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Splay will go away
And bend will finally end
But twist will persist!

Robin L. B. Selinger, 2014





Abstract
Motile creatures are ubiquitous in the natural world. Spanning a broad range of length
scales, they all have in common the fact that they convert energy from internal or
external resources into motion. In most natural situations one such individual does
not exist on its own but is part of a large group like a flock of birds, a school of
fish, or a bacterial suspension. Often these groups show interesting and surprising
structure formation which emerges in a self-organized fashion without any external
forcing. Recently, the modeling of the dynamics of such large groups has attracted
a lot of interest also among physicists with the aim to understand the simple, local
mechanisms which lead to a complex, global behavior.
The subject of this thesis are active particles at low Reynolds numbers in three

dimensions which mimic, for example, bacteria in an aqueous environment. All par-
ticles move at a constant speed and align nematically with neighboring particles –
they do not distinguish between head and tail. Large groups of active particles are
investigated by means of molecular dynamics simulations in the limit of overdamped
dynamics.
We investigate the nonequilibrium phase diagram of these active particles in terms

of density and rotational Péclet number. The latter compares the strength of the
nematic alignment with the rotational diffusion. We find a phase transition from the
isotropic to the nematically ordered state. Close to the transition point, traveling
density waves occur which resemble solitons. In the nematic region of the phase
diagram a spontaneous chiral symmetry breaking can be observed. This occurs via
the formation of patterns which are characterized by a helical arrangement of the
mean local orientations. We discuss their stability and study their formation. A
comparison to a one-dimensional rotor model (similar to the XY -model) reveals the
importance of fluctuations. Very interestingly, density waves traveling along the helix
emerge. They differ, however, in nature from the ones occurring at the nematic-
isotropic transition.
In the second part of the thesis, the active particles are immersed in a surrounding,

mildly turbulent fluid (Rλ ≈ 20) to mimic the conditions of plankton in the ocean.
The fluid flow field is modeled by means of kinematic simulations to ensure reason-
able computational times. However, for comparison, a number of simulations of the
self-propelled particles are also performed using the result of state-of-the-art direct
numerical simulations. We find a remarkably good agreement between these two
methods. The particles show a turbulence-induced clustering in the form of small-
scale patches in a specific region of the phase diagram. The strongest clustering
occurs if the integral length scale of the vorticity of the turbulent field is equal to half
of the nematic interaction range and the Kolmogorov time scale matches the time
scale of nematic alignment. Finally, we discuss the implications of our results onto
the famous “paradox of the plankton”.





Zusammenfassung
Viele Lebewesen bewegen sich, in dem sie ständig Energie aus einem inneren oder
äußeren Energiereservoir in Bewegung umwandeln. Meist existiert ein solches Indi-
viduum nicht isoliert, sondern ist Teil einer großen Gruppe wie beispielsweise einer
Vogelschar, eines Fischschwarms oder einer bakteriellen Suspension. Häufig bilden
diese Gruppen ganz ohne äußere Einflüsse durch Selbstorganisation interessante und
überraschende Strukturen. In jüngster Vergangenheit wurde das Interesse vieler Phy-
siker geweckt, eben solche großen Gruppen zu modellieren um die einfachen lokalen
Mechanismen zu verstehen, die genügen, komplexes globales Verhalten zu erzeugen.
Das Thema dieser Arbeit sind in allen drei Dimensionen freibewegliche, aktive

Teilchen bei niedriger Reynoldszahl, die beispielsweise schwimmende Bakterien im
Wasser darstellen. Jedes Teilchen bewegt sich mit konstanter Geschwindigkeit und
benachbarte Teilchen haben die Tendenz sich nematisch auszurichten – sie verhalten
sich wie Stäbe, die sich parallel zueinander anordnen. Wir betrachten große Gruppen
solcher Teilchen, die typischerweise aus 3 × 105 Individuen bestehen mithilfe von
überdämpften Molekulardynamik-Simulationen (Kriechfall).
Wir untersuchen das Nichtgleichgewichtsphasendiagramm dieser aktiven Teilchen

in Abhängigkeit von der Dichte und der Péclet-Zahl der Rotationsbewegung, wobei
letztere die Stärke der nematischen Ausrichtung mit der Fluktuationen der Orien-
tierung vergleicht. Wir finden einen Phasenübergang von der isotropen in die nema-
tisch geordnete Phase. An diesem Übergang treten solitonen-ähnliche, sich bewegende
Dichtewellen auf. Im nematischen Bereich des Phasendiagramms beobachten wir eine
spontane Brechung der chiralen Symmetrie des Systems. Diese Symmetriebrechung
entsteht durch Helix-Strukturen, die sich aus den mittleren lokalen Orientierungen
(im nematischen Sinne) zusammensetzen. Der Vergleich mit einem eindimensionalen,
dem XY -Modell sehr ähnlichen, Modell offenbart, wie wichtig Fluktuationen dabei
sind. Interessanterweise enstehen dabei Dichtewellen, die sich entlang der Helixachse
fortbewegen, sich jedoch von den Wellen in der Nähe des Phasenübergangs unter-
scheiden.
Im zweiten Teil der vorliegenden Arbeit bewegen sich die aktiven Teilchen in ei-

ner leicht turbulenten (Rλ ≈ 20) Flüssigkeit, wie beispielsweise Plankton im Ozean.
Wir modellieren die Flüssigkeit mithilfe von kinematischen Simulationen und ver-
gleichen die Ergebnisse mit denen modernster direkter numerischer Simulationen.
Die Teilchen zeigen in einem bestimmen Bereich des Phasendiagramms die Bildung
von turbulenz-induzierten, kleinskaligen Haufen. Die stärkste Häufung ensteht, wenn
typische Längen- und Zeitskalen des turbulenten Feldes und der aktiven Teilchen
übereinstimmen. Wir diskutieren die Auswirkungen der Ergebnisse auf das berühmte
„Planktonparadox“.
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and chiral Sχ.
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1 Introduction

1.1 Motivation
Motile creatures form a large and very important part of nature. Especially large
groups of animals which move together are fascinating due to the beauty of their co-
herent motion. One such example is a flock of starlings in the evening sky (Fig. 1.1a)
constantly changing the shape of the flock while not leaving behind even a single
individual. And, most importantly, this whole spectacle is presented without any
external influence but a result of self-organization of the individuals. The study of
the collective behavior of such groups of animals has attracted a lot of interest of
researchers because these systems are intrinsically out of equilibrium, that is, they
constantly convert energy into motion. Systems under investigation include for in-
stance herds of sheep (Fig. 1.1b, Garcimartín et al., 2015; Ginelli et al., 2015), schools
of fish (Fig. 1.1c, Katz et al., 2011), and, of course, flocks of birds (Ballerini et al.,
2008; Cavagna et al., 2010; Pearce et al., 2014; Attanasi et al., 2014). Apart from
the investigation of wild-life animals, also the collective behavior of human crowds is
studied. Clearly, it is important to understand how crowd disasters such as crushes
and stampedes can be avoided, and also how large groups of pedestrians can safely
arrive at their destinations (Moussaïd et al., 2011).
All of the mentioned creatures up to this point belong to the group of vertebrates

and clearly their importance in nature is out of question. However, the behavior of
vertebrates in nature can be rather complex because any decision they make is based
on a number of influences like the signals coming from their senses, learned social
behavior, and also their personal history. The decision itself then requires some kind
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Figure 1.1: Examples of large groups of motile creatures: (a) a flock of starlings1, (b)
a clogging herd of sheep2, (c) a school of fish3.

1Reprinted by permission from Macmillan Publishers Ltd: Nature (Popkin, Nature 529(7584):16–
18, 2016), copyright 2016. doi: https://doi.org/10.1038/529016a.

2Reprinted figure with permission from Garcimartín et al., Physical Review E 91(2):022808, 2015.
Copyright 2015 by the American Physical Society. doi: https://doi.org/10.1103/PhysRevE.
91.022808.

3Photograph by Joanna Penn, source: https://www.flickr.com/photos/38314728@N08/
3997721496, license: CC-BY-2.0 https://creativecommons.org/licenses/by/2.0/.

2

https://doi.org/10.1038/529016a
https://doi.org/10.1103/PhysRevE.91.022808
https://doi.org/10.1103/PhysRevE.91.022808
https://www.flickr.com/photos/38314728@N08/3997721496
https://www.flickr.com/photos/38314728@N08/3997721496
https://creativecommons.org/licenses/by/2.0/
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of intelligent behavior which can be seen as the processing of all stimuli and sensory
information. This means that any study of the single-entity or even collective behavior
has to take into account different kinds of influences which makes it complicated to
deduce true causalities. Corresponding modeling approaches can either neglect some
of the influences a priori to keep it simple at the risk of over-simplification, or include
as many detailed mechanisms as possible which will lead to complicated models where
it might be hard to understand the direct effect of a single influence. To avoid all
these problems and risks, one can also turn to organisms which are simpler in itself so
that the number of influencing factors is limited. The vast world of microorganisms
includes many different kinds from bacteria and archaea to fungi and microalgae.
Even though not directly visible to the eye, they are of extreme importance in nature:
They help us in processes such as digestion, decomposition, food production, energy
production in biogas reactors, production of chemicals or enzymes, et cetera. Many
microbes are motile and often perform different kinds of taxis – directed motion
along a gradient of stimulus. This can be for instance aerotaxis along an oxygen
gradient (Taylor et al., 1999), chemotaxis along a chemical gradient (Berg, 1975),
phototaxis due to light or gravitaxis due to gravity. The latter two are especially
important for marine microorganisms like dinoflagellates (Eggersdorfer and Häder,
1991). Large groups of microorganisms can show fascinating collective behavior: The
gliding bacterium Myxococcus xanthus exhibits density variations in form of ripples
(Figs. 1.2a and b, Berleman et al., 2008; Zhang et al., 2012a). Collective behavior
can help a bacterial colony to survive by avoiding age defects (Vedel et al., 2016).
Motile bacteria which perform aerotaxis can form dense bands depending on the
preferred oxygen concentration (Mazzag et al., 2003). Bacteria at high density in
quasi two-dimensional as well as in three-dimensional geometries can show patterns
which resemble turbulence – not only from visual inspection but also in terms of
energy spectra and structure functions (Fig. 1.2c, Wensink et al., 2012). And if they
are confined, a single vortex is stabilized (Fig. 1.2d, Wioland et al., 2013; Lushi et al.,
2014). The latter is an example of emerging chirality in the system, the importance
of which we will discuss in Chapter 4.

1.2 Microswimmers
Microorganisms or artificial particles that are motile and interact with a surrounding
fluid are referred to as microswimmers. Those include, for example, bacteria with
flagella, whose spinning motion creates the self-propulsion of the organism. Besides
these natural microswimmers, also artificial microswimmers can be manufactured and
studied like remotely powered miniature diodes (Chang et al., 2007); micro-emulsion
droplets (Thutupalli et al., 2011); self-diffusiophoretic, asymmetric swimmers (Hagen
et al., 2014); and ferromagnetic particles in an oscillating magnetic field (Grosjean

3
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Figure 1.2: Examples of collective behavior of motile microorganisms: (a)&(b) for-
mation of ripples by Myxococcus xanthus during predation (reprinted from Berleman
et al., 2008, Copyright 2008 National Academy of Sciences), (c) bacterial turbulence
observed in a suspension of Bacillus subtilis (reprinted from Aranson, 2013, image:
Andrey Sokolov, Argonne National Laboratory), (d) formation of a single vortex in a
confined suspension of Bacillus subtilis (reprinted from Lushi et al., 2014, Copyright
2014 National Academy of Sciences).

et al., 2016)4. One important feature of any microswimmer is that it swims at low
Reynolds numbers, typically R = 10−5 − 10−4 (Purcell, 1977). The Reynolds num-
ber R measures quite generally the ratio between inertial and viscous forces. A low
Reynolds number hence means that inertia is not important while viscous friction
dominates the system. A widely-used analogy to this regime is that a human swim-
ming in a swimming pool full of honey would feel this condition. It is important to
note that at low Reynolds number a time-reversible motion would not produce net
displacement (this is called the “scallop theorem”). Based on the swimming pattern,
we can distinguish two main types of microswimmers: pushers and pullers (Lauga and
Powers, 2009). Pullers, like the microalga Chlamydomonas, possess two flagella at
the front of the cell body which perform a breaststroke-like motion. They are called
pullers because they pull the fluid towards them. On the other hand pushers like
the bacterium Escherichia coli propel themselves with a rotating bundle of flagella
on their cell body. Thus they push the fluid away from their body. Some pushers
(like spermatozoa) possess only a single flagellum at the back which oscillates but
acts similarly on the surrounding fluid like a bundle of flagella. One typical motion
pattern of microswimmers is the run-and-tumble motion. E. coli is one of the model
species which follow this motion pattern. When the flagella are rotating as a bundle,
the organism moves forward. However, the bundle can spontaneously disintegrate

4These ferromagnetic particles are a realization of the “simplest swimmer at low Reynolds number”
proposed by Najafi and Golestanian (2004).
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(a) Steady-state configurations at different
densities and noise levels. The velocity of
each particle is indicated by a little arrow
together with a short curve for the trajec-
tory of the last 20 time steps.

(b) Phase transition observed in the original
Vicsek model: mean velocity va as a func-
tion of noise η for different numbers N of
particles.

Figure 1.3: Results of the original Vicsek model. Reprinted figure with permission
from Vicsek et al., Physical Review Letters 75(6):1226, 1995. Copyright 1995 by
the American Physical Society. doi: https://doi.org/10.1103/PhysRevLett.75.
1226.

with all flagella moving independently; the microorganism tumbles until the bundle
forms again (Berg, 2004, p. 39). Other microorganisms, like Vibrio alginolyticus, only
possess a single flagellum and perform a run-reverse-flick motion pattern (Xie et al.,
2011; Stocker, 2011). Such a microswimmer first moves in a straight line (“run”), then
turns around by an angle close to π (“reverse”), moves straight again, and finally turns
be roughly π/2 (“flick”).
The subject of this thesis are large groups of self-propelled particles and their

collective behavior. One approach to investigate this subject is to model them com-
putationally. The idea to model the behavior of a flock of birds by simple interactions
between individuals which lead to a complex collective behavior was first introduced
in the field of computer graphics (Reynolds, 1987). A few years later, Vicsek et al.
(1995) published their seminal work on a very simple model of point-like particles
which move at a constant speed in two dimensions. At every time step, each particle
reorients into the mean direction of its neighbors and experiences a random rotational
noise. The beauty of this work lies in the few ingredients which suffice to trigger a
phase transition from an ordered state to a disordered phase (see Fig. 1.3b). This
ordered phase is characterized by a collective motion of the center of mass of the par-
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1 Introduction

ticles such that the rotational symmetry of the system is broken (see Fig. 1.3a). In
the following decades a large zoo of similar models has been proposed by a number of
researchers to study different aspects of the collective behavior of active particles (re-
view by Vicsek and Zafeiris, 2012). One group of models excludes any alignment rules
whatsoever: the only interaction between two particles is based on their relative dis-
tance; it can typically be described by a pair-wise potential. Moreover, each particle
itself aims to keep a prescribed mean speed. A phase transition (Wysocki et al., 2014)
as well as collective behavior (Grossman et al., 2008) can be observed. Even a chiral
symmetry breaking in terms of a rotational mode was found for a three-dimensional
model of particles interacting via a potential (Erdmann and Ebeling, 2003; Erdmann
et al., 2005; Strefler et al., 2008; Romanczuk et al., 2012; Jiang et al., 2016).
The second group of models, on which we will focus here, are models of active

particles with some alignment mechanism. They all somehow “descend” from the
previously described Vicsek model. Two main different alignment rules can be iden-
tified: (i) the particles exhibit polar alignment as in the original Vicsek model where
a given particle calculates the mean velocity of its neighbors hence distinguishing
between head and tail of neighboring particles. (ii) The particles’ alignment rule has
nematic symmetry, that is, a given particle does not distinguish head and tail of its
neighbors. This interaction rule physically corresponds to rod-like particles that tend
to align. However, the motion of each particle is still directed, i.e., it possesses a head
and a tail.
A large amount of research has been performed on polarly interacting particles:

The Vicsek model has been extended to three dimensions (Czirók et al., 1999) where
again a phase transition between an ordered and a disordered state is found. The
order of the phase transition has been investigated in both two and three dimensions
(Chaté et al., 2008b). Possible extensions of the simple two dimensional model in-
clude the addition of cohesive effects between particles (Grégoire and Chaté, 2004),
the interaction with non-active particles as obstacles (Chepizhko et al., 2013), an ad-
ditional deflection of particles just after alignment (Meschede and Hallatschek, 2013),
and the introduction of bounded confidence to the swimmers (Romensky et al., 2014).
Chaté et al. (2008a) briefly review the work on models similar to the Vicsek model
(up to that point) and propose three different pathways to extend the original Vicsek
model: change the polarity of the interaction as well as of the particles themselves,
add cohesion, and model the interaction with an ambient fluid. A number of authors
have investigated a variation of the Vicsek model in two dimensions with nematic in-
teractions (Chaté et al., 2006; Ginelli et al., 2010). Again, this model can be extended
for example by giving the particles a memory (Nagai et al., 2015). All these models
have in common that they are time-discrete (just like the original Vicsek model) with
an instantaneous alignment towards a mean orientation of the neighboring particles.
A time-continuous approach has been proposed (Peruani et al., 2008) which incorpo-
rates a potential to describe the alignment mechanism. This introduces a new time
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scale into the system, the time scale of (polar or nematic) alignment.
The interactions of these models are all based on metric rules; a particle interacts

with all of its neighbors within a certain distance. However, a topological rule is
also justified since a given self-propelled particle in nature might only interact with
its nearest neighbors. The importance of the topological distance rather than the
metric distance for interacting birds in a flock can be deduced from field studies
(Ballerini et al., 2008). A Vicsek-type model with topological interactions also leads
to qualitatively different results than the one with metric interactions (Ginelli and
Chaté, 2010). A similar ansatz is followed by Barberis and Peruani (2016) who
introduce a cognitive flocking model where interaction is based on visual perception
only (with a varying vision cone).
Another route to make the Vicsek model more realistic is the introduction of dif-

ferent alignment mechanisms (polar and nematic) in one and the same system. For
example, a binary mixture of self-propelled particles is of interest where particles of
the same species align polarly, while particles of different species either align polarly,
nematically, or do not align but prefer a perpendicular arrangement (Menzel, 2012).
A competition between both nematic and polar alignment can be realized either by
giving a finite probability to both interaction mechanisms (Ngo et al., 2012) or by
using one mechanism for short range interactions and one for long range interactions
(Großmann et al., 2014).
While all of the reported simulations with alignment mechanism use point-like

particles, extended particles are of course also of interest (Weitz et al., 2015). Another
interesting model includes soft, deformable particles (Menzel and Ohta, 2012).
Apart from the individual-based models, a hydrodynamic and mean-field approach

to self-propelled particles is useful to study e.g. the nature of the phase transition.
Toner and Tu (1995, 1998) were the first to develop a hydrodynamic model to de-
scribe this nonequilibrium system and its important differences to the corresponding
equilibrium model. Instabilities of the ordered system to fluctuations were predicted
by Aditi Simha and Ramaswamy (2002), whose results were later generalized by Sain-
tillan and Shelley (2008). A Boltzmann equation approach was introduced by Bertin
et al. (2006, 2009) and refined as a Boltzmann-Ginzburg-Landau approach by Peshkov
et al. (2014). The results of Baskaran and Marchetti (2008b,a, 2012) suggest possible
steady states of a two-dimensional system of nematically interacting particles based
on a hydrodynamic model which is derived from a physical minimal model. Finally,
the kinetic approach of Ihle (2011, 2013) relates the order of the phase transition
to the occurrence of instabilities as waves. Reviews of the hydrodynamics of active
particles were done by Toner et al. (2005); Lauga and Powers (2009); Marchetti et al.
(2013). A rather simple mean-field approach was proposed by Peruani et al. (2008)
which predicts the locus of the order-disorder transition line for two dimensional
systems with polar or nematic alignment.
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1.3 Propagating waves of self-propelled particles
The emergence of collective behavior is an important feature of many active systems
in nature. Driven actin filaments show (among others) the emergence of large, inter-
connected, long-lived bands (Schaller et al., 2010, 2011). These bands are interpreted
as density waves emerging in the system due to specific alignment mechanisms. A
second model system to study collective behavior is the gliding bacterial speciesMyxo-
coccus xanthus (Zhang et al., 2012b). This social bacterium forms a rippling structure
during predation (see Figs. 1.2a and b; Berleman et al., 2008). Corresponding simple
models reveal the importance of few ingredients for the ripple formation: reversals,
a refractory period between reversals, and local alignment (Wu et al., 2009; Zhang
et al., 2012a). The phase transition to collective motion in a model mimicking gliding
bacteria can be shown to occur via clustering (Peruani et al., 2012).
Apart from the biological motivation due to the occurrence of waves in “real-world

systems”, also the self-propelled particles in minimal models in the spirit of the Vicsek
model can form dense, propagating bands. Such density wave occur in the original
Vicsek model for large velocities with a concurrent alteration of the nature of the
order-disorder phase transition (Nagy et al., 2007). Self-propelled particles in variants
of the Vicsek model also form waves when they have bounded confidence (Romensky
et al., 2014) or posses memory (Nagai et al., 2015). Even models of soft, extended,
self-propelled particles without an explicit alignment lead to traveling bands close to
the phase transition (Ohta and Yamanaka, 2014; Yamanaka and Ohta, 2014).
In addition to agent-based models, continuum theories also suggest the formation of

bands. Density-segregated, banded solutions are found using a Boltzmann approach
(Bertin et al., 2006, 2009; Peshkov et al., 2012). Kinetic theory suggests a similar
density profile as agent-based simulations (Ihle, 2013). The formation of the traveling
bands is typically found close the order-disorder transition, for example, as a banding
instability in hydrodynamic theory of polarly aligning SPPs (Baskaran and Marchetti,
2012). Moreover, the banding instability alters the nature of the phase transition
(shown by kinetic theory, Ihle, 2013) or the (tri-) critical point (in the Vicsek model
with bounded confidence, Romensky et al., 2014).

1.4 Motile particles in turbulent fields
Microorganisms live in many different habitats, ranging from soil and rocks, water
and air, to mucus and skin of possible host species. Microorganisms existing in an
aqueous environment have attracted considerable interest in the literature; recent
examples are bacteria (Baskaran and Marchetti, 2009; Zhang et al., 2012a; Peruani
et al., 2012; Lushi et al., 2014), zooplankton (Omori and Hamner, 1982; Seuront
et al., 2004), phytoplankton (Durham et al., 2013) or sperm cells (Riedel et al.,
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2005). The natural environment of these microbes is often found to be turbulent,
especially large water bodies like oceans and lakes. We will hence focus on plankton
in the following as a model group of microorganisms in a turbulent environment.
The term plankton is a collective term for a large variety of species which live in
large water bodies and in general passively drift in the currents (Lalli and Parsons,
1993). However, many plankton species are motile (Visser and Kiørboe, 2006) and
often perform gyrotaxis. This is a directed motion resulting from the reorientation
of the swimmer due to gravitational and viscous torques. Gyrotactic swimmers are
often bottom-heavy which leads to a vertical adjustment of their swimming direction
and the swimmers become focused in a down-welling, laminar flow (Kessler, 1985).
In a turbulent environment, gyrotactic microorganisms show the formation of small-
scale patches in experiments and simulations which also typically occur in the down-
welling regions of the flow field (Durham et al., 2013). Simulations suggest that the
shape of the microorganisms (either spherical or elongated) is crucial to determine the
degree of clustering (Zhan et al., 2014). A statistical model can be used to support
these findings and quantify the effect of the particle shape on the cluster formation
(Gustavsson et al., 2016). Vertically migrating phytoplankton forms patches also in
its natural habitats like in the sea (Ross and Sharples, 2007) or in lakes (Alexander
and Imberger, 2009). A combined study of the turbulent flow field as well as the
occurrence of motile phytoplankton (Ceratium) reveals that one of its habitats is the
pycnocline (Maar et al., 2003) for example in the Skagerrak (North Sea). This is the
layer of the steepest density gradient which occurs in many large water bodies. The
measurement of the corresponding turbulent field indicates a very mild turbulent field
(Taylor-based Reynolds number Rλ ≈ 20).
Plankton species often occur in small-scale patches (Davis et al., 1992). Such a

clustering leads to hotspots of fish (Tiselius, 1992) and is hence important to fishing.
Moreover, it increases the species diversity (Richerson et al., 1970) and influences the
predator-prey dynamics as well as the rates of fish recruitment (Pitchford and Brind-
ley, 2001). Furthermore, the patchiness has an impact on the population stability
(Steele, 1974).
One big unresolved question in marine biology and ecology is the so-called “para-

dox of the plankton” (Fig. 1.4). This term has been introduced by Hutchinson (1961)
who asked how it is possible that we find a large variety of plankton (especially phyto-
plankton) in large lakes and the oceans which are all competing for the same resources
– light and nutrients. These nutrients are limited and hence “competitive exclusion”
tells us that only one single species should survive. However, we find instead a large
variety of different species in the oceans and lakes. A lot of research on this topic
has been performed since Hutchinson introduced the problem but no unifying theory
has been found to date. We will review the most important possible solutions in the
following; more details can be found in the review of Roy and Chattopadhyay (2007).
Two main mechanisms have been proposed to resolve the paradox of the plankton:
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Figure 1.4: Illustration of the plankton paradox: A large variety of species competes
for a limited number of nutrients and light. The phytoplankton species Ceratium
tripos, Ceratium cornutum, and Ceratium hirundinella are adapted from Haeckel
(1899, online: http://biolib.mpipz.mpg.de/haeckel/kunstformen/natur.html,
copyright 1999 Kurt Stueber und Max-Planck-Institut für Züchtungsforschung).

Either the system never reaches equilibrium, or there are additional limiting factors
which have to be accounted for. The system could be brought out of equilibrium
by external forcing dynamics: This includes purely temporal effects like a separation
of time scales of reproduction and environmental times scales (Hutchinson, 1961).
Different models showed that coexistence of competing species can be achieved by a
nutrient in pulses (Ebenhöh, 1988), temperature fluctuations (Descamps-Julien and
Gonzalez, 2005), or seasonal forcing which leads to chaotic behavior (Scheffer et al.,
2003). Proposed spatio-temporal effects leading to nonequilibrium dynamics are for
example the heterogeneity of the plankton habitat (Richerson et al., 1970), coherent
vortices (Bracco et al., 2000), and incomplete mixing (Levin, 1974; Atkinson and
Shorrocks, 1981). Another route how the plankton system might be driven out of
equilibrium is the emergence of self-organized dynamics in the system. The analysis
of plankton models suggest for instance the existence of limit cycles (Armstrong
and McGehee, 1980) or the emergence of chaos (Gragnani et al., 1999). The latter
has even been shown experimentally in a real plankton community (Benincà et al.,
2008). Apart from the assumption that the system of competing plankton species
is out of equilibrium, additional limiting factors might play a role and lead to the
coexistence of a large number of species. Conceivable mechanisms include different
biological parameters (Huisman et al., 2001) or metabolic strategies (Posfai et al.,
2017), as well as predator-prey interactions. Moreover, some plankton species are
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able to produce toxin which leads to a self-limitation (Roy et al., 2007).

1.5 Scope of the thesis
This thesis aims to understand the complex steady-state phase space of nemati-
cally aligning, self-propelled particles in three dimensions. As discussed before, self-
propelled particles are ubiquitous in nature and a large number of them are not
confined to surfaces but can move freely in three dimensions. Moreover, the hydrody-
namic interactions are of nematic symmetry to first order (Baskaran and Marchetti,
2009) so that nematic alignment rules are justified. We do not explicitly take into
account hydrodynamic interactions between the particles which is why we rather use
the term “self-propelled” or “active” particle than “microswimmer”. We know that
propagating density waves occur in two-dimensional systems and want to study their
occurrence and properties in three dimensions. Moreover, understanding the spon-
taneous breaking of chiral symmetry in an achiral system is crucial to explain the
emergence of life. This thesis adds one small component to the discussion by in-
vestigating the role of fluctuations in the formation process. A more realistic model
should deal with extended particles instead of point-like ones. Very little has been
done in the past in the field of self-propelled, extended particles with local alignment.
So we ask the questions how steric interactions between particles influence the phase
diagram and especially the steady-state configurations.
In the second part of the thesis, we deal with self-propelled –both point-like and

extended– particles immersed in a turbulent flow field. We want to understand how
the interplay between alignment and turbulent flow field influences the formation of
small-scale patches of the particles such as the plankton found in the ocean. This is
an extension of the work performed by many researchers on gyrotactic, self-propelled
particles since our nematically aligning particles do not have a preferred direction
like gyrotactic particles do. It is hence a question of the self-organization of the
particles as a group rather than their interaction with an outer (gravitational) field.
Moreover, we address the question how a turbulent flow field can broaden the current
understanding of the paradox of the plankton, at least for motile plankton.
The thesis is organized as follows: Chapter 2 gives a short overview over the theory

of overdamped dynamics including the justification for nematic alignment, as well
as basic principles of turbulent flows. The model of self-propelled, aligning particles
is introduced in Chapter 3 for both point-like as well as extended particles. The
specific method for the turbulent flow field is explained in detail as well as the nu-
merical implementation of the models. Order and control parameters of the system
are presented and we describe different methods to measure clustering in a system
of particles. The results of self-propelled, aligning, point-like particles are presented
in Chapter 4 in terms of the nonequilibrium phase diagram. Large weight is given
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to the density waves and to the chiral symmetry breaking. The main findings of the
latter were published in Breier et al. (2016). Chapter 5 deals with extended, self-
propelled, aligning particles and the corresponding phase diagram. In Chapter 6 the
self-propelled particles are immersed in a turbulent field; the resulting nonequilib-
rium phase diagram and especially the turbulence-induced clustering is investigated.
Part of the results presented in Chapter 6 were developed in the bachelor’s thesis of
D. Waas (2015). The main findings will be published in Breier et al. (2017).
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This Chapter gives a brief overview of the theoretical background of our model. We
discuss the hydrodynamics of microswimmers and the symmetry of their interaction
in Section 2.1 to motivate our model of nematically aligning, self-propelled particles.
In Section 2.2, we examine the importance of the Reynolds number in this context and
then introduce the related concept of overdamped dynamics along with the Langevin
equation. We want to study self-propelled particles in a turbulent field and therefore
present some basic concepts from the description and analysis of turbulent flow fields
in Section 2.3.

2.1 Hydrodynamics of microswimmers

This thesis deals with aligning, self-propelled particles which mimic microswimmers,
i.e. self-propelled particles which move inside a fluid. This means that hydrodynamic
interactions have to be taken into account. In the following, we will sketch how the
hydrodynamics of a simple model of microswimmers can be derived as proposed by
Baskaran and Marchetti (2009).

13
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2.1.1 Ambient fluid: Stokes equation

The surrounding fluid of the microswimmers is in general described by the famous
incompressible Navier-Stokes equations (Kundu and Cohen, 2008, p. 426):

ρ
∂~u

∂t
+ ρ(~u · ∇)~u = ~f −∇p+ µ∇2~u and (2.1a)

∇ · ~u = 0 (2.1b)

with the density ρ, the flow velocity ~u, the pressure p, and the dynamic viscosity µ.
The term ~f is the body force density which accounts for any external forces on the
fluid. We can non-dimensionalize Eq. (2.1a) by expressing the velocity as well as the
temporal and positional derivatives in terms of characteristic values

~u = U~u ′ , (2.2a)
∂

∂t
= 1
T

∂

∂t′
, (2.2b)

∇ = 1
L
∇′ , (2.2c)

where U , L, T are the typical speed, length, and time of the flow, respectively, and
all primed quantities are dimensionless. The typical speed can be calculated from the
typical time and length U = L/T . Inserting Eqns. (2.2) into Eq. (2.1a) yields

ρ
U

T

∂~u ′

∂t′
+ ρ

U2

L
(~u ′ · ∇′)~u ′ = ~f − 1

L
∇′p+ µU

L2 ∇
′2~u ′

⇒ ρUL

µ

(
∂~u ′

∂t′
+ (~u ′ · ∇′)~u ′

)
= L2

µU
~f − L

µU
∇′p+∇′2~u ′

⇒ ρUL

µ

(
∂~u ′

∂t′
+ (~u ′ · ∇′)~u ′

)
= ~f ′ −∇′p′ +∇′2~u ′ . (2.3)

In the last step the force density and the pressure have been replaced by their dimen-
sionless equivalents

~f ′ = L2

µU
~f and (2.4a)

p′ = L

µU
p . (2.4b)

The left-hand side of Eq. (2.3) is proportional to the dimensionless number ρUL/µ
which is the Reynolds number. It can be defined (see Kundu and Cohen, 2008,
p. 292) as the ratio of inertial forces over viscous forces. The order of magnitude of
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the corresponding terms ρ(~u · ∇)~u and µ∇2~u can be derived using the typical speed,
time, and length scale of the flow (Eq. 2.2). The Reynolds number is hence defined
as

R ≡ inertial force
viscous force = ρU2/L

µU/L2 = ρUL

µ
= UL

ν
(2.5)

where ν = µ/ρ is the kinematic viscosity. The importance of the Reynolds number has
been beautifully described by Purcell (1977). He also gives estimates for the order
of magnitude of the Reynolds number: A human swimming in water experiences
R ∼ 104, while for a goldfish it is R ∼ 102. However, microswimmers (typical length
1µm, typical speed 30µm/s) in water (kinematic viscosity ν ≈ 10−6m2/s) are subject
to a Reynolds number of R ∼ 3× 10−5. This means that their motion is completely
dominated by the viscous force and inertia is negligible. By assuming R � 1, Eq. (2.3)
simplifies and yields the famous Stokes equation

0 = ~f ′ −∇′p′ +∇′2~u ′

⇒ 0 = ~f −∇p+ µ∇2~u . (2.6)

In physical terms this equation describes a flow where the viscosity is large compared
to typical speed and length. The Stokes flow can be solved by the method of Green’s
functions, and the solution is called “Stokeslet” (Hancock, 1953). The Green’s func-
tion is obtained by replacing the external force density by a point force at position
~r ′ with strength ~f0 mathematically described by a Dirac delta distribution (Dhont,
1996, p. 241)

~f(~r) = ~f0δ(~r − ~r ′) . (2.7)

The resulting flow velocity can be written as

~u(~r) = O(~r − ~r ′) · ~f0 (2.8)

with the so-called Oseen tensor O(~r). The latter can be calculated and yields (Dhont,
1996, p. 243)

O(~r) = 1
8πµr

[
I + ~r ⊗ ~r

r2

]
. (2.9)

This fundamental solution of the Stokes equation is very useful because the response of
the system to an arbitrary external force ~f(~r) can be calculated from the superposition
principle because the Stokes equation is linear (Dhont, 1996, p. 242):

~u(~r) =
∫

O(~r − ~r ′) · ~f(~r ′) d~r ′ . (2.10)

15



2 Theoretical background

2.1.2 Microswimmmer: Force dipole

The Oseen tensor can be used to calculate the resulting flow field due to any external
force. We aim to derive the hydrodynamic interactions between microswimmers.
Hence we need a description of the microswimmers as a force field. It is very common
to describe the force field far from the microswimmer as a static force dipole (Lighthill,
1975; Ishikawa et al., 2006). The swimmer is modeled (Baskaran and Marchetti, 2009)
as a rigid dumbbell with two differently sized spheres (radii aS, aL) connected by an
infinitely thin rod along the unit vector ê. The distance between the centers of the
spheres is given by l. The swimmer exerts equal and opposite forces onto the fluid at
both ends parallel to the connecting rod. The self-propulsion of the microswimmer
originates from the swimmer’s asymmetry which results in a shift of the hydrodynamic
center away from the geometric center of the dumbbell. The speed of the swimmer is
proportional to the strength f of the force dipole as v0 = −f(aL−aS)/(4πµl(aL+aS)).
The sign of f determines whether a swimmer is a pusher or a puller.

The external force density in the Stokes equation of the ambient fluid consists of
two parts: The active force density and the force density due to fluctuations in the
fluid, ~f = ~factive − ~fnoise, with

~factive =
N∑
α=1

f êα[δ(~r − ~rLα)− δ(~r − ~rSα)] and (2.11a)

~fnoise =
N∑
α=1

[ξLα (t)δ(~r − ~rLα) + ξSα(t)δ(~r − ~rSα)] . (2.11b)

The sum extends to the N particles in the system and ξL,Sα are random forces to
account for thermal diffusion of the spheres. The resulting Stokes equation (Eq. 2.6)
can formally be solved by the Oseen tensor because the forces are point-like. The
solution is then inserted into the equations of motion of the swimmer which identify
the velocity of the fluid at the position of each sphere with the velocity of that sphere:

∂~rLα
∂t

= ~u(~rLα) and (2.12a)
∂~rSα
∂t

= ~u(~rSα) . (2.12b)

Expressions for the forces and torques exerted on each swimmer due to the pres-
ence of the other swimmers can be derived by a multipole expansion (Baskaran and
Marchetti, 2009, supplementary material). The torque which one particle exerts on
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2.2 Overdamped dynamics

another can be written (in a simplified manner) as

~τ12 '
f(aL + aS)

8 ~e1 × [3r̂12 ⊗ r̂12 − I] · ê2

[
l3

r3
12

(ê1 · ê2)− 2(aL − aS)2

(aL + aS)2
l5

r5
12

]
(2.13)

where ~r12 = r12r̂12 is the vector connecting the two hydrodynamic centers of the
swimmers. The torque consists of two terms. The first term is of the order of (l/r12)3

and leads to nematic alignment because it is invariant under the inversion of ê1 or ê2.
The second term (of the order of (l/r12)5) leads to polar alignment. It vanishes in the
case of a symmetric dumbbell which is active (because it leads to a fluid motion) but
at the same time is not self-propelled (v0 = 0). This limiting case of the dumbbell
model is called a “shaker” because of the resulting motion due to thermal fluctuations.
The hydrodynamic interaction of microswimmers is hence of nematic symmetry to
leading order which allows us to use simple nematic interaction rules in our model
so that the far field hydrodynamic interactions between active particles are implicitly
incorporated at the first order. We can compare the magnitude of both terms to
estimate the validity of pure nematic interaction:

|nematic alignment|
|polar alignment| = l3

r3
12

(aL + aS)2

2(aL − aS)2
r5

12
l5

= 1
2

([
aL + aS
aL − aS

]
r12

l

)2
. (2.14)

Hence if the two spheres of the dumbbell are similar in size, the nematic term domi-
nates the system considerably more than for a very asymmetric dumbbell.

2.2 Overdamped dynamics
The Langevin equation is a stochastic differential equation which describes the change
in momentum of a micron-scaled object immersed in a fluid. It was introduced to
describe Brownian motion (Langevin, 1908), i.e. the motion of one big, heavy particle
in a bath of small and light particles. The Langevin equation describes the motion of
the large particle (position ~x, mass m = 1) while the influence of the small particle is
mimicked by a random force which models the thermal motion of the fluid molecules.
In general, the evolution equation of the particle velocity ~v = d~x/ dt is then given
by

d~v
dt + γ~v = ~Γ(t) (2.15)

(Risken, 1989, p. 32). The force acting on the particle is hence balanced by a friction
force (with friction coefficent γ) and a random Langevin force ~Γ(t) which has zero
mean and is delta-correlated in time. For interacting particles, the Langevin equation
can be modified by an additional potential term − dV (~x)/ d~x on the right-hand side
of Eq. (2.15).
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2 Theoretical background

In the low-Reynolds number regime (which is valid for microswimmers, see Sec-
tion 2.1), the dynamics of the particle is overdamped because the viscous force dom-
inates over inertia. This means that accelerations are damped out very quickly so
that we can neglect the first term on the left-hand side of Eq. (2.15). The resulting
overdamped Langevin equation with interactions is given by

d~x
dt = −1

γ

dV (~x)
d~x + 1

γ
~Γ(t) . (2.16)

2.3 Turbulence
We want to study active particles in a turbulent flow field and therefore we introduce
a few basic concepts of turbulence in this section: The energy-spectrum function,
the integral length scales of velocity and vorticity, and the Taylor-based Reynolds
number. Generally, turbulence describes a stochastic flow regime which is found
in many different fluids and situations. It occurs at high Reynolds numbers, i.e.,
when the influence of viscosity is small compared to the importance of inertia. It is
important to note that this is not the same Reynolds number as the one describing
the motion of the microswimmer: The swimmer’s Reynolds number characterizes its
motion in a fluid based on the swimmer’s size and speed, and the viscosity of the
fluid. The (potentially high) Reynolds number of the turbulent flow field instead is
an intrinsic property of that flow.
The main quantities of interest about the turbulent field are the velocity ~uturb(~r, t),

the pressure, and the density which are all coupled through the (incompressible)
Navier-Stokes equations (Eq. 2.1). From the turbulent velocity it is easy to calculate
the vorticity ~ω ≡ ∇×~uturb which is responsible for the rotation of fluid elements (and
also immersed particles).

2.3.1 Energy spectrum
Turbulent flows consist of structures which span a wide range of sizes. They are often
characterized by their energy-spectrum function which describes the distribution of
energy among the differently sized structures. In the following we sketch how this
function can be derived from the velocity field of a homogeneous and isotropic flow.
We therefore start with the two-point velocity correlation function which is given by

Rij(~r, t) ≡ 〈ui(~x+ ~r, t)uj(~x, t)〉 (2.17)

(Pope, 2000, p. 196) where 〈·〉 denotes an average over positions ~x. Rij does not
depend on ~x because the turbulence is (assumed to be) homogeneous. We will drop
the time-dependence in the following because we are only interested in stationary
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2.3 Turbulence

turbulence. The velocity-spectrum tensor is the Fourier transform of the velocity
correlation:

Φij(~k) ≡ 1
(2π)3

∞∫∫∫
−∞

Rij(~r)e−i
~k·~r d~r (2.18)

(Pope, 2000, p. 220). The energy spectrum function can be defined by removing all
orientational information from the velocity-spectrum tensor. To achieve this, one uses
only the trace of the tensor and integrates over a sphere of radius k:

E(k) ≡
∮
S

1
2Φii(~k) dS(k) (2.19)

(Pope, 2000, p. 221). In isotropic turbulence, it can be shown that the velocity-
spectrum tensor is completely determined by the energy-spectrum function:

Φij(~k) = E(k)
4πk2

(
δij −

kikj
k2

)
(2.20)

(Pope, 2000, p. 222).
The turbulent kinetic energy is given by the integral over the energy-spectrum

function
k ≡

∫
E(k) dk (2.21)

and measures the full kinetic energy of the turbulent flow.

Kolmogorov spectrum- Kolmogorov (1941) introduced hypotheses on turbulence of
high enough Reynolds number which lead to an energy-spectrum function E(k) (Pope,
2000, p. 230). This energy-spectrum function describes how energy is distributed
to different length scales in the system (described by the wavenumber k). The first
hypothesis states that turbulence should obey local isotropy. The second hypothesis is
a statement on the universal form of the velocity statistics of the small-scale motions
which is uniquely determined by the energy dissipation rate ε̄ and the kinematic
viscosity ν. Dimensional analysis leads to the resulting energy-spectrum function in
the inertial subrange as

E(k) = Cε̄2/3k−5/3 (2.22)

with a universal Kolmogorov constant C.

Typical velocity and vorticity. The turbulent field is described by the energy-
spectrum function. However, it is useful to derive typical values of the velocity and
vorticity of the turbulent field to compare to other values in the system. The typical
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2 Theoretical background

velocity is the root-mean-square velocity:

urms ≡
√
〈~u 2

turb〉 . (2.23)

It is related to the turbulent kinetic energy k as

k = 1
2u

2
rms (2.24)

and can hence also be calculated from the energy-spectrum function

urms =
√

2k =
√

2
∫ ∞

0
E(k) dk . (2.25)

It is important to note here that sometimes in the literature the term “root-mean-
square velocity” refers to the root-mean-square value of one component of the velocity
vector, which in isotropic turbulence is a third of our urms.
Like the energy-spectrum function is based on the velocity, a similar function can

be derived for the vorticity as well. It can even be shown that such a spectrum of the
vorticity is related to the energy-spectrum function by

Eω(k) = k2E(k) . (2.26)

In a flow field which obeys the Kolmogorov spectrum, the large-scale structures pos-
sess most of the kinetic energy due to the negative slope of E(k). The spectrum of
the vorticity tells us, however, that in terms of rotations (which is what the vorticity
is responsible for) the small-scale structures dominate due to the positive slope of
Eω(k). The root-mean-square vorticity is given (in complete analogy to urms) by

ωK =
√

2
∫ ∞

0
Eω(k) dk . (2.27)

In the following, it will be called the “Kolmogorov shear rate” (Durham et al., 2013).

2.3.2 Integral length scale

It is useful to calculate a typical length scale of the turbulent flow field to be able to
compare it to other length scales in the system. Usually in isotropic turbulence one
calculates the longitudinal integral length scale of the velocity field which is defined for
isotropic turbulence as the space integral over the correlation of a velocity component
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2.3 Turbulence

(called u1) correlated along the ê1-axis:

L11(t) ≡
∫ ∞

0

〈u1(~x+ ê1r, t)u1(~x, t)〉
〈u2

1〉
dr (2.28)

(Pope, 2000, p. 197). We will omit the time dependence hereinafter because we only
study statistically stationary turbulence. Using the one-dimensional energy spec-
trum E11(k1) = 2

∞∫∫
−∞

Φ11(~k) dk2 dk3 together with the relationship between velocity-
spectrum tensor and turbulent energy spectrum function E(k) (Eq. 2.20) leads to

L11 = 3π
4

∫∞
0 E(k)k−1 dk∫∞

0 E(k) dk . (2.29)

Analogously to Eq. (2.28) one can also define a longitudinal integral length scale
of the vorticity:

Lω11 ≡
∫ ∞

0

〈ω1(~x+ ê1r)ω1(~x)〉
〈ω2

1〉
dr . (2.30)

Again, we omit the time dependence of Lω11 because of statistical stationarity. In the
following we derive an expression for Lω11 in complete analogy to the derivation of
Eq. (2.29). We start from the two-point vorticity correlation

Rω
ij(~r) ≡ 〈ωi(~x+ ~r)ωj(~x)〉 , (2.31)

which in the case of isotropic turbulence can be decomposed into two scalar functions:
the longitudinal and transverse autocorrelation functions (cf. Pope, 2000, p. 196).
We use the longitudinal autocorrelation function

fω(r) = Rω
11(ê1r)
〈u2

1〉
(2.32)

which leads to
Lω11 =

∫ ∞
0

fω(r) dr . (2.33)

The one-dimensional spectra Eω
ij(k1) are defined as

Eω
ij(k1) ≡ 1

π

∫ ∞
−∞

Rω
ij(ê1r)e−ik1r dr . (2.34)
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By using Eq. (2.32) and the properties of fω, as well as Eq. (2.33), we find

Eω
11(k1) = 2

π

〈
u2

1

〉 ∫ ∞
0

fω(r) cos(k1r) dr (2.35)

⇒ Lω11 =
∫ ∞

0
fω(r) dr = π

2
Eω

11(0)
〈ω2

1〉
. (2.36)

Hence, we need expressions for the one-dimensional spectrum E11(k1) and for the
mean vorticity 〈ω2

1〉 to calculate the integral length scale. The one-dimensional spec-
trum is related to the vorticity-spectrum tensor Φω

ij

Φω
ij(~k) ≡ 1

(2π)3

∞∫∫∫
−∞

Rω
ij(~r)e−i

~k·~r d~r (2.37)

(defined as the Fourier transform of Eq. 2.31) via

Eω
11(k1) = 2

∞∫∫
−∞

Φω
11(~k) dk2 dk3 . (2.38)

The vorticity-spectrum tensor is in turn related to the velocity-spectrum tensor Φij

(Eq. 2.18) as
Φω
ij = (δijk2 − kikj)Φkk − k2Φji (2.39)

(Saffman, 1967) and the velocity-spectrum tensor is given by the energy-spectrum
function in Eq. (2.20). This leads to

Φω
11 = E(k)

4π

(
1− k2

1
k2

)
dk2 dk3 (2.40)

⇒ Eω
11(k1) = 2

∞∫∫
−∞

E(k)
4π

(
1− k2

1
k2

)
dk2 dk3 . (2.41)

We use spherical coordinates k2
r = k2

2 + k2
3 = k2 − k2

1 and the fact that kr dkr = k dk
(Pope, 2000, p. 226) which leads to

Eω
11(k1) = 2

∫ 2π

0

∫ ∞
0

E(k)
4π

(
1− k2

1
k2

)
kr dkr dφ (2.42)

=
∫ ∞

0
E(k)

(
1− k2

1
k2

)
k dk (2.43)

⇒ Eω
11(0) =

∫ ∞
0

E(k)k dk . (2.44)
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The mean vorticity 〈ω2
1〉 can be calculated from the vorticity spectrum (Eq. 2.26) as

〈
ω2

1

〉
= 1

3ω
2
K = 1

3

∫ ∞
0

E(k)k2 dk . (2.45)

By combining Eq. (2.36) with Eqns. (2.44) and (2.45), the integral length scale is
given by

Lω11 = 3π
4

∫∞
0 E(k)k dk∫∞

0 E(k)k2 dk . (2.46)

2.3.3 Taylor-based Reynolds number
In general, the Reynolds number of any flow field is defined as the ratio of inertial
over viscous forces and can be derived as R = UL/ν from a typical speed U , a typical
length L, and the kinematic viscosity ν (see Eq. 2.5 and derivation thereof). In the
turbulence community it is common to use as a typical speed the root-mean-square
speed u′ based on one component of the turbulent flow field. This is related to the
full root-mean-square velocity and to the turbulent kinetic energy (see Eq. 2.24) as

u′2 = 1
3u

2
rms = 2

3k . (2.47)

The length scales involved in a turbulent flow field span a wide range and therefore
we can define different Reynolds numbers based on different “typical” length scales
of the flow field. The typical length scales of the large-scale eddies can be estimated
by the length L = k3/2/ε̄ with the energy dissipation rate ε̄ so that the turbulence
Reynolds number can be defined as

RL ≡
√
kL

ν
= k2

ε̄ν
(2.48)

(see Pope, 2000, p. 200).
A second Reynolds number which characterizes the turbulent flow field is based

on the Taylor microscale λg. This scale does not have a clear physical interpretation
(Pope, 2000, p. 199) but it is very useful to characterize a turbulent flow field. For
example it is related to the energy dissipation rate and the viscosity through

ε̄ = 15ν u
′2

λ2
g

(2.49)

(Pope, 2000, p. 199), an expression which was first derived by Taylor (1935). In his
classic paper, he incorrectly concluded that the Taylor microscale characterizes the
size at which the energy dissipated. This is not true because it erroneously assumes
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that u′ is the corresponding characteristic velocity of those smallest eddies. The
Taylor-based Reynolds number is defined as

Rλ ≡
u′λg
ν

(2.50)

which leads to

Rλ =
√

20
3
k2

νε̄
=
√

20
3 RL . (2.51)

Even though the physical interpretation of the Taylor microscale is not straightfor-
ward, the resulting Reynolds number does have a physical interpretation: It is equal
to the ratio of the large-eddy time scale to the time-scale of fluctuations in the strain
rate (Tennekes and Lumley, 1972, p. 68).
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In this Chapter the methods are introduced which we use to study self-propelled
particles with and without an external turbulent field. We describe the equations of
motion of the self-propelled particles, as well as the models of the turbulent flow field.
The numerical implementation is discussed. We introduce dimensionless numbers
and order parameters to describe our system and briefly describe different methods
to analyze clustering.

3.1 Models
The subject of this Section are the different models which we study in this the-
sis: point-like, self-propelled particles; extended, self-propelled particles; and self-
propelled particles in a turbulent field. The turbulent flow field is either generated
from kinematic simulations (called the “Kraichnan flow field” in the following) or
using direct numerical simulations.

3.1.1 Nematically aligning self-propelled particles
We investigate the collective behavior of large numbers of SPPs in terms of MD sim-
ulations. To this end N particles inhabit a three-dimensional rectangular box of side
lengths Lx, Ly, Lz. Most of the simulations are performed in a cubic box and the
linear size L = Lx = Ly = Lz is given. If not stated otherwise, periodic boundary
conditions are applied in all three dimensions. The particle i is described by its po-
sition ~ri and its orientation êi with ê2

i = 1. It moves along this orientation vector
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with a constant speed v0 which makes the particle self-propelled. Neighboring parti-
cles within a distance ε interact nematically, i.e. they tend to align their orientations
while ignoring the positions of head and tail. This interaction is incorporated into the
model by means of the Lebwohl-Lasher potential (Lebwohl and Lasher, 1972) which
is commonly used in the field of liquid crystals to simulate nematic interactions. The
potential reads as follows:

ULL ≡ −
1
2

N∑
i

1
ni

∑
j∈ni

(êi · êj)2 (3.1)

where the first sum extends over all simulated particles while the second sum extends
to the ni neighboring particles of particle i within a sphere of radius ε. Finally, the
orientation of the particles are subject to an additive stochastic noise (details will be
given below). The equations of motion for particle i are thus

~̇ri = v0êi = ~vi (3.2a)

˙̂ei =
[
−γ ∂ULL

∂êi
+ ~ξi

]
⊥

=
[
~Ti
]
⊥

(3.2b)

with the relaxation constant γ and the stochastic noise ξ̂i. Eq. (3.2) means physically
that particle i moves with a velocity ~vi and rotates subject to the component of
the torque ~Ti which is perpendicular to the particle orientation as indicated by the
subscript ⊥: [

~Ti
]
⊥
≡ ~Ti − (~Ti · êi)êi . (3.3)

The equations are only first order in time because we work in the limit of low Reynolds
numbers which means that viscous effects dominate over inertia and accelerations are
damped out very fast (in the spirit of the Langevin equation in the overdamped
limit, see Section 2.2). The nematic symmetry of the interaction is justified by the
fact that the hydrodynamic interactions between swimmers (modeled as force dipoles)
are nematic to leading order (see Section 2.1 and Baskaran and Marchetti, 2009, for
details).

3.1.2 Particles with hard cores

It is very common in MD simulations to model extended particles by the WCA
potential. This potential was introduced by Weeks et al. (1971) and consists of a
shifted and truncated Lennard-Jones potential (Lennard-Jones, 1931). The resulting
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Figure 3.1: Illustration of the WCA potential (red). The Lennard-Jones potential
(blue) is shifted by εF and truncated at r0 = 6

√
2σ.

potential is purely repulsive and can be written as

UWCA(r) ≡


4εF

(σ
r

)12

−
(
σ

r

)6+ εF for r ≤ 6
√

2σ,

0 for r > 6
√

2σ
(3.4)

with εF being the strength of the potential. The particle diameter is denoted by σ
(see Fig. 3.1 for an illustration of the potential).

The resulting force ~FWCA = −∇UWCA enters the equation of the particle position
together with the relaxation time γF (Wysocki et al., 2014). Moreover, as the model
is supposed to mimic elongated objects, also the orientation of the particle is altered
nematically. The resulting equations of motion are

~̇ri = v0êi + 1
γF

∑
j 6=i

~FWCA = v0êi −
1
γF

∑
j 6=i
∇iUWCA(rij) = ~vWCA

i , (3.5a)

˙̂ei =
−γ ∂ULL

∂êi
+ ~ξi −

∑
j 6=i

sign(êi · êj)∇iUWCA(rij)

⊥

=
[
~T WCA
i

]
⊥
, (3.5b)

where rij = |~ri − ~rj| and

sign(x) ≡


+1 for x > 0
0 for x = 0
−1 for x < 0 .

(3.6)
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(a) Head-on collision with influence of the
WCA potential on the particle orientation
following Eq. (3.5)
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(b) Head-on collision without influence of
the WCA potential on the particle orienta-
tion following Eq. (3.8) with E0 = 0.

Figure 3.2: Illustration of the effect of hard cores modeled through the WCA force
(P →∞). Two particles approach each other along x̂ while they are ∆y = 0.1σ apart
(blue: moving along x̂, red: moving along −x̂). The circles denote the particle size,
the dashed circles are drawn for the shortest distance between the two particles.

The trajectories of two particles which follow these equations of motion are illustrated
in Fig. 3.2a. They collide head-on starting from initial positions with a small shift
perpendicular to the axis of their orientations. Note that the particles repel each
other and also influence each others orientation thus resulting in a rotation of the
overall nematic orientation.

3.1.3 Particles in a turbulent field
The collective behavior of particles immersed in a turbulent field will be studied in
Chapter 6. This flow field influences the particles in two different ways (Durham
et al., 2013): Firstly, the particles are advected by the turbulent velocity ~uturb. And
secondly, the particles are turned by the turbulent vorticity ~ω = ∇×~uturb which means
that the turbulent vorticity acts as a torque on the orientation of the particles. It can
be shown that the magnitude of the angular velocity of a fluid parcel is half of the
magnitude of the vorticity. The resulting equations of motion for the self-propelled
particles are (analogously to Eq. 3.2):

~̇ri = v0êi + ~uturb = ~v turb
i , (3.7a)

˙̂ei =
[
−γ ∂ULL

∂êi
+ 1

2 (~ω(~ri, t)× êi) + ~ξi

]
⊥

=
[
~T turb
i

]
⊥
. (3.7b)

The turbulent field is introduced in two different manners: One uses the method of
“kinematic simulation” by Kraichnan (1970) which mimics the turbulent field by a
Fourier sum satisfying certain conditions such as incompressibility and a prescribed
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energy spectrum. Hereinafter this method will be referred to as the ‘Kraichnan
method’ (see Section 3.1.4 for details). The second method uses DNSs as described
in Section 3.1.5.

Extended particles in a turbulent field

We also want to model hard-core particles in a turbulent field. The idea is similar to
hard-core particles without a turbulent field but we omit the influence of the WCA
force onto the orientation of the particles to keep the model as simple as possible and
ensure a direct comparability between the models with point particles and with hard
cores. The resulting equations of motions are (cf. Eqns. 3.7 and 3.5):

~̇ri = v0êi + ~uturb −
1
γF

∑
j 6=i
∇iUWCA(rij) = ~v turb, WCA

i , (3.8a)

˙̂ei =
[
−γ ∂ULL

∂êi
+ 1

2 (~ω(~ri, t)× êi) + ~ξi

]
⊥

=
[
~T turb, WCA
i

]
⊥
. (3.8b)

The resulting motion of two particles which collide head-on with a small shift per-
pendicular to their axis of motion is illustrated in Fig. 3.2b. Now, the orientation of
the particle is not altered by the WCA force and hence the global nematic director
remains the same before and after the collision.

3.1.4 The Kraichnan flow field
Kraichnan (1970) developed a method to generate a flow field numerically which
resembles a real turbulent field. The main advantage of this method in comparison
to DNSs is that it is computationally quite easy which results in short run times
even for rather large systems. Moreover, it does not require neither a space nor
a time grid but it is continuous by construction. That means that the turbulent
velocity and vorticity acting on any particle can be directly calculated at its position
and at any time without requiring any interpolation. Finally, it follows a prescribed
energy spectrum so that we are able to control the relative influences of large and
small scales. The Kraichnan method has been used and developed further since
its invention (Fung et al., 1992; Malik, 1996; Malik and Vassilicos, 1999; Visser and
Jackson, 2004; Nicolleau et al., 2016) and we follow the recipe by Mariani et al. (2007)
with modifications mainly concerning the possible wavevectors and -numbers. The
turbulent field at position ~r and time t is given by

~uturb(~r, t) =
NF∑
n=1

cn

 ân × k̂n∣∣∣ân × k̂n∣∣∣ cos Ωn(~r, t) + b̂n × k̂n∣∣∣b̂n × k̂n∣∣∣ sin Ωn(~r, t)
 (3.9)
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and the vorticity follows as

~ω(~r, t) =
NF∑
n=1

cnkn

−k̂n ×
 ân × k̂n∣∣∣ân × k̂n∣∣∣

 sin Ωn(~r, t) + k̂n ×

 b̂n × k̂n∣∣∣b̂n × k̂n∣∣∣
 cos Ωn(~r, t)

 .

(3.10)
The turbulent field is hence simulated by NF Fourier modes with weights cn and
phases Ωn(~r, t) = ~kn~r + ωnt. The vectors ~kn = knk̂n denote the wavevectors and ωn
are the corresponding angular frequencies. The vectors ân and b̂n are random vectors
on a unit sphere. The velocity field is incompressible (∇ · ~uturb = 0) by construction
due to the cross products which include k̂n.
In the MD simulations we apply full PBCs to our simulation box which is cubic

with Lx = Ly = Lz. This implies that also the turbulent field itself has to fulfill
the PBCs. This can be achieved by assuring that each individual mode fulfills the
PBCs. To this end, the correct choice of the wavevectors is crucial: They have to
be constructed as ~kn = 2π~n/L with ~n ∈ N3. The detailed procedure to find the
wavevectors in the following: For each mode a random number χ ∈ [nmin, nmax) is
generated as well as a random vector on the unit sphere. We multiply the two and
round each component to the nearest integer. This leads to the vector ~n ∈ N3, the
direction of which is randomly distributed on the surface of a sphere. The vectors ~n
are equally distributed in magnitude |~n|. All resulting vectors ~n are sorted by length
and the wavevectors are calculated as ~kn = 2π~n/L so that k1 corresponds to the
smallest wavenumber, while kNF is the largest one. Several wavevectors can have the
same magnitude and several wavevectors can point into the same direction but no
pair of wavevectors must be identical.
By this procedure the wavenumbers kn are equally distributed. If this condition is

relaxed and the vectors ~n are simply generated from ~n ∈ N3 with nmin ≤ |~n| ≤ nmax
a few modes dominate the overall flow. This is because larger values of |~n| are
more probable and the small wavenumbers are very sparsely distributed because the
probability of |~n| is proportional to the volume of a spherical shell with radius |~n|
and thickness δn and hence grows as |~n|2. However, due to the negative slope of
the energy-spectrum function, the modes with the smallest wavenumbers contain the
largest amounts of energy. If they are very sparsely distributed then only a few modes
contain most of the energy and dominate the overall flow pattern.
In the literature, other approaches to construct the wavevectors are used, especially

a geometric series for the wavenumbers (Malik and Vassilicos, 1999; Lewis and Pedley,
2000; Visser and Jackson, 2004; Mariani et al., 2007). The resulting velocity field
does not fulfill the periodic boundary conditions, so one could use “pseudo-periodic”
boundary conditions (Mariani et al., 2007): To keep the concentration of particles
constant, whenever a particle leaves the simulation domain a new one is created at
random at the opposite side of the domain with a random orientation pointing into
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the simulation domain. A test of this approach implemented in our model showed
that boundary effects still occurred, namely the local density at the boundary was
increased compared to the inner part of the simulation domain. Since we want to
study the clustering (i.e. local variations in density), we did not follow this approach
further but used the described approach of a harmonic series of the wavevectors.
A third possible choice of wavenumbers is to construct the wavevector from three
independent Gaussian random number (Mansoori et al., 2002). Again, the resulting
field will not meet the periodic boundary conditions and is hence not the right choice
for our purpose.
Once we have found a set of wavevectors, we proceed by calculating the weights cn

of the Fourier modes. The correlator of the turbulent velocity field is related to the
energy spectrum E(k):

〈~uturb · ~uturb〉
!= 2

∫
E(k) dk , (3.11)

which is the definition of the energy spectrum for isotropic turbulence (Pope, 2000,
p. 78). In the case of the Kraichnan model this auto-correlation is given by

〈~uturb · ~uturb〉 =
NF∑
n=1

c2
n (3.12)

(Lewis and Pedley, 2000). A comparison between the latter and Eq. (3.11) leads
to the idea to approximate the integral over the energy spectrum numerically by
effectively assigning each mode to one segment of the numerical integral. As several
wavevectors might have the same length, all NF wavevectors form M equivalence
classes q1, . . . , qM . Each equivalence class qm = [km] contains lm wavevectors of length
km. The weights of the equivalence classes must fulfill 2

∫
E(k) dk = ∑M

m=1 |cm|2
which can be achieved by choosing |cm|2 = 2E([km])δ[km] with δ[km] being the central
difference between adjacent equivalence classes:

δ[km] = 1
2


([k2]− [k1]) for m = 1 ,
([km+1]− [km−1) for 2 ≤ m ≤M − 1 ,
([kM ]− [kM−1]) for m = M .

(3.13)

Among each equivalence class, the energy is distributed equally:

c2
m| =

lm∑
j=1
|c[km]|2 = lm|c[km]|2 (3.14)

which results in

|cn| =
|cm|√
lm

=
√

2E([km])δ[km]
lm

, kn ∈ [km] (3.15)
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as the weight of each Fourier mode.
Finally, the angular frequency ωn has to be chosen. Typically, the eddy turnover

time is identified with ωn which can be deduced from “Kolmogorov 1941 phenomenol-
ogy” (see Frisch, 1995, p. 100–103): The eddy turnover time tl is the time it takes
until a structure of size l is significantly altered because of its relatively moving parts.
This time scale can be approximated by l and a typical velocity vl: tl ∼ l/vl. The
energy flux is then given by Π′l ∼ v2

l /tl ∼ v3
l /l. This energy flux is of the order of the

dissipation rate ε̄ because the eddy turnover time also describes the time scale of the
energy transfer from scales of the order of l to smaller scales. This leads to

Π′l ∼ ε̄

⇒ vl ∼ ε̄ 1/3l1/3

⇒ 1
tl
∼ ε̄ 1/3l−2/3

=
√
ε̄ 2/3l−4/3 =

√
ε̄ 2/3

(1
l

)−5/3 (1
l

)3
(3.16)

Using a Kolmogorov energy spectrum (Eq. 2.22) and identifying k ∼ l−1 leads to the
following angular frequency

ωn = 0.4
√
E(kn)k3

n (3.17)

with the unsteadiness parameter of 0.4 which was found to result in good agreement
between DNS and kinematic simulation results (Malik and Vassilicos, 1999).

Energy spectrum of the flow field

To construct the Kraichnan flow field, we use an energy-spectrum function of the
Kolmogorov type (Eq. 2.22):

E(k) =

E0k
−5/3 , for kmin ≤ k ≤ kmax

0 , otherwise .
(3.18)

This choice of E(k) implies that we only model the inertial subrange. By comparing
Eq. (3.18) with Eq. (2.22), we see that the energy scale E0 effectively sets the dissipa-
tion rate ε̄. Changing E0 does not change the range of wavenumbers (and hence does
not change the Reynolds number) but only shifts the amount of energy each mode
(and also the full field) contains. A possible extension of this energy spectrum would
be to include exponential cut-offs (cf. Pope, 2000, p. 232).
The root-mean-square velocity (Eq. 2.25) and the Kolmogorov shear rate (Eq. 2.27)
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of a turbulent flow field with the given energy-spectrum function are given by

uKolmogorov
rms =

√
3E0

(
k
−2/3
min − k

−2/3
max

)
, (3.19)

ωKolmogorov
K =

√
3
2E0(k4/3

max − k4/3
min) . (3.20)

Also, the integral length scales of the velocity (Eq. 2.29) and of the vorticity
(Eq. 2.46) follow from E(k):

LKolmogorov
11 = 3π

10
1
kmin

1− (kmin/kmax)5/3

1− (kmin/kmax)2/3 , (3.21a)

Lω,Kolmogorov
11 = 3π

kmax

1− (kmin/kmax)1/3

1− (kmin/kmax)4/3 . (3.21b)

Taylor-based Reynolds number

In the following we derive a formula for the Taylor-based Reynolds number of a
kinematic simulation. This Reynolds number is given in Eq. (2.51) as a function
of turbulent kinetic energy, kinematic viscosity, and energy dissipation rate. The
turbulent kinetic energy (Eq. 2.21) of the Kolmogorov energy spectrum (Eq. 3.18)
can be derived analytically as

k =
∫ ∞

0
E(K) dK =

∫ kmax

kmin
E0K

−5/3 dK

= −3
2E0 K

−2/3
∣∣∣kmax

kmin

= 3
2E0(k−2/3

min − k−2/3
max ) . (3.22)

We can choose the energy scale of the turbulent spectrum to be

E0 = Cε̄ 2/3

1−
(
kmin

kmax

)4/3
−1

(3.23)

to ensure the appropriate relation between the dissipation rate and the energy spec-
trum (see Eq. 2.22 and Mariani et al., 2007). For the moment, we keep the Kol-
mogorov constant C variable. At the same time, the energy spectrum function also
determines the energy dissipation rate of a turbulent flow (see Pope, 2000, p. 222):

ε̄ = 2ν
∫ ∞

0
K2E(K) dK . (3.24)
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Inserting the Kolmogorov energy spectrum (Eq. 3.18) this leads to

ε̄ = 3
2νE0(k4/3

max − k
4/3
min) . (3.25)

The kinematic viscosity can be derived from the definition of the Kolmogorov length
scale (Tennekes and Lumley, 1972, p. 20)

ηK ≡
(
ν3

ε̄

)1/4

, (3.26)

so that the dissipation rate is given by

ε̄ 2/3 = 3
2η

4/3
K E0k

4/3
max

1−
(
kmin

kmax

)4/3
 . (3.27)

We therefore have two equations (Eq. 3.23 and Eq. 3.27) which have both to be
fulfilled by the Kolmogorov length scale ηK and by the Kolmogorov constant C. The
resulting conditions is

1 != 3
2Cη

4/3
K k4/3

max . (3.28)

Three different choices of C and ηK seem to be reasonable. Firstly, the smallest
wavelength in the system is 2π/kmax which could be identified with the Kolmogorov
length scale. This results in a Kolmogorov constant of C = (2/3)×(2π)−4/3 ≈ 0.0575.
This is almost two orders of magnitude smaller than the experimental value of C ≈
1.5. Secondly, if we identify ηK = 1/kmax (which means that the inertial subrange
of the system lies between 2πηK and 2π/kmin, as suggested by Mariani et al., 2007),
the resulting Kolmogorov constant is C = 2/3. As a third approach, we can fix the
Kolmogorov constant to be C = 3/2 with the result that the Kolmogorov length scale
is ηK = (2/3)3/2/kmax ≈ 0.544/kmax and thus ηK is one order of magnitude smaller
than the smallest wavelength simulated. We use this third solution in the following
keeping in mind that the calculation of Reynolds numbers in kinematic simulations
is not straightforward.

The Taylor-based Reynolds number can be derived from the definition in Eq. (2.51)
using the turbulent kinetic energy in Eq. (3.22) with Eq. (3.23) and the kinematic
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viscosity from Eq. (3.26):

Rλ =
√

20
3

k√
νε̄

=
√

20
3

C 3
2 ε̄

2/3
(

1−
(
kmin
kmax

)4/3
)−1 (

k
−2/3
min − k−2/3

max

)
η

2/3
K ε̄ 2/3

= C
√

15 1
η

2/3
K k

2/3
max

1
x2/3

1− x2/3

1− x4/3 with x = kmin

kmax
. (3.29)

The Taylor-based Reynolds number with C = 3/2 and ηK = (2/3)3/2/kmax results
in

Rλ =
(3

2

)2√
15 1
x2/3

1− x2/3

1− x4/3 with x = kmin

kmax
. (3.30)

In the literature, however, the Reynolds number in a kinematic simulation is some-
times defined as Rkinematic ≡ (kmax/kmin)4/3 (Nicolleau et al., 2016) which is not di-
rectly comparable with Reynolds numbers in DNSs or experiments.

Characterization of the flow field

An example of the Kraichnan flow field for NF = 64 modes is given in Fig. 3.3. A
two-dimensional cut through the flow field shows differently sized structures which to
the eye resemble a turbulent field. The probability distribution of the components of
velocity and vorticity approach a Gaussian distribution for high numbers of Fourier
modes. This is in agreement with the statement by Thomson and Devenish (2005)
who proved that the velocity statistics (for large enough NF ) is always Gaussian. The
variance of the velocity component is given by

σ2
ux ≡

〈
u2
x

〉
= 1

3
〈
~u 2

turb

〉
= 2

3

∫ ∞
0

E(k) dk

= E0(k−2/3
min − k−2/3

max ) (3.31)
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(a) Magnitude (color) and direction (small arrows) of the turbulent field with NF = 64
modes in a cross-section of the simulation box.
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(b) Probability distributions of one component of the velocity and of one component of the
vorticity for different numbers of Fourier modes. The curves are shifted for better visibility.
The black lines denotes the standard normal distribution p(x) = 1/

√
2πexp(−x2/2).

Figure 3.3: Example and probability distributions of the Kraichnan flow field.
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Figure 3.4: Eulerian velocity increments of the self-propelled particles in the Kraich-
nan flow field (v0 = 0.5). Different colors indicate different vortical Stokes numbers
Sω = 2γ/ωK . The zero mean, unit variance Gaussian distribution is plotted in black.

where Eqns. (2.25) and (3.18) have been used. Similarly, the variance of the vorticity
can be derived as

σ2
ωx ≡

〈
ω2
x

〉
= 1

3
〈
~ω2
〉

= 2
3

∫ ∞
0

k2E(k) dk

= 1
2E0(k4/3

max − k
4/3
min) (3.32)

where Eq. (2.27) together with Eqns. (2.26) and (3.18) have been used.
Phenomenological arguments suggest that the squared separation of two particles in

a turbulent flow over time follows a third-order power law (“Richardson dispersion”
Richardson, 1926; Monin and Yaglom, 1975, p. 574). However, for the Kraichnan
method a sixth-order growth is found in the bulk and the pair separation follows a
(classical) third-order power law in regions with very small velocities. This leads to
an effective exponent of 9/2 (Thomson and Devenish, 2005).

Velocity increments of particles in the Kraichnan flow field

One important tool of analysis in the field of turbulence are velocity increments.
These are used to characterize a flow field and compare it to a turbulent flow field.
Two different sets of velocity increments can be calculated: Lagrangian and Eulerian.
In the case of Lagrangian velocity increments we compare the velocities and positions
of one single particle at two different time instants (separated by ∆t). In contrary, to

37



3 Methods

obtain the Eulerian velocity increments we compare velocities at positions separated
by a distance ∆x at one and the same time. We will focus on Eulerian statistics in
the following (cf. Wensink et al., 2012). In both cases the velocity difference ~∆v
and the vector ~∆x connecting the two positions are used to calculate the longitudinal
velocity increment

∆v|| ≡ ~∆v ·
~∆x

∆x . (3.33)

The transverse velocity increment follows as

∆v⊥ ≡ ~∆v · T̂ (3.34)

where T̂ = (εij∆̂x) is a unit vector perpendicular to the shift vector ~∆x (Wensink
et al., 2012). We analyze the Eulerian velocity increments of self-propelled, point-like
particles in a Kraichnan flow field (N = 27000, NF = 64, P = γ/Dr = 2 × 106).
Figure 3.4 shows examples of both the longitudinal as well as the transverse Eule-
rian velocity increments for different vortical Stokes numbers. The latter compares
the strength of the nematic alignment mechanism with the turbulent vorticity (see
Section 3.3.1). The curves of the velocity increments reveal a transition from Gaus-
sian statistics (for low Sω) when the turbulent flow dominates the movement of the
particles, to a single peak at zero (for infinite Sω) when the turbulent flow field van-
ishes. The transverse velocity increments shows in the latter case also two peaks at
±2 which is a purely geometric effect and can be calculated analytically (Gillespie,
1983). We can conclude that the Kraichnan flow field shows Gaussian statistics and
that there is a smooth transition from the turbulence dominated system to the purely
self-propelled system.

3.1.5 Direct numerical simulations

Apart from the Kraichnan model, we also use the flow field generated by a direct
numerical simulation1. The DNS uses a standard pseudo-spectral method (details
can be found in Wilczek, 2010) to solve the incompressible Navier-Stokes equations

∂t~uturb(~r, t) + ~uturb(~r, t) · ∇~uturb(~r, t) = −∇p+ ν∆~uturb(~r, t) + ~f(~r, t) ,
∇ · ~uturb(~r, t) = 0 .

1The numerical data is kindly provided by Cristian C. Lalescu from the group “Theory of Turbulent
flows” (head: Michael Wilczek) at the Max Planck Institute for Dynamics and Self-Organization,
Göttingen.
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Figure 3.5: Resulting energy spectrum of the direct numerical simulation (blue) and
prescribed Kolmogorov spectrum of the Kraichnan flow field (red).

The forcing ~f is of the Lundgren type (Lundgren, 2003; Rosales and Meneveau, 2005)
with

f̂(~k, t) =

αûturb(~k, t) for kf0 ≤ k ≤ kf1
0 otherwise .

The real space grid consists of 72×72×72 nodes at a Taylor-based Reynolds number
of Rλ ≈ 17. A high spatial resolution of max(k) ·ηK ≈ 2.2 (with the Kolmogorov scale
ηK) can be achieved. We follow Ishihara et al. (2007) for the calculation of standard
statistical quantities. The resulting energy spectrum (Fig. 3.5) clearly differs from
the Kolmogorov spectrum and does not show a power-law decay. This is one of the
main differences between the DNS and the Kraichnan method. A second discrepancy
concerns the statistics which is Gaussian for the Kraichnan flow field and can deviate
from Gaussianity in the case of DNSs.

3.2 Molecular dynamics simulations

The structure of the MD simulation code is given in Fig. 3.6. The centerpiece of the
code is the time loop which includes the integration of the equations of motion and
the application of boundary conditions. The input parameters are given in Tab. 3.1.

The equations of motion are integrated by using the Euler-Maruyama scheme
(Maruyama, 1955).2 A time step ∆t is introduced and positions and orientations

2Higher-order integration schemes could be used but are not expected to have a significant impact
on the results due to the stochastic nature of the equations.
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Start
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boundary
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Figure 3.6: Schematic structure of the MD program to model nematically aligning
active swimmers (extended or point-like) with and without a surrounding flow field.
The “initialization” includes the input of parameters (see Tabs. 3.1 and 6.1) and the
initialization of the particle positions and orientations, as well as the Kraichnan flow
field. The percentage sign (t%tS) refers to the modulo operation and thus the order
parameters are calculated in time intervals of tS.
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Parameter symbol
number of particles NxNyNz


general

side lengths of simulation box LxLyLz
nematic interaction range ε
self-propulsion speed v0
strength of noise η
nematic relaxation constant γ
time step ∆t
number of iterations Niter

particle diameter σ
extended particlesstrength of WCA force εF

relaxation time of WCA force γF

strength of turbulent field E0
}
Kraichnan flow fieldnumber of Fourier modes NF

Table 3.1: Input parameters for the simulations.

are advanced according to

~ri(t+ ∆t) = ~ri(t) + ~vi∆t (3.35a)
êi(t+ ∆t) = êi(t) +

[
~Ti
]
⊥

∆t+ λêi(t)∆t (3.35b)

with velocity ~vi and torque ~Ti. The integration scheme is the same for any of the four
models with the corresponding velocity ~vi and torque [~Ti]⊥: Point particles (Eq. 3.2),
extended particles (Eq. 3.5), point particles in a turbulent field (Eq. 3.7), or extended
particles in a turbulent field (Eq. 3.8). The subscript ⊥ refers to the part of the vector
which is perpendicular to êi as defined in Eq. (3.3). λ is a Lagrangian multiplier which
keeps the length of the orientation vector fixed (Ilnytskyi and Wilson, 2002) and which
can be derived from the conditions êi(t)2 = êi(t+ ∆t)2 = 1 and êi(t) · êi(t+ ∆t) > 0
as

λ∆t = −1 +
√

1− (~Ti,⊥∆t)2 . (3.36)

The use of the Lagrangian multiplier hence constrains the time step to ∆t <
√

1/|~T⊥|.
The particles’ positions inside the simulation domain are within the ranges −Lα/2 ≤
α ≤ Lα/2 for α ∈ [x, y, z]. Internally all positions are saved as αinternal = α/Lα. This
approach is computationally more efficient because the periodic boundary conditions
can be applied very easily.
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(a) Sketch of our implementation of the
rotational noise. To the original orienta-
tion ê a random vector on the surface of
a sphere η∆tξ̂ is added and the correction
by the Lagrangian multiplier λ∆tê is ap-
plied.
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(b) Analytically derived (normalized) angu-
lar probability distributions for our noise
(Eq. 3.45, red curve) and for a random vector
in a spherical sector (Eq. 3.47, blue curve).

Figure 3.7: Implementation of rotational stochastic noise in our model.

3.2.1 Rotational noise

The stochastic noise is implemented as follows: For each particle at every time step
a vector ~ξi(t) is generated, which is distributed randomly on a sphere (see Allen
and Tildesley, 1989) of radius η (Czirók et al., 1999). For the propagation of the
orientation ê (in the absence of particle-particle interactions) the random vector ∆t~ξ is
added to the orientation vector plus a correction λ∆tê with the Lagrangian multiplier
λ to keep the length of ê fixed (see Fig. 3.7a). The resulting possible new orientations
form a spherical sector with the half cone angle θmax which is a function of ∆t and
η. In the following we will derive the angular probability distribution of this new
orientation. We choose our coordinate system such that ê = ẑ. The new orientation,
after stochastic noise has been applied, is then given by

ênew = ê+ ∆t~ξ⊥ + λ∆tê

= ∆t~ξ⊥ +
√

1− (∆t~ξ⊥)2ê (3.37)
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where we used Eq. (3.36) for the Lagrangian multiplier. The random vector ~ξ is given
by

~ξ = η

sin θ cosφ
sin θ sinφ

cos θ

 (3.38)

with equally distributed φ ∈ [0, 2π) (probability distribution p(φ) = (2π)−1). The
elevation angle θ can be constructed as

θ = arccos(2α− 1) (3.39)

with equally distributed α ∈ [0, 1) (and hence p(α) = 1) to achieve a random dis-
tribution on the surface of a sphere. This originates from the surface element of the
sphere which is given by

dΩ = sin θ dθ dφ = − d(cos θ) dφ .

With these new coordinates the new orientation can then be written as

ênew =


η∆t sin θ cosφ
η∆t sin θ sinφ√
1− (η∆t sin θ)2 .

 (3.40)

The azimuthal angle

φnew = arctan
(
ênew · ŷ
ênew · x̂

)
= φ (3.41)

is equal to the azimuthal angle of the random vector ~ξ and |ênew|2 = 1. We are now
interested in deriving the probability distribution of the elevation angle θnew. We can
express the elevation angle of the random vector ~ξ as

sin θ = sin(arccos(2α− 1)) = 2
√
α(1− α) (3.42)

and hence the elevation angle of the orientation is given by

θnew = arccos
(
ênew · ẑ
|ênew|

)

= arccos
√

1− (η∆t sin θ)2

= arccos
√

1− (2η∆t)2α(1− α) . (3.43)

It vanishes for α = 0 and α = 1, and assumes it maximum value θmax = arcsin(η∆t)
at x = 1/2. We can derive the probability distribution of θnew following Gillespie
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(1983) and using the probability distribution of α:

p(θnew) =
∫
p(x)δ

(
θnew − arccos

√
1− c(2η∆t)2α(1− α)

)
dα . (3.44)

We substitute a ≡ arccos
√

1− c(2η∆t)2α(1− α) which leads to the probability dis-
tribution (not normalized)

p(θnew) =
∫ √

α(1− α)− [2η∆tα(1− α)]2

η∆t(1− 2α) δ(θnew − a) da

=
∫ √

(1− cos2 a)/(2η∆t)2 − (1− cos2 a)/(2η∆t)2

η∆t((2η∆t)−1
√

2 cos(2a) + (2η∆t)2 − 2
δ(θnew − a) da

= 1
η∆t

√√√√ cos2 θnew − cos4 θnew

2 cos(2θnew) + (2η∆t)2 − 2 . (3.45)

This distribution (see red curve in Fig. 3.7b) diverges as θnew = θmax = arcsin(η∆t).
As a comparison, we also derive the angular probability distribution of a random

vector θrand in a spherical segment. The azimuthal angle φrand ∈ [0, 2π) is again
equally distributed. The elevation angle follows directly

θrand = arccos(2α− 1) (3.46)

with equally distributed α ∈ [0, 1). The resulting angular distribution is

p(θrand) =
∫
p(α)δ(θrand − arccos(2α− 1)) dx

=
∫ √

α(1− α)δ(θrand − arccos(2α− 1)) da

= 1
2
√

(cos θrand + 1)(1− cos θrand) (3.47)

where the substitution a = arccos(2α − 1) has been used. We see that this angular
distribution also increases with the angle θ (blue curve in Fig. 3.7b). However, our
implementation of rotational noise leads to a higher probability for larger angles
compared to the distribution of random vectors in a spherical segment.
The noise is delta-correlated in time and space: 〈ξiα(t)× ξjβ(t′)〉 = 2Drδ(t− t′)δαβ

whereDr is the rotational diffusion constantDr. After discretization in time this leads
to 〈ξiα(t)× ξjβ(t+ ∆t)〉 = 2Dr

1
∆tδαβ from which the rotational diffusion constant

follows as
Dr = η2∆t

2 . (3.48)
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Figure 3.8: Illustration of the monotonic logical grid: The left panel shows all particles
in the simulation box with a non-homogeneous density distribution. The middle panel
shows the division of the simulation box into Nz layers which are not of equal size.
Finally, the division of one such layer into Ny bars is shown in the right panel. The
colors in the middle and right panels indicate the height of the layer and the width
of the bar, respectively.

The system does not obey the fluctuation-dissipation theorem since there is no cou-
pling between the stochastic and the deterministic part of the orientation equation.

3.2.2 Monotonic logical grid
The equations in this system are easy to integrate and not extremely computationally
expensive. The most costly part is the neighbor search to find neighbors within the
interaction range of a particle. Most MD simulations use some kind of neighbor-list
algorithm to achieve this goal. However, we implemented (see Appendix A.4) the
method of the monotonic logical grid (Boris, 1986; Weinketz, 1993). This method is
an efficient search of neighboring particles based on the idea that particles which are
close to each other in real space should also be close to each other in computational
memory.
The simulation domain is divided into subboxes which are not equally distant but

each contains the same number of particles (see Fig. 3.8): In a first step Nz layers
are defined each of which contains NxNy particles. Each layer is then subdivided
into Ny bars consisting of Nx = N/(NyNz) particles each. The particles are not only
assigned to a specific layer and bar, but are also saved in memory accordingly such
that particles which are close to each other in physical space are also stored in the
vicinity of each other.
For each layer and each bar the maximum and minimum values of zi are known,

as well as the maximum and minimum yi values for each bar. For a given particle i
the algorithm first finds the range of layers in which neighbors could potentially be
by comparing the zi coordinate of the particle to the bounding values zmin and zmax
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Figure 3.9: Run times of simulations with different numbers of particles using the
MLG-algorithm or a Verlet neighborlist (symbols). The solid black line indicates
linear behavior.

of the layers. In a second step, the bars which contain potential neighbors are found
by comparing the values of the yi coordinate of the particles to the bounding values
ymin and ymax of the bars within neighboring layers. And finally, the full positions of
the individual particles inside these neighboring bars are compared to the position of
particle i. All of these searches are done by keeping the overhead as small as possible,
i.e. the search starts at the position of the particle and does not proceed once a layer,
bar, or x position of another particle outside the interaction range is found. Moreover,
it is assured that each pair of particles is considered only once. After each integration
step the monotonic logical grid is reconstructed, i.e. the particles are assigned to their
specific layer and bar and saved in memory in this ordered fashion.
One drawback of this method is that the number of simulated particles N must be

decomposed as a product of three integers. It will be most efficient in a cubic box if
the integers are of roughly the same size.
We compare the efficiency of this method to a standard Verlet neighborlist algo-

rithm (Allen and Tildesley, 1989, p. 147). Figure 3.9 shows a linear dependency of
the computation time as a function of the number of particles for both methods. The
performance of the MLG code is, however, slightly better than the performance of
the Verlet neighborlist.

3.2.3 Particles in a turbulent field
The implementation of the equations of motion of particles in a turbulent field
(Eq. 3.7) is done completely analogously to the simple system. The main differ-
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ence is that the turbulent field has to be calculated. For the Kraichnan flow field,
this is easily performed in a single step: we calculate the velocity (Eq. 3.9) and
vorticity (Eq. 3.10) for every particle position. However, for the simulations which
include results from DNS an approximation is necessary. The turbulent velocity and
vorticity are saved during the DNS on a spatial grid and loaded into memory during
the MD simulation. They are then interpolated at the particle sites via a trilinear
interpolation scheme.

3.2.4 Boundary conditions
The MD simulations are carried out in a three-dimensional rectangular domain with
side lengths Lx, Ly, Lz and |α| ≤ Lα/2 for α ∈ (x, y, z). In the following, several
possible boundary conditions and their implementations are discussed.

Periodic boundary conditions

The PBCs are probably the most common choice in MD simulations (Allen and
Tildesley, 1989, p. 24). When a particle leaves the simulation box on one side, it
reenters on the opposite side at the mirror position. The system is thought to be
replicated in the three directions, similarly to a crystal which is composed of an (in
principle) infinite number of repetitions of the primitive cell. We then pick one of these
cells to carry out the simulations. The main advantage of PBCs is that the system
does not have boundaries and hence no boundary effects will occur. However, one
drawback is that some artifacts can arise like, for instance, when periodic structures
are simulated only the commensurate wavelengths with the system size will emerge
(see also the discussion in Section 4.3). Moreover, percolated (dense) structures are
more likely to align along one axis of the box because they are self-connecting through
PBCs (Ginelli et al., 2010).
PBCs are implemented by applying the following transformation to a particle co-

ordinate α:
αPBC = α− round

(
α

Lα

)
Lα , (3.49)

where the round function refers to rounding to the nearest integer.

Sandwich geometry

To study the influence of walls onto the system, it is useful to perform simulations in
a slit-pore or sandwich geometry: Two parallel walls on the top and on the bottom
of the simulation box and periodic boundary conditions in the other directions. The
particle-wall interaction is commonly taken as repulsive, and modeled with a WCA
potential (Weeks et al., 1971) in analogy to the inter-particle interaction of extended
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−ê

−
Lz

2

Lz

2

−
Lz

2

Lz

2

Figure 3.10: Sketch of different boundary conditions in the sandwich geometry. The
walls are given in blue, periodic boundary conditions are applied in the other direc-
tions. The left panel describes planar anchoring while the right panel illustrates a
discrete flip of the orientation close to the wall.

particles (see Section 3.1.2). The potential is given by

Uwall(∆z) =


4ε1

[(
σ

∆z

)12
−
(
σ

∆z

)6
]

+ ε1

for ∆z = z − Lz
2 ≥ −

6
√

2σ
and for ∆z = z + Lz

2 ≤
6
√

2σ
0 otherwise

(3.50)

with the energy scale ε1 and the particle diameter σ. This potential alters the equation
of motion for the z component of the position. An additional force

Fz = − 1
γF

∂Uwall

∆z = 24ε1
γF

1
∆z

[
2
(
σ

∆z

)6
− 1

] (
σ

∆z

)6
(3.51)

is added to the equation for ż with the relaxation time γF . Here, σ is not the particle
diameter but rather the thickness of the wall.
If we do not assume any influence of the walls onto the orientation of the particles,

the particles would get stuck at the walls due to the persistent speed once they
approach the wall. There is no deceleration of the particles through the particle-wall
interaction and so the particles would continue in trying to penetrate the wall. We
therefore need the walls to change also the orientation of an approaching particle.
Two different models to achieve that are presented in the following.
The first model is motivated by the similarity of our SPPs with liquid crystals. To

rod-like liquid crystals usually two different types of preferential alignment at inter-
faces (anchoring) are applied both numerically and experimentally: either homeotropic
anchoring or planar anchoring. The homeotropic anchoring is not useful in our case
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because it favors the particle orientation perpendicular to the wall which does not
solve the described problem. So we will use a boundary condition similar to planar
anchoring (see Fig. 3.10, left panel). The nematic alignment of a particle with a
vector êwall can be described by the Lebwohl-Lasher potential (cf. Eq. 3.1)

Uplanar
wall =

− (ê · êwall)2 , for z − Lz
2 ≥ −

6
√

2σ or z + Lz
2 ≤

6
√

2σ
0 , otherwise .

(3.52)

The resulting torque −γw∂Uplanar
wall /∂ê is added to the equation of motion of ê with

the relaxation constant γw. The alignment vector is chosen as

êwall =


x̂ , for the upper wall

1
|ê− (ê · ẑ)ẑ| (ê− (ê · ẑ)ẑ) , for the lower wall

(3.53)

so that the particles tend to align parallel to the x-axis close to the upper wall. The
alignment at the lower wall is parallel to the wall but not in a fixed direction which
allows the system to self-organize and find its preferred direction.

We turn now to the second model which can be applied to model the interaction
between SPPs and hard walls. The idea is to mimic an elastic reflection of the
particles. To this end we apply a discrete flip to the particle orientation if it is
positioned close to the wall and its orientation is pointing toward the wall:

ênew = −ê

for z − Lz/2 ≥ −σ and ê · ẑ > 0
and for z + Lz/2 ≤ σ and ê · ẑ < 0 .

(3.54)

The disadvantage of this model is that it is discontinuous in time. The influence
of such a sandwich geometry onto the dynamics of the system and the differences
between the two different models are discussed in Section 4.5.

3.3 Description of the system

In the Section we introduce several parameters to describe the system: dimensionless
measures which we control for every simulation, and order parameters which we
calculate in the steady state. Moreover, we describe different ways to measure the
degree of clustering in our system.
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3.3.1 Dimensionless measures of self-propelled particles and flow
Péclet number

The relative importance of nematic alignment relaxation rate with respect to the
rotational diffusivity related to the stochastic noise is described by a rotational Péclet
number. In general, the Péclet number is defined as the ratio of advective over
diffusive fluxes. When interested only in the orientational part of the equations
of motion (Eq. 3.2), we can identify two influences: The stochastic noise leads to
rotational diffusion with the diffusion constant Dr = η2∆t/2 (see Section 3.2). On
the other hand, we have nematic alignment of the particles with its neighbors which
is described by its strength γ. This alignment can be thought of as a “rotational
advection” because it is the influence of the surrounding (neighboring particles) onto
a particle itself. The rotational Péclet number (see Guasto et al., 2012, for a similar
definition) is hence given by

P ≡ nematic alignment
rotational diffusion = γ

Dr

= 2γ
η2∆t . (3.55)

Stokes number

For the system of SPPs in a turbulent field we solve Eq. (3.7). The orientational
equation involves three terms, so we use two dimensionless numbers to describe the
system, each defined as the ratio between two terms. The first dimensionless number
is the Péclet number as before (Eq. 3.55): It compares the strength of nematic align-
ment to the stochastic noise. The second dimensionless number weighs the influence
of the turbulent field (through the vorticity) against the stochastic noise. We com-
pare the characteristic times of nematic alignment τnem ∼ γ−1 to the characteristic
time of turbulent vorticity τturb ∼ 2ω−1

K . The resulting dimensionless number is called
“vortical Stokes number”:

Sω ≡
nematic alignment
turbulent vorticity = τturb

τnem
= 2γ
ωK

. (3.56)

We can construct a third dimensionless number as the ratio of P to Sω.

Stokes number with speed correction

The vortical Stokes number is not enough to describe the onset of global nematic order
as a function of the strength of the turbulent field in comparison to the strength of
the nematic alignment. In fact, we need to take into account the self-propulsion speed

50



3.3 Description of the system

of the particle as well as the turbulent speed advecting them. For negligible noise
(P →∞), a (point-)particle in a time step ∆t

1. travels a distance ∆sSPP = v0∆t,

2. is advected a distance ∆sturb = urms∆t,

3. alignes nematically with an angle ∆φnem = γ∆t, and

4. is rotated by the turbulent field at an angle ∆φturb =
1
2ωK∆t.

The plane angles ∆φ describe cones of solid angles

Ω = 4π
(

sin ∆φ
4

)2

(3.57)

around the orientiation ê of the particle. Since the angles ∆φ are supposed to be
small (∆t has to be chosen small enough, see derivation of the Lagrangian multiplier
in Section 3.2), we can make use of the small-angle approximation sin x ≈ x. We can
now compare two different areas (in the sense of cross sections): Firstly, there is the
spherical cap that is given by ∆sSPP and ∆φnem which is a measure of the tendency
of the system towards global nematic alignment:

ASPP = Ωnem(∆sSPP)2 = 4π
(

sin ∆φnem

4

)2

(∆sSPP)2

≈ 4π
(

∆φnem

4

)2

(∆sSPP)2 = π

4
(
γv0(∆t)2

)2
. (3.58)

The second cross section describes the effect of the turbulent field to destroy nematic
order:

Aturb = Ωturb(∆sturb)2 = 4π
(

sin ∆φturb

4

)2

(∆sturb)2

≈ 4π
(

∆φturb

4

)2

(∆sturb)2 = π

4

(1
2ωKurms(∆t)2

)2
. (3.59)
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For nematic order to occur, ASPP has to be larger than Aturb:

ASPP > Aturb

⇒ π

4
(
γv0(∆t)2

)2
>
π

4

(1
2ωKurms(∆t)2

)2

⇒ (γv0)2 >
(1

2ωKurms

)2
. (3.60)

We hence define the vortical Stokes number with speed correction as

Sω,v ≡ Sω
v0

urms
= 2γv0

ωKurms
(3.61)

and global nematic order should occur for Sω,v > 1.

3.3.2 Order parameters
The orientational order of the system is described by three order parameters. They
quantify the amount of nematic, polar, and chiral order in the system. Moreover, the
smectic order parameter is used to investigate smectic order, i.e. layered structures
of nematic order.

Nematic order parameter

The nematic order parameter is the natural choice in our system to describe global
order due to the nematic symmetry of the inter-particle interaction. It is mostly used
to describe liquid crystals and it is defined as the largest eigenvalue S of the nematic
order tensor

Q ≡ 1
2N

N∑
i=1

[3êi ⊗ êi − I] (3.62)

where ⊗ denotes the tensor product and I is the unit tensor. The nematic order
parameter is normalized in the following way: If all vectors êi are aligned nematically,
i.e. each two pairs are aligned either parallel or anti-parallel, the resulting nematic
order parameter is S = 1. In the other extreme, if there is no global directional order
in the system, the nematic order parameter vanishes. The corresponding eigenvector,
i.e. the vector d̂ fulfilling (Q− SI) · d̂ = 0, is called the nematic director and denotes
the main global direction along which the orientational vectors êi are aligned (either
parallel or anti-parallel).
It is sometimes useful to define the nematic order parameter and director locally.

The definition uses a nematic order tensor analogous to Eq. (3.62) but using only
a subset Nα of particles instead of N . These particles are usually contained in a
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sub-volume of the simulation box, for instance a slice perpendicular to a given axis.
The resulting order parameter is called Sloc and the local director is d̂loc.

Smectic order parameter

The investigated system can, in addition to nematic order, also possess smectic order.
By this, we always denote a structure which is similar to the “Smectic A” phase in
liquid crystals (De Gennes and Prost, 1993, p. 18): The positional order shows a
periodic structure in the direction of the nematic director because the particles are
ordered in layers. Within each layer the positions of the particles are disordered. On
the other hand, the orientations within each layer are nematically ordered with the
director parallel to the layer normal. A system in the smectic A phase can thus be
described as a system with global nematic order and an additional density wave in
the direction of the global director (McMillan, 1971). The smectic order parameter
is defined as the maximum absolute value of the complex density waves when the
periodicity is varied:

Ssmec ≡ max
∣∣∣∣∣∣ 1
N

N∑
j=1

exp
i2π

L

~xj · d̂
∆n

∣∣∣∣∣∣

n

. (3.63)

The positions ~xj of the particles are taken into account as well as the global nematic
direction d̂. The periodicity ∆n varies between 0 and 1.

Polar order parameter

Even though the model being used in this work has nematic symmetry, it is sometimes
useful to characterize the polar order of the system. We therefore define a polar order
parameter as the average orientation in the system:

P ≡ 1
N

∣∣∣∣∣
N∑
i=1

êi

∣∣∣∣∣ . (3.64)

The direction of polarization is given by

p̂ = 1
P

1
N

N∑
i=1

êi , (3.65)

which is equal to the main global propagation direction of the system.
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Chiral order parameter

In this thesis, we will also deal with chirally ordered systems. By “chiral” system we
mean that the orientations of particles are locally ordered nematically in planes but
the local nematic director rotates as we move along the perpendicular axis of these
planes (see Fig. 3.11a). To describe and especially quantify the degree of chiral order
in a system is not as straightforward as the nematic or polar order in a system. A
meaningful order parameter must include positions and orientations of the particles
since chiral order means that particles which have a specific distance in space must
have a specific angle between their orientations. A simple, pseudo-scalar combination
of these quantities has been used by Memmer (2000) to define

S221(r∗) = −
√

3
10 〈[(êi × êj) · r̂ij](êi · êj)〉(r∗)ij (3.66)

where the average 〈·〉(r∗)ij is taken over all pairs at a distance |~ri−~rj| = r∗. We follow
this approach and construct the chiral order parameter Sχ as

Sχ ≡
1
Sχ,0

1
N

N∑
i=1

− 1
Ni

Ni∑
j=1

[
(êi × êj) ·

~rij
|~rij|

]
(êi · êj)

 (3.67)

where ~rij = ~ri − ~rj and the second sum extends over all particles j which are located
within a distance of r∗ from the position of particle i. This approach differs from the
idea of Memmer (2000) since it includes all particles inside a sphere instead of the
particles in a spherical shell only. The advantage is that our chiral order parameter
results in one single number for one configuration. However, as we will see below, the
choice of the cutoff r∗ is important and our chiral order parameter will be tailored to
one specific ratio of pitch and linear size of the simulation domain.
Most of the chiral structures that will be investigated have a pitch of 2L: The

local director of a slice perpendicular to the helical axis rotates by an angle of π
over the side length of the simulation domain. Therefore, a natural choice of the
normalization constant Sχ,0 is such that a perfect chiral structure with a pitch of 2L
will result in Sχ = 1. The field of orientations (with the helical axis being parallel to
ẑ, cf. Fig. 3.11a) can be described by

ej =

cos(qzj)
sin(qzj)

0

 , with q = π

L
. (3.68)

Because of the exact structure of this field, we do not have to take the first average
in Eq. (3.67) and can choose the particle i. For convenience, we choose this particle
to be at the center of the simulation domain (~ri = 0, êi = x̂). Instead of the sums in
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helical axis

(a) Sketch of a perfect chiral pattern.
The local nematic director (black line)
rotates in the plane (blue) perpendicular
to the helical axis as one moves along the
helical axis.
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(b) Non-normalized chiral order parameter as
a function of the cutoff for a perfect chiral
structure (Eq. 3.70). A cutoff larger than L/2
is not meaningful in a cubic simulation do-
main with periodic boundary conditions.

Figure 3.11: Calculation of the chiral order parameter.

the above definition we will use integrals and we will omit the subscript j. This leads
to:

Sχ,0 = −
〈[

(êi × êj) ·
~rij
|~rij|

]
(êi · êj)

〉

=
〈
z sin(qz) cos(qz) 1√

x2 + y2 + z2

〉
. (3.69)

The average is taken over a sphere with radius r∗ which is centered at ~ri. Its volume
is hence V = 4

3π(r∗)3. We introduce spherical coordinates (x = r sin θ cosφ, y =
r sin θ sinφ, z = r cos θ). Equation (3.69) then becomes

Sχ,0 = 1
V

∫ r∗

0
dr
∫ 2π

0
dφ
∫ π

0
dθ r2 sin θz1

2 sin(2qz)1
r

= 2π
2V

∫ r∗

0
dr
∫ π

0
dθ r2 sin(2θ)

2 sin(2qr cos θ)

= π

2V

∫ r∗

0
dr r2

[
cos θ cos(2qr cos θ)

qr
− sin(2qr cos θ)

2(qr)2

]π
θ=0

= π

2V

∫ r∗

0
dr r2

(
sin(2qr)
q2r2 − 2 cos(2qr)

qr

)

= π

2V

(
1
q2

1
2q (1− cos(2qr∗))− 2

q

(
− 1

4q2 (1− cos(2qr∗)) + L

8q sin(2qr∗)
))

= 3
8(r∗)3q2

(
1
q

(1− cos(2qr∗))− r∗ sin(2qr∗)
)

(3.70)
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(see Fig. 3.11b). We choose r∗ = L/4 which leads to

q
L

2 = π

2 ⇒ cos(qL2 ) = 0, sin(qL2 ) = 1 (3.71)

and hence

⇒ Sχ,0 = π

2V

(
1

2q3 −
2
q

(
− 1

4q2 + L

8q

))

= π

2
48
πL3

L2

π2

(
L

π
− L

4

)
= 6
π3 (4− π) . (3.72)

We will thus use the following definition of the chiral order parameter:

Sχ = − π3

6(4− π)
1
N

N∑
i=1

 1
Ni

Ni∑
j=1

[
(êi × êj) ·

~rij
|~rij|

]
(êi · êj)

 (3.73)

where the Ni particles are all particles within a sphere centered at ~ri with radius L/4.

However, some of the chiral order parameters in Section 4.4 are calculated with
a different cutoff of r∗ = 0.4L which corresponds to the maximum in Sχ,0(r∗). The
resulting normalization is

S ′χ,0 = 3
8(0.4π)3 (1− cos(0.8π)− 0.4π sin(0.8π)) . (3.74)

The resulting chiral order parameter S ′χ uses all particles in a sphere of radius 0.4L.
Both chiral order parameters serve to distinguish a chiral from an achiral simulation.

3.4 Analysis of clustering

In Chapter 6 we will investigate the clustering of particles in a turbulent flow field.
Clustering means that the local density of particles is enhanced compared to the global
density and some kind of structure (e.g. patches) occurs. Three different measurement
methods will be shown in the following: the patch enhancement factor, the analysis
of possible giant number fluctuations, and the method of cluster analysis as it is used
in the field of percolation.
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3.4 Analysis of clustering

3.4.1 Patch concentration enhancement factor

The patch concentration enhancement factor (Durham et al., 2013) serves to quantify
the increase of local density of particles as compared to randomly placed particles.
To assign a local density to each particle site, the system is divided into Voronoi
cells. The Voronoi cell is a generalization of the Wigner-Seitz cell used in solid-state
physics. Given a particle, the Voronoi cell is the set of points that are closer to this
particle than to any other particle in the system. The resulting cells are polyhedra.
From the volume vi of the Voronoi cell, we can calculate the local particle density
as ρi = 1/vi since there is only one particle inside this volume. By sorting the vi by
magnitude and then taking the fraction f of particles with smallest Voronoi volumes,
we can calculate the mean density of the fraction f of densest particles:

C(f) ≡ 〈vi〉−1
i∈f . (3.75)

This quantity is well-defined since

C(f = 1) = 〈vi〉−1 =
(

1
N

N∑
i=1

vi

)−1

= N

V
= ρ . (3.76)

The same measurement is also performed for a set of randomly placed particles and
denoted by Crandom(f). The normalized patch concentration enhancement factor is
hence given by

Q(f) ≡ C(f)− Crandom(f)
ρ

. (3.77)

For f → 1 the patch enhancement factor vanishes and (for point particles) it does
not have an upper bound. It is always positive for clustered systems, but can have
small negative values for approximately random systems. Therefore, we will always
compute the absolute value keeping in mind that it is only different from Q for the
non-clustered systems with |Q| � 1.

The exact value of the patch concentration enhancement factor depends on the
choice of f which is in principle free to choose. A few examples how Q changes with
f are given in Fig. 3.12. We see that the comparison of different simulations with one
value of f or another will almost always lead to the same conclusion, i.e. which system
is more clustered than the other. However, the red curve in Fig. 3.12 shows that
sometimes different values of f can lead to different conclusions because the curves
Q(f) cross each other. This is important to keep in mind when different values of the
patch concentration enhancement factor are compared. A short discussion about the
possibility of an analytical expression for Crandom is included in Appendix A.1.
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Figure 3.12: Patch enhancement factor as a function of the fraction of particles con-
sidered. Different curves belong to different simulations of self-propelled particles in
a turbulent field (P →∞, see Chapter 6 for detail) with differently strong clustering.
The red curve belongs to one simulation which apparently behaves differently than
the others.

3.4.2 Number fluctuations
A common method to analyze spatial segregation of particle-based systems is the
analysis of number fluctuations: the system is divided into equally sized boxes and
both the mean number of particles within each box 〈n〉 and the standard deviation
∆n =

√
〈n2〉 − 〈n〉2 are calculated. This measurement is taken for differently sized

boxes so that one obtains curves of ∆n vs. 〈n〉 (see Fig. 3.13 for two examples).
If these curves show a clear power-law behavior ∆n ∼ 〈n〉α, which they do in our
system, we can obtain the exponent α by a linear fit of log10(∆n) vs. log10(〈n〉). In
equilibrium one expects an exponent of αequilibrium = 0.5 (see for example Mishra
and Ramaswamy, 2006). Ramaswamy et al. (2003) showed that active nematics (like
driven particles on a substrate) exhibit giant number fluctuations which means that
the exponent α is larger than the equilibrium value. Moreover, they predicted the
exponent to be

αnematic = 1
2 + 1

d
(3.78)

for a system in d dimensions.

3.4.3 Cluster analysis
A third method to quantify the clustering is based on a cluster analysis as it is done in
the context of percolation theory. As the particles move off-lattice, we define that two
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Figure 3.13: Two example curves for the analysis of number fluctuations: The mea-
surements are given as symbols while the lines show the results of linear fits of
∆n ∼ 〈n〉α. The measurements in both examples show a power-law behavior. The
first one (×) belongs to a non-clustered system where the exponent is close to the
equilibrium value of 0.5. The second curve (◦) shows giant number fluctuations with
an exponent close to the theoretically predicted value of 5/6 (figure to be published
in Breier et al., 2017).
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Figure 3.14: Typical examples of the cluster size distribution: The results of two
different simulations are given. The blue circles correspond to a simulation in the
isotropic phase without clustering while the yellow crosses represent a system in the
nematic phase with clusters.

particles belong to the same cluster if their centers are closer than a cutoff distance rc.
In a given configuration of the system, the so-defined clusters are identified and their
size s is measured as the number of particles in a given cluster. The distribution of
sizes is called the cluster size distribution n(s). A significant result is obtained by
averaging the cluster size distributions of several snapshots of the same system in the
steady-state. Typical examples are given in Fig. 3.14. The cluster size distribution
of a given system is (among others) characterized by the normalized second moment:

N2 ≡
∑
s n(s)s2∑
s n(s)s . (3.79)
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4 Structure formation by
self-propelled point particles

In this chapter we investigate our model of nematically aligning, self-propelled par-
ticles. It is described in detail in Section 3.1.1. The simulations are performed in a
cubic domain with PBCs, if not stated otherwise. The typical input parameters are
given in Tab. 4.1.

parameter value
number of particles N = 663 = 287496
side lengths of simulations box L = Lx = Ly = Lz = 3

√
N/ρ

nematic interaction range ε = 1
self-propulsion speed v0 = 0.5
nematic relaxation constant γ = 0.1
rotational diffusion Dr = γ/P = η2∆t/2
time step ∆t = 0.1

Table 4.1: Input parameters for point-like self-propelled particles (if not stated oth-
erwise).
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Figure 4.1: Nonequilibrium phase diagram of self-propelled point particles with ne-
matic interaction. The global nematic order parameter S is shown in color as a
function of Péclet number and number density ρ. Different symbols refer to differ-
ent states of the system as observed from the steady-state configurations. The bold
symbols denote the systems from which the snapshots are given in Fig. 4.2 (graph
modified from Breier et al., 2016).

4.1 Phase diagram and snapshots
The nonequilibrium phase diagram of the system is given in Fig. 4.1. The nematic
order parameter in the steady-state is measured as a function of rotational Péclet
number (Eq. 3.55) and number density ρ = N/L3. The system is evolved until a
steady state is very well established (typically more than 105 time steps) and then the
order parameters in the steady state are measured (typically averaged over another
105 time steps). The nematic interaction range is the fundamental length scale in
the system (ε = 1) and hence the number density has the same value as the non-
dimensional number density ρε3. For a constant number density and increasing P , we
see a clear transition from the isotropic phase (denoted by 4, S → 0) to the nematic
phase (denoted by ♦, S → 1). Typical snapshots of these two phases are given in
Figs. 4.2a and 4.2b.
The nematic and isotropic phases are separated by a rather narrow transitional

domain in the phase diagram where coexistence of nematic and isotropic domains in
the system is observed (denoted by ◦). Depending on the precise value of P , this phase
coexistence can typically have three different shapes (see Fig. 4.2c): For the smallest
value of P typically a nematically ordered, rather dense cylinder occurs in a dilute,
isotropic gas. This cylinder percolates through the PBCs and the nematic director
is aligned with the cylinder axis. When the Péclet number is slightly increased,
the cylinder grows such that it connects itself also through a second dimension thus
leading to a nematically ordered, dense layer in an isotropic, dilute surrounding. The
local director within the layer is perpendicular to the layer normal and typically
aligned along one of the box axes. Finally, for the largest values of P for which phase
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(a) Isotropic state (4, P = 2.47, ρ = 1.125)
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(b) Nematic state (♦, P = 19.5, ρ = 1)

 

 

(c) Phase coexistence (◦, P = [8; 8.68; 7.4], ρ = [0.125; 0.125; 0.25])

Figure 4.2: Snapshots of the steady-state configurations of the self-propelled particles.
The corresponding points are given by the bold symbols in Fig. 4.1. A small fraction
(0.35%) of the simulated particles is shown with the orientation vectors as small
arrows. The simulation box is subdivided into 203 boxes to calculate the local nematic
order parameter Sloc (represented by the color).
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4 Structure formation by self-propelled point particles

coexistence is still visible, the emerging structure is the inverse of the first phase
coexistence snapshot: Now a dilute, disordered cylinder is surrounded by a dense,
nematically ordered surrounding. Here, the nematic director is again parallel to the
cylinder axis. The cylinder axis (or the nematic director in the case of the nematic
layer) is mostly aligned along one of the box axes in the examined snapshots of the
phase coexistence state. This is an effect of the PBCs: When a nematically ordered
cylinder forms, it can most easily connect to itself when it is aligned along one of the
axis. This is a positive feedback because it stabilizes itself. In principle, however, the
cylinder axis could be at any angle inside the box (but fulfilling the PBCs).
In the nematic phase (close to the isotropic-nematic phase transition) another struc-

ture of the particles was found: Polarized, dense waves which travel through the box
(denoted by F). We will discuss them in detail in Section 4.3.
Finally and most interestingly, a chiral structure occurs at different places in the

nematic phase (see scattered squares � in Fig. 4.1). This is investigated in detail in
Breier et al. (2016) and in Section 4.4.

4.2 Isotropic-nematic transition

The nonequilibrium phase diagram (Fig. 4.1) shows a very clear transition from an
isotropic state (at low ρ or low P ) to a nematic state. We observe that the locus of this
isotropic-nematic transition is a function of both Péclet number and number density1.
To quantify this further, we measure the critical Péclet number as a function of ρ. This
critical Péclet number is located somewhere between the largest P which results in
an isotropic state and the lowest P which leads to a nematic state. Here, the nematic
state also includes states with local nematic order, i.e. wave, phase coexistence, and
chiral. The resulting measured critical Péclet number as the mean of these two
Péclet numbers (largest in isotropic state and lowest in nematic state) is given in
Fig. 4.3. The blue crosses (×) correspond to the phase diagram in Fig. 4.1 where γ
was set to 0.1 while the other two symbols denote measurements from phase diagrams
with γ = 0.5 (red circles ◦) and (yellow triangles 4) γ = 1, respectively. The
critical Péclet number clearly decreases with number density. The three curves (which
differ in relaxation constant) do not collapse for small number densities which is
remarkable since the Péclet number includes the relaxation constant. To understand
the functional dependency between critical Péclet number and density, we perform a
mean-field theory with linear stability analysis in the following section.

1The influence of the time step ∆t is discussed in Appendix A.2 and possible finite-size effects are
investigated in Appendix A.3
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Figure 4.3: Critical Péclet number as a function of global number density and number
of particles in the interaction sphere (volume (4/3)πε3). Different colors correspond
to simulations with different nematic relaxation constants γ. The symbols denote the
measured critical Péclet number. The colored lines are the results of corresponding
fits of the function Pc = a/(ρε3). The black dotted line is the mean critical Péclet
number of all high-density simulations with ρ > 1.
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4 Structure formation by self-propelled point particles

4.2.1 Mean-field theory

Peruani et al. (2008) studied a very similar model to ours but in two dimensions.
They developed a simple mean-field theory and applied the method of linear stability
analysis to predict the locus of the isotropic-nematic transition. They found an onset
of nematic order for

ρ0 >
4
πε2

Dθ

γ

where ρ0 = N/L2 is the two-dimensional number density, Dθ is the rotational diffusion
constant, and γ and ε are the relaxation constant and the nematic interaction range.
This implies (in our notation) a relationship between the critical Péclet number and
the global density of the form Pc ∝ ρ−1. In the following, we will apply the same
approach to our model and derive an expression for the critical Péclet number.
We describe (in complete analogy to Peruani et al., 2008) our system by a prob-

ability density field ψ(~r, ê, t). The particle density and the angular distribution are
hence given by

ρ(~x, t) =
∮
ψ(~x, ê, t) dê and (4.1a)

C(ê, t) =
∫

Ω
ψ(~x, ê, t) d~x , (4.1b)

where
∮
denotes the integral over the surface of the unit sphere and

∫
Ω is the volume

integral over the simulation domain. The corresponding evolution equation for ψ is

∂tψ = Dr∆eψ −∇e[ ~Feψ]−∇x[ ~Fxψ] (4.2)

with ∆e ≡ ∇2
e. The subscript of ∇ denotes the variable with respect to which

the function is differentiated. The deterministic fluxes ~Feψ and ~Fxψ correspond to
local nematic alignment and active migration, respectively. Integration of Eq. (4.2)
with respect to ~x over the simulation domain leads to an equation for C (under the
assumption that differentiation with respect to ê and integration are interchangeable):∫

Ω
∂tψ d~x =

∫
Ω

(
Dr∆eψ −∇e[ ~Feψ]−∇x[ ~Fxψ]

)
d~x

⇒ ∂tC = Dr∆eC −
∫

Ω

(
∇e[ ~Feψ] +∇x[ ~Fxψ]

)
d~x . (4.3)

We now need expressions for the deterministic fluxes. The flux corresponding to the
active migration is given by

~Fx = v0ê . (4.4)

The flux corresponding to the nematic alignment mechanism can be calculated from
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4.2 Isotropic-nematic transition

the Lebwohl-Lasher potential (Eq. 3.1) as

~Fe = −γ
∫
Bε(~x)

∮
[∇eULL(~x, ê, ~x ′, ê ′)]⊥ ψ(~x ′, ê ′, t) dê ′ d~x ′ (4.5)

where the Lebwohl-Lasher potential is rewritten in the form

ULL(~x, ê, ~x ′, ê ′) =

ULL(ê, ê ′) = − (ê · ê ′)2 , if |~x− ~x ′| ≤ ε

0, otherwise
(4.6)

and Bε(~x) is the interaction volume around ~x. The subscript ⊥ again refers to the
component perpendicular to ê such that

[∇eULL(ê, ê ′)]⊥ = −2
(
(ê · ê ′) ê ′ − (ê · ê ′)2

ê
)
. (4.7)

Moreover, we assume a homogeneous distribution of particles:

ψ(~x, ê, t) = C(ê, t) ρ
N
. (4.8)

By inserting Eqns. (4.4), (4.5), and (4.8) into Eq. (4.2), we find the following equation
for the angular distribution:

∂tC = Dr∆eC −
∫

Ω

(
∇e[ ~FeC] ρ

N
+∇x[ ~Fx]C

ρ

N

)
d~x

= Dr∆eC −
∫

Ω
∇e(~FeC) ρ

N
d~x

= Dr∆eC + ρ

N

∫
Ω
∇e

[(
γ
∫
Bε(~x)

∮
(∇eULL)C(ê ′) ρ

N
dê ′ d~x ′

)
C(ê)

]
d~x

= Dr∆eC + 4
3πγ

ε3

L3∇e

[(∮
[∇eULL]⊥C(ê ′) dê ′

)
C(ê)

]
. (4.9)

We can simplify this equation by the transformations

τ = 4
3πγ

ε3

L3 t and D′r = Dr

(
4
3πγ

ε3

L3

)−1

, (4.10)

so that the equation for C becomes

∂τC = D′r∆eC +∇e

[(∮
[∇eULL]⊥C(ê ′) dê ′

)
C(ê)

]
. (4.11)

67



4 Structure formation by self-propelled point particles

We want to perform a linear stability analysis and therefore use the ansatz

C(ê) = C∗ + C0 exp(λτ)F (ê) (4.12)

with C∗ = N/(4π). If the real part of λ is larger than zero, an instability occurs
which corresponds to the onset of nematic order in our case. We will discuss the
appropriate functions F in detail below. Now we insert this ansatz into Eq. (4.11),
use the fact that

∮
[∇eULL]⊥ dê ′ = 0 and keep only terms which are linear in C0. The

resulting eigenvalue problem is

λF (ê) = D′r∆eF (ê) + C∗∇e

∮
[∇eULL]⊥ F (ê ′) dê ′

= D′r∆eF (ê) + 2C∗
∮ (

5(ê · ê ′)2 − 1
)
F (ê ′) dê ′ (4.13)

where integration and differentiation commute because they refer to different variables
and we inserted the potential in Eq. (4.7). The function F depends on the orientation
vector ê which is normalized, so we can use spherical coordinates and write F (ê) =
F (θ, φ). The Laplace operator in spherical coordinates can be separated into a radial
and an angular part. Due to the normalization of ê the Laplacian ∆e consists only of
the angular part. We use the eigenfunctions of this angular part of the Laplacian as
an ansatz for F . They are given by the spherical harmonics

Ylm(θ, φ) = NlmPlm(cos θ) exp(imφ) (4.14)

with the normalization Nlm and the associated Legendre polynomials Plm(x). The
corresponding eigenvalues are −l(l + 1). The degree l and the order m are integers
with l ≥ 0 and −l ≤ m ≤ l. A long but straightforward calculation yields the result
that this are indeed the eigenfunctions of the problem in Eq. (4.13) with the following
eigenvalues:

λ =



16π
3 C∗ for l = 0,
−2D′r for l = 1,

−6D′r +
16π
3 C∗ for l = 2,

−D′rl(l + 1) for l > 2.

(4.15)

The l = 0 eigenfunction yields a positive eigenvalue but corresponds to the isotropic
distribution. The l = 1 eigenfunction as well as all eigenfunctions with l > 2 corre-
spond to negative eigenvalues and thus do not lead to an instability. The onset of
nematic order is hence given by the l = 2 eigenfunction which leads to

− 6D′r + 16π
3 C∗ > 0 . (4.16)
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The corresponding set of spherical harmonics shows nematic symmetry. Reinserting
Eq. (4.10) and C∗ = N/(4π) yields as a final result

ρε3
16π
3 > 18Dr

γ
= 18 1

P
(4.17)

and thus for the critical Péclet number

Pc = 54
16π

1
ρε3
≈ 1.07 1

ρε3
(4.18)

which is the same functional dependency between critical Péclet number and density
as in the two-dimensional case.

4.2.2 Comparison to data
The measured critical Péclet number decreases as a function of number density (see
Fig. 4.3). However, the curves approach a plateau for large number densities. This
clearly indicates a discrepancy between the mean-field theory (with the result Pc ∝
ρ−1) and the outcome of our simulations. The reason lies in the additional factor
1/ni in the Lebwohl-Lasher potential of the agent-based model (see Eq. 3.1) which
has not been incorporated into the mean-field theory. We therefore distinguish two
different regimes of our system according to the global density.
The low-density regime is valid for densities which lead to up to two particles in a

sphere Bε of radius ε on average so that each particle finds up to one neighbor in its
interaction volume. In this regime the number of neighbors does not have to be taken
into account and we can fit the result of the mean-field theory to the measurements
from the agent-based simulations. We find a good qualitative agreement in the func-
tional form of Pc as a function of ρ. However, the resulting fit parameters a vary for
the three different curves corresponding to different values of the nematic relaxation
constant γ, though the agreement with mean-field theory is good, all considered. It
is closest to the theoretical value of 54/(16π) ≈ 1.07 for γ = 0.1 and deviates for
larger γ. The reason could be that we assumed a homogeneous distribution of parti-
cles in the mean-field approach which is not necessarily valid in the MD simulations.
Larger values of the nematic relaxation constant mean faster alignment which favors
clustering because particles possibly fully align during contact. We therefore expect
increasing deviations from homogeneity for increasing γ which matches to larger de-
viations from the result of the mean-field theory.
The mean-field theory cannot be applied in the high-density regime (ρε3 > 1)

because the presence of the factor 1/ni in the potential results in an independence
of the interactions from the actual number of neighbors. Effectively it leads to an
average of all the interactions one particle encounters with its neighbors and hence
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(a) Snapshot of a wave propagating through
the system. For the sake of clarity, only
0.35% of the particles shown with their ori-
entation as little arrow. The local nematic
order parameter (color) is calculated from
a subdivision of the simulation domain into
203 boxes.
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(b) Profiles measured along the wave propa-
gation direction. Upper panel: Normalized
local density (blue) and local nematic order
parameter (orange). Lower panel: Scalar
product between local polarization direction
and global director (green) and local polar-
ization (purple).

Figure 4.4: Characterization of the wave phase (indicated by F in Fig. 4.1, P = 5.56,
ρ = 0.375).

the critical Péclet number is independent of the number density. We find an average
critical Péclet number for densities ρ ≥ 1 of 〈Pc〉ρ≥1 = 2.711.

4.3 Waves
In the nematic phase (but rather close to the isotropic-nematic transition, see Fig. 4.1)
the system exhibits waves of nematically aligned particles propagating through the 3D
domain. These waves are investigated in this section. A typical snapshot of a wave,
as well as profiles of density and order parameters are given in Fig. 4.4. This example
shows a rather high global nematic order and areas of high local nematic order as
well. In the middle of the simulation box a disordered, dilute gas is visible. Visual
inspection of the time evolution2 reveals that in fact two polarized wavecrests counter-
propagate along the x-axis. Figure 4.4b shows four different measurements which are
averaged within slices perpendicular to the wave propagation direction x: density,
nematic order parameter, alignment of polarization with the nematic director, and
local polarization. The normalized local density shows two non-symmetric wavecrests
with a sharp front and an elongated tail. The profile of the local nematic order

2see attached movie wave.avi
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parameter is very similar in shape to the density profile with highest nematic order
at the points of highest local density. These two profiles only prove that we have
areas of high local density which are even nematically ordered. To prove that the
snapshot really consists of a wave-like structure, we study the spatial dependence
of the polarization. The local polarization shows (similarly to the nematic order) a
maximum where the local density is highest. The shape of the polarization profile is
different from the nematic order and density profiles within a roughly linear increase
of Ploc from the tail to the front of the wave. Finally, we investigate the scalar product
between the direction of local polarization (averaged over a slice perpendicular to x̂)
and the global nematic director 3. This scalar product shows that the particles in
the left side of the box (−0.5Lx ≤ x ≤ −0.15) are mostly aligned along x̂ while the
particles with 0.15 ≤ x ≤ 0.5Lx have orientations on average parallel to −x̂. The
direction of the local polarization in the dilute part of the box (−0.15Lx ≤ x ≤
0.15Lx) does not have a preferred direction and the local order is very low.

The temporal inspection of the order parameters (Fig. 4.5) reveals that the wave
pattern evolves over a long time span compared to, for instance, the formation of the
nematic, homogeneous state. From the example shown in Fig. 4.5, we see that the
system evolves global nematic order rather quickly; the maximum in S is very well
established at t ≈ 7500. The full transient takes roughly 7 × 104 time units, during
which the nematic order parameter decreases slightly, the polarization exhibits a small
maximum, and the smectic order parameter oscillates and increases in both mean
value and amplitude. However after this transient, the smectic order parameter shows
very pronounced oscillations. The main period of this oscillation matches the value
of Lx/v0 which is the time it takes one particle to travel once across the simulation
domain.

The wavelength is essentially set by the orientation of the wave within the simu-
lation domain together with the influence of the PBCs. We derive the wavelength
in two dimensions which can then be easily extended to three dimensions, and we
restrict ourselves to a square box. We assume the wavefront to be placed in the
middle of the simulation domain at some angle (see the blue line in Fig. 4.6a). The
wavefront is oriented perpendicular to the nematic director d̂ which is parallel to the
wave propagation direction as we saw before. The equation which describes all points
on the wavefront is

~x · d̂ = 0 . (4.19)

The wavefront crosses the boundary at the point ~xA. Assuming that it crosses the

3In fact, the global nematic director is almost perfectly parallel to x̂.
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Figure 4.5: Temporal evolution of the order parameters of a simulation which even-
tually shows the wave pattern (Fig. 4.4). The upper panel shows the global order
parameters as a function of time. The lower panel is a zoom into a short time window
to see the short-term variations in the smectic order parameter.
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(a) Simulation domain. The “first” wave-
front is given in blue, its continuation
(through PBCs) is denoted in red.

(b) The simulation domain is shown in the
middle with two copies to the left and to the
right.

Figure 4.6: Sketch for the wave in a system with PBCs.

y-axis first (as in the sketch), the position is given by

~xA · d̂ = 0

⇒ Lx
2 dx + ydy = 0

⇒ y = −Lx2
dx
dy

. (4.20)

Because of PBCs, the wavefront also has to go through the point ~xB (see sketch) which
possesses the same y-coordinate as ~xA. To calculate the distance λ∗ we construct a
line through ~xB in the direction d̂ and calculate the crossing with the first wavefront:

~x = ~xB + λ∗d̂

⇒ ~x · d̂ = ~xB · d̂+ λ∗

⇒ λ∗ = −~xB · d̂

= −Lx2 dx −
Lx
2
dx
dy
dy = −Lxdx . (4.21)

In the second step, we used the fact that ~x · d̂ = 0 (condition for the first wavefront).

73



4 Structure formation by self-propelled point particles

This distance λ∗ is not necessarily the true wavelength because this depends on how
often the PBCs have to be applied until the wavefront percolates. We can quantify
this and calculate the true wavelength by considering the possible wave propagation
directions in the following. The PBCs restrict the orientation of the wavefront inside
the simulation box. The boundary conditions mean that the full (in this case two
dimensional) space is covered by squares which are copies of the simulation box (see
Fig. 4.6b). This means that the wavefront which goes through the center of the
simulation box also has to cross the center of one copy. This can only be achieved if
the nematic director is given by

d̂ = ~n

|~n|
with ~n ∈ N2

0 . (4.22)

The true wavelength is given by
λ = L

n
(4.23)

if we assume that the vector ~n is the smallest possible vector (e.g. (3; 2; 0) instead of
(6; 4; 0)). This can be understood as the “greatest common divisor”4 of |λ∗| = Lxdx
and the equivalent in y-direction |λ∗∗| = Lydy. The same arguments hold in three
dimensions and the possible directors are given by Eq. (4.22) with the corresponding
wavelengths in Eq. (4.23). It is important to note that the natural numbers which
form the director should not be too large because otherwise the individual wavefronts
might not be distinguishable from each other. Moreover, several waves can form in
the same simulation thus leading to a smaller effective wavelength.
We can verify this derivation of the wavenumber by comparing the measured wave-

length of a pattern with the calculated wavelength. The latter is derived from the
global nematic director. To do so, we calculate d̂ as well as the ratios of each pair
of components. These ratios then lead to the underlying vector n̂ with integer com-
ponents. On the one hand, this vector allows us to calculate the largest possible
wavelength λc following Eq. (4.23). On the other hand, we can also measure the
wavelength from the density profile along the global director. To obtain this density
profile, we first measure the local density in cubic subboxes of the simulation domain
and then rotate the coordinate system such that one axis of the new coordinate sys-
tem is parallel to the global nematic director. It is then straightforward to calculate
the mean local density in slices perpendicular to the director (just like in Fig. 4.4b).
We measure the wavelength λm by a simple measurement of the distance between
two peaks. However, since the system may be composed of several wavetrains (co-
or counter-propagating), this measurement is not unambiguous and leads to several
possible wavelengths. Nevertheless, the comparison between λc and λm for 40 inde-

4The greatest common divisor is defined for natural numbers. But since the components of the
director are constructed from natural numbers (and then normalized), we use an analogue here.
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Figure 4.7: Measured λm vs. calculated λc wavelength for 40 wave patterns (different
relaxation constants, different Péclet numbers). Each color represents one single
simulation, different symbols are used to distinguish simulations with the same values
of λc.
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(b) Snapshot of a globally polar-
ized wave (P = 5, ρ = 0.875) ren-
dered like in Fig. 4.1.

Figure 4.8: Detailed investigation of the region in the phase diagram where polarized
waves occur (here: γ = 1).

pendent wave patterns, shown in Fig. 4.7 reveals a very good agreement between the
two approaches. The measured wavelength either matches the calculated one directly,
or one half, one third, . . . of it which is then due to several wavetrains. In two cases
λm is much larger than λc and almost equal to the box sizes. The reason could be
two counter-propagating waves which can (in our measurement) lead to any wave-
length depending on the exact time when the measurement is taken. To conclude
we find that the maximum possible wavelength is indeed determined geometrically
by the orientation of the global nematic director. However, shorter wavelengths are
observed repeatedly.
Finally, we can investigate the global order parameters of the wave pattern in the

phase diagram. Since the phase diagram region in which waves occur is very small
in the case of a low nematic relaxation constant (γ = 0.1, Fig. 4.1), we analyze
simulations with a larger relaxation constant (γ = 1). Here, the wave region in
the phase diagram is larger (see Fig. 4.8a). The global nematic order parameter
increases within the wave region when moving from the isotropic phase (low P , low
ρ) to the nematic phase (high P , high ρ). However, the global polarization indicates
that the wave region is in fact separated into two sub-regions. Close to the nematic
phase, the polarization vanishes as expected for our system with nematic symmetry.
However, close to the isotropic phase the polarization reaches surprisingly high values
of P ' 0.7 which are close to the values of the nematic order parameter in this region
of the phase diagram. Hence, the system is not only locally polarized (inside the

76



4.4 Spontaneous chiral symmetry breaking

wave) but also globally. The corresponding snapshots (see Fig. 4.8b for an example)
show a polarized wave as before but without a counter-propagating antagonist.

4.4 Spontaneous chiral symmetry breaking
In the nematic region of the nonequilibrium phase diagram (Fig. 4.1) we observe the
formation of chiral structures which seem to occur spontaneously and are apparently
not a “phase” which could be localized precisely in the phase diagram. This chiral
pattern is investigated in this section. The main results discussed in this section were
published in Breier et al. (2016).

4.4.1 Importance of chirality
An object or configuration of a specific chirality or handedness is distinguishable from
its mirror image. This is an important property of many ingredients of life like amino
acids, sugar, and –most prominently– DNA. It is hence important to understand
how a chiral structure can emerge in an otherwise achiral system. Furthermore,
homochirality is found for many of these objects; only one of the enantiomers (image
or mirror image) occurs naturally. For example, amino acids are left-handed, while
most sugars occur in the right-handed form only and so does most of the DNA
(Meierhenrich, 2008). The investigation of this (homo-)chirality is an active field of
research since it appears to be a key ingredient to understand how life formed.
Classical examples of chiral symmetry breaking in achiral systems include the

Belousov-Zhabotinskii reaction and the formation of so-called Liesegang rings (Meier-
henrich, 2008, p. 20). In systems of microorganisms, emerging chirality is found in
growing colonies of the bacterium Bacillus subtilis (Ben-Jacob et al., 1995) and of
the amoeba Dictyostelium discoideum (Nicol et al., 1999; Levine et al., 2006). Sper-
matozoa –which are motile and chiral in itself– show the formation of helical paths
which are sustained also in the presence of fluctuations (Friedrich and Jülicher, 2009).
Another example of active particles (artificial in this case) are rotationally driven
spinners which show self-organization into rotating crystals (Nguyen et al., 2014).

4.4.2 The chiral pattern
The chiral pattern in our system occurs spontaneously in the nematic region of the
phase diagram, i.e. for one set of parameters ρ and P one simulation can turn out
nematic while an independent one (with different initial conditions (~ri; êi), different
random seeds which influence the vectors ~ξi) chiral. A representation of such a chiral
pattern is given in Fig. 4.9. The particles within each of the four representative planes
(width δ ≈ 1.1ε) are ordered nematically which is quantified by a high local nematic
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4 Structure formation by self-propelled point particles

(a) A fraction of the particles (represented by little arrows) are shown in cross section with
the corresponding local nematic order parameter (in color). The ribbon below is composed
of the local directors in slices perpendicular to the helical axis.
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(b) Components of the local director d̂loc along the helical axis. The symbols denote the
measurements while the solid lines are sinusoidal least square fits dloc

y,z = cos(πx/L+ φy,z).

Figure 4.9: Snapshot of a chiral pattern (ρ = 1.625, P = 3.29, reprinted from Breier
et al., 2016).
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4.4 Spontaneous chiral symmetry breaking

Péclet number probability of chiral pattern mean absolute
chiral order parameter

P P (|Sχ| > 0.2) 〈|Sχ|〉χ
3.2 3.3% 0.48
4.0 6.7% 0.64
5.6 5.7% 0.74
8.0 4.0% 0.82

Table 4.2: Results of 300 independent simulations per value of P at ρ = 1. The
mean absolute chiral order parameter is calculated from all chiral simulations. (Data
published in Breier et al., 2016, using a different definition of Péclet number there).

order parameter with a well-defined local director d̂ loc. However, as one moves along
the helical axis (denoted by x), this local director rotates around the helical axis
which is represented by the ribbon in Fig. 4.9a. The components of the local director
(Fig. 4.9b) vary along the helical axis. The two perpendicular components dloc

y and
dloc
z are very well fit by sinusoidal functions while the parallel component dloc

x vanishes.
This behavior proves that the structure actually is helical.
Each chiral pattern is either right- or left-handed and both enantiomorphs occur

with equal probability which substantiates the fact that it is a spontaneous symmetry
breaking. Since the simulation has to fulfill the PBCs, only certain directions of the
helical axis are allowed just like the possible global directors for the density waves in
Eq. (4.22) in three dimensions. Yet, the chiral pattern is mostly aligned along one
of the box axes and only rarely along one of the diagonals. We did not observe any
other orientations of the helical boxes within the simulation domain. The pitch of the
given chiral example is 2L due to the nematic symmetry and the boundary conditions.
For differently oriented chiral pattern the pitch would be adjusted according to the
orientation of the helical axis.
The probability of the formation of a chiral state as a function of Péclet number

is investigated by running 300 independent simulations per value of P (ρ = 1) and
counting the number of simulations which in their final state have a chiral order pa-
rameter (Eq. 3.73) that is larger than 0.2 in absolute value. This probability (Tab. 4.2)
exhibits a maximum at P = 4.0. However, the statistics is very limited, so this has
to be taken with a grain of salt. The mean absolute chiral order parameter (of the
chiral simulations) shows an increase with increasing Péclet number. Thus it behaves
similarly to the global nematic order parameter (see Fig. 4.1) which also increases
with increasing Péclet number. The reason is that the influence of the stochastic noise
decreases with increasing Péclet number thus leading to smaller fluctuations in the
orientations which in turn leads to higher global nematic and chiral order parameters.

79



4 Structure formation by self-propelled point particles

 

 

γ = 1
γ = 0.5
γ = 0.1

mean local nematic order parameter 〈Sloc〉

ch
ir
al

or
d
er

p
ar
am

et
er

S
′ χ

box diagonal

square diagonal

along axis

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4.10: Chiral order parameter versus mean local nematic order parameter of
metastable chiral patterns. Sloc is calculated in 203 cubic sub-boxes of the simulation
box and averaged. The global density (1 ≤ ρ ≤ 2) and the Péclet number (2.47 ≤
P ≤ 10) are varied. The filled dots denote the values corresponding to perfect chiral
patterns with different orientations in the simulation box and different pitches (see
Section 3.3.2).
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We can substantiate this relationship by comparing the chiral order parameter
to the mean local nematic order parameter 〈Sloc〉 (see Fig. 4.10). The latter is a
measure of the nematic order an achiral pattern with the same system parameters
would have. We see that the chiral order parameter increases with 〈Sloc〉 just as
expected and argued above and it approaches the theoretical value of a perfect chiral
for 〈Sloc〉 → 1.
The occurrence of the chiral pattern does not depend only on the initial conditions

of a given simulation. In fact, one set of initial conditions (~ri; êi) can lead to a nematic,
a right- and a left-handed chiral pattern (see Fig. 4.11b). The only difference between
the three simulations shown there is a different random seed which leads to different
vectors ξ̂i. This points to the fluctuations as the key mechanism in the formation of
the chiral pattern (see Section 4.4.4 for a detailed discussion). Moreover, we tested the
influence of the choice of pseudo-random number generator. For all shown simulations
we use the standard C-function drand48(). Simulations with a “Mersenne twister”
(Matsumoto and Nishimura, 1998) instead show the same general behavior: long-
lived metastable chiral pattern occur spontaneously in the nematic region of the
phase diagram. The chiral pattern again possesses a homogeneous director twist
with a pitch of 2L. Hence, the choice of the pseudo-random number generator does
not alter the results.

4.4.3 (Meta-)Stability of the chiral state
The chiral pattern is long-lived metastable because it can exist at least up to 2.5×106

time steps (see examples in Fig. 4.11a). Of all performed simulations only very few
show a stable chiral pattern but turn nematic at some point. One such example is
investigated in Section 4.4.7. No simulation which possesses global nematic order at
one point in time turns chiral. In this sense, the chiral state is a metastable state
while the nematic state is stable because the Lebwohl-Lasher potential (Eq. 3.1) is
minimized by the nematic configuration. The metastability of the chiral state can be
understood from geometric arguments.
The equilibrium nematic director field d̂ can be subject to three fundamental de-

formations as they are shown by De Gennes and Prost (1993, p. 103): splay, bend,
and twist. These contribute to the so-called Frank free energy5 (or distortion free
energy, see De Gennes and Prost, 1993, p. 102)

F = Fsplay + Ftwist + Fbend (4.24a)

= 1
2K1(∇ · d̂)2 + 1

2K2(d̂ · (∇× d̂))2 + 1
2K3(d̂× (∇× d̂))2 (4.24b)

with the elastic constants K1, K2, and K3. A schematic representation of these three
5given per volume
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(a) Three long simulations which show the metastability
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(b) Three simulations which
start from the same initial
conditions (~ri, êi) with dif-
ferent random seeds. Time
increases from white to
black.

Figure 4.11: Investigation of different properties of the chiral pattern: Long-lived
metastability and spontaneous symmetry breaking.

a b c

Figure 4.12: Sketches of the three fundamental deformations of a nematic director
field: Splay (a), bend (b), and twist (c). The reference particle (F) interacts with
its neighbors within the interaction range (circle). No torque is excerted on it by the
two neighboring particles (•, picture reprinted from Breier et al., 2016).
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deformations is given in Fig. 4.12. The symmetry of all three ideal deformations
is such that a given reference particle does not experience any torque. For any
neighboring particle which would exert a torque on the reference particle, there exists
a second neighboring particle which leads to an equal and opposite torque. Hence,
the total torque on the particle vanishes. However, in our system of self-propelled
particles only the chiral deformation can persist. The self-propelled particles cannot
form a splay deformation because there exist no sinks or sources in the system. Due
to the lack of a centrifugal force, the bend deformation is not stable because the
particles cannot be forced onto a curved path. Finally, the twist deformation is
stable in principle because each particle moves within a nematically ordered slice.

4.4.4 Formation of the chiral state

A twist deformation is stable in our system, but how does it form? We will answer
this question in the following and also elaborate on the role of fluctuations in the
system by comparing to a system of non-motile particles.
All simulations start from a homogeneous and isotropic distribution of particles’

positions and orientations. The temporal evolutions of the global order parameters
for a system that develops into a chiral state (Fig. 4.13) show that in the initial
phase (here up to t ≈ 280) the nematic order parameter is larger than the chiral
order parameter. At the final stage, the chiral order parameter is roughly two and a
half times larger than the nematic order parameter. Interestingly, the smectic order
parameter is comparable to the nematic order parameter and the polarization might
still increase. The temporal evolution in (S, Sχ)-space substantiates this. The order
parameters only tell us something about the overall structure in the system. Any
structure in principle emerges from local interactions among the particles and then
spreads out to span eventually the whole system, hence, what we need to measure is
a local quantity and see how it develops. Since we know the final orientation of the
helical axis, we can study the system in slices perpendicular to that axis. The mean
square orientation

〈
e2
x,y,z

〉
within these planes is given in Fig. 4.13b. We observe

the persistence of a roughly isotropic distribution until t ≈ 150 and then the chiral
structure emerges. From this analysis, it is hard to judge what exactly triggers the
onset of the chiral pattern. We can only observe the onset of chirality in a clear-cut
fashion at t ≈ 200. One additional drawback of this method is that we already impose
the helical axis from the beginning and cannot exclude a bias by investigating slices
from the very beginning.
To understand this problem, we now want to examine a local quantity from which

we can learn how the chiral pattern emerges from the local nematic alignment. We
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(b) Mean square components of the orientations of the particles. The system is divided
into 50 slices perpendicular to the helical axis x and the mean square of each orientation
component is calculated. 100 snapshots are evaluated in total.

Figure 4.13: Temporal evolution of the chiral simulation in Fig. 4.9 (ρ = 1.625,
P = 3.29).
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4.4 Spontaneous chiral symmetry breaking

Figure 4.14: Emergence of the chiral pattern (cf. Figs. 4.9 and 4.13). (a) Sketch
of two nematically order layers with an angle of π/2 between their local directors.
(b) and (c) After 2000 time steps, the system is divided into 103 boxes and those
with f ybox > 0.15 and f zbox > 0.15 are plotted (see Eq. 4.25 for definition). (d) and
(e) Temporal evolution of the fraction of boxes mostly aligned along one axis (see
Eq. 4.26) for the chiral pattern and a nematic pattern for comparison. Reprinted fig-
ure (with additional annotations) with permission from Breier et al., Physical Review
E, 93(2):022410, 2016. Copyright 2016 by the American Physical Society.

divide the system into 103 boxes and measure in each box

f
{x,y,z}
box ≡ #(particles with |ex,y,z| > 0.9)

#(particles in box) (4.25)

which is the fraction of particles in the box that are mostly aligned along one of the
axes. We examine the evolution of the chiral pattern in terms of this measure. After
2000 time steps (t = 200 in Fig. 4.13) the nematic order parameter is larger than the
chiral order parameter but the latter is larger than zero. Figure 4.14 (panels b and
c) shows the small boxes inside the simulation domain where after 2000 time steps
f ybox > 0.15 and f zbox > 0.15, respectively. We can clearly identify two distinct layer-
like areas perpendicular to the final helical axis which show local nematic alignment
with an angle of roughly π/2 between the two local directors. These two layers (see
also Fig. 4.14, panel a for a sketch) are very typical during the formation of the chiral
pattern. The particles firstly interact locally and align nematically hence forming
small nematic domains. These domains then start competing and can either lead to
a nematic or a chiral pattern. The fraction of boxes with particles which are mostly
aligned along one of the axes is given by

f {x,y,z} ≡ #(boxes with f {x,y,z}box > 0.15)
#boxes (4.26)

and can be tracked over time (Fig. 4.14, panels d and e). In the beginning all three
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quantities fx, f y, and f z show a slight increase for both the nematic and the chiral
pattern. For the nematic pattern we then see that f z finally dominates; the global
nematic director was chosen spontaneously to be parallel to ẑ. In the case of the
chiral pattern, the f y and f z are finally similarly important while fx decays.
To strengthen this argument we can perform the following numerical experiment:

We seed the system with nematically ordered planes instead of isotropic initial condi-
tions and measure the probability that a chiral pattern forms. Initially, we place the
particles at random positions into the simulation box. Two slices of the simulation
box are chosen to form the nematically ordered planes. Their individual width is
0.05L and they are a distance of L/2 apart from each other. All particles within each
of these slices have the same initial orientation (in the nematic sense), while the two
local directors of the two slices enclose an angle of π/2. The system is then evolved
until a steady-state is reached. Sixty independent such simulations yield an increase
of the chiral probability to about 50%. Thus, the two nematically ordered planes
are a precursor of the chiral state even though fluctuations are important since the
formation of a chiral state is not completely determined by the nematically ordered
planes.

4.4.5 Comparison to one-dimensional model

We see that fluctuations play a crucial role in the formation of the chiral pattern
because the same initial state can lead to a chiral or nematic state depending on the
fluctuations. Moreover, seeding the system with the precursor of a chiral pattern (two
parallel, nematically ordered planes whose local directors form an angle of about π/2)
does not always lead to a chiral pattern but only increases the probability. Hence, the
fluctuations are still of high importance. Moreover, as we will see in Section 4.4.7,
a chiral pattern can untwist and form a nematic pattern only by the appropriate
fluctuations. In this section we will elucidate the role of the fluctuations by examining
a one-dimensional system of non-active interacting spins (simulations performed by
R. Selinger, Kent State University, USA, published in Breier et al., 2016) similar to
the classical XY -model. The Nr spins (or rotors) are placed next to each other (see
inset of Fig. 4.15) on a line with PBCs. Each spin can rotate around the axis which
connects all spins and hence is described by its rotation angle θi. The spins interact
(just like the SPPs) via the Lebwohl-Lasher potential (Eq. 3.1) which for this model
can be rewritten as

V = −
Nr∑
i=1

J cos[2(θi+1 − θi)] (4.27)

with the coupling constant J . This potential is very similar to the potential of the
classical XY -model except for the additional factor of two which leads to nematic
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Figure 4.15: Results of the one-dimensional Lebwohl-Lasher model. Inset: It can
evolve to twisted metastable states with ±n twists or the untwisted ground state.
Main panel: Probability of the number of twists for a long chain with Nr = 800
(green O) and for a short chain with Nr = 100 (blue ♦). The lines are guides for
the eye. Reprinted figure with permission from Breier et al., Physical Review E,
93(2):022410, 2016. Copyright 2016 by the American Physical Society.
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instead of polar symmetry. The system is described by the Hamiltonian

H = V +
Nr∑
i=1

1
2Iω

2
i , (4.28)

with the moment of inertia I (which can be set to unity) and the angular velocity ωi
of the i-th rotor. The torque of the i-th rotor is given by

τi = −I ∂V
∂θi

(4.29)

such that the rotor is influenced by its two neighbors. The angular acceleration αi is
then proportional to the torque

αi = τi
I

(4.30)

and needs to be integrated forward in time to obtain the angular velocity ωi. The
temporal integration of the latter then leads to the angular position of the rotor
(i.e. the angle θi). This integration in time is done using a velocity Verlet algorithm
and a nonequilibrium rapid quench (Langevin thermostat) from T = 10 to T = 10−7

in 6×105 time steps which successively removes kinetic energy from the system. The
initial configuration consists of random directions of the rotors and zero angular ve-
locities. For each chain length 200 such annealing trials are carried out independently.
We find that for long chains (Nr ≥ 200) the most likely final state is a chiral state
with a twist of ±π while the nematically ordered state is the most probable for shorter
chains (see Fig. 4.15). This behavior can be inferred from the associated energies.
The energy of the nematic ground state is E0 = −J . Possible chiral states show a
rotation angle of nπ along the chain due to the PBCs and the nematic interaction.
The potential energy of such a chiral state is given by

∆En = 〈−J cos(2∆θ)〉 − E0 (4.31)

where the subscript n refers to the number of half-twists. The angle between neigh-
boring rotors (for a homogeneous twist) is given by

∆θ = nπ

Nr

. (4.32)

For long enough chains, we can make use of the small-angle approximation and find

∆En ≈
〈
−J(1− 2∆θ2)

〉
− E0

= 2J
(
nπ

Nr

)2
. (4.33)
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4.4 Spontaneous chiral symmetry breaking

This means that there are considerable energy barriers between the different states
and if a system is quenched from a high temperature, random state to a low temper-
ature one it is possible that it moves (in the energy landscape) into a twisted state
instead of the untwisted ground state. Moreover, the height ∆En of the energy barrier
decreases with increasing chain length. The fugacity of the corresponding equilibrium
model exp(−∆En/(kBT )) forms a Gaussian bell-curve as a function of the number
of twists n and hence always exhibits a maximum at n = 0. However, if we do not
distinguish left- and right-handed helices and study the fugacity as a function of |n|,
we find (for long enough chains) a maximum at |n| = 1. This means that the twisted
state is more probable than the untwisted ground state if the chain is long enough.
Moreover, if we increase the chain length further, chiral states with more twists be-
come more likely. In the limit of an infinitely long chain this destroys the long-range
order in the system at any finite temperature and leads to the phase transition at
T = 0 (just like in the XY -model). In Fig. 4.15 we plot the probability of the states
with different numbers |n| of twists and compare systems with different chain length.
We find that in a short chain (Nr = 100) the nematic state is the most probable.
However, for a long chain (Nr = 800) the chiral state with a twist of |n| = π occurs
more often than the nematic ground state just as predicted. If we used instead of |n|
the number n of twists (distinguishing between left- and right-handed helices), the
curve would always be bell-shaped with a maximum at n = 0. However, for larger
chain lengths twisted states are more likely than for shorter chain and the distribu-
tion along n gets broader, so that the combined probability of n = +1 and n = −1 is
larger than the probability of n = 0 for a chain that is long enough (i.e. Nr ≥ 200).
An additional finding of this one-dimensional model is that the mean square number
of twists 〈n2〉 increases linearly with the number of rotor Nr and hence follows the
same statistics as a random walk.

An equivalent effect can also be found in the system of SPPs: The probability of
a chiral state is more than ten times larger in a long box of aspect ratio 10 : 1 : 1
(N = 230 × 23 × 23, ρ = 1, P = 3.13) than in a cubic box. Moreover, not all
chiral patterns in such a box show one half twist inside the simulation box but also
the spontaneous formation of a fully twisted chiral (pitch of Lx) can be observed.
However, it is important to note that such a long box requires longer relaxation times
until a true steady-state is reached. The fully twisted chiral is hence also expected
to be metastable just like the chiral state in general in the cubic simulation domain.
We also find metastable configurations where the local nematic director is oriented
perpendicular to the long axis of the simulation box. If one moves along this axis, the
orientation of the local nematic director undulates but does not lead to a helix. Such
a state is only possible due to the long time it takes until information is propagated
along the long axis of the simulation domain.
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Figure 4.16: Simulations of SPPs with P →∞ (ρ = 1, γ = 0.1).

4.4.6 Importance of fluctuations

All simulations up to this point are performed with a finite Péclet number and spon-
taneous chiral symmetry breaking is observed everywhere in the phase space which
corresponds to the nematic phase. We also know from the one-dimensional, non-self-
propelled model that orientational fluctuations are very important because they may
trap the system in a twisted state and prevent reaching the untwisted ground state. In
our model of SPPs, we can also study the influence of fluctuations by simulating the
deterministic model with P →∞. The resulting trajectories in the (S, Sχ)-plane (see
Fig. 4.16a) have a very similar appearance to the ones corresponding to simulations
with finite Péclet number (see Fig. 4.13a). In the initial phase both S and Sχ grow
similarly. However, all trajectories evolve to the nematically ordered state (S → 1,
Sχ = 0). A study of 300 independent simulations with vanishing noise reveals that all
of them evolve to a nematic state. This indicates that the fluctuations are crucial for
the formation of a chiral pattern. The initial increase in Sχ in the temporal evolution
can be ascribed to the formation of parallel, nematically ordered layers with non-
parallel local directors just like in the case of finite P . However, rotational diffusion is
necessary for the formation of a chiral pattern. The microscopic interactions between
particles lead to nematic alignment but rotational diffusion counteracts this mecha-
nism in the sense that the alignment can never be perfect because orientations are
altered by rotational diffusion. In a deterministic system without rotational diffusion
(P →∞) and above the critical Péclet number only the nematic state can form from
an isotropic configuration. The reason is that the alignment between neighboring
particles will eventually be perfect and result in global nematic alignment. Instead

90



4.4 Spontaneous chiral symmetry breaking

in the case of a finite Péclet number the chiral state can form as well. In this state
neighboring particles along the helical axis are not aligned but their orientations form
a finite angle. The imperfect alignment due to rotational diffusion can favor such a
configuration during the transient which allows for the formation of a chiral state in
the presence of rotational diffusion. This finding matches also the decreasing chiral
probability for increasing Péclet number (see Tab. 4.2).
Even though the deterministic system does not form spontaneously a chiral pattern,

we can seed the system with such a configuration and investigate whether it is stable
over time. We initialize such a simulation by placing the particles randomly but
homogeneously into the simulation domain. Then we randomly choose a fraction
∆Nχ/N of the particles and assign to them the orientation vector according to a
perfect chiral pattern with a pitch of 2L (ê = (0; cos(πx/L); sin(πx/L)). All other
particles are assigned a random orientation on the surface of the unit sphere, just
like in the isotropic initialization. The result of 50 such independent simulations per
value of ∆Nχ/N (see Fig. 4.16b) reveal that a chiral fraction of ∆Nχ/N ≈ 0.6% is
enough to obtain a small yet finite probability for a persistent chiral pattern. This
chiral probability increases as the chiral fraction increases. In the limiting case of
∆Nχ/N = 1, the chiral probability is expected to reach unity. We know that the chiral
pattern (in case of a homogeneous particle distribution) is stable (see Section 4.4.3).
For a deterministic simulation there is hence no possibility to untwist a perfect,
homogeneous chiral pattern.
To summarize, we have found that the fluctuations are crucial for the formation of

a chiral pattern but the chiral pattern can also be stable without stochastic noise.

4.4.7 An untwisting chiral pattern
The chiral state is long-lived metastable as we have seen before since it can last for up
to 2.5× 106 time steps. In all simulations which were found to be chiral, there have
been very few examples of a chiral state which show the metastability by existing
for a considerably long time followed by untwisting and the formation of a nematic
state. One such example is reported in Fig. 4.17. The chiral order parameter is given
in absolute value since the handedness of the helix is not of particular interest in this
case. The system starts from an isotropic random configuration and the chiral pattern
is formed at t = 5000. The chiral and nematic order parameters appear to be rather
constant until t = 20000 but the polarization increases over time with a superimposed
apparent oscillation. The corresponding snapshot at t = 20000 shows a well-developed
chiral pattern. The transition then takes about 20000 time units where |Sχ| decreases
and both S and P increase (with fluctuations/oscillations). When the chiral order
parameter reaches zero both the nematic order parameter and the polarization show
a very abrupt increase. The snapshot at the transition (t = 35000) shows that the
global director is not perpendicular to the former helical axis but they form an angle.
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Figure 4.17: Evolution of a system from an isotropic state via a chiral state to a
nematic state (ρ = 1.625, P = 6.17).
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4.4 Spontaneous chiral symmetry breaking

From that point on the nematic order parameter remains constant at a high level,
the chiral order parameter vanishes, and the polarization decreases from about 0.7 to
below 0.6. The steady-state configurations show a nematically ordered, homogeneous
system. The smectic order parameter is fluctuating around a low value throughout
the whole simulation.
It is important to note that the transition from a chiral configuration to a nemati-

cally ordered system is a rare event. Moreover, we find from the temporal evolution
of the order parameters that a possible precursor of this event might be the increasing
and oscillating global polarization: in the initial phase (up to t = 20000), all global
order parameters appear roughly constant while the polarization grows from zero to
about 0.4 with strong oscillations. This also indicates that the given chiral pattern is
not fully in steady state.
In the following section, we elucidate the role of these oscillations and can eventually

conclude how these might help in untwisting a chiral pattern.

4.4.8 Oscillations in the polarization – A density wave?
The simulations which exhibit chiral symmetry breaking are not only identified by a
high chiral order parameter together with a low global nematic order parameter (as
compared to other simulations in the same region of the phase diagram), but also
typically show very regular oscillations in the polarization about a mean value which
indicates a small but finite degree of global polarization (typically 0 ≤ 〈P 〉 ≤ 0.2).
In this section, we will investigate one particular example of a chiral pattern which
shows an oscillating global polarization.
Figure 4.18b shows the temporal evolution of the global order parameters after the

transient has died out. A rather constant chiral order parameter and very regular
oscillations in both the polarization and the nematic order parameter are visible. Both
S and P fluctuate around a similar mean value of about 0.25 but the amplitude of the
polarization is much larger than that of the nematic order parameter. They seem to
be in phase for the first three to four periods and then the frequency of the nematic
order parameter appears to decrease compared to the one of the polarization. We are
not only interested in the magnitude of the polarization but also in its direction. To
this end, we measure the angles between the polarization vector P̂ and the helical axis
x̂6. The azimuthal angle in a plane perpendicular to the helical axis is denoted by φ
and the angle of elevation with respect to that plane is θ (see Fig. 4.18a). Both angles
show a periodic pattern with the same frequency as the polarization order parameter.
The elevation angle is always negative and shows an oscillation. Its minima coincide
with the minimal values in P . However, the azimuthal angle does not oscillate but it

6We find the helical axis by visual inspection of the snapshot, it is mostly given by one of the axes
of the simulation domain.
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(a) The global polarization p̂ of the chiral pattern can be described by two angles with
respect to the helical axis: φ is the azimuthal angle in the plane perpendicular to the
helical axis. θ is the elevation with respect to this plane. The helical axis of a given
simulation is found by inspection of the corresponding snapshot.
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(b) Temporal evolution of the order parameters (measured every 10 time units), of the
angles between polarization and helical axis (measured every 20 time units), and of the local
densities and local polarization (measured every 20 time units in 50 slices perpendicular to
the helical axis).

Figure 4.18: Oscillations in polarization in a chiral simulation (ρ = 1, P = 8).
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increases over time with jumps from +π to −π. The slope of φ(t) is not constant, it
exhibits a maximum where θ reaches its minimum. To sum up, the overall periodic
movement of the polarization direction goes as follows: The vector p̂ rotates around
the helical axis with an additional (small) movement out of the plane perpendicular
to the helical axis. The polarization vector lies in the plane, when the azimuthal angle
is approximately ±π/2, i.e. p̂ is parallel to ŷ (and at the same time P is maximal).
On the other hand, |θ| reaches its maximum where φ is approximately ±π and hence
p̂ is never parallel to ẑ but it points maximally out of the y− z plane when it rotates
over the z-axis. The described rotation of p̂ is clearly visible in Fig. 4.19a.
The global polarization vector does not reveal fully what happens in the system

since the value of the polarization is, though significantly higher than in a non-
polarized system, lower than what one would expect for a polarized system. Hence, we
need a local information, i.e. local polarization and local density. Both are measured
in 50 equidistant slices perpendicular to the helical axis (see two lowermost panels in
Fig. 4.18b), since we expect from the changes in direction of the polarization vector
that the layers perpendicular to the helical axis play an important role.
The spatio-temporally resolved pattern in Ploc and ρloc reveal the following: At

any instant in time, the local polarization is not constant over the helical axis but it
typically exhibits one maximum and one minimum. However, there are time instants
where it roughly vanishes everywhere which coincide with the minima of the global
polarization P . The normalized local density, instead, shows a maximum at all times
which moves at a roughly constant speed along the helical axis (tilted yellow lines
in the ρloc(x, t) plot). In addition the maximum strengthens and weakens over time
(occurrence of red spots in the plot). These spatio-temporal areas of high local density
concur with the maxima in the local polarization. This points to a density wave which
moves along the helical axis and is coupled to the local polarization.
The speed of this wave-like structure can be inferred by finding the maximum of

local polarization or local density at any time instant (see Fig. 4.20a). The movement
of the position of this maximum (denoted by x(Pmax) and x(ρmax)) over time allows
us to estimate the speed (see Fig. 4.20b). The position of the maximum in local
density shows a constant speed in rather large time windows while the maximum in
local polarization moves constantly over shorter time periods and then shows jumps.
We choose two (one) time windows for x(Pmax) (for x(ρmax)) where we perform linear
least-square fits. The resulting speeds are vρ = 0.10 for the local density and vP,1 =
0.063 and vP,2 = 0.087 for the local polarization. We find that the density wave moves
at a speed of roughly one fifth of the self-propulsion speed of the particles (v0 = 0.5).
The maximum in local polarization moves a little slower, though.
The remaining question is whether the helix of local directors rotates in time or

is static. To investigate this, we compare the profiles along the helical axis over one
period of the global polarization (see Fig. 4.19b). The profile of one component of the
local nematic director (in this case dloc,y) shows only small changes over the course
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(a) Rotation of the global polarization vector in a chiral pattern with oscillating global
polarization (time t ≥ 1000). The dots denote the different directions of p̂ on the surface of
the cone with P as color and a few orientations of p̂ are shown in an exemplary way. The
trajectory of p̂ is not closed which leads to an open cone. The vertical axis is stretched for
the sake of clarity.
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(b) Profiles of local density and one component of the local director during one period of
the oscillation of P (time 3690 ≤ t ≤ 4400). The color is chosen according to the global
polarization (see left panel).

Figure 4.19: Further investigation of the global polarization vector (left panel) and
local density and local director component (right panel) as a function of global po-
larization P . Same simulation as in Fig. 4.18b.

96



4.4 Spontaneous chiral symmetry breaking

helical axis

ρmax

x(ρmax)

ρ
lo
c
/ρ

P
lo
c

Pmax

x(Pmax)

−L/2 0 L/2
0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

(a) The profiles of local polarization and local density along the helical axis show a clear
maximum (for a given time instant) which are denoted Pmax and ρmax with the positions
x(Pmax) and x(ρmax).

 

 

 

 

vρ = 0.10
full data

vP,2 = 0.087
vP,1 = 0.063
full data

x
(ρ

m
a
x
)/
L

time

x
(P

m
a
x
)/
L

P

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

−5

0

−15

−10

−5

0

0

0.2

0.4

(b) Temporal evolution of the global polarization, as well as the maxima in local polarization
and local density (as defined above). The images of the simulation box according to PBCs
are taken into account, so that the maximum can be followed on a longer distance than
the linear box size. The red and yellow curves are linear fits x(Pmax) = x0

P + vP · t (and
accordingly for ρloc) in the indicated regions.

Figure 4.20: Measurement of the wavespeed of local polarization and local density
(same data as in Fig. 4.18).
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of one oscillation period. In contrast, the profile of the local density changes from a
rather flat profile (for low global polarization) to a profile with a distinct minimum
and maximum (for high values of the polarization). These profiles hence show that
the helix of local directors only shows a very slow rotation (small changes in dloc,y(x))
which is much slower than the oscillation of polarization. Hence, the polarization is
induced by a density wave.
Finally, we can use our knowledge about the oscillation in polarization and un-

derstand how a chiral pattern can untwist (Section 4.4.7). We know now that the
oscillating polarization is accompanied by a density wave (along the helical axis). The
case of the untwisting chiral (Fig. 4.17) shows an oscillating and increasing polariza-
tion order parameter as well as areas of high and low local density in the snapshots
(t = 20000 and t = 35000). In a perfect chiral pattern, a difference in local density
along the helical axis leads to a higher nematic order parameter as compared to a ho-
mogeneous system because the areas of high density contribute more to the nematic
order than the ares of low density. Such a density difference hence facilitates the un-
twisting of a chiral pattern because the stability of the helix relies on a homogeneous
density.

Influence of density, Péclet number, and pitch of the helix on the oscillation in
polarization

To understand the full nature of the density wave propagation along the helical axis
through the chiral pattern, we analyze the influence of different global quantities
onto the period of the oscillation in P . This period can be measured either by
fitting an oscillating (sinusoidal) function to the data which gives an estimate of the
frequency. Secondly, the period can also be found by identifying the maxima of P (t)
and measuring the distance between them.
The oscillation period of the polarization P is coupled to the speed with which

the density wave travels once across the simulation domain per oscillation period
(cf. Fig. 4.18). We find (see Fig. 4.21) that the Péclet number, the global density,
and the pitch of the helix influence the period. The first two quantities are studied in a
cubic domain while the simulation box to study the influence of the pitch is elongated.
The simulations which are used to study the effect of the Péclet number are the same
as those that were used to investigate the probability of the formation of a chiral
pattern (see Tab. 4.2). Hence, the chiral pattern formed spontaneously. However,
to increase the efficiency and to limit the number of performed simulations, in the
cases of determining the influence of density and pitch seeded simulations have been
used. This means that the simulations do not evolve from an isotropic configuration
but in contrast to the previous develop from a perfect chiral pattern. The particles
are placed homogeneously in the simulation domain during the initialization step and
their orientation is given by ê = (0; cos(nπ/Lyx); sin(nπ/Lyx), hence the helical axis
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Figure 4.21: Influence of different quantities on the oscillation period of the global
polarization of chiral pattern.
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is parallel to x̂. The number n sets the pitch as 2Ly/n. The simulations at constant
Péclet number for different densities are performed in a cubic box with a pitch of
twice the linear box size. The inspection of the order parameters reveals the time at
which the steady state is reached and measurements can be performed. Moreover,
the chiral pattern is stable in all cases and does not untwist. The influence of the
pitch is investigated in an elongated box of aspect ratio 2 : 1 : 1 (Lx = 2Ly =
2Lz). After a short transient, the polarization shows an oscillation until the pattern
untwists and either becomes nematic or chiral with a pitch of 2Lx = 4Ly. Nonetheless,
measurements are possible in the time span which correspond to a chiral pattern with
a smaller twist.
The measured period of oscillation of P varies between 1.8 and 10 times the time it

takes a single particle to travel once across the simulation box along the helical axis
(Lx/v0). The period increases with increasing Péclet number (Fig: 4.21a), i.e. the
density wave gets slower with increasing rotational noise. The period, hence, follows
the same trend as a function of P as the global nematic order parameter. In the limit
of infinite Péclet number and perfect order (given that the non-dimensional density
is large enough for global order to occur) the system cannot exhibit a density wave
propagating perpendicular to the global director7. For a fixed Péclet number, the
period of the oscillation in polarization decreases with increasing global density (see
Fig. 4.21b). This trend is opposite to the trend of the global nematic order parameter
which increases with increasing number density. However, the decrease of the period
is rather small (between ten and eight times L/v0) over non-dimensional number
densities in the range 0.125 ≤ ρε3 ≤ 2. The density wave can travel faster (leading to
a smaller period) for higher number densities since more interactions happen when the
system is denser. Finally, to understand the interplay between the density wave and
the chiral pattern, we perform simulations with different pitches (see Fig. 4.21c). The
period clearly increases from roughly 1.9Lx/v0 to 14Lx/v0 for the maximum possible
pitch of 2Lx = 4Ly. This indicates that the density wave gets considerably faster the
more the helix of local directors is twisted. This could be related to the curvature
induced instability which was found by Baskaran and Marchetti (2008b, 2012) deep
in the nematic phase of the nonequilibrium phase diagram.
To summarize, we observe a density wave associated with the chiral pattern which

propagates along the helical axis and is coupled to an increase in the local polarization.
Its speed depends on the global density, the Péclet number, and the pitch of the helix.

4.5 Influence of walls
All simulations up to this point are performed with periodic boundary conditions.
However, in Section 3.2.4 we describe two different models to implement a sandwich

7At the same time also a chiral pattern is not able to form in the limit P →∞ (see Section 4.4.6).
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Figure 4.22: Comparison of the two models for the sandwich geometry. The local
number density is calculated in 10 boxes along the z-axis (N = 1000, σ/Lz = 0.1).

geometry. In the following we want to study the influence of such boundaries.
We perform simulations of a small system (N = 1000, ρ = 1) and investigate the

vertical density profile which measures the local density in layers parallel to the walls
(Fig. 4.22). Both models show a vanishing local densities close to the walls due to
the repulsion (Eq. 3.50).
The model with planar anchoring (Eq. 3.52) shows large accumulations of particles

close to the walls (Fig. 4.22, left panel). This effect is strongest for the deterministic
model (P → ∞), followed by the isotropic phase (P = 0.125), and it is weakest
in the nematic phase (P = 2). The wall-accumulation is directly induced by the
anchoring mechanism: at the top wall all particles align along x̂ so that it is hardly
possible for a particle to leave the vicinity of the wall again. At the bottom wall, the
inter-particle alignment can lead to local alignment of all particles close to the wall
which again keeps all these particles together. The wall-accumulation is strongest
for the deterministic system (P → ∞) where particles are strongly trapped at the
walls because no rotational noise is applied. The weakest accumulation is found for
the nematic phase because the walls will induce a global alignment perpendicular
to the z-axis preventing particles from approaching the walls. On the contrary in
the isotropic phase, the orientations of the particles are equally distributed into all
directions which means that at all times particles are approaching the walls. At the
same time the particles being already close to the walls are subject to stochastic
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Figure 4.23: Nonequilibrium phase diagram (analogous to Fig. 4.1) of SPPs in a
sandwich geometry using the discrete flip model (γ = 0.1, 24ε1/γF = 0.1).

rotational noise which can possibly take them away from the wall. However, these
two effects do not cancel out because the particle-wall alignment mechanism traps
the particles at the walls.
The second model for SPPs in a sandwich geometry is termed “dicrete flip” (Eq. 3.54)

and shows a homogeneous distribution of the local density (Fig. 4.22, right panel).
The resulting density profile does not change for different Péclet numbers. We hence
use this model in the following to investigate the influence of walls onto aligning SPPs.
The phase diagram (Fig. 4.23) is very similar to the one of the particles in a

simulation box with periodic boundary conditions (Fig. 4.1). Mainly two domains
can be identified: An isotropic phase forms for low Péclet number and a nematic phase
evolves where the Péclet number is high. The transition line again has a negative
slope in the (ρ, P )-plane so that the critical Péclet number decreases with increasing
global density. Close to the transition line (and especially at low densities) the phase
coexistence and a traveling wave are found.
The main difference of the phase diagram of the system with walls compared to

the periodic boundary system is the absence of the chiral simulations scattered in the
nematic phase. However, out of all performed simulations, we find one in the nematic
phase (P = 4.1, ρ = 1.75) which shows a considerably smaller global nematic order
parameter than all surrounding simulations. Visual inspection of the corresponding
snapshot (Fig. 4.24b) reveals a very interesting pattern: The simulation box is subdi-
vided into several distinct parts. More than half of the box is populated by a rather
dense, locally nematically ordered “stream” of particles with the local director being
aligned perpendicular to the walls. The rest of the box is rather empty with only
a few particles which do not show nematic alignment on a larger scale except for a
second dense “stream” close to the bottom wall of the simulation box oriented along
the simulation box. The two local nematic directors of the two “streams” hence form
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(b) Snapshot with local nematic order pa-
rameter calculated in 203 boxes (like in
Fig. 4.2)

Figure 4.24: Two-directional pattern in the system with sandwich geometry (P = 4.1,
ρ = 1.75).

an angle of π/2. For further analysis the vertical profiles of local density and local
nematic order are considered: The simulation domain is subdivided into 50 equally
spaced, horizontal slices to calculate the local density, local nematic order, as well
as the local director within each slice (see Fig. 4.24a). The vertical profiles of the
components of the local nematic director substantiate what we described from the
visual inspection of the snapshot: The local director almost everywhere in the box
is aligned along the z-axis, i.e. the particles move perpendicular to the walls. The
lower part of the simulation domain, however, shows a local alignment in the x − y
plane (vanishing z component of d̂loc) but not along one of the axes. The vertical
profile of the local density is homogeneous in the upper part of the box and increases
towards the lower wall. It is a gradual increase and not a sharp transition like for
the components of the local director. The shape of the vertical profile of the local
density reflects the fact that close to the bottom wall a second “stream” of particles
is formed next to the vertical one so that the number of particles in a horizontal slice
increases. The local nematic order parameter shows a non-monotonic vertical profile
with a high value (Sloc ≈ 0.8) in the upper part of the simulation domain where the
particles are mostly aligned vertically. A minimum of Sloc is reached where the local
director transitions from vertical to horizontal alignment and hence the system ap-
pears disordered. Close to the lower wall the nematic order parameter increases again
with a maximum value of Sloc ≈ 0.5 in the vicinity of the wall where the horizontal
“stream” dominates.
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Figure 4.25: Temporal evolution of the global order parameters in the simulation
which shows two main directions of local nematic directors (sandwich geometry, see
Fig. 4.24).

The temporal evolution of the nematic and chiral order parameters shows a sur-
prising stability of this configuration (Fig. 4.25): it lasts for at least 2×106 time steps
(∆t = 0.1) which is comparable to the stability of the chiral pattern in the system
without walls (Fig. 4.11a). Both order parameters fluctuate in time around interme-
diate values of S ≈ 0.5 and Sχ ≈ −0.3. These values reflect the partial nematic order
in the system, as well as the occurrence of a chiral pattern even though the particles
do not form a helix like in the case with PBCs. We find that the walls suppress the
formation of chiral patterns in terms of helices but on rare occasions a chiral pattern
can emerge in the nematic area of the phase diagram which is composed of differently
oriented, nematically ordered domains.

4.6 Discussion
In this chapter, we have studied a simple model which shows a surprising variety of
steady-state patterns despite the fact that it consists of only few ingredients: self-
propulsion, local nematic interaction, and rotational diffusion. The system shows
a transition from a homogeneous isotropic state to a homogeneous nematic state
with increasing Péclet number and number density. However, interesting patterns
occur at (or close to) the transition line: The system shows phase coexistence in
different geometric arrangements. This resembles the work of Ginelli et al. (2010)
who investigated a similar model to ours but in two dimensions. The underlying
equations of their model are, however, discrete in contrast to our time-continuous set
of equations. Still they see a similar phase coexistence between a dense, nematically
ordered band (with the nematic director being oriented along the band) and a dilute,
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isotropic gas.8 However, at the transition from nematic to isotropic in the two-
dimensional system a fluctuating dense band is observed which we do not find in the
three-dimensional system. Apart from that the similarity is remarkable and suggests
that the two models behave similarly even though they differ in dimensionality and
nature of underlying equations of motion (time-discrete vs. time-continuous).
We know from the hydrodynamic theory of nematic SPPs (although again in two

dimensions, Baskaran and Marchetti, 2012) that a so-called banding instability is
found close to the transition. It can be described as a stationary density wave with
the wavevector (and hence the density variations) perpendicular to the global nematic
director. The simulations with phase coexistence show the same geometry and suggest
that they could be the result of such an instability.
We are able to pin down the transition line and compare the measurements to the

result of a mean-field approach. We find good qualitative agreement for low densities.
For small nematic relaxation constants even quantitative agreement can be found.
At high densities the mean-field approach is not applicable and the critical Péclet
number is independent of the number density. The general shape of the transition
line is similar to the transition line which was derived by Peshkov et al. (2014) who
use an analytical (Boltzmann-Ginzburg-Landau) approach in two dimensions.
Close to the isotropic-nematic transition for low values of the number density we

find polarly ordered, dense, propagating waves. Their maximum wavelength is prede-
fined by the nematic director but still we often find several wavetrains propagating
into the same direction. Typically these wavetrains self-assemble such that they ap-
pear equally spaced along their direction of motion. The resulting wavelength is then
a simple fraction (half, third, . . . ) of the maximum wavelength. The wavelength is
hence restricted by the geometric orientation of the wave in the simulation box with
periodic boundary conditions but the system still shows its intrinsic dynamics by this
self-organization process. The global nematic order of the system is usually preserved
because for each emerging wave also a counter-propagating wave forms. However, we
find that for a large nematic relaxation constant γ ≥ v0/ε the region in the nonequi-
librium phase diagram corresponding to the waves is subdivided into two distinct
regions in terms of the polar order parameter: At low number density global polar
order emerges which means that the waves only propagate into one direction and
there are no counter-propagating waves. While the waves themselves only break the
nematic symmetry locally, the absence of counter-propagating waves indicates even
a symmetry breaking of global nematic order.
Our simulations show that polar, propagating density waves can emerge in a three-

dimensional system of nematically aligning SPPs and not only in two-dimensional
systems of either polarly aligning or extended particles (without explicit interaction

8Similar patterns are also observed in a twodimensional system of self-propelled rods with velocity
reversal (Großmann et al., 2016).
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4 Structure formation by self-propelled point particles

rule). They resemble very closely the density waves emerging in simulations of the
original Vicsek model and which are even predicted by kinetic theory (Ihle, 2013).
These waves also occur close to the order-disorder phase transition and show a similar
density profile. Hydrodynamic theory as well results in an instability due to the build-
up of local polar order which leads to density variations along the nematic director
(Baskaran and Marchetti, 2012). The local polar order is induced by an asymmetry
of the interactions between nearly aligning and nearly anti-aligning particles. This
asymmetry is generated by the momentum conservation of hydrodynamically inter-
acting self-propelled particles and favors the parallel alignment of particles as opposed
to anti-parallel alignment. The interactions in our system do not conserve momentum
but still can lead to a build-up of polar order: If two nearly anti-parallel particles
interact, they align and then clearly move away from each other. On the other hand,
two nearly parallel particles align and stick together if the alignment mechanism is
stronger than the rotational noise. The tendency of aligning particles to stick together
depends on the ratio of two time scales: The time scale of nematic alignment and
the time it takes a particle to travel a distance further than the nematic interaction
range. This ratio is given by γ/(v0/ε). We learn from our simulations that if this ratio
is larger than unity (and hence, the time scale of the alignment mechanism is shorter
than the time it takes a particle to travel across the nematic interaction range), the
region of the phase diagram where waves occur is larger than for small γ/(v0/ε), and
the above described mechanism can even lead to global polar order. Moreover, the
field of local density is coupled to the local polarization through this mechanism since
the alignment mechanism serves effectively as an attractive interaction between par-
ticles. This coupling is also the reason why the system shows global polar order for
low densities (and large γ/(v0/ε)). All of these reasons suggest that our waves are
indeed an instability in the nematic phase due to the build-up of local polar order.
The formation of the waves substantiates this claim because the waves are forming
gradually from a homogeneous, nematic state.
The second very interesting finding in our system of self-propelled, nematically

aligning particles is the formation of a chiral pattern in the form of a helix formed
by the local nematic director. This is, to the best of our knowledge, the first ob-
servation of such an emerging helical structure in a system of active particles. It is
fundamentally different from other chiral structures such as swarm rotation because
a single particle in our chiral pattern still moves roughly in a straight line whereas in-
dividual particles in a rotating swarm follow curved paths. Our chiral pattern shows
signs of a spontaneous symmetry breaking and emerges with a certain probability
in the nematic region of the phase diagram independent of the (homogeneous and
isotropic) initial conditions. We show that its precursor are roughly parallel, nemat-
ically ordered planes with non-parallel local nematic directors, and we find that the
rotational diffusion of the particles is crucial for the formation of a chiral state. The
helical pattern is long-lived and metastable but can possibly untwist. This relaxation
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of a twist state to the nematic ground state of the system is coupled to a very reg-
ular oscillation of the global polarization. This oscillation originates from a density
wave traveling along the helical axis which eventually destroys the chiral pattern: If
the helical pattern is subject to a density variation along the helical axis, the overall
structure is closer to a nematic state than a homogeneous helix because the particle
orientations are not equally distributed. In the limit of a very strong density fluctua-
tion this can destroy the chiral pattern. Again, as for the wave pattern, the build-up
of polarization is an important feature of the system.
In the two-dimensional system a curvature-induced instability has been derived

from hydrodynamic theory (Baskaran and Marchetti, 2008b, 2012) which take into
account bend and splay deformations of the director field. Clearly, a twist deformation
like our chiral pattern can only occur in three dimensions and so an extension of the
hydrodynamic model to three dimensions would be necessary to investigate whether
a twist-related instability exists.
We compare our model to a one-dimensional model of rotors on a chain which

resembles the classical XY -model but with nematic symmetry. Under rapid nonequi-
librium quenches this system also exhibits chiral states with different numbers of
twists. Depending on the size of the system the chiral state can be more probable
than the nematic state. Actually the number of twists of the most probable state
grows with the system size and eventually destroys long-range order in the infinite
system.
Introducing reflective boundaries to the system in one direction (sandwich geome-

try) does not change the phase diagram substantially but only suppresses the forma-
tion of helices. However, the formation of a chiral pattern is observed: Two distinct,
nematically aligned streams of particles form an angle of π/2.
Because the periodic boundary conditions are important for the formation, stability,

and properties of the helical state an open question is the emergence and relevance of
this state in bulk. Besides this criticism the emergence of chiral patterns still gives us
an interesting insight into how chiral patterns form from a completely achiral system.
This is our small contribution to the question of how chirality can emerge and its
repercussions on the key ingredients of living matter.
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5 Structure formation by
self-propelled extended particles

The subject of the previous chapter (Chapter 4) are point-like, self-propelled, ne-
matically aligning particles in three dimensions. However, in reality such particles
will always possess a finite extension. It is hence more realistic to also model them
as such. The following short chapter shows results of such self-propelled particles,
their nonequilibrium phase diagram with typically occurring phases. We especially
emphasize the differences to point-like particles.
The extended particles are modeled using the WCA potential to include a hard

core. We solve the equations of motion (Eq. 3.5) using the Euler-Maruyama scheme
described in Eq. (3.35) with PBCs. They differ from the equations of motion for
point-like particles (Eq. 3.2) by two additional terms: The steric interaction between
particles leads to repulsion between particles which are closer than a cutoff distance
r0 = 6

√
2σ (where σ is the particle diameter). Moreover, the WCA force also enters

the equation of motion of the orientation to mimic the additional torque which ex-
tended elongated particles exert on each other. This is an approximation because
our particles are not truly elongated but spherical with an intrinsic orientation. Our
typical model parameters can be found in Tab. 5.1. We use fewer particles than in the
simulations with point-like particles to achieve reasonable computation times because
reaching the steady state requires a larger number of time steps since ∆t is smaller
for extended particles than for point-like particles. Such a smaller time steps has
to be chosen in order to properly resolve the interparticle collisions according to the
WCA potential. The particle diameter is σ = 0.445ε such that r0 = 6

√
2σ = ε/2.
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5 Structure formation by self-propelled extended particles

parameter value
number of particles N = 503 = 125000
side lengths of simulations box L = Lx = Ly = Lz = 3

√
N
ρ

nematic interaction range ε = 1
particle diameter σ = 0.445
relaxation constant of WCA potential γF = 1
strength of WCA potential εF = 0.01
self-propulsion speed v0 = 0.5
nematic relaxation constant γ = 0.1
rotational diffusion Dr = γ

P
time step ∆t = 0.01

Table 5.1: Input parameters for extended self-propelled particles.

5.1 Nonequilibrium phase diagram and new patterns
Analogously to point-like particles, we investigate the nonequilibrium phase diagram
of the system of extended particles and measure the global nematic order parameter
as a function of Péclet number P and number density ρ (Fig. 5.1a). For extended
particles it is also useful to define the filling fraction

Φ ≡ volume occupied by particles
total volume of system

= N (σ/2)3 4π/3
L3

= π

6σ
3 N

L3 = π

6σ
3ρ (5.1)

to estimate how closely packed a given configuration is. The phase diagram of ex-
tended particles resembles that of point-like particles: At low Péclet numbers an
isotropic state occurs, while the system exhibits global nematic order at high Péclet
numbers. A narrow transition domain is found where isotropic and nematically or-
dered domains can coexist in one and the same system. However, the pattern differs
from the phase coexistence state of point-like particles as described in Section 4.1.
We will discuss this new pattern in detail in the following section. The extended par-
ticles also exhibit chiral patterns of the same kind as the chiral pattern of point-like
particles (see Section 4.4) which occur randomly in the nematic part of the phase
diagram. No propagating waves (see Section 4.3) were observed in the given ranges
of Péclet number and density. The critical Péclet number (defined as the smallest
Péclet number where nematic order is observed) decreases with increasing number
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(a) Nematic order parameter (in color) as a function of Péclet number and number density
ρ or filling fraction Φ (see Eq. 5.1). The black rectangle indicates the region which is shown
in detail below.

 

 

ρ = 5
ρ = 4
ρ = 3
convection?
new phase coex.
chiral
nematic
isotropic

n
em

at
ic

or
d
er

p
ar
am

et
er

S

Péclet number P
1.9 2 2.1 2.2 2.3 2.4 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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Figure 5.1: Nonequilibrium phase diagram of extended, self-propelled, nematically
aligning particles. Different steady-state patterns are observed and indicated by dif-
ferent symbols (see legend).
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Figure 5.2: Steady-state snapshot of the new phase coexistence pattern occurring in
the system of extended particles (P = 2.22, ρ = 4) which does not occur for point-like
particles. Periodic boundary conditions are applied in all three dimensions. No solid
walls are present. For the sake of clarity we show only 0.8% of the particles with the
local nematic order parameter in color and the local director as little arrow. The side
length of the simulation box is L ≈ 71σ.

density similarly as for point-like particles (Section 4.2). However, for high number
densities ρ ≥ 3 and filling fractions Φ ≥ 0.14 the behavior of the system appears to
change. We investigate in detail the isotropic-nematic transition for these densities
in Fig. 5.1b. At a number density of ρ = 3, the system shows a clear transition from
the isotropic state to the nematic state with increasing Péclet number just like for
smaller densities. If the density is increased to ρ = 4 such a transition occurs as
well. However, in the nematic phase the system for some Péclet numbers exhibits the
new phase coexistence state instead of a fully nematic system. The nematic order
parameter as a function of Péclet number shows abrupt jumps because the nematic
order parameter of the phase coexistence state is much lower (S ≈ 0.2) than that of
the nematic state (S ≈ 0.6). At the highest investigated number density (ρ = 5),
the homogeneous, nematic state is suppressed and we observe a transition from the
isotropic state to the new phase coexistence state. One of these simulations shows
an interesting pattern which resembles a convection role. We will investigate it in
Section 5.1.2.
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5.1.1 New phase coexistence

Figure 5.2 shows a typical snapshot of the new phase coexistence pattern.1 Vertical
profiles of the nematic order parameter Sloc and of the local density ρloc are calcu-
lated from the same data (see Figs. 5.3a and 5.3b). We see indeed phase coexistence
between a nematically ordered domain and an isotropic domain. However, the ne-
matic domain is dilute while the particles in the isotropic domain are rather densely
packed. This negative correlation between nematic order and density is opposite to
what we found in the system of point-like particles where the areas of highest local
density would correlate with the areas of strongest local nematic order. The nematic
domain percolates just like for point-like particles but the local nematic director is
oriented perpendicular to the percolation direction.2 Trajectories of individual par-
ticles which start in this nematic domain (Fig. 5.3d) reveal that the particles mostly
travel straight along the local nematic director (vertical) and are reflected by the
isotropic domain. This suggests that the isotropic domain acts like a wall onto the
particles. The trajectories of particles which start in the isotropic, dense domain
(Fig. 5.3c) display two different kinds of behavior: either the particles are trapped
in the dense part of the simulation domain and do not show a persistent direction of
motion or they are able to escape from that region and move mostly vertically along
the nematic director through the simulation domain.

5.1.2 Convection?

We performed simulations up to a density of ρ = 5. For such a high-density system
we find a transition from the isotropic state to the new phase coexistence state with
increasing Péclet number (see Fig. 5.1b). The visual inspection of the steady-state
configurations reveals that one of the simulations does not show the new phase co-
existence pattern as described before with the nematic director perpendicular to the
direction of percolation. Instead, the local nematic directors form circular stream-
lines (see Fig. 5.4) such that a cylindrical configuration emerges. The particles at the
center of the cylinder are aligned along the cylindrical axis. A cylinder with circular
cross–section cannot fill the whole cubic simulation domain but coexists with a dense,
isotropic domain.

1See also the attached movie hardcores_phase_coexistence.avi.
2The orientation of the nematic domain has again to by compatible with PBCs like in the phase
coexistence state of point-like particles. Typically it is parallel to one of the axes of the simulation
domain but other orientations are observed as well.
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Figure 5.3: Analysis of the new phase coexistence state (see snapshot in Fig. 5.2).
The vertical profiles of local nematic order parameter Sloc (a) and local density ρloc
are calculated from 50 horizontal slices of the simulation domain. The dashed (solid)
lines mark the nematically ordered and dilute (isotropic and dense) domains of the
system. Panels c and d show side views of the simulation domain with trajectories
of a few individual particles which start in the dense, isotropic domain (c) or in the
dilute, nematic domain (d).
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Figure 5.4: Steady-state configuration of a system which exhibits a convection pattern
(ρ = 5, P = 2.28). See Fig. 5.2 for plotting details. Here, the side length of the
simulation domain is L ≈ 66σ.
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5.2 Discussion
Our model of self-propelled, aligning particles can be extended by introducing steric
interactions among particles. The phase diagram in terms of the global nematic order
parameter as a function of Péclet number and density shows the same qualitative
behavior as for point particles. Deviations from this can be found at large densities.
At low densities the steric interactions are not as important as at large densities
because particles impinge against each other less frequently. The phase diagram of
a low-density suspension of extended particles should thus be governed by the phase
diagram of point-like particles.
One difference at all densities between the two models is the occurrence of different

phase coexistence patterns: For point-like particles local nematic order and local den-
sity are positively correlated while the correlation is negative for extended particles.
Also the orientation of the local director with respect to the percolation direction
differs in both cases: For point-like particles d̂loc is perpendicular to the layer normal
of the nematic layer while the two vectors are parallel for extended particles. The
reason can be found in the equation of motion of extended particles: the steric inter-
action does not only lead to a repulsion of neighboring particles but also affects the
mutual orientations. A given particle in a region of high local density is subject to
orientational changes due to all of its neighbors. This can be viewed as an additional
rotational noise if these neighbors are placed homogeneously around the particle be-
cause all contributions sum up. In contrast the Lebwohl-Lasher potential includes a
term 1/ni where ni is the number of neighboring particles of particle i. The individual
two-particle alignment interactions are, therefore, averaged rather than summed up.
As a result the influence of the alignment compared to the orientational changes due
to the WCA force decreases with increasing local density, and dense domains of the
system will be isotropic while dilute parts can achieve nematic order. This interplay
between the different terms in the equations of motion of ê might also be the reason
that we do not observe any dense, propagating waves (like they are investigated in
Section 4.3 for point-like particles). The given system is not able to form and sus-
tain dense, nematically ordered domains and also polarly ordered domains like in the
waves are not possible. Our model of extended particles aims to model the behavior
of rod-like particles with steric interactions and alignment. This could be improved
by introducing actual elongated particles like it is done in the field of liquid crystals
(Ilnytskyi and Wilson, 2002). Such an approach would also allow to study the effect
of the particles’ aspect ratio in our model. It has been shown experimentally using
rod-like bacteria that the swarming behavior depends crucially on the aspect ratio
(Ilkanaiv et al., 2017).
The convection-like pattern was observed only once in the phase diagram so it

is impossible to make a statement about its probability. However, the spontaneous
formation of such a cylindrical pattern is interesting in itself. It resembles convection
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rolls like they are found in Rayleigh-Bénard convection. Since our particles are self-
propelled a connection to the field of bioconvection (Platt, 1961; Hill and Pedley,
2005) is appealing. However, true convection patterns need an external forcing like
a temperature gradient or the field of gravity which drives motion due to a density
mismatch between the local and global densities. Our system is not subject to any
external force and still self-organized into a similar pattern.
A completely different set of systems where similar patterns occur are self-propelled

particles in confinement: Dense bacterial suspensions in a circular confinement self-
organize into circular patterns (Lushi et al., 2014). However, our pattern does not
occur in a confined geometry but in a cubic simulation domain with periodic boundary
conditions. Further investigation is necessary to understand the formation, stability,
and probability of such a pattern.
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6 Self-propelled particles in a
turbulent field

The subject of this chapter are self-propelled particles which are immersed in a sur-
rounding turbulent fluid. The fluid acts as a field interacting with their positions and
orientations: the particles are advected and the turbulent vorticity exerts a torque
onto the orientations (see Eq. 3.7). In the following, we will analyze three different
models: Point particles in a Kraichnan flow field, extended particles in a Kraichnan
flow field, and point particles in a DNS flow field. The input parameters (if not stated
otherwise explicitly) are given in Tab. 6.1. The nematic interaction range is chosen
such that ρε3 = Nε3/L3 = 1. The packing fraction of the simulations with extended
particles is φ = 4/3π(σ/2)3N/L3 ≈ 6.54%. The stochastic noise η as well as the
nematic relaxation constant γ will be changed to achieve different values of Péclet
and vortical Stokes number.

This chapter is organized as follows: First the phase diagrams of all three models in
terms of the nematic order parameter are shown and the nematic-isotropic transition
is investigated. Then the occurrence of turbulence-induced clustering is studied using
different analysis methods. Additionally, the temporal evolution of the clustering is
analyzed as well as the influences of different model parameters onto the formation
of small-scale patches. Finally, the results are discussed with particular attention to
the mechanism which leads to the clustering.
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6 Self-propelled particles in a turbulent field

parameter value
number of particles N = 303 = 27000


general

side lengths of simulation box L = Lx = Ly = Lz = 2π
nematic interaction range ε = 0.21
self-propulsion speed v0 = 8
time step ∆t = 0.0069 (point particles)

∆t = 10−4 (extended particles)
strength of turbulent field E0 = 0.35
number of Fourier modes NF = 64
particle diameter σ = ε/2 = 0.105

hard coresstrength of WCA force εF = 10−3

relaxation time of WCA force γF = 1

Table 6.1: Input parameters for the simulations of particles in a turbulent field (if not
stated otherwise).

6.1 Nematic Order
The interaction between neighboring particles is nematic, so we first need to under-
stand the nonequilibrium phase diagram of the system.

6.1.1 Phase diagrams
The global nematic order parameter as a function of Péclet number and vortical
Stokes number is given in Fig. 6.1. All three models (point or extended particles in
Kraichnan flow field and point particles in DNS flow field) are isotropic (S → 0) for
small P or small Sω,v. Very strong nematic order (S > 0.8) is achieved for large P and
large Sω,v. At intermediate values of P and Sω,v the system undergoes an isotropic-
nematic transition. For a constant Stokes number the transition occurs at P ≈ 1.
On the other hand for a constant (but large enough) Péclet number, the transition
occurs at Sω,v ≈ 1 in the case of Kraichnan flow fields. This shows that these two
dimensionless numbers are appropriate to describe the transition and knowledge of
both dimensionless parameters is sufficient to predict the degree of alignment of the
particles. However, for the point particles in a DNS flow field, the isotropic-nematic
transition occurs at a smaller value of Sω,v.

6.1.2 Nematic-isotropic transition
In the previous section different Stokes numbers in the phase diagram were achieved
by changing the nematic relaxation constant γ. However, the Stokes number with
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Figure 6.1: Nonequilibrium phase diagram of self-propelled particles in a turbulent
flow. The nematic order parameter is given in color as a function of Péclet number
and vortical Stokes number with speed correction (figures to be published in Breier
et al., 2017, supplementary information).
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Figure 6.2: Nematic order parameter as a function of vortical Stokes number with
speed correction. Sω,v is varied in different ways: The dashed curve shows the results
for constant v0 and γ with different values of E0. The other curves all belong to
simulations with the same value of E0 = 0.35 and varying γ to change Sω,v. The
difference between these curves are different values of v0 as indicated (figure to be
published in Breier et al., 2017, supplementary information).

speed correction consists of four parameters in total: the nematic relaxation constant
γ, the self-propulsion speed v0, the Kolmogorov shear rate ωK , and the root-mean-
square velocity urms. We will hence independently vary all four parameters to test
the robustness of Sω,v as the appropriate number to describe the nematic-isotropic
transition. All of these simulations are done with point particles in the Kraichnan flow
field at a fixed Péclet number (P = 2× 103). The Kolmogorov shear rate (Eq. 3.20)
and urms (Eq. 3.19) are coupled via ωK · urms ∝ E0. Therefore the Stokes number
can be varied in three different ways: either v0, γ, or E0 is changed. The results of
these simulations are given in Fig. 6.2. It is clearly visible that the isotropic-nematic
transition always occurs around Sω,v ≈ 1. The only exception is the curve with
v0/urms = 1.1. Here the nematic state is not reached in the given range of Stokes
numbers. The reason is that v0 has to be larger than urms for the self-propulsion to
have an impact. If the self-propulsion speed is similar to urms or even smaller, the
particles are effectively passive particles which are advected by the turbulent field.
The system would have to be of higher density to reach global nematic order in that
case. We can then safely conclude that Sω,v serves very well in pinning down the
isotropic-nematic transition line under the condition that v0 is considerably larger
than urms.
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Figure 6.3: Influence of the global number density onto the nematic-isotropic tran-
sition of point particles in the Kraichnan flow field. All simulations are performed
at an intermediate Péclet number (P = 2 × 103) and different number densities are
achieved by varying the number of particles (1000 ≤ N ≤ 27000) while keeping all
other parameters as mentioned before.
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6 Self-propelled particles in a turbulent field

Moreover, we investigate the influence of the global number density onto the
isotropic-nematic transition. The results of simulations with different numbers of
particles and the same box size (hence, different number densities) are shown in
Fig. 6.3. The dimensionless number density ρε3 varies by almost two orders of mag-
nitude. All curves show a transition from isotropic phase to nematic phase with
increasing Sω,v. The simulations with a number density of ρε3 = 0.04 show a drop
in nematic order parameter for very high vortical Stokes number. Visual inspection
of the corresponding snapshot reveals that the system consists of very dense, polarly
ordered clusters. These clusters have a very high local degree of nematic order but
do not lead to a high global nematic order. The onset of nematic order (S > 0.3) in
all curves occurs roughly between 0.7 ≤ Sω,v ≤ 6. This indicates that there is some
variability of the exact position of the isotropic-nematic phase transition with respect
to the global density. However, Sω,v is still a reasonable measure to know roughly
where the transition occurs especially in the given range of number densities with ρε3
being close to unity.

6.2 Clustering
This section includes the quantification of turbulence induced clustering of self-
propelled particles. The three different models (point particles or extended particles
in Kraichnan flow field, point particles in DNS flow field) are considered consecutively
and the results of different measures are compared.

6.2.1 Point particles in a Kraichnan flow field
Figure 6.4 shows the quantification of clustering of point particles in a Kraichnan
flow field. For constant Péclet number, the patch concentration enhancement factor
|Q| shows a maximum. This “sweet spot” shows that a certain strength of nematic
alignment compared to the turbulent vorticity leads to a strong patchiness in the
system. On the other hand, for a constant vortical Stokes number |Q| increases as
P increases. In the isotropic phase (Sω,v < 1 or P < 1), the system never shows
enhanced patchiness.
The analysis of number fluctuations shown in Fig. 6.4b reveals that the system

undergoes giant number fluctuations. The diagram can be divided in different areas
characterized by different values of α: in the isotropic phase, the equilibrium value
of number fluctuations (αequilibrium = 0.5) is found. The largest values of α close
to the predicted value for nematic, self-propelled particles (αnematic = 5/6) occur
at a transition line surrounding the “sweet spot” as identified by the largest values
of |Q| in Fig.6.4a. However, at the “sweet spot” the exponent α takes on values
between αequilibrium and αnematic indicating that large number fluctuations exist here
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Figure 6.4: Clustering of point particles in a Kraichnan flow field. The different
measures are shown (in color) as a function of vortical Stokes number and Péclet
number. The vortical Stokes number with speed correction is given additionally to
clarify the locus of the isotropic-nematic transition line ((a) and (b) to be published
in Breier et al., 2017, (b) in supplementary information).
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6 Self-propelled particles in a turbulent field

even though their exponent is smaller than the prediction for nematic particles.
Figure 6.4c shows a cluster analysis of the same system and exhibits the following

behavior: The second moment of the cluster size distribution seems to increase as Sω
increases. It does not show a maximum or “sweet spot” like |Q| and α do.
To compare the different measures of clustering, we investigate a horizontal cut

through the phase diagram at a constant Péclet number (P = 2× 1013). Five steady-
state snapshots show the corresponding configurations of representative simulations
(see Fig. 6.5). The first snapshot (Sω = 0.02) corresponds to an isotropic system and
the local density only shows small variations. The corresponding values of |Q|, α, and
N2 are the reference points for a homogeneous system. The snapshot for Sω = 0.26
shows a nematically ordered system which is more or less homogeneous but has larger
variations of the local density than the system at Sω = 0.02. |Q| indicates a slight
increase of patches, while N2 is roughly the same as in the isotropic, homogeneous
case. However, the resulting value of α implies that the system undergoes giant num-
ber fluctuations. The orientations in the snapshot at Sω = 0.73 show global nematic
alignment while the distribution of local densities indicates that the particles cluster
to some extent (onset of clustering). A dense “stream” is visible as a dense cluster that
is self-connected through the periodic boundary conditions. The corresponding patch
concentration enhancement factor |Q| suggests that patches are formed but |Q| does
not reach its maximum at the corresponding Stokes number. However, both α and
N2 reach local maxima for the snapshot at Sω = 0.73 which reveals that the system
exhibits giant number fluctuations and the cluster size distribution has a rather large
variance. The particles in the snapshot at Sω = 4.12 show small dense clusters with
local polar alignment. The global alignment is nematic even though it is weaker than
in the previous snapshot. |Q| exhibits a maximum while α reaches a local minimum
for this system. The number fluctuations are, hence, not as big as before but still
larger than the equilibrium fluctuations. Furthermore, N2 has an intermediate value
and does not exhibit a “sweet spot” at this Stokes number. Finally, the snapshot at
Sω = 46.12 shows again global nematic order with distinct polarly aligned clusters.
The difference to the previous snapshot is that the individual clusters are larger in
size than before. Both α and N2 reach their largest values pointing to proper giant
number fluctuations as well as a large variance in the cluster size distribution. The
patch concentration enhancement factor, however, is smaller than previously but still
considerably larger than in the homogeneous case.
In conclusion, one can state that the three measures considered here all describe

clustering but they highlight different aspects of the clustering process. First, the
patch concentration enhancement factor |Q| highlights by definition the increase of
small-scale patches. Upon increasing vortical Stokes number, the system exhibits a
transition from a homogeneous distribution of the particles to small patches and fi-
nally the patch size increases again. This is reflected in |Q| which exhibits a maximum
around Sω ≈ 4. The reason for this maximum and its position will be discussed below.
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(a) Different measures of clustering for simulations with point particles in Kraichnan flow
field (P = 2 × 1013) as a function of Sω. Red circles mark the points for which snapshots
are shown in the lower panels.
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(b) Typical snapshots where 40% of the particles are plotted as dots. The local density
ρi = 1/vi, where vi is the volume of the corresponding Voronoi cell, is given in color. The
orientation is given for some example particles.

Figure 6.5: Typical snapshots of point particles in the Kraichnan flow field.

125



6 Self-propelled particles in a turbulent field

Second, the analysis of number fluctuations focuses on the degree a given system dif-
fers from equilibrium behavior. This difference is very large at the onset of clustering
and in the system with vanishing turbulence (Sω � 1). α does not measure directly
how the size of the clusters changes. Third, N2 measures the variance of the cluster
sizes, i.e. how the size of the clusters varies across the system. The data shows an
increase of this variance with increasing Sω which means that the cluster distribution
gets broader as the influence of the turbulent field through the vorticity decreases.
The trend is not fully monotonous but a local maximum of N2 occurs at the onset of
clustering. In the following, we will focus on |Q| to investigate the increase of small
scale patches due to turbulence.

6.2.2 Extended particles in a Kraichnan flow field
After having investigated the clustering of point particles in a Kraichnan flow field,
we will focus on extended, hard-core particles in a Kraichnan flow field and inspect
the differences between the two models to determine the influence of hard cores. Our
calculations are shown in Fig. 6.6 in the same manner as it was done for point particles
in Fig. 6.4. Again, we compare the results of the three measures for clustering:
Patch concentration enhancement factor |Q|, exponent α of number fluctuations, and
variance of the cluster analysis N2. |Q| is again nearly vanishing in the isotropic
phase. For a constant Péclet number, it reaches a maximum as a function of the
Stokes number at about Sω ≈ 3. Instead for constant Sω, |Q| seems to increase with
increasing P and from the given data it is impossible to state whether there is a
maximum as well, since the data are rather noisy.
The exponent α of the number fluctuations is equal to the equilibrium value αeq. =

0.5 in the isotropic phase. In the nematic phase, it increases as both P and Sω increase
and does not possess any local maxima or minima. In the given range of Stokes and
Péclet numbers it does reach a value similar to the theoretical prediction for nematic
αnematic = 5/6 or even slightly above. This shows that the nematic phase is subject to
giant number fluctuations with their strength being a function of Stokes and Péclet
number. The variance of the cluster analysis, N2, shows a very similar behavior to
α. It is nearly vanishing in the isotropic phase and grows gradually with growing P
and Sω indicating the onset of clustering.
Again, we compare typical snapshots of the system in the steady state to the

different values of the clustering measures to understand what kind of clustering
occurs. The results in Fig. 6.7 show the curves of |Q|, α, and N2 as a function of
Sω for a fixed Péclet number (P = 1.38 × 107). The snapshot at Sω = 0.02 is in the
isotropic phase and shows a homogeneous distribution of the particles. Consequently,
the corresponding values of all three clustering measures are small, indicating that
there are no patches; the system behaves like an equilibrium system, and the cluster
analysis has no increase in its variance.
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Figure 6.6: Clustering of hard-core particles in the Kraichnan flow field (analogously
to Fig. 6.4) ((a) and (b) to be published in Breier et al., 2017, (b) in supplementary
information).
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(a) Different measures of clustering as a function of vortical Stokes number for hard-core
particles in Kraichnan flow field (P = 1.38 × 107). Red circles mark simulations for which
snapshots are shown below.
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(b) Typical snapshots with 40% of the particles plotted as dots. The color indicates the local
density ρi as it is calculated from the Voronoi tessellation (ρi = 1/vi). A few orientations
are given to illustrate the (nematic) order.

Figure 6.7: Typical snapshots of hard-core particles in Kraichnan flow field analo-
gously to Fig. 6.5.
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The snapshot at Sω = 0.18, however, shows global nematic alignment but hardly
any changes in the local densities compared to the first snapshot. Hence, both |Q|
and N2 are at a similar low level. However, the exponent of the number fluctuations
is larger than the equilibrium value (but smaller than αnematic).
The values of α and N2 for Sω = 1.04, 5.82, 181.30 all exhibit a similarly high

level with a slight increase upon growing Sω. Furthermore, the value of |Q| is much
larger than for the homogeneous systems but with a maximum corresponding to the
Sω = 5.82 snapshot. The snapshots for Sω = 1.04, 5.82, 181.30 are similar in that they
all show global nematic alignment with variations in the local density. However, the
largest values of local density are reached by the system at Sω = 5.82 and also the
structure differs to some extent between the three snapshot: The Sω = 1.04 snapshot
has only very small voids where no particles are positioned and dense streams are
visible which percolate through the periodic boundary conditions. At Sω = 5.82,
dense streams also form but they are accompanied by larger voids. Moreover, the
local density within the stream is not homogeneous but reaches a maximum in the
center of the stream. Finally, the snapshot at Sω = 181.30 reveals similar dense
streams which are rather homogeneous in density along and across each stream.
Several differences appear in the comparison of the simulations of point-like and

extended, hard-core particles in a Kraichnan flow field as a function of Sω (while
the behavior as a function of P does not change drastically). We will discuss in the
following these differences as a function of the vortical Stokes number (see Fig. 6.5 for
the point particles and Fig. 6.7 for hard cores). The patch concentration enhancement
factor |Q| shows similar behavior for both models with an increase from the isotropic
to the nematic phase and a “sweet spot” at S∗ω ∈ [3, 4]. However, the values which
|Q| reaches in the clustered state are very different: The value for point particles can
extend to the order of 104 while it is only 101 for hard-core particles. The number
fluctuations, instead, reveal a completely different behavior if we compare point-like
particles with extended ones. The hard cores lead to a monotonously increasing α
with Sω while the number fluctuations increase for point particles but with a local
minimum where small-scale patches form. The results of the variance of the cluster
analysis is similar in both models since N2 increases with increasing Sω. The only
difference is that in the case of point particles a local maximum is found where a
dense stream forms in a rather homogeneous surrounding.
The systems exhibit the same sequence of transitions between collective steady-

state organization; they first show a homogeneous and isotropic system, then a homo-
geneous and nematic system and finally clusters within the nematic order. However,
the clusters in the case of hard-core particles always percolate through the periodic
boundary conditions while the point particles form much smaller patches. Of course,
the hard cores do not allow for the formation of arbitrarily dense clusters (as opposed
to point particles), so an investigation of systems of hard cores with lower filling
fraction is necessary.
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(a) Patch concentration enhancement factor as a function of vortical Stokes number. The
red circles denote the simulations which are shown as snapshots below.
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(b) Typical snapshots. Here, only 40% of the particles are shown as dots with the local
density (from Voronoi tesselation) as color. A few orientations are given as small arrows.

Figure 6.8: Extended particles in a Kraichnan flow field at low filling fraction (N =
8000, φ = 0.24%, P = 1.38× 105, v0/urms = 8.5).
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A lower filling fraction is achieved by keeping the box size fixed and using fewer
particles (N = 8000). The resulting clustering analysis and characteristic snapshots
are shown in Fig. 6.8. All results are within the nematic phase since this is where the
clustering occurs. We see a similar behavior of |Q|(Sω) as before, namely a maximum
around Sω ≈ 4 even though the data are rather noisy. The patch concentration
enhancement factor is roughly a factor of two larger than for the hard-core particles
at higher filling fraction. It is still roughly three orders of magnitude lower than for
point particles, though. All snapshots show nematic order and different degrees of
clustering. The particles in the Sω = 0.13 snapshot are homogeneously distributed.
In the Sω = 0.52 snapshot, a dense stream is formed within a rather homogeneous
gas. The particles in the Sω = 4.12 snapshot form small distinct patches with polar
alignment. The patches in the Sω = 32.67 snapshot span a larger volume than in the
third snapshot, and finally, in the Sω = 128.76 snapshot they percolate through the
periodic boundary conditions. The snapshots of hard-core particles at low density
are thus more similar to point-particles than to high density hard-core particles as
they also show the formation of small-scale clusters.

6.2.3 Point particles in a DNS flow field
To validate and justify the use of the Kraichnan flow field, we perform also simulations
of point particles which are subject to an external turbulent field which was generated
by a DNS (see Section 3.2.3). The resulting patch concentration enhancement factor
(Fig. 6.9) shows the same behavior as for point particles in the Kraichnan flow field:
|Q| increases from a low value in the isotropic phase with increasing Péclet and Stokes
number. Again for constant P , it exhibits a “sweet spot”: A maximum around Sω ≈ 2.
The values of |Q| are of the same order of magnitude as for the point particles in a
Kraichnan flow field. Moreover, the analysis of the number fluctuations (Fig. 6.9)
exhibits a very similar behavior as compared to the simulations of point particles in a
Kraichnan flow field: The exponent α is equal to the equilibrium value in the isotropic
phase and intermediate between the equilibrium value and the nematic value in the
region of the “sweet spot” in |Q|. The transition line between isotropic and larger
patchiness is characterized by true giant number fluctuations with α approaching
αnematic = 5/6.
These results show that the Kraichnan flow field is a very good approximation to

a turbulent field since it leads to comparable results like state-of-the-art DNSs.

6.2.4 Temporal evolution of cluster formation
To understand the formation of the small scale patches in the system, we investigate
the temporal evolution of nematic order parameter and patch concentration enhance-
ment factor (Fig. 6.10). The timescales of the two mechanisms nematic order and
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Figure 6.9: Clustering of point particles in the DNS flow field as a function of vortical
Stokes number and Péclet number ((a) to be published in Breier et al., 2017).
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Figure 6.10: Formation of a clustered state: The nematic order parameter and the
patch concentration enhancement factor are measured over time for a system which
evolves from homogeneous and isotropic to a nematically ordered and clustered state
(point particles in Kraichnan flow field, Sω = 4.1, P = 2 × 1013). The main panel
shows the temporal evolution of S and |Q|, time increases from black to white. The
inset shows both S(t) (blue) and |Q|(t) (orange, figure to be published in Breier et al.,
2017).
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clustering separate very well: The system first orders nematically (t < 3) and then
the patch concentration starts to raise significantly (t > 10). Moreover, the global
nematic order parameter decreases slightly when the patches are forming. This sep-
aration of time scales together with the vortical Stokes number already points to the
importance of vorticity in the formation of the small-scale clusters. The Stokes num-
ber can be understood as the ratio of the time scale of vorticity to the time scale of
nematic alignment. The maximum clustering is found where this ratio is larger than
one but not too large (Sω < 10) and the two time scales are thus separated. Hence,
our hypothesis is that the clusters form due to the interplay of nematic alignment
and turbulent vorticity.

6.2.5 Influence of integral length scale
From all our results on clustering (Figs. 6.4, 6.6, and 6.9), we see that the vortical
Stokes number Sω is the appropriate dimensionless parameter to describe the onset
of small scale patches. The maximum value of |Q| is found for Sω ∈ [2, 4]. The
Stokes number is varied either by changing the nematic relaxation constant or the
Kolmogorov shear rate. Hence, the vorticity of the turbulent field is important for the
formation of clusters. Moreover, we learn from the temporal evolution of the cluster
formation (Fig. 6.10) as well as from the phase diagrams (Fig. 6.1) that nematic order
is necessary. Thus, the two length scales involved in the clustering are the range of
nematic interaction ε and the integral length scale of the vorticity Lω11 (Eq. 3.21b)
which characterizes the turbulent field. The influence of Lω11 can be studied by chang-
ing the maximum and minimum wavelengths in the system while keeping the ratio of
both length scales fixed to ensure the same Taylor-based Reynolds number (Eq. 3.30).
The results of simulations for point particles in a Kraichnan flow field with different

ratios Lω11/ε and no stochastic noise (P →∞) are given in Fig. 6.11 (0.23 ≤ Lω11/ε ≤
3.43). The nematic order parameter (Fig. 6.11a) shows that changing the integral
length scale does not affect the isotropic-nematic transition which occurs around
Sω,v ≈ 1 for all simulations. However, the value of the nematic order parameter
for large Sω,v increases as Lω11/ε decreases. The patch concentration enhancement
factor (Fig. 6.11b) increases with increasing vortical Stokes number for all ratios
Lω11/ε. Moreover, all curves collapse for Sω < 10−1 which is in the isotropic phase
where the turbulent field dominates over the nematic alignment. However, upon
closer inspection, the curves |Q|(Sω) separate into two sets: All simulations with
Lω11/ε > 0.25 show a prominent and rather sharp peak around Sω ≈ 3. In contrast,
the simulations with Lω11/ε < 0.25 do not show a peak but rather a plateau for
large Stokes numbers. All curves of |Q|(Sω) seem to approach one single value of the
patch concentration enhancement factor for very large Sω: Q∗. This is the regime
where nematic order dominates over the turbulent vorticity. The value of Q∗ can be
understood by investigating the patchiness of the non-turbulent system.
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(a) Nematic order parameter as a function of vortical Stokes number with speed correction.
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(b) Patch concentration enhancement factor as a function of vortical Stokes number. The
inset shows |Q| as a function of γ/(v0/ε) for simulations with P → ∞ and E0 = 0 (hence
Sω → ∞). Q∗ is the value of |Q| at γ = v0/ε for a simulation with infinite Péclet and
vortical Stokes numbers.

Figure 6.11: Influence of the integral length scale of the vorticity on the isotropic-
nematic transition and on the clustering (point particles in Kraichnan flow field).
The Péclet number of all simulations is infinite (η = 0). Different colors indicate
different integral length scales ((b) to be published in Breier et al., 2017).

135



6 Self-propelled particles in a turbulent field

 

 

P = 2× 103
P → ∞

m
ax

|Q
(S

ω
)|

integral length scale of vorticity Lω
11/ǫ

0 0.25 0.5 0.75 1 1.25 1.5 1.75
102

103

104

105

Figure 6.12: Maximum patch concentration enhancement factor as a function of inte-
gral length scale. The two curves belong to simulations with different P as indicated.
The curve with P → ∞ is calculated from 40 independent simulations per value
of Sω (as in Fig. 6.11) in the vicinity of the maximum of |Q| while for the curve
with P = 2× 103 only one individual simulation has been taken into account (to be
published in Breier et al., 2017).

The system without stochastic noise and without turbulence (E0 = 0 and hence
Sω → ∞) is only a function of three parameters: the nematic relaxation constant
γ, the self-propulsion speed v0, and the nematic interaction range ε. These three
parameters form a dimensionless number γ/(v0/ε) which compares the time scale of
self-propulsion with the time scale of the nematic alignment. |Q| exhibits a maximum
where the two time scales are equal (γ = v0/ε) and the value it assumes there is
denoted by Q∗. This value matches in magnitude the value which all curves |Q|(Sω)
seem to approach for large Stokes numbers.

The existence of a peak in |Q| hence depends on the ratio of the integral length
scale of vorticity to the nematic interaction range. We now want to investigate the
hypothesis that the most small patches (largest value of |Q|) form when both length
scales are equal. In Fig. 6.12 we plot the maximum of |Q| as a function of Lω11/ε.
The curve for P → ∞ exhibits a clear maximum where the integral length scale
of vorticity is half of the nematic interaction range. The same analysis was done
for simulations with a finite Péclet number resulting in lower patch concentration
enhancement factors but a similar behavior. Nevertheless, we can safely conclude
that the strongest formation of small-scale patches occurs when the integral length
scale of the vorticity and half of the nematic interaction range of the SPPs are equal.
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6.2.6 Influence of Reynolds number
Up to this point, all simulations were done for a constant Taylor-based Reynolds
number Rλ ≈ 48. In this subsection we intend to investigate the influence of the
Reynolds number onto the nematic-isotropic transition and onto the formation of
patches. All simulations presented here are for point-like particles in a Kraichnan
flow field with number density ρε3 = 1 and varying numbers of particles from 303 to
1003. Hence, the minimum wavenumber (being bound by the box size) varies while
the maximum wavenumber is kmax = 30 for all simulations. The smallest length scale
in the turbulent field is thus the same for all simulations. However, the resulting
integral length scale of the vorticity is not the same for all simulations but necessarily
increases slightly in the range 1.03 ≤ Lω11/ε ≤ 1.19 because the integral length scale
is a function of the ratio of the maximum to the minimum wavenumber (see Eq.
3.21b). This interval of integral length scales is well within the range where we
expect an enhanced patch concentration due to the turbulent field as discussed in the
previous Section 6.2.5. We do not expect this small change to have an effect onto
the results. The nematic-isotropic transition and the clustering of these simulations
with varying Reynolds number are shown in Fig. 6.13. The curves of the nematic
order parameter collapse for small vortical Stokes numbers with speed correction,
i.e. in the isotropic phase. The isotropic-nematic transition occurs around the same
vortical Stokes number and all simulations reach a similarly high global nematic order
parameter in the nematic phase. However, the data suggest that the value of S deep
in the nematic phase decreases with increasing Reynolds number. The curves of |Q|,
on the other hand, all collapse within their accuracy for high vortical Stokes numbers
and all show the “sweet spot” where small patches are observed. But the degree of
clustering measured by |Q| in the isotropic phase decreases with increasing turbulent
Reynolds number. To conclude, the main finding, which is the “sweet spot” in |Q|,
is preserved in the investigated range of turbulent Reynolds numbers.

6.3 Discussion
The nonequilibrium phase diagrams of all three models show two distinct phases: An
isotropic phase and a nematic phase. The isotropic phase is present in two domains
of the phase diagram (P < 1 and for small Sω,v) because there exist two different
and independent mechanisms to destroy nematic order in the model. The system
cannot develop nematic order if the stochastic noise is dominant in comparison to the
strength of the nematic alignment. Even if two particles meet and tend to align in one
time step, their orientations will be effectively randomized by the stochastic noise in
the next time step. The second mechanism which prevents the system from globally
aligning is the turbulent field. If the vorticity of the turbulent field is larger than the
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Figure 6.13: Influence of Taylor-based Reynolds number on simulations with point
particles in the Kraichnan flow field (to be published in Breier et al., 2017, supple-
mentary information).
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Parameter Kraichnan flow DNS flow
Rλ 48 17

kmax/kmin = 16 L11/ηK = 10.8
ωK 4.54 4.53
urms 0.94 1.29

2π/kmax/ε = 1.86 ηK/ε = 0.30

Table 6.2: Comparison between flow fields from DNSs and kinematic simulations
(using the standard parameters).

nematic relaxation constant, the turbulent field acts in the same way as a noise and
effectively randomizes the orientations of the particles. The difference between the
turbulent field and the true stochastic noise is that the turbulent field is correlated
in time and space. The critical vortical Stokes number with speed correction for the
isotropic-nematic transition is S crit

ω,v = 1 for the particles (point-like or extended) in
the Kraichnan flow field. However, it is rather S crit

ω,v = 0.2 for the point particles in the
DNS flow field. The main parameters, which characterize the flow fields, are given
in Tab. 6.2. They match roughly in Kolmogorov shear rate and root-mean-square
velocity. The Taylor-based Reynolds numbers of the two approaches are comparable;
the kinematic simulations are performed at a larger Rλ, though. A direct comparison
between the two has to be taken with a grain of salt, because the definition of Rλ
in a Kraichnan flow field is difficult (see discussion in Section 3.1.4). However, the
ratio between the largest and smallest length scales in the two simulation approaches
is of the same order of magnitude which makes them comparable. Nevertheless, the
ratio between smallest length scale of the turbulent field and nematic interaction
range differs substantially. For the Kraichnan flow field the smallest wavelength is
almost twice as large as the nematic interaction range. In contrary, the Kolmogorov
length scale ηK of the DNS flow field is only a third of the nematic interaction range.
The Kolmogorov length scale serves to estimate the size of the smallest structures
in the flow field. However, this difference cannot explain why the isotropic-nematic
transition occurs at a value of Sω,v smaller than unity when a DNS flow field is
used, because a smaller Kolmogorov length scale should rather destroy than stabilize
nematic order.
All three models show a comparable behavior of the clustering as measured by |Q|.

The clustering of particles is clearly enhanced in the nematic phase of our system as
compared to the isotropic phase. Moreover, the clustering shows a non-monotonic be-
havior when the Stokes number is increased. Hence, a specific ratio between turbulent
vorticity and nematic interaction strength favors the formation of small patches. To
understand this behavior, we discuss the formation of clusters. We know that we need
nematic interaction for the cluster formation since clusters are only forming in the ne-
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matic phase. Moreover, the self-propulsion is important because non-motile particles
would just act as passive tracers. The turbulent flow field is incompressible and hence
volume-preserving. This means that the particles will always remain homogeneously
distributed, if they followed a homogeneous distribution at one point in time. All
presented simulations start from a homogeneous distribution of particles and hence
the self-propulsion is necessary to break the volume conservation and form clusters.
The temporal evolution of the clustering system shows that the system firstly orders
nematically and only then the clusters are forming. The mechanism is the following:
In the beginning of a simulation all particles are randomly distributed with random
orientations. They move forward due to their self-propulsion and are advected by
the turbulent field which simply acts as a perturbation of their self-propulsion veloc-
ity in this initial phase. Moreover, their orientations are subject to stochastic noise
and turbulent vorticity where also the latter acts in this early stage as an additional
noise. If the time scale of the nematic interaction is smaller than the time scale of
rotational diffusion (1/γ < 1/Dr) , the particles can order nematically rather quickly.
This condition is equal to P > 1. Moreover, also the turbulent field must not be
stronger than the nematic interaction which is equal to the condition Sω,v > 1. Once
the particles are ordered nematically, their orientations are altered by the turbulent
vorticity and the stochastic noise. We assume the turbulent vorticity to be larger
than the stochastic noise (Sω < P ) to be able to neglect the stochastic noise and focus
on the influence of the turbulent field. This assumption is necessary to study the
effect of the turbulent field and corresponds to the area in the |Q|(Sω, P )-plot above
the black line (see Fig. 6.4a). So the nematically ordered particles are moving into
the direction of their intrinsic orientations and are advected by the turbulent field.
Moreover, the turbulent vorticity alters their orientations and makes them different
from the orientations of the neighboring particles. This alteration thus increases the
probability of a particle to bump into another particle. If particles meet, they align.
They can form (the beginning of) a cluster if they align polarly and they are subject
to roughly the same turbulent field so that the turbulent field does not tear them
apart. This last condition is quantified by the integral length scale of the turbulent
field. We showed that the integral length scale of the vorticity has to be larger than
a quarter of the nematic interaction for a “sweet spot” in the clustering to occur.
If the integral length scale is smaller, the structures of the turbulent field are large
enough so that the particles will be effectively torn apart by the turbulent vorticity.
The clustering is always enhanced in the nematic phase as compared to the isotropic
phase. This enhancement is due to the fact that the nematic order helps particles
to stay close to each other. However, if the integral length scale of the vorticity is
larger than a quarter of the nematic interaction range, the strongest clustering should
occur if the relevant time scale of the turbulent field and the time scale of the nematic
interaction match. The relevant time scale of the turbulent field is the Kolmogorov
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Figure 6.14: Illustration of the consequence of turbulence induced clustering on differ-
ent phytoplankton species (cf. Fig. 1.4). The images of the species have been adapted
from Haeckel (1899, online: http://biolib.mpipz.mpg.de/haeckel/kunstformen/
natur.html, copyright 1999 Kurt Stueber und Max-Planck-Institut für Züchtungs-
forschung).

time scale τη =
√
ν/ε which is related via ε = 2ν

∫
k2E(k) dk to the Kolmogorov shear

rate as τη = 1/ωK . A vortical Stokes number S cω = 2 hence means that the two times
equal and this is where the maximum in |Q| was found. To conclude, this means that
turbulence can increase the small patches of the system if the integral length scale of
the vorticity is larger than a quarter of the nematic interaction range. The maximum
increase is found where the Kolmogorov time scale matches the time scale of the
nematic alignment. This precisely matches the results of Wang and Maxey (1993)
who found that “the strongest accumulation happens when the particle response time
is comparable to the Kolmogorov timescale” in a system of settling spherical particles
in homogeneous turbulence. More recently, a maximum in clustering of gyrotactic
particle in turbulence was also found by Durham et al. (2013) when the Kolmogorov
time scale and the typical reorientation time of the particles are equal. This balance
of time scales seems to be universal to all systems of particles which are subject to a
turbulent field.
The hydrodynamic interaction of planktonic microorganisms is to first order ne-

matic (see Section 2.1 and Baskaran and Marchetti, 2009). If they exist in a turbulent
environment, the maximum clustering will occur where twice the integral length scale
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of the turbulent field matches the nematic interaction range. In principle the nematic
interaction range is just a model parameter in our system of self-propelled particles.
Our model is justified by the symmetry of hydrodynamically interacting microswim-
mers (see Section 2.1) and so the nematic interaction range can be related to physical
quantities of the more realistic microswimmers behind. For microswimmers which
are modeled as a rigid dumbbell the active volume is given by Vactive = lā(vl2/D)
with l being the length of the dumbbell, ā = (aL + aS)/2 being the mean size of
the two spheres, and D being the diffusion constant (Baskaran and Marchetti, 2009).
The idea behind the dumbbell model is a stroke-averaged microswimmer so that the
two spheres represent the cell body and the volume where the flagella perform their
stroke motion. It is important to stress here that the velocity v is not the self-
propulsion speed of the particle but is the convective velocity which is proportional
to the strength of the force dipole divided by the friction of the dumbbell in the
ambient fluid. We can conclude for our model that the nematic interaction range
depends not only on the length of the swimmer, but also on the size of the cell body,
the stroke radius, and the strength of the corresponding force dipole. The diffusion
also plays a role as well as friction due to the ambient fluid. This interpretation of
the nematic interaction range means that different organisms will be subject to clus-
tering in different turbulent flows, i.e. turbulent flows with different integral length
scales of the vorticity. This is a possible route to solve the “paradox of the plankton”
(Hutchinson, 1961) because it favors the clustering of different kinds of organisms
in different regions. This spatial separation of different species hence increases the
possibility of e.g. sexual mating for a given species because ideally only individuals
of the same species cluster in one region in space. Different species can thus coex-
ist in the same water body because they are effectively separated in space. Coming
back to the illustration of the situation of phytoplankton in the ocean (see Fig. 1.4
in the introduction of this thesis), the situation is the following (see Fig. 6.14 for an
illustration): A turbulent flow field can be induced in the water e.g. by wind (blue
arrow). If the integral length scale of the vorticity does differ in different parts of
the water (depicted by differently sized spirals), the different species can cluster in
different regions according to their size. This separates the different species in space
so that they can coexist.
Even for species with a similar active volume the clustering itself is possibly enough

to lead to species diversity. Such a plankton population with different species of
similar size leads to species-diverse clusters in the first step. If the clusters are stable
compared to the typical time scale in the reproduction cycle, in each cluster a single
species might survive due to competitive exclusion. However, because the small-scale
conditions vary between clusters different species might survive in different clusters
so that we globally find coexistence of competing species. This interpretation does
not even need the formation of different turbulent field with different integral length
scales of the vorticity.
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7.1 Conclusion
This thesis posed the following research questions: What kind of patterns can emerge
in three-dimensional suspensions of self-propelled, aligning, low-Reynolds number
swimmers mimicking entities like bacteria and how do these patterns fit in the steady-
state phase space? Are simple physical interactions enough to trigger the formation
of complex patterns like propagating waves? How can the symmetry of the system
be broken? What is the influence of an external flow field on the properties of large
groups of self-propelled particles? Or asked differently, how does turbulence influence
large groups of motile plankton in their natural habitats – lakes and oceans?
To address these questions we perform large-scale molecular dynamics simulations

to solve the corresponding equations of motion. The individual particles align nemat-
ically and are subject to rotational diffusion. They are self-propelled with a constant
speed. An external flow field is modeled via the method of kinematic simulations to
acquire reasonable computation times and a turbulence-like behavior. This external
flow field advects and rotates the particles according to the local velocity and vortic-
ity. We also include the possibility of a finite size of the particles resulting in steric
interactions among individuals.
The system under investigation is intrinsically out of equilibrium because each self-

propelled particle moves at a constant speed while it still interacts with its neighbors.
This is only possible if energy is constantly converted into motion from some inter-
nal reservoir. Even though our model does not include this process explicitly, it is
the reason why we refer to our system as a nonequilibrium system. Almost all of
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our simulations start from the most disordered state one might think of: The par-
ticles’ positions are randomized in the simulation domain and the orientations are
distributed randomly as well. This is what we call a homogeneous and isotropic
state. In the temporal evolution the system undergoes a transient evolution until it
reaches a steady state where the configuration of both positions and orientations is
temporally stable.
We observe different kinds of symmetry breaking depending on the system param-

eters like number density ρ and rotational Péclet number P . The latter serves to
compare the strength of nematic alignment and with the rotational noise. With in-
creasing density and Péclet number the rotational symmetry of the systems is broken
and global nematic alignment occurs. At low densities, this transition is accompanied
by a coexistence state of nematically ordered and isotropic domains in the system.
Such a coexistence leads to an inhomogeneous density distribution because particles
accumulate in the nematic domains and as a result the spatial symmetry is broken.
Deep in the nematic phase a spontaneous chiral symmetry breaking occurs through
the formation of helices of the local nematic directors. It can be shown that this
pattern is indeed a stable configuration of the underlying equations of motion and
forms due to the delicate interplay between rotational fluctuations and alignment.
In a one-dimensional system of non-moving rotors under a rapid quench (similar to
the XY -model) such a chiral symmetry breaking can also occur in terms of trapped
spin waves. When the chiral symmetry is broken the system of SPPs also shows
oscillations in the global polarization and hence a breaking of the nematic symmetry.
This is coupled to a density wave traveling along the helical axis so that the particles
are inhomogeneously distributed. A symmetry breaking of nematic symmetry is also
observed at small densities close to the isotropic-nematic transition where the sys-
tem exhibits propagating waves which are locally polarly ordered. At the same time
the homogeneity of the system is broken because the waves appear in a soliton-like
fashion with ordered, highly dense domains interrupted by a isotropic, dilute gas.
Such waves were observed in two dimensional systems before and could be shown
to be the outcome of an instability. We find that similar waves also occur in three
dimensions and with nematic (instead of polar) alignment. In systems with strong
nematic interaction and at low global densities the system of self-propelled particles
even exhibits a breaking of the global nematic symmetry with the onset of global
polar order. The local interaction between particles leads to the coupling of strong
alignment and large local density because polarly aligned particles stick together if
the Péclet number is large enough and the alignment mechanism is fast compared
to the flight time of a particle through the interaction range. A nematic domain is
formed by two such counter-propagating subgroups of self-propelled particles.
To address the question of the influence of a turbulent flow field onto motile plank-

ton, we model self-propelled, aligning particles (as before) in an external turbulent
flow field. Global alignment occurs if the stochastic noise and the turbulent field
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are weak compared to the nematic interaction strength. Our main finding is that
turbulence can enhance clustering in terms of the formation of small-scale patches of
(self-propelled) particles. The conditions for cluster formation are: (i) the system is
in the nematic state, and (ii) the integral length scale of the vorticity is comparable to
(at least a quarter of) the nematic interaction range. The strongest clustering occurs
if the relevant length and time scales match: twice the integral length scale of the
turbulent vorticity must equal the nematic interaction range, and the Kolmogorov
time scale must agree with the time scale of the nematic alignment.
Moreover, the clustering is a possible ingredient to the resolution of the plankton

paradox in two different ways: (i) due to necessity of matching length scales differently
sized species might cluster in different turbulent flows. This leads to an effective
spatial separation of species which leads to coexistence. (ii) If the clusters are long-
lived compared to the reproduction cycle of plankton species, similarly sized plankton
species might form mixed species clusters. In each cluster one species survives by
competitive exclusion but globally this might lead to coexistence of different species.
One large criticism of our model concerns the usage of periodic boundary con-

ditions. It is probably the most common choice for MD simulations (also used in
the Vicsek model) in order to avoid boundary effects. However, in models like ours
particles leave the simulation domain very often due to their persistent motion and
the PBC help in the formation of structure due to percolation across the boundaries.
Increasing the system size can reduce this problem but the general criticism against
PBC still holds. Moreover, the helical pattern can only be found with PBCs because
its stability crucially depends on the symmetry that each infinitesimally thin, nemat-
ically ordered layer has two such neighboring layers. The angle between each pair
of neighboring layers is constant so that the contributions on the torque of a given
particle cancel out. All in all, PBC seems artificial and unrealistic since there is no
real system which obeys PBC and some structures (like the helix) are only possible
under these conditions. Two different approaches concerning the boundary conditions
seem to be possible to overcome these problems: Firstly, one could model the system
with open boundaries which could for example represent the situation of plankton
in the open ocean. A second approach would be to add walls to the system which
then mimics experimental setups of closed cells. Open boundaries work rather well
for system where the individual components have a tendency to stay in the vicinity
of each other. The nematic alignment mechanism instead would lead to at least two
subgroups, each being highly polarized, traveling in opposite directions. The nematic
symmetry of the interaction would then be less important because parallel alignment
events would dominate. This would entirely shift the focus of interest which is why
we did not pursue this idea further. So let’s turn to the second approach: the reflec-
tive boundaries. Our system follows two equations of motion: one for the position
and one for the orientation. The first step is to implement the walls by an additional
force term acting on the positions. However, an alteration of the equation of motion
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of the orientations is also necessary because otherwise the particles would get stuck
and constantly bump into the wall due to their persistent speed. We find that align-
ment at the wall leads to wall accumulation which is an unwanted boundary effect.
Another idea is a discrete flip of the orientation if the particle encounters the wall.
Even though this is a discrete operation in a time-continuous model we do not find
strong boundary effects but instead a chiral (but not helical) pattern occurs (in a
sandwich geometry). This result suggests that such reflective boundaries are worth
studying in more detail. However, adding a turbulent field complicates the situation
because the fluid flow also has to obey boundary conditions.

7.2 Outlook
Research is never limited to only providing answers but always leads to new questions
as well. This section sketches possible future routes one might take starting from the
work in this thesis.
A systematic study of the occurrence of the chiral pattern as a function of the length

of the simulation domain would be interesting in analogy to the one-dimensional rotor
model. In the latter long-range order is destroyed by the chiral patterns in the infinite
system. The size-dependence of the occurrence of helices could hence provide insight
into the question whether the system possesses true long-range order. A study of
the nature of the phase transition would complete the picture of this nonequilibrium
system. Moreover, the patterns occurring in our system are possibly linked to different
instabilities in the underlying hydrodynamic theory. A linear stability analysis could
provide insight similarly to the approach by Baskaran and Marchetti (2008b, 2012)
but in three instead of two dimensions.
The results of the self-propelled particles in turbulence were qualitatively repro-

duced by a direct numerical simulation instead of the kinematic simulation tech-
nique. Still the questions arises how exactly features of the more realistic turbulent
field might alter the results. These features include for instance intermittency as well
as more realistic energy spectra. This question could be addressed by implementing
the movement of the self-propelled particles into the DNS code to avoid storing large
amount of data as it is done up to now. Investigating larger Reynolds numbers would
be enlightening as for the general behavior of our model.
Another possible route would be to introduce two (or more) differently sized species

into the model moving together in the same turbulent field. If our claim is correct that
the formation of small-scale patches highly depends on the length scales of turbulent
vorticity and nematic interaction, the accordingly sized species should cluster while
a second, much smaller one should not.
We motivate our study of self-propelled particles in turbulence by motile phyto-

plankton which (among others) lives in the pycnocline. This is the layer in the water
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column which possesses the largest density gradient. Adding buoyancy to our parti-
cles would make the model more realistic by including the interplay between density
gradient and particle density, and would allow the analysis of large-scale effects such
as convection, which we have neglected.
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A Appendix

A.1 Analytical expression for Crandom in the calculation
of Q

One drawback of the given definition of the patch concentration enhancement fac-
tor Q (Eq. 3.77) is the inclusion of Crandom(f) which is calculated on the basis of
a random configuration of particles. The significance of Q thus depends crucially
on the “randomness” of this random configuration of particles and is a function of
the pseudo-random number generator as well as the placing algorithm. The latter
is especially important in the case of extended particles to avoid overlaps between
particles and then again even more important for denser packing than for less dense
ones. It is hence tempting to deduce an analytical expression for Crandom(f). Typical
distributions of the Voronoi volumes of randomly placed particles show an asymmetric
bell-shaped curve (see Fig. A.1a). The curve for point-like particles is shifted towards
smaller volumes as compared to extended particles and show a slightly broader distri-
bution. The reason for this difference is the natural lower limit for a Voronoi volume
of an extended particle which could be reached in random close packing. The deriva-
tion of such distributions is of particular interest in the field of granular materials.
A gamma distribution function has been proposed (Kumar and Kumaran, 2005) and
it is assumed to be close to Gaussian at high packing fractions (Oger et al., 1996).
Due to this functional form of the distribution it is not as straightforward to calcu-
late Crandom(f) analytically. A numerical calculation, however, results in smoothly
decaying functions (see Fig. A.1b) which can be fitted by an exponential function
multiplied with a power-law. Both curves for point-like and extended particles be-
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(a) Typical distributions of the Voronoi volumes of randomly placed particles. The shaded
area indicates the 5% smallest Voronoi volumes used to calculate Crandom(f = 0.05).
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(b) Crandom as a function of the fraction f of particles. The measurements are given as dots
and the lines indicate fits of Crandom(f)/ρ = a exp(−bf)f−c.

Figure A.1: Analysis of Crandom(f) for point-like particles (red) as well as extended
particles (blue). The distributions are calculated numerically from N = 303 par-
ticles in a box of side length L = 2π, packing fraction of extended particles
φ = 4/3π(σ/2)3ρ = 6.54%.
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have very similar. We find that the prefactor a of the fit functions as well as the
fit parameter b in the exponential agree rather well between the two curves. The
exponent c of the power-law, however, show a large difference between point-like and
extended particles (roughly a factor of three). Since this functional form does not
have a theoretical foundation (yet), we stick to calculating Crandom(f) from a random
distribution of particles and leave the analytical derivation for future work.

A.2 Isotropic-nematic transition: Variation of time
step

The simulations of point particles without turbulent field (see Chapter 4) are all
carried out with a time step of ∆t = 0.1. The question remains whether this time
step is small enough to resolve the dynamics of the system. To this end, we analyze
simulations with varying ∆t. In Fig. A.2, we observe that the isotropic-nematic
transition is well-captured by all simulations and has the same shape for all time
steps. This justifies the choice of ∆t = 0.1.
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Figure A.2: Influence of the time step ∆t on the isotropic-nematic transition. All
simulations are carried out with N = 64000 particles, at a number density of ρ =
1.125, and with a nematic relaxation constant γ = 0.1. Different colors correspond
to different time steps as indicated.

151



A Appendix

 

 

N = 512000
N = 216000
N = 125000
N = 64000
N = 27000

gl
ob

al
n
em

at
ic

or
d
er

p
ar
am

et
er

S

Péclet number P

4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Global nematic order parameter as a function of Péclet number at the isotropic-nematic
transition. The value on the bottom right (N = 216000, P ≈ 9.6, S = 0.23) is much smaller
than the neighboring values because it corresponds to a chiral simulation.

 

 

N = 216000

S

P

Pmax(phase separation)
Pmin(wave)
Pmin(nematic)

P
éc
le
t
n
u
m
b
er

P

number N of particles

wave

n
em

aticphase coexistence

6 9

104 105 106

0.5

0.8

6

6.5

7

7.5

8

8.5

9

9.5

10

(b) The main panel shows three different definitions of the critical Péclet number as a
function of particle number. The inset shows the isotropic-nematic transition for a system
with N = 216000 particles; different phases are marked differently to clarify the definitions
of the critical Péclet number.

Figure A.3: Analysis of finite-size effects on the isotropic-nematic transition (ρ = 0.5,
γ = 1) for different numbers of particles as indicated.
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A.3 Isotropic-nematic transition: Finite size effects
The curves of the global nematic order parameter as a function of the Péclet number
for differently sized system with 27000 ≤ N ≤ 512000 particles nicely collapse at
the isotropic-nematic transition (Fig. A.3a). This suggests that no strong finite-size
effects on the transition are to be expected.
However, the transition can be more exactly defined by a critical Péclet number.

Due to the sequence of phases of the system of SPPs from isotropic, over phase
coexistence and wave, to the nematic phase (with increasing Péclet number, see inset
of Fig. A.3b), we use three different possible definitions of the critical Péclet number:
The maximum Péclet number where phase coexistence is found, the minimum Péclet
number where a polarized wave emerges, and the minimum Péclet number in the
nematic state. The curves of these quantities as a function of system size (given
by the number of particles, see Fig. A.3b) show a small positive trend. The critical
Péclet number increases only from Pc ≥ 6 to P ≈ 9 while the number of particles
varies over more than one and a half decades. This means that the nematic-isotropic
transition is subject to a small finite-size effect.

A.4 Code for three-dimensional monotonic logical grid
This function finds pairs of neighboring particles to calculate interactions based on
the fact that the particles in the structure molecule are ordered according to the
monotonic logical grid as described in Section 3.2.2. For the sake of clarity of the code
only interactions of point-like particles with periodic boundary conditions (PBCs) are
considered.
void spp_inte rac t ion ( int i t ime ){

int i , j , k , in , jn , kn , keep_i , j1 , j2 , k1 , k2 , neighbor , count_n , t e s t j , t e s t k ;
double tx , ty , tz , xi_x , xi_y , xi_z , x_search , count_n_minus1 ;
double x1 , y1 , z1 , x2 , y2 , z2 , e1x , e1y , e1z , e2x , e2y , e2z , e1_e2 , T_dot_e ;
double dx , d i s t , ydistminus , y d i s t p l u s , zdistminus , z d i s t p l u s ;

// i n i t i a l i z e torques and number o f ne ighbors
for ( i =0; i<N_part ic le ; i ++){

molecule [ i ] . torque_x = 0 . ;
molecule [ i ] . torque_y = 0 . ;
molecule [ i ] . torque_z = 0 . ;
molecule [ i ] . ne ighbors = 0 ;

}

// main loop over a l l p a r t i c l e s
for ( i =0; i<N_part ic le ; i ++){

k = ( int ) ( i ∗Nx_Ny_minus1 ) ; // t h i s l a y e r
j = ( int ) ( ( i−k∗Nx_Ny)∗Nx_minus1 ) ; // t h i s bar
i f ( j==Ny){ // due to rounding e r ro r s

k++;
j = 0 ;

}
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// i n i t i a l i z e v a r i a b l e s
tx = molecule [ i ] . torque_x ;
ty = molecule [ i ] . torque_y ;
tz = molecule [ i ] . torque_z ;
count_n = molecule [ i ] . ne ighbors ;
e1x = molecule [ i ] . e_x ;
e1y = molecule [ i ] . e_y ;
e1z = molecule [ i ] . e_z ;
x1 = molecule [ i ] . x ;
y1 = molecule [ i ] . y ;
z1 = molecule [ i ] . z ;
x_search = x1−dcut_x ; // x1 minus e p s i l o n
x_search = x_search−r i n t ( x_search ) ; // PBC

// f i n d ne ighbor ing l a y e r s
k1 = k ;
t e s t k = 0 ;
zd i s tminus = l a y e r s [ k1 ] . zmin−(z1−dcut_z ) ; // d i s t a n c e to min( z ) o f l a y e r
zd i s tminus = zdistminus−r i n t ( zd i s tminus ) ; // PBC
// towards lower z v a l u e s ( with PBC)
while ( zdistminus >0){

k1 = k1−1+Nz ;
k1 = k1%Nz ; // PBC
zd i s tminus = l a y e r s [ k1 ] . zmin−(z1−dcut_z ) ; // d i s t a n c e to min( z ) o f l a y e r
zd i s tminus = zdistminus−r i n t ( zd i s tminus ) ; // PBC
i f ( k1==k ){ // p e r c o l a t i o n with PBC

t e s t k = 1 ;
k1 = 0 ;
break ;

}
}
k2 = k ;
z d i s t p l u s = l a y e r s [ k2 ] . zmax−(z1+dcut_z ) ; // d i s t a n c e to max( z ) o f l a y e r
z d i s t p l u s = z d i s t p l u s−r i n t ( z d i s t p l u s ) ; // PBC
// towards h igher z v a l u e s ( with PBC)
while ( z d i s t p l u s <0){

k2 = k2+1;
k2 = k2%Nz ; // PBC
z d i s t p l u s = l a y e r s [ k2 ] . zmax−(z1+dcut_z ) ; // d i s t a n c e to max( z ) o f l a y e r
z d i s t p l u s = z d i s t p l u s−r i n t ( z d i s t p l u s ) ; // PBC
i f ( k2==k1 ){ // f u l l system

t e s t k = 1 ;
break ;

}
}
i f ( k2==k1 | | t e s t k ==1){ // f u l l system

k1 = 0 ;
k2 = Nz−1;

}

kn = k1 ;
do{ // loop over ne ighbor ing l a y e r s

i f ( kn<k ){ // avoid doub le count ing o f p a r t i c l e p a i r s
kn = ( kn+1)%Nz ;
continue ;

}
// f i n d ne ighbor ing bars
t e s t j = 0 ;
j 1 = j ;
ydistminus = bars [ kn ] [ j 1 ] . ymin−(y1−dcut_y ) ; // d i s t a n c e to min( y ) o f bar
ydistminus = ydistminus−r i n t ( ydistminus ) ; // PBC
// towards sma l l e r y v a l u e s ( with PBC)
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while ( ydistminus >0){
j1 = j1−1+Ny ;
j 1 = j1%Ny ; // PBC
ydistminus = bars [ kn ] [ j 1 ] . ymin−(y1−dcut_y ) ; // d i s t a n c e to min( y ) o f bar
ydistminus = ydistminus−r i n t ( ydistminus ) ; // PBC
i f ( j 1==j ){ // p e r c o l a t i o n with PBC

t e s t j = 1 ;
j 1 = 0 ;
break ;

}
}
j 2 = j ;
y d i s t p l u s = bars [ kn ] [ j 2 ] . ymax−(y1+dcut_y ) ; // d i s t a n c e to max( y ) o f bar
y d i s t p l u s = y d i s t p l u s−r i n t ( y d i s t p l u s ) ; // PBC
// towards l a r g e r y v a l u e s ( with PBC)
while ( y d i s t p l u s <0){

j2 = j2 +1;
j 2 = j2%Ny ; // PBC
y d i s t p l u s = bars [ kn ] [ j 2 ] . ymax−(y1+dcut_y ) ; // d i s t a n c e to max( y ) o f bar
y d i s t p l u s = y d i s t p l u s−r i n t ( y d i s t p l u s ) ; // PBC
i f ( j 2==j1 ){ // f u l l l a y e r

t e s t j = 1 ;
break ;

}
}
i f ( j 2==j1 | | t e s t j ==1){ // f u l l l a y e r

j 1 = 0 ;
j 2 = Ny−1;

}
// in each bar : f i n d ne ighbors
jn = j1 ;
keep_i = i%Nx ;
do{ // loop over bars

i f ( kn==k && jn<j ){ // avoid doub le count ing o f p a r t i c l e p a i r s
jn = ( jn+1)%Ny ;
continue ;

}
// f i n d c l o s e s t p a r t i c l e in x to x1−e p s i l o n
in = l i n s e a r c h (&molecule [ kn∗Nx_Ny+jn ∗Nx ] , x_search , keep_i ) ;
keep_i = in ;
ne ighbor = kn∗Nx_Ny+jn ∗Nx+in ; // index o f s t a r t i n g va lue
dx = x1 − molecule [ ne ighbor ] . x ; // d i s t a n c e in x
dx = dx−r i n t ( dx ) ; // PBC
while ( dx ∗ dx < dcutx_2 ){ // d i s t a n c e in x sma l l e r than i n t e r a c t i o n range

i f ( neighbor>i ){ // avoid doub le count ing o f p a r t i c l e p a i r s
x2 = molecule [ ne ighbor ] . x ;
y2 = molecule [ ne ighbor ] . y ;
z2 = molecule [ ne ighbor ] . z ;
d i s t a n c e ( x1 , y1 , z1 , x2 , y2 , z2 ,& d i s t ) ; // c a l c u l a t e d i s t a n c e with PBC
i f ( d i s t <=dcut_2 ){ // pa i r wi th in i n t e r a c t i o n range

e2x = molecule [ ne ighbor ] . e_x ;
e2y = molecule [ ne ighbor ] . e_y ;
e2z = molecule [ ne ighbor ] . e_z ;
// i n t e r a c t i o n
e1_e2 = e1x∗e2x+e1y∗e2y+e1z ∗ e2z ; // s c a l a r product
tx += e1_e2∗e2x ; // torque o f p a r t i c l e 1
ty += e1_e2∗e2y ;
tz += e1_e2∗ e2z ;
count_n++;
molecule [ ne ighbor ] . torque_x += e1_e2∗e1x ; // torque o f ne ighbor ing p a r t i c l e
molecule [ ne ighbor ] . torque_y += e1_e2∗e1y ;
molecule [ ne ighbor ] . torque_z += e1_e2∗ e1z ;
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molecule [ ne ighbor ] . ne ighbors++;
}

}
in = ( in+1)%Nx ;
i f ( in==keep_i ){ // p e r c o l a t i o n

break ;
}
ne ighbor = kn∗Nx_Ny+jn ∗Nx+in ; // index o f next ne ighbor ing p a r t i c l e
dx = x1 − molecule [ ne ighbor ] . x ; // d i s t a n c e in x
dx = dx−r i n t ( dx ) ; // PBC

}
jn = ( jn+1)%Ny ;

}while ( jn !=( j2+1)%Ny ) ; // loop over bars
kn = ( kn+1)%Nz ;

}while ( kn !=( k2+1)%Nz ) ; // loop over l a y e r s
// d i v i d e by number o f ne ighbors
i f ( count_n >0){

count_n_minus1 = 1 ./ count_n ;
tx ∗= count_n_minus1 ;
ty ∗= count_n_minus1 ;
tz ∗= count_n_minus1 ;

}
} // loop over a l l p a r t i c l e s

}
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