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Deutsche Zusammenfassung v

Deutsche Zusammenfassung

Die theoretische und experimentelle Untersuchung stark korrelierter Quan-
tensysteme im und ausserhalb des Gleichgewichts ist in den letzten Jahren zu
einem zentralen Forschungsschwerpunkt in der Physik der kondensierten Ma-
terie geworden. In dieser Habilitationsschrift werden anhand eigener Beiträge
aktuelle Entwicklungen diskutiert und ein Ausblick auf zukünftige Entwick-
lungen des Feldes gegeben. Es wird dabei ein direkter Bezug von theore-
tischen Zugängen zu aktuellen Experimenten mit ultrakalten Gasen und mit
stark korrelierten Materialien genommen. Insbesondere werden mikrosko-
pische Modelle diskutiert, die zur Modellierung stark korrelierter Materialien
(wie z.B. Quantenmagnete) herangezogen werden. Das zweite Thema der
Schrift behandelt die Realisierung und Untersuchung von Quantenvielteil-
cheneffekten in aktuellen Experimenten mit ultrakalten Gasen durch so-
genannte Quantensimulatoren. Ziel ist es, aufgrund theoretischer Über-
legungen Vorhersagen zur Emulation stark korrelierter Systeme zu treffen
und, basierend auf numerisch exakten Simulationen, Vorhersagen für die Ex-
perimente zu treffen. Da solche Experimente insbesondere auch ausserhalb
des Gleichgewichts durchgeführt werden können, knüpft dies direkt an das
dritte Thema der Schrift an, in dem die Physik von Quantenvielteilchensys-
temen ausserhalb des Gleichgewichts untersucht wird. Dazu gehören die Be-
handlung des Relaxationsverhaltens nach sogenannten Quantum Quenches
und Fragestellungen zum Transport, die hier anhand von Situationen auf
optischen Gittern diskutiert werden. Die drei Themenbereiche werden über-
spannt von der Fragestellung, wie man neuartige Quantenzustände real-
isieren kann, und wie man diese charakterisieren kann. Ausserhalb des
Gleichgewichts erwächst die Fragestellung, ob durch das Relaxationsverhal-
ten ungewöhnliche Zustände erzeugt werden können. Wie in dieser Arbeit
diskutiert, ergeben sich in der Tat unerwartete Ergebnisse, wie die Bildung
negativer Temperaturen, oder das Anwachsen der Teilchendichte verursacht
durch repulsive Wechselwirkungen. Im Gleichgewicht kann das Vorhanden-
sein starker Magnetfelder zu interessantem Verhalten führen, wie anhand
verschiedener Systeme diskutiert wird. Hervorzuheben sind hier die Bildung
unkonventioneller Mott-Isolatoren, von Phasen mit ’spin-nematischer’ Ord-
nung, und unkonventionelle Quantenphasenübergänge. Eine aktuelle Ent-
wicklung der aktuellen Forschung behandelt die Bildung sogenannter topo-
logischer Phasen, die nicht durch einen lokalen Ordnungsparameter beschrie-
ben werden und sich somit der Charakterisierung im Rahmen der Landau-
Theorie von Phasen und Phasenübergängen entziehen. Aktuelle Fragestel-
lungen sind die Realisierung solcher Phasen im Vorhandensein von Wech-
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selwirkungen, auch langreichweitiger Natur, wie sie in Quantensimulatoren
mit polaren Molekülen in Erscheinung treten. In dieser Schrift wird disku-
tiert, wie diese Fragestellungen durch einen numerischen Zugang - die Dichte-
matrixrenormierungsgruppe - behandelt werden können und wie diese sehr
flexible Methode zu interessanten Einsichten in die facettenreiche Physik
stark korrelierter Quantensysteme führt.

English Short Summary

The theoretical and experimental investigation of strongly correlated quan-
tum systems in- and out-of-equilibrium has been a recent focus of research
in condensed matter physics. In this Habilitation thesis, I present recent and
future developments of the field in the context of my own contributions. A
direct relation between theoretical approaches and experiments with ultra-
cold gases and in strongly correlated materials is made, and I discuss useful
microscopic models for the description of such materials (e.g., quantum mag-
nets). The second topic of the thesis addresses the realization of quantum
many body effects in ongoing experiments with ultracold gases in the con-
text of so-called ’Quantum Simulators’. Theoretical considerations based
on so-called ’numerically exact’ simulations are used to make predictions
for the concrete experimental implementation of such emulators for strongly
correlated systems. These experiments can be performed in a very well con-
trolled way out-of-equilibrium, which directly connects to the third topic
of the thesis, the investigation of the nonequilibrium dynamics of quantum
many body systems. This addresses the relaxation behavior after so-called
’Quantum Quenches’ and problems related to transport, here discussed in
the context of optical lattices. The three topics are bridged by the question
for the realization and characterization of novel quantum states of matter.
In out-of-equilibrium situations the question is addressed if such states can
be identified in the relaxation behavior. As further discussed in this thesis,
indeed unconventional behavior as, e.g., the formation of ’absolute negative
temperatures’ and the increase of particle population in the presence of repul-
sive interactions is realized. In equilibrium, a bouquet of interesting behavior
in various systems can be revealed in the presence of strong magnetic fields.
Examples are unconventional Mott insulators, phases with ’spin-nematic or-
der’ and unusual quantum critical behavior. A recent development addresses
so-called topological phases which are not described in terms of a local or-
der parameter and hence do not fall into the realm of validity of the usual
Landau theory of phases and phase transitions. Questions arise for the effect



Summary vii

of interactions, in particular also the presence of long-range interactions as
realized in quantum simulators with ultracold polar molecules. The thesis
demonstrates how these aspects can be addressed via numerical methods –
in particular the density matrix renormalization group method – and how
this approach has been leading to interesting insights into the multi-facetted
behavior of correlated quantum systems.
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Part I

Introduction
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This thesis is devoted to the theoretical investigation of strongly correlated
quantum systems in- and out-of-equilibrium. In the first part, I introduce the
field, the methods and various topics of present day research. In the second
part of the thesis, several of my own contributions are presented which cover
the various topics discussed in the first part.

After a short introduction to quantum many body systems in Ch. 1, I intro-
duce the numerical methods relevant for the thesis in Ch. 2. According to
my own research, and to relevant topics in present day research activities,
it is followed by three chapters discussing various realizations and aspects
of quantum many body systems. In Ch. 3, quantum critical behavior in
the context of strongly correlated materials, in particular quantum magnets
in strong magnetic fields, is treated. Ch. 4 discusses ongoing and future
experiments with ultracold gases on optical lattices, so-called quantum sim-
ulators, and their theoretical description. In particular, systems of alkaline
earth atoms and polar molecules are treated. These systems lead to the im-
plementation of SU(N) symmetric models or to the emulation of quantum
magnetism and superconductivity on optical lattices. An important aspect
of these investigations is the non-equilibrium behavior in the experiments,
which will be addressed in Ch. 5. In this context, various non-equilibrium
systems are treated which are topics of present day research, in particular
quantum quenches and transport in the presence of interactions. In Ch. 6, I
summarize the first part and give a short outlook to further developments in
the field.
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Chapter 1

Quantum Many Body
Systems

Quantum many body effects come into play in certain materials and in sys-
tems of ultracold atomic and molecular gases on optical lattices [1, 2]. Promi-
nent examples for strongly correlated materials are high-temperature super-
conductors [3, 4] and frustrated quantum magnets [5–7]. Using ultracold
atoms, a breakthrough experiment was the realization of a Mott-insulating
state of ultracold bosons in 2002 [8]. These systems are described by micro-
scopic quantum mechanical models of interacting particles on various lattice
geometries. Interesting effects arise due to competing interactions or geomet-
rical frustration which typically does not allow for the realization of a simple
ground state that satisfies all bonds equally well. Examples for such frus-
trated geometries of interest in ongoing research are shown in Fig. 1.1. Due
to these competing interactions, novel and interesting states of matter can
be realized [5–7]. Ongoing theoretical and experimental research efforts are
concerned with identifying and characterizing such new states, and a large
part of this thesis is devoted to the finding of such unconventional phases
in the context of strongly correlated materials and in quantum simulators.
In the following, own contributions are put in the perspective of ongoing
research activities in the field.

An interesting class of strongly correlated materials are frustrated quantum
magnets [5–7]. These systems can be described as networks of interacting
quantum mechanical spins on a lattice, and the underlying microscopic model

5
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Figure 1.1: Examples of frustrated lattice geometries realized in quantum
magnetic materials. (a) Frustrated ladder, realized in various materials, e.g.,
TlCuCl3 [9, 10]. (b) Shastry-Sutherland lattice, a network of orthogonal
dimers. This geometry is realized, e.g., in SrCu2(BO3)2 [11, 12]. (c) Example
of a kagome lattice of corner-sharing triangles. This system is realized, e.g.,
in Herbertsmithite [ZnCu3(OH)6Cl2] [13] (figure from Wikipedia).

is the Heisenberg Hamiltonian,

HHeisenberg =
∑
〈i,j〉

Ji,j ~Si · ~Sj, (1.1)

where the spins ~S are located on the lattice sites i and j. In principle, any
magnitude of S ≡ |~S| can be realized, but the most appealing effects due to
the quantum nature of the spins are expected for small values of the spin,
e.g., S = 1/2 or S = 1. These materials host a rich bouquet of interesting
phenomena which are revealed in the presence of an external magnetic field.
Particularly intriguing is the realization of unconventional quantum states
of matter, as e.g., a Bose-Einstein-condensate (BEC) of triplet excitations
[10, 14–16], Mott-insulators on magnetization plateaux [11, 12, 17, 18], and
the proposed spin-equivalent [19–24] of a supersolid phase [25–29] in their
vicinity which is characterized by the spontaneous breaking of the trans-
lational symmetry of the underlying lattice which happens simultaneously
with the breaking of a U(1) symmetry associated to the formation of a su-
perfluid. These effects most prominently appear at low temperatures at
which quantum fluctuations dominate over thermodynamic fluctuations, and
which drive quantum phase transitions in the phase diagrams of these sys-
tems [30, 31].

In numerical approaches, the spontaneous breaking of the symmetries of the
system and the stabilization of a phase are typically investigated by com-
puting local observables and correlation functions on finite systems and ex-
trapolating these results to the thermodynamic limit. This, however, often
leaves the question open of whether the relevant correlation functions have

https://en.wikipedia.org/wiki/Kagome_lattice
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been looked at. This is addressed in recent developments by computing the
so-called correlation density matrices, in which appropriate statistical opera-
tors and their spectral decomposition are analyzed [32–34]. The eigenvectors
of these correlation density matrices are then associated to correlation func-
tions, the most important ones having the largest eigenvalue. As an example
for the usefulness of this approach, see my contribution [SRM28] (attached
in the second part of the thesis) in which a similar approach is used for the
identification of quantum criticality in a 2D kagome system for which only
small systems could be treated. In 1D, gapless phases and the universality
class of transitions can be characterized by the central charge c in the con-
text of conformal field theories (CFT) [35, 36]. As demonstrated by Vidal et
al. [37] and by Calabrese and Cardy [38], this quantity can easily be obtained
by computing the von Neumann entanglement entropy

S` = −Tr [%` ln (%`)] , (1.2)

with %` the reduced density matrix of a subsystem of size `. For critical 1D
systems of size L with periodic boundary conditions and a subsystem of size
`, the relation

S` =
c

3
ln

[
L

π
sin

(
π`

L

)]
+ gPBC (1.3)

is obtained, with gPBC a constant independent of c. Thus, computing S`
numerically allows one to extract the value of c rather easily. This can be done
using the density matrix renormalization group method (DMRG) [39, 40]
which will be discussed in more detail below. This approach is now widely
used to investigate quantum criticality in 1D systems, and together with the
direct computation of observables it constitutes a powerful toolbox for the
investigation of low-dimensional correlated quantum systems.

Other developments adopt concepts from quantum information theory [41]
to investigate quantum critical behavior. One of these proposes to use the
overlap between ground states in different phases (often referred to as fidelity)
[42] or the fidelity susceptibility (also called fidelity metric) [43, 44] which for
the ground state |ψ0〉 is obtained for a certain value of some control parameter
U as

χ(U) =
2 [1− |〈ψ0(U)|ψ0(U + dU)〉|]

LdU2
. (1.4)

The underlying picture is that at a phase transition the nature of the wave
function changes drastically, so that in the thermodynamic limit a divergence
of χ should appear at the critical point. The hope is that such a behavior
can be seen for small systems already, so that computing χ should facilitate
the investigation of systems using standard numerical approaches. Indeed,
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for various systems, this has been seen (see, e.g., [45–49] and my own con-
tribution [SRM9]). However, a field-theoretical analysis indicates that the
singular part of χ does not necessarily diverge in the thermodynamic limit,
indicating that for some systems it will be difficult to characterize quantum
criticality solely relying on the behavior of χ [44]. Furthermore, as discussed
in the second part of this thesis, my own contributions show that there are
systems in which the finite-size scaling is difficult, and large system sizes as
well as a high accuracy are required [SRM20, SRM22] (see also [50]). There-
fore, caution is needed when applying this approach.

Special attention is devoted to phases stabilized by non-obvious spontaneous
breaking of symmetries of the Hamiltonian. A prominent example is realized
for S > 1/2. In this case, the SU(2) symmetry of the Heisenberg Hamiltonian
can spontaneously be broken without resulting finite local magnetizations,
realizing a rather unconventional ordered phase which would appear disor-
dered under a conventional perspective in which only local magnetizations
are considered. Such a state can be related to liquid crystals which realize
nematic states with a broken spin-rotational symmetry but unbroken time
reversal symmetry [7, 51–60]. Correspondingly, such states are called spin-
nematic states and have been explored in a number of theoretical approaches,
e.g. [61–64] and my own contribution [SRM25] (attached in the second part
of the thesis; a nice summary of the state of the art is sketched in the intro-
duction of [60] and references therein). An example for a quantum magnetic
material which might realize such a phase is NiGa2S4 [65], a S = 1 spin
system on a triangular lattice. However, a convincing experimental proof for
the existence of such a phase is still missing, and it would be interesting to
identify it either in quantum magnetic materials or in experiments on optical
lattices. This might be achieved in quantum simulators for SU(N) systems
using alkaline earth atoms [66] which are further discussed below.

I want to briefly mention that there are phases in which, despite the pres-
ence of strong correlations in the system, no long-range order is induced at
zero temperature. These phases are called spin liquids and can be pictured
as a superposition of many spins which simultaneously point in different di-
rections. They show exotic behavior and possess a number of interesting
properties such as excitations with fractional quantum numbers [67]. There
exists a vast literature on this topic, for an introduction see [68]. The search
for realizations of this type of unconventional states is motivating a lot of
ongoing research. Recently, numerical methods have provided evidence for
the existence of such a spin liquid phase in the kagome lattice [69–71], which
is depicted in Fig. 1.1 and which has been identified in the natural mineral
Herbertsmithite [13, 72]. This is therefore an interesting example for how a
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numerical study can uncover interesting phases of matter which may find a
realization in nature in strongly correlated materials. However, since these
phases are not central for this thesis, I refrain at this point from a more
detailed treatment and refer to the literature.

While the interacting spins in the Heisenberg model remain localized, in many
materials the electrons are itinerant. This is addressed, e.g., by the Hubbard
model [73–76], which is one of the simplest models taking into account the
effects of spin and of electron motion. Both, the fermionic version,1

HFermions
Hubbard = −t

∑
〈i,j〉
σ

[
c†i,σcj,σ + h.c.

]
+ U

∑
i

ni,↑ni,↓ (1.5)

as well as the bosonic variant [30, 77],

HBosons
Hubbard = −J

∑
〈i,j〉

[
b†ibj + h.c.

]
+
U

2

∑
i

ni (ni − 1) (1.6)

are relevant for the description of strongly correlated materials or for systems
of ultracold atoms on optical lattices, respectively. Due to the difficulties to
treat in particular the fermionic variant of this system beyond 1D using ana-
lytical or numerical approaches, the experiments on optical lattices have got
the particular motivation to emulate the behavior of this microscopic model,
so that its phase diagram can be investigated in such experiments. This is
in the spirit of Feynman’s proposal from the early 1980s2 to use some well
controlled quantum systems to simulate other ones, eventually leading to the
development of a quantum computer [79–81]. There are new developments
aiming at the emulation of the Heisenberg and the t–J-model

HtJ = −t
∑
〈i,j〉
σ

(
f †i,σfj,σ + h.c.

)
+ J

∑
〈i,j〉

(
~Si · ~Sj −

1

4
ninj

)
, (1.7)

which can be obtained from the fermionic Hubbard model in degenerate
perturbation theory in the limit U/t → ∞ [82] and is considered a minimal
model for high-temperature superconductors [83].

1Standard notation for the operators is used, i.e., c
(†)
i,σ represents a fermionic annihilation

(creation) operator, b
(†)
i the corresponding bosonic one, and ni,σ = c†i,σci,σ or ni = b†i bi

the densities in the fermionic or bosonic case, respectively. In the case of the t–J-model,

the operators f
(†)
i,σ are fermionic ones, but act on a restricted Hilbert space in which double

occupancies are forbidden.
2The possibility to exploit quantum speed up was actually first envisaged by

Y.I. Manin [78] in 1980; it is unclear to me whether Feynman was aware of this. In
any case, he seems to be the first one to promote these ideas in the public in the western
hemisphere and pursue them.
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The fermionic and spin systems considered so far have a SU(2) symmetry and
are invariant under the corresponding transformations (e.g., rotation in spin
space). From the theoretical side, it is tempting to enhance this symmetry
from SU(2) to SU(N). This has attracted considerable theoretical attention
in recent years, see, e.g., [84–109] and my own contribution [SRM22]. There
is a long history of studies of SU(N) spin systems [84, 110, 111] since they
become analytically tractable in the large-N limit, and rich phase diagrams
have been identified, see, e.g., [110, 112–124], realizing, amongst others, an-
tiferromagnetic phases and valence-bond solids. In 1D, the aforementioned
spin-nematic phases have been predicted [63, 64, 125, 126] as well as gen-
eralizations of the so-called AKLT state [111, 122, 127–134], which is an
archetypical example for topological phases which are briefly revisited in
Sec. 4.3. However, as no exact SU(N) models have been identified in nature,
these efforts were broadly considered a theoretical playground.

Recently, however, it has been proposed that systems with such a high sym-
metry (up to N = 10) can be realized in quantum simulators with ultracold
alkaline earth atoms [66]. More specifically, these experiments can realize
SU(N) symmetric generalizations of fermionic Hubbard models

HSU(N)
Hubbard = −t

α=N∑
〈i,j〉
α=1

(f †α,ifα,j + h.c.) +
U

2

∑
i,α 6=α′

f †α,if
†
α′,ifα′,ifα,i. (1.8)

Here, f
(†)
α,i is a fermionic annihilation (creation) operator for a particle with

flavor α on lattice site i. Similar to the SU(2) case, in the limit U/t→∞ an
effective SU(N) symmetric Heisenberg model can be derived

HSU(N)
Heisenberg =

2t2

U

∑
〈i,j〉
α,β

Sβα(i)Sαβ (j), (1.9)

with the spin operators Sβα(i) = f †α,ifβ,i. Having this and the specific experi-
mental implementation in mind, exotic new phases have been predicted. An
example which has intrigued researchers is the possibility to realize chiral
spin liquids [135, 136] in such systems [132]. These are spin liquids with
certain topological properties which can be of relevance for the realization of
topological quantum computers [67, 137].

These findings underline the recent focus of research on the uncovering of new
and unconventional behavior in microscopic models and their possible exper-
imental detection. For quasi-1D systems (i.e., chains and ladder geometries),
this can be done efficiently using the density matrix renormalization group
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method (DMRG) [39, 40], which is explained in detail in various review ar-
ticles, e.g., Refs. [138–142] and my own contribution [SRM37]. This method
has been applied very successfully for the investigation of phase diagrams
and of quantum critical behavior of a multitude of (quasi-)1D systems (see
the website [143] for a collection of the publications relying on this method).
However, for 2D systems, the area law of entanglement growth [144, 145]
has inhibited an efficient treatment of the microscopic models of interest.
On the other hand, from this point of view it is clear that product states,
like a ferromagnetic ground state, are not subject to these difficulties. The
question arises where the limitations of this approach lie in practice, and to
find means to overcome them, despite the restrictions imposed by the area
law. My recent contributions [SRM11, SRM16] (attached in the second part
of the thesis) discuss how a proper combination of analytical tools and the
DMRG leads to successful investigations of frustrated quasi-2D geometries
(see also [69–71, 146, 147]). In particular, as demonstrated in Ref. [146],
the accuracy when computing local observables is higher than previously ex-
pected, shedding new light onto the possibilities to treat 2D systems with
the standard DMRG. The state of the art for approaching 2D systems using
the DMRG is summarized in the Review Article by E. M. Stoudenmire and
S. R. White, Ref. [148]; in order to speed up the calculations, it is helpful to
parallelize the approach by dividing a single run over several regions in real
space as discussed in Ref. [149].

The natural next steps are both, the careful investigation of the crossover
from 1D to 2D systems using the standard DMRG, and, in parallel, to in-
vestigate for new methods which are less subject to the limitations imposed
by the area law. Using the standard DMRG, the challenge is to formulate
the problem in such a way that the entanglement growth is minimized. This
can be done, e.g., by applying appropriate ’pinning fields’ at the boundaries
and by choosing optimal lattice topologies, as shown in Ref. [146], or by re-
ordering the lattice sites, as discussed in the context of a quantum chemistry
approach [150, 151]. Due to the results of my contributions [SRM11, SRM16]
and of [69–71, 146], I expect that a fruitful combination of analytical tools
and the numerical approaches will lead to interesting new insights into the
behavior of two-dimensional quantum many body systems.

Next, I will review some of the most interesting developments in recent years,
and discuss the potentiality to realize and further develop such methods in
the future.
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Chapter 2

Matrix Product States and
Further Developments of the
DMRG

The density matrix renormalization group (DMRG) method is an approach
in which the system is treated in a truncated Hilbert space with size much
smaller than the dimension of the actual one. The basis states are selected
so that the entanglement in the system is captured in an optimal way. This
entanglement aspect of the DMRG method [139] has given an incentive to the
development of new methods extending the standard DMRG in the context of
quantum information theory. The most important aspect is that the DMRG
is a particular realization of a class of algorithms in which a matrix product
state wave function (MPS) [152, 153] is optimized in a variational way in
the course of the iterations [138, 154–156]. This insight lead immediately
to the formulation of algorithms improving on the complexity when treating
systems with periodic boundary conditions [157, 158]. Generalizations of this
ansatz to 2D systems are achieved by introducing Projected Entangled Pair
States (PEPS) methods [155, 156, 159–162] and tensor-network algorithms
like the multi-scale renormalization group ansatz (MERA) [156, 163–166]. It
is possible to formulate variants in which the algorithms work directly in the
thermodynamic limit exploiting the translational symmetry of the systems
and which then are referred to as ‘infinite PEPS’ or ‘infinite MERA’ (iPEPS
[161] or iMERA [165]), respectively.

At the present stage, optimal implementations as well as further develop-
ment of these algorithms are a current topic of investigations (see, e.g.,
[167]). Recently, careful studies have been performed, and (i)PEPS methods

13
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have been successfully applied, e.g., for treating quantum criticality [168],
2D t–J-models, Eq. (1.7), [169–171], the S = 1/2 Heisenberg antiferromag-
net Eq. (1.1) on the 2D Shastry-Sutherland lattice depicted in Fig. 1.1(b)
[172, 173] and [SRM3], and systems with SU(N) symmetries [174–176]. The
MERA has, e.g., been applied to investigate the ground-state of the S = 1/2
Heisenberg model (1.1) on the kagome geometry [Fig. 1.1(c)], Ref. [177].
Note, however, that the variational energies obtained by Quantum-Monte-
Carlo methods are lower than the ones obtained by PEPS in the study of
Ref. [169], and the energies obtained by the standard DMRG extrapolated
to 2D presented in Refs. [69–71] are lower than the ones found by MERA in
Ref. [177] (for a detailed discussion for how to approach 2D systems using the
DMRG, see the aforementioned review article [148]). It is therefore essential
to find ways to improve these approaches by optimizing the implementations
and by further developing the methods. A promising path is to combine
these MPS-based approaches for variational wave functions with other meth-
ods, e.g., stochastic sampling of the configuration space. Very interesting in
this context is the introduction of the Minimally Entangled Typical Ther-
mal state algorithm (METTS [178, 179], see also the viewpoint [180]), which
treats systems at finite temperatures. In addition, developments combin-
ing Quantum Monte Carlo (QMC) methods and MPS might be interesting
[181, 182]. Due to their significance, let us quickly review the main features
of MPS and PEPS approaches.

2.1 Matrix product states (MPS) and matrix

product operators (MPO)

In principle, matrix product states provide an exact formulation for generic
wave functions. However, the big advantage is that they open in a rather
natural way a path for optimizing approximate representations of wave func-
tions. Here, I follow the excellent review [138]. Generically, a many-body
wave function on a lattice with N sites can be written as

|ψ〉 =
∑

σ1,...,σN

cσ1,...,σN |σ1 . . . σN〉 . (2.1)

|σi〉 represents a basis state on site i, e.g., for a S = 1/2 system |σi〉 = | ↑〉i
or | ↓〉i. In general, the site basis has d states (for S = 1/2, hence, d = 2),
and the dimension of the Hilbert space of the total system is dN . In a matrix
product state representation, Eq. (2.1) is rewritten in terms of products of
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matrices, where each of these matrices acts locally:

|ψ〉 =
∑

σ1,...,σN

Aσ1Aσ2 · · ·AσN−1AσN |σ1 . . . σN〉 . (2.2)

This is achieved by rewriting the coefficients cσ1,...,σN as further explained
below. The index σi indicates a matrix for each of the states of the site
basis. Therefore, we are dealing with d · N matrices, a number which is
much smaller than the number of coefficients cσ1,...,σN which is the dimension
of the system’s Hilbert space dN . Since, so far, we have only rewritten the
coefficients cσ1,...,σN , not much more is gained. However, as I will discuss
below, this ansatz helps in obtaining |ψ〉 in two ways:

1. Instead of directly computing all of the dN coefficients cσ1,...,σN (e.g., by
diagonalizing the system’s Hamiltonian), one can formulate algorithms
which iteratively ’optimize’ each of the d ·N matrices Aσ

i ; i.e., it should
be possible to find algorithms for computing |ψ〉 which do not need an
effort exponential, but linear in N .

2. It is possible to truncate the dimensions of each of the matrices Aσ
i ,

which will lead to a substantial speedup and efficiency typical for these
type of algorithms, while keeping the error of the approximation small.

The key element for doing so is the singular value decomposition (SVD),
according to which any rectangular matrix M of dimensions NA × NB can
be rewritten as

M = USV† , (2.3)

with U having orthonormal columns and dimensions NA×min(NA, NB), S a
diagonal matrix of dimension min(NA, NB)×min(NA, NB) and V† a matrix
with orthonormal rows and dimensions min(NA, NB)×NB. The entries of S
are non-negative and are referred to as singular values, and the number r of
non-zero singular values determines the rank of M. Note that the orthonor-
mality of the column- and row-vectors of U and V†, respectively, allow us to
use these as basis vectors. When ordering the singular values in descending
order, we can imagine them to reflect the weight or importance of the corre-
sponding columns or rows of U and V†, respectively. It is natural to ask, if
this can be used to introduce a controlled cutoff in the number of basis states
used, and to estimate the error introduced by the cutoff. A nice way to see
that this is possible is by considering the Schmidt decomposition of the wave
function of a system which is divided into two parts A and B. With D the
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dimension of the smaller of the Hilbert spaces of A and B, we obtain

|ψ〉 =
D∑
i=1

si |A〉i |B〉i ≈
m<D∑
i=1

si |A〉i |B〉i , (2.4)

with states |A〉 and |B〉 living on either part A or B, respectively. Several
remarks are in order. Eq. (2.4) can be seen as the SVD of the corresponding
matrix representation of the wave function: the vector containing the coeffi-
cients cσ1,...,σN in Eq. (2.1) can be recast to a matrix ψ(σ1,...,σ`),(σ`+1,...,σN ) where
the sites 1, . . . ` belong to part A of the system and sites `+ 1, . . . , N to part
B. The SVD of this matrix leads to a decomposition where the states |A〉 and
|B〉 are represented by the column and row vectors of the corresponding U
and V† matrices of Eq. (2.3), and the coefficients si in Eq. (2.4) are the sin-
gular values. Furthermore, direct computation of TrA/B |ψ〉 〈ψ| reveals that
the matrices U and V† diagonalize the reduced density matrices of system
part A and B, respectively, so that the states |A〉 and |B〉 are the eigenstates
of the reduced density matrices, with eigenvalues s2

i . At this point, we can
give a probabilistic interpretation to the Schmidt decomposition Eq. (2.4):
the singular values are, indeed, the probability of finding subsystem A or B
in the corresponding eigenstate of the reduced density matrix. Therefore, ne-
glecting small values of si amounts to neglecting less important eigenstates
of the reduced density matrices. Hence, introducing the cutoff at m < D
states as in the right hand side of Eq. (2.4) is a controlled approximation,
and a measure for the error

ε =
D∑

m+1

s2
i (2.5)

can be introduced. ε is called the discarded weight, and in a DMRG calcula-
tion the goal is to keep ε as small as possible, typically being of the order of
10−9 or smaller. Note that all that has been discussed so far is independent
of details of the system like connectivity or spatial dimension. However, as
discussed further below, this representation gives the most useful approxi-
mations for one-dimensional systems.

The key aspect of the DMRG and of related MPS algorithms is to use these
observations to write down the wave function of the system in the form (2.2)
and at the same time to introduce a cutoff so that the sizes of the matrices Aσi

are small enough to be treated with a reasonable amount of computational
resources, while the error is controlled via the discarded weight. In order to
see how an arbitrary state can be recast into the MPS form, let us start with
a bipartition in which A consists of a single site located at the left end. Let
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us assume that all the lattice sites have the same properties and that the
local basis is of dimension d. This bipartition hence results in a matrix

ψ(σ1),(σ2,...,σN ) = cσ1,...,σN

of dimension d, dN−1. An SVD results in

cσ1,...,σN = ψ(σ1),(σ2,...,σN ) =

r1∑
a1

Uσ1,a1 sa1
(
V †
)
a1,(σ2,...,σN )

≡
r1∑
a1

Aσ1a1 ψ(a1σ2),(σ3,...,σN ) ,

with rank r1 ≤ d. On the right hand side we have recast the matrix U of
the SVD to a collection of d row vectors Aσ1 with entries Aσ1a1 = Uσ1,a1 , and
the product of the singular values sa1 and the V† matrix to a new matrix
ψ(a1σ2),(σ3,...,σN ) of dimension r1d, d

N−2. Performing a SVD on this new matrix
ψ yields in a similar manner

cσ1,...,σN =

r1∑
a1

r2∑
a2

Aσ1a1A
σ2
a1,a2

ψ(a2σ3),(σ4,...,σN ) , (2.6)

with the matrix ψ(a2σ3),(σ4,...,σN ) of dimension r2d, d
N−3 and the rank r2 ≤

r1d ≤ d2. However, instead of vectors as in the step before, we obtained a
set of d matrices Aσ2 each of dimension r1, r2 with entries Aσ2a1,a2 = U(a1σ2),a2 .
Repeating this scheme, we can rewrite the wave function as

|ψ〉 =
∑

σ1,...,σN

∑
a1,...,aN−1

Aσ1a1A
σ2
a1,a2
· · ·AσN−1

aN−2,aN−1
AσNaN−1

|σ1 . . . σN〉

=
∑

σ1,...,σN

Aσ1Aσ2 · · ·AσN−1AσN |σ1 . . . σN〉 ,
(2.7)

which is the form (2.2). Note that in the derivation we made so far, Aσ1 and
AσN are actually vectors. This is because we distinguished sites of the lattice
as being the ‘first’ and the ‘last’ site of the lattice, and is the reason why the
product of matrices results in a scalar. This is fine if we consider a lattice
with open boundary conditions. However, for a translationally invariant
system there is obviously no reason why they should be treated differently
from the matrices in the bulk region of the system. It is, therefore, more
accurate to replace the vectors in Eq. (2.7) by matrices. Since the first and
the last site are now connected to each other, the MPS is consistent with
matrix multiplications on all bonds by taking the trace, so that the MPS
wave function now takes on the form

|ψ〉 =
∑

σ1,...,σN

Tr (Aσ1Aσ2 · · ·AσN−1AσN ) |σ1 . . . σN〉 . (2.8)
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Since translational invariance is assumed, the dimension of all the matrices
Aσi can be chosen to be the same. This was one of the first insights that came
from a quantum information approach to the established DMRG method. By
carefully writing down the MPS form of the wave function and analyzing the
properties of the algorithm, it became clear how to formulate further vari-
ants and extensions of the method, e.g., for treating translationally invariant
systems directly in the thermodynamic limit, or to generalize the form (2.2)
to better suit 2D systems.

Using the ansatz (2.2) it is possible to search for eigenstates (typically the
ground state) of the system and also to compute the time evolution when
going out-of-equilibrium. For the sake of brevity, let us briefly sketch the
basic ideas for the ground state algorithms, and in the next section some
basic properties for time evolution algorithms, and refer to the review [138]
for details of the algorithms. The goal is to formulate iterative algorithms
which optimize (or in the case of computing the time evolution) update
subsequently the matrices Aσi . E.g., for the ground state search, one has to
find the MPS which minimizes

E0 =

〈
ψ
∣∣∣Ĥ∣∣∣ψ〉
〈ψ|ψ〉

. (2.9)

This can either be done by computing an imaginary time evolution on some
random initial MPS, or by a variational ground state search, which usually
is more efficient than the imaginary time evolution. The problem can then
be formulated as searching for the extremum of〈

ψ
∣∣∣Ĥ∣∣∣ψ〉− λ 〈ψ|ψ〉 , (2.10)

with λ the Lagrangian multiplier which upon solution will be the ground state
energy. By subsequently addressing each of the matrices of the MPS, one
obtains in every optimization step a generalized eigenvalue problem whose
solution gives the update of the matrix and the lowest lying eigenvalue being
the estimate for the ground state energy in this step. This is done until con-
vergence in the energy is obtained, or until the variance of the Hamiltonian〈
Ĥ2
〉
−
〈
Ĥ
〉2

is close to zero. In the course of the procedure, one can start

first with small dimensions of the matrices and then in later iterations sub-
sequently increase while monitoring the discarded weight. This allows one
to control the calculation, for further details, see [138].

Note that, up to now, all that was said is exact and independent of the dimen-
sionality or connectivity of the lattice. However, it is found that the DMRG
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and its MPS variants work best in 1D systems. To elucidate the reason for
this behavior, we have to go deeper into quantum information properties
and revisit the Schmidt decomposition Eq. (2.4) and the truncation of the
basis mentioned there. Often, even for large 1D systems with hundreds or
sometimes even thousands of lattice sites, the order of only m ∼ 1000 basis
states need to be kept for obtaining a discarded weight ε ∼ 10−9. This is
an impressive reduction of the needed computational efforts and is the main
reason for the success of the DMRG. In order to be able to work with such
small values of m, however, the singular values in the Schmidt decomposition
need to be ‘well behaved’, i.e., many of the singular values should have values
close to zero or of the order of machine precision (typically ∼ 10−16). The
best case scenario is that only a hand full of singular values are substantially
larger than zero. It turns out [139, 140] that for gapped 1D strongly corre-
lated systems the singular values decay exponentially, so that indeed a small
value of m can be used.

The behavior of the singular values is intimately related to the entanglement
present in the system. For a pure state, the von Neumann (or entanglement)
entropy is a good measure for quantifying the entanglement present in the
system [183]. For a bipartition at site ` it is given by

S` = −TrA/B%` ln %` = −
∑
i

s2
i ln s2

i . (2.11)

For a pure product state, one of the singular values s1 = 1, and the others
are exactly zero, leading to S` = 0. Obviously, the DMRG/MPS algorithms
are expected to work best in this case. On the other hand, in a maximally
entangled state, all the singular values have (per definitionem) the same value
with s2

i = 1/d` for a bipartition where the smaller subsystem has ` sites. In
this case, S` = ` ln d becomes maximal, and any cutoff to m states leads to
a substantial error since all basis states in the Schmidt decomposition have
the same importance. Hence, the larger the entanglement in the system,
the larger the number of states m needed to reach a certain accuracy. The
best case for the DMRG/MPS algorithms is therefore a system which is not
too strongly entangled. In [37] it is shown that this is the case in gapped
1D systems since here S` = const. for ` larger than the correlation length.
The representation of |ψ〉 can therefore be exact with a small value of m
since in the derivation of Eq. (2.2) the rank of the matrices Aσi played
a role, which can be small if many singular values are zero. Gapless 1D
systems are already more difficult to treat since here according to Eq. (1.3)
the entanglement entropy grows logarithmically with `. Hence, the above
statement that the representation of |ψ〉 can be exact with a small value of
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m does not hold any more, but a good approximation with small discarded
weight can be obtained for large enough values of m.1 The observation of a
constant entanglement entropy for gapped 1D systems is a manifestation of
the area law of entanglement, according to which the entanglement present
in the system is ∼ D−1, i.e., to the surface of the subsystem2 [145, 185]. In
higher dimensions, the situation is therefore worse and the question arises for
a better representation of the wave function which takes into account the area
law correctly. In the next section, I briefly discuss the PEPS ansatz which
is a straight-forward generalization of MPS to higher dimensions taking into
account the entanglement area law.

At the end of this section, let us briefly discuss two aspects which have been
found to be useful for the treatment of translationally invariant systems and
for systems with long-range interactions. In the presence of translational
invariance, one can revisit the MPS wave function for systems with periodic
boundary conditions (2.8), in which we had chosen all the matrices Aσi to
have the same dimensions. Going one step further, one realizes that in the
presence of translational invariance, all of these matrices are identical. Hence,
it is possible to formulate algorithms in which only a few matrices (sufficient
to describe the unit cell of possibly emerging patterns in the system) are
optimized and by periodic repetition of this small number of matrices one
can directly compute expectation values of observables in the thermodynamic
limit.

In order to compute observables, and also to perform the optimization pro-
cedure, one needs to apply operators to MPS. This is done by formulating
them in terms of matrix product operators (MPO). The basic idea is to recast
the operator into an expression in terms of local matrices, similar to the MPS
idea. For a generic operator, this leads to the form

Ô =
∑

σ1,...,σN
σ′1,...,σ

′
N

Wσ1,σ′1 Wσ2,σ′2 · · ·WσN−1,σ
′
N−1 WσN ,σ

′
N |σ1, . . . σN〉 〈σ′1, . . . , σ′N | .

(2.12)
For periodic boundary conditions, the same extension as in Eq. (2.8) is ob-
tained. To discuss the technical details when applying the MPOs to MPS

1When treating finite systems, one always has a finite size gap, so that in practice
one is always dealing with gapped systems which are more beneficial to the truncation.
However, close to a gapless point (e.g., a phase transition) or in a critical phase, the value
of m can grow substantially also in 1D.

2Note that the entanglement can grow even faster with an additional logarithmic factor,
e.g., in critical 1D systems discussed previously, see Eq. (1.3), and in critical 2D systems
as discussed in [145, 184].
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would lead to far at this point, and I refer again to the review [138]. Let
me illustrate the power of the MPO formulation on a concrete example. In
my contribution [SRM5] (attached in the second part of the thesis), we fol-
lowed [186, 187] and use this formulation for efficiently treating systems with
dipolar long-range interactions. As discussed in more detail there and in the
supplementary material of [SRM5], this leads to a very accurate representa-
tion of the Hamiltonian of the long-range systems, resulting in a substantial
speed up of the calculations. Despite the interactions going over long dis-
tances, this approach allowed us to treat systems with as many lattice sites
as in a comparable system with short-ranged interactions.

2.2 Projected Entangled Pair States (PEPS)

As discussed above, one major problem when dealing with systems in spatial
dimensions D > 1 is the area law of entanglement which makes it necessary
to keep a large number of basis states in order to obtain a sufficiently small
discarded weight. One approach to overcome this problem is therefore to
generalize the MPS state to an ansatz which can better capture the entan-
glement in the higher dimensional systems. This is realized by the so-called
’PEPS’ ansatz (projected entangled pair states) [155, 159]. In the following I
summarize briefly the main features of this ansatz following the presentation
in [155].

The basic observation is that in an MPS ansatz, the number of degrees
of freedom captured by the approach is bounded by the introduced cutoff
m. However, due to the area law, the number of needed degrees of freedom
needed to describe the behavior of the subsystem has to scale as the boundary
of the subsystem, so that the states needed to keep the discarded weight
small grow exponentially with the size of the boundary. The goal is, hence,
to formulate an ansatz which captures this exponential growth of the number
of degrees of freedom.

The PEPS are, as the MPS, a generic ansatz which allow to represent
any quantum state. For the sake of simplicity, I will focus on PEPS on
a square lattice, generalizations to further geometries and higher dimensions
are straight forward. Let us start by representing each site i by four auxiliary
systems ai, bi, ci and di. Let us choose them each to be in a maximally entan-
gled state with one of the four neighbors of the site, respectively. The PEPS
is obtained by applying an operator Q̂i to map the four auxiliary systems to
one physical site with dimension of the site basis d. The coefficients of the
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resulting state are formulated as contractions of tensors, which are related
to the operator Q̂i on the site via

[Ai]
k
l,r,u,d =

〈
k
∣∣∣Q̂i

∣∣∣ l, r, u, d〉 ; (2.13)

I denote by |k〉 the d physical states on the site, and introduce four virtual
indices l, r, u, d with dimension m. Hence, similar to the MPS ansatz in
which we introduced local matrices Aσi , we have now introduced local ten-
sors attached to site i. The PEPS is obtained by contracting the tensors by
a scheme which mimics the underlying lattice structure. In our case, the four
virtual indices are related to the left, right, upper and lower bonds emanat-
ing from the respective neighboring sites. The coefficients of the PEPS are
obtained by joining the tensors in such a way that all virtual indices related
to the same bonds are contracted. With F(·) the function which performs
this contraction, we can finally formulate the PEPS wave function as

|ψ〉 =
d∑

k1,...,kN=1

F
(

[A1]k1 , . . . , [AN ]kN
)
|k1, . . . , kN〉 . (2.14)

Note the resemblance to the MPS Eqs. (2.2) and (2.8). However, the gen-
eralization using tensors now allows to generalize this construction to any
lattice shape and dimension, and for bond dimensions m large enough, any
quantum state can be written as a PEPS. Note that now the entanglement
area law is captured: in contrast to the MPS, the number of bonds connecting
the subsystem and the rest of the system is now proportional to the surface
of the subsystem. Hence, each bond can stay at a smaller bond dimension
and still capture effectively the entropy, so that a good approximation of the
wave function can be obtained at smaller values of m. Indeed, Hastings [188]
has shown that every ground state of local quantum spin Hamiltonians can
be efficiently represented by a MPS (and hence also a PEPS) also in higher
dimensions with bond dimensions m scaling sub-exponentially with the num-
ber of spins of interest. Interestingly, he also shows that all thermal states
have an efficient representation in terms of MPOs. Therefore, MPS, PEPS
and MPOs seem to form the relevant manifold for describing the low-energy
behavior of quantum spin systems. At the moment, an important task is
to obtain efficient implementations of algorithms for optimizing PEPS wave
functions allowing one to treat bond dimensions large enough for exploring
interesting behavior in a rather unbiased way similar to the progress obtained
by the DMRG for 1D systems.

To conclude, let us remark that it is possible to formulate the PEPS |ψ〉
directly in the thermodynamic limit in the presence of translational invari-
ance by keeping as many tensors as needed to capture the unit cell of the
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periodic pattern in the system. This variant, coined iPEPS [161], seems at
the moment to lead to the most stable and efficient formulation of algorithms
for optimizing PEPS wave functions and has been applied in the context of
various systems, see, e.g., [168–176]. Let me illustrate the possibilities of
this approach on the example of my own contribution [SRM3] (attached in
the second part of the thesis) in which the 2D Shastry-Sutherland lattice in
a magnetic field is analyzed using various methods, including the standard
DMRG and iPEPS. The results of these three numerical methods agree very
well. However, since the iPEPS are working directly in the thermodynamic
limit, it is possible to avoid problems with the commensurability of the re-
sulting periodic structures on the system and gain a better control on the
behavior of the full 2D system without need for performing a difficult finite
size scaling analysis. The prize needed to be paid is that the computations
need to be done with a variety of possible unit cells, always leaving the pos-
sibility open that even larger unit cells could be a better solution of the
system.

2.3 Exploring out-of-equilibrium systems with

the adaptive time-dependent DMRG

An important breakthrough in the development of numerical methods for sys-
tems out-of-equilibrium was achieved in the years 2003–2004. The DMRG
can be extended to the adaptive time-dependent DMRG (adaptive t-DMRG)
[189–194] which allows for the efficient and accurate treatment of non-equilib-
rium situations [195]. My own contribution [SRM38] and the time-step tar-
geting approach of Ref. [196] pursue the development of variants of the
adaptive t-DMRG; in particular, [SRM38] shows how to combine the adap-
tive t-DMRG with a Krylov-space representation of the time evolution op-
erator. This allows for a larger flexibility of the method (for further details
see below and my PhD thesis [SRMPhD]), e.g., for treating systems with
long-range interactions as in my contributions [SRM2] and [SRM6, SRM10]
(attached in the second part of the thesis). It is possible to extend the adap-
tive t-DMRG to treat finite temperature properties [197, 198] by performing
an imaginary time evolution on a purification of the thermal density matrix
by adding an ancilla space to the system or by directly implementing the
thermal density matrix using MPOs [198, 199]. This can be used to compute
observables and thermodynamic properties, and also to obtain dynamical
spectral functions at zero and finite temperatures [192, 200–203] by comput-
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ing the Fourier-transform of time dependent correlation functions; alterna-
tively, a combination of the finite-temperature Lanczos approach [204, 205]
with DMRG has been proposed which requires stochastic sampling [206]. In
[207] it is demonstrated that performing the real-time evolution backward
in time on the ancilla space leads to a smaller growth of entanglement so
that longer times can be reached. Alternative approaches work directly in
frequency space at zero temperatures, e.g., the so-called dynamical DMRG
(DDMRG) [208–210]. In a recent own contribution it is shown how to for-
mulate a Liouvillian approach for the calculation of dynamical spectral func-
tions at finite temperatures directly in frequency space with a high resolution
[SRM1] which also gives a natural framework to the backward time evolution
on the ancilla space of [207]. Further developments of the adaptive t-DMRG
treat dissipative systems either by exploiting the properties of the superop-
erator algorithm [197, 198], by using a formulation of the t-DMRG in the
Heisenberg-picture [211, 212], or by combining the t-DMRG with quantum-
trajectory-approaches [213] (see also the viewpoint [214]).

Since the adaptive t-DMRG has become an important tool for treating
nonequilibrium situations of low-dimensional quantum many body systems,
I want to quickly review it with its most important variants, following the
presentation in [138]. In most of the cases one uses one of two variants
for computing the time evolution within MPS/DMRG approaches [SRM38].
The first one relies on the Suzuki-Trotter decomposition of the time evolution
operator, e.g., to first order

e−iĤ∆t = e−iĥ1∆t e−iĥ2∆t · · · e−iĥL−2∆t e−iĥL−1∆t +O
(
[∆t]2

)
; (2.15)

here we assumed that only nearest neighbor interaction terms come into play
and that the Hamiltonian of a 1D system with L lattice sites can be written
as Ĥ =

∑L−1
i=1 ĥi with the local operators ĥi acting on the bonds. For nearest

neighbor interactions, the time evolution operators on the odd bonds and on
the even bonds, respectively, mutually commute, so that we can group them
to Ûodd = e−iĤodd∆t and Ûeven = e−iĤeven∆t, respectively. The time evolution
on either the odd or the even bonds can now be computed in a single step by
formulating the MPO for either Ûodd or Ûeven and applying first the one to
the MPS representing |ψ(t)〉, and then the other3. The algorithm can then
be summarized as follows:

3In the standard DMRG formulation, one can perform half a sweep to apply Ûodd and
afterwards another half sweep back throughout the system to apply Ûeven.
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1. Apply the MPO for Ûodd to |ψ(t)〉.

2. Apply the MPO for Ûeven to the result of the previous step. The result
is |ψ(t+ ∆t)〉.

3. Compress |ψ(t+ ∆t)〉 from dimensions d2D to D and monitor the error.

4. Compute the observables at time steps of interest by evaluating
〈
Ô(t)

〉
=〈

ψ(t)
∣∣∣Ô∣∣∣ψ(t)

〉
.

5. Continue with step 1. until the final time Tmax of the simulation is
reached.

More details can be found in Ref. [138]. Note that two main error sources
come into play: 1) the error of the Trotter-Suzuki decomposition; 2) the error
from the compression (or basis truncation in the standard DMRG language).
While the first can be accommodated with by going to, e.g., higher orders
or using smaller time steps, the second one is a more fundamental problem
intrinsic to interacting quantum systems. In the course of the time evolution,
the entanglement typically grows, so that D needs to grow with time; typi-
cally, an exponential growth in time is found. Therefore, the times reachable
are quite restricted, and typically time scales ∼ 10− 100 in the units of the
energy can be reached. In order to reach longer times, it is beneficial to try to
start from a state which is close to a product state, so that the entanglement
in the initial state is minimized. As shown in my own contribution [SRM17]
(attached in the second part of the thesis), for an initially dimerized system
in this way times ∼ 200 in the units of the energy could be reached.

The approach we discussed so far relies on the Trotter-Suzuki decomposition
of the time evolution operator and on the fact that the Hamiltonian consists
only of nearest-neighbor terms. It is possible to treat systems with longer
range interactions by formulating MPOs for more than a single bond, or by
using an alternative Krylov-space approach in which the time evolution oper-
ator is projected onto a basis of so-called Lanczos vectors. In this approach,
the iterative procedure

|vn+1〉 = Ĥ|vn〉 − αn|vn〉 − β2
n|vn−1, 〉 (2.16)

αn =
〈vn|Ĥ|vn〉
〈vn|vn〉

; β2
n =

〈vn|vn〉
〈vn−1|vn−1〉

(2.17)

forms a basis of vectors {|vn〉} which can be used to represent the time evolu-
tion operator (for more details, see, e.g., my contributions [SRM37, SRM38]
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and references therein.) One can now set |v0〉 ≡ |ψ(t)〉 and compute

|ψ(t+ ∆t)〉 ≈ Vne
−i∆tTnV†n|ψ(t)〉, (2.18)

where Vn is the matrix containing the vectors |vn〉 in the columns and Tn

the Hamiltonian represented in the basis {|vn〉}, which takes a tridiagonal
form. In this approximation, the Hamiltonian can be of arbitrary range and
this ansatz can be used to compute the time evolution for systems with long-
range interactions as, e.g., shown in my contributions [SRM2] and [SRM6,
SRM10] (attached in the second part of the thesis).

With this, I close my quick overview on numerical methods in the framework
of matrix product state ansatzes. The following chapters discuss examples for
interesting behavior uncovered using the DMRG and the adaptive t-DMRG
in equilibrium as well as out-of-equilibrium in the context of quantum mag-
netic materials and of quantum simulators realized on optical lattices.



Chapter 3

Quantum Magnetism in Strong
Magnetic Fields

As mentioned in Ch. 1, an interesting class of strongly correlated systems is
found in so-called quantum magnetic materials. The interplay of interactions,
lattice geometries and external fields opens a vast playground for realizing
interesting scenarios with unconventional phases of matter as well as unusual
phase transitions.

3.1 Unconventional Phases and Quantum Crit-

ical Behavior

Inspired by quantum magnetic materials, microscopic models have been for-
mulated, and in addition to their possible realization in the materials, it is
interesting per se to investigate their properties and search from the theo-
retical perspective for new, unconventional behavior. An example for which
I obtained the complete phase diagram (see my contribution [SRM25] at-
tached in the second part of the thesis) is the S = 1 Heisenberg-type chain
with additional biquadratic interactions in a magnetic field,

H =
∑
i

[
cos(θ)~Si · ~Si+1 + sin(θ)

(
~Si · ~Si+1

)2
]
−B

∑
i

Szi , (3.1)

the so called bilinear biquadratic Hamiltonian (BLBQ). Here, the simple
Heisenberg model of Eq. (1.1) has been extended by a term which also
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Figure 3.1: Example for an unconventional state realized in low-dimensional
spin systems: sketch of a ferroquadrupolar state (taken from my contribu-
tion [SRM25], attached in the second part of the thesis; c© by APS). Note
that for this type of ordered state, the SU(2) symmetry of the system can
be spontaneously broken while the local magnetizations remain zero. The
emergent order can be visualized as fluctuations around the directors which
in this case align parallel to each other.

conserves the SU(2) symmetry of the system, but acts as a competing in-
teraction. As discussed in [SRM25] the resulting phase diagram is indeed
rich. Here, I want to highlight one feature, namely the uncovering of a
ferroquadrupolar Luttinger liquid (LL) phase [depicted in Fig. 3.1] realized
at finite magnetic fields. Such a phase is one possible realization of spin-
nematic quasi long range order (QLRO) in 1D1. In higher dimensions, this
would correspond to an ordered phase with local order parameter in which
the SU(2) symmetry of the system is spontaneously broken without simulta-
neously breaking time reversal invariance as in a system with magnetic long
range order2. In model (3.1), this phase undergoes an unconventional contin-
uous pair-unbinding transition with central charge c = 3/2 to the well-known
Luttinger liquid realized in the magnetized Haldane phase [218]. Although
at finite magnetizations the value of the central charge is the same as at the
integrable point θ = −π/4 at zero field, at which the system is described by a
SU(2)2 Wess-Zumino-Witten-Novikov theory, the value c = 3/2 in this case
is not due to the extended SU(2) symmetry. Instead, my findings indicate

1At zero temperature, in higher dimensions continuous symmetries can be sponta-
neously broken and so lead to ’true’ long range order. In 1D, however, this is forbidden
by the Mermin-Wagner-Hohenberg theorem [215–217].

2Strictly speaking, with a finite magnetic field the SU(2) symmetry of the system
has already been reduced to U(1), and a finite magnetization can be present without
spontaneously breaking the SU(2) symmetry. Nevertheless it is interesting to see that the
spin nematic correlation functions become dominant, so that this nomenclature for the
phase can be used. Details are discussed in [SRM25] attached in the second part of this
thesis.
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that the transition realizes a combination of a LL with c = 1 and an Ising
transition which adds a contribution of c = 1/2.

Other systems showing interesting quantum critical behavior in magnetic
fields are S ≥ 1/2 frustrated Heisenberg ladders, in which the geometri-
cal frustration leads to a series of magnetization plateaux (the number of
which depending on the value of S) and phase transitions on the plateaux,
see my own contribution [SRM27] attached in the second part of this thesis
and references therein. Going beyond these (quasi)-1D geometries, uncon-
ventional behavior in magnetic fields is studied in the context of the quan-
tum magnetic material SrCu2(BO3)2 which is a very good realization of the
Shastry-Sutherland lattice [219] depicted in Fig. 1.1(b) [11, 12]. My own
contributions [SRM3, SRM11, SRM16] attached in the second part of this
thesis address the T = 0 phase diagram of this system. In Ref. [SRM11], the
phase diagram at finite magnetic fields for a quasi-1D version of the lattice is
obtained. Interestingly, an unconventional Mott-insulator which is a Wigner
crystal of bound states of triplons is uncovered, realized on a magnetization
plateau for intermediate values of the couplings which are not amenable to
perturbative approaches. In [19], it is argued that such a bound state of
triplons cannot be realized in the Shastry-Sutherland system, so this finding
in a quasi-1D version of the model is quite interesting. In the meantime,
using iPEPS it has been confirmed that, indeed, it is possible to have such
bound states of triplons also in the full 2D system where they realize in-
teresting Mott insulators on magnetization plateaus [172, 173]. [SRM11] is
an interesting contribution not only because of the finding of this unconven-
tional Wigner crystal, but also from the methods side. In order to obtain
the phase diagram, it was essential to combine an analytical perturbative
approach (‘perturbative continuous unitary transformations’, PCUTs [220])
with the DMRG. The latter encounters difficulties due to subtle boundary ef-
fects, convergence issues due to the strongly dimerized nature of the system,
and commensurability issues for the states with a unit-cell different from the
one of the original system. These are, essentially, the difficulties one will
encounter with any variational method when treating finite (quasi-)2D lat-
tices. In this specific case, the convergence difficulties could be overcome
by invoking some modifications during the sweeps or by adding additional
interactions. For the interpretation of the results, it was crucial to perform a
careful analysis of the numerical data based on the analytical results obtained
in the perturbative limit, and with this knowledge at hand, the behavior in
the intermediate regime could be analyzed, leading to the uncovering of the
aforementioned unconventional Mott-insulator state. In the meantime, we
have extended the study to treat tube geometries which are broader in the
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transverse direction, see my contribution [SRM16] attached in the second
part of the thesis. Again, a combination of the perturbative approach and of
the DMRG was very helpful in identifying the physical state and the mecha-
nisms leading to its realization, in particular on some magnetization plateaus
which are now seen to be understood in terms of highly delocalized and en-
tangled structures. Interestingly, in this case it was the DMRG guiding the
development of effective models: in the simple PCUT effective model, the
ground state energy per site at a magnetization plateau at M = 1/8 is slightly
higher than the DMRG result, with a difference of only ∼ 10−4J . However,
the structure of the associated Mott insulator is completely different from
the DMRG result. This spurred the development of more accurate effective
models including correlated hopping terms (see [SRM16] for more details).
This leads to a lowering of the energy by ∼ 10−4J , and a structure of the
magnetization plateau which now is in very good agreement to the DMRG
result. The delocalization of triplons due to the correlated hopping then
leads to the aforementioned highly entangled structures.

My contribution [SRM3] (attached in the second part of the thesis) aims
directly at the study of the 2D system by combining a variety of methods, in
particular also the DMRG and iPEPS, and a comparison to experiments in
magnetic fields up to 118T is provided. From [172, 173] the impression arises
that the iPEPS is particularly suited for treating such strongly dimerized
systems, and, indeed, the standard DMRG results of [SRM3] support the
picture obtained from iPEPS: The DMRG calculations in [SRM3] are done
with periodic boundary conditions in both spatial directions. Although this
is a very difficult situation for the DMRG, in this case the dimerization helps
because it leads to a structure closer to a product state of dimers than in other
systems and hence to a lower entanglement. Computing the magnetization
curve is then feasible with a good accuracy since only ground state energies
at the specific values of the magnetization need to be performed (for more
details see the supplementary material attached in the second part of the
thesis right after [SRM3]). The DMRG approach working on finite systems
is hence complementary to the iPEPS approach which is working directly in
the thermodynamic limit, but plagued by the uncertainties on the size of the
unit cells involved and possible convergence issues due to the complexity of
the algorithm. The agreement between the results of these two approaches
(and also further methods) in [SRM3] allows us to make theoretical predic-
tions and compare to the experimental findings. The excellent agreement
of the theoretical and experimental results (also concerning the sequence of
magnetization plateaus up to magnetization M = 1/2) leads us to conclude
that the ratio of the inter- and intra-dimer couplings J ′/J ≈ 0.63, and to
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Figure 3.2: (a) The natural mineral Herbertsmithite is the until now best
known realization of a Heisenberg S = 1/2 system on the kagome lattice [13].
However, the material contains∼ 5% nonmagnetic impurities and anisotropic
DM interactions due to spin-orbit coupling (picture from Wikipedia). (b)
The lattice with one impurity and the orientation of the DM-vectors used in
our study [SRM28] (picture taken from this publication; c© by APS).

predict that the phases between the plateaux could be supersolids.

3.2 Effect of Spin-Orbit Coupling at High Mag-

netic Fields

The models mentioned so far are often minimal models. However, in real
materials additional effects like spin-orbit coupling are present. In the sec-
ond part of this thesis, some of my own contributions are attached which
focus on a more realistic modeling of such materials. These address S = 1/2
ladder systems [SRM14, SRM30] (see Fig. 1.1(a)), the kagome material Her-
bertsmithite [SRM28] (Figs. 1.1(c) and 3.2), and the S = 1/2 chain material
Cu-PM (copper pyrimidine dinitrate [SRM12, SRM1], Fig. 3.3). A common
aspect of these materials is the presence of spin-orbit couplings, which in
a magnetic field can alter the physics of the system significantly [221], but
usually have been neglected in the past due to their smallness. In order
to obtain a more realistic description, it is necessary to consider this effect
by treating additional anisotropic interactions of the Dzyaloshinskii-Moriya

https://en.wikipedia.org/wiki/Herbertsmithite
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(a) (b)

Figure 3.3: (a) Crystal structure of Cu-PM (copper pyrimidine dinitrate),
a S = 1/2 spin chain material with DM interactions and alternating g-
tensor. (b) Comparison of ESR spectra (symbols) and DMRG results (solid
line) from my own contribution [SRM12] (attached in the second part of the
thesis. Both figures are taken from this publication; c© by APS).

(DM) type [222, 223],

HDM =
∑
〈i,j〉

~Di,j ·
(
~Si × ~Sj

)
. (3.2)

This term arises in the strong coupling limit of the fermionic Hubbard model
(1.5) when taking into account spin orbit coupling ∼ ~L · ~S. Note that, in
contrast to the Heisenberg term (1.1), the DM interaction is antisymmetric
upon exchange of the spins and breaks the SU(2) symmetry. On dimers, this
leads to a mixing of the singlet and the triplet sectors and can so lead to new
interesting effects.

My contributions cover various aspects of the effects of DM interactions in 1D
systems, ladder systems and 2D kagome systems: Contribution [SRM14] (at-
tached in the second part of the thesis) addresses how DM interactions affect
torque measurements of the magnetization in experiments. Interestingly, pro-
nounced peaks at the ends of magnetization plateaux can be realized which
we propose to use for high precision measurements of the endpoints of magne-
tization plateaux. My contribution [SRM28] (attached in the second part of
the thesis) sheds some light onto NMR experiments on the kagome material
Herbertsmithite by addressing a kagome system in the presence of nonmag-
netic impurities and DM interactions using exact diagonalizations. Our find-
ings support that the findings of NMR experiments at low temperatures (in
particular a remnant line shift indicating the presence of two different mag-
netizations at the low field strengths used) [224] can be directly explained
by the presence of DM interactions. Our results indicate the strength of the
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DM interaction to be of the order of 0.06 . | ~D/J | . 0.1, in agreement with

ESR measurements [225] which find | ~D/J | ∼ 0.08. My contribution [SRM12]
(attached in the second part of the thesis) provides a direct comparison of ex-
perimental and numerical DMRG data for CU-PM which is a 1D Heisenberg
S = 1/2 chain material with DM interactions [226, 227]. The experiments go
up to field strengths ∼ 60T, identifying unconventional behavior of the gap.
This behavior can be understood by an effective sine-gordon model which
predicts various soliton- and breather-like excitations [227–231] which, how-
ever is predicted to be valid rather at low magnetic fields. The agreement
between the DMRG and the experimental results confirms the validity of
the underlying microscopic model for this system, i.e., that the description
in terms of a Heisenberg chain with additional DM interactions is valid for
all values of the magnetic field. The recent contribution [SRM1] takes this
model as an example for demonstrating the accuracy of a recently devel-
oped Liouville approach to compute dynamical spectral functions at finite
temperatures directly in frequency space. It will be interesting to compute
ESR line shapes to make predictions for this and further systems for ongo-
ing and future experiments. Note that for the Shastry-Sutherland system
SrCu2(BO3)2, DM interaction is also of relevance [232–237], but we have ne-
glected it at the present stage and instead have focused on the crossover from
quasi-1D to 2D as described in the previous section.

It remains a challenge to apply numerical methods to further interesting
quantum magnetic systems in the future. With increasing experience and
optimization of the codes and methods, it is well imaginable that on an
intermediate time scale further interesting insights can be obtained in 2D
systems, e.g., in the uncovering and characterization of spin liquid phases.
The hope is that these approaches are complemented by quantum simulation
of the systems in experiments with ultracold gases on optical lattices which
I will describe in the next chapter.
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Chapter 4

Quantum Simulation with
Ultracold Atoms and
Molecules

As we have seen in the previous chapters, there is a lot of interesting be-
havior in correlated systems. Unfortunately, they are often very hard to
describe theoretically, even with elaborate numerical tools like the ones pre-
sented in Chapter 2. An alternative was envisaged by Y.I. Manin and most
prominently by R.P. Feynman at the beginning of the 1980s in quantum
computation and for particular problems so-called quantum simulators [78–
81]. These are experiments aiming at the realization of the same or similar
behavior as the system of interest (e.g., a frustrated spin model), however,
in an experimental setup which is easier to study than the original one (e.g.,
some material which is plagued by defects). This is explored in ongoing
experiments with ultracold atomic and molecular gases on optical lattices
which directly aim at the realization of microscopic models as the ones dis-
cussed above in a condensed matter context, see e.g. [1, 2, 238, 239]. The
goal is to reach insights into yet open questions, e.g., in the context of high-
temperature superconductivity, and to realize novel behavior, as, e.g., new
states of matter. Major challenges are the realization of t–J and fermionic
Hubbard models on optical lattices and to cool them down to temperatures
low enough to be able to observe the interesting behavior [239–241]. At this
point, I want to highlight two recent developments which are very promising
concerning the realization of unconventional states of matter in such quantum
simulators: the first development allows for the realization of systems with
enhanced SU(N) symmetry (specifically, the SU(N) symmetric version of the

35
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Hubbard model, (1.8)) by cooling down alkaline earth atoms. The second
development uses ultracold polar molecules instead of gases of atoms on opti-
cal lattices. As further discussed below, this allows for the realization of spin
systems (e.g., the Heisenberg model (1.1)) and a generalized version of the
t-J-model (1.7). My own contributions to the field can be divided into three
groups: i) [SRM22] (attached in the second part of the thesis) and [SRM8]
deal with properties of SU(N) Hubbard like systems. ii) [SRM10, SRM5,
SRM6] (attached in the second part of the thesis) and [SRM24] discuss ef-
fective models for ultracold polar molecules on optical lattices and how to
probe the behavior through non-equilibrium dynamics. iii) [SRM10, SRM6,
SRM13, SRM17, SRM18, SRM20, SRM21, SRM23, SRM29] (attached in
the second part of the thesis) and [SRM2, SRM15, SRM19, SRM32] and the
submitted [SRM39] deal with various aspects of the non-equilibrium dynam-
ics in setups which are of direct relevance for existing quantum simulation
experiments or which can be probed in possible future experiments. In this
chapter, I will focus on aspects i) and ii) while the next chapter will further
discuss the non-equilibrium dynamics.

4.1 Alkaline Earth Atoms Realization of SU(N)

Symmetric Systems

The first type of quantum simulators exploits the fact that alkaline earth
atoms have an even number of electrons in the outer shell. The total elec-
tron spin is then zero and, hence, there is no coupling between the nuclear
and the electronic spin. This leads to degenerate hyperfine levels of the
atoms with degeneracy N = 2I + 1 for a given value of the nuclear spin
I. The largest number of degenerate states for this type of experiments is
realized by 87Sr with nuclear spin I = 9/2, leading to N = 10 degenerate
levels. In the experiments, these levels can be addressed and populated in-
dividually, so that for a setup using 87Sr one can realize N ≤ 10 degrees of
freedom (or ‘flavors’) per atom. When two of the so prepared atoms scat-
ter, one finds that the population of these levels remains unchanged, which
directly leads to a realization of SU(N) symmetric versions of the fermionic
Hubbard model (1.8) [66]. This is very interesting, since for the first time
this is a way to realize in a controlled way systems with up to N = 10
on various types of lattice geometries. Experimental groups have reported
the realization of degenerate quantum gases of such alkaline earth atoms,
see e.g., [242–246] (for a recent review on the present status of experimen-
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tal and theoretical progress see [247]). Interesting for experiments is also
that, similar to Pomeranchuk cooling [248], the larger number of degrees of
freedom per site leads to a stronger cooling effect than in SU(2) systems
[109, 249, 250] (see also my own contribution [SRM8]). It appears easier to
reach temperature regimes relevant for the realization of interesting quan-
tum many body states when increasing N , and first experiments support
this prediction [244]. From the theoretical side, SU(N) systems have been
considered in the past as an interesting generalization of the standard SU(2)
Hubbard or Heisenberg model, and a number of numerical studies for low-D
systems is available, e.g., [85, 87, 91, 96, 99, 101, 106, 116, 122, 134, 251] and
my own contribution [SRM22] (attached in the second part of the thesis). A
lot of interest has been created by the possibility of observing spin-nematic
states [54, 56] (see chapter 1), generalizations of the AKLT valence-bond-solid
state [111, 122, 127–134], and the possible realization of a chiral spin liquid
state [135, 136, 252, 253]. In particular the latter one has been proposed
to be realizable in these experiments for large enough values of N [132]. It
might well be within reach since the experiments can realize up to N = 10.
In my contribution [SRM22] (attached in the second part of the thesis), we
address SU(N) Hubbard chains at commensurate fillings for N ≤ 4 using
the DMRG and at large N using Bethe ansatz (which gives an approximate
solution for N > 2). The results show the behavior of various observables
and indicate that for U/t > 10 a description in terms of a SU(N) Heisenberg
model (1.9) becomes reliable. This is interesting since for the experiments it
is more favorable to be at smaller values of U/t, and our findings can hence
guide experimental setups aiming for the realization of SU(N) spin physics.
Finally, using the fidelity susceptibility (1.4), we obtain indications that the
transition from a metallic to a Mott insulating phase is at finite values of
U/t for N > 2, confirming previous findings from Quantum Monte Carlo and
bosonization approaches [85]. However, as further discussed in my contribu-
tion [SRM20], it later turned out that one probably needs a more elaborate
finite size scaling in order to obtain the transitions with a high accuracy.
At the end of this section, I want to briefly mention a recent important de-
velopment with ultracold alkaline earth atoms, namely the realization of an
optical lattice atomic clock with Sr atoms which has a stability of the order
of 10−18 [254]. These approaches exploit the fact that in an optical lattice a
large number of atoms is addressed at the same time, helping in controlling
the stability and enabling further developments of atomic clocks.
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4.2 Ultracold Polar Molecules for Studying

Quantum Magnetism and Superconduc-

tivity

The second type of quantum simulator I want to highlight is somewhat un-
usual in the sense that it is not using atoms as building blocks, but ultracold
polar molecules [255–268] (see also the viewpoint [269]). The creation of
these molecules at temperatures on the nK scale is a rather intriguing recent
development: using STIRAP techniques (’stimulated Raman adiabatic pas-
sage’, see [268, 270] and references therein), the experimental groups have
succeeded to subsequently transform two initially free atoms cooled to nK
temperatures into a bound state, and then transfer this highly excited state
to the energetically lowest molecular bound state. This development shows
how, in principle, chemical reactions at such low temperatures can be con-
trolled step by step [268].

These molecules have various interesting properties. For example, the ones
formed in the JILA experiment – KRb – [257] are chemically reactive [261],
but due to their fermionic nature, scattering is due to p-wave collisions and
affected by the centrifugal barrier so the reaction rate depends strongly on
the relative orientation of the molecular axis [261, 263]. When confining them
to a plane and aligning the axis parallel to each other, they are practically
chemically inert, so that stable setups are obtained in which life times of the
order of 25s have been measured [271]. Other species (e.g., NaK) are always
chemically inert, which might be advantageous for certain experiments. It is
possible to form fermionic (e.g., the aforementioned KRb) as well as bosonic
molecules (e.g., LiCs [258]). Most prominently, the fact that the molecules
are heteronuclear introduces a rather large dipole moment which couples to
external electrical fields (and which can be used to align them in the afore-
mentioned setups). Most interestingly in the context of quantum simulation,
the dipolar interaction can be directly used to emulate spin exchange, see the
review articles [268, 272] and references therein, and my own contributions
[SRM10] (attached in the second part of the thesis) and [SRM24] which dis-
cuss how to realize Heisenberg-like (1.1) and t-J-like (1.7) models. This is
achieved by populating two (or more) rotational eigenstates of the molecules,
forming a subspace of two (or more) states per molecule. When confining
them onto an optical lattice, each lattice site is now representative for a two-
level system as in a S = 1/2 spin system (or S > 1/2 when populating more
than two rotational eigenstates). The energy scales are typically such that
the population of these levels is stable on the time scale of the experiments,
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so that in a good approximation one can treat the systems as S ≥ 1/2 parti-
cles. The dipolar interaction between the molecules now directly leads to an
interacting spin system [SRM10, SRM24]. The terms of the effective model
are identified by mapping the dipole operator for the interaction between the
molecules onto this subspace, leading to two-body interaction terms decaying
as distance cube. In the case of doping (i.e. less than one particle per site),
the molecules can hop between neighboring sites of the optical lattice, and
when restricting the population of the optical lattice to one molecule per site,
one obtains a generalization of the t-J-model Eq. (1.7),

HtJV W = −t
∑
i,σ

[
f †i,σfi+1,σ + h.c.

]
+
∑
j>i

1

|i− j|3

[
J⊥
2

(
S+
i S
−
j + S−i S

+
j

)
+ JzS

z
i S

z
j

+ V ninj +WniS
z
j

]
.

(4.1)

Note that the kinetic term is short-ranged since hopping is only possible
between neighboring lattice sites. However, the two-body interaction terms
are all long-ranged since they originate from the dipolar interaction between
the molecules. Also note that here we have chosen the fermionic variant.
However, since it is possible to create bosonic molecules, it is also possible
to realize a bosonic version of this model. In the context of KRb, the chem-
ical reactivity does not allow for double occupancy of a lattice site; via a
quantum Zeno effect, [273] (see also my contribution [SRM24]) it is expected
that the high reactivity leads to a suppression of the hopping to an already
occupied site, so that double occupancies are excluded. It is also possible to
consider Hubbard-like on-site interaction terms [SRM24] which can be tuned
to large values so that again double occupancies are excluded. It therefore
appears possible that the experiments can realize in a good approximation
this extension of the t-J model. In a recent contribution, the JILA group has
demonstrated that, indeed, the spin exchange part of (4.1) is realized in on-
going experiments [274]. This observation is based on a prediction from my
own contribution [SRM6] (attached in the second part of the thesis), which
I will address again later.

Let me emphasize that in contrast to the usual t-J model, this effective
Hamiltonian is not the result of a strong coupling expansion of the Hubbard
model, but is obtained directly from the interaction between the particles.
The most eminent differences to the usual t-J model are (i) the long-range
interactions, (ii) the ability to tune independently all parameters by applying
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microwaves and dc electrical fields, and (iii) the possibility to tune away from
SU(2) symmetry. The W -term is rather peculiar and not easily obtained in
a condensed matter context (it has been discussed in the context of variants
of the ’Bariev-model’ and of exactly solvable variants of the t-J model, but
it is unknown to me whether a realization in experimental setups or mate-
rials has been discussed before; see, e.g., [275–281]). It is also possible to
make the interaction direction dependent, which allows for the realization of
compass-like models (see my own contribution [SRM5] attached in the sec-
ond part of this thesis). One expects a rather rich behavior of this model.
In my contribution [SRM10] (attached in the second part of the thesis), we
introduce the effective model and discuss the ground state phase diagram in
the case which appears to be the easiest realization in experiment and treat-
able with DMRG, namely the t-J⊥ chain. In this case, all parameters are
tuned to zero other than the hopping and the J⊥ term. Generally speaking,
the phase diagram of the usual t-J chain is realized (see my own contribution
[SRM26] for a recent DMRG study). However, when working in units of the
hopping t ≡ 1, the superconducting phase is enhanced, and also the spin gap
which in this case measures the binding strength of the pairs of fermions
and hence the stability of the superconducting phase is largely enhanced by
tuning away from the SU(2) symmetry of the Hubbard model and setting
to zero the density-density interaction, V = 0. The question arises if this
observation persists in other configurations and higher dimensions, which is
a topic presently further pursued. My contribution [SRM5] (attached in the
second part of the thesis) shows that symmetry protected topological phases
(see the next section) survive in the presence of long-range interactions on
two-leg ladder systems.

The energy scales for the molecules are larger than the ones in other proposals
for emulating super-exchange interactions with ultracold atoms [282], which
should facilitate the realization of interesting many body states in the ex-
periments. This is encouraging for future emulations of quantum magnetism
and of variants of the t–J-model in these experiments. For the moment,
reaching low enough temperatures and entropies is an ongoing challenge.
However, there is a way to probe spin exchange by going out of equilibrium
as demonstrated in my contribution [SRM6] (attached in the second part of
the thesis). In the experiments presented in [274], the molecules are prepared
in a state which corresponds to all the spins being aligned parallel to each
other, e.g., in the x-direction, and the optical lattice is so deep that tunneling
is suppressed. The time evolution of this initial state is trivial if two-body
interactions are absent, but shows oscillatory behavior in the case of interac-
tions. The experiments show a decay of the amplitude with time which can
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be understood as decoherence, but on top of that, oscillations with periods
in agreement with the prediction from the effective spin model (i.e., (4.1) in
the limit of deep lattices in which tunneling is suppressed, and in the limit
of weak electrical fields, in which case only J⊥ 6= 0) are observed, providing
a strong indication for the realization of spin exchange in these setups.

In the next chapter I will revisit the ability for controlling the non-equilibrium
dynamics in quantum simulators and discuss interesting features of the non-
equilibrium dynamics of quantum many body states. In the remaining part
of this chapter, I will address recent developments in characterizing quantum
phases which have topological properties.

4.3 Topological Phases

States of matter are usually characterized by the Landau paradigm of phases
and phase transitions in which a continuous phase transition and the asso-
ciated phases are obtained by the spontaneous breaking of one (or more)
symmetries of the Hamiltonian and the emergence of a local order parame-
ter [283] (i.e. for quantum systems a local observable exists which could be
zero by the symmetries of the system, but retains a finite value in the thermo-
dynamic limit due to the spontaneous symmetry breaking). This paradigm
has been the framework for understanding phases of matter and phase transi-
tions, until in the 1980s experiments discovered the integer [284] and later the
fractional quantum Hall effect [285, 286] which possess transitions between
states with different conductivities which apparently are not associated to
the spontaneous breaking of symmetries. Subsequently, and also motivated
by the discovery of high-temperature superconductivity [3], a new type of ’or-
der’ was proposed whose phenomenology is not due to the finiteness of some
local order parameter, but in which the phases are characterized by global
characteristics, like the degeneracy of the ground state or entanglement of the
system. This type of order has been coined topological order [67, 287, 288]
since the behavior is captured by topological field theories [289]. The main
characteristics of topologically ordered phases are the presence of degener-
ate ground states, of gapless edge states, and the characterization in terms
of topological invariants which are integer numbers capturing ’topological’
properties of the system and which vary in the different phases. One char-
acteristic of topological phases is that they do not change under continuous
deformations of the system (i.e., the topological invariant does not change
unless one hits a critical point at which the system experiences singular be-
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havior) and are, hence, protected against local perturbations like noise. This
makes these states very interesting for quantum computation in which one
of the biggest challenges is to protect the entanglement between qubits from
decoherence effects due to local noise induced by the environment. This
approach is coined topological quantum computation and is described in the
review article [67].

At the present, obtaining a complete characterization of topological phases
is an ongoing topic of research. However, one can use the following approach
to distinguish between gapped phases [290, 291]: a gapped quantum phase
is characterized by ground states of Hamiltonians which can be smoothly
deformed into each other without closing the gap. An illustrative example
is the S = 1 BLBQ chain (3.1), which at zero magnetic field displays a
gapped phase for −π/4 < θ < π/4; even though at θ = 0 the Hamiltonian
looks much simpler, the system in this parameter range is in the same phase
since the gap closes only at the endpoints of this region. This property can
be rephrased by saying that two ground states belong to the same phase
if they are related by a local unitary transformation. Since local unitary
transformations can only change local entanglement properties but not global
ones, states in the same topological phase are characterized by the same ’long-
range entanglement’. Based on these considerations, the following gapped
phases can be identified:

1. Phases with ’short-range entanglement’:

(a) Topologically ’trivial’ product states.

(b) Symmetry protected topological phases (SPT). In these phases,
local unitary transformations exist which preserve the symmetry
of the state. Short-range entangled phases in which such a sym-
metry is broken are well described by Landau theory. Note that
phases without local order parameter can still belong to differ-
ent SPT phases if they are characterized by different symmetries,
even though in Landau classification they would belong to the
same ’disordered’ phase.

2. ’True’ topological order with ’long-range’ entanglement, existing only
in spatial dimensions D ≥ 2 [290]. These phases are characterized by
anyonic fractionalized excitations, which obey a generalized quantum
statistics and are neither fermions nor bosons [67].

It is possible to characterize topological order by considering entanglement
properties [292, 293], and tensor-network approaches have been introduced
(see, e.g. [294] and the viewpoint [295]). While it is possible to investigate for
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’true’ topological order in 2D using the DMRG (for recent examples on the
kagome lattice see [69–71]), in this thesis we focus on SPT phases which are
often encountered in 1D. My contribution [SRM7] is based on the approach
presented in [296] (and references therein) and demonstrates how topological
invariants in terms of the winding number of Green’s functions can be com-
puted in the presence of interactions, see [297] for the effect of interactions
in 1D on fermionic topological phases. In my contribution [SRM5] (attached
in the second part of the thesis), we address the question for the existence of
SPT phases in the presence of long-range interactions, as realized in quan-
tum simulators with polar molecules, e.g., Eq. (4.1). An SPT phase can
numerically be detected by identifying an excitation gap, zero local order pa-
rameters, and degeneracy of the entanglement spectrum [298] which is given
by the eigenvalues of the Schmidt decomposition Eq. (2.4). As discussed in
[293, 299], in an SPT phase all states of the entanglement spectrum are non-
trivially degenerate due to the symmetry in the system. Other indications
for topological properties can be obtained from diagonalizing transfer matri-
ces from which one can obtain directly the projective representations of the
symmetry group [300], which can be used to further characterize SPT phases
(see also [301] for a nice discussion of this aspect). According to [301–303],
it is possible to distinguish between different SPT phases by applying the
corresponding active operators : if the correct active operator is coupled to
the edge of the system, the ground state degeneracy is lifted. As shown in
my contribution [SRM5], this can indeed be used to distinguish the different
SPT phases obtained from the projective representations. Numerically, it is
easily seen that applying the ’wrong’ active operator does not lift the ground
state degeneracy, while applying the correct one leads to different energies of
the ground states with a difference far greater than the numerical accuracy.
This was used in my contribution [SRM5] to see whether the SPT phases
in a 2-leg S = 1/2 system survive when turning on the dipolar long-range
interactions, as in a quantum simulation of this model with polar molecules.
As can be seen, this is the case, and it will be interesting to see if other topo-
logical phases survive in the presence of long-range interactions and whether
the idea of applying active operators to the edges can be used in experimental
setups for the detection of SPT phases.
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Chapter 5

Nonequilibrium Dynamics of
Quantum Many Body
Systems

The Experiments with ultracold atomic and molecular gases discussed in
the previous chapter can be performed out-of-equilibrium in a highly con-
trolled manner [1, 2, 304]. This opened the way to experimentally study the
nonequilibrium dynamics of quantum many body systems and has spurred
the development of numerical methods such as the adaptive t-DMRG [189–
194] (see also my own contribution [SRM38]) and time-dependent numerical
renormalization group schemes (NRG) [305]. My own contributions to the
nonequilibrium dynamics of quantum many body systems can be grouped in
the following way1:
i) Method development: [SRM38] (noteworthy proceedings article discussing
a Krylov-space version of the adaptive t-DMRG) and [SRM36, SRM37, SRM-
PhD] (review articles and my PhD thesis).
ii) Fundamental questions to the nonequilibrium dynamics of quantum many
body systems: relaxation and thermalization behavior, and causal structures
in the propagation of information in systems with long range interactions
[SRM17, SRM18] (attached in the second part of the thesis), [SRM2, SRM15,
SRM42] and [SRM39] (submitted).
iii) Transport in experiments with ultracold quantum gases [SRM21, SRM23]
(attached in the second part of the thesis) and [SRM32].
iv) Dynamics of quasiparticle excitations following a quantum quench (see

1Note that several papers treat multiple of the topics, so that they are mentioned in
more than one point
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below) at short times and the formation of unconventional metastable states
[SRM29, SRM13, SRM17] (attached in the second part of the thesis) and
[SRM7, SRM19].
v) Approaches for using the nonequilibrium dynamics in quantum simula-
tors for the identification of phase transitions and the validity of effective
models [SRM6, SRM10, SRM20, SRM23] (attached in the second part of the
thesis).

Generally speaking, the nonequilibrium behavior studied in these contribu-
tions can be characterized in two ways: A typical out-of-equilibrium situ-
ation frequently studied is a so-called quantum quench in which the time
evolution of an initial state following the sudden change of one or more in-
trinsic parameters of the system is studied. Examples are the experimental
observation of the collapse and revival of an initial BEC state [304], and
experimental [306, 307] as well as theoretical investigations on the thermal-
ization behavior of these systems, see, e.g., the focus issue in New Journal
of Physics [308] for an overview. My contributions [SRM6, SRM10, SRM17,
SRM18, SRM20, SRM23, SRM29] (attached in the second part of the thesis)
and [SRM2, SRM15, SRM19, SRM39, SRM42] treat this class of nonequilib-
rium situations.

A second class of interesting non-equilibrium problems is realized in transport
setups. The simplest realization in systems on optical lattices is the release
of initially trapped particles from a trap. This has lead to the discovery of
various interesting phenomena, as, e.g., the emergence of (quasi-)coherent
matter waves from initial insulating states (see, e.g., [309, 310] and my con-
tribution [SRM32]), fermionization of bosonic systems [311], the realization
of the quantum distillation effect in which repulsive interactions lead to the
dynamical formation of a metastable low-entropy band-insulating state (see
my contribution [SRM13] attached in the second part of the thesis), and the
breakdown [312] or crossover [313] to diffusive behavior in 2D systems. In a
condensed matter perspective, the crossover from ballistic to diffusive motion
in correlated spin systems [195, 314] has been treated. This is connected to
more general setups in nano- and mesoscopic systems, in which either the
dynamics and the steady state when applying a finite voltage bias, or the
wave packet dynamics through structures (e.g., quantum dots) connected to
leads is treated [315, 316]. At the present, the effect of interactions on the
transport properties in these systems is a topic of ongoing investigations,
and using the t-DMRG some progress has been reported, see, e.g., [193, 317–
324]. My contributions [SRM13, SRM21, SRM23] (attached in the second
part of the thesis) and [SRM7, SRM32] discuss various aspects of transport
on optical lattices.
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A third class of interesting non-equilibrium setups is realized in experiments
for ultrafast spectroscopy of condensed matter systems. In these pump-probe
experiments, ultrashort laser pulses are used to excite the system and to ob-
serve its behavior during or after the excitation [325–333] (see also the Per-
spectives in Science [334, 335]). This is interesting from various perspectives.
It has been reported that due to the excitation process interesting states are
realized, and both, their characterization and the life-time of these states is,
in the great, unknown. In addition, this is a system in which the interaction
between light and matter can be analyzed in detail in a quantum many-body
context.

Here, we will focus on the first two aspects and discuss basic features of the
nonequilibrium situations treated in the publications attached in the second
part of the thesis.

5.1 Relaxation Behavior following a Quan-

tum Quench

One of the fundamental questions in statistical mechanics addresses the emer-
gence of a thermal quasi-stationary state in the course of the time evolution
of some randomly chosen initial state. This is at the heart of the ergodic
hypothesis, which was introduced by Boltzmann as a posteriori justification
for the description of thermodynamical properties by statistical ensembles
and averages. While the dynamics for classical systems is expected to lead
to a thermal state if the system is strongly chaotic in the sense of the KAM-
theorem [336] (i.e., if the dynamics covers the hypersurface of constant energy
in the phase space of the system in a mixing way [337]), it is a priori not
clear if such a statement is true for quantum many body systems, and to
which extend integrability (i.e., the existence of conserved quantities during
the time evolution other than the energy, see also [338] for a discussion of this
notion in the context of quantum many body systems) affects the thermal-
ization behavior. This has been studied in many theoretical approaches, and
a huge body of literature exists. Examples are [339–348] and further work
mentioned below. My contribution [SRM15] was one of the first to deal with
this problem using the t-DMRG providing results for the time evolution with
a high accuracy for systems with up to 100 lattice sites for both, integrable
and non-integrable systems (see also the right panel of Fig. 5.1 from [SRM15]
for an example of relaxation behavior). My contribution [SRM17] attached
in the second part of the thesis extends this study and discusses a controlled
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Figure 5.1: Time evolution of interacting spinless fermions following a sudden
quantum quench. Left panel (taken from my contribution [SRM29] attached
in the second part of the thesis; c© by APS): time evolution of the density-
density correlation function displaying a light-cone effect. Right panel (taken
from my contribution [SRM15]; c© by APS): comparison of the expectation
value of the momentum distribution function in the quasi-stationary state
to a thermal state, the explicit time evolution (left insets), and the effect of
doubling the system size (right insets).

way for breaking integrability. Interestingly, on the time scales and for the
system sizes treated, both studies do not provide clear signatures for ther-
malization, despite the breaking of integrability. It is unclear at the moment
if this is due to the 1D character of the systems which might involve longer
time scales for relaxation to the stationary state, the finiteness of the systems
which makes boundary effects influence the long-time behavior, or whether
there are more fundamental issues preventing these systems from relaxation
to a thermal state. In [SRM17], one particular scenario is closer considered in
which a metastable non-thermal state is realized which, however, eventually
will relax to a thermal state for times long enough. This behavior has been
coined prethermalization [349] and is investigated in a quantum many body
context, e.g., in Refs. [350–353]. As discussed there and in [SRM17], the
quench leads to the creation of metastable quasiparticles which describe the
non-thermal prethermalized behavior, and after the quasiparticles decay or
scatter to each other, the system is expected to finally reach the true steady
state which is a thermal one. In [SRM17], the formation of these quasi-
particles and of the prethermalization plateau is shown in a very precise
way by an excellent quantitative agreement of numerical t-DMRG results to
(semi-)analytical results obtained from a continuous unitary transformations
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treatment [220]. However, the turnover to thermalization is not observed, as
discussed above. A second route to thermalization has been formulated in the
context of Srednicki’s eigenstate thermalization hypothesis (ETH) [348, 354],
and current efforts aim at understanding the importance of integrability and
the connection to quantum chaos in the ETH [355–358].

Note that for systems with spectrum bounded from above, it is possible to in-
troduce the notion of ’negative absolute temperatures’ [359–363]. This notion
is well known since the 1950s in the context of NMR experiments [359, 360]
and essentially relates to the fact that population inversion can be obtained,
i.e., the higher or highest eigenstate can be substantially higher populated
than the low energy eigenstates of the system, a situation which formally
can be associated to a negative sign in the inverse temperature β in a Gibbs-
Boltzmann distribution2 exp(−βH). This situation is similar to the setup
of a laser, but here we consider population inversions which are stable in
time and hence allow for a thermodynamic description. Recently, this has
been studied in experiments with ultracold gases [361] and the findings there
can be interpreted as negative absolute temperature states. In my contri-
bution [SRM18] (attached in the second part of the thesis) we consider the
exact time evolution of the Bose-Hubbard model (1.6) in the so-called hard-
core limit U/J → ∞ which in 1D can be treated exactly by virtue of a
Jordan-Wigner transform [371]. Indeed, we identify stationary states which
can be associated to negative absolute temperatures and the emergence of
this state can be understood in terms of a dynamic symmetry in the Hubbard
model [312]. Depending on the quench, we find that the steady state is cap-
tured by so-called generalized Gibbs ensembles [339] at positive or negative
absolute temperatures, a notion further discussed in [SRM18].

While in the long-time behavior one is mainly interested in the emergence of a
quasi-stationary state and its characterization, on short time scales following
a quantum quench, further interesting aspects come into play. Here, I want
to focus on two aspects discussed in my contributions. In [SRM29] (attached
in the second part of the thesis) and [SRM2, SRM7, SRM39] the propagation
of signals after a global [SRM2, SRM29, SRM29] or a local quench [SRM7]

2There is an ongoing discussion on the validity of this notion (re-)initiated by J. Dunkel
and S. Hilbert [364]. The essential point of these authors’ claim is that only Gibbs’ for-
mulation of the entropy leads to a consistent thermodynamical description which avoids
the notion of negative absolute temperatures, while the usual formulation based on Boltz-
mann’s notion of the entropy allows to introduce negative absolute temperatures; see the
comments and replies [365–368] to Ref. [364] and further recent preprints [369, 370] and
references therein. Here, I take on the standard view and refer to a state with population
inversion stable in time as a state at ’absolute negative temperatures’.
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is described. In all cases, if the interaction is short-ranged, a ’light-cone’ (see
left pannel of Fig. 5.1) is found; in the presence of long-range interactions, the
light-cone can get modified to a non-linear region of causal propagation of in-
formation (see [SRM2] and references therein) and for power-law interactions
with an exponent smaller than the spatial dimension, instantaneous propaga-
tion of information is found. The light-cone follows a prediction by Calabrese
and Cardy [372] based on conformal field theory according to which a light-
cone effect in correlation functions is obtained due to scattering of entangled
quasiparticles created due to the quench. This has been confirmed using the
adaptive t-DMRG in [373] and my contribution [SRM29] (attached in the
second part of the thesis), and the light-cone effect has in the meantime been
seen in experiments on optical lattices [374]. This can be contrasted to the
Kibble-Zurek mechanism [375–377] in which quenches of a finite duration to
a symmetry broken state create stable topological defects separating domains
in which the different vacua of the system get realized, which might be an
alternative scenario also for sudden quenches (see [SRM29] attached in the
second part of the thesis).

The second short-time aspect following a quantum quench lies in the prob-
ing of effective models and of phase transitions in experiments on optical
lattices. As discussed in [SRM10, SRM20, SRM23], I propose to use Bloch
oscillations [378] to get an estimate for phase transition points when perform-
ing the quantum simulation of a quantum many body system for obtaining
its low-temperature phase diagram. The idea is that in different phases the
dynamics is dominated by different types of excitations; e.g., in a supercon-
ductor, the pairs of fermions will dominate the center of mass motion, while
in a metal it will be single fermions, so that by considering the amplitude
and frequency of Bloch oscillations the phase transition can be estimated,
see my contribution [SRM10] (attached in the second part of the thesis) for
numerical findings at low fillings. Also at low fillings, [SRM20] (attached
in the second part of the thesis) manages to obtain a rather good estimate
of the phase transition point in a 1D Bose Hubbard system (1.6) at filling
n = 1. The amplitude of the Bloch oscillations vanishes around the phase
transition point, so that it appears feasible to use the nonequilibrium dy-
namics as indicator for quantum critical behavior3. A further aspect of the
short-time behavior of quantum quenches on optical lattices is that the dy-
namics can be used to identify many-body interaction terms. As proposed
in my contribution [SRM6] and later identified in experiments with ultracold

3This seems to work best at low fillings, the behavior at higher fillings is more involved
and I leave the question open for future research if this approach can be used successfully
there.
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polar molecules [274], a description in terms of an effective spin model (see
Sec. 4.2 for more details) leads to typical short time behavior and oscillations
which have been observed in the experimental work [274] hence indicating
the validity of the effective spin model in this experimental setup.

5.2 Transport on Optical Lattices

Interesting non-equilibrium situations can also be realized when releasing
particles from a trap, applying a voltage bias, or when studying excitations
which remain invariant in shape in the course of the time evolution (solitons).
We will briefly revisit these three nonequilibrium situations in the context of
optical lattices.

When releasing particles from an initial trapping potential (e.g., a box),
one expects them to flow into the empty space and disappear eventually.
However, on a lattice and in the presence of interactions, this is not nec-
essarily true. Both, bosonic [309, 311] (see also my contribution [SRM32])
and fermionic [310] (see also my contribution [SRM13] attached in the sec-
ond part of the thesis) systems have been treated, and interesting behavior
is found: Particles initially forming a Fock state [309] or a trapped Mott-
insulator [SRM32] dynamically create a (quasi-)coherent matter wave when
released from the trap, with a wave vector which depends on the strength
of the interaction. This can be envisaged to realize an atom-laser on optical
lattices with tunable wavelength. When the initial density is high enough,
the ’Quantum Distillation’ effect takes place which is discussed in my con-
tribution [SRM13] (attached in the second part of the thesis; see also recent
experimental work on 1D bosons in the preprint [379]): in fermionic Hub-
bard systems (1.5) for values of the repulsive interaction U/t much larger
than the bandwidth and fillings n & 1.5, repulsively bound pairs [380] are
created which possess a lifetime ∼ U . In the real time evolution, this is seen
as an actual increase of the local density close to the maximal possible value
n = 2, while for free particles the initial state melts away, as expected. In
this way, it is possible to realize a band-insulator of doubly occupied sites in
a Fermi-Hubbard system with a lower entanglement entropy than the initial
state. The question arises for the possibility to use this in cooling schemes
in low-dimensional fermionic systems on optical lattices, but further studies
at finite temperatures are needed.

Typical transport setups are obtained when attaching leads to a system and
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applying a voltage bias, which is equivalent to having an electrical field along
the system or a chemical potential which varies linearly with position. In op-
tical lattices, this can be realized by tilting the lattice and letting the gravi-
tational force pull the particles in one direction. In a solid state system, the
presence of impurities and defects leads to scattering centers which typically
inhibit coherent motion and, in the presence of an external field, eventually
lead to a directed net current [378]. This is not the case in a clean system as
it can be realized in optical lattices: the lack of defects allows for the forma-
tion of coherent motion, and so-called Bloch oscillations are realized. Due to
Bragg scattering, the center of mass performs in the presence of a constant
force an oscillatory motion on the lattice with amplitude depending on the
strength of the applied field and the mass of the particles. This amplitude
can be smaller than a lattice spacing, so that there is no net current flowing
from one end of the system to the other end. While they are an interest-
ing phenomenon per se to study, for investigating transport in such setups
in optical lattices, one needs to find other routes for creating a net current.
In my contribution [SRM23] (attached in the second part of the thesis) we
propose a scheme coined slinky transport, in which a periodic modulation of
the optical lattice leads to a directed center of mass motion, interestingly for
appropriately chosen parameters also opposite to the acting force.

An intriguing type of excitations traveling through a system are solitons
which do not change their shape in the course of the time evolution. The
first observation of a soliton is reported by John Scott Russell in 1834, who
reported a water wave which travelled through the Union Canal in Scotland
for a very long distance barely changing its shape (see, e.g., the corresponding
Wikipedia entry). Solitons and solitary excitations are due to nonlinearities
in the system and it is interesting to study them in the context of ultracold
gases. Typically, soliton excitations are realized in Bose-Einstein condensates
(BEC) [381–385] in a continuum (see [386, 387] and my contribution [SRM21]
for soliton solutions on a lattice).

Interestingly, in addition to the dark soliton which is usually observed in
the continuum case of BECs and understood in terms of the Gross-Pitaevski
equation [388, 389], also bright solitons can be realized [390]. The question
arises, whether these solutions survive quantum fluctuations and the effect
of a lattice. In my contribution [SRM21] (attached in the second part of the
thesis) we address this question and show that on a time scale accessible to
experiments this is indeed the case. Furthermore, it is not crucial that the
initial perturbation has exactly the predicted shape of the solitonic solution,
but that the correct phase of the wave function is imprinted onto the initial
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state. This will help in the search of this type of solitons in optical lattice
realizations of the proposed setup.



54 CHAPTER 5. NONEQUILIBRIUM DYNAMICS



Chapter 6

Outlook

In this thesis, I have summarized recent developments in the investigation
of many-body effects in strongly interacting quantum systems. I highlighted
three aspects: 1) the realization of quantum many-body behavior in quantum
magnetic materials, in particular their behavior in strong magnetic fields. 2)
the approach to unconventional many-body states in so-called quantum sim-
ulators with ultracold atomic and molecular gases. 3) the non-equilibrium
dynamics which demonstrates various interesting effects and also addresses
fundamental questions to the foundations of statistical mechanics, in partic-
ular concerning the relaxation behavior to a possible thermal state. From
the theoretical side, it has been proven very useful to apply numerical ap-
proaches to the problems. One particularly useful method is the DMRG and
its generalization in terms of MPS and PEPS allowing for the formulation of
more efficient algorithms e.g. for systems with periodic boundary conditions
and in higher dimension, as well as the adaptive t-DMRG which allows to
treat the nonequilibrium dynamics of low-dimensional quantum many body
systems with a high accuracy on short to intermediate time scales. In this
thesis, various aspects of the physics of the aforementioned topics is addressed
mainly using the DMRG and its variants, resulting in the uncovering of a
rich bouquet of interesting behavior.

The realization of unconventional states of matter in strongly correlated sys-
tems remains an interesting topic of ongoing research. Future studies, e.g.,
in the context of pump-probe experiments will reveal further interesting be-
havior due to quantum effects. Particularly interesting are the uncovering
of new effects in situations out-of-equilibrium, the investigation of quantum
magnetism in quantum simulators, and the search for topological phases,
which form a new paradigm for the characterization of quantum phases.
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Both, theoretical and experimental efforts will contribute to the wealth of
behavior and it is worth to look forward to intriguing discoveries in the years
to come.
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In the second part of the thesis, some of my published work is presented.
The following topics are covered:

I) Quantum Critical Behavior and Unconventional Phases.

II) Quantum Simulations.

III) Non-Equilibrium Dynamics.

Each of the topics is presented in a separate chapter. Note that several of
the publications cover more than one of these topics (e.g., PRL 110, 075301
(2013) treats quantum simulation in a non-equilibrium situation). In these
cases, the paper is assigned to the topic which reflects best the main purpose
of the publication. A short description of the content and of my contribution
to each paper is given before the manuscript is shown. It is understood that
for all papers I was involved in writing the manuscript and in the discus-
sions/interpretations underlying the publication.

Note added to the published version of the thesis: In order to avoid conflict
with copyright, the pdf-versions of the publications are not provided here.
Instead, for each publication a link to the published version as well as a link
to the arXiv-preprint version is given. The preprint-version is freely available
and very similar to the published article, but can have minor differences to
the published one.
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Chapter 7

Quantum Critical Behavior and
Unconventional Phases

In this chapter, I present published results related to quantum critical behav-
ior (i.e., phase transitions which take place at temperature T = 0K). In the
first section, the behavior of various spin systems in external magnetic fields
is treated. The motivation for treating these systems comes mostly from
modeling quantum magnetic materials, noteworthy are the finding of uncon-
ventional phases and phase transitions. In the second section, more realistic
modeling of quantum magnetic materials is aimed at by considering the ef-
fect of spin-orbit coupling treated as Dzyaloshinskii-Moriya interaction (3.2).
In the third section, the quantum critical behavior in Bose Hubbard mod-
els (1.6) and in SU(N) symmetric fermionic Hubbard models (1.8) is revisited
by applying quantum information approaches. Amongst others, the quantum
critical behavior is addressed by considering the fidelity susceptibility (1.4)
across the phase transition as indicator for the critical point. Different to the
previous sections, the motivation for treating these systems comes mostly
from their realization with ultra cold atomic gases on optical lattices. The
focus of these papers therefore rather lies in providing insights for future
experimental investigations on these systems.
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7.1 Spin Systems In Magnetic Fields

S.R. Manmana, J.-D. Picon, K.P. Schmidt, and F. Mila,
Unconventional magnetization plateaus in a Shastry-Sutherland spin tube,
Europhysics Letters (EPL) 94, 67004 (2011).

This is the first of three papers in this thesis which treat Shastry-Sutherland
systems. Here, a quasi-one-dimensional version of the two-dimensional Shastry-
Sutherland lattice is analyzed, which allows to better control the DMRG
calculations. By combining a PCUTs approach and the DMRG, we can
characterize the complete phase diagram of the system in a magnetic field.
I had a central role in this project, the discussions and the writing of the
paper. My contributions enclose the various DMRG results, in particular
the phase diagram and the uncovering of the unconventional Mott-insulator
at M = 1/5.

Link to the published version:
http://dx.doi.org/10.1209/0295-5075/94/67004

Link to the preprint version:
https://arxiv.org/abs/1003.1696

http://dx.doi.org/10.1209/0295-5075/94/67004
https://arxiv.org/abs/1003.1696
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Y.H. Matsuda, N. Abe, S. Takeyama, H. Kageyama, P. Corboz, A. Honecker,
S.R. Manmana, G.R. Foltin, K.P. Schmidt, and F. Mila,
Magnetization of SrCu2(BO3)2 in ultrahigh magnetic fields up to 118 T,
Phys. Rev. Lett. 111, 137204 (2013).

This paper presents measurements and theoretical results for the magneti-
zation curve of the quantum magnetic material SrCu2(BO3)2, which is de-
scribed by the two-dimensional Shastry-Sutherland lattice, up to extremely
high magnetic fields of 118T. The paper combines a state-of-the-art exper-
imental study with state-of-the-art numerical results which show very good
agreement if the ratio of inter-dimer couplings J ′ to intra-dimer couplings J
takes the specific value J ′/J = 0.63. This is mainly achieved by an iPEPS
approach by one of the authors (P. Corboz), which by construction is suited
to treat two-dimensional systems directly in the thermodynamic limit (see
Ch. 2). The difficulties of this approach are that one needs to find the
correct unit cell of the ground state, and that it is difficult to control con-
vergence. Therefore, it is important to compare the iPEPS results to other
numerical approaches. In this paper, this is done by comparing to exact
diagonalizations, unitary transformations (PCUTs), and the DMRG; differ-
ent to the previous paper, here the DMRG is applied to the full 2D case.
This is a challenge since the DMRG works best for one-dimensional systems
with open boundary conditions, while here we need to treat the full two-
dimensional case with periodic boundary conditions in order to be able to
compare to the iPEPS results. Interestingly, the results for the magnetiza-
tion curves obtained from the various approaches are in very good agreement
within error bars, which supports the picture emerging from the iPEPS ap-
proach. My contributions to this paper are the DMRG results which for
this situation are challenging to obtain, detailed comparisons to the other
numerical approaches and the detailed discussion of the DMRG findings in
the supplementary material.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevLett.111.137204

Link to the preprint version (including supplementary material):
https://arxiv.org/abs/1308.4151

http://dx.doi.org/10.1103/PhysRevLett.111.137204
https://arxiv.org/abs/1308.4151
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G.R. Foltin, S.R. Manmana, and K.P. Schmidt,
Exotic magnetization plateaus in a quasi-two-dimensional Shastry-Sutherland
model,
Phys. Rev. B 90, 104404 (2014).

In complement to the previous two papers, this work treats the Shastry-
Sutherland lattice in a quasi-2D geometry. Again, a combination of the
(semi-) analytical PCUTs approach and the DMRG is used to perform a
detailed analysis of the system. Other than in the previous paper, here we
focus on a particular tube-like geometry to facilitate computations, allowing
us to obtain local structures with a very high accuracy. I had a central role
in this project by providing the DMRG results, discussing the behavior and
in writing the paper. In particular, the DMRG results were obtained with
such a high accuracy that tiny differences (of the order of 10−4) to the firstly
obtained PCUTs results urged the developments of more accurate effective
models in the PCUTs which change the physical picture substantially.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevB.90.104404

Link to the preprint version:
https://arxiv.org/abs/1405.3260

http://dx.doi.org/10.1103/PhysRevB.90.104404
https://arxiv.org/abs/1405.3260
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S.R. Manmana, A.M. Läuchli, F.H.L. Essler, and F. Mila,
Phase diagram and continuous pair-unbinding transition of the bilinear-biquadratic
S = 1 Heisenberg chain in a magnetic field,
Phys. Rev. B 83, 184433 (2011).

This paper presents the complete phase diagram of the one-dimensional S = 1
bilinear-biquadratic Heisenberg chain (3.1) in a magnetic field. Noteworthy
are the identification of spin-nematic (’quadrupolar’) phases, and of a tran-
sition line along which the central charge is c = 3/2, which is a rather un-
conventional value and which we associate to an Ising-type pair-unbinding
transition. I had a central role in this project by contributing the extensive
DMRG results which allowed us to map out the phase diagram, discussions
on and interpretations of the results and in writing the paper.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevB.83.184433

Link to the preprint version:
https://arxiv.org/abs/1012.4518

http://dx.doi.org/10.1103/PhysRevB.83.184433
https://arxiv.org/abs/1012.4518
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F. Michaud, T. Coletta, S.R. Manmana, J.-D. Picon, and F. Mila,
Frustration induced plateaux in S ≥ 1/2 Heisenberg spin ladder systems,
Phys. Rev. B 81, 014407 (2010).

This paper presents the phase diagrams of frustrated two-leg Heisenberg
spin ladder systems for values of the spin S ≥ 1/2. In the strong-rung limit,
effective models are derived which allow to predict the behavior for all values
of S. These are confirmed by numerical DMRG calculations up to S = 2,
which also allowed us to treat cases beyond the strong rung limit. One of the
highlights is the finding of phase transitions inside some of the magnetization
plateaus.

The results discussed in this paper are mainly obtained by F. Michaud and T.
Coletta, at that time both Master students in the group of Prof. F. Mila at
EPFL. The contribution by F. Michaud was achieved under my supervision
(co-supervision with Prof. F. Mila) and using my code. I had a central role
in this project by guiding the students, in the discussions and in writing the
paper.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevB.81.014407

Link to the preprint version:
https://arxiv.org/abs/0907.1461

http://dx.doi.org/10.1103/PhysRevB.81.014407
https://arxiv.org/abs/0907.1461
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7.2 Frustrated Quantum Magnets with Spin-

Orbit Coupling in Strong Magnetic Fields

This section discusses published results in which the effect of spin-orbit cou-
pling, modeled by the Dzyaloshinskii-Moriya (DM) interaction (3.2) is taken
into account for obtaining a more realistic modeling of quantum magnetic
materials in strong magnetic fields. The papers in this chapter focus on three
aspects: first, we consider frustrated two-leg ladder systems as toy models for
investigating the effect of DM interactions in magnetic torque measurements,
which is a technique often used to obtain magnetization curves of correlated
materials at low temperatures. Second, our theoretical results explain the
behavior of low-lying excitations in the quasi-one-dimensional material Cu-
PM with substantial DM interactions. Noteworthy is the excellent agreement
of the DMRG and the experimental results for the gap as a function of the
external magnetic field. Third, we consider the antiferromagnetic Heisen-
berg model on the kagome lattice and the interplay of DM interactions and
impurities.
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S.R. Manmana and F. Mila,
Torque anomalies at magnetization plateaux in quantum magnets with Dzyaloshinskii-
Moriya interactions,
Europhysics Letters (EPL) 85, 27010 (2009).

This paper discusses frustrated two-leg ladder systems which we consider as
toy models to reveal typical behavior of quantum magnetic materials in mag-
netic fields in the presence of anisotropies, specifically anisotropic g-tensors
and DM interactions. While an anisotropic g-tensor is known to lead to a
magnetic torque which can be used to determine the magnetization curve in
corresponding experiments, we show that care needs to be taken when inter-
preting results of torque measurements in the presence of DM interactions.
Interestingly, strong peak-like anomalies come into play at phase transition
points at finite magnetizations, which we propose to use to obtain the end-
points of magnetization plateaus with a high accuracy. I had a central role in
this project by contributing all of the results and in the writing of the paper
in close collaboration with F. Mila.

Link to the published version:
http://dx.doi.org/10.1209/0295-5075/85/27010

Link to the preprint version:
https://arxiv.org/abs/0810.5329

http://dx.doi.org/10.1209/0295-5075/85/27010
https://arxiv.org/abs/0810.5329
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S.A. Zvyagin, E. Čižmár, M.Ozerov,J.Wosnitza,R.Feyerherm,S.R.Manmana,
and F.Mila,
Field-Induced Gap in a Quantum Spin-1/2 Chain in a Strong Magnetic Field,
Phys. Rev. B (rapid communication) 83, 060409(R) (2011).

This paper presents an experimental study and comparison to theoretical
results for the quasi-one-dimensional quantum magnetic material Cu-PM in
which ESR measurements in magnetic fields up to 63T are presented. Due to
the DM interaction in this material, a minimum of the gap as a function of the
magnetic field is obtained. We compare the experimental ESR results to nu-
merical DMRG results for the gap and find excellent agreement for all values
of the magnetic fields treated, indicating that the model Hamiltonian used
to describe Cu-PM and other, similar materials, is a valid description. My
contribution to this paper is the numerical calculation of the gap compared
in Fig. 3 to the experimental results and in the writing of the theoretical
part.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevB.83.060409

Link to the preprint version:
https://arxiv.org/abs/1010.6141

http://dx.doi.org/10.1103/PhysRevB.83.060409
https://arxiv.org/abs/1010.6141
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I. Rousochatzakis, S.R. Manmana, A.M. Läuchli, B. Normand, and F. Mila,
Dzyaloshinskii-Moriya anisotropy and non-magnetic impurities in the s =
1/2 kagome system ZnCu3(OH)6Cl2,
Phys. Rev. B 79, 214415 (2009).

This paper was motivated by NMR experiments on Herbertsmithite, a natu-
ral mineral whose lattice structure is the kagome lattice, but which contains
∼ 5% non-magnetic impurities and significant DM interactions (see introduc-
tion). By a state-of-the-art numerical calculation using exact diagonalization
techniques, we analyze the behavior in the vicinity of the impurity and find
that for small DM interactions the minimal building block to understand
the observed behavior consists of two orthogonally coupled dimers. By in-
creasing the value of the DM interaction, we obtain a phase transition to a
semiclassical 120◦ state. We obtain qualitatively similar behavior to experi-
mental ESR and NMR results for values of the DM interaction which are in
agreement with ESR measurements, but in disagreement with other theoret-
ical predictions. My contributions to this work are some numerical results
from exact diagonalization methods, close collaboration in obtaining and in-
terpreting the presented numerical results, discussions and interpretations of
the findings and in the writing of the manuscript.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevB.79.214415

Link to the preprint version:
https://arxiv.org/abs/0903.2884

http://dx.doi.org/10.1103/PhysRevB.79.214415
https://arxiv.org/abs/0903.2884
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7.3 Quantum Information Approach

In the last section of this chapter, I want to present two works in which
quantum critical behavior was investigated using a quantum information ap-
proach by computing the fidelity susceptibility (1.4). The hope is that this
quantity helps in identifying quantum critical behavior by considering small
systems. As we see here, there are, however, situations in which a delicate
finite size scaling can come into play, so that the results obtained for small
systems need to be considered with care.

The discussions in these papers are in context of the next chapter which
treats quantum simulation of strongly correlated systems. Specifically, here
I present results for the Bose Hubbard model (1.6) and the fermionic SU(N)
Hubbard model (1.8). Both can be realized on optical lattices, see Chs. 1
and 4.
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S.R. Manmana, K.R.A. Hazzard, G. Chen, A.E. Feiguin, and A.M. Rey,
SU(N) magnetism in chains of ultracold alkaline-earth-metal atoms: Mott
transitions and quantum correlations,
Phys. Rev. A 84, 043601 (2011).

This paper presents results on fermionic Hubbard chains with an enhanced
SU(N) symmetry (1.8), as realizable by alkaline earth metal atoms on opti-
cal lattices. We present results for correlation functions, for up to quintuple
occupancies of the sites, and for structure factors. By comparing to the
Heisenberg case, we identify that for values of the interaction U & 10t (with
hopping amplitude t) for all values of N the results are very well approx-
imated by the corresponding SU(N) Heisenberg model. We also provide a
comparison to Bethe ansatz, which provides an exact solution for N = 2,
but not for N > 2. While these results are all obtained using rather tradi-
tional DMRG approaches, I want to highlight the computation of the fidelity
susceptibility (FS)(1.4) which we expected to shed some light on the issue
whether the transition to a Mott insulator for N > 2 might be at U = 0.
This is difficult to answer numerically due to possible subtle behavior of the
Luttinger parameters, as pointed out by J. Sólyom and collaborators [96].
The hope was that this can be resolved by considering this quantity, which
in the next paper is discussed in more detail. Indeed, the FS seems to sup-
port scenarios with a transition at U/t > 0, but according to the results of
the next contribution [SRM20], probably a more elaborate finite size scaling
is needed. I had a central role in this project by computing all of the nu-
merical DMRG results for the various quantities presented, discussions and
interpretations of the results and in the writing of the paper.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevA.84.043601

Link to the preprint version:
https://arxiv.org/abs/1108.2327

http://dx.doi.org/10.1103/PhysRevA.84.043601
https://arxiv.org/abs/1108.2327
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J. Carrasquilla, S.R. Manmana, and M. Rigol,
Scaling of the gap, fidelity susceptibility, and Bloch oscillations across the
superfluid to Mott insulator transition in the one-dimensional Bose-Hubbard
model,
Phys. Rev. A 87, 043606 (2013).

This paper compares three approaches to determine quantum critical points
in the one-dimensional Bose-Hubbard model: a scaling ansatz to obtain an
accurate finite-size scaling of the excitation gap, a quantum information ap-
proach by computing the fidelity susceptibility (1.4), and a non-equilibrium
approach in which the amplitude of Bloch oscillations is used to estimate the
phase transition point. This approach can be useful for ongoing experiments
with ultra cold gases on optical lattices.

The numerical DMRG results for the gap, the fidelity susceptibility and for
the Bloch oscillations are all my contribution. The idea of comparing the
phase transition points as obtained from the computation of the gap to the
ones resulting from the fidelity susceptibility and the amplitude of Bloch os-
cillations emerged from some of my previous work. The critical analysis of
the behavior of the fidelity susceptibility shows that this quantity needs to be
taken with care when investigating for quantum critical behavior (probably
a more elaborate finite size scaling analysis is needed), while the results for
the Bloch oscillations further support previous findings from my contribu-
tions [SRM10, SRM23] (see the next chapter) that this approach can provide
an estimate for the critical point by performing an out-of-equilibrium experi-
ment. I had a central role in this project in providing the results and pursuing
the various approaches discussed there, in the discussions and interpretations
and in the writing of the manuscript.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevA.87.043606

Link to the preprint version:
https://arxiv.org/abs/1212.2219

http://dx.doi.org/10.1103/PhysRevA.87.043606
https://arxiv.org/abs/1212.2219
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Chapter 8

Quantum Simulation of
Superconductivity, Quantum
Magnetism, and Topological
Phases

The papers in this chapter deal with the possibility to realize superconduct-
ing (or, in the context of ultracold atoms, superfluid) and quantum magnetic
models on optical lattices using ultracold polar molecules, see Ch. 4. These
models can possess topological phases, see [SRM5] further below. The novel
aspect of the presented proposal is to use the interactions between the polar
molecules to directly emulate such behavior, which leads directly to a gen-
eralized t-J-like model without needing to take the strong coupling limit of
an underlying Hubbard model (1.5). This allows to realize a wider range
of interactions, and also causes additional interactions in the model which
can lead to interesting effects. Due to the nature of the dipolar interactions
between the molecules, all interactions are long-range, decaying ∼ 1/r3 with
distance r, so that it becomes necessary to test for the relevance of the long-
rangedness of the interactions for the phase diagrams of the systems.

The first paper and references therein introduces the proposal and presents
the ground-state phase diagram for the simplest experimentally realizable
case, the t-J⊥ chain, and also presents the idea to look for quantum criti-
cal behavior in the properties of Bloch oscillations when crossing the phase
transition. The second contribution discusses a generalization allowing for
interactions which depend on the spatial directions and leading to models
which realize symmetry protected topological phases; interestingly, we find
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these phases to survive also in the presence of the long range interactions typ-
ical for quantum simulators with ultracold polar molecules. The third paper
treats the non-equilibrium dynamics of a simple initial state which helps in
verifying the proposal in ongoing experiments, as recently demonstrated in
an experiment at JILA [274].
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A.V. Gorshkov, S.R. Manmana, G. Chen, J. Ye, E. Demler, M.D. Lukin, and
A.M. Rey,
Tunable Superfluidity and Quantum Magnetism with Ultracold Polar Molecules,
Phys. Rev. Lett. 107, 115301 (2011).

This paper presents a proposal to use recently realized ultracold polar molecules
for the emulation of quantum S = 1/2 systems. The idea of the proposal is
to use the dipole moment and the resulting interaction between the heteronu-
clear molecules for the emulation of strongly correlated systems; in particular,
by populating only two rotational eigenstates of the molecules, which can be
done by forming dressed states induced by external DC electrical fields and
microwaves, it is possible to realize two-level systems, which emulate interact-
ing itinerant and static S = 1/2 systems. This encompasses to possibility to
emulate superconducting as well as quantum magnetic states of matter. My
role in this project was a central one: the publication is based on extensive
discussions in the collaboration exploring possibilities for the realization of
interesting quantum many body behavior, for identifying the simplest exper-
imentally realizable case, obtaining the phase diagrams using the DMRG in
this case, checking for the effect of the long-range interactions by computing
the corresponding phase diagrams with and without long-range interactions,
and contributing with the idea to use Bloch oscillations in the search for
phase transitions in non-equilibrium experiments on optical lattices; corre-
spondingly, my role was central for the writing of the paper, in particular
the part involving the numerical results. In December 2011, I was awarded
with the DARPA-OLE best paper (theory) award for this publication.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevLett.107.115301

Link to the preprint version:
https://arxiv.org/abs/1106.1644

http://dx.doi.org/10.1103/PhysRevLett.107.115301
https://arxiv.org/abs/1106.1644
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S.R. Manmana, E.M. Stoudenmire, K.R.A. Hazzard, A.M. Rey, and A.V. Gor-
shkov,
Topological phases in ultracold polar-molecule quantum magnets,
Phys. Rev. B (rapid communication) 87, 081106(R) (2013).

This paper introduces a setup to realize systems with spatially inhomoge-
neous interactions in polar molecule systems on optical lattices. This exten-
sion of the proposal presented in the previous paper allows for the realization
of various models which host topological phases. The paper then treats the
effect of long-range interactions on symmetry protected topological (SPT)
phases (see Sec. 4.3) in a two-leg ladder system with spatially inhomoge-
neous interactions (in the present case the interactions along the legs are
different from the ones along the rungs). We treat an extension of a model
analyzed by X.-G. Wen and collaborators to discuss properties of SPT phases
and to distinguish between different SPT phases by considering the behavior
of so-called ’active operators’ [301]. My contribution to the paper is central:
using DMRG and MPS/MPO approaches, in close collaboration with E.M.
Stoudenmire I obtained the phase diagram of the system with and with-
out long-range interactions, and I contributed substantially in the writing
of the paper and to the underlying discussions. I introduced the quantity
which we coined ’entanglement splitting’; this is a single number being zero
if the entanglement spectrum is (at least) two-fold degenerate and finite oth-
erwise. This is very useful in identifying transitions from SPT phases to
non-topological gapped phases as discussed in the paper, and helped in iden-
tifying SPT phases also in the presence of long-range interactions. It would
be interesting to do a similar analysis in a system with long-range interactions
decaying with arbitrary exponent, ∼ 1/rα, and to see if there is a threshold
value for α at which the SPT phases cease to exist.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevB.87.081106

Link to the preprint version (including supplementary material):
https://arxiv.org/abs/1210.5518

http://dx.doi.org/10.1103/PhysRevB.87.081106
https://arxiv.org/abs/1210.5518


87

K.R.A. Hazzard, S.R. Manmana, M. Foss-Feig, and A.M. Rey,
Far from equilibrium quantum magnetism with ultracold polar molecules,
Phys. Rev. Lett. 110, 075301 (2013).

This paper takes on the proposal discussed in [SRM10] and addresses the
question what can be done in experiments today. This is necessary since
the experimental realization of quantum magnetic states is hampered by the
difficulty of reaching temperatures well below the Fermi-temperature and
entropies low enough for obtaining quantum many body effects. In this pro-
posal, the idea is to consider the time evolution of simple initial states at
arbitrary temperatures and look for signatures of quantum magnetism in the
subsequent dynamics. A recent experiment performed at JILA [274] takes
on the ideas presented in this paper and finds for the first time signatures
for the realization of effective spin-interactions in polar molecule systems.
My contributions to the paper are central since I contributed all the nu-
merical results presented (in particular also the numerically costly results in
the presence of disorder) and I contributed substantially in the underlying
discussions which lead to the paper and in its writing.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevLett.110.075301

Link to the preprint version:
https://arxiv.org/abs/1209.4076

http://dx.doi.org/10.1103/PhysRevLett.110.075301
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Chapter 9

Non-Equilibrium Dynamics

In this chapter, some of my work concerning the non-equilibrium dynam-
ics of strongly correlated quantum systems is presented. The first section
deals with so-called quantum quenches, in which the system is pushed out-
of-equilibrium by suddenly changing one of the parameters. This typically
leads to interesting behavior, and here we focus on the propagation of cor-
relations, the formation of quasiparticles and prethermalization behavior,
and the emergence of a ’negative temperature state’ following a quantum
quench.

The second section treats issues related to transport in systems of cold gases
on optical lattices, where the notion of transport is taken in a wider sense.
This includes the dynamics after releasing particles from a trap, transport
when tilting an optical lattice, and properties of solitons in interacting lattice
systems.
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9.1 Quantum Quenches

S.R. Manmana, S. Wessel, R.M. Noack, and A. Muramatsu,
Time evolution of correlations in strongly interacting fermions after a quan-
tum quench,
Phys. Rev. B 79, 155104 (2009).

This paper discusses the dynamics of correlation functions in a lattice sys-
tem with short-range interactions following a quantum quench in the inter-
action strength. Over a wide range of parameters, a light-cone-effect can
be identified, which can be understood in terms of ballistically propagating
quasiparticles created by the quench, as proposed by Calabrese and Cardy
[372], and which conforms with the notion of a Lieb-Robinson bound which
gives an upper speed for the propagation of correlations and information in
a lattice system. Interestingly, the effect seems to persist also in regions be-
yond the validity of the conformal field theory treatment of Calabrese and
Cardy. On the other hand, for quenches starting from a gapless Luttinger
liquid phase deep into the Mott-insulating regime, on the time scales treated,
domain walls are created, reminiscent of the Kibble-Zurek mechanism. In the
meantime, the light-cone-effect has been observed in experiments on optical
lattices [374], and in a recent contribution [SRM2], the question is addressed
to which extend a Lieb-Robinson bound (i.e., such a ’causal’ propagation of
correlations and information) persists in the presence of long-range interac-
tions decaying ∼ 1/rα with distance r. It appears that the causal region
can become non-linear, and for systems in D spatial dimensions for a generic
situation no Lieb-Robinson bound can be identified if α < D for generic ini-
tial states and α < D/2 for product initial states. My contributions to this
paper are all of the results, and I was centrally involved in the interpretation
of the findings and the discussions underlying the publication as well as its
writing.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevB.79.155104

Link to the preprint version:
https://arxiv.org/abs/0812.0561
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S. Mandt, A.E. Feiguin, and S.R. Manmana,
Relaxation towards negative temperatures in bosonic systems:
generalized Gibbs ensembles and beyond integrability,
Phys. Rev. A 88, 043643 (2013).

This paper treats a specific quench which leads to a final state which can
be associated to ’negative absolute temperatures’. This is a notion well
known since the 1950ies from nuclear spin systems and essentially describes
a situation in which high energy eigenstates of the system are more likely
to be occupied than low energy states. In contrast to systems with inverted
energy populations (like lasers), however, the population inversion is stable
in time and all laws of thermodynamics apply to the system. In this paper,
integrable ’hard-core’ bosons are treated, which allowed us to numerically
treat the dynamics on very long time scales and in this way to follow the
formation of the negative temperature state. We also introduce a notion
which defines such a state in the context of generalized Gibbs ensembles
for a negative temperature state, see the description in the paper. The
formation of the negative temperature state can be understood in terms of
a dynamical symmetry of the underlying Hubbard model, and we discuss
to which extend it survives when leaving the ideal case of a product initial
state. My contribution to this paper lies in guiding the first author in the
implementation of the code for treating the systems and in obtaining the
numerical results, in the interpretation and underlying discussions of the
results in the hard-core limit, in obtaining the exact diagonalization results
of Sec. V which present results beyond the integrable ’hard-core’ boson case,
and in the writing of the paper.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevA.88.043643

Link to the preprint version:
https://arxiv.org/abs/1307.7188
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F.H.L. Essler, S. Kehrein, S.R. Manmana, and N.J. Robinson,
Quench dynamics in a model with tuneable integrability breaking,
Phys. Rev. B 89, 165104 (2014).

This paper treats the quench in a 1D interacting model in which the degree
of breaking the integrability can be tuned. This allows for the systematic in-
vestigation of the effect of integrability on the relaxation and thermalization
behavior of 1D strongly correlated quantum systems. In combination of the
adaptive t-DMRG and the (semi-) analytical CUTs approach, we identify the
creation of quasiparticles due to the quench and the formation of a (possibly)
metastable state which corresponds to a prethermalization scenario. Inter-
estingly, despite the tuning of the integrability breaking and the rather large
system sizes and relatively long times reached, it is not possible to identify a
crossover from the prethermalized state to the expected thermal state. The
question arises if this is due to enhanced time scales in 1D, that the breaking
of integrability is still not strong enough, or whether there are fundamental
issues inhibiting the formation of a thermal state in the configuration studied.
My contribution to this paper is central since I provided all the numerical
t-DMRG results, I was involved in the discussions and interpretation of the
results and in the writing of the paper.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevB.89.165104

Link to the preprint version:
https://arxiv.org/abs/1311.4557
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9.2 Transport on Optical Lattices

F. Heidrich-Meisner, S.R. Manmana, M. Rigol, A. Muramatsu, A.E. Feiguin,
and E. Dagotto,
Quantum distillation: dynamical generation of low-entropy states of strongly
correlated fermions in an optical lattice,
Phys. Rev. A (rapid communication) 80, 041603(R) (2009).

This paper treats interacting fermions when released from an initial confining
potential. Naively, one would expect the particles to flow out onto the empty
part of the lattice, with a speed depending on the interaction strength. In-
terestingly, however, repulsive interactions can block the flow into the empty
space, and somewhat counterintuitively lead to a pile-up of the particles.
This leads to the dynamical generation of a metastable low-entropy state in
the originally confined region of the lattice, an effect we coined ’quantum
distillation’. My contributions to this paper are time-dependent exact diag-
onalization as well as time-dependent DMRG results in close collaboration
with the other authors, to discussions and interpretations of the results and
to the writing of the paper.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevA.80.041603

Link to the preprint version (including supplementary material):
https://arxiv.org/abs/0903.2017
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C.P. Rubbo, S.R. Manmana, B.M. Peden, M.J. Holland, and A.M. Rey,
Resonantly Enhanced Tunneling and Transport of Ultracold Atoms on Tilted
Optical Lattices,
Phys. Rev. A 84, 033638 (2011).

This paper treats the dynamics of bosons on an optical lattice after tilting
the lattice. Interestingly, since the system is a closed one, Bloch oscillations
are the dominant effect which inhibits mass transport through the lattice.
The question arises, if it is possible to create transport in an optical lattice
and overcome the Bloch oscillations. A particular focus is put on the res-
onant case, in which the interaction strength equals the difference in local
chemical potential between two neighboring sites. In this case, two inter-
esting effects are obtained: first, as pointed out by Sachdev et al. [391] it
is possible to derive an effective S = 1/2 Ising-like model in a transverse
and a longitudinal magnetic field. In the meantime, this proposal has been
realized in an experiment in M. Greiner’s group at Harvard University [392]
which represents one of the first realizations of quantum magnetism on opti-
cal lattices. The second interesting aspect which we propose in this work is
that by periodically modulating the lattice strength, it is indeed possible to
enhance transport, a mechanism which we coined ’slinky scheme’. A third
aspect is that we obtain indications that the Bloch oscillations can give a
hint for quantum critical behavior, similar to the observations made in my
contributions [SRM10, SRM20]. Most of the results were obtained by C.P.
Rubbo, who at that time was a PhD student in the group of Prof. A.M. Rey
at JILA, and whose co-supervisor I was during the last year of his PhD. The
numerical results presented were obtained using my time-dependent DMRG
code and under the supervision and in intense collaboration between him,
Prof. Rey and myself. I contributed substantially to discussions and the
interpretations of the findings and to the writing of the paper.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevA.84.033638

Link to the preprint version:
https://arxiv.org/abs/1106.0326

http://dx.doi.org/10.1103/PhysRevA.84.033638
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9.2. TRANSPORT ON OPTICAL LATTICES 95

C.P. Rubbo, I.I. Satija, W.P. Reinhardt, R. Balakrishnan, A.M. Rey, and
S.R. Manmana,
Quantum dynamics of solitons in strongly interacting systems on optical lat-
tices,
Phys. Rev. A 85, 053617 (2012).

This paper tests a proposal of I.I. Satija and collaborators [390] for the cre-
ation of ’bright’ solitons in cold gases set-ups. In this paper we test for the
possibility to realize this proposal via S = 1/2 spin systems on a lattice and
for the stability of these soliton-solutions by preparing the according initial
states and then performing the time evolution with the corresponding inter-
acting spin model using the adaptive t-DMRG. Indeed, on the time scales
accessible to us, the soliton solutions appear to be rather stable in time, so
that we expect that in corresponding experiments on optical lattices on the
typical time scales of these experiments the effects should become visible.
Interestingly, replacing the soliton initial state by a simple Gaussian wave
packet leads to a similar stability of the initial state, but only if a disconti-
nuity in the phase of the wave function (as requested by the soliton solution)
is present, otherwise the wave packet disperses immediately. This might be
helpful for the realization of these effects in experiments since the constraints
on the initial state appear to be somewhat relaxed. My contribution to this
paper was to work intensely with C.P. Rubbo, who at that time was a PhD
student in the group of Prof. A.M. Rey at JILA and whose co-supervisor I
was during the last year of his PhD. The numerical results were obtained by
him using my time-dependent DMRG code. I contributed substantially to
the discussions and interpretations of the findings as well as to the writing
of the paper.

Link to the published version:
http://dx.doi.org/10.1103/PhysRevA.85.053617

Link to the preprint version:
https://arxiv.org/abs/1202.3400
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[62] P. Corboz, A. M. Läuchli, K. Totsuka, and H. Tsunetsugu, Phys. Rev.
B 76, 220404 (2007).
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