompressed OTFs see Figure 2.2.
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Correcting for inhomogeneous brightness is a demanding task. From Figure 2.5 it is immediately
clear that multiple cumulant orders are necessary to linearize the brightness, as brightness changes in
SOFI images can be caused by different density, emitter brightness, or blinking behavior. Thus, at least
three different orders are necessary for the correction (and only if the photoblinking is simple enough to
be modeled by one parameter). The time-averaged image ( 1st order cumulant) also carries background
components which increases the number of unknowns further. Taking the lowest possible orders, the
2nd, 3rd and 4th order cumulant are necessary for the reconstruction. We know from Section 2.3 that
reliable estimates for the higher order cumulants require too many frames to be used in many practi-
cal applications, making linearization of brightness difficult. Even if they are available, the situation
is further complicated by the different optical resolution of the images. Geissbiihler et al. presented
a calculation of the parameters assuming a spatially uniform distribution of the fluorescent molecules
[39]. However, they do not use the calculated brightness for linearization, but rely on a deconvolution
scheme. Assuming single emitters are perfectly separated by the deconvolution, brightness is linearized
using the n-th root. The author state this is done in order to not compromise the resolution, as the calcu-
lated parameter maps only carry information on the scale of the lowest cumulant (the 2nd order). The
approximations taken here are more or less valid depending on the sample that is imaged. In practice,

no reliable scheme for intensity linearization has been established so far.

It is desirable to extract the maximum possible resolution from each SOFI order. As already men-
tioned, the work of Geissbiihler et al. proposes to use deconvolution. They rely on Richardson-Lucy
deconvolution [54, 55], a well known optimization algorithm to estimate the underlying sample dis-
tribution for a known PSF and Poisson statistics. Although the noise statistics in SOFI images is not
Poissonian, the authors report this still works well. Our own results, presented in Section 2.7.1, indicate
that, while these deconvolution schemes can improve the visual quality, they do not perform well in
improving the resolution of SOFI images. A different approach was suggested by Dertinger ef al [40].
They proposed to perform a reweighting of the available spatial frequencies of the final image in Fourier
space to achieve the desired PSF in real space. The approach works well for high SNR, but is liable
to producing artifacts. A user definable parameter selects a trade-off between noise amplification and

resolution and must be determined by trial and error.

This section deals with enhancing the resolution of SOFI images. First, we review conventional de-
convolution schemes and point out some associated problems. This is important, as we feel that opti-
mization based deconvolution is often not properly discussed. Then, we revisit the Fourier reweighting
approach from Dertinger et al [40]. We take up the core concept of this method and present an im-
proved algorithm to increase the resolution as well as the SNR of the final SOFI image. Furthermore we
show one approach how to automatically adapt the method to the quality of the data, which improves

the resolution only so far as to not produce artifacts.
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2.7.1  CONVENTIONAL DECONVOLUTION

A lot of deconvolution/deblurring algorithms exist in the field of image processing. However, when
processing data from scientific experiments the goal is not to simply achieve a crisper, sharper looking
image, but to extract meaningful information. Thus, these image processing algorithms are best derived
from physical models of the underlying process, and most are constructed using a similar scheme. To
better understand how this works, we briefly derive the Richardson-Lucy algorithm as used by Geiss-
biihler et al.[39]. Assuming the measured data is subject to Poisson noise. The chance to measure k
photons in a pixel with average photon flux A is
k
Poiss; = A— et (2.111)

k!

In a measured image, the average photon flux varies spatially A(r). Because all pixels are statistically
independent, the chance to measure a specific image i(r) is given by their product. This yields the like-

lihood functional

A(r)i®)
i(r)!

L{Ar)} = H e M (2.112)
In practice the measured image is known and the goal is to find the most likely distribution for A(r). This
maximization of a physically sound probability is often called Maximum Likelihood Estimation. Instead

of maximizing L {i(r) }, it is often easier to minimize the negative log-likelihood functional

H{M(r)} = ~log (L{A(r)}) = — D ilr) log (A(x)) — A(r) — log (ilr)!) (2.113)
The last term is constant with respect to A(r) and can be neglected for the optimization. Now further
information about the imaging process that produces A(r) can be integrated. For example, with the
spatially homogeneous PSF U(r), the sample density p(r) and a uniform background photon flux b, we
get

AMr) =U(r) ® p(r) + b (2.114)
= 1{Mr)} = =) i(r)log (U(x) ® p(x) + b) — U(r) ® p(r) — b, (2.115)

r

where we omitted the previously mentioned constant term. The function of interest is the sample den-
sity p(r). For known PSF and background, we can find its optimal value by setting the functional deriva-

tive to zero:

ﬁ(r) _ ( o —i(r) ) ®@U(—r)—1=0 (2.116)

b) ®U(—r) =1 (2.117)
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Classical Richardson-Lucy uses the left side of this equation as a multiplicative factor to refine the cur-

rent estimate of the sample density

i1 = Cn" P, (2.118)

If p is too big, ¢ will be lower than 1 (as the denominator of the fraction is too big) and its value drops

in the next iteration. If p is too small, it will increase in the same fashion®.

For carrying out the minimization, a zoo of optimization algorithms exist, all with their strength and
weaknesses. Here, we use a self-written implementation of the nonlinear conjugate gradient algorithm, a
well established method for convex optimization problems [56]. The function to optimize (in our case
the negative log likelihood function) is often also called the cost function. Many inverse problems are not
well posed, which causes instabilities in the deconvolution process and is also the case for images from
fluorescence microscopy. For example, because the OTF has a finite support, higher frequencies of the
sample density are completely unconstrained and infinitely many solutions with different spectra exist.
It is common to add terms to the physically derived cost that are supposed to select certain solutions

and stabilize the deconvolution; a process usually called regularization.

One well-known method using this is Least-Squares Deconvolution with Total Variance Regularization

with the cost function

Cusa {p()} = 3 [(U() ® p(x) — i(x))? + ary - [Vp(x)]] (2.119)

"
and the functional derivative

§C
8p

Vp(r
(r) =2(U(r) ® p(r) —i(r)) ® U(—r) — ary - div (A) (2.120)
[Ve(r)|
The first term of the cost function is the log-likelihood function for a signal with Gaussian-distributed
noise and uniform standard error across the entire image. The second term punishes high gradients and

thus promotes solutions which are “smoother”. The degree of smoothness is varied by the user definable

parameter ary, which is often determined by trial and error on the data of interest.

Optimization based deconvolution is a complex topic and has some fundamental problems when
applied to problems in physics, which unfortunately seem to be not properly discussed in many publi-
cations. In many cases, this is connected to missing knowledge or misunderstanding of the limitations
of the applied method; a topic that is often very hazy or simply unknown. For example, in the best case
maximum likelihood estimation yields the “most likely” sample density distribution, but what does this
actually mean? Although a maximum might exist, there might be arbitrarily many distributions which
are almost as likely as the result. Since the measurement is a probabilistic process, only probabilistic

statements on possible sample distributions are possible, which are encoded in the full likelihood func-

3The formal derivation of the algorithm uses a framework of mathematical statistics called Expectation-Maximization,
but this is out of scope of this treatment.
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tion. Thus, each proposed sample distribution has a certain probability to be true, but it is crucial to not
mistake the result of some optimization algorithm for the true distribution. Unfortunately, the error
of the estimation, which is approximated by the width of the likelihood function around the proposed
value, is usually not given or it is even impossible to calculate. Many publications simply show the final
image, pointing out that it “looks sharper” and show that some structure decreases in width by plotting
a cross-section through it. This is often not even performed on simulated data with ground truth, but
only using experimental data with unknown ground truth. It is important to point out, that this does
not prove truly improved optical resolution. For instance, if fine structures are present in fluorescent
images, they will also appear sharper by taking the pixel-wise power of the image pixels, as structures
are always more intense in their center compared to the border, although the optical resolution of course

remains unchanged.

As most deconvolution algorithms suppress noise and sharpen the image, the result is often more
visually appealing, which makes it tempting to accept this as an improvement. But without quantifying
the likeliness of the result and its error, it should always be viewed with appropriate skepticism. While
giving error bars is common practice almost everywhere in physics, this is interestingly often neglected
in scientific image processing. In some cases bootstrapping® may be applied to estimate the error if the

imaging model fits very well to the data.

To further complicate the issue, minimization algorithm are only guaranteed to find the global mini-
mum if the cost function is convex, i.e. has only one minimum. Most cost functions in practice form a
complex landscape, causing the optimization to get stuck in local minima. Finding the global minimum
can only be achieved by sampling the likelihood function for all reasonable values, which is computa-
tionally prohibitive. Thus, most results of iterative optimization will not be optimal. The shape of this
landscape is often also too complicated to describe the error of some estimate simply by the standard
deviation (i.e. a Gaussian approximation of the likelihood function around the value). This makes it

even harder to visualize, describe, and discuss the errors of the estimation.

One more problem is the application of the regularization terms. Often, these are designed simply by
intuition and knowledge of the desired properties of the solution. Using this approach, the cost function
cannot be interpreted in terms of a physically grounded likelihood anymore. The parameters that vary
the strength of a regularization term can heavily influence the look of the final result and are usually cho-
sen by the user who tries to achieve the “best looking” result. However, methodologies exist that derive
regularization terms from physical assumptions. For example, prior information on the sample can be
included utilizing a Bayesian framework, which strongly improves the reconstruction if such knowledge
can be safely assumed. For example, if it is known that the sample consists of multiple overlapping but
continuous line structures, this could be enforced in the reconstruction. In this case it is even possible to
fit curves to the lines, which essentially yields almost unlimited spatial resolution, completely bypassing

the classical resolution limit. Regularization must be used with utmost care, however, as the final result

*The imaging model is repeatedly applied to the estimated values of the sampling distribution, e.g. blurring with the
PSF and adding noise. This generates new data which is deconvolved again to produce a set of results. This is supposed to
produce a random sampling of the likelihood function around the proposed sample distribution. The standard deviation
of this set gives an estimate of the error.
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4th order (simulation) Least squares deconvolution

Optim. 4th order (theory) Richardson-Lucy

Figure 2.31: Examples for optimization-based deconvolution on 4th order SOFI images calculated from
a noise-less simulation of 20000 frames compared to the theoretically optimal result. The original sample
distribution is given by three rings of ten uniformly distributed emitters with decreasing radius. While the
last structure can be clearly identified as ring-like after deconvolution, the central structure is not correctly
recovered to show discrete emitters but appears as a very fine ring.

will always show the properties defined by the associated terms. So a reconstruction that expects lines

will always tend to yield lines, even if the sample does not show this in reality.

In general it is very hard to prove what deconvolution can and cannot do and how well it performs.
A complete mathematical description of the process and its errors is extremely difficult for the often
nonlinear and ill-posed problems. Some publications studied the simplest possible configuration of
two point sources in a defined distance [57-59]. In this case, the achievable resolving power is only
determined by the SNR of the recorded image. The relationship between resolution and the measured
number of photons can be quantified as well as the error of the estimation. However, even in this simple
case, the analysis quickly gets complicated. For unknown sample structure it is generally hard to say

what the achievable resolution is and if deconvolution can be trusted.

To summarize: Deconvolution algorithms should be used with extreme care and skepticism and their
results should not be rated by simple visual examination. Furthermore, one should always keep the prob-
abilistic nature of the result in mind. It is important to perform many simulations with known ground
truth to prove the effectiveness of a certain approach for a specific imaging model. The application to

experimental data should only be carried out after rigorous testing.

For SOFI images it is clear from the underlying theory that resolution improvement is possible based
on the sub-optimal shape of the OTF (Figure 2.30). We used optimization based deconvolution on
simulations to improve the resolution of the final image. A typical example of the results is presented
in Figure 2.3 1, which shows the deconvolution of a 4th order SOFI image calculated from a noise-less
simulation of 20000 frames compared to the theoretically possible resolution. While the last structure
can be clearly identified as ringlike after deconvolution, the central structure is not correctly recovered
to show discrete emitters but wrongly appears to be a very fine ring. This type of behavior was very
common in our experiments using different data sets and cost functions. While the resolution is seem-
ingly increased, this is often not really the case and the result reflects the true structure incorrectly. In

fact, it is not even be possible to define a single resolution of the optimized image, at least not using the
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classical definitions of optics. The improvement also varied for different structures within the same im-
age. In practice it is uncertain whether the result really shows an improvement or not, which effectively
prohibits the method from being useful. We also tried a state-of-the art cost function proposed for flu-
orescence microscopy by Arigovindan et a. [60]. Their regularization promotes high derivatives in the
result only in regions of high intensity. Unfortunately structurally identical sample distributions that
differ in brightness appeared with very different levels of sharpening after the deconvolution, although

they do not differ in resolution according to the theory of SOFI.

We also tried to engineer various algorithms and cost functions of our own. Although the results in
many cases appeared to “look better”, we could not prove that any of the tested approaches reliably im-
proves the resolution of SOFI images when comparing it to the ground truth of the simulation. Most
algorithms and cost functions work with images in real space, where it is expected that the deconvolu-
tion also gets more difficult with higher SOFI orders. This is because the possible resolution improve-
ment from /7 to n rises with the order (e.g. 2nd order 1.41 — 2, 4th order 2 — 4), while the initial
resolution of the different orders is less and less distinct. Thus, the algorithm has to extract a large im-
provement based on minuscule differences in the intensity of the original image. So far it seems that
iterative optimization-based deconvolution is not a good tool to extract the theoretically possible reso-

lution from SOFI images.

2.7.2 FOURIER REWEIGHTING

Dertinger et al suggested a more direct approach for resolution improvement [40]. As explained in the
beginning of this section, the support of the PSF of n-th order SOFI U"(r) in Fourier space increases
linear with the order, but the resolution improves only by a factor of y/n. This is reflected in a changed
shape of the OTF where high frequencies experience increasing attenuation (Figure 2.30). Intuitively,
the PSF with the desired resolution would be a linearly shrinked version of the one present in the raw

data. Its Fourier transform

n

F win) =0 () (2121)

has the same support as the OTF of the SOFI image. Due to this, it is possible to increase the resolution
of the SOFI image by manipulating the existing frequency information. Fourier reweighting is a one-

step approach replacing the PSF of the SOFI image S, (r) in Fourier space:
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Herea > 0,a € Risasmall positive constant which prevents division by zero and limits the maximally

possible amplification. In practical applications the achievable resolution enhancement depends on the
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signal-to-noise ratio of the SOFI image — too low values for a result in noise amplification and artifacts
within the deconvolved image. The approach is only exact when three dimensional data is processed.
For two dimensional movies U (k) should be interpreted as the axial projection of the full OTF (see

Section 2.6.2 ) and the procedure is strictly correct only for emitters within the focal plane.

4th order (simulation) Fourier reweighting

Optim. 4th order (theory) FR of noisy simulation

Figure 2.32: Example for Fourier reweighting on 4th order SOFI images calculated from a noise-less sim-
ulation of 20000 frames and the same data subject to Poisson noise. The original sample distribution is
given by three rings with decreasing radius comprising ten uniformly distributed emitters. Fourier reweight-
ing of the noise-less simulation correctly reproduces the sample structure of the second ring, in contrast to
optimization-based deconvolution. Reweighting of the noisy data shows “ringing” artifacts which occur for
too low values of a. Artifacts of this kind also appear if the estimated PSF is too different from the true one.

Figure 2.32 shows results and problems of Fourier Reweighting on a simulation similar to the one
used in Figure 2.31 for optimization based deconvolution. In contrast to the optimization based ap-
proaches, Fourier reweighting correctly recovers the discrete emitters in the second ring. Because of
the simple nature of the algorithm, it is guaranteed that it recovers the desired resolution in the limit of
processing infinitely long image sequences. As the simulation shown here is finite, the third structure is
not recovered to its ring-like form (compare to theoretical image in Fig. 2.31). The bottom image shows
Fourier reweighting performed on the same raw data subject to Poisson noise, to highlight some typical
problems of this approach. The recovered image shows strong artifacts, which are commonly described
as “ringing” because of their wave-like appearance around the original intensity. The major cause for
this are too low values of a in the presence of noise. Ringing also occurs if the estimated PSF is too
different from the true one. It is important to note that artifacts are also visible for noise-less data if the
processed movie sequence is too short, and the cumulant values are not sufficiently converged to their
true values. The non-homogeneous convergence can cause non-PSF-like structures in the image and
the imaging model used to derive Fourier reweighting does not apply anymore. This can cause artifacts

that are often accompanied by unphysical changes in the sign of values within the image.

2.7.3 FOURIER PREWEIGHTING

The problems of Fourier reweighting can be reduced by a variation of the original concept. As was
mentioned, changing the OTF in the final SOFI image causes artifacts in parts of the image where the

cumulant values are not converged well enough. Instead of this post-processing, we can also manipulate
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the raw data in a way that the cumulant calculation directly yields an image with the desired OTF. That
is, for n-th order SOFI, we want to reweight the data to a new OTF U, (k) with the property

- - - - (k
0090 009 -2 6,09 = 0 (¥) (2123)
(n—1) ct:r:volutions
or the equivalent property of the corresponding PSF
(Un(x))*=U(n-r) (2.124)

with the constraint that U, (r) and U(r) must have the same support in Fourier space in order for the
reweighting to be possible®. Unfortunately, this constraint is not guaranteed by simply taking the n-th
root of U(r). In fact, it is not even guaranteed that such a function exists. The in-focus PSF is given by

the Airy pattern [17, 18]
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where J; is the Bessel function of the first kind of order one, A., the emission wavelength and NA the
numerical aperture of the microscope. This can be used to compute the exact preweighting OTF for
2nd order SOFI

Uy (k) = F (y/Usiry) = circ (k; ;ﬂ) = g (ﬂ <ii>2) k< (2.126)
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which reflects the circular aperture of the microscope. The support of this function is exactly half the
support of the original OTF. Thus, 2nd order preweighting can be performed by dividing the Fourier
transform of the raw data by the original OTF, which produces a circular OTF with uniform magnitude,

and setting all frequencies above the support to zero.

Figure 2.3 3 illustrates the preweighting scheme for the second order. Each frame of the raw movie is
“preweighted” by dividing its Fourier transform by the original OTF, multiplication with a new one and
back-transforming. Although the resulting PSF produces visible artifacts in the individual frames, it is
designed to produce a compressed wide-field PSF shape after the cumulant computation. For noise-less
data, this boosts the resolution improvement of n-th order SOFI from /7 to the theoretical maximum
of linear improvement. For noisy data the new OTF should be scaled to a smaller frequency support
(kinax), depending on the data quality, to avoid artifacts. We discuss one idea how to choose this support

automatically further below.

*Although having a smaller support is also possible, it is desirable to use all frequencies available in the original data
to get the best possible SNR.
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Figure 2.33: Schematic of second order Fourier preweighting illustrated on a noise-less simulation. Each

frame of the raw movie is “preweighted” by dividing its Fourier transform by the original OTF, multiplication
with a new one and back-transforming. Although the resulting PSF produces visible artifacts in the individual
frames, it is designed to produce a compressed wide-field PSF shape after the cumulant computation. For
noise-less data, this boosts the resolution improvement of n-th order SOFI from /n to the theoretical max-
imum of linear improvement. For noisy data, the new OTF should be scaled to a smaller frequency support,
depending on the data quality (see text), to avoid artifacts.

For higher orders the situation is more complicated, as taking higher order roots does not yield func-
tions whose Fourier transforms are within the required support, but show even increased support com-
pared to the wide-field OTF. This is even true when the ambiguity in the sign of the n-th root is solved
by filling in the known sign of \/m to construct the smoothest function. For 4th order SOFI it is
clear that no purely real function with finite support exists, that produces the desired shape: The final

OTF is created by the auto-convolution of the auto-convolution of this function

[U4(k) ® I~J4(k)} (2.127)
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As a circular OTF is the exact solution for the second order, one auto-convolution of the fourth order
OTF must yield a circular function for the auto-convolution of the auto-convolution to yield the exact
wide-field PSF. However, no real function with finite support exists that has a constant auto-convolution
up to a certain radius and immediately drops to zero. Even taking the complex root to construct U,,(r)
(which produces a complex PSF) does not yield the desired support in Fourier space. Thus, an exact

solution might not exist for orders higher than the second.

Although an exact solution does not exist, it is possible to construct a good approximation. We used
least-squares optimization with a smoothness-enforcing regularization to calculate possible shapes for

preweighting OTFs of higher order SOF], as defined by the cost function

2
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with the regularization parameter dgmoorn = 15. Additionally, we enforce radial symmetry as well as
the desired support of the solution. We don’t enforce the exact support but allow it to be slightly big-

ger, as this improved the stability of the iterative optimization which is performed using the nonlinear
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conjugate gradient algorithm[56] . Figure 2.34 shows the results of the reconstruction. Although the

analytical result of the second order is known, we also show its reconstruction to asses the quality of the

optimization.
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Figure 2.34: OTFs for Fourier preweighting of different orders acquired by least squares optimization. The
2nd order is shown to assess the quality of the optimization only, as the exact shape is known to be a circle
of constant magnitude. The high frequencies of the original movie need stronger amplification with increas-
ing cumulant order to yield the desired shape after the SOFI calculation. Although an exact solution for the
required OTF might not exist, these results show that it can be reasonably well approximated.

It is evident that a good approximation for the preweighting OTF is possible which very closely
matches the shape of the wide-field microscopes OTF after (n — 1) auto-convolutions. The shape
of the reconstructed OTF was observed to vary noticeably with the regularization parameter and the
used initial values, although the result of the auto-convolutions appeared very similar. However, a com-
mon characteristic of all solutions is the strong amplification of high frequencies with increasing cumu-
lant order, leading to visible spikes at the rim of the OTF. This is easy to understand, as the rim of the
auto-convolution of a finite support function is mainly produced by the rim of the original function. It
also demonstrates, that increasingly high signal-to-noise ratios on the high frequencies are necessary to
achieve the desired linear resolution increase for SOFI. Strong irregular ripples in the OTF, as present
for the 4th order in Figure 2.34, were observed to produce noticeable artifacts in the SOFI images. Thus,
it is desirable to find smoother solutions, which could potentially be achieved by a better algorithm to

construct the desired OTF. For now, we smoothed the illustrated OTFs with a small running mean
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4th order (simulation) Fourier reweighting

Optim. 4th order (theory) Fourier preweighting

Figure 2.35: Comparison of Fourier preweighting and reweighting on 4th order SOFI images calculated
from a noise-less simulation of 20000 frames. The original sample distribution is given by three rings of
ten uniformly distributed emitters with decreasing radius. Unlike reweighting, Fourier preweighting is able
to resolve the smallest ring and yields results close to the theoretical optimum. Thus it outperforms both
reweighting and optimization based deconvolution (compare Fig. 2.31)

filter, which was effective in reducing artifacts without compromising resolution too much.

For noisy data, the preweighting OTF is scaled down to a smaller size, which is effectively a low-
pass filter and limits the maximum frequency k., used for the reconstruction. Currently, we select
this threshold by requiring a minimum magnitude m of the original OTF ]f](kmax)] = m. A method
how to choose this parameter automatically, based on the data quality, is suggested further below. If the
threshold is chosen too low, this results in artifacts in the SOFI result that usually show up as switches
in sign of the final image values. Similar to reweighting, artifacts also appear if the assumed PSF/OTF

is very different from the true one.

Figure 2.35 shows the results of preweighting for the same scenario presented in Fig. 2.32 and Fig.
2.31 for reweighting and optimization based deconvolution, respectively. Fourier preweighting yields a
result very close to the theoretical optimum and correctly resolves the single emitters in the central ring
as well as the smallest ring structure. Thus it outperforms both reweighting and optimization-based de-
convolution and is the only method that comes close to the desired result. The difference to reweighting

is strongest for the smallest ring, where the emitter density is the highest.

The higher performance of preweighting in regions of high emitter density is a general property of
this method. Surprisingly, processing the preweighted data also improves the homogeneity of the image
compared to normal SOF]I, as is shown in Fig. 2.36. The underlying sample distribution consists of 11
lines spaced at decreasing distances from left to right. While normal SOFI as well as the reweighted
result show artifacts in the high density region, preweighting leads to a more homogeneous image and
correctly resolves the structure. This is even more apparent when the number of frames is reduced by
almost a factor of 10. Preweighting the data seems to speed up the convergence of cumulant values in
the high density regions, which drastically reduces the required number of frames for a proper SOFI
image. This is a very important property, as it might allow the calculation of higher order images for
samples where the required recordings times were infeasible before. As shown in Section 2.3, higher

orders become more and more sensitive to the emitter density. For very long simulations (over 100k
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frames) the results of pre- and reweighting become similar to one another.

4th order SOFI Reweighted Preweighted

Figure 2.36: Comparison of Fourier reweighting and preweighting on a structure of 11 lines spaced at de-
creasing distances from right to left. Rows show the achieved results when processing a different number of
frames from the same movie. The absolute values are shown in each image, as small parts become negative
when fewer frames are processed, which disturbs the visualization. Preweighting results in a more homoge-

neous image when compared to reweighting.

20k frames

2.5k frames

Raw movie 4th order SOFI Reweighted Preweighted

Figure 2.37: Comparison of Fourier reweighting and preweighting for the same simulation as in 2.36 subject
to Poisson noise. The brightness of each emitter is 100 photons/frame with 5 photons/pixel background
signal. The parameters of both algorithms (a and m respectively) were individually adjusted to yield the

best visual result without artifacts. Although the achievable resolution is lowered by the noise in both cases,
preweighting yields an overall smoother result and reconstructs the underlying structure better, especially in

the high-density regions.

The same result is true if the data is noisy. Figure 2.37 shows a comparison between normal SOFI,
reweighting and preweighting for the same scenario subject to Poisson noise. The parameters of both
algorithms (a and m respectively) were individually adjusted to yield the best visual result without arti-
facts. Although the achievable resolution is lowered by the noise in both cases, the preweighting result

is overall smoother and represents the structure better in the high-density regions.
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Average image 2nd order fSOFI Reweighted Preweighted

Figure 2.38: Comparison of Fourier reweighting and preweighting for QDot 585 spincoated on a coverslip.
The parameters of both algorithms (a and m respectively) were individually adjusted to yield the best visual
result without artifacts. The data was recorded by Soheil Mojiri.

Figure 2.38 shows a comparison of the best possible results of both methods on an experimental data
of quantum dots (QDot 585 ) spincoated on a coverslip. The presented results are characteristic for what
was observed for other experimental datasets as well. Preweighting achieves a slightly better resolution
improvement than reweighting in all cases. A close look at the reweighted image reveals that it seems
disturbed in some places, showing structures that appear somewhat artificial. The preweighted result

looks more natural in comparison and should be preferred.

While it is apparent that preweighting is a useful tool for increasing the resolution of SOFI images
and lowering the recording time of higher orders, especially for high density samples, the parameter m
must be manually adjusted to the data quality to achieve the best result. We now present an approach
that automatically selects a value for the parameter based on the data quality without user intervention.
The idea s to calculate the reliability of the spatial frequencies and restrict the preweighting OTF to this
reliable range. As will be demonstrated, the method yields good results for simulations as well as exper-
imental data, but is for the most part empirically derived. Also, it is best suited for second oder SOFI;
for higher orders fine-tuning might still be required. This suggests that the framework can possibly still

be optimized and improved through further research.

To estimate the reliability of the frequencies, we use a process similar to the one introduced to esti-
mate the OTF from the recorded data in Section 2.6.2. According to Eq. (2.97), computing the second
order cumulant of the spatial Fourier transform of the data with its complex conjugate yields a func-
tion that is independent of the sample distribution (i.e. 2D emitter positions) and depends only on the

blinking behavior and the shape of the original OTF:
(SF(k,t) - SE(k,t + 1)) =

& (35()8s(t+ 7)) - Y / / dkdk, Ulky, ky, k) - Ulky, Ky, k) - 578050 (512)
j
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where the sum runs over all emitters. Although it is in general difficult to get an accurate estimate of
the OTF from this, as the axial position of the molecules is unknown, it still reflects how much signal is
collected for the different frequencies. The raw data is cut up into small non-overlapping chunks of k,
frames and this estimate is computed for each individual chunk. It is necessary to only take the real part

of this for further processing, as the noise causes small imaginary components in the estimate. In the
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next step, the ratio between the mean and the standard deviation of the set of estimates, which we dub
the frequency signal-to-noise ratio

M?an <Re {<3P(ka t) - SF(k,t + ) })

std (Re {(Sﬁ(k, ) - SF(k,t+ 7)) })

fSNR(k) = (2.130)

is computed, where the index [ denotes the interval the covariance is calculate for.
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I = 100 photons I = 300 photons

Movie frame

Frequency SNR

Figure 2.39: Examples of the frequency SNR image (time-lag 7 = 1) for different signal-to-noise ratios of
the raw movies. As the SNR of the raw movie is increased, the region of frequencies with fSNR values that
are significantly different from the noise grows. Within this region, the values are relatively constant and only
drop toward the edge of the visible plateau. The interval size h, used for computing the estimate has only
negligible effect for normal photoblinking behaviors.

Examples for the calculated fSNR images for movies with different signal-to-noise ratios are shown
in Figure 2.39. A plateau with constant values can be observed which drops off at higher frequencies
in which only noise is observed. As the quality of the raw movie increases, the support of the plateau
extends to higher frequencies. Smaller intervals or fewer frames used for computing the fSNR only lead
to a more noisy appearance with less distinction between the plateau and the surrounding noise., but
we did not observe any influence on the plateau size for normal photoblinking behavior. However, for
quantum dots, which often show photoblinking where the occupation time of fluorescent states follows
apower law distribution and spreads over multiple orders of magnitude, it was observed that the support

grows slightly with the interval size.

The estimated frequency support hints towards the optimal size of the transfer function U, (k) /U(k)
which switches from the original OTF to the preweighting OTF by multiplication with the Fourier
transforms of the raw frames. The size of the transfer function depends on the size of the preweight-
ing OTF U, (k) which is scaled to a maximum frequency kp. as described above and determines the

frequency support. Figure 2.40 shows SOFI images calculated using different transfer function sizes
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Figure 2.40: Quality of preweighted SOFI for different sizes of the transfer function U, (k) /U(k) compared
to the fSNR image. The cyan line represents the radius of the plateau with significant fSNR values. While too
small transfer function do not achieve the optimal resolution enhancement, as they act as a strong low-pass
filter, too large transfer functions amplify noise and cause artifacts. If the size is matched to the support of the
fSNR image, the same resolution is acquired as for the larger transfer function without these artifacts. This is
is an indication that the fSNR image can be used as a hint to determine the optimal transfer function size.

compared to the corresponding fSNR image. Too small transfer functions act as a strong low-pass filter.
This does not cause artifacts, but does not extract the maximally possible resolution. It was observed
that transfer function sizes that exceed the support of the fSNR image lead to strong artifacts in the final
SOFI image, which are caused by the amplification of noise. A close look reveals that the larger transfer
function does not resolve more features than the one that matches the fSNR support, but the latter does
not produce visible artifacts in the image. This behavior was observed in simulations as well as exper-
imental data. Although this finding is empirical, we assume for now that the optimal transfer function
size can be deduced from the fSNR image, which turned out to work well in practice for second order
images. For higher orders it can be necessary to reduce the estimated support. An estimator similar to
Eq. (2.130) can also be calculated using the fourth order joint cumulant between two times the Fourier
transformation of the signal and two times its complex conjugate, where the phase-factors encoding the
lateral emitter positions cancel in the same way as for the co-variance used here. In this case we observed
a structurally similar image, which shows a smaller support. Thus, more investigations are necessary to

adapt the estimator for higher orders.

We use this assumption to construct an algorithm that automatically adjusts the transfer function for
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Movie frame Frequency SNR Mask Transfer function

Figure 2.41: Automated generation of the preweighting transfer function based on data quality.

a given data set with known PSF. This is schematically illustrated in Figure 2.41: First, the fSNR image
of the movie is calculated. In the second step a mask is generated that reflects the frequency support. A
simple threshold selects the region with fSNR values that are greater than myg + g, - stdpg, Where myg
is the average of all values along the fSNR image border and std, their standard deviation. All results
presented here are computed with the threshold parameter set to ag,, = 2. The resulting binary mask
is filtered to smooth outliers at the edge as well as fill eventual holes, using a process of binary erosion,
dilation and again erosion. Then, the maximum frequency k., of the mask is extracted. In the third
step the transfer function is calculated using the preweighting OTF and scaled to match the extracted
Kmax. Itis important to bear in mind that the Fourier transform of non-square images leads to differently
scaled frequency axes, requiring a proper scaling of the transfer function when processing such data.

The algorithm is very basic, but works reliably in most cases.

I = 75 photons I = 300 photons I = 3000 photons

2nd order SOFI

Preweighted

(Res. x1.25) (Res. x1.68) (Res. x1.9)

Figure 2.42: Results of preweighted SOFI with adaptive transfer function for different data quality. Also
shown is the calculated resolution improvement which is inferred from the fSNR support mask (see text).
The achieved resolution improvement increases with the SNR of the raw movie and converges toward an
n-fold improvement for n-th order SOFI, as theoretically expected. If the fSNR support is too low to sup-
port the resolution improvement of factor /n, which is expected for SOFI, the standard SOFI images be-
come very noisy. In this case the preweighted result still yields a good image with improved resolution and
z-sectioning. The artifacts seen here are caused by the discretization (see text).

As an interesting byproduct of the preweighting process, the resolution of the final n-th order SOFI

image can be easily inferred from the estimated mask, as it is simply the inverse of the cutoff frequency
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1+ kiay of the final OTF. For most super-resolution methods, estimating the achieved resolution is very
difficult, especially on experimental data. The accuracy of the estimated resolution depends mainly
on the accuracy of the measured PSF. Figure 2.42 shows a comparison of standard 2nd order fSOFI
to results based on preweighting using the automatically adjusted transfer function for different data
qualities. The estimated resolution increase compared to the wide-field resolution is also shown. Forlow
SNR, the standard SOFI image is full of noise. Most of these artifacts are suppressed in the preweighted
result. The residual artifacts can be attributed to the discretization of the 61x61 pixel movie, as the fSNR
support at this pixel resolution is only a few pixels in radius. Thus, the mask is either a bit too small or
too big depending on the threshold parameter agy,,. The calculated resolution improvement is a factor
of 1.25 which is lower than the v/2 ~ 1.41 expected for second order SOFI. We observed, that normal
SOFI images always show strong noise if the fSNR support is too small to support the theoretically
expected resolution improvement. In this case, preweighting still yields an improvement and possible z-
sectioning, although at lower resolution improvement than y/n. The achieved resolution improvement
increases with the SNR of the raw movie and converges toward an n-fold improvement for n-th order

SOF], as theoretically expected.

Average image

Preweighted

Figure 2.43: Example result of adaptive preweighted SOFI on experimental data of a rat hippocampal neu-
ron axon initial segment with BIV-spectrin in the cytoskeleton labeled with Alexa647. The calculated res-
olution of the reweighted image is improved by a factor of 1.83 compared to the wide-field PSF which was
determined from single particles in the movie. The improvement compared to normal SOFI is clearly visible
in the inset and the preweighted image is without noticeable artifacts. Data recorded by Anja Huss.

Figure 2.43 shows results of adaptive preweighting on experimental data of a rat hippocampal neu-

®As it is essentially shaped like the optimal wide-field OTF.
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ron axon initial segment with fIV-spectrin in the cytoskeleton labeled with Alexa647. The PSF was
determined from single particles in the raw movie. The calculated resolution of the reweighted image
is improved by a factor of 1.83 compared to the original wide-field data. A look at the inset also reveals

the clear improvement compared to normal SOFL

Average image 2nd order SOFI

Preweighted

Preweighted

Average image 2nd order SOFI

g
7

Figure 2.44: Example result of adaptive preweighted SOFI on low quality experimental data showing a HeLa
cell with vimentin labeled by Dreiklang (top row) and rsEGFP (bottom row). Data recorded by Anja Huss.

Figure 2.44 shows results of adaptive preweighting on low quality experimental data showinga HeLa
cell with vimentin labeled by Dreiklang (top row) and rsEGFP (bottom row). In both cases, artifacts
are visible in the normal SOFI image. This is most prominent for the Dreiklang movie, which also has
a much lower fSNR support. These artifacts are removed in the preweighted results. The calculated
improvement factor is 0.47 for the Dreiklang data and 1.37 for rsEGFP. In the case of Dreiklang the
resolution is lower than the original wide-field resolution, but still with improved z-sectioning due to
SOFI. Note that Fourier reweighting cannot achieve this result as it is only applied to the very noisy
SOFIimage, which causes artifacts. For rsEGFP, the estimated resolution improvement is slightly worse
than the theoretically expected /2, which explains the similarity between the normal and preweighted
SOFI results. Still, preweighting is to be preferred as it filters the existing artifacts. This shows that
preweighting works even in low quality scenarios for which normal SOFI does not yield a useful result

and truly adapts to the data.

Fourier preweighting can be combined with Fourier interpolation as introduced in Section 2.4 with-
out any alterations. We also tried using spatial cross-cumulants on the preweighted data, but this results
inlots of artifacts in the final image. Combination with the noise correction in Section 2.5 requires some

additional work. Here we briefly derive the procedure for 2nd order SOFI:
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Let us take the imaging model

F(r,t) = Fs(r,t) + n(r, t), (2.131)

where Fg(r, t) represents the noise-less signal of interest and n(r, t) contains all noise components (e.g.
background noise and zero-mean signal-dependent noise). Preweighting in Fourier space is performed

by multiplication with the transfer function T(k)

F*(k, t) := T(k) - F(k,t)

(k) - Fs(k, t) + T(k) - n(k, t)
sk, t) + T(k) -n(k, t) (2.132)

Back-transforming into real space gives
F*(x,t) = Fg(x,t) + T(r) ® n(r, t). (2.133)

When calculating the 2nd order cumulant, cross-terms between the signal and the noise drop out, as

they are statistically uncorrelated. This leaves us with

(8F*(x, 1)) = (8F5(r, 1)) + ((T(x) ® 8n(r,1))*) (2.134)
// r—r)T(r —1") (Sn(r', t)Sn(x" 1)), (2.135)

as the noise is spatially uncorrelated this gives

(8F*(r,t)) = (8Fs(r,t)) + T*(r) ® (8n*(r, 1)) . (2.136)

The expression (§n*(r, t)) is the second central moment of the noise distribution. For a Poisson distri-
bution, this is just the time average image of the movie, which is also the correction term introduced in
Section 2.5. To correct the preweighted image, this average image has to be convolved with the square

of the Fourier transform of the transfer function T (r) before subtraction.

Although the presented algorithm is very useful in practice, it can probably be improved by further
research. Asitis based on empirical observations, a more theoretical approach is needed to check what
can be improved (e.g. how to set the empirical thresholding parameter for mask generation) or if an
entirely different approach might be favorable. The current implementation also works only globally
on the whole image, rather then improving the resolution locally based on data quality. This could be
useful for higher orders, where the results depend more on density. More investigations are also needed
how the length of movies influences the result. For very long movies it is expected that a linear resolu-
tion increase is possible and thus should be achieved by every method that tries to improve the SOFI
resolution. Another interesting topic is to analyze the imaging speed in the context of different sizes of
the transfer function. It seems that the convergence of SOFI values might be faster for smaller transfer
functions (stronger low-pass filtering ), which would enable to trade spatial resolution against time reso-

lution. This is especially interesting when recording 3D movies with wide-field illumination [28 ], where

82



the gained z-sectioning is often more important than the lateral resolution increase, possibly allowing

3D structures to be imaged at high speeds.

To sum up this section about improving the resolution of SOFI images,

« Theoretically, the resolution improvement of n-th order SOFI can be boosted from a factor of 1/n

ton.

« Optimization-based deconvolution did not yield useful results so far. The resulting images should
be interpreted with care and while keeping their probabilistic meaning in mind. In many cases,
the resolution of these images can not be defined well, at least in the context of the optical defi-

nition of resolution.

« Fourier reweighting [40], which post-processes the SOFI image, yields better results, but often

suffers from artifacts and needs a user adjusted parameter.

« Fourier preweighting changes the OTF in the raw movie by multiplication with a transfer func-
tion in Fourier space, to achieve a PSF in the SOFI image which is shaped like the original in-focus

PSF shrunken in size.

« This approach always yields better performance than Fourier reweighting, especially in regions of
high emitter density. In those regions, the preweighted image shows, surprisingly, much better
results and quicker convergence of the cumulant values than normal SOFI images. This can dras-

tically decrease the required recording time at high densities, especially for higher SOFI orders.

« The cutoff frequency of the transfer function is varied by scaling of the function and needs to
match the quality of the input data to avoid artifacts / noise amplification. A method is proposed
how to automate this scaling based on the data quality. The cutoff frequency can be used to easily
compute the actually achieved resolution of the final image. This is an advantage over many other

super-resolution methods, as estimating the resolution is usually very difficult.

« The estimated cutoft frequency works best for second order SOFI; for higher orders a reduction
of the transfer function size might still be necessary to avoid artifacts. For cumulants of even order
a similar estimator to the one proposed here can be constructed. This might adapt better to the

quality that is achievable with specific cumulant orders.
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2.8 SOFI WITH CARBON NANODOTS

Luminescent carbon nanodots (CNDs) have emerged in the last decade as novel probes for fluores-
cence microscopy. They exhibit many properties of classical semiconductor based quantum dots, like
size and wavelength dependent emission and greater resistance to photobleaching, but without their
inherent toxicity and are cheap to make as well as easy to produce [61]. This combination of prop-
erties is very interesting for imaging applications and thus has drawn increased attention in the imag-
ing community. Super-resolution imaging using CNDs has been demonstrated in a recent publication
using STED microscopy [62]. Some types of carbon nanodots show reversible photoswitching [63],
which inspires ideas to use CNDs also for stochastic super-resolution methods. However, localization
based methods require high stability and control over the photoswitching behavior to achieve the de-
sired spatio-temporal separation of dyes. While this is nowadays possible for many conventional dyes
and fluorescent proteins after years of research, it is currently difficult to control the behavior of carbon

nanodots.

In contrast to SMLM methods, the demands on sample density and photoswitching behavior are
more relaxed in SOFI [27]. Because SOFI microscopy requires only a wide-field microscope and a fast
recording camera, it is essentially a low-cost method. This is a perfect fit for the cost-effective nanodots
which in combination allows super-resolution imaging at very affordable prices and enables more labs

to access this technology.

We synthesized CNDs, examined their photoswitching, and demonstrated the first application of
SOFI to cells labeled with dual-color CNDs. We also characterized various other properties, such as
size, charge and quantum yield of the probes and give a hypothesis on the photoswitching mechanism.

This work was published in the article [64]:

Chizhik, A.M.; Stein, S.C.; Dekaliuk, M.O.; Battle, C.; Li, W.; Huss, A.; Platen, M., Schaap, . A.T;;
Gregor, I; Demchenko, A.P.; Schmidt, C.E,, Enderlein, J.; Chizhik, A. I; “Super-Resolution Op-
tical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots”, Nano Letters, 16, 237-242,

2016.

The analysis of the photoswitching behavior, as well as SOFI related data evaluation were performed
by me and will be briefly described here. Parts of this section are taken from the publication. All exper-

iments as well as further analysis illustrated in the publication were performed by the co-authors.

The carbon nanodots were manufactured by a temperature-treatment-based synthesis [64, supple-
mentary information], which yields two species with different emission wavelength at 420 nm (blue)
and 515 nm (green) respectively. Laser-scanning confocal microscopy using an azimuthally polarized
excitation laser revealed a linear excitation dipole moment as well as fluorescence intermittency for both
species. To analyze the photoswitching statistics, we spincoated a 10 ul droplet of aqueous solution of
CNDs on the surface of a fused silica coverglass at 6000 rpm rotational speed. The glass was verified
to be free of contamination by imaging it under identical excitation conditions, before the single par-

ticle study was conducted. We used an epi-fluorescence microscope with a 473 nm continuous wave
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laser for illumination of a field of view of 80 x 80 ymz with an irradiance of 500 W/cm? through a
water-immersion objective (NA=1.2, 60X). The emitted light from the sample is collected by the same
objective, travels through a FFo1-550/88 (Semrock) bandpass filter and is imaged onto an EMCCD

camera.

— Measurement On-state
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Figure 2.45: Time traces of single carbon nanodots spincoated on a cover glass surface. While most emitters
show only a single fluorescent state, in some cases multiple emission states were observed (a). The visible
single-step transition together with experiments using defocused imaging (see text) suggest that these are
indeed single particles. The occupation time of the on- as well as the dark state cover a broad range of values
from 50 ms (the exposure time) to multiple tens of seconds (d).

To extract the intensity time traces of individual CNDs, emitter candidates were identified as local
maxima in the time average of the movie. A threshold was applied to select only candidates which could
be clearlyidentified as particles instead of noise. Intensity estimation was performed by integration of an
7x7 window centered around each detected particle and subtracting the background, which is assumed
as constant within the window and estimated by the average along the window border. Difterent flu-
orescent states were extracted using a recently published step-detection algorithm [65 ], which tries to
distinguish steps from local noise and is completely parameter free. Figure 2.45 shows a few examples
of states recovered by the method. As the first time trace shows, some of the CNDs exhibit several dif-
ferent fluorescent states. The single-step behavior suggests that this is indeed a single particle and not
an aggregation of multiple emitters. However, most emitters exhibited only one intensity level. The oc-
cupation time of the fluorescent states is subject to broad variations from 50 ms (the exposure time) to
tens of seconds. The length of dark state segments show similar variations. Figure 2.45 (d) shows two
emission states which are separated by about 45 seconds. To check if we indeed image single particles,
a similar experiment was performed recording defocused images of the sample. The observed patterns
match the patterns expected for single dipoles and also showed no reorientation upon photoswitching,

which suggests the absence of aggregates.
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Figure 2.46: Distribution of the off-state occupation time from 964 single particles. The distribution can be
well fitted with a power law a - t* with a = (568.4 +-4.2)% and the time constant b = —1.247 4 0.012. Inset:

s
The distribution of the overall photon yield of the carbon nanodots. The average number of detected photons
is 51253. [This image has been published in the article [64].]

The statistics of the photoswitching allow speculations about the mechanism that causes the phe-
nomenon. Conventional dyes typically show exponential distributions for the occupation time of the
optically dark triplet-state and the active singlet-state [9]. In contrast, semiconductor based quantum
dots, where photoswitching is mediated by the trapping and release of (surface) charges, show power
law distributions which can span multiple orders of magnitude [66]. To exclude the influence of the
multi-state fluorescence on the analysis, we only look at duration of the off-time between clearly fluo-
rescent states. Figure 2.46 shows the resulting distribution from 964 single particles together with their
overall photon yield. The distribution could be well fitted with a power law distribution a - ¢* with
time constant b = —1.247 £ 0.012 and an average dark state occupation time of 13.625 s within the
observation window. Exponential statistics can be clearly ruled out and the quality of the fit suggests
that a single dark state is enough to describe the system. This suggests that an electron transfer mecha-
nism might play a larger role for the fluorescence intermittency of CNDs. For further discussion of this

mechanism, please refer to [64].

To test the suitability of carbon nanodots for SOFI microscopy, Sarcoma osteogenic (Saos-2) and
Madin-Darby Canine Kidney Epithelial (MDCK-II) type cells were incubated with a mixture of the
dual-color CNDs at 37° for 1 h. Both cell lines took the nanodots in spontaneously without further
manipulation. Imaging was performed with a wide-field microscopewith 395 nm and 480 nm LED epi-
illumination and an 1.4 NA 100x immersion oil objective. Post magnification of 1.6x resulted in a pixel
size of 100 nm per EMCCD pixel. We excited both colors of CNDs at the same time and recorded a

movie of 783 frames with 100 ms exposure time before applying SOFL

Figure 2.47 shows a comparison between standard wide-field imaging, 2nd order SOFI and a lin-
earized SOFI image that was recovered in post-processing to attenuate the intensity skewing introduced
by SOFI and facilitate comparison. The linearization is based on the (strong) assumption that the in-

tensity differences in the image are only caused by local brightness changes of the CNDs, while density
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Figure 2.47: Comparison of wide-field image and second order SOFI. Additionally, a linearized SOFI im-
age was computed to attenuate the intensity skewing of SOFI using a least squares optimization (see text).
Bottom left: two zoomed in views corresponding to the white boxes in the left images. The contrast is indi-
vidually adjusted for each zoomed view, but with identical settings for the wide-field and the linearized SOFI
cutout to allow comparison. It is easy to see that the SOFI image looks clearer and exhibits more detail. This
is partly due to the higher resolution and partly due to the background removal inherent to SOFI.

and blinking behavior are assumed to be homogeneous within the sample. Then, the least-squares cost

function

Crsqenp {e(1)} = Y (UA(x) ® €X(r) — i(r))’ (2.137)
with the wide-field PSF U(r), the local brightness ¢(r) and the second order SOFIimage i(r) sufficiently
describes the imaging process and can be used to recover a linear intensity. The optimization problem is
solved using the nonlinear conjugate gradient algorithm [ 56]. Furthermore, in every optimization step,
the Fourier-transformed image is projected onto the finite support of the optical transfer function of the
SOFI image, so that no non-physical frequencies are recovered and the image resolution is untouched.
Any perceived difference in sharpness between the original SOFI and the linearized image are due to the
changed intensity and can be locally achieved by contrast adjustments. Although the used assumptions
are very strong, the recovered image shows a brightness distribution that closely matches the wide-field
image. As the linearized image is locally identical to a contrast adjusted SOFI image and showed the

exact same geometry without artifacts, it can be trusted for further analysis.

The SOFI image shows clearly finer detail and better contrast than the wide-field image, which is
partly due to the increase in resolution and partly due to the background reduction which is inherent to
SOFL. This is especially true for the network-like structures surrounding the nucleus, as depicted in the

bottom right of the figure. Cross sections through dot-like structures in the vicinity of the cell suggest a
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resolution increase of factor 1.40, which matches 2nd order SOFI. This indicates that the resolution was
not corrupted by other effects, such as bleaching or drift of the sample. As for many types of semicon-
ductor quantum dots, the power law statistics prevented the calculation of useful higher order images,
which exhibited local changes in the sign of the computed cumulant. This is a consequence of the (non-
ergodic) broad distribution of occupation times which hinder sufficient convergence of the cumulants

within the recording time.

In conclusion, this demonstrates that carbon nanodots are suitable probes for SOFI microscopy,
which allows super-resolution imaging at very low cost. However, the utilized nanodots can only be
used for non-specific labeling right now and further research is needed to enable more specific applica-

tions as well as control of the photoswitching behavior.

To sum up this section about SOFI with carbon nanodots:

« Carbon nanodots are cheap to make fluorophores which share many properties of semiconductor

quantum dots without their inherent toxicity.

« We synthesized dual-color CNDs and observed a power law distribution for the occupation of
the dark state. This suggests that an electron transfer mechanism might play a large role for the
fluorescence intermittency of CNDs, instead of the triplet-state photoblinking with exponential

statistics that is observed for conventional dyes.

« Using the fluorescence intermittency, we demonstrated the first application of SOFI with CNDs

on unspecifically labeled cells, which enables super resolution imaging at very low cost.
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Super -T esolution Cr yo—ﬂuor escence micr 0SCOpy

He first light microscopes designed to image samples at very low temperatures were devel-
oped almost halfa century ago, to study freezing and thawing processes in cells [ 67]. Inves-
tigations at cryogenic temperatures are especially interesting for biological applications, as

rapid freezing induces vitrification, allowing the fixation of samples without the structural changes com-
monly caused by chemical techniques [68]. Proper fixation is crucial for very high resolution methods
like cryo-electron microscopy, which resolves structures down to the sub-nanometer scale at optimal
conditions [69]. Very low temperatures also increase the sensitivity of spectroscopic measurements,
as the absorption and emission band of molecules is considerably narrowed, making the detection of
weak effects possible [70]. With the advent of super-resolution methods in recent years, research in
the field of cryo-fluorescence microscopy has seen increased interest [71]. One of the most exciting
topics is correlative microscopy, the combination of electron and light microscopy. While cryo-EM
excels in terms of resolution, it is often difficult to identify areas of particular interest. Fluorescence
microscopy is highly specific, but exhibits a resolution that is two orders of magnitude lower. Super-
resolution cryo-fluorescence microscopy could diminish this resolution gap and holds the potential for
correlative microscopy that reveals ultra-structural details with the specificity of fluorescence labeling
[72]. Currently, appropriate immersion objectives for low temperatures are missing and commonly
air objectives with a numerical aperture of 0.8 are used, which collect only about half the photons of a
well adjusted oil immersion objective [71]. However, this disadvantage is somewhat counteracted by
the changed photophysics of the fluorophores: Atlow temperatures photobleaching is heavily reduced,

leading to considerably longer observation times and much higher overall photon yield [70,73].

The first section of this chapter demonstrates sub-nanometer localization of single Atto647N mol-
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ecules using a custom build state-of-the-art cryo-fluorescence microscope, which was developed by
Weixing Li as part of his Phd thesis [74]. In the second section, a concept for accurate super-resolution

co-localization of up to three fluoropohres in close proximity to each other is presented and discussed.

3.1 SINGLE MOLECULE LOCALIZATION WITH SUB-NANOMETER PRECISION

Imaging at cryogenic temperature allows the collection of millions of photons from a single fluorophore.
Each photon that hits the detector is essentially a measurement of the emitters position. In principle,
for a freely rotating fluorophore in the focal plane of an aberration-free imaging system, the accurate
position of the fluorophore could be determined by simply averaging the positions of all detected pho-
tons. As is known from basic statistics, the standard error of the arithmetic mean is proportional to \Lm )
where N is the number of measurements. In practice, positions are usually extracted by fitting a suitable
model of the PSF to the data, but this proportionality still holds [26]. Due to this, the increased pho-
ton yield at low temperatures enables a localization precision that easily surpasses room temperature

measurements.

We demonstrate sub-nanometer localization precision using Atto647N with liquid nitrogen cooling,

which was published in the article [75]:

Weixing, L.; Stein, S.C.; Hihnel, D.; Gregor, I.; Enderlein, J.; “Ultra-stable and versatile widefield
cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy’,

Optics Express, 23, 3770-3783, 2015.

All experiments were conducted by Weixing Li, while I developed most of the data evaluation, which
is briefly discussed here. Our experiments show that cryo-fluorescence microscopy has the potential
to achieve a localization precision close to the physically reasonable limits. Although infinite resolu-
tion could be achieved in principle, the finite length of the linker that attaches the fluorophore to the
structure of interest is usually already larger than a few nanometers, which restricts more accurate mea-
surements. Similar precision was demonstrated by Weisenburger et al using liquid helium cooling in
2013 [76]. Despite the less expensive coolant, we use a different drift correction algorithm that does
not require tracking beads in the sample. Furthermore, their approach is based on sub-pixel shifts of the
raw images to a steady reference frame using interpolation before the positions are localized from mul-
tiple summed-up images. This can introduce additional bias to the position estimation. We also do not
require a correction factor for the measured number of photons to match our results to the theoretically

expected precision, which is necessary in their case due to aberrations of the PSF.

For the study, an aqueous solution of Atto647N molecules was spin-coated on a clean fused silica
coverslip. Cleaning was performed by flaming with a Bunsen burner and the surface hydrophilized in a

2 and

plasma cleaner. The sample was excited by a 637 nm laser with an irradiance of about 300 Wem™
movies were recorded using an Andor iXon Ultra 897DU EMCCD camera at room temperature (204 K)
and cryogenic temperature (89 K) with frame rates of 0.5 Hz and 1 Hz respectively. Single-molecule

localization was performed using the open source software rapidSTORM 3.2 [77]. To reduce noise in
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Figure 3.1: Scheme of localization and drift correction. (a) Localizations of single Atto647N molecules
acquired by rapidSTORM. (b) After nearest-neighbor tracking, the drift is calculated as the average displace-
ment of molecules. (c) Drift-corrected localizations. (d) Localizations of a single molecule before and (e)
after drift correction. (f) The two-dimensional histogram of the localizations is well-fitted by a (g) Gaussian
distribution (black dots). [ This image has been published in the article [75].]

the acquired data, a statistical filter removes outliers by computing the distance d,, of every point p to its

K closest neighbors and excluding points with

‘dP - adataset’ > Ceutoff * 0d, (3'1)

where dyyeaset is the mean of the K-neighbors distances and o their standard deviation. We used K = 50
and the cutoff parameter c.ytof = 1 for this step in all experiments. Next, nearest-neighbor particle track-
ing was used to identify the movement of all particles and the average drift is calculated from all tracks
with a minimum length of 300 frames. After subtracting the drift from the data, it is again processed by
the statistical filter with c o = 0.1 to remove remaining outliers in the vicinity of clusters of localiza-
tions that correspond to single molecules. In the last step, a euclidean clustering algorithm groups all
points that are closer than 200 nm, which was much smaller than the inter-molecular distance but much
larger than the distance between localizations of the same emitter, yielding a cluster of localizations for

each fluorophore. The scheme for drift correction is illustrated in Fig. 3.1.

This sophisticated data processing was necessary, as localizations returned by rapidSTORM were ei-
ther too noisy or removed non-negligible parts of the desired data, depending on the software’s settings.
The reason for this is the simple local-maximum-based algorithm for detection of molecule candidates,
which is very fast but prone to noise. While the resulting errors are usually negligible when generating

STORM images, they had to be taken into account for accurate drift correction and clustering. Similar
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Figure 3.2: Comparison of survival time and photon yield for Atto647N at cryogenic and room temperature.
(a) At 204 K, the number of detectable molecules drops below 25% of its initial value within the first minute,
while at 89 K over 50% of molecules are still fluorescing after 100 minutes. The photon yield at room tem-
perature (b) and cryogenic temperature (c) is well fitted by an exponential decay. The fits gave an average
photon count of 3.8- 10*and 3.5-10° for 294 K and 89 K respectively; an increase over two orders of magni-
tude. [This image has been published in the article [75].]

results can be achieved by using a more sophisticated candidate detection method, for example cross-

correlation with the theoretical in-focus PSF in TrackNTrace (Chap. 4).

Figure 3.2 shows the enhanced photostability at cryogenic temperatures compared to room temper-
ature. At 294 K, the number of detectable molecules drops below 25% of its initial value within the
first minute, while at 89 K over 50% of molecules are still fluorescing after 100 minutes. The amplitude
estimate A from rapidSTORM:s was converted from analog/digital counts to the expected number of
detected photons using the formula

N (A — bias) - sensitivity

otons - '2‘
phot EM-gain (3 )

by the camera manufacturer’. The sensitivity depends on the specific imaging settings and was taken
from the performance specification sheet of the camera; the bias offset was determined from dark frames
(recorded with closed shutter), and the EM-gain is simply set by the experimenter. The total photon
output of each molecule was determined by summing up all localizations of the corresponding cluster.
The histograms of the total photon yield could be well fitted with an exponential decay, which gave an
average photon output of 3.8-10* and 3. 5-10° for 294 K and 89 K respectively; an increase over two

orders of magnitude.

The position of each molecule is calculated as the average over its cluster of localizations. The spread

of the cluster gives an estimate of the precision of a single localization. A principal component analysis

' A motivation for this formula as well as an explanation of the inner workings of an EMCCD camera can be found in
this publication by Hirsch et al [48].
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Figure 3.3: Experimental and theoretical localization precision of Atto647N at (a) 294 K and (b) 89 K. The
theoretical prediction was calculated for each molecule individually to capture the influence of the local back-
ground. The localization precision at cryogenic temperature is about one order of magnitude better, allowing
a precision of below 1 nm for over 80% of molecules. [ This image has been published in the article [75].]

of each molecules cluster was performed to calculate the standard deviations oy, o, along the two or-

thogonal directions of largest extent of the cluster. The localization error of the mean position is then

calculated as

1 0'1"’0'2 (3 3)

\/Nloc ‘ 2

This measurement of the localization precision is compared to the theoretical prediction by Mortensen

o =

et al using the formula [26]

o2 16 8no?b
Otheo =\ | ot o 3 (3.4)

2
N, photons 9 N, photons@

where a? is the pixel area, 0> = opsg + a®/12 the pixel corrected spatial standard deviation of the PSF
and b the number of background photons?. The theoretical prediction was calculated for each molecule
individually to capture the influence of the local background. Figure 3.3 shows a comparison of the lo-
calization precision for room- and cryogenic temperature. The theoretical and experimental values are
in excellent agreement. Over 80% of molecules can be localized with a precision below 1 nm at 89 K

compared to about 10 nm at room temperature, which fits the observed 100-fold increase in photon

*In the original publication of Mortensen, the number of background photons is b2, not b. This was changed, as we

think using b is less confusing.
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yield, as the dominant scaling of the precision in Eq. (3.4)is 1/ /Nphotons- This shows, that the photo-
stability of fluorophores at cryogenic temperatures allows the localization of isolated single molecules

with sub-nanometer precision.

To sum up this section about sub-nanometer localization at cryogenic temperatures

« Experiments on single Atto647N molecules were performed by Weixing Li atliquid nitrogen tem-

peratures.

« The overall photon yield of molecules increases over two orders of magnitude due to increased

photostability.

« An evaluation scheme was developed that corrects drift in the data and allows a high precision

localization of single emitters.

« Over 80% of molecules can be localized with a precision below 1 nm.

3.2 CO-LOCALIZATION USING POLARIZED EXCITATION & DETECTION

While the accurate localization of single fluorophores demonstrates the advantages of the increased
photon yield at cryogenic temperatures, the co-localization of close-by emitters is of much greater in-
terest. Distance measurements with sub-nanometer precision would allow the determination of molec-
ular structures and further facilitate the combination of super-resolution fluorescence microscopy with
cryo-electron microscopy. Nanometer-distance measurements based on fluorescence microscopy were
first demonstrated by Needham ef al in 2013 [78, 79]. Their approach is based on the identification of
step wise bleaching or blinking of a construct labeled with two fluorophores. In a state where only one
of the fluorophores is emissive, its position and intensity can be extracted using SMLM methods. A
global two-emitter fit to each spot uses the information from the different fluorescent states to extract
the distance. They verified a resolution of about 10 nm resolution using double helix DNA molecules la-
beled with Atto 647N and measured the separations between inactive epidermal growth factor receptor
(EGFR) molecules down to 8 nm. However, there are some drawbacks to the method: The identifica-
tion of fluorescent states is not fully automatic, but requires a lot of manual work to achieve the desired
precision [79]. A major problem is the low yield: From 40.000 traces in the EGFR experiment, only 193
(0.5%) are selected for the distance measurement. Thus, the method is not very robust and a large effort
is required for each distance measurement. A similar study based on step-like blinking at cryogenic tem-
peratures has been published by Weisenburger et al in 2014 using a different algorithm for the analysis
[80]. When the number of emissive fluorophores changes, the center of mass of the intensity distribu-
tion is slightly shifted, which allows the calculation of the distance of the two fluorophores. Again, the
major drawback is the low yield: only 0.1% of the recorded constructs (12 out of 12000) could be used

for co-localization.

These results and our own experience show that it is very difficult to tune fluorophore behavior to

allow the reliable identification of the different states and extraction of the distance from the blinking,
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even more so at cryogenic temperatures. For a wide and easy applicability, a more robust method that
requires less manual intervention and gives a higher yield is desirable. To achieve this, we looked at
methods to separate two fluorophores without the requirement of photoblinking. First, we tried mea-
surements with two spectrally different fluorophores which can be imaged individually by different fil-
ters in the emission pathway. Super-resolution with two colors requires highly accurate characterization
and correction of the chromatic aberrations of the imaging system, but has been reported to achieve
nanometer resolution at room temperature in the best case [81]. However, when imaging multi-color
fluorescent beads, we observed systematic but non-parameterizable offsets between the colors [ 74, Sec-
tion 10.2], which could not be removed by applying a linear correction (translation, rotation, scaling).
As the objective is located outside the cryo-chamber to prevent aberrations due to different thermal
expansion of its components [ 71], the sample is imaged through a thick optical window. This seems to

introduce additional and irregular chromatic aberration, which made precise co-localization impossible.

To co-localize two molecules, the utilized method must be able to accurately attribute the measured
photons to the individual fluorophores. One physical property that can be used to achieve this is the
direction of polarization of the emitted light, which is in general not identical between two different
fluorophores. If SMLM conditions can be achieved, the localizations of a two-emitter-complex could in
principle be separated by measuring their polarization. As photoblinking s still hard to tune at cryogenic
temperature, we thought of a different concept: Here we will illustrate an idea how to co-localize two
non-blinking fluorophores by using a setup with polarized emission and detection. Although a micro-
scope for these measurements was constructed and calibrated [74], we unfortunately never got a sample
that was reliably labeled with two fluorophores after sample preparation for the cryo-microscope. For

this reason, we only briefly describe the method and demonstrate its performance on simulations.

Imagine imaging two very close dipole emitters with a 9o° angle between their orientations. Dipoles
are only excited by the electric field component parallel to their orientation, so for a given dipole with
brightness a and angle © excited with a linearly polarized laser beam in an angle ® (to the x-axis) the

measured intensity is
I(®) = a-cos’(® — @),

which is known as Malus’ law. For an angle of 9o° between laser and dipole orientation, no excitation is
possible and the emitter stays dark on your camera. If the dipole axis are orthogonal, one fluorophore is
optimally excited when the other one is completely dark. By changing the polarization of the excitation,

the two fluorophores can be individually imaged and localized (Fig.3.4).

The distance can simply be computed as the difference of their positions. Here, we assumed the ab-
solute molecule orientations are known. In this example, the orientations are simple to measure, as the
maximum of the I(®) curve gives the orientation of the brighter emitter and the minimum the orienta-

tion of the dimmer one (90° offset) 3.

3If both emitters are equally bright the intensity is constant, independent of the excitation angle (cos?(x) + sin*(x) =
1) and their orientation can not be recovered
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Figure 3.4: Measuring two dipole emitters with orthogonal orientations using various excitation polarization
angles. The emitter orientations are axis aligned with the brighter one parallel to the x-axis (0°). The bottom
curve shows the intensity obtained by spatial integration of the recorded frames. The distance shown is d =
2 pixel with opsp = 1 pixel (FWHM = 2.3548 pixel). Bottom right shows the unpolarized image.

The center of mass of the intensity distribution in Figure 3.4 wanders between the positions of both
emitters as the excitation angle changes. For unknown brightness values a;, 4, and orientations ©;, ©,

the center of mass of the two-molecule image at a certain laser excitation angle @ is given by

ry - I;(Dlay, ©1) + 1y - L(D|ay, ©,)
Il((D|a1,®1) +Iz((1)|a2,®2) ’

rem(®) = (3:5)

where we assume a radially symmetric PSF for the emitters at positions r; and r,. If the individual
emitter intensities are known at two excitation angles, the corresponding system of equations can be
solved for the two unknown positions, yielding their distance. Thus, the emitter orientations ©;, ©,

and brightnesses a;, a, have to be recovered first.

The intensity of the two molecules at a fixed excitation angle is given by:
I(®) = a; - cos®*(® — ©;) + a, - cos* (D — @,).
This can be rewritten in the form:

I(®) = a; - cos*(® — @) + a, - cos’(® — ©,), usingcos’(x) = 0.5 - (1 + cos(2x))

_ BB B 00— 20,) + 2 cos(20 — 20,)
2 2 2
=B+ A - cos(2® — 9), with
2 2 in(20 in(20
A :\/—“1 TG G (0, - 0,), tan g = HSN2O) £ asin(20s) a4ty
4 2 a cos(2®1) + a, cos(2®2) 2

where the last identity can be proven by expressing the cosine using complex exponentials. From this
equation it is apparent that a set of three parameters A, B, 9 defines a unique curve I(®), which means

that we can not acquire unique solutions for four unknowns a;, a,, ®;, ®, from the measurement*.

*For every parameter set, one indistinguishable solution yielding the same intensity-angle curve can be constructed
using emitters with orthogonal polarization, setting one emitters brightness to the minimum of the curve (a, = B — A),
the other one to the maximum (a; = B + A) and adjusting the phase to match the original curve § = 20,
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Figure 3.5: Measurement setup using polarized excitation and polarized detection via a rotateable polarizer.

To recover all parameters, the measurement needs to capture more information about the sample,
which can be achieved by an additional polarizer in the emission pathway. Figure 3.5 shows an exam-
ple of a setup with a rotating polarizer at angle . For simplicity we choose f = O here, so that the
polarization of the detection matches the excitation. If we excite/detect an emitter with 45° angle to
its orientation, its signal will be suppressed stronger than before, as it is now excited and detected with
lower efficiency. Thus it is somewhat intuitive that we should be able to separate emitters of different

orientations better than before. The measured intensity is

I(0,8=0) =a; cos*>(® — ©;) - cos’(f — @) + a5 - cos*(® — @) - cos*(f — ©,)
=a; - cos*(® — ©,) + a - cos*(® — ©,)
= %(al +ay) + % cos(2® —20,) + %COS(Z(D —20,)
+ % cos(4D — 40,) + % cos(4® — 40,)
=B+ A; cos(20 — 9;) + Ay cos(4D — 9,),
which is uniquely defined by five parameters. Therefore we can determine a;, a,, ©1, ©, from the mea-
sured intensity curve.

A more practical setup uses a polarizing beam-splitter and two cameras to record the images of two
orthogonal polarizations at the same time (see Fig. 3.6). This saves recording time and, more impor-
tantly, ensures the mechanical stability of the detection pathway, as no movable parts are present. Each

excitation angle gives two independent measurements, uniquely defined by six parameters:

I.(®) = a; - cos’>(® — ©y) cos*(®;) + a, - cos*(D — ©,) cos*(©,) (3.6)
= B, + A, cos(20 — 9,),
L(®) = ay - cos’(® — @) sin*(@;) + a, - cos*(® — @,) sin*(0,) (3.7)

=B, + A, cos(2P — Sy).
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Figure 3.6: Measurement setup with polarized excitation and polarized detection using a polarizing beam-
splitter and simultaneous recording on two cameras. This type of setup was built by Weixing Li in our lab.

Again, this is enough to uniquely determine the emitter brightness and orientations. This type of
setup was built and calibrated by Weixing Li in our lab [74] and is thus used for further analysis. The
parameters a;, a,, ©1, ©, can be recovered by a global fit to the measured intensities using Equations
(3.6) & (3.7). As each model is based on three parameters, at least three excitation angles have to be
measured. To increase robustness, we measure six angles that are uniformly distributed in [0, 7). Note
that the method can distinguish constructs labeled with one, two and three emitters, which allows an
estimation of the labeling efficiency or stoichiometric measurements. Because only six parameters de-

termine the curve, structures with more labels can not be identified.

Once the parameters are known, the distance between the emitters can be recovered by measuring
the movement of the center of mass of the intensity distribution for different angles. Although this
evaluation could be done for each of the two cameras individually, the visibility of individual constructs
can be low for specific excitation angles. Simulations suggest that better results can be achieved if the
beam-splitter is removed and all photons are concentrated on one camera. Again, the center of mass of
the intensity distribution is given by

I -Il((D|a1, @1) + 1, -12(®|a2, 92)

rem(@) = L(®l|a;, ©1) + L(P|ay, ©,) (3:8)

= (@) @) (7). (39)

| v)

A ((D) — Il(®|a17@1) A ((D) — Iz(®|a2,®2)
! ' Il((D|a1, @1) +IZ(CI)|a2, @2)’ 2 ’ Il((D\al, @1) —1-12((1)\612, @2)’

which requires at least two measurements of the center of mass to recover the emitter positions by inver-

sion. Like before, more measurements increase the robustness of the estimation, yielding the overde-
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termined system of equations

rem (@) A(D1) Ay (D)
rem(®2) [ | Au(@2) Ax(D2) | [y (3.10)
ra(®s) | | A1(@3) Ax(@s) | \ry) e

which is solved in a least-squares sense for r; and r, using the Moore—Penrose pseudoinverse of the ma-
trix M. Note that the proposed method requires a fixed orientation of the fluorophores during the whole
measurement. Fortunately, we never observed reorientation of single molecules at cryogenic tempera-

tures in test measurements, which indicates a high stability of the dipole orientation at low temperatures.

30° 60°

Figure 3.7: Example simulation of the data that must be recorded for the distance measurement. Emitter
brightness and background were set to 3770 photons/emitter and 1200 photons/pixel per frame respectively
(Fig. 3.7), based on single molecule experiments that were conducted with the setup. In phase 1 the sample
(here: emitters on a grid) is detected in two orthogonal polarization directions and recorded at different
orientations of the linearly polarized excitation laser. In phase 2 the sample is imaged at the same excitation
angles on one camera without polarized detection.

m
x

Oo

C.

x-polarized

y-polarized

unpolarized

In summary, the measurement is organized as follows: In phase 1 the sample is successively excited
with linearly polarized laser light with at least 3 different directions and simultaneously detected in two
orthogonal polarizations with two cameras using a polarizing beam-splitter (Fig. 3.6). In phase 2 the
beam-splitter is removed and the measurement is repeated for the same excitation angles with unpolar-

ized detection using one camera. Figure 3.7 shows the type of data that is acquired in the process.
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Figure 3.8: Scheme of distance evaluation: The two-fluorophore structures are first localized and tracked in
all movies using TrackNTrace (Chap. 4), extracting their brightnesses and positions, followed by drift cor-
rection. The data from the two cameras in phase 1 is registered to the same frame of reference using an algo-
rithm for point-to-point registration [82]. Using the measured intensities, the individual emitter brightnesses
and orientations are recovered by a global fit based on Equations (3.6) & (3.7). The recovered parameters
are then registered to the unpolarized data from phase 2. The movement of the centroid in the unpolarized
measurement together with the recovered parameters is used for computing the distance by Equation (3.10).

We developed a software suite for the evaluation, which implements the scheme depicted in Figure
3.8. The two-emitter constructs are localized and tracked, extracting their brightness for both polariza-
tion directions by Gaussian fits to the phase 1 data using TrackNTrace (Chap. 4). Similar to Section
3.1, the drift is corrected from the tracking data using the average displacement of the particles. The
data from both cameras is registered to the same frame of reference using a state-of-the-art algorithm
published in 2013 by Cohen et al [82]. After the registration, tracks belonging to the same construct
are identified by a nearest-neighbor search. Using all angles angles where the brightness could be suc-
cessfully extracted for both cameras, the individual emitter brightnesses and orientations are recovered
by a global fit based on Equations (3.6) & (3.7). If both emitters have similar angles (A® < 10°)
or very different brightness estimates (more than factor 4 difference), the structure is not used for fur-
ther evaluation. Localization and drift correction were performed on the phase 2 data, giving the angle
dependent center of mass of intensity of each structure. As removal of the beam-splitter can change
the field of view, registration to the phase 1 data is performed, linking the recovered parameters to the

correct structure. With these parameters, the distance is recovered for each construct using Eq. (3.10).
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Simulations showed that assuming a single Gaussian intensity distribution for the two-emitter con-
struct does not hurt the result, as long as the distance between the emitters is much smaller than the
width of the PSF, which is the case of interest here. If larger distances, for example only a factor of two
below the diffraction limit, are considered, a different model for the extraction of the brightnesses and

center of mass of intensity must be used.
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Figure 3.9: Histogram of measured distances from simulation of 9oo randomly oriented emitters. Emitter
brightness and background were set to 3770 photons/emitter and 1200 photons/pixel per frame respectively
(Fig. 3.7). For both phases, six excitation angles [0°, 30°, 60°,90°, 120°, 150°] were simulated with 15 im-
ages per angle using a Poisson noise model, giving 180 images overall. The standard deviation of the PSF is
opsp = 1 pixel, representing a well adjusted microscope setup. The recovered distance is d = 0.1127 pixels
compared to a true value of d = 0.1154 pixels.

To test the performance of the method, a simulation of 9oo two-emitter constructs with random
orientations of the fluorophores was performed. Emitter brightness and background were set to 3770
photons/emitter and 1200 photons/pixel per frame respectively (Fig. 3.7), based on single molecule
test experiments that were conducted with the setup. For both phases, six excitation angles (uniformly
distributed in [0, 7)) were simulated with 15 images per angle using a Poisson noise model, giving 180
images overall. The standard deviation of the PSF is opsg = 1 pixel, representing a well adjusted mi-
croscope setup. The distance between the emitters was set to d = 0.1154 pixel. Figure 3.9 shows the
recovered distance distribution®. Of the goo structures, 680 (&~ 76%) were used for the distance esti-
mation. A Gaussian fit to the distance distribution yielded an estimate of d = 0.1127 (2.4% difference
to the true value) for the distance with an error of o; = 0.0334 pixel for a single distance measurement®.
For a well adjusted microscope with 100 nm pixel size, this translates to a recovered distance of about
11 nm with 3.4 nm error for a single measurement. This proves that the proposed method is theoreti-
cally able to achieve the desired performance in resolving two fluorophores with distances of only a few

nanometers.

SAlthough not necessary for the simulation, a full evaluation including drift correction and registration was performed
to keep results closer to the experimental situation.

®Corresponding to the width of the Gaussian.
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We expect that it is easier to achieve stable behavior of the fluorophores at cryogenic temperatures, re-
quiring less effort for sample preparation and allowing a higher percentage of samples to be used for the
distance estimation than the < 1% yield common for blinking or bleaching based methods [78-80].
In the latter methods, precision and yield also depend on the occupation time of single fluorophores in
specific fluorescent states which have to be identified first, while our method could potentially utilize
the whole measurement time, using all available photons. The measurement could also be performed
at room temperature if a fixed orientation of fluorophores can be guaranteed, for example by strong
chemical fixation. The major remaining test is of course the experimental validation, which could not
be performed due to the missing samples. We expect some additional challenges for the actual measure-
ment: We observed polarization-dependent transmission of the excitation and emission light through
some optical components in our setup. Polarization dependent background was also observed, which is
partly due to fluorescent impurities in the objective [ 74]. The phase between s- and p- polarized compo-
nents is also altered, introducing a very slight ellipticity to the linearly polarized beams. If the influence
of these effects on the measurement is strong, they can be characterized and included in the model. Fur-
thermore, if not all molecules are positioned in the same plane, or the microscope is a bit defocused, the
PSF becomes asymmetric, introducing errors in the estimation of brightness and position of emitters via
a simple two-dimensional Gaussian [83-85]. Although it has been shown that a more complex fitting
model can compensate this when the axial range is restricted by using TIRF illumination [26], this is
impossible to achieve with our low-NA objective. In the general case, where the z-position is largely un-
determined, correcting this issue becomes harder [ 85 ], which poses a potential problem for our method.
However, we performed calculations indicating that in a polarized detection scheme, the position of a
dipole along a line orthogonal to the direction of the polarizer is virtually free of bias, which alleviates
the problem. Surprisingly, the issue of orientation-dependent localization bias was never mentioned
in previous co-localization approaches [78-80], including a very recent study which reports angstrom

resolution of 3D protein structure data [86].

To sum up this section about polarization-based co-localization at cryogenic temperatures,

« Existing methods using fluorescence microscopy for nanometer distance measurements rely on
blinking or bleaching, require time-consuming evaluations, and are only able to use less than 1%

of the sample.

« A method is proposed how to distinguish constantly emitting fluorophores using linearly polar-

ized excitation combined with polarized detection in two orthogonal directions.

« Simulations at conditions similar to our single molecule experiments show that distances far be-
low the diffraction limit can be measured reliably, making the method promising for nanometer-

distance measurements in the future.

« Although the necessary experimental setup was built and calibrated [74], the experimental ver-
ification is still pending due to missing samples that are reliably labeled with two fluorophores

after preparation for cryogenic measurements.
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TrackNTrace

Ar-field fluorescence imaging of single molecules at room temperature was first achieved in the

mid 1990’s using Total Internal Fluorescence (TIRF) microscopy [87], shortly after it was
demonstrated with near-field optical microscopy [ 16]. Now, only about 20 years later, single-

molecule measurements are performed with relative ease on a daily basis in many research labs. This is
mainly attributed to the steadily increasing sensitivity of cameras, which nowadays has reached a level
that enables the detection of single photons. Single-molecule techniques avoid ensemble averaging,
allowing the investigation of distributions of molecular properties and the study of their fluctuations.
Since their advent, these methods have made important contributions to many fields, especially in bio-
physics [88]. In recent years, techniques such as Single-Molecule Localization Microscopy (SMLM)
[ 10, 89], which reveals structures below the diffraction limit by localizing fluorophores that are spatio-
temporally separated via carefully tuned photoblinking, and Single Particle Tracking (SPT) [90], where
the acquired positions are subsequently linked in time to study the trajectories of single molecules, are

becoming increasingly popular.

While a plethora of high-performance software suites for these techniques has been developed [91,
92], most of these programs are difficult to extend for specific needs and suffer from very restricted
visualization capabilities, often limited to a display of the final result. This complicates parameter tuning
or the identification of unsuitable settings and obfuscates processing errors. These issues are especially

relevant when developing and testing new algorithms.

In labs which focus on method development, ideas for new kinds of measurements come up regu-

larly, often requiring not only specialized experimental setups, but customized data evaluation as well.
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For the work presented in this thesis, single-particle imaging was used in various ways: analyzing the
blinking behavior of special fluorophores (Sec. 2.8); determining the photon yield and photostability
of particles at different temperatures and localizing them with sub-nanometer precision (Sec. 3.1 &
3.2); recovering the orientation of fixed dipoles in defocused images (Sec. 5.2); and studying the inten-
sity distribution of fluorophores in nanochannels (Sec. 5.2). As a product of trying to simplify these
evaluations, their continuous improvement, and the design of entirely new methods, my colleague Jan

Thiart and I developed the software TrackNTrace.

TrackNTrace (TNT) is the first framework specifically designed to facilitate the development of
single-molecule localization and tracking applications. All processing stages — detecting single parti-
cles or patterns, refining their positions and extracting parameters, and subsequent tracking — are im-
plemented as user-definable plugins. Existing algorithms can be integrated with minimal effort, in-
cluding automatic incorporation into the graphical user interface (GUI). Each stage’s output can be
previewed and inspected in detail using a novel visualization interface, enabling the user to quickly no-
tice oddities and trace the effect of changes in parameters or utilized algorithms, which is not possi-
ble with existing programs. TrackNTrace is implemented in MATLAB, runs on Linux and Windows
and is freely distributed as open-source software via its GitHub repository https://github.com/

scstein/TrackNTrace.

This chapter gives a brief overview of the TrackNTrace framework, the ideas behind it and its capabil-
ities. Furthermore, a performance comparison to established SMLM programs is presented along some
examples of experimental applications. I focused on the design of the core framework as well as plu-
gins for cross-correlation candidate detection, nearest-neighbor tracking and processing of defocused
images. Most plugins were implemented by Jan Thiart, who also performed the experimental and per-
formance evaluation shown here. Together, we also developed the (to our knowledge) first freely avail-
able' high performance C++ software for 2D Gaussian fitting that offers a MATLAB interface, which

became the default plugin for sub-pixel localization in TrackNTrace.
Parts of this section have been published in the article [93]:

Stein, S.C.; Thiart, J.; “TrackNTrace: A simple and extendable open-source framework for develop-

ing single-molecule localization and tracking algorithms.”, Scientific Reports, 6, 37937, 2016.

Additionally, some parts are available in similar form in the TrackNTrace manual. For anyone inter-
ested in using the software, the manual is a good place to start from, and reading it is definitely recom-

mended.

!Available independent from TrackNTrace as “Fast Gaussian Point Spread Function Fitting (MEX)” on
the MATLAB File Exchange. URL: http://www.mathworks.com/matlabcentral/fileexchange/
52417-fast-gaussian-point-spread-function-fitting--mez-.
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4.1 CONCEPT

Instead of concentrating on a single task, TrackNTrace was designed with the intent to enhance the typi-
cal workflow of data evaluation in research labs. Ideas for new measurement methods or improvements
of existing ones arise on a regular basis, usually requiring new and adapted algorithms to process the
data. Furthermore, especially in the field of localization microscopy; it is often cumbersome to com-
pare existing methods and optimize their parameter settings for the situation at hand. Rich and fast
feedback is very important for proper parameter adjustment, even more so when developing new algo-

rithms. Consequently, TrackNTrace focuses on the following design philosophies:

« Extensibility: New and existing methods should be easy to integrate. The system is build around
user-definable plugins to achieve this. Plugins can be shared easily by copying the corresponding

file to the plugin sub-folder.

« Simple coding: To place the emphasis on the scientific questions, creating and changing plugins
should be easy. TrackNTrace is written in the MATLAB programming language, which is com-
mon in the life sciences and comparably easy to learn. The plugin interface is kept as simple as
possible. Plugins are automatically integrated into the main GUI and parallelized for simultane-

ous execution on multi-core processors to improve performance.

+ Quick & rich feedback: Fast feedback on the quality of results and their quantitative aspects
should be available. TrackNTrace implements a “preview” feature and a powerful visualizer. The
preview computes the output for a defined interval of frames of the input data using the current
settings and displays them in the TNT visualizer. The visualizer shows the outcomes of all steps
of the data processing, including the output of every involved plugin (e.g. fit parameters for each

molecule).

TrackNTrace was designed to support a wide range of fluorescence imaging applications. Although
the currently available plugins mostly focus on single-molecule localization and tracking, every task that
requires the detection of arbitrary intensity patterns is straightforward to integrate. For example, the
system could be extended for cell or microtubule-tip tracking. The TrackNTrace framework subdivides

the data analysis into four distinct stages which we identified as common in different applications:

1. Correcting raw data: Measured movies are read and corrected for dark currents and camera
artifacts. Analog-digital-converter counts can be converted to photons if a quantitative signal

analysis (e.g., maximum-likelihood estimation) is needed.

2. Detecting candidates: Potential sources of signal above the background noise are identified in
each frame to obtain rough estimates of emitter positions. This stage usually relies on fast, ap-

proximate algorithms.

3. Refinement: A more demanding evaluation is performed for every candidate identified in the

previous stage. Commonly, this involves fitting a representation of the microscope’s PSF to a
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subsection of the frame, extracting arbitrary parameters. In SMLM this is used to refine each

candidate’s position estimate to higher accuracy.

4. Tracking: Positions separated in time are connected frame-by-frame to form trajectories. High

particle density, intersecting tracks, and re-appearing emitters are the main obstacles to overcome

during this stage.

While stage 1 is performed by the TrackNTrace core program, stage 2-4 are executed by the user-
definable plugins. The different steps are reflected in the structure of the TN'T main GUI, as illustrated

in Figure 4.1.
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Figure 4.1: Main GUI of TrackNTrace. The settings for the four processing stages are set in the correspond-

ing panels. A graphical representation of user plugins is created automatically and integrated into the GUL
[ This image has been published in [93, Supplementary Information].]

Usze settings
for all following.

‘ Next movie ‘

As mentioned above, graphical representations for all user plugins are automatically created and in-
tegrated into the GUIL An explanation of each plugin can be displayed by pressing the “?” button. For
additional help, all control elements (even inside user plugins) provide a mandatory tooltip, that is avail-

able by hovering over it with the mouse. This makes it easy to get information about the influence of

individual parameters.

The typical workflow with TrackNTrace comprises the following steps: Multiple movies are selected
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for data evaluation. Suitable plugins and their settings or chosen for the individual movies. This is done
by choosing a certain parameter set and checking the results with the preview function, which invokes
the visualizer (Figure 4.2). Here, the output of all plugins can be checked for qualitative or quantita-
tive errors. Once the visualizer is closed, new settings can be chosen and re-checked if necessary. After
optimizing the parameters for all movies, they are processed without the need for additional user in-
tervention. Alternatively, the same parameter set can be used for all movies. When the computation is
finished, the individual results are collected in a single file for convenient post-processing or visualiza-

tion.
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Figure 4.2: The visualizer of TrackNTrace displays the output of the plugins for all processing stages. Select-
ing a detected molecule reveals all information that is computed by the corresponding plugin. White arrows
indicate typical issues such as undetected candidates, badly refined positions or prematurely ending tracks,
which can be identified and resolved by choosing different settings. [ This image has been published in [93].]

Figure 4.2 shows the TrackNTrace visualizer. Selecting a detected molecule with the mouse reveals
all information computed by the corresponding plugin. White arrows indicate typical issues such as un-
detected candidates, badly refined positions or prematurely ending tracks, which can be easily identified
with the visualizer and corrected by choosing different settings. Furthermore, it is possible to display
and check the distributions of all computed parameters, which is often helpful. The visualizer code is
heavily optimized and relies on intelligent caching as well as low-level plotting functions to allow the

display of thousands of single molecule tracks at typical video frame rates”.

*Performance is lower for MATLAB versions above 2014b due to the new MATLAB graphics engine.
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Figure 4.3: Preview output of the Defocused refinement plugin. (a) shows the original data (Atto655
molecules spincoated on a glass coverslip) with the detected candidates and calculated parameters and (b)

a synthetic image visualizing the final results. Data recorded by Narain Karedla. [ This image has been pub-

lished in [93, Supplementary information].]

Strong visualization is especially helpful when using or developing applications that go beyond typi-
cal single-molecule localization experiments. Figure 4.3 shows one such task, the extraction of the posi-
tions and 3D orientations of single molecules, which is possible with TrackNTrace via the Defocused
patternsandDefocused refinement plugins®. With the visualizer, it is easy to check the extracted
parameters, like the in-plane and out-of-plane angles. To our knowledge, the evaluation of defocused
images is currently not possible with any other SMLM software. With TrackNTrace, even subsequent

tracking of the patterns is easily to achieve.

Currently, the following plugins are part of the TrackNTrace framework:

Candidate detection plugins

Name Description

Cross-correlation Fast normalized cross-correlation [ 94 ] with a theoretical Gaussian PSF.

Defocused patterns  Fast normalized cross-correlation [94] with a set of wave-optical images of
defocused dipole emitters for varying azimuthal and polar angles [95, 96].

Image filtering Various image filters (running mean/median, difference of averages, etc.)
followed by local maximum extraction.

p-value filtering Hypothesis-test-based filter (Gaussian vs. flat background).

Wavelet filter Wavelet-based filter as described in [97].

*The plugins implement the methods described in Section s.2.
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Refinement plugins

Name Description

Defocused refinement ~ Sub-pixel refinement of Defocused patterns output. Based on

least-squares minimization via a conjugate-gradient algorithm[56].

Gauss-2d-Circ Gaussian fit by matrix inversion [98].

GPU-Gauss MLE Gaussian fit implemented in C++ and CUDA (for graphics cards) [99].
Radial symmetry Centroid calculation suitable for radially symmetric PSFs [100].

TNT fitter MLE & least-squares Gaussian fit for pixel-integrated, asymmetric and

rotated PSFs. Implemented with Google’s ceres optimization library [101].
TNT z-Calibration Calibration for astigmatic 3D imaging with the TNT fitter plugin.

Tracking plugins

Name Description

TNT NearestNeighbor ~ Fast C++ nearest-neighbor tracker using the nanoflann library [102].
u-Track Powerful, high-density particle tracker using global optimization [103].

4.2 DESIGN OF THE PLUGIN SYSTEM

The plugin system of TrackNTrace is designed to minimize effort by the user and require no in-depth
programming knowledge. To give an idea of how the system is used, we look at the (slightly simpli-
fied) Radial symmetry refinement plugin, which implements the “radial symmetry centers” algorithm

by Parthasarathy [ 100] to extract sub-pixel positions from images of isolated emitters in the focal plane.

A plugin is defined as a function in a single file named “plugin_NAME.m” inside the plugins sub-
folder of the TrackNTrace root directory. Plugin functions return a TNTplugin object, which gathers
all information needed for its execution. On startup, all “plugin_XX.m” files are loaded by the main

program and integrated into the GUI. This is the content of “plugin_RadialSymmetry.m” file:

function [plugin] = plugin_RadialSymmetry ()

name = 'Radial symmetry';

type = 2;

mainFunc = G@refinePositions_radialSymmetry;

outParamDescription = {'x';'y';"'z"'; 'Amp (Peak)'; 'Background'; '
width'};

% Create the plugin

plugin = TNTplugin(name, type, mainFunc, outParamDescription);

%» Description of plugin

plugin.info = ['Localization by radial symmetry centers.', .
'"Published in Parthasarathy, NatMet 2012(9).'];
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% Add parameters
plugin.add_param('PSFSigma',...

"float',...

{1.3,0,inf}, ...

'PSF standard deviation in [pixel].');
plugin.add_param('estimateWidth',...

"bool', ...

true, ...

'Estimate particle width.');

end

Parameters that should be adjustable by the GUI are defined by calling the add_param(name,
type, settings, tooltip) function of the newly created plugin instance. The definition above

produces the graphical representation shown in Figure 4.4.

Refinement Method Radial symmetry >
— Radial symmetry Options
PSFSrigma 1.3 estimateWidth

) | PSF standard deviation in [pixel]l

Figure 4.4: GUI of the Radial symmetry plugin as created from the code in the main text.

Each parameter has a name, a type, type-dependent settings and a tooltip. The tooltip should explain
its meaning and is displayed when hovering over the parameter with the mouse (as shown in the figure).
The parameter name is not only used for display in the GUI, but also to create a corresponding variable
for use in the main function of the plugin. Parameters are gathered in an “options” struct and passed to
the main function as an input parameter. For example, PSFSigma can later be used inside the function
as options.PSFSigma. Different parameters need different settings as the third input. The complete

list of current parameter types and settings is:

par_type par_settings Example

'float' Double, {defaultValue, lowerBound, {1.3,0,inf}
upperBound}

'int' Integer, {defaultValue, lowerBound, {4,-10,10}
upperBound}

'"bool! Boolean,defaultValue true

'string' String, 'defaultValue' '@exp'

'list' Interactive list box, {'x',"[x,y]"'}

{'defaultEntry', 'Entry2',...}
'filechooser' Interactive file chooser dialog, {'C:/Sci/"','csv'}
{'defaultDir', 'fileEnding'}

To better structure the GUI, users can call the newRow () function of a plugin instance between




add_param(...) calls, which starts a new row in the graphical representation of the plugin. Fur-

thermore, headings or descriptions can be added with add_text (text, horizontalAlignment,

fontWeight, fontAngle,

tooltip).

While the four parameters used in its constructor are mandatory for every plugin, there are additional

parameters that can be set optionally after the object is constructed. Here is a complete list:

TNTplugin properties
Property Description
name Plugin name as displayed by the GUL
type Type of plugin. 1: Candidate detection, 2: Refinement, 3: Tracking
mainFunc Handle to main function the plugin implementing the actual algo-

outParamDescription
info
initFunc

postFunc

useParallelProcessing

rithm. For type 1 and 2 this is called by TrackNTrace in a loop for
each individual frame of the input movie. The interface (output/in-
put) of this function depends on the plugin type and must match the
TrackNTrace specification (see manual).

Cell array of strings with description/name of all output parameters
(columns) of the plugin

Description of the plugin itself. Should describe the method and the
general way how to use it.

Initialization function called before the main one is first executed.
Post-processing is called after the last main function execution.
Boolean. If false, TrackNTrace does not parallelize this plugins main
function on a frame-by-frame basis for type 1/2 plugins. Useful if the
main function itself is parallelized (e.g. a compiled multi-threaded
MEX file) or if global information is needed (e.g. access to multiple

frames of the movie).

Candidate detection and refinement plugins are automatically parallelized, speeding up data process-

ing without requiring a single line of code by the user. If parallel processing is not possible, the frame-

work falls back to single-threaded execution. This feature can be deliberately turned oft by the user,

which is useful if, for example, the plugin code itself is parallelized.

The main function of the plugin implements the actual algorithm. It is executed on each frame of

the movie for candidate detection and refinement plugins, and called once to process the refinement

output for tracking plugins. The functions must follow a type-dependent interface, which is specified in

the TrackNTrace manual. Main functions of refinement plugins, such as our Radial symmetry example,

receive one image of the movie and the corresponding detected single molecules from the candidate

detection step at a time. The main function of the Radial symmetry plugin looks as follows:




function [refinementData] = refinePositions_radialSymmetry (img,

candidatePos ,options, currentFramelNr)

% Parse input

halfWindowSize = ceil (3xoptions.PSFSigma);

refinementData = zeros(size(candidatePos,1) ,5+
options.estimateWidth);

for iCand = 1:size(candidatePos, 1)

end

end

% Define subimage

posXY = candidatePos(iCand,1:2);

idxX posXY (1) -halfWindowSize:posXY (1) +halfWindowSize;
idxY posXY(2)-halfWindowSize:posXY(2)+halfWindowSize;

%» Call Radial Symmetry function
[xc,yc,sigmal = radialcenter (img(idxY,idxX),

options.estimateWidth);

% Transform relative coordinates back to image coordinates

xc = xc+posXY (1) -(halfWindowSize+1);
yc = yc+posXY(2)-(halfWindowSize+1) ;
zc = 0;

% Save data
refinementData(iCand,:) = [xc,yc,zc,

img (round ([yc,xcl)), sigmal;

For every particle detected in the first stage, a subimage of a few pixels around its position is cre-

ated

Parthasarathy [ 100]. After the local coordinates are converted to image coordinates, the output is saved
in the refinementData matrix for further processing. GUI parameters are simply accessed by their
name via the options struct ( options.PSFSigma and options.estimateWidth), as mentioned

before. The generated output can be used with arbitrary tracking plugins in the next processing stage.

This example shows how simple it is to integrate new or existing algorithms into the framework. For

and passed to the function radialcenter which is available from the original publication by

existing code, the necessary modifications are often incorporated within minutes.




4.3 PERFORMANCE EVALUATION AND EXPERIMENTAL EXAMPLES

The main advantage of TrackNTrace compared to existing software is its information-rich visualization,
extensibility and simplicity of coding, rather than being optimized for a specific task. Nonetheless, we
demonstrate its competitive performance by comparison with two state-of-the-art programs for single-
molecule localization microscopy: rapidSTORM [77], an efficient an popular stand-alone software, and
ThunderSTORM [104], an Image] plugin that showed the highest performance in a recent meta-study

[91]. Furthermore, we present some typical experimental applications that can be conducted with the

program out-of-the-box. The evaluation and experimental examples were performed by Jan Thiart.

d

Figure 4.5: Simulations for the performance evaluation. (a) Average intensity of Siemens star pattern at SNR
= 3. (b) Central region for an average SNR of 1 (upper right) and 3 (lower left). (c¢) SMLM reconstruction
of zoomed-in region at SNR 3 using TrackNTrace with cross-correlation candidate detection. (d) Single
frame of SNR = 10 simulation grid for execution speed evaluation. [ This image has been published in [93,
Supplementary information]. ]

To test the detection efficiency, accuracy and precision, we prepared simulations of emitters dis-
tributed on a Siemens star pattern at different signal-to-noise ratios under STORM conditions. Fur-
thermore, a high-SNR movie of non-blinking emitters on a grid is prepared to compare the execution
time of different programs. The high SNR ensures that all programs detect the same number of emitters.

Figure 4.5 shows both scenarios.

As outlined in the publication [93, Methods]: Simulations were performed as previously described
by Smith et al [ 105]. Briefly, a Siemens star withn = 10 arms was simulated ona 256 X 256 px* grid with
apixel size ofa = 100 nm. The particle density was fixed to ¢ = 7.5 px~ ' and dSTORM:-like conditions
were emulated by drawing active state durations from a Poisson distribution (1/kactive = 1/Kdeactivate +
1/kon and kgeactivate = koft + kbleach) combined with photo-beaching. The time until bleaching was
drawn from a geometric distribution with a bleaching probability pyeach = Kbileach/kdeactivate- The rates
were chosen as ko = 1 frame ?, kpjeach = 0.15 frame ™, and ko, = kot/ (S0) px . The procedure
yielded a list of positions (g, yy) and active state durations per frame A € [0, 1]. The simulation uses

an integrated Gaussian Point Spread Function model,

+0.5 +0.5
g:/ dx/ dy N (yx,yy,crpsp), (4.1)
—0.5 —0.5

with a size of opsg = 1/(44/log2 NA). Here, A = 670 nm and NA = 1.4 were chosen. For all
active emitters, A X Ng was added to the image where we assumed a fixed photon yield of N = 50.
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An additional background of 10 photons was added. The end result was distorted by Poisson noise and
normalized to average signal-to-noise ratios of 1 to 5. Each movie had a length of 1500 frames. For
execution time measurements, 3500 frames were used. The execution time is corrected for reading the

movies into memory.

For quality assessment, we calculated the Jaccard index (JAC), the root-mean-square distance of lo-
calizations L5 from the ground truth £.,s (RMSE) and the Fourier ring correlation (FRC) between
the data and the ground truth as described by Nieuwenhuizen et al [ 106]. The Jaccard index is simply
the number of correct detections (true positives, TP) divided by the all detections (TP + false positives,
FP), plus the number of emitters the algorithm failed to detect (false negatives, FN):

o |£obs m ‘Cref| o TP

AC = =
J |Lobs | Lres] TP + FP + EN

(4.2)

Therefore, JAC = 1reflects a perfect result. The Fourier ring correlation determines how fast the spatial
correlation between the localizations and the ground truth declines. The reported value is the inverse

of the spatial frequency where the correlation drops to 1/7 of its maximum.
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Figure 4.6: Performance evaluation and experimental applications. (a) Jaccard index. (b) Root-mean-square
error. (c) Fourier ring correlation. (d) Measurement of execution time. (¢) dSTORM image of an axon initial
segment from a fixed mouse hippocampal neuron labeled with an Alexa647-tagged antibody against the N-
terminus of IV-spectrin (data recorded by Melanie Dannemeyer [ 107]). The inset shows the normalized

1D intensity projection along the green rectangle’s long axis. (f) Atto6ss-labeled DPPE diffusing in a BLM.
(g) Diffusion coefficients obtained for lipid bilayer experiments. Scale bars are 1 ym. [ This image has been
published in [93].]

Figure 4.6 (a)—(d) shows the result of the evaluation. TrackNTrace was used with the Cross correla-
tion (CC) and Wavelet filtering (Wavelet) candidate plugins for the first stage and the TNT fitter for the
second. ThunderSTORM and TrackNTrace, both using wavelet filtering, underperform in the correct
detection of emitters (JAC) when compared to rapidSTORM and TrackTrace cross-correlation at low
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SNR. However, the RMSE, which depends on the fitting after detection, is similar for all programs at
low SNR, indicating a similar spatial resolution. For high SNR, ThunderSTORM shows the lowest pre-
cision of localization, while TrackNTrace (CC) achieves the best result, slightly ahead of rapidSTORM.
The overall representation of the structure is similar in all cases, as shown by the FRC values. In terms
of execution time, TrackNTrace and rapidSTORM show similar performance, while ThunderSTORM
is one order of magnitude slower. As rapidSTORM is a highly optimized C++ based software, while
TrackNTrace is not optimized for one specific task and runs in MATLAB, we consider the framework’s
computational performance as high. In summary, this shows that TrackNTrace achieves competitive

performance for SMLM applications.

Figure 4.6 (e)—(f) displays the results acquired with TrackNTrace in two typical experimental sce-
narios: single-molecule localization microscopy and single particle tracking. In both cases the preview
feature helped a lot with the necessary optimization of parameters. Panel (e) shows a dSTORM image
of an axon initial segment from a fixed mouse hippocampal neuron labeled with an Alexa647-tagged
antibody against the N-terminus of fIV-spectrin (data recorded by Melanie Dannemeyer [107]). The
super-resolution image reveals the periodic structure of the spectrin-actin cytoskeleton, which is unre-
solved in conventional wide-field imaging. Fourier analysis of a line profile along the structure yields a
period of 180 — 190 nm for the structure, the same as previously reported [ 108 ]. We used the tracking

teature of TrackNTrace to remove non-blinking emitters, improving image clarity.

For particle tracking, lipids and membrane proteins labeled with Atto65 5 were incorporated into an
artificial black lipid membrane (BLM) spanned over a polytetrafluoroethylene pore 120 ym in diam-
eter. The labeled probes — either DPPE, Cytochrome Bgs, or a monomeric subunit of the ion channel
protein KcsA — were recorded while diffusing through the POPC/POPE BLM. The TNT NearestNeigh-
bor plugin was used in conjunction with the previewer for a quick optimization of the tracking param-
eters, while the u-Track plugin was chosen for the final tracking (Figure 4.6 (f)-(g)). The diffusion
coefficients obtained by mean-squared displacement analysis range from 9.1(1) pm?*s™! for the KcsA
monomer to 11.5(1) pm?s™! for DPPE in excellent agreement with earlier fluorescence correlation

spectroscopy measurements [109].

Summing up this chapter about TrackNTrace:

o TrackNTrace is an open-source MATLAB framework to support the development of fluores-
cence imaging applications like single-molecule localization microscopy or particle tracking.

« Its design is focused on straightforward extensibility through plugins, simplicity of coding, and
quick and rich feedback. The output of all stages of the processing pipeline can be visualized,
facilitating parameter optimization and the recognition of errors.

« Many state-of-the-art algorithms are available out-of-the-box.

« We demonstrate competitive performance and execution speed in SMLM applications compared
to established software. In addition, TrackNTrace allows analyzing and tracking of defocused

emitters, which is (to our knowledge) currently not possible with other programs.
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Other contributions

Hrough my Phd I have contributed in various other pieces of work. In this chapter, I will
briefly describe two of these projects, which are interesting for single-molecule imaging

and thus thematically very close to the rest of the thesis.

In section §.1 the brightness distribution of molecules flowing through nanochannels is character-
ized, quantifying the different phenomena that play a role in the measurement. A better understanding
of all contributions is helpful for one of our current projects, where we develop a method to compute
the ratio of differently labeled species (different fluorophore or number of fluorophores) within a mix-
ture, using only a camera-based measurement of the intensity distribution. This is of great interest for
different biological applications, for example, to determine the stoichiometry of molecular complexes

in biological environments.

Section 5.2 shows an imaging-based method to determine the 3D-orientation of the excitation and
emission dipole axis of single emitters. In general these axes are not parallel, which is known, for ex-
ample, from fluorescence anisotropy measurements[110]. To our knowledge, we presented the first

method which measures both orientations simultaneously in three dimensions [111].

5.1 MODELING THE BRIGHTNESS DISTRIBUTION OF MOLECULES IN NANOCHANNELS

As mentioned, we want to measure the intensity distribution of a mixture of molecules and disentangle
the contributions of differently labeled species. Similar measurements were already demonstrated in

1997 by Machara et al using a single photon counting avalanche photodiode to detect molecules elut-
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ing off an optically trapped microsphere in a well defined sheath flow through a microcapillary [112].
However, the required optical setup is very sophisticated, sensitive and hard to align, which prohibited
a broader application of the method. In contrast, we use a single-photon-sensitive EMCCD camera to
image molecules flowing through a nanochannel with a cross section of approximately (45 X 45) nm*
(Figure 5.1), restricting their movement to mostly one dimension. This also produces a well defined
flow and keeps molecules from diffusing out of the focal plane. The camera-based measurement is much
simpler to perform and allows a higher throughput of molecules, which reduces the necessary measure-

ment time. A manuscript is currently in preparation.

The location of each emitter is extracted using the TrackNTrace software (Chapter 4) and its inten-
sity extracted by integration of its pixel neighborhood. The measurement is background-corrected by

estimating the background from the border of the integration window and subtracting it.

I Measurement
— Shot noise model

Texp = 1ms

Normalized distribution

200 300 400 500
Number of Photons

Texp = 10ms

Figure s.1: Left: Intensity distribution of Cys molecules inside nanochannels with a cross section of (45 X
45) nm?. The distribution is significantly broader than expected for a Poisson distribution. Right: Camera
images at high exposure time show the channel structure. For low exposure time the molecules are essentially
static, which is preferred for the intensity measurements. Measurements performed by Hao Cheng.

As illustrated in the figure, the measured intensity distribution is much broader than expected for
a shot-noise-limited measurement. In this section we identify the different phenomena that influence
the distribution and build a model that describes the measurement process. An accurate model allows
disentangling the contributions of individual species in the distribution of a mixture if the model pa-

rameters can be determined with sufficient precision.

SHOT NOISE AND EMCCD MEASUREMENT

When measuring the brightness of fluorescent molecules with a perfect sensor, the resulting distribution

of collected photons is the well-known Poisson distribution

k

AT
pPoiss(k; )L) - Fe ? (51)

118



and the measurement is called shot-noise-limited. The Poisson distributions mean A is also its variance.
Itis noteworthy that adding multiple random variables with a Poisson distribution yields again a Poisson
distribution with a mean equal to the mean of all summed up variables. Thus, integrating a pixel area
still yields a Poisson distribution for the overall intensity and it is still Poisson if fluorescent background

is present.

An EMCCD camera enables low light imaging by amplifying the signal generated by photons hitting
the detector using an electron cascade (EM-gain) while leaving the sensor read-out noise at a constant
level. This electron multiplication process leads to a more complex distribution for the number of mea-

sured input counts n;, [48]:

L. exp (—l — M) + ﬁFx(21;4, 2s - mi/g) i >0

P (i X, 8,5, 0) = vane ('2"%)2 (5:2)
A exp (—A — ) nie <0

Here F,(21;4,2s - n;/g) is the non-central y* distribution with 4 degrees of freedom and the non-
centrality parameter 2s - n;./g, A is the mean number of detected photons, g the EM-gain setting of the
camera, s the sensor sensitivity and o the standard deviation of the readout noise. The distribution can
be expressed in terms of measured photons k rather than input counts, using a simple rescaling and

normalization.

pk(ka Avga S, 0) = Pic (k . ga Aaga S, 0) : ‘g (53)

When enough photons are collected by integration of multiple pixel values following this distribution,

the result can be modeled by a scaled and shifted Poisson distribution

2
krans - (s.4)

pEMcep (k1) = ppoiss(k + 4;21) =

Even for intensities as low as 100 photons the true distribution is approximated with negligible error.

The variance of this distribution is

VarEMCCD ()L) = 2)&, (55)

a factor of 2 higher than the shot-noise limited case. It is common to further simplify this to a Gaussian

distribution of the same variance and mean, again with negligible error.

BACKGROUND PHOTONS

The number of background photons b collected in the considered area is assumed to be independent
from the process that generates the signal € and follows the distribution of the EMCCD given above.

The variance of independent processes is additive, which yields

Var(e + b) = Var(e) + Var(b) (5.6)
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for the overall variance. The distribution of background photons is influenced by shot noise, the EM-

CCD measurement and the excitation profile, which is discussed below.

EXCITATION PROFILE

As the brightness of a fluorophore depends on the strength of its excitation, the average emitter bright-
ness varies spatially if the excitation profile is inhomogeneous. This variation leads to a broadening of the
intensity distribution of fluorophores in the field of view. In our experiments we use a typical Gaussian
excitation profile. Assuming the fluorophores are homogeneously distributed and that the excitation-
emission relation is linear (no saturation), the expected brightness i(r) € [0, Aax] of the fluorophores

at position r can be modeled as

202

exc

R . (57)

For a given brightness, the corresponding radius is given by:

A
—20%_In | — 8
Tocln | 3 — (5.8)
= r(c) = Oexc - v/ —21In(c) , c € [0, 1] (59)

with ¢ = 1 /Amax = Iexe(r) /Iexe(r = 0). being the ratio between the excitation power at r to its maxi-
mum in the focus. In the analysis, only molecules up to a maximum radius ., determined by the cutoft
parameter ¢ are taken into account. Limiting the analysis to a smaller area produces a more narrow his-
togram, but reduces the number of available samples. The probability that a randomly picked point
within a disc of radius 7,, has radius r is

2mr 2r

P = = o (s.10)
f 2xr dr "max
0

Random variable transformation yields the distribution of the expected average brightness

i dr(i) — 20, _ l~1:12c) lmax <A< Amax

PeXC(i§lmaxac) :P(”( )) ) dh = (5.11)

Mmax 0 otherwise

Figure 5.2 shows the resulting distribution for different cutoff parameters. With increasing radius
(lower c) the distribution shifts to lower intensity, as there is more area that is excited with low power.
For c close to 1, the distribution can be approximated as uniform. The average expected brightness A is

simply at the center of the distribution ey - “3< . The variance of a uniform distribution spanning the
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Figure 5.2: Influence of a Gaussian excitation profile on the measured intensity distribution. Molecules are
only picked from a circular area around the focus, which’s size is defined by the cutoff parameter c. At the
border of the area, the intensity drops to ¢ times the maximum.

interval Axis 5 Ax which yields

1 , 1/ 22 >
Varggc (A, ) = — (Apax - (1 —¢))" = — (1 —c¢ . 12
bl 0 = 35 O (10 = 35 (21,09 (s.12)
Although the power of the excitation (and therefore emission) influences the strength of the other
sources of noise (e.g. background, shot noise, photoblinking), for small cutoff radii the excitation is
almost constant and we can approximate the processes as independent. In this case, the variances sim-

ply add up.

PHOTOPHYSICS

We model the photophysical behavior of fluorophores using a two-state model, in which it is either in
the “on™state (emitting photons) or in the “off -state (dark state). The rates of transition between the
states are k. (offto on) and k_ (on to off). This two-state system is a special case of a Continuous Time
Markovian Chain (CTMC). The distribution of the occupation time T,, € [0, Texp) of the on-state

within exposure time Ty, is given by [113]

Pon(Tom Texp7 k+7 = (5'13)
k_
—k_Ton— k+(Texp Ton) T 8 T
{k+ + k, exp on k+ Tk ( )
k, k_k+1;n k ko (T ap
k_ki T on Texp — Ton
" k+ +k_ Texp k+ + k \/ \/ + P )

2kiko
2 k k on ex - Ton )
T e ki ko ( \/ - i >> }
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with the modified Bessel function of order r

00 2k r
Z (=/2) +- (5.14)

k!
— kl(k+r)!

The expected accumulated on-time is

ky
ks +k_

<T0n> =

: Texp- (515)

The rate of emitted photons per time is constant in the on-state, giving a linear relationship between the
time spent in the on-state and the expected number of emitted photon A during that time. If the average
expected number of emitted photons within the exposure time is A, the distribution for the expected

number of photons can be expressed as

Pblink(i; Texpa k-i—a k—a A) =

1 1 ki Ak
pon (z R Togs T by ke ) ke, ke T < T (6
0 otherwise

This can be easily combined with other effects, like shot noise, by integration. For example, the num-

ber of photons detected by an EMCCD (using the approximation above) is modeled by

o
thnk+EMCCD(k) = /Pblink(l; Texp; ki, k_, l) 'PEMCCD(k; 7‘) dA (5-17)
0
The average occupation times of the states 7,, = ki_, Ton = ﬁ are the inverse of the rates. The length
T . . C . . - 1 1
of individual events follows a simple exponential distribution pon/og(7) = o XP (— — ‘L'). A

simulation of the two-state process was performed drawing random samples for the individual occupa-
tion times from their distributions and showed perfect agreement with the theory. Calculation of the
analytical distribution using the Bessel functions built into MATLAB leads to numbers too small for
processing even on 64-bit-systems if the ratio between exposure time and on-/off times becomes too
high (approx. 1ms to 1ps). For this reason, simulations are used for illustration in Figure 5.3, which

compares pure shot noise with a dye subject to photoblinking according to the model above.

It is easy to see that photoblinking visibly broadens the measured distribution, even for average oc-
cupation times more than 100-fold smaller than the exposure time. Note that distributions are much
broader for higher values of the ratio 7og/7on. However, this is easily explained: The mean number of
photons is fixed to 300 in all cases. If the fluorophore spends less time in the off-state, it must have a
higher instantaneous brightness in the on-state. Thus, there is a possibility to emit many more photons
compared to a dimmer dye if the fluorophore, by chance, spends along time in the on-state. As the anal-
ysis shows, photoblinking can have major effects on the brightness distribution. It is only negligible if

the blinking time-scale is roughly 1000-fold below the exposure time and the average occupation times
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Figure 5.3: Influence of the average occupation times Ty, Tog Of the on-/off-state in a two-state blinking
model on the measured intensity distribution. The red curve shows pure Poisson noise for comparison. The
average photon count is fixed to A = 300 photons. The occupation times of states are drawn from the cor-
responding exponential distributions and integrated within the exposure time Tex, = 1ms. Shot noise is
added by drawing the number of measured photons from a Poisson distribution with an average set by the
total occupation time of the on-state during exposure.

of the off- and on-states are comparable.

As the overall occupation time is the sum of many statistically independent on-states, its distribution
is close to a Gaussian. To incorporate the blinking into our model, the variance of the distribution is
derived as follows. Let x(t),x € {0, 1} describe the state of one molecule over time with x(t) = 1

representing the on-state and x(¢) = 0 the off-state. Within one exposure time, the expected occupation

time is
Texp Texp
K,
(T,) = / x(t)dt) — / (5(0) dt = T (5.18)
0 0
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k+

. is the chance to observe the molecule in the on-state. The variance of this estimator is

as

Texp exp exp

Var (T) :< / ©(t) dt — (To,) >: / at / (Ox()) dF — (To)? . (5.19)

0

This can be rewritten using the stationarity and time-inversion symmetry of the process

Var (Top) = 2 / dat / (x(0)x(7)) dt — (Ton)? | (5.20)

The value (x(f)x(¢)) is given by the chance to observe the molecule in the on-state at t = 0 times the

conditional probability to still observe it after at time t = 7, which is given by

(+(0)x(r)) = ( L <>) (s21)

ket ke \kr ko ke otk
1 — T
= ey K ke ). (522)

Solving the double integral for the first term simply yields <Ton>2, leaving the variance

Texp Texp —t

2k k_
Var (To,) = ﬁ-/dt / e (ke tk-)T qp (5.23)

(ky + k-
0 0
o 2kik Texp(ky + k_) + e Fetk)Tew (s20)
(ky +k_)? (ky +k_)? ’

The number of expected photons has a linear relationship with the occupation time in the on-state. Thus,

the variance of the expected number of photons under influence of photoblinking is

2 ki +k_

Varblink (Aa k+7 k—) Texp) = k T
+ L exp

S Var (Ton) = A7 - ( )2 - Var (Toy) (5.25)

{Ton)

where A is the average expected number of emitted photons.

OVERALL VARIANCE OF THE BRIGHTNESS DISTRIBUTION

Compiling all influences on the brightness distribution, we model the following experimental scenario:
A molecule is detected at a random position r and excited by the local laser intensity Io;.(r). Within
the exposure time it is subject to photoblinking and the average number of emitted photons depends
on the excitation intensity, as well as on the time T, it spends in the on-state. The number of finally
emitted photons for this specific molecule is random, following a Poisson distribution (shot noise),
and further randomness is added by the detection process via an EMCCD camera. At the same time,
a certain number of background photons is collected, also depending on the local excitation intensity,

shot noise and the EMCCD measurement. Assuming that the influence of excitation and photoblinking
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on the distribution of the average number of expected photons is relatively small, the distributions of
the EMCCD detection belonging to the different averages will be very similar. In this case, we can
approximate the final number of photons as the sum of different independent noise sources and the

final variance is just the sum of the individual variances:

Varlnt (la b7 G k+7 k*a Texp) =
Vargmccep (l) + Vargmccep (b) + Varg, ()h C) + Vargy. (b; C) + Varpjink (7‘; ki k_, Texp) =

2(A+b)+i(M-(1—c)>2+

12\ 1+4c¢ (r6)
5.2
2 ket ke 2 2kiko Top(ky + k_) + e (e k)T _
k+Texp (k+ + k—)2 (k—i- + k—>2

with A and b the average number of photons detected from the fluorophore and background respectively,
¢ € [0, 1] the ratio between the excitation intensity at the radius of a circular area around the maximum
to the excitation intensity in the focus (only molecules within this area are considered for the analysis),
k; and k_ the transition rates from the off- to the on state and vice versa, and the exposure time Teyp.
After subtracting the background, the final distribution can be approximated by a Gaussian with the
mean A and the standard deviation o7 = \/ Varp (4, b, ¢, kp k—, Texp)-

1 T
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Figure 5.4: Nanochannel measurement of Cys molecules compared the theoretical model. The exposure
time is Texp = 1 ms. Molecules were only picked up from a circular area defined by ¢ = 0.8S. Background
subtraction was performed for every molecule individually and the average background b ~ 83 was used
for the model. We estimated the state lifetimes to 7o, ~ 12 s, To ~ 6.7 ys using fluorescence correlation
spectroscopy. Measurements performed by Hao Cheng.

Figure 5.4 shows a measurement of Cys molecules inside the nanochannel. The measurement was
performed by Hao Cheng. Molecules were only picked up from a circular area defined by ¢ = 0.85.
Background subtraction was performed for every molecule individually and the average background
b ~ 83 was used for the model. We estimated the state lifetimes using fluorescence correlation spec-
troscopy (FCS). The obtained values were sensitive to the cutoff (fastest time-scale) that was used for
the FCS evaluation, giving 2.3 ps to 12.0 ys for 7,, and 2.0 ys to 6.7 us for g for cutoffs between 0.1 ys

and 1.0 ys. This is caused by unknown dynamics that we observed on the fastest time-scale. Neverthe-
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less, all combinations of values broaden the observed distribution and fit the curve reasonably well. We
choose 7o, /& 12 s, Tog ~ 6.7 ys for the visualization in Fig.s.3, as the fast time-scale has the lowest
influence for the largest cutoff'. Our model matches the data well and explains the observed broadening

of the intensity distribution.

In practice, the photoblinking of fluorophores in the channel is hard to predict. When differently
labeled species (different fluorophore or number of fluorophores) should be distinguished in a mixture,
it has been proven useful to first measure the individual species under the same conditions, flushing the
channel with buffer between each measurement. The individual measurement are fitted with a Gaussian
model to extract the average brightness and the width of the histogram. This information is used when
fitting the intensity distribution of the mixture, giving an accurate estimate of the fraction of each species
in the sample. We are currently preparing a manuscript demonstrating this type of measurement. More

information can be found in the PhD thesis of Hao Chengz.

Other phenomena that influence the shape of the intensity histogram include diffusion, bleaching,
saturation by high excitation and multiple fluorescent states of the fluorophore. In our case, we reduced
the influence of diffusion by choosing a sufficiently large integration area for the intensity measurement.
This is a trade-off, as we also collect more background photons, but is much easier to model. Bleaching
and saturation were avoided by an appropriately low laser intensity. Note that bleaching has a larger
influence when trying to distinguish samples labeled with different numbers of fluorophores, as the
chance that some of the fluorophores bleach during exposure increases with their number. Multiple
fluorescent states can in principle be modeled in the same way that we used here for the two-state system.

However, care has to be taken to avoid over-fitting the experimental data.

To sum up this section about modeling the brightness distribution of molecules in nanochannels:

« The measured brightness distribution is much broader than a shot-noise limited model.

« Major contributions to this broadening are the background signal, the EMCCD measurement

process, the inhomogeneity of the excitation profile and photoblinking.

« Surprisingly, photoblinking is still relevant to the measurement, even if the lifetime of the on/off-

states is multiple hundred times faster than the exposure time.

« The final model fits well to the experimental data.

!Larger cutoffs are not advisable, as the cutoff must be smaller than the time-scale of the observed blinking and we
expect Cys to blink on the ys time-scale.

>Hao Cheng, “Probing Molecular Stoichiometry by Photon Antibunching and Nanouidics Assisted Imaging in Solu-
tion”, Phd thesis, University of Géttingen. Publication expected for 2017.
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5.2 SIMULTANEOUS MEASUREMENT OF THE THREE-DIMENSIONAL ORIENTATION OF EX-

CITATION AND EMISSION DIPOLES OF SINGLE MOLECULES

Fluorescent organic dyes are well described by an ideal electric dipole emitter, which is characterized
by an oscillation frequency and the vectorial electric dipole moment, which captures the strength and
orientation of the dipole. In more detailed models, each fluorescent molecule is modeled by a superpo-
sition of two dipoles, one describing its emission and one its excitation. The axes of these dipoles are in
general not parallel, which isknown, for example, from fluorescence anisotropy measurements[ 110]. As
an improvement over previous techniques, we developed a method to measure the three-dimensional
excitation and emission dipole orientations of single-emitters simultaneously. This enables us to mea-
sure distributions of the orientations in an ensemble of molecules. My contribution to the project fo-

cused on the evaluation of the single-molecule patterns.
The work presented in this section was published in the article [111]:

Karedla, N.; Stein, S.C.; Hihnel, D.; Gregor, L; Chizhik, A.; Enderlein, J.; “Simultaneous Mea-
surement of the Three-Dimensional Orientation of Excitation and Emission Dipoles”, Physical

Review Letters, 115, 173002, 2015.

The measurements are performed as follows: The linearly polarized light from a white light laser is
passed through a liquid-crystal mode converter to generate a radially polarized beam. The beam is re-
flected into an 1.49 N.A. oil immersion objective by a non-polarizing beam-splitter, which focuses it
onto the surface. In the first step of the measurement, images of the excitation dipole are generated by
scanning the sample using a movable piezoelectric stage. Defocused images of the emission dipole are
recorded in the second step, by sequentially parking the excitation focus on each registered molecule’s
position and guiding the emitted light onto an EMCCD camera using a replaceable mirror. Both mea-
surements, radially polarized scanning as well as defocused imaging, generate images that are sensitive

to the orientation of the recorded dipole [95, 114].

For the evaluation of the acquired images, we performed wave-optical calculations to compute a dis-
crete set of theoretical excitation scan images for different azimuthal, ¢ and polar angles, 6, in 5° steps. A
least-squares pattern matching was used find the closest matching template for each molecule’s intensity
pattern, yielding a rough estimate of its position and orientation [96]. The estimate is refined using a

Poisson-noise-based maximum likelihood estimation with the log-likelihood function
l=— Z{I(t) -log[A P(r|tp, ¢, 0) + B] — [A P(x|rp, ¢, 0] + B]} (5.27)

where I(r) is the measured image, P(r|rp, ¢, ) a normalized theoretical pattern, A the integrated inten-
sity, B the per-pixel background intensity and rp the center position of the pattern. The optimization
is executed using a nonlinear conjugate gradient algorithm [56]. In contrast to pattern matching, the

produced parameter estimates are continuous, achieving higher precision without the computational
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Figure s5.5: Excitation patterns (1st row) of five Atto655 molecules spincoated on a glass coverslip and their

defocused images (3rd row, 0.9 um defocusing) together with the corresponding fitted patterns (2nd and 4th

row respectively). The last row is a visualization of the extracted dipole orientations. The excitation scan pixel
size is 50 nm, whereas the camera pixel size is 60 nm. [ This image has been published in the article [111].]

cost associated with a much larger template library. Pattern matching is still required to get rough initial
guesses however, as the function to optimize is not convex, but describes a very complicated proba-
bility landscape. The presented evaluation was integrated into the TrackNTrace software (Chap. 4), to

simplify similar experiments in the future.

Figure 5.5 shows recorded excitation and emission patterns of Atto655 molecules spincoated on a
glass coverslip together with the fitted patterns. The total number of collected photons is on the order
of a few thousand for the excitation pattern and a few hundred thousand for the emission pattern. While
the overall quality of the fit is quite good, the measured patterns show a small asymmetry that can not be
captured by our model. This is probably caused by a residual misalignment of the imaging system, as the
influence of aberrations increases with the defocusing distance, making even small errors visible. The 0
angle of all molecules is close to 90°, indicating that they lie almost flat on the surface after spincoating.
We applied a bootstrapping algorithm to estimate the random error of the fit: New synthetic images
are created from the final fitting parameters and Poisson noise is added. Then the maximum likelihood
estimator is used with random initial values to fit one thousand of the resampled images. The standard
deviations of the resulting distributions are about £=2° on average for the excitation patterns and 4-0.4°

for the emission patterns for both angles.

Figure 5.6 shows the distribution of the angle f between both dipole axes for Atto655 on glass and
Alexa488 in PVA. The Atto molecules show lower bootstrapping errors due to a higher photon output
and defocusing value (0.9 ym compared to 0.6 ym for Alexa488). The determined 6 values for Alexa488
vary between 0° and 90°, indicating that there is no preferred orientation within the polymer, in con-

trast to the orientation parallel to the surface that was observed for the spincoated Atto molecules. We

128



60

o Atto655 on glass

o Alexa488 in PVA
50+ } }
40, 8 %ﬁ }
%30{1 H } % } %% { % ?
Zzoi}w uf s A
h%

1]
¢ %‘I’ o ﬁ ﬂ’qﬁ s ﬁ
10} b @ % b % b
® %, M} b
0! : L : 0 —
0 10 20 30 40 50 0 0.1 02
Molecule # Density

Figure 5.6: Measured distribution of the angle ff between the emission and excitation dipole axes for 2§
Atto655 molecules on a glass coverslip and 49 Alexa488 molecules embedded into a polymer film. The error
bars were estimated by bootstrapping. [ This image has been published in the article [111].]

extracted mean values of 8, = 14.6° for Atto6ss and 8, = 22.5° for the Alexa488 dye by fitting
the data with a Poisson distributions. To validate the results, we performed conventional time-resolved
anisotropy measurements on bulk solution, which yielded 14.9° and 19.9° for Atto655 and Alexa488
respectively, in good agreement with the imaging-based values. However, the new methods measures
the full distributions instead of averages, which reveals a broader spectrum of values for the Alexa dye

in PVA than for Atto on glass.

To sum up this section about the measurement of the emission and excitation dipole axes of single

molecules:

« Images of the excitation dipole are recorded by scanning the sample with a radially polarized laser

beam, while defocused imaging is used for the emission dipole.

« Patten matching with a discrete set of theoretical dipole images is used for a rough estimate of the

orientation. This is used as an initial guess for iterative maximum likelihood estimation, yielding

continuous parameter values.

« We measured the distribution of the angle between the axes for Atto655 molecules on a glass
coverslip as well as Alexa488 in PVA. The estimated mean values are in good agreement with
time-resolved fluorescence anisotropy measurements. We observed a broader spectrum of values

for the Alexa dye.
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Conclusion

N this thesis, I have introduced several improvements connected to the fields of single-molecule
and super-resolution imaging, mainly concerning Super-resolution Optical Fluctuation Imaging
(SOFI). As the study of its convergence properties shows, 2nd order SOFI requires only a small

amount of frames to be recorded and works well even for densely labeled samples. Higher orders do,
in principle, provide better resolution, but require a lot more frames to converge and are more sensitive
to the emitter density, which limits their performance in practice. Interestingly, the image quality at
high densities improves, even for higher orders, when the data is pre-processed to extract higher resolu-
tion information (Sec. 2.7.3). Potentially, this phenomenon could be used to widen the applicability of
higher order SOFL With Fourier SOFI we presented a new technique to generate super-resolved images
on a finer pixel grid than the original camera recording. In contrast to established algorithms relying
on spatial cross-cumulants, this method is practically free of artifacts and does not require any post-
processing corrections. Next, the influence of noise on zero time-lag SOFI images was investigated
and an algorithm was shown to correct for the noise-dependent bias. This extends the applicability
of auto-cumulant SOFI — which correlates values only in time, not in space — to recordings where the
time-scale of photoblinking is on the same order as the exposure time. However, cross-cumulant tech-
niques might achieve a better SNR in some scenarios, indicating the need for a detailed comparison
of these different methods. We also showed how the microscope PSF can be estimated from typical
SOFI data. This works best with a TIRF microscope, where only emitters in a narrow axial range are
visible, as variations in the axial distance cause errors. However, this issue is resolved if a 3D imaging
system is employed for SOFI [28], which allows a three-dimensional reconstruction of the PSF. The
second to last part of Chapter 2 deals with improving the resolution of SOFI images. We developed a
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new method, termed Fourier Preweighting, which preprocesses the original data in the Fourier domain,
resulting in an increased resolution after the SOFI calculation, outperforming current post-processing
techniques as well as conventional iterative deconvolution schemes. As mentioned, this improves the
convergence properties of higher order calculations at increased particle density. A related algorithm is
presented which automatically matches the degree of resolution enhancement to the data quality, avoid-
ing artifacts. While it performs well on both simulated and experimental data, the algorithm is partly
built upon empirically derived measures and could be improved by a thorough theoretical examination,
which was out of the scope of this thesis. In the final section, we show that SOFI can be successfully
applied to cells labeled with carbon nanodots, a fairly new type of fluorophore. Carbon nanodots are
bio-compatible and cheap to make, but difficult to use with most other super-resolution methods. Ad-
ditionally, we performed an analysis of their photoblinking behavior, revealing a power law distribution
for the occupation time of the dark state. This suggests electron transfer, rather than triplet-state dynam-
ics, as the main cause of their fluorescence intermittency. Currently, the most exciting development in
SOFI is the introduction of 3D imaging systems [28], which allows the simultaneous observation of
three-dimensional samples with a wide-field microscope. This enables the study of dynamic processes
in live cells and could be enhanced by extending the here presented improvements to 3D data, which is

in many cases straightforward.

In the third chapter we demonstrated a drastically increased photostability and overall photon yield
of Atto647N imaged at liquid nitrogen temperature of 89 K. The enhanced photon yield could be ex-
ploited by a newly developed evaluation scheme to localize single molecules with sub-nanometer pre-
cision. Furthermore, we proposed a setup based on polarized excitation and emission to resolve spec-
trally identical, non-blinking fluorophores spaced only few nanometers apart and validated our concept
in simulations. We hope that our method allows easy and reliable distance measurements, in contrast to
currently available methods that use less than 1% of the sample. Although the necessary setup was built
and calibrated, the experimental verification is still pending due to a lack of suitable dual-label samples,

which survive the preparation process necessary for cryogenic measurements.

We also developed TrackNTrace, an open-source MATLAB framework to support the development
of fluorescence imaging applications. Its design is focused on easy extensibility through plugins, sim-
plicity of coding, and rich visual feedback. The output of all stages of the processing pipeline can be
visualized, facilitating parameter optimization and the recognition of errors. We demonstrated compet-
itive performance and execution speed in SMLM applications compared to established software and
include many state-of-the-art algorithms out-of-the-box. TrackNTrace was not only used for the devel-
opment of many of the data evaluation algorithms presented in this thesis, but is already employed by

different research groups in Europe.

Finally, Chapter s presents two techniques reliant on single-molecule imaging. We developed amodel
for the intensity distribution of fluorescent molecules flown through a nanochannel and imaged by a
camera. As a surprising insight, we learned that photoblinking of the fluorophore has considerable in-
fluence on the distribution, even ifits time-scale is 100 times faster than the exposure time of the camera.

We are currently developing a method to accurately disentangle the contributions of differently labeled
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samples from an intensity measurement of a mixture. In the second project we demonstrate a simulta-
neous measurement of the excitation and emission dipole axes of single molecules. This is achieved by
scanning the sample with a polarized laser beam followed by recording defocused images of the previ-
ously detected molecules. We measured the ensemble distribution of the angle between the excitation
and emission axis for two common fluorophores in different environments, and verified our results with

time-resolved fluorescence anisotropy measurements.

The progress of fluorescence microscopy today depends first and foremost on clever new experimen-
tal techniques and the development of advanced data processing methods. In this thesis, I focused on
the latter and introduced various improvements to Super-resolution Optical Fluctuation Imaging, cryo-
fluorescence microscopy and single-molecule imaging. I hope that the presented work illustrates how
smart new ways to handle the acquired data can improve upon techniques without the need to buy ex-

pensive new hardware or change long-established practices and protocols.
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Additional figures and tables

o
3

T =8 | 20
. * 1=25 X _—
A 06 x 1=50 i —noise-less
2™ x 1=100 !
¥ * 1=200 !
¥ 05 x 1=400 _ S
5 x 1=800 T |
5 o4 x 1=1600 s |
(2] x —noise-less =] !
E . . g 104
\
~ 0.3 . s |
= x ; \
"c-“‘ x X < E ‘I
® 027 oy i
x x r
o * x E X x ° \\
S x X x x
< 0.1p* X % x"xxxx Xy x\\
x X X x XX %X x x x e -
xx)’zxxx:"xxxxx,(xxxxxxxxx" et el X
X% % X X x
0 —— e 0 : ‘ ‘
0 05 _1 1.5 2 2.5 0 500 1000 1500
Time [frames] x 10* Emitter brightness | [photons]

Figure A.1: Left: Pixel-averaged root mean squared error for the 2nd order cumulant for movies with differ-
ent emitter intensity I subject to Poisson noise. The imaged structure is equivalent to the movies shown in
Fig. 2.9. The blinking dynamics follow a two-state model with 7,, = 1.67 frames, Tog = 2.5 frames. Itis
easy to see that convergence takes longer for dimmer emitters. Right: SOFI standard deviation against the
emitter brightness. The standard error appears to be inversely proportinal to the emitter intensity. Note that
the error values computed here do not compare well to the noise-free case, as the spatial correlation intro-

duced by the PSF leads to a substantially better image than expected by the high variance of individual pixels
(see end of Sec. 2.3).
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I=25 I=50 I=100 I=200 I=400 I=2800 Noise-less

o,2nd order  19.42 9.66 5.25 3.24 2.23 1.72 1.28

I=25 I=50 I=100 I=200 I=400 I=800 Noise-less

T,ox,2nd order 37700 9333 2755 1048 497 294 164

Table A.1: Pixel-averaged SOFI standard deviation ¢ and number of necessary frames T o, to converge to
the 10% error margin Erms(T10%) = 0.1 when simulating movies as shown in Fig. 2.9 subject to Poisson
noise. SOFI images were zero-lag corrected (see Sec. 2.5) before calculating the error. The corresponding
convergence curves are shown in Fig. A.1. Note that the error values computed here don’t compare well to
the noise-free case, as the spatial correlation introduced by the PSF leads to a substantially better image than
expected by the high variance of individual pixels (see end of Sec. 2.3). Thus, the true image quality at a given
number of frames is much better than expected by the error value given here.
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Computation of joint cumulants

The n-th order joint cumulant K,,(X;, X; . . . X,,) of n random variables X; is a function that it is nonzero
only if all of them are pairwise correlated. The formulas for the joint cumulants can be computed using
an easy algorithm which is explained here. Formulas for ordinary cumulants can be extracted from joint

cumulants by setting all arguments equal X = X; = - - - = X,,.

We quickly repeat the computation of the 2nd order joint cumulant from Section 2.2. Joint cumulants
are derived using the joint moment generating function ¢, which depends on the sum of all random

variables X; with individual prefactors t;. For two variables, the joint moment generating function is
C(tl, tz) == <eXP(t1X1 + t2X2)> (Bl)
Its logarithm is the joint cumulant generating function:

g<t17 tz) = 10g C(tl, tz)
= log(exp(t1 X1 + £:X2))
= log(exp(t1X1) - exp(2X2))

=tk
= log Z%Qﬁl)(@) (B.2)
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The joint cumulant is composed of all terms proportional to t; - t, - ... t, in the power series of this
expression. The power series of the logarithm is log(1 + x) =~ x — Jx* + %x“” — .... Note that in the
two-variable-case, terms proportional to t; - t, can only exist up to the second order in the expansion,

which is given by:

= 2,k
loge(ty, ) = S0 0x0) + 0 20) + 3 03 by
— ! — nlk!

(B.3)

Only the underbraced parts contain terms proportional to t;,. Collecting these, we get for the joint

cumulant of both variables:

Ky (X1, X,) = (X1XG) — (X1)(Xy) (B.4)
Settting X; = X, = Xyields

K (X, X) = (X)) — (X)? = x(X), (B.s)

which s the second order cumulant for one variable, as calculated before. Computing the joint cumulant

in this way quickly gets messy, however. For example, for three variables we get:

N
log(e" ™ T4 76%) = log ( > <X'1’X’§X’3>>

n,k,]=0
= log (1 + Z Z )+ Z o (X3)
OO: P " (B.6)
tit3 213 k

+ Z 'k' Z ﬁ(XTX@ + Z M@@%)

n,k=1 n,k=1 nk=1

— G55

+ ; o 3 (X XExL)

n,k,/=1

For two variables only terms in the Taylor expansion up to the second order (x*) could contribute to
the cumulant. For three variables, we must do this calculation up to the third order, which contributes

the part proportional to (X;)(X;,)(X3) coming from the multiplication of the first three sums in the
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equation above. Doing this, we get for the joint cumulant of three variables:
K3 (X, X, X3)
1
2
= (X1XoX3) — (X1X)(X3) — (X1X3) (Xa) — (XoX5) (X1) + 2(X1) (X2) (X3)

— (065) — 5 -2 (X)) + (X)) + (X)) ) + 5 - 600) () (X5)

Looking closely we can spot the pattern for constructing the cumulant. We search for terms propor-
tionaltot; - t, - .. .t,, which implies that every X; must occur exactly once in each of these terms. The

steplog> [...] = log(1+ >_]...]) in equation (B.6) yields sums containing averages of all possible

combinations of the X;. This is similar to the power set

P({XI’X27X3}) = {{}7 {Xl}v {X2}7 {X3}7 {XhXZ}v {X17X3}v {X27X3}7 {X17X2aX3}} ) (B'7)

where each subset corresponds to an average (®). These averages are the building blocks of the cumulant
and must be combined by multiplication to assure that every X; occurs once. This multiplication hap-
pens when inserting the sum of all averages x in the Taylor expansion log(1+x) &~ x — 4% + %x3 -

The exponent n of x” tells us, how many elements of the power set we are allowed to combine. Example:

Combinations containing all X;:
x — One element — (X;X,X3)
x> — Two elements — (X;X5)(X3) + (X1 X3) (X)) + (X, X3) (X;)
x> — Three elements — (X;)(X,)(X;3)

The prefactor, i.e. how many times a combination of n elements exist, is given by the multinomial coef-

ficient
" Sp—_ (B.3)
ki, ka, ... km kilky! .. k! '
which gives the number of occurrences of x}' - x5 - - - - &% if one expands the term x = (x; + x, +

-+ + + x,,)". In our simple case higher powers of elements are not allowed, i.e. k; € {0, 1} Vi and the

multinomial coefficient is simply reduced to n!. Following this we get:

x — Oneelement — 1!+ (X;X,X3) =: 1! - M; (X1 X,X3)
x> — Two elements — 2! - ((X;X5) (X)) + (X1 X3) () + (XX3) (Xy)) =: 2! - My(X, X, X3)
x> — Three elements — 3! - (X;)(X,)(X3) =: 3! - M3(X;, X,, X3) ,

where M; is the sum of all possible combinations of j elements where each X; occurs exactly once. An

additional prefactor with alternating sign comes from the series expansion of the logarithm log(1+x) ~

149



x— 36+ %xS — ... itself. Combining everything, the cumulant of n random variables is given by:

n

K, (Xy,...,X,) = Z(—l)i*% il My(Xy, LX) (B.9)

= Z(_l)iil (=D Mi(X, - X) (B.10)

i=1

As an example, we can compute the cumulant of four signals a, b, ¢, d (for clarity we use these instead

of indices). First we build the sum of all possible averages:

4
(a) + (b) + (c) + (d) (1 = 4 possible combinations

4
+ (ab) + (ac) + (ad) + (bc) + (bd) + (cd) (2 = 6 possible combinations

4
+ (abc) + (abd) + (acd) + (bcd) (3 = 4 possible combinations
4 : o
+ (abcd) <4> = 1 possible combination

Like before, we combine one/two/three/four elements under the constraint that each X; must show

up exactly once in the result:

x — One element — 1! - (abcd)
#* — Two elements — 2! - ( (a) (bed) + (b) (acd) + (c) (abd) + (d) (abc)
+ (ab) {ad) + {ac) (bd) + (ad) (bc) )
#* — Three elements — 3! - ( (@) (b {cd) + (a) {c) (bd) + {a) {d) (cb)
+ (b) {c) (ad) + (b) (d) (ac) + (c) (d) (ab) )

x* — Four elements — 4! - (a) (b) (c) (d) ,

Combining this with the prefactor from the series expansion and summing everything up, the joint cu-
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mulant of four signals is given by:

Ka(a, b, c,d) = 11- {abed)
. % L2l <<a> (bed) + (b) (acd) + (c) (abd) + (d) (abc)
+ {ab) (cd) + (ac) (bd) + (ad) (bc) )
4230 () 0) (o) + (a) (0) o) + {a) () ()
(b} (e) (ad) + (b) {d) {ac) + (c) () (ab) )
1

@) (00 ()

(B.11)

Settinga = b = ¢ = d = X, we get the 4th-order ordinary cumulant:
k(X)) = Ky(X, X, X, X) = (X*) — 4 (X) () = 3(X2)" + 12(X) (X)” =6 (X)*  (B12)

The rules presented here can be implemented into a simple computer program that computes the for-

mulas for arbitrary orders if required.
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Theoretical cumulants of a two-state model

SOD
k_ k.

Soff

Figure C.1: Simple two state model of an excitable system with transition rates k4 and k_.

A simple but in many cases sufficiently accurate model for a fluorophore assumes that the fluorophore
can take one of two states: in the “on™state the fluorophore emits photons, while in the “off state it
stays completely dark. For every time interval At there is a fixed chance that the fluorophore switches
its state, given by the transition rates k; and k_ (see Fig. C.1). To derive the cumulants, we will make
use of the ergodicity of our system, i.e. that the time average (F), is equal to the ensemble average (F) .
Looking at an ensemble of molecules, let S, and S, be the ratio of molecules occupying the on- and oft-
state respectively. As molecules are neither generated nor destroyed, their number is conserved giving
Son 1+ Soff = 1. The behavior of an ensemble of fluorescing two-state molecules can be encoded in a very
simple differential equation. We will now solve that equation for the continuous time and the discrete
time case. In the latter, the fluorophore state is frozen during the time interval given by the discretization

and can only change state between intervals. This is useful, because the discrete dynamics are simpler

to simulate using a computer.
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C.1  CONTINUOUS TIME DIFFERENTIAL EQUATION

The change of the occupation ratio of the excited state S, is described by

dSon
dt

= —k_Son + ki Sogt (Ca1)

Using the conservation of molecules S,, + Sog = 1 = Sog = 1 — S, this becomes:

dson
dt

= k-‘r - (k-‘r + k—)Son (CZ)

Solving this inhomogeneous differential equation combining the homogeneous solution with an inho-

mogeneous one:

homogeneous solution:

dj:n +(ky +k_)Son =0 = Sou(t) = A - e~ etk ©3)
inhomogeneous solution:
general solution:
Son(t) = ﬁ 4 A e (rtko)e (C)

Using the initial condition that every molecule is excited, i.e. S,,(f = 0) = 1, the occupation ratio of

the on-state over time is given by:

k. k
S..(t) = — (gt C.6
(8 btk Tk (Cé)

C.2 DISCRETE TIME DIFFERENTIAL EQUATION

The discrete time case starts similar to the continuous one, but can not be solved by integration. One

iteration in time is modeled by:

Son’ = Sen + k4 Sog — k_Sp, = ki + S (1 — (kg + k) (C7)
=b+Son-a with b=k, a=[1— (ky +k_)] (C.8)
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Aninhomogeneous discrete differential equation of the type x,, = a-x,_;+b canbe solved by recursion:

X, =ad-X,_1+Db
=a x,,+(a+1)b
=a x, 3+ (@ +a+1)-b
:a"-x0+(a"_l+a"_2+---+a+ll-b

(.

~~

If |a| < 1holds, the underbraced part is a geometric series with the known solution

giving us the solution to our differential equation

Xo+n-b ,a=1
xﬂ: n
a"xg+ S22 b Ja#l

a—1

Replacing the general notation with our specific problem, we get:

[1— (ks + k)] =1
1—(ky +k )] -1
T L ky

Sf)n = [1 - (k-‘r + k—)}thn +

=1 — (kg +k_)]FS2 —
[ <++ )} on k++k, k++k,

Using the initial condition that every molecule is excited S, = 1 gives

k k
tzl— 7t. 1_ + +
o= 1= G+ ) (12 0 )+ g
k. k.

TR etk

L= (ke + )

(C.9)
(C.10)
(C11)
(C.12)

(C13)

(C.14)

(C.1s)

(C.16)

(Ca7)

(C.18)

Comparison between the continuous and discrete time solutions reveals we can switch between them

replacing

continuous time exp(—(k; +k_)t) < [1 — (k. + k_)] discrete time

18§

(C.19)



C.3 CALCULATION OF JOINT CUMULANTS FOR THE TWO-STATE MODEL

T1

Figure C.2: Relative time-lags 7; refer to points in time relative to each other, while the absolute time-lags 7;
are measured relative to the same starting point.

As an example we compute the theoretical joint cumulants of 2nd and 3rd order for a single molecule
with brightness ¢ in the on-state and instantaneous brightness F(t). Because the cumulant is additive,
the cumulant of N molecules is simply N times the one-molecule cumulant. The calculation is done
using the continuous time formula, but can be easily converted to discrete time as shown above. When
calculating the probabilities involved in the problem, we make use of relative time-lags 7; as shown in

Fig. C.2 rather than absolute ones, as they are easier to handle in this context.

Assuming ergodicity, the solution for the behavior of the ensemble is (statistically) valid for the over-
time behavior of a single emitter. Equation (C.s) reveals that probability to find a molecule in the excited

state at an arbitrary point in time after equilibration is given by

_ K
kg ko

ke

(t) Ttk

= (F(t)) (C.20)
which is the average ratio of molecules in the excited state in an ensemble and thus the average time spent
in the excited state for a single molecule. Similarly, the conditional probability to find the molecule in

the excited state at time t + 7 given that it was excited at ¢ is given by Eq. (C.6):

ki k_ .
P,.(t+ T|onatt) = ~ (ke k)7 C.
(t+ T|onatt) k+—|—k,+k+—i—k,e (C.21)

The joint cumulant of the time trace F(t) and a time-shifted signal F(t + 7) is given by
Ky (%) := K, [F(t), F(t+ 7)] = (F(t) F(t + 7)) — (F(t))* (C22)

Note that F(t) F(t 4+ 7) is only nonzero if the molecule is excited at both times and zero otherwise
(assuming that the dark state is completely dark). The average is computed by multiplying the value
of F(t) F(t + 7) in this case (£?) with the probability that the situation occurs. We can denote this
probability by P,,(t) - P,,(t + T|onatt). Fortunately, we already know their values and can directly
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compute the cumulant by plugging them in:
Ky () = (F () (t+7)) — (E(t) (C.23)

ki ke 4k ki :
e VAT — e (C.24)
k++k_ ky +k_ k++k_ ki 4+ k-

2
(k+ + kyk_e ke HET)

_
(ky +k_)?

kyk_ - e (ketko)? (C.26)

ky? C.
k+—|—k + (C.2s)

= Ky (7) = K(7) = m

Following the same scheme, we can compute the third order joint cumulant. The joint cumulant of

three signals is given by

(8FSF,8F,) = (C.27)
(FF\F,) — (F) (F1F,) — (F1) (FFy) — (F») (FF1) + 2 (F) (F1) (F2) (C.28)

with F = F(t), F; = F(t+7,),F, = F(t+1,) = F(t+ 7, + 7,) in our case. Note that the conditional
probability if the molecule is still excited depends only on the difference between the two corresponding

points in time. For clarity we divide the formula into three parts:

Ky(i1, 72) =
(1) (F(H)F(t+ 7)) F(t+ 71+ 12))
—(2) (F(1))- (@@FG+%Q%+@@Fﬁ+%y+h%+w&+%ﬁﬂb+ﬂ+ﬁﬁ>
+(3) 2- (E(t))°

~—

For the first part we get

(1) :6‘3 . k+ k+ + k_ . e*(k++k_)‘?1 k+ + k_ . e*(k++k_)‘~r2
bk \k +k h+h Ltk ko

3

3
=y (7 Rk e ) (ke
+ _
:ﬁ <k+3 + k+2k_ ) e_(k++k7)%l + k+2k— : e_(k++k*)%2 + k+k_2 . e_(k++k7)(‘?1+%2))
+ _

For (2) we use the solution for terms of the type (F(t)F(t + 7)) known from the second order cumulant

53
(kg + k)3

(3) —2—

(2)

(3k+3 + k+2k_ . |:e—(k++k,)‘?1 4 e—(k++k7)(‘?l+%2) + e—(k++k7)‘?z})

k 3
(ky +k)3 F
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Assembling all parts, we get the overall solution

3

€ - F14%,
e (kR ) IR ()

I<3(%1; %2) = (1) - (2) + (3) =

Of course, this solution can also be expressed in terms of absolute time-lags using the variable transfor-

mation T; = Ty, T, = T — Ty, T > T1, which depends only on the longest time-lag:

3

Ki(r) = (1) — () + (3) = (Ich:T——k_)?’

(kik_? — ky2k_) e~ ke tho)m (C.30)

Appendix E lists the theoretical cumulants of the two-state model up to the 4th order.
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Bias and error of the 2nd order ordinary cumulant

SOFlis based on the estimation of higher order statistical quantities called cumulants of time-correlated
time series. Section 2.3 shows that 2nd order SOFI is most widely applicable as the estimation of the
2nd order cumulant (the variance) needs least amount of frames to converge and is most robust to high
emitter density compared to higher orders. To understand this analytically, we derive the expected value
of the variance estimator and its error for a time-correlated discrete stationary time series {x;} of T
values. For ease of notation, we define §x; := «x; — (x;) and avoid indexing where it is not necessary due
to stationarity, e.g. (x;) = <x]> = (x). As areminder, ,, denote ordinary cumulants of n-th order and

K, the joint cumulant of n signals.

D.1  BIAS OF THE VARIANCE ESTIMATOR FOR CORRELATED TIME SERIES

The usual estimator for the 2nd order cumulant / variance «, of the distribution of x is

<1~62>:<%Z(x—§)2>:<%2 x_%zx,. > (D.1)

i=1 j=1

which is unbiased for uncorrelated time series. To compute its value for correlated time series, a different

expression is helpful:

1 T 2 1 - 2
<m,2<x"‘“> > <ﬁ2<> > o
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1 u X 1 L, .
<(T— 1)T2<xi ~ ) > N <mzx _foxf+xf> (D3)

i<j i<j
Z (x7) + () — 2 (i) (D.4)
i<j
<x2> Z <x iX; (D.s)
i<j
For the last line we used that (x <x > = and that the number of elements of the double sum

is (T — 1)T. Adding 0 = — (x >2 + (x)? ylelds

=) g [ e~ 0 ) o

— (5x%) — ﬁ ; (8x:8x;) (D.7)

5 2 T <8x,-8x]->
= (&) 11— (T—I)T; (8:2) (D#)

Using stationarity, we can convert the double sum into:

5 2 en TS (S0
= (8a2) - = 1)T; > e ] (D.9)

T _HG(T)] (D.10)

where we also shifted the indices by 1, x; = ((x — (x))?) is the 2nd order cumulant of the time series
and G(7) its autocorrelation function. The estimator is biased for finite T. It is noteworthy however,
that an estimator using the true mean value (x) instead of the sample mean x to calculate the variance is

unbiased even for correlated time series:
1 < 1 <
(3t 8= 13 -2 = () - @)
i=1 i=1

Using the true mean for the estimator requires the prefactor T~ ! instead of (T — 1) " for the estimator
to be unbiased. As another remark, deriving the corresponding expression for a continuous signal x(¢)

is analogous, giving

2

<%/T x(t) — %/Tx(t’) dt dt> =Ky |1— %/Tdt T/_tG(T) dr (D.12)
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The auto-correlation of a discrete two-state model is G(t) = [1 — (ki + k_)]" (see appendix C,
Ky(7)/K,(0)) and as |[1 — (k4 + k_)]| < 1holds, the double sum in Eq. (D.10) can be solved using
the known solution for the geometric series. With a := [1 — (k; + k_)], the final estimator for the 2nd

order cumulant of a two-state model is:

L 2 a(@"—Ta+T-1)
(k) = K2+ |1 — (T—DT (a— 1)y (D.13)

When processing movies using SOF]I, it is important that the processed time interval T is at least a
few times the typical correlation time to get an accurate value of the time average, which reduces the bias

of the variance. For typical recording times and blinking dynamics, the bias can usually be neglected.

D.2  ERROR OF THE VARIANCE FOR CORRELATED TIME SERIES

We now derive the standard error for the 2nd order cumulant x,. We assume that the time series {x;} is
long enough to measure the average brightness (x) with low error, i.e. that the recording time is longer
than the typical blinking time-scale and the estimator for the cumulant is unbiased. This is equivalent

to using the true-mean estimator

. 1
(k2) = <f Z (o — (x>)2> = K2 (D.14)
for estimating the cumulant. Its variance is
Var (k,) = <f<§> — (&,)? (D.15)

We already know the value for the second term (k,)” = &2, leaving only the first term to be calculated.

: P <x>)2] > (D.16)

2 > (D.17)

T T
= % Z Sxf +2 Z 8xf5xf> (D.18)
i=0 i<j
1 2 = e,
=gt Z (8} 8ac}) (D.19)
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In the last line we introduced the definition of central moments y, = ((x; — (x))"). We need to find

an expression for <8x12 ij2>:

(8787 = ((af = 2o (x) + (0)") (o] — 25 () + (%)")) (D.20)
= <x,2x]2 —2(x) (<x12x]> + <x1x]2>) + (x) (<x2> + < ]2> +4 <x,-xj>) -3 <x>4.

(D.21)
Using time inversion symmetry <x,x]2> = <x]x,2> and stationarity (xf) = <x> = <x2>

<8xi28xj2> = <x,2x]2 — 4 (x) <x12x]> + (x)* (2 <x2> +4 <x,~x]~>) —3(x)*. (D.22)

The variance is always additive for mixtures of statistically independent variables. Thus, it can always

be expressed by a combination of cumulants. We add 0 = 2 — «2 with 2 = ((«?) — (x)?)? =

() — 2 () (x)* + (x)* to get
=2+ <x > 4 (x <x x]> + ( (4 <x2> + 4<xixj>) — <x2>2 —4 <x>4. (D.23)
The fourth order joint cumulant Ky [x;, x;, ;, ;] (compare appendix E)

Ky[x:, %1, %), %)) = <x,2x}2 - <4 (x) (x7a;) + <x2>2 +2 <xixj>2>
+2 ( 2 <x2> + 4 <x>2 <x,~x]->) —6 (x>4
< > 4 (x <x x]> <x > <x,x]>2 + <x>2 (4 <x2> +38 <xix]~>) —6 (x>4 (D.2s)

(D.24)

can be identified within the expression, leaving

<8xi28x].2> = &5 + Kaylos, i, x5, 5] — 4 (x>2 <xixj> +2 <xix]~>2 +2 <x>4 (D.26)
= 15 + Ka[xi, a1, 55, 5] + 2 ((wj) — (x)z)2 (D.27)
= &5 + Ky [xi, 21, x5, 5] + 2K5 s, %] (D.28)

With the second order joint cumulant K [x;, x;] = <xix]-> — (x)%. Putting this into Eq. (D.19) and
remembering that the double sum has T(T — 1)/2 terms yields

T
. 1 2
(&) = —H + T Z K5 + Kyxi, x;, 5, x5 + 2K5 [x;, ;] (D.29)
i<j
1 1
= T + 2 — —1c2 ZK4 x;, %, %5, %) + 285 [y, %] (D.30)
i<j
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Finally, assembling everything and inserting into Eq.D.15 gives the variance

Var (k,) = <f<§> — (&,)? (D:31)
2 1 21, 2 . 2
= —K; + ?y4 + Ky — TK2 + F ZIQ;[DQ, X, DC]', x,] + ZKZ[.XJ,', x]] (D.32)
i<j
1
= T( —13) Z sl i, x5, 5] + 285 [, ] (D.33)
i<j

The fourth order ordinary cumulant and the fourth moment have the relation x4 = y, — 3% (compare
appendix E), which yields the final formula for the variance of a time-correlated, stationary time series

with time reversal symmetry:

T
. 1 2
Var (k,) = T (k4 +263) + o ZIQ[xi, x;, %5, x5 + 2K [x;, ] (D.34)
i<j
Like we did before for the estimator of the 2nd order cumulant, we can change the expression of the

double sum using stationarity and shifting the index by 1, to get

T—1T—-1—i

. 1
Var (k) = T (K4 + 2K2 Z Z Ky[xo, %0, %7, ;] + 2K3 [x0, ;). (D.35)

i=0 1=1
Taking the cumulants of a two-state model, this is equivalent to

T—1T—-1—i

. 1
Var (k) = T (K4 + 21<2 i Z Z Ky(1, = 0,7, = 7,73 = 7) + 2K5(7) (D.36)

i=0 7=1

With k5 = K5(0) = N2, &* - k2 k* /(ky + k_)* and the autocorrelation function G(t) = a* =

[1 — (k4 + k_)]" of the discrete time model, the expressions for the joint cumulants are

2 2 kikz— 2 22
KZ( ) Nem (k+ + k_)4a =Ky-a (D37)
kik_
K4(O, T, T) = Nem€4 : m [(kz_ - 2k+k_ + ]Ci_) ca’ — 2k+k_ : azf} (D.38)
_l’_ —
2 2
K2 (k+ — k—> T 27
= cat—2 D.
Nem |: k+k* ¢ ¢ ( 39)

Inserting this into the variance gives

1 > [(ky — k)2
Var (&) = = (1\';2 F +k+k_ ) —2} +2x§)

T—1 T—1—i (D-40)
2 K5 [(ky — k) 2 1 2
= g7 2 1 — i
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As |a] < 1holds, the double sums can be solved using the known solution for the partial sum of the
geometric series. To investigate the convergence of the estimator to the true value, it is more interest-
ing to look at its relative deviation instead of the absolute one. The relative variance of the 2nd order
cumulant estimator is

R T )

i % {Nlem (k+k:kli)2 [a(aT _(aTj JIF)ZT - 1)]

. (1 - Ntm) [a(aﬂ" zaZTciz j;ZT— 1)} }

and its standard error the square root of this expression, as usual.

(D.41)
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Collection of cumulant formulas

For reference, this part of the appendix gathers all formulas for cumulants used in this thesis. This is use-
ful to implement SOFI calculations, correct images for the influence of noise, and for analytical model-

ing of two-state systems.

n  Ordinary cumulant «,, [F(r, t)]
1 (F)
(5F") = (F*) — (F)’
3 (8F) = (F) = 3(F) (P") +2(F)’
(SF*) — 3 (SF*)" = (F*) — 4 (F) (F) — 3 (P")* + 12(F)" (F*) — 6 (F)"

Table E.1: List of ordinary cumulants up to the 4th order. §F := F — (F).
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Joint cumulant K,, [F(ry, t+ 71), ..., F(ta, t + 7,)]
1 <F1>

2 (SFSR,) = (FiE,) — (Fy) (Fy)

(SF1SF,SF3) =
(F1FyF3) — (F1) (FyFs) — (Fy) (F1F3) — (F3) (F1F,) + 2 (F1) (F2) (F3)

(8F,8F,8F;8F,) — (8F,8F,) (8F,8F;) — (8F,8F;) (§F,8F,) — (8F,8F,) (8F38F,)
= (F,F,F3F,)
4 — ( (Fy) (FyF3Fy) + (F,) (F1F3Fy) + (F3) (FiFyFy) + (F4) (F1F,F3)
+ (F\F,) (F3F,) + (F\Fs) (FoFy) + (F\F,) (F,F;) )
+2- (<F1> (F2) (F3Fa) + (F1) (E3) (F2Fa) + (Fr) (Fa) (F3Fy)

+ (F2) (F3) (F1F4) + (F2) (F4) (F1F3) + (F3) (F4) <F1F2>>
—6 - (F1) (F,) (F3) (Fa)

Table E.2: List of joint cumulants up to the 4th order. F; := F(x;, t + 7;). 8F; := F; — (F;).

Two state model joint cumulant (absolute time-lags)

I<2(Tl) (kfr]fj)z : k+k, ’ e—(k++k,)11

Ki(er,ma) s (ko =k 2k - e (betkom

I<4(TI) 72, T3) % . [(k+k_3 _ 2k+2k_2 + k+3k_) . ei(k++k—)73
-2 k+2k,2 . e_(k++k7)(‘f2+73—71):|

Table E.3: Two state model joint cumulant in terms of absolute time-lags (see Fig. C.2). All time-lags are
positive and ordered 73 > 75 > 71 > 0. N¢y, denotes the number of emitting molecules, ¢ their molecu-
lar brightness. The transition rate from the off- to the on-state is k., while k_ is its counterpart in the other
direction.

Two state model joint cumulant (relative time-lags)

KZ(%I) (kfin;fj)z : k+k, ’ e_(k++k7)%l
K;(71,72) (kfflip (kyk? =k k) - em )R

Ky(71, 70, ) gt - [(kyk > — 2k %k 2 4k k) - e (et )(mtnds)
—2k+2k,2 . e—(k++k,)(%1+2%2+%3)]

Table E.4: Two state model joint cumulant in terms of relative time-lags (see Fig. C.2). All time-lags are
positive 7; > 0. Ny denotes the number of emitting molecules, ¢ their molecular brightness. The transition
rate from the off- to the on-state is k., while k_ is its counterpart in the other direction.
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n  Factorial cumulants / Poisson noise corrected cumulants

Poiss
1 K1

Poiss Poiss
2 Ky — K3

Poiss Poiss Poiss
30 K3 = 3K, + 2K

Poiss Poiss Poiss Poiss
4 K, — 6K + 11k, 7 — 6K,

Table E.s: List of factorial cumulants up to the 4th order. The factorial cumulants give the rules how to com-
pute the n-th order ordinary cumulant of a noise-less random signal x(t) from the linear combination of ordi-
nary cumulants «F°' of a measurement y(t) of x subject to Poisson noise. This is useful for correcting (zero

lag-time, same-pixel) SOFI images for the effects of the noise (see Section2.5).

n  EMCCD noise corrected cumulants

1 LyBMcCD
a
1 (. EMCCD EMCCD

2 5 (i —2a - K] )
1 (. EMCCD EMCCD 2, EMCCD

3 5 (k3 — 6a - K, + 6a” - Ky )

4 & (KEMCCD _ g . (EMCCD 4 3652 . (EMCCD _ 9453 . (EMCCD)

Table E.6: List of EMCCD noise corrected cumulants up to the 4th order. The photon conversion factor

a = g/sisthe EM-gain g divided by the sensor sensitivity s and depends on the settings of the camera. The
linear combinations show how to compute the n-th order ordinary cumulant of a noise-less random signal
x(t) from the linear combination of ordinary cumulants xEMCCD

from an EMCCD camera. This is useful for correcting (zero lag-time, same-pixel) SOFI images for the effects

of a measurement y(t) of x subject to noise

of the noise (see Section2.s).
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Wer nur einigermaflen zur Freiheit der Vernunft gekommen ist, kann
sich auf Erden nicht anders fithlen, denn als Wanderer, — wenn auch
nicht als Reisender nach einem letzten Ziele: denn dieses gibt es nicht.
‘Wohl aber will er zusehen und die Augen dafiir offen haben, was Alles in

der Welt eigentlich vorgeht; deshalb darf er sein Herz nicht allzufest an

alles Einzelne anhingen; es muss in ihm selber etwas Wanderndes sein, ACkHOWle d gement S

das seine Freude an dem Wechsel und der Verginglichkeit habe. [ ...]

He who has come only in part to a freedom of reason cannot feel on earth
otherwise than as a wanderer — though not as a traveler towards a final goal,
for this does not exist. But he does want to observe, and keep his eyes open for
everything that actually occurs in the world; therefore he must not attach his
heart too firmly to any individual thing; there must be something wandering

within him, which takes its joy in change and transitoriness. [ ... ]

Friedrich Nietzsche - Menschliches, Allzumenschliches (638, Auszug)
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