
Data Integration

of High-Throughput Proteomic and

Transcriptomic Data based on

Public Database Knowledge

Dissertation

for the award of the degree

Doctor rerum naturalium

of the Georg-August-Universität Göttingen

within the doctoral program Molecular Biology of Cells

of the Georg-August-University School of Science (GAUSS)

submitted by

Astrid Wachter
from

Ahlen (Westfalen), Germany

Göttingen, 2017



Thesis Committee:
Prof. Dr. Tim Beißbarth

Department of Medical Statistics,
University Medical Center Göttingen

Prof. Dr. Edgar Wingender
Department of Bioinformatics,
University Medical Center Göttingen

Prof. Dr. Christine Stadelmann-Nessler
Institute of Neuropathology,
University Medical Center Göttingen

Members of the Examination Board:
1st Referee: Prof. Dr. Tim Beißbarth

Department of Medical Statistics,
University Medical Center Göttingen

2nd Referee: Prof. Dr. Edgar Wingender
Department of Bioinformatics,
University Medical Center Göttingen

Further members of the Examination Board:
Prof. Dr. Christine Stadelmann-Nessler

Institute of Neuropathology,
University Medical Center Göttingen

Prof. Dr. Steven Johnsen
Clinic for General, Visceral and Pediatric Surgery,
University Medical Center Göttingen

Prof. Dr. Gregor Bucher
Department of Developmental Biology,
Georg August University Göttingen

Prof. Dr. Heidi Hahn
Department of Human Genetics,
University Medical Center Göttingen

Date of oral examination: 22nd of March 2017



Abstract

With the advance of high-throughput methods enabling deep characterization of the cell
on different cellular layers, ideas to combine different data types for inference of regulatory
processes have emerged. Such integration promises an improved molecular understanding of
physiological and pathophysiological mechanisms, which aids in the identification of drug
targets and in the design of therapies. Current integration approaches are based on the
idea of reducing false negatives by reinforcing concordant information between datasets. In
most cases optimized for a specific integration setting and data structure, these approaches
are rarely accompanied by bioinformatic tools enabling researchers to work on their own
datasets.

In this thesis I present the public knowledge guided integration of phosphoproteomic,
transcriptomic and proteomic time series datasets on the basis of signaling pathways. This
integration allows to follow signaling cascades, to identify feedback regulation mechanisms and
to observe the coordination of molecular processes in the cell by monitoring temporal variation
upon external perturbation. To extract these cellular characteristics the cellular layers on
which the individual datasets have been generated are taken into consideration. Separate
downstream and upstream analyses of phosphoproteome and transcriptome data, respectively,
and subsequent intersection analysis are coupled with a combination of network reconstruction
and inference methods. Graphical consensus networks and co-regulation patterns can be
extracted by this cross-platform analysis. Moreover, it provides high flexibility in terms of
high-throughput platforms used for data generation as analysis is based on preprocessed
datasets.

On the examples of epidermal growth factor signaling and B cell receptor signaling
we were able to show that the results gained by this integration method confirm known
regulatory patterns but also point to interactions that were not described previously in these
contexts. This is demonstrated by performing a response-specific analysis instead of the
typical layer-specific analysis.

Limitations of the approach described here are linked to database-bias and -dependency,
to the low temporal resolution of high-throughput measurements and to data standardization.
While overcoming these issues constitutes a challenge for the whole systems biology community,
the integration approach itself can be optimized in future by working with refined disease-
specific and tissue-specific signaling pathway models and database entries. The presented
integration method was implemented as R software package ‘pwOmics’ and made available
to other researchers.
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1 Introduction

To enhance the understanding of diseases and advance therapy approaches, decoding indi-

vidual molecular interactions is crucial. Disease or changed environmental conditions lead

to complex cellular processes that take place on different molecular levels. The interplay of

these different levels is finely balanced and any intervention should be considered carefully

to prevent molecular imbalance.

Our understanding of cellular processes and molecular interactions grows continuously,

starting with individual detailed experimental work, which is today supported in parallel by

an increased usage of high-throughput technologies. The high amounts of produced data

enable a very comprehensive analysis of the investigated cellular state and are a big step

towards a better understanding of cellular molecular reactions (Reuter et al., 2015; Larance

and Lamond, 2015). However, with the increased creation of large high-throughput data sets

there is a high demand of analysis tools and analysis pipelines.

With technological advances driven forward on each of the molecular levels in the cell,

the available options to link data of multiple data types grow alike. This ’omics space’

is currently investigated actively, as combined high-throughput data sets from different

regulatory levels consequentially provide more information with regard to the complexity of

biological processes than a single data set from just one regulatory level.

The term ’data integration’ itself is used in a very broad context since the emergence of

systems biology and systems medicine, as it evokes questions to be addressed on different

levels of data handling and analysis. The main two utilizations of this term in the context of

high-throughput expression data include i) linking different data types and disparate data

sources with a focus on infrastructure in combined repositories: This includes linking of query-

interfaces, resolving semantic problems via ontology-based integration and cross-referencing

and requires benchmark information from different data types. Such infrastructure is out of

the scope of this thesis, but strongly needed for the implementation of the second utilization

of the term ’data integration’ referring to ii) understanding the biological principles: This

includes interlinking of heterogeneous high-throughput/low-throughput data sets from differ-

ent platforms and combination with further biological information, e.g. biological signaling

pathways. In this thesis, the term ’data integration’ is used in line with the second meaning.

Though the general idea of cross-platform integration is fairly straightforward and technical

prerequisites are improving constantly, there are a number of challenges that need to be
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overcome when working with diverse data types. Besides infrastructural issues like data

discovery problems, standardization of the experimental design and preprocessing steps (data

generation routines), experimental annotations are of high relevance for the development of

data integration approaches. A significant step towards a clear data annotation standard

was e.g. the proposal of a Minimum Information about a Microarray Experiment (MIAME)

by Brazma et al. (2001) for microarray data or the Minimum Information about a Proteomics

Experiment (MIAPE) (Taylor et al. (2007)). This minimum information includes e.g.

the experimental design, the array design, sample preparation and labeling, hybridization

procedures and parameters, measurement specifications and normalization control types,

their values and their specification. Unfortunately, such a clear data information standard is

not common practice yet. Further challenges are e.g. formatting differences between data

types, expert terminology, missing data, data not properly entered, merging of data with

ambiguity issues or the need of very different experimental and data analysis expertise.

According to Kristensen et al. (2014) the three general objectives of data integration

approaches in terms of systems medicine are

1. Understanding molecular mechanisms, relationships between and within different types

of molecular structures: Only a deeper, cross-linked information throughout the different

molecular structures can provide a view as complete as possible on disease and normal

phenotype. Even though it is debatable whether we might get a complete view on cells

in future, the emerging challenge is clearly the high number of individual phenotypes

and their corresponding characterization.

2. Therefore it is necessary to perform disease subtyping with a focus on personalized

medicine. With an improved characterization of the subtypes on each molecular level

and clinical annotations of the patients falling into particular classes, it is possible to

optimize treatment options in terms of ’personalized medicine’.

3. Prediction of outcome or phenotype for prospective patients: The knowledge gathered

in the previous point can be used to classify patients prospectively via risk scores (such

as Sankt Gallen risk categories for breast cancer patients from Goldhirsch et al. (2007)).

This enables a direct estimation of optimal therapy based on parameters known early

on.

In this thesis, I will focus on the first point: Understanding molecular mechanisms by

integration of high-throughput proteomic and transcriptomic data sets, as this data inherently

contains information about the precisely coupled multi-layer regulations taking place in

the cell. The scope of this thesis is to interlink time-resolved gene and protein expression

data sets to generate a more detailed understanding of molecular signaling processes. With

this aim I developed a methodology for pathway-based data integration and implemented

this approach in an open-source software package. Furthermore, I analyzed and evaluated

molecular interactions identified by the proposed method in a data set comprising time

series proteomic and transcriptomic data of epidermal growth factor (EGF) signaling in
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human mammary epithelial cells (HMEC). In a second data set on B cell receptor (BCR)

stimulation I refined the approach with the aim to track individual signaling axes in the cell.

In this introduction, I first present the main characteristics of cellular signaling pathways

and different high-throughput expression data sets (see Section 1.1 Cellular signaling and

Section 1.2 High-throughput expression data). Afterwards, I present the motivation for

cross-platform integration, the biological rationale as well as the challenges and approaches

for integration of these different types of data (see Section 1.3 Cross-platform integration of

transcriptomic and proteomic data). Furthermore, I address the dynamic aspect and its impact

on identification of molecular mechanisms, shortly introducing time course data analyses

concepts (see Section 1.4 Exploring molecular dynamics via time series data). Subsequently, I

introduce biological databases as a means for cross-platform data integration (see Section 1.5

Biological knowledge resources). A review on the biological pathways adressed in this thesis I

will give in Section 1.6 Investigated signaling pathways. Section 1.7 Objectives and overview

will provide a summary on the aims and the structure of this thesis.

1.1 Cellular signaling

Environmental stimuli, e.g. temperature changes, hormones or antigenes typically induce a

cellular reaction that is needed for adaptation processes. In case of extracellular stimulatory

molecules, these are sensed by receptors which are integral transmembrane proteins. With

the binding of ligand molecules to these receptors conformational changes are triggered and

further signal propagation is initiated through signaling cascades. The signaling pathway

itself triggers transcription factors (TFs) to enter the cell nucleus and bind to specific regions

on the desoxyribonucleic acid (DNA). Thereby, the rate of transcription is changed. This

process itself can be dependent on the recruitment of further factors to build up specific

protein complexes. Figure 1.1 shows these cellular processes schematically in a simplified

way.

These cascades require a complex and finely balanced network of enzymes, small molecules

and second messenger molecules, which depends on various factors itself, e.g. gene expression.

Many signaling pathways have been characterized in detail, especially those associated with

specific diseases. This is due to the perspective that with increased knowledge of signaling

transduction cascades chances to understand non-physiological signaling and treatment

options are higher. A good example are kinase proteins, responsible for phosphorylation

processes in the cell, which define the activity, reactivity and binding characteristics of

molecules (Hunter, 1995). However, it is not clear whether the characterization of a pathway

is ever complete or if there are still unknown pathway members, given that there is a pathway

overlap in a considerable number of pathways and cross-pathway signaling. Therefore, also

feedback loops have an intricate and fundamental influence on cellular systems.

There are commercial and open-source biological databases which form a resource of knowledge

for the described processes. The ones used in this thesis are shortly described in Section 1.5

Biological knowledge resources.
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Figure 1.1. Simplified schematic of cellular processes. Extracellular molecules can be ligands of membrane
receptors, triggering a signaling cascade throughout the cell. By phosphorylation the three-dimensional
structure of phosphoproteins can be changed, leading to a modification of their function. Via the signaling
cascade transcription factors can be triggered to move into the nucleus and affect transcription. The
transcribed RNA is needed for protein translation at ribosome sites in the cytoplasm, leading to a feedback
on the signaling itself.

The cellular systems mentioned above naturally depend on finely coordinated temporal

and spatial processes, which makes it impossible to fully characterize them with just one

single measurement. Time-resolved measurements can portray those processes considerably

better by adding another dimension to the data collection. Section 1.4 Exploring molecular

dynamics via time series data adresses analysis concepts for such data sets.

1.2 High-throughput expression data

Gene expression data and protein expression data are often used to characterize molecular

differences between different biological settings. These data types provide information

on different molecular levels of the cell: According to the central dogma of molecular

biology (Crick, 1970) information transfer takes place in a sequential way from DNA to

ribonucleic acid (RNA) and from RNA to protein, as depicted in Figure 1.2. While gene

expression data, also commonly referred to as transcriptomics data, gives an idea about

RNA abundance levels, protein expression data reflects the functional state of the cell by

representing protein abundance levels.

In a simplified representation the information flow thus starts with the information

encoded on the exonic regions of the genes, which is then transcribed to RNA. The RNA

leaves the cell nucleus in order to deliver information to the translational process, in which

functional proteins are generated by ribosomes. However, when considering all possible

regulatory influences on the different stages of the cellular machinery, this process is very
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Figure 1.2. Biological and high-throughput data generation levels. Shown on blue background are the
different biological levels reflected in the central dogma of biology, being functionally connected in a linear
way. Further biological levels are shown on green background. Following these levels implicates an increase in
biological complexity. High-throughput methods for each of the biological levels are available, such that level-
specific characteristics can be determined. However, integrating data generated by different high-throughput
methods is still a challenge.

complex. Yet the advance of very sensitive high-throughput techniques generating gene and

protein expression data enables a deep characterization of the cellular states. To identify

regulations on the different molecular levels a number of omics technologies have been

developed within the last years, enabling identification of numerous interactions. Increasing

demand for such data sets reduces the costs of data generation in turn.

In this thesis, I focus on the integration of transcriptomic and proteomic data as the

corresponding molecular levels, RNA and proteins, are widely measured.

1.2.1 Transcriptomic data

Transcriptomic profiling has this far been possible mainly by DNA microarrays and now

increasingly by RNA sequencing (RNA-Seq), since the high demand has driven forward

next-generation sequencing technologies. The latter provides higher quality, enabling an

unbiased detection of novel transcripts, offering a broader dynamic range, increased sensitivity

and specificity and easier detection of low-abundance transcripts. Microarray data, though,

is less expensive to generate, easier to process and less challenging in terms of storage (Wang

et al., 2009; Zhao et al., 2014).

DNA microarrays for expression measurements contain a high number of fixed DNA

spots of specific sequences, known as probes, attached to a glass slide. These hybridize

specifically to usually fluorescently labeled complementary desoxyribonucleic acid (cDNA) or

complementary ribonucleic acid (cRNA) which is prepared from a sample. This reaction is
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detected and quantified to determine abundances of nucleic acid sequences in the sample and

consecutively differential expression between different samples. Data preprocessing includes

steps of background correction, summarization and log transformation, as well as quality

control and normalization steps.

For RNA-Seq the RNA of a sample is converted to a cDNA fragment library, containing

adaptors on one or both ends. During sequencing short sequences from one end or both ends

are obtained (single-end sequencing vs. paired-end sequencing) by sequential hybridization

readout. This results in read lengths of typically 30-400 bp. The reads are subsequently

aligned to a reference genome or reference transcriptome, or assembled de novo in case

no reference information is available. The higher the sequencing coverage, the better the

detection of rare transcripts is. While data measured on a microarray is restricted to probes

on the array, RNA-Seq provides an exhaustive view on the transcriptome present in the

sample.

1.2.2 Proteomic data

Similar to transcriptomic techniques, proteomic high-throughput techniques have gone

through an important development during the last years. Main techniques used in this field

comprise antibody-based reverse phase protein arrays (RPPA) and mass spectrometry (MS).

Unlike transcriptomic data, these data sets allow for functional profiling as they reflect the

proteomic state in the cell.

RPPAs are protein arrays which constitute a reverse method compared to usual microar-

rays, as the samples, in this case cellular lysates, are directly spotted on nitrocellulose coated

glass slides. For measuring the expression of multiple proteins a series of identical slides is

spotted. The slides are incubated with antibodies which bind specifically to the proteins

of interest. In a second round of incubation, another labelled antibody binds to the first

antibody and thereby provides a means to measure the primary binding reaction. Detection

can be based on chemiluminescence, fluorescence or colorimetric assays. The obtained data is

preprocessed and used for quantification. Data quality is highly dependent on good antibody

binding properties, which are assessed prior to incubation via western blot.

For MS the sample is ionized in order to retrieve charged fragments of the sample’s

molecules. These ions are ordered according to their mass-to-charge ratio by applying an

electric and/or magnetic field. Usually, detection is performed by an electron multiplier or

any device that can measure charged particles. Relative abundance of the detected ions can

be displayed in so-called mass spectra as a function of the mass-to-charge ratio. Via database

matching the measured spectra can be assigned to specific molecules. When used for protein

expression measurements, the proteins of a sample are fragmented to peptides, which can be

identified in the last step as part of specific proteins.

While RPPA provides a better throughput in terms of samples, MS can cover almost

all proteins that are technically detectable via a sequence comparison with corresponding

databases. Both techniques can provide additional information on protein phosphorylation
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taking place post-translationally, yet they use different approaches. RPPA employ antibodies

to detect the phosphorylation on the protein, while MS measures the change of mass-to-charge

ratio to identify corresponding mass changes. As protein phosphorylation gives a lot of

information on cellular activity, it is valuable information when interpreting cellular signaling.

While RPPA data is restricted to the selected antibodies, MS data can provide a whole

view on the cellular proteome and is restricted only to technical sensitivity. However, MS

has higher costs per sample when the aim is multiple sample profiling and there are still

limitations in detecting proteins which are only present in low abundances.The presented

proteomics techniques provide relative protein abundance values, compared to transcriptomics

data measurements which provide absolute values such as read counts or fragments per

kilobase of transcript per million mapped reads. However, this issue can be tackled e.g. by

reference sample measurements when being addressed during the experimental design phase.

1.3 Cross-platform integration of transcriptomic and proteomic

data

Cross-platform integration is a tempting approach when aiming to assess or to dispose - at

least partly - of technical biases that are inherent to the different measurement techniques.

Furthermore, high rates of false positives and false negatives can be addressed by reinforcing

concordant information (Hwang et al., 2005). Data integration constitutes a very elegant way

to not think in measurement systems, such as gene expression, protein-protein interaction

assays or else, but to think in causal chains of effectors and effects, with these being

measured by different means. Opening up a multi-dimensional space in terms of multiple

data types and then reducing the dimensionality of information about the system of interest,

it prevents from thinking horizontally on one level of measurement only, and thus allows

for a deeper comprehension of systems biology. Promising examples are functional-linkage

networks, protein function prediction from heterogeneous data or patient-specific data

integration (Gligorijević and Pržulj, 2015).

Yet, these ideas are confronted with a lot of challenges when considering the practical

implementation of cross-platform data integration. Further consideration of an optimal

data integration methodology is needed when time-series data from different platforms are

assessed. Their benefit for characterization of molecular processes is specified in Section 1.4

Exploring molecular dynamics via time series data.

1.3.1 Underlying biological rationale

Integration of proteomic and transcriptomic data poses an interesting question as it links

the two ’product’ layers of the central dogma of molecular biology. In addition, there is a

large number of different regulatory mechanisms taking place on or between these layers.

A non-exhaustive overview of these influences is depicted in Chapter 3 Decoding Cellular

Dynamics in Epidermal Growth Factor Signaling Using a New Pathway-Based Integration
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Approach for Proteomics and Transcriptomics Data, Figure 2. Such molecular regulation is

physiologically occurring post-transcriptionally and might be deregulated in case of disease.

It ranges from chromatin state dynamics over alternative splicing to post-translational

modifications of proteins and effects reflected in cellular signaling cascades, such as feedback

loops. On account of this, we do not observe perfect correlations when comparing protein

expression with gene expression data.

As a reason for low correlation between protein and gene expression data, Haider and

Pal (2013) discuss the following influences (to be considered as non-exhaustive):

• post-transcriptional modifications,

• translational efficiency (ribosome density, occupancy time in ribosomes),

• external factors (e.g. temperature),

• codon-bias (multiple number of codons translate the same amino-acid),

• variability of messenger ribonucleic acid (mRNA) expression levels during cell cycle,

• different half-lives of mRNA and proteins,

• experimental error.

The aim of integrating these two data types is therefore defined as identifying certain

regulatory effect patterns. Certainly, a specific determination of a regulatory origin is hard

to obtain at this stage of integration. Yet, extending the integration towards additional

data types following the idea of systems integration might enable such specific assignments

eventually.

1.3.2 Challenges for implementation

Challenges arising when addressing the implementation of data integration are various.

Initially, it is of considerable importance to start with high quality data to prevent false

assumptions downstream in the integration process: First, defining a significance threshold is

problematic as this has to be dependent on the specific integration method of choice. Second,

it needs to be decided at which level of information the integration should optimally be

performed. Here, data reduction is an option in order not to stumble across limited statistical

power when integrating higher data dimensions.

Another issue which needs to be tackled when data-driven methods in high-dimensionality

problems are used is overfitting. With analyzing multiple different data sets the risk of

trusting false positive results is increased. To reduce false discoveries in expression data,

the gold standard is searching for replication of results in independent data sets. However,

finding independent data sets analyzed in the same integrative manner is very challenging or

even impossible.

Another issue needing attention even prior to comprehensive integration is confounding

factors in the individual data sets. Though usually a number of additional variables is

assessed, there might also be sources of signal due to unknown or unmeasured variables. This

phenomenon is already a problem in well-designed studies (Leek and Storey, 2007), and its
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effects accumulate during data integration. Therefore, disregarding this issue might also lead

to misinterpretation.

A further point of consideration is how to biologically account for the different molecular

layers the data is based on: Does biological variation in data from a certain molecular level

has the same meaning as biological variation in another data type? Is a normalization step

necessary? Does it biologically make sense to use the same structures during data reduction

for different data types?

To summarize, there are many challenges that need to be addressed on the way to powerful

integrative analysis. The integration method itself will still have to clearly depend on the

ultimate goal of the analysis.

1.3.3 Integration approaches

Data integration approaches in general follow two different hypotheses (Ritchie et al., 2015),

as depicted in Figure 1.3:

1. integration is performed reflecting variation hierarchically in a linear manner, i.e. from

DNA to RNA to proteome to phenotype, or

2. integration considers the combination of variation across all omics levels leading to a

specific phenotype.

The method of data reduction and the order of processing needs to be chosen accordingly.

When different data types are integrated, three possible approaches have been described so

far: concatenation-based, transformation-based and model-based approaches (Ritchie et al.,

2015). Concatenation-based approaches link the different data types on a raw data level or a

pre-processed data level, while in transformation-based approaches the data from different

platforms undergoes an individual analysis and transformation process first. In model based

integration approaches each data type builds the basis for an independent model before the

integration process results in a combined model.

Table 1.1 gives a non-exhaustive overview on diverse data integration approaches and

tools for transcriptomics and proteomics data integration.
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Genome

Phenotype

Proteome

Epigenome

Transcriptome

+ +

Model
Model

Model Model

Model

Model

a)                          b)                          c)

A                                                                   B

Figure 1.3. Data integration approaches of biological high-throughput data. A: Data integration reflects
the hierarchical variation in the data linearly (indicated with blue arrows) or is performed according to
the combination of variation across all omics levels (indicated with green arrows). B: Data integration
approaches described so far. a) Concatenation-based integration. b) Transformation-based integration. c)
Model-based integration. Different colors represent different data types. Figure adopted from Ritchie et al.
(2015).
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 1 Introduction

1.4 Exploring molecular dynamics via time series data

Molecular regulatory mechanisms are due to their complexity not fully representable by a

single measurement, even if their characterization is done in high-throughput. Signaling

cascades, feedback mechanisms or pathway crosstalk are important examples that illustrate the

necessity for time-resolved investigation. Therefore, time-series expression data is increasingly

generated with the aim to monitor cyclic processes or the molecular reaction upon external

perturbation (Bar-Joseph et al., 2012). From a systems biology perspective such data enables

a deep characterization of the system dynamics with regard to the coordination of molecular

processes, the relationship between individual molecules and the rate of changes observed.

When data on coordinated processes is available, inference of causal regulatory links can be

performed, leading to a better understanding of the finely orchestrated cellular reactions.

1.4.1 Time series data - monitoring temporal variation

Time series data of cyclic processes, e.g. the cell cycle, have demonstrated that a deeper

understanding of molecular dynamics is not obtainable by just measuring individual cellular

states or ‘snapshots’. This is due to the fact that transcriptional and translational processes

do not only increase the complexity of the molecules’ information content (as shown in

Figure 1.2), but are also coupled dynamically.

With our linear understanding of how time passes, a molecular interaction is always

dependent on previous interactions of the molecule itself and other interaction partners. Thus,

both spatial and dynamic dependency is narrowing down options of the molecular interplay

at a certain point in time. Given this dependency, there are fixed sets of possible further

interaction steps for each molecule throughout transcriptional and translational processes.

With the increasing knowledge of biological interactions, many of them being available in

biological databases (see Section 1.5 Biological knowledge resources), the question arises

whether it is feasible to define this set of possible interactions at certain points in time in the

future.

However, with our current understanding of molecular processes, time-resolved data

enables us to follow individual signaling axes over time, granted that different data types on

different molecular levels are available. Therefore, upon an external stimulation of a cell,

we expect a cellular response that starts with a signaling cascade involving phosphorylation

processes and ending with transcription factor relocalization into the cellular nucleus. This

process triggers transcriptional changes that are often dependent on other molecular partners

of transcriptional complexes. The generation of new RNA then results in protein translation,

which itself can affect the signaling pathway characteristics via changed protein expression

levels to enable a long-term cellular response.

Such a cascade, as a matter of course, depends on molecular synthesis and degradation

rates, as well as post-transcriptional and post-translational modifications. Only recently, we
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have gained more precise knowledge about such ‘molecular timing’ in mammalian cells, often

through single-cell techniques.

Transcription rates have been measured in mammalian cells with different techniques.

Yunger et al. (2010) could observe rates between 0.3 and 0.8 kb min−1 in vivo. Maiuri

et al. (2011) reported transcription rates of 10 and 35 kb min−1 for nascent RNAs from an

integrated human immunodeficiency virus type 1-derived vector. Others reported values of

3.8 kb min−1 (Singh and Padgett, 2009) and 3.1 kb min−1 (Wada et al., 2009) from a bulk

analysis of the first transcriptional wave.

After external stimulation, transcriptional bursting has been observed in mammalian

cells, which was followed by silent periods. These bursts have been characterized further

by Bahar Halpern et al. (2015), who investigated nuclear retention of mRNA as a buffer

that dampens the linked gene expression noise. But it is the combination of burst fractions,

transcription rates and mRNA stability that leads to the final level of cellular mRNA and

can affect noise and response time (Rabani et al., 2011; Schwanhäusser et al., 2011).

mRNA stability is also dependent on its decay mechanisms, which either constitute a

quality control step and/or mechanistically change the abundance of functional proteins by

changing mRNA half-life. This depends on gene transcription itself, pre-mRNA splicing,

pre-mRNA 3’-end formation and other post-transcriptional modification as well as mRNA

export from nucleus to cytoplasm (Schoenberg and Maquat, 2012). Schwanhäusser et al.

(2011) reported median mRNA half-lives of ∼ 9 hrs in a global quantification of mammalian

gene expression control.

How much the dynamic changes in RNA levels are influenced by RNA stability has been

under debate: The ‘constant degradation hypothesis’ has been opposed by the ‘varying

degradation hypothesis’. The former assumes a constant degradation per gene over time,

the latter implies strong effects by RNA degradation rate, either by individual changes or

by a continuous shift over time (Rabani et al., 2011). By combining metabolic labeling of

RNA with advanced RNA quantification assays and computational modeling, these authors

were able to show that for most genes (94 %) dynamic changes in degradation rates have

very little impact on expression changes during the first 6 hrs of a cellular response. For

the rest of the genes, they rejected the constant degradation model, indicating that either

there is no constant but temporally changing degradation or that there are other intervening

post-transcriptional events.

Schwanhäusser et al. (2011) also measured protein half-lives and observed them to be

in the order of ∼ 50 hrs. Yet, high variation between proteins was observed. Boisvert

et al. (2012) determined the average turnover rate in HeLa cell proteins to be ∼ 20 hrs in

a quantitative proteomics analysis of protein turnover. Kristensen et al. (2013) observed

that protein expression during cellular differentiation is largely controlled by synthesis rate

changes, whereas the relative degradation rate shows only minor changes in the majority of

proteins. Unstructured lower abundance proteins were reported to show very fast regulation

of a large part of the signal transduction network, which was in line with findings by Lundberg



 1 Introduction

et al. (2010) which showed the disparities in different cell types to be largely dependent on

lower abundance proteins.

Targeted protein degradation is crucial for regulation of signaling pathways. Large scale

protein experiments have shown protein degradation to vary between a range of minutes

and tens of hours. However, most proteins show half-lives similar to cell doubling times.

Recently, protein degradation in different subcellular compartments of a human cell line has

been reported for ∼ 5000 proteins (Larance et al., 2013).

Due to the aforementioned interdependencies, mRNA stability modulation has been

suggested as a therapeutic approach (Eberhardt et al., 2007). However, individual molecule

dynamics are diverse and also dependent on the availability of e.g. enzymes or co-factors.

This generates a high number of combinatorial effects when trying to resolve the molecular

relationships based on time series data. Still, time-resolved data is the only means that

enables us to follow molecular generation or degeneration and molecular stability. It can

provide us with links between dynamic signaling and functional specificity and enable us

to answer questions e.g. regarding environmental influences on signaling. Accordingly,

when interlinking both gene and protein time-series expression data sets, a more detailed

understanding of the molecular interplay can be generated. Detailed time-resolved integration

is part of the scope of this thesis.

1.4.2 Modeling molecular dynamics in systems biology

The most widely used systems biology bottom-up approach for modeling molecular dynamics

is clearly ordinary differential equation (ODE) modeling. This approach, however, comes

with the challenge, that usually a lot of individual parameters need to be known prior to

modeling. Some of these parameters might not even be measurable, causing the need for a

parameter estimation process. Additional consideration needs to be given to the degree of

modeling complexity required in order to address the biological questions at hand.

The focus of systems biology top-down approaches in identifying and understanding

molecular regulation is rather on the inference of causal molecular interactions. These usually

require experimental validation in a second step. The two approaches mainly applied for

analysis of time-series data in this context are Granger causality and dynamic Bayesian

modeling.

Granger causality is based on the idea that if signal A causes signal B, then the past

values of signal A should provide information for prediction of B, in addition to past values

of B itself (Granger, 1969). Though the basic concept only gives information about linear

features of signals, there are extensions to nonlinear cases.

Dynamic Bayesian networks (DBNs) are a probabilistic representation of a probability

space. Based on a stochastic process probability distributions of random variables can be

modeled. This stochastic process is presumed to satisfy the first order Markov property, i.e.

future states of the process (conditional on both past and present states) depend only upon

the present state. They have been proposed initially by Dagum et al. (1992) to extend linear
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state space models and their theory will be introduced in 1.4.3 Dynamic Bayesian Network

inference.

In a review of Xuan et al. (2012) different inference approaches were compared for the

10-gene networks released in the DREAM4 challenge. For the smaller systems investigated

DBNs were competitive with non-parametric approaches in respect to computational time

and accuracy and outperformed Granger causality-based methods and simple ODE models.

Consequently, this thesis focusses on the application of DBN inference to elucidate molecular

mechanisms.

1.4.3 Dynamic Bayesian Network inference

A Bayesian Network is a graphical model for representing conditional independencies between

a set of random variables. It consists of

1. a directed acyclic graph G = (X,D) with X = (Xi)i∈{1,...,n} denoting the set of nodes

and D denoting the set of edges between the nodes in G. The nodes represent a set of

random variables.

2. a set of local probability distributions (P (Xi|Pa(Xi)))i∈{1,...,n}, defining the proba-

bility distribution of each node conditional only on the value of its parent variables

(Pa(Xi))i∈{1,...,n}.

The graph represents the qualitative dependence relationships, the local probability dis-

tribution function (PDF) represents quantitative information about the strength of those

dependencies.

Bayes’ rule states that the posterior probability of x1 given x2 (P (x1|x2)) can be computed

given the prior P (x1) and the likelihood P (x2|x1):

P (x1|x2) =
P (x2|x1)P (x1)

P (x2)
(1.1)

where P (x2) 6= 0.

Therefore, Bayes’ rule enables updating our belief about a hypothesis x1 based on new

evidence x2: While we might have direct information about P (x2|x1) and prior information

about P (x1), direct information about P (x1|x2) might be difficult to obtain directly. The

denominator represents a normalization term, ensuring that the posterior probability over all

possible values adds up to 1. Given knowledge about conditional relationships between the

variables, we can thus learn probability distributions of all parts of the system if evidence

about the existence of certain entities (such as x2 in the example) can be assessed.

Alternatively, Bayesian networks can be described as the product of conditional probabilities:

P (x1, ..., xn) =

n∏
i=1

P (xi|Pa(xi)), (1.2)
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x1

x2 x3

Figure 1.4. Simple Bayesian Network. Given x1, nodes x2 and x3 are conditionally independent.

  

x1

t = 1

t = 2

t = 3

x2 x3

x1

x1

x2

x2

x3

x3

Figure 1.5. Simple Dynamic Bayesian Network. Each time point is represented as a time slice. A node
can only depend on a node in the previous time slice or on a parent node of the same time slice. Interslice
edges are colored in grey, intraslice edges are depicted in black.

with Pa(xi) being the parent node set of node xi.

Given a directed acyclic graph, a Bayesian network (compare Figure 1.4) with respect to

this graph is defined by initial specification of the conditional probability distributions of

each node given its parents in this graph if the joint distribution satisfies Equation 1.2.

Bayesian networks can be used for three kinds of reasoning (Murphy and Mian, 1999):

• causal reasoning: from known causes to unknown effects,

• diagnostic reasoning: from known effects to unknown causes, or

• for any combination of these two,

depending on the degree of observability of the variables.

DBNs are an extension of Bayesian networks, which serve as models for systems which

are dynamically evolving over time. They reflect a special case of singly connected Bayesian

Networks, in which the connections are between discrete time ‘slices’ (Figure 1.5). The

network’s states fullfil the Marcovian condition in that any state of the network solely depends

on its immediate precursor state.
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As in a DBN not all states need to be observable, it can be described with a sequence

of hidden-state variables X = {x0, ..., xT−1} and a sequence of observed variables Y =

{y0, ..., yT−1} with T representing the time boundary:

P (X,Y ) =

T−1∏
t=1

P (xt|xt−1)

T−1∏
t=0

P (yt|xt)P (x0), (1.3)

Hence, for a full specification of a DBN, we need definitions of

1. the state transition PDFs, giving the time dependencies between the states,

2. the observation PDFs, specifying dependencies of observation nodes from other nodes

at the same time and

3. the initial state distribution P (x0).

This definition allows addressing the following issues:

• Inference: Estimation of unknown states on the basis of observed states and the initial

probability distribution.

• Decoding: Identification of the most likely sequence of hidden variables given the

observations.

• Learning: Estimation of DBN parameters that match the observed data to arrive at

the best model for the system.

• Pruning: Removing nodes from the network structure which are of no relevance for

inference.

In this thesis, network inference is performed with the state space model visualized in

Figure 1.6, which constitutes a special case of a DBN.

Let t denote time points, let r denote replicates, let K be the dimension of hidden

states, let P be the dimension of observations, let xtr = {xtr1, ..., xtrK} denote the set

of hidden states, let ytr = {ytr1, ..., ytrP } denote the set of observed genes/proteins, let

v be the gene/protein precisions vector and A ∈ IR(K×K) be the state-to-state matrix,

B ∈ IR(K×P ) be the observation-to-state matrix, C ∈ IR(P×K) be the state-to-observation

matrix, D ∈ IR(P×P ) be the observation-to-observation matrix. Further, let w = (wt)t∈{0,...,T}
and z = (zt)t∈{0,...,T} denote collections of random variables with w ∼MVN(0, IK×K) and

z ∼MVN(0, diag(v)−1) where IK×K denotes the K-dimensional identity matrix. Then the

’Empirical Bayes Dynamic Bayesian Network’ as implemented in the R package ebdbNet

of Rau et al. (2010) is defined by:

xtr = Axt−1,r +Byt−1,r + wtr

ytr = Cxt,r +Dyt−1,r + ztr
(1.4)

This model was developed for inference of gene regulatory networks, but is employed in this

thesis for the integrated data. Therefore, the observed states include not only gene expression
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Hidden states

Measured states

t = 1

t = 2

A

B
C

D

Figure 1.6. ebdbNet state space model (modified from Rau et al. (2010)). Shown are two consecutive time
points, t = 1 and t = 2, colored in yellow and orange. Hidden (non-observed) states are depicted on grey,
measured (observed) states on white background. State matrix names, corresponding to A, B, C and D in
Equations 1.4, are the state-to-state matrix, the observation-to-state matrix, the state-to-observation-matrix
and the observation-to-observation matrix. Note, that the states can correspond to gene expression or
phosphoprotein abundance levels.

data, but as well phosphoprotein expression data. In addition, regulatory links between the

different molecule types are enabled. In this work, the observation-to-observation matrix

D, which provides the structure of the inferred network, is of ultimate interest. The hidden

states dimension K is determined via the block-Hankel matrix of autocovariances of the

observations. The latter is defined by the time lag between measurements and the estimated

maximum relevant biological time lag between regulators and regulated molecules. Estimation

of the hidden states dimension K is then performed by singular value decomposition of the

block-Hankel matrix: The optimal value for K is found when a further singular value does not

considerably increase the amount of explained variation anymore. A corresponding threshold

value was determined by simulations (Rau et al., 2010). Based on the state matrices and the

precisions vector v a Kalman filter and smoother is used to estimate the hidden states, given

their dimension K.

Let a(j), b(j), c(j) and d(j) denote vectors of the jth rows of the matrices A, B, C and D,

with α = {α1, ..., αK}, β = {β1, ..., βP }, γ = {γ1, ..., βK} and δ = {δ1, ..., δP } building the

set of hyperparameters ψ = {α, β, γ, δ}, vi being the ith component of the precision vector v,

j ∈ {1, ...,K}, i ∈ {1, ..., P}. Then the a priori precisions of the parameter set are described

by the set of hyperparameters ψ and the set of parameters θ = {A,B,C,D, v} (Rau et al.,

2010):

a(j)|α ∼ N(0, diag(α)−1)

b(j)|β ∼ N(0, diag(β)−1)

c(i)|γ, vi ∼ N(0, v−1i diag(γ)−1)

d(i)|δ, vi ∼ N(0, v−1i diag(δ)−1)

(1.5)
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The hyperparameters’ point estimate is identified with an expectation maximization like

algorithm, conditioned on the current estimates x̂ of the hidden states. Thus, the posterior

means of A, B, C and D can be calculated. The final network is defined when global

convergence of the parameters is reached. In this thesis, the convergence criteria tested in

extensive simulation runs by Rau et al. (2010) have been used.

1.5 Biological knowledge resources

Numerous biological databases are available, many of them being commercial databases.

However, also the number of open-access databases is large and constantly growing. Both

enable a comparison of newly generated data with already known biological interactions

or associations, which were gathered mostly in single experiments or with high-throughput

methods over the last decades. With the growing use of high-throughput techniques, this

comparison can be a valuable supplement to compare new results with database content and

to check for contradictory findings (Glaab, 2015).

In this thesis, public biological knowledge from databases is employed to identify signaling

axes ranging over different molecular levels. In this way, their potential as a means for

cross-platform data integration approaches is exploited. Contents of the databases used

include pathway models (from KEGG, Reactome, NCI and Biocarta databases), transcription

factor target interactions (from Chea, Pazar and TRANSFAC databases/collections), protein-

protein interactions (STRING database) and phosphorylation processes (PhosphoSitePlus

database). Table 1.2 gives an overview on the databases used in this thesis, their sizes and

versions, content, curation and references.

One of the drawbacks of exploiting database knowledge is the comparison with known

biological interactions, therefore, no ‘new knowledge’ is generated. Another issue is the

fact that knowledge stored in most databases is compiled over different experiments, often

originating from different species, different cells and different experiments. Hence, interpreta-

tion of public knowledge based analyses needs to be performed with caution, yet it can also

provide considerable insight into signaling links and relations that might not be clear and

evident only based on the data.
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. Investigated signaling pathways 

1.6 Investigated signaling pathways

Knowledge about well characterized signaling pathways, such as the epidermal growth factor

receptor (EGFR) signaling pathway or the BCR signaling pathway can be used as benchmark

knowledge when new methodological integration methods are developed. In this thesis data

sets covering these two pathways were investigated in detail. The data sets exhibit the

considerable advantage that they cover most popular high-throughput methods both on

(phospho-)proteomic and transcriptomic level. This includes antibody-based methods and

MS for (phospho-)protein expression data and microarrays and RNA-Seq for gene expression

data. Thus, assessment as well as comparison of the integration on different input data sets

is facilitated.

1.6.1 Epidermal growth factor signaling

The EGFR signaling pathway, depicted in Figure 1.7, is crucial in the cellular response to

growth factors. Upon ligand binding, EGFR undergoes a transition process by forming active

homodimers. Additionally, pairing with other members of the ErbB family which resulted in

active heterodimers, has been observed (Ward and Leahy, 2015). Ligand binding stimulates

the intracellular tyrosine kinase activity of the receptor, resulting in autophosphorylation

of tyrosine residues in the C-terminal domain of EGFR. This phosphorylation triggers

downstream activation and initiates several signal transduction cascades, such as the MAPK,

AKT, and JNK pathways. Their impacts are DNA synthesis and cellular proliferation, which

explains why aberrant EGFR signaling is highly important in various diseases associated

with cellular proliferation, such as cancer (Citri and Yarden, 2006).

In this thesis, the focus for EGFR signaling analysis was set on pathway crosstalk and

feedback signaling. As time-course data was available on four time-points measured in

parallel both on phosphoprotein and transcriptome level, inference of causal links between

the different data sets was considered to be of biological interest. As pathway coverage

of these phosphoproteins was low, the focus was not on a systematic characterization of

signaling axes.

1.6.2 B cell receptor signaling

The activation of the BCR signaling pathway, depicted in Figure 1.8, is highly important in

the adaptive immune response. The receptor is responsible for recognizing B cell encounters

with antigens. In this case B cells are needed to proliferate and differentiate in order to

generate high-affinity antibody secreting plasma B cells and long-lived memory B cells.

Therefore, the BCR has a twofold function, i) receptor oligomerization for further signal

transduction processes, ii) mediating internalization and further processing of the antigen as

well as presentation of its peptides to helper T cells (Yuseff et al., 2013).

The receptor itself is comprised of membrane immunoglobulin (Ig) heavy and light chains,

associated with an intracellular Igαβ heterodimer. Phosphorylation of its immunoreceptor
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Figure 1.7. EGFR signaling and downstream signaling effects (modified from Nyati et al. (2006)).

tyrosine activation motif by Src-family kinases leads to activation of SYK. Downstream,

various intracellular signaling molecules are assembled, leading to different cellular processes,

such as gene expression, reorganization of the cytoskeleton, and BCR-mediated internalization

of antigen complexes. These are processed in endosomal compartments and presented on the

extracellular surface bound to the major histocompatibility complex II in order to recruit T

helper cells (Harwood and Batista, 2008). Important signaling axes include MAPK signaling,

NFAT signaling, AKT/mTOR signaling and NF-κB signaling.

In this work, a systematic characterization of BCR signaling in a Burkitt’s lymphoma

cell line model was performed throughout the different molecular levels of phosphoproteome

and transcriptome data over time. Integration of these two levels was used to identify

cross-platform derived consensus molecule sets regulated at certain time points after receptor

stimulation. In addition, tracking of individual signaling axes based on the two data sets

was established.
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Figure 1.8. BCR signaling and downstream signaling effects (modified from Young and Staudt (2013);
Scharenberg et al. (2007); Monroe (2006)).

1.7 Objectives and overview

With increasing numbers of different high-throughput data types generated based on an

individual experiment, the challenge of i) integrating the different data types methodologically

and ii) providing software making these methods available to the public is of particular

importance.

The objectives of this thesis were to

• Develop a methodology to integrate time-series phosphoproteomic, transcriptomic and

proteomic high-throughput data by taking into consideration the different molecular

levels of measurement

• Implement an open source software package offering the developed methodology to

other researchers

• Demonstrate the method’s strengths on structurally different data sets

– EGFR signaling data set: phosphoproteome and gene expression data sets are

limited due to technical reasons,

– BCR signaling data set: phosphoproteome and gene expression data sets were

generated with up-to-date sensitivity methods.

In this thesis, the first publication Chapter 2 pwOmics: An R package for pathway-based

integration of time-series omics data using public database knowledge introduces a new
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approach for the integration of phosphoproteomic, transcriptomic and proteomic data in

form of the R software package ’pwOmics’ developed with the above-mentioned objective.

It can not only be used with single parallel measurements of the different data types, but

combines the integration with a focus on time-series data. This focus enables a more detailed

characterization of possible causal links in mechanistic regulation processes. As open-source

package it is available to a wide range of researchers working on data integration.

The second publication Chapter 3 Decoding Cellular Dynamics in Epidermal Growth Factor

Signaling Using a New Pathway-Based Integration Approach for Proteomics and Transcrip-

tomics Data applies the new integration approach on a data set that measured epidermal

growth factor signaling in human mammary epithelial cells. Assessment of the different

molecular layers of measurement enables a detailed decoding of signaling processes over time.

Data analysis with this new integration approach could identify regulatory patterns already

known in EGF signaling, but also hint to other mechanisms not described yet in literature,

thus allowing for hypothesis generation of biological processes that can be experimentally

cross-checked. Such hypotheses enable the focused and pre-informed selection of experiments

for an identification of e.g. signaling pathway crosstalks or feedback loops and can reduce

resources and time during the characterization of a cellular response.

The third publication Chapter 4 Integration of phosphoproteome and transcriptome data to

link B cell receptor activation with gene expression dynamics uses the presented integration

approach to systematically identify individual signaling axes in B cell receptor signaling in

human DG75 cells. While in this lymphoma cell line pathophysiological signaling is mainly

attributed to tonic signaling (Corso et al., 2016), the focus in this work is on activated

signaling. A dissection of the cellular response in regard to activated signaling pathways

and affected transcription is possible when integrating the data sets with biological database

knowledge.

Hence, the listed publications demonstrate applicability of the presented data integration

approach on a technically limited data set as well as on a broader data set not biased by

selection of measured phosphoproteins/-sites. In Chapter 5 Discussion, the overall results of

the publications included in this thesis are discussed.
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ABSTRACT
Summary: Characterization of biological processes is progressively
enabled with the increased generation of omics data on different
signaling levels. Here we present a straightforward approach
for the integrative analysis of data from different high-throughput
technologies based on pathway and interaction models from public
databases. pwOmics performs pathway-based level-specific data
comparison of coupled human proteomic and genomic/transcriptomic
data sets based on their log fold changes. Separate downstream
and upstream analyses results on the functional levels of pathways,
transcription factors and genes/transcripts are performed in the
cross-platform consensus analysis. These provide a basis for
the combined interpretation of regulatory effects over time. Via
network reconstruction and inference methods (steiner tree, dynamic
bayesian network inference) consensus graphical networks can be
generated for further analyses and visualization.
Availability: The R package pwOmics is freely available on
Bioconductor (http://www.bioconductor.org/).
Contact: astrid.wachter@med.uni-goettingen.de

1 INTRODUCTION
High-throughput technologies applied in systems biology research
generate large amounts of molecular information nowadays.
Interpretation of genome- and proteome-wide data is dependent
on current analysis tools. As each technique shows a certain bias
and has natural limitations in identifying full signaling responses
(Yeger-Lotem et al., 2009), cross-platform analysis is an up-
to-date approach in order to connect biological implications on
different signaling levels. Usage of diverse data types provides
a deeper understanding of global biological functions and the
underlying processes (Kholodenko et al., 2012). Thus, development
of integrative software solutions for data from different high-
throughput techniques is a current major challenge for bioinformatic
analysis. Existing widely-used commercial software solutions such
as QIAGEN’s Ingenuity R©Pathway Analysis (IPA R©, QIAGEN
Redwood City, www.qiagen.com/ingenuity) or MetaCoreTM

(GeneGo, Inc., St. Joseph, MI) and also open-source software, such
as Cytoscape (Shannon et al., 2003), often handle proteomic and
genomic/transcriptomic data as if coming from the same functional
level. More specific integration tools which are considering these
levels include e.g. the web tool IMPaLA (Kamburov et al., 2011),
which provides knowledge based data integration on transcriptomics
or proteomics data combined with metabolomics data, and the

∗to whom correspondence should be addressed

webserver SteinerNet (Tuncbag et al., 2012), which enables
integration of transcriptional, proteomic and interactome data
utilizing Steiner trees. However, pwOmics combines these distinct
omics levels of evidence in order to refine the understanding of
molecular mechanisms including the biologically important time
effect. Thereby, it joins tools used for network analysis (Kristensen
et al., 2014), but adds a level of complexity by attributing weight
to the different functional levels of measurement in the first place
and the dimension of time in the second place. We implemented
pwOmics as open-source package for R, a free software environment
for statistical computing commonly used for bioinformatic analyses.

2 APPROACH
pwOmics provides analyses functionalities and comparative
integration features for coupled human proteome and genome/
transcriptome data sets. The analysis workflow is adapted to
account for the biological control mechanisms occurring on the
different regulation levels such as transcriptional control on gene
level, mRNA processing on transcript level and post-translational
modifications on protein level, as illustrated in Figure 1. The
two data sets are initially analyzed separately enabling a level-
specific interpretation of up- and downstream changes of regulatory
molecules. The protein based downstream analysis comprises
the pathway-based identification of transcription factors (TF)
of differentially abundant proteins and their target genes. The
gene/transcription based upstream analysis identifies TFs and
proteomic regulators based on differentially expressed transcripts or
genes. As high-throughput data are increasingly used to follow time-
dependent biological regulation after pertubation, the main benefit
of pwOmics is the cross-platform time series analysis functionality,
but consensus analysis can be performed also on single time point
measurements.

3 PACKAGE FEATURES
3.1 Databases
Existing knowledge stored in public databases is a key element
for data integration in the approach outlined above (Kramer et al.,
2014). Databases used here are pathway databases, TF-target
databases and a protein-protein interaction database. Pathway
databases can be selected individually or as combination of
KEGG (Kanehisa et al., 2014), Reactome (Croft et al., 2014),
Pathway Interaction Database (Schaefer et al., 2009) and Biocarta
(Nishimura, 2001). The information is used as gene sets in the
downstream analysis and combined with topological information in

c© Oxford University Press 2005. 1
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upstream analysis. Prior knowledge for network reconstruction is
based on the connected graph from protein-protein-interaction (PPI)
database STRING (Franceschini et al., 2013). For TF-target gene
identification processes the user can choose from databases ChEA
(Lachmann et al., 2010) and/or Pazar (Portales-Casamar et al.,
2009) or specify an own file e.g. containing commercial database
information.
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Fig. 1. pwOmics downstream and upstream analysis. Exemplarily shown are
results of a static consensus analysis, a dynamic analysis and the time profile
clustering.

3.2 Individual comparative analysis
In the individual analysis database information is used to identify
signaling molecules of the different functional levels for a
level-specific comparison. Identification of pathways containing
differentially abundant proteins is performed via a Biopax model
generated by the R package rBiopaxParser (Kramer et al., 2013) on
basis of the selected pathway databases. Enrichment of pathways
in downstream analysis and TFs in upstream analysis is optional.
Upstream regulators of TFs are identified via their pathways, but
only those pathways are considered further which contain a user-
specified number of TFs. Overlapping proteins found as neighbors
of a certain order of those TFs are assumed to be proteomic
regulators. Easy access to the individual level results is provided.

3.3 Consensus analysis
In the consensus analysis the intersection of signaling molecules on
each functional level is identified and used for building consensus
nets. For each matching time point a Steiner tree (Sadeghi and
Fröhlich, 2013) is generated (implemented via the shortest paths
based approximation algorithm) on the basis of intersecting proteins
and TFs from up- and downstream analysis and the connected
PPI STRING network. For this network reconstruction method
intersecting molecules regarded as ‘terminal nodes’ are mapped
to the PPI-network and those pathway components on shortest
interconnecting paths are included which provide the shortest
length of the overall network. Subsequently intersecting TF-target
relations are included to contribute to the static consensus graphs
for each matching time point. The dynamic consensus analysis
additionally considers signaling changes over time by applying

dynamic bayesian network inference via the R package ebdbNet
(Rau et al., 2010). Nodes considered in this step are those
identified in all static consensus graphs. With smoothing splines
an appropriate number of time points are generated under the
simplifying assumption of a gradual change of signaling over time.
This longitudinal data set is then used for the inference step. The
result allows a significance level-based visualization of the dynamic
bayesian network.

3.4 Time profile clustering
To identify similar co-regulation patterns over time pwOmics
provides an integrated time profile clustering, based on the soft
clustering fuzzy c-means algorithm implemented in the R package
Mfuzz (Kumar et al., 2007). The soft-clustering approach has the
advantage of assigning several clusters to one signaling molecule
based on similarity of log-fold change dynamics to several clusters.
Thus it enables an adequate clustering of complex expression
time profiles, which are characterized by fine-tuned transcriptional
mechanisms.

3.5 Data visualization
For easier biological interpretation users can visualize following
results: 1) Static consensus nets - based on matching time point
comparisons of the two datasets. 2) Dynamic consensus net - based
on dynamic bayesian network inference. 3) Time profile clustering
- based on softly clustered log-fold changes with a combined
visualization of proteins and genes/transcripts.

4 SUMMARY
We developed an R package as integrative pathway-based level-
specific tool for the analysis and interpretation of signaling
measured in parallel on different platforms. The presented approach
enables the reduction of results to a very reliable set of regulatory
signaling components, time profile clustering and the interpretation
of static and dynamic consensus results. Further details and
examples are provided in the package documentation.

Funding: This work was supported by the German Federal Ministry
of Education and Research via the projects MetastaSys [0316173A]
and MMML-Demonstrators [031A428B].
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Sadeghi, A., and Fröhlich, H. (2013). Steiner tree methods for optimal sub-network
identification: an empirical study. BMC Bioinformatics 14, 144.

Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., and Buetow,
K.H. (2009). PID: the Pathway Interaction Database. Nucleic Acids Res. 37, D674-
D679.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, T.W., Ramage, D., Amin,
N., Schwikowski, B., Ideker, T. (2003). Cytoscape: A software environment for
integrated models of biomolecular interaction networks. Genome Res. 13, 2498-
2504.

Tuncbag, N., McCallum, S., Huang, S.C., Fraenkel, E. (2012), SteinerNet: a web server
for integrating ’omic’ data to discover hidden components of response pathways.
Nucl. Acids Res 40 W505-W509.

Wang, X. and Zhang, B. (2013). customProDB: an R package to generate customized
protein databases from RNA-Seq data for proteomics search. Bioinformatics 29 (24),
3235-3237.

Yeger-Lotem, E., Riva, L., Su, L.J., Gitler, A.D., Cashikar, A.G., King, O.D.,
Auluck, P.K., Geddie, M.L., Valastyan, J.S., Karger, D.R., et al. (2009). Bridging
high-throughput genetic and transcriptional data reveals cellular responses to alpha-
synuclein toxicity. Nat. Genet. 41, 316-323.

Yosef, N., and Regev, A. (2011). Impulse control: Temporal dynamics in gene
transcription. Cell 144, 886-896.

3



3 Decoding Cellular Dynamics in Epi-

dermal Growth Factor Signaling Us-

ing a New Pathway-Based Integra-

tion Approach for Proteomics and

Transcriptomics Data

Reference

Astrid Wachter, Tim Beissbarth: Decoding Cellular Dynamics in Epidermal Growth Factor

Signaling Using a New Pathway-Based Integration Approach for Proteomics and Transcrip-

tomics Data. Front. Genet 2016, http://dx.doi.org/10.3389/fgene.2015.00351.

Copyright © 2016 Wachter and Beißbarth. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use, distribu-

tion or reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance with

accepted academic practice. No use, distribution or reproduction is permitted which does

not comply with these terms.

Original Contribution

AW developed the method, performed data analysis and wrote the manuscript. TB conceived

the design, envisioned the project and revised the manuscript.



ORIGINAL RESEARCH
published: 07 January 2016

doi: 10.3389/fgene.2015.00351

Frontiers in Genetics | www.frontiersin.org 1 January 2016 | Volume 6 | Article 351

Edited by:

Ekaterina Shelest,

Hans-Knoell Institute, Germany

Reviewed by:

Frank Emmert-Streib,

Tampere University of Technology,

Finland

Lorenz Adlung,

German Cancer Research Center

(DKFZ), Germany

*Correspondence:

Astrid Wachter

astrid.wachter@med.uni-goettingen.de

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 07 October 2015

Accepted: 03 December 2015

Published: 07 January 2016

Citation:

Wachter A and Beißbarth T (2016)

Decoding Cellular Dynamics in

Epidermal Growth Factor Signaling

Using a New Pathway-Based

Integration Approach for Proteomics

and Transcriptomics Data.

Front. Genet. 6:351.

doi: 10.3389/fgene.2015.00351

Decoding Cellular Dynamics in
Epidermal Growth Factor Signaling
Using a New Pathway-Based
Integration Approach for Proteomics
and Transcriptomics Data
Astrid Wachter * and Tim Beißbarth

Department of Medical Statistics, University Medical Center, Göttingen, Germany

Identification of dynamic signaling mechanisms on different cellular layers is now

facilitated as the increased usage of various high-throughput techniques goes along with

decreasing costs for individual experiments. A lot of these signaling mechanisms are

known to be coordinated by their dynamics, turning time-course data sets into valuable

information sources for inference of regulatory mechanisms. However, the combined

analysis of parallel time-course measurements from different high-throughput platforms

still constitutes a major challenge requiring sophisticated bioinformatic tools in order to

ease biological interpretation. We developed a new pathway-based integration approach

for the analysis of coupled omics time-series data, which we implemented in the R

package pwOmics. Unlike many other approaches, our approach acknowledges the role

of the different cellular layers of measurement and infers consensus profiles and time

profile clusters for further biological interpretation. We investigated a time-course data

set on epidermal growth factor stimulation of human mammary epithelial cells generated

on the two layers of RNA and proteins. The data was analyzed using our new approach

with a focus on feedback signaling and pathway crosstalk. We could confirm known

regulatory patterns relevant in the physiological cellular response to epidermal growth

factor stimulation as well as identify interesting new interactions in this signaling context,

such as the regulatory influence of the connective tissue growth factor on transferrin

receptor or the influence of growth arrest and DNA-damage-inducible alpha on the

connective tissue growth factor. Thus, we show that integrated cross-platform analysis

provides a deeper understanding of regulatory signaling mechanisms. Combined with

time-course information it enables the characterization of dynamic signaling processes

and leads to the identification of important regulatory interactions which might be

dysregulated in disease with adverse effects.

Keywords: omics, data integration, high-throughput, time-series, EGF signaling
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INTRODUCTION

Omics data integration is a conclusive concept for a systemic
understanding of biological signaling mechanisms, both in
healthy conditions and disease (Kristensen et al., 2014; Ritchie
et al., 2015). The combination of different types of omics data
can provide a more comprehensive and complete picture of
individual cellular mechanisms. Furthermore, a cross-platform
analysis represents a measure to overcome individual platform
biases and technical limitations (Yeger-Lotem et al., 2009).

An even more informative approach is to analyze time-
course data sets from different omics levels, as a lot of cellular
signaling information is encoded in signaling dynamics (Purvis
and Lahav, 2013). This type of data provides more than only
a single “snapshot” of the underlying biological processes, thus
it can augment the knowledge we have about cellular signaling
events considerably. With these data feedback signaling loops,
molecular interactions and pathway crosstalk can be tracked over
time. Thus, combining different types of omics data with time
course information enables a comprehensive characterization
of cellular responses upon stimulation and also a detection of
regulatory mechanisms initiated by specific perturbations. In
Figure 1 a selection of dynamic regulatory signaling mechanisms
on protein and gene layer is depicted. These effects become
directly apparent in such omics data sets, so the “dynamic
knowledge” we can collect may also provide us with an idea of
modifications responsible for pathologic signaling and signaling
dynamics, thus forming a basis for an improvement of treatment
strategies.

Of course, such parallel time-course data sets are even
more challenging to analyze and interpret as they include

FIGURE 1 | A selection of cellular layer specific regulatory signaling mechanisms. The two layers of measurement are indicated as “protein” and “gene layer.”

The high number of effectors illustrates the mechanistic fine-tuning of signaling. Note that this fine-tuning also takes place in the dimension of time.

an additional dimension and require a meaningful cross-
platform integration method. Hence, there is a demand for
bioinformatic tools that can deal with the diverse data types
and combine them in such a way that their output enables a
straightforward biological interpretation of the data. Although a
lot of individual data integration methods have been developed
so far, they mostly address very specific integration questions
(Balbin et al., 2013; Hamon et al., 2014), are not implemented
as tools which can be freely used by other biologists and
bioinformaticians [e.g., QIAGEN’s Ingenuity R© Pathway Analysis
(IPA R©, QIAGEN Redwood City1)] or do not acknowledge the
different nature of different omics data types (Ding et al.,
2012; Sun et al., 2014). Very few tools also include the
biologically very interesting aspect of time-course data analysis
(Rogers et al., 2008), although these types of data sets are
expected to be generated more often in the near future (Bar-
Joseph et al., 2012) in order to address systems biology
questions.

We developed a pathway-based data integration approach
for the analysis of coupled high-throughput time-course
measurements on the cellular layers of proteins, transcripts and
genes. We implemented this approach as R package pwOmics,
that we presented earlier (Wachter and Beissbarth, 2015). In
brief, pwOmics joins the tools of network analysis: It uses
public signaling pathway knowledge to map molecular network
interactions, thereby identifying activated and inactivated genes
and proteins in cellular signaling upon perturbation. Thus, the
cellular layers on which the data is collected are acknowledged
during data analysis while simultaneously considering the

1www.quiagen.com/ingenuity.
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dynamics. Here we describe and test the utility of our method in
more detail.

Epidermal growth factor (EGF) signaling has already been
studied comprehensively in comparison to other signaling
pathways as dysregulation is associated with poor prognosis
in many human malignancies (Lurje and Lenz, 2009). As
various high-throughput and low-throughput omics data sets are
available and a lot of knowledge is already acquired on the basis
of which methodical evaluation can be performed, it constitutes
an adequate example for investigation of new approaches. The
data set analyzed heremeasures themitogenic response of human
mammary epithelial cells (HMEC) to EGF on the proteomic and
the transcriptomic layer over time (Waters et al., 2012), thereby
representing physiological signaling conditions. Figure 2 depicts
the experimental design used in the study. EGF stimulation is
associated with cellular proliferation, differentiation and survival
(Herbst, 2004) and directly affects signaling pathways such as the
MAPK signaling pathway, the ERBB signaling pathway and the
RAS signaling pathway.

We chose the comparably well characterized example of EGF
signaling in order to map the results of our new pathway-
based integration approach to known experimental results for
methodical evaluation and to reveal new dynamically relevant
mechanisms in EGF signaling on the different functional
layers. We focus on feedback signaling and pathway crosstalk,
both complex regulatory mechanisms that have been under
intensive biological investigation in individual experiments in
physiological and pathological conditions (Avraham and Yarden,
2011; Wang et al., 2011).

METHODS

Data Set
The data set investigated with the new pathway-based integration
approach was generated in a study on network analysis of

FIGURE 2 | Experimental design. HMEC cells were seeded and allowed to

attach and grow for 24 h. After 48 h of growth arrest with medium lacking

serum, EGF and other growth factors, EGF was added again to monitor the

mitogenic response of the cells. Samples for high-throughput genomic and

proteomic measurements were taken at time points 0, 0.25, 1, 4, 8, 13, 18,

24 h after EGF stimulation. The 0.25 h time point was excluded from the

microarray data set due to quality issues, therefore the coupled data set on

which our analysis is based includes time points 0, 1, 4, 8, 13, 18, and 24 h

after EGF stimulation.

EGF signaling. The experimental design used is illustrated in
Figure 2, the measurements included transcriptomic, proteomic
and phosphoproteomic data generation. Further details as well
as the preprocessing steps performed on both microarray raw
data and proteomic raw data are described in Waters et al.
(2012). The raw microarray data files are available via the Gene
Expression Omnibus database, GSE15668 (Waters et al., 2012).
The corresponding proteomic data is also publicly available2.

Shortly, biological samples were hybridized against
NimbleGen microarrays. A quality check revealed that time
point 0.25 h failed to hybridize, therefore the coupled data set
analyzed here includes only time points 0, 1, 4, 8, 13, 18, and
24 h after EGF stimulation. Proteome analysis was performed
MS-based, while phosphoproteome data were collected as
part of a parallel western blot analysis. For each time point
differentially expressed transcripts or differentially abundant
phosphoproteins/proteins compared to time point 0 h were
determined. Raw microarray data was quantile normalized
before performing a pairwise analysis of variance with a 5% false
discovery rate to determine differentially expressed transcripts.
Proteome and phosphoproteome levels were considered
significant when passing specific quality checks and showing a
fold change≥1.5.

Databases
Pathway information used for the pathway-based integration
approach were taken from KEGG (Kanehisa and Goto, 2000;
Kanehisa et al., 2014), Reactome (Croft et al., 2014), Pathway
Interaction Database (Schaefer et al., 2009), and Biocarta
(Nishimura, 2001). This information was used as gene sets in
the analysis of the phosphoproteome data and combined with
its topological information in the transcriptome data analysis.
It was downloaded via the AnnotationHub R package3 from
Bioconductor (Huber et al., 2015) as BioPAX level 2 files
and then processed further with the rBiopaxParser R package
(Kramer et al., 2013). The transcription factor (TF)—target
gene interaction information from the TRANSFAC R© database
(Biobase version 2014.4; Matys et al., 2006) was used. Network
reconstruction was based on the connected protein-protein
interaction (PPI) network of the STRING database (Franceschini
et al., 2013).

Analyses
All analysis steps described here are based on pre-processed
transcriptome, proteome and phosphoproteome data, as
described in Waters et al. (2012). Main analyses steps were
performedwith the R package pwOmics (Wachter and Beissbarth,
2015). Our methodical framework is depicted in Figures 3, 4.

Data Processing
First, individual analyses of the omics data sets were performed
during phosphoprotein data based downstream and transcript
based upstream analysis (Figure 3). For the downstream analysis
an identification of the pathways, which include differentially

2http://omics.pnl.gov.
3Morgan, M., Carlson, M., Tenenbaum, D., and Arora, S. AnnotationHub: Client

to Access AnnotationHub Resources. R package version 2.0.0.
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FIGURE 3 | pwOmics analyses steps. In the initial integrative analysis a downstream analysis of the phosphoproteome data and an upstream analysis of the

transcriptome data is performed. The former includes the identification of pathways that include differentially abundant phosphoproteins, the identification of the TFs in

these pathways and the determination of downstream target genes. In the upstream analysis the differentially expressed transcripts are identified, as well as their

upstream TFs. By determining the pathways of these TFs also potential proteomic regulators can be identified. The intersection of the molecules on each cellular layer

(protein, TF and gene/transcript) is determined before the intersection based analyses are performed. These include a static consensus analysis that can be

performed for each measured time point, the consensus-based dynamic analysis that enables the generation of a probabilistic network exploiting the time-course

information of those molecules that are part of the consensus analysis result. Furthermore, in a time profile clustering co-regulation patterns can be identified.

Eventually, the time course integration allows to map downstream consensus transcripts with differentially abundant proteins. The “=” sign depicts the molecular

overlap on each cellular layer, corresponding to the layer-specific consensus molecules.

abundant phosphoproteins, was performed. The transcription
factors of these pathways were then found by matching the gene
sets of the pathways against the transcription factors listed in the
transcription factor—target gene database. Downstream target
genes were identified, equivalently. The downstream analysis is
based in general on the assumption of downstream regulation
upon protein phosphorylation. Upstream analysis identified the
upstream TFs of significantly differentially regulated transcripts.
Subsequently, pathways including these TFs were identified
in order to find possible upstream proteomic regulators of
differentially expressed transcripts. The parameters chosen here
corresponded to at least one TF per pathway for pathway
identification and 10 orders of neighbors identified upstream
of the TF for potential proteomic regulators. The results of
each functional layer of signaling (pathway layer, TF layer, and
gene/transcript layer) of downstream and upstream analysis were
compared. These analyses steps were performed for each time
point. Gene and protein ID matching was done by conversion
of all IDs to HUGO gene symbols.

Static Consensus Analysis
In the static consensus analysis integrated signaling networks
were constructed based on intersecting proteins, TFs, genes and
transcripts on each functional layer (Figure 4A). The consensus

proteins and TFs were mapped to the PPI STRING database
and Steiner trees were generated via a shortest paths based
approximation algorithm (Sadeghi and Fröhlich, 2013). The
graphs were then completed by adding the corresponding TF—
target interactions using TRANSFAC information. In case both
consensus gene and consensus protein were part of the static
consensus graph feedback loops were added.

Dynamic Consensus Analysis
In order to leverage the complete dynamic information from
the data sets dynamic analysis was performed on basis of all
consensus molecules (Figure 4B). The data associated with these
nodes was used to fit cubic smoothing splines in order to generate
a sufficiently dense data set for network inference via empirical
Bayes estimation of a dynamic bayesian network with the R
package ebdbNet (Rau et al., 2010). The generation of data points
was based on the simplifying assumption of a gradual change
of signaling over time. For further parameters default values
were chosen. For visualization of the dynamic bayesian network
a probability threshold was chosen which reflects a moderate
number of regulatory interactions with a high probability in
the network. The resulting threshold for plotting of the edges
corresponded to a probability of an edge to be present by chance
of 0.15.
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FIGURE 4 | Consensus molecule analyses. Consensus molecules on each cellular layer are used for the static consensus analysis, the dynamic consensus

analysis and the time-course integration. (A) In the static consensus analysis static graphs are generated based on the PPI-mapped consensus proteins and

transcription factors, an approximation of the Steiner tree algorithm is applied and the connected networks are complemented with TF-target interactions from

TRANSFAC database. In case both consensus gene and corresponding consensus protein are part of the network, feedback loops are added. (B) In the dynamic

consensus analysis smoothing splines are fitted to the time courses for all consensus molecules. Based on the higher density data set a linear feedback state space

model is generated, hidden states are estimated and a probabilistic network is generated with dynamic Bayesian network inference (ebdbNet R package). (C) In the

time course integration downstream consensus transcripts of the differentially abundant phosphoproteins are identified. These are mapped to the differentially

abundant proteins. Time-courses of the downstream signaling players are visualized, subsequently. P, consensus proteins; TF, consensus transcription factors; T,

consensus transcripts; pP, phosphoproteins; DAP, differentially abundant proteins.

Time Profile Clustering
Additionally, time profile clustering was performed in order
to identify co-regulation patterns: Combining the described
integration approach with a soft clustering implemented as
fuzzy c-means algorithm (Kumar and Futschik, 2007) yielded an
integrated time profile clustering based on the log-fold changes
of consensus proteins and transcripts.

Time Course Integration
For further time course based integration with the proteome
data set downstream consensus transcripts of the measured
phosphoproteins were determined (Figure 4C). In a next step
theseweremappedtoproteins, thatweresignificantlydifferentially
abundant at any time point (Figure 2, proteomic data).

RESULTS

Individual Downstream and Upstream
Analyses
We performed individual downstream and upstream analyses
of the phosphoproteome and microarray data sets taking

into account the different functional layers of the cell the
data originates from. The used pathway information exploits
the signaling knowledge stored in public databases. Figure 3
illustrates the steps of the individual analyses and further
analysis steps explained in the next sections. Table 1 shows the
corresponding numbers of identified molecules and pathways
on the different functional cellular layers in downstream and
upstream analysis.

The data set for the phosphoproteome based downstream
analysis is very small with only five phosphoprotein abundances
investigated. However, as these were chosen thoroughly in the
experiment we observe a considerable number of pathways that
are influenced in downstream signaling. Altogether 121 pathways
were identified when querying the four pathway databases
used for the analysis. However, this set might include partly
redundant pathways when originating from different databases,
but describing the same signaling pathway. Pathways that are
identified in every time point include e.g., the Biocarta “egf
signaling” pathway, the NCI “EGF receptor (ErbB1) signaling
pathway,” the NCI pathway “EGFR-dependent Endothelin
signaling events” or the NCI pathway “ErbB1 downstream
signaling.” Furthermore, a number of pathways are identified
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TABLE 1 | Individual analysis.

Time after EGF stimulation [h] 0.25 1 4 8 13 18 24

DOWNSTREAM ANALYSIS

No. of differentially abundant phosphoproteins 5 3 3 2 3 2 2

No. of pathways 121 68 98 90 81 79 79

No. of TFs 64 61 62 62 62 62 62

No. of potential target genes 1296 1293 1294 1294 1295 1295 1295

UPSTREAM ANALYSIS

No. of differentially expressed transcripts − 35 87 66 85 134 1551

No. of TFs − 140 111 146 199 212 480

No. of pathways − 163 154 169 200 200 230

No. of potential upstream proteomic regulators − 871 950 897 920 976 1023

Downstream and upstream analyses characteristics over time. The expected bottleneck on the transcription factor layer can be observed. In the downstream analysis most pathways

are overlapping, so we observe no large difference in the target gene numbers. The pre-processed proteomic data set comprises one time point of measurement more than the

transcriptomic data set (0.25 h after EGF stimulation).

that are involved in cellular adhesion, STAT3 dependent signaling
and PI3K signaling. Differential abundance of phopho-MAPK14
was only identified at time point 0.25 h after EGF stimulation.
Corresponding pathways identified for that time point included
e.g., the Biocarta “p38 mapk signaling pathway” and the Biocarta
“mapkinase signaling pathway.” According to the TF—target
gene database the identified TFs activate the expression of a high
number of genes as shown in Table 1.

In the transcriptome based upstream analysis an identification
of upstream TFs was performed based on the differentially
expressed transcripts. Corresponding numbers at each time
point after EGF stimulation are displayed in Table 1. Identified
upstream pathways included e.g., the “MAPK signaling pathway,”
the “EGF receptor (ErbB1) signaling pathway” and the
“ErbB1 downstream signaling” pathway. The higher numbers
of differentially expressed transcripts resulted likewise in the
identification of more pathways. In those pathway sets the
topological information enabled the identification of possible
upstream proteomic regulators, subsequently.

The pathways identified in the downstream and upstream
analyses at each measured time point after EGF stimulation are
part of the Supplementary Material (Tables S2, S3).

Consensus Analysis
In the static consensus analysis we integrated the results of
the different platforms for each time point on each functional
layer. The aim was to reduce the individual downstream
and upstream analyses results to molecule sets which include
those molecules identified from both platforms and to reduce
at the same time false positive molecules on the different
functional layers. Exemplary, the consensus network of 1 h
after EGF stimulation is shown in Figure 5A, later time
point static consensus networks are part of the Supplementary
Material (Figures S2–S7). These networks provide interaction
and regulatory information on the consensus molecules. Yet, in
our further analyses we focus on the static consensus profiles
reflecting the presence of specific molecules in the consensus
networks at each time point, as illustrated in Figure 5B.
The static consensus profiles were used to explore the static

consensus characteristics of certainmolecules in order to evaluate
the integration method. As dynamic signaling is especially
interesting with regard to feedback signaling mechanisms and
pathway crosstalk, we focus on these two signaling patterns
in the following. Figure 5B shows the static consensus profiles
of the members of the static consensus graph 1 h after EGF
stimulation. A considerable number of genes being part of this
consensus graph are exclusively found at this early time point.
The profiles additionally show that both PLAU, the urokinase-
type plasminogen activator, and CTGF, the connective tissue
growth factor, comprise late regulatory changes. A figure with
all static consensus profiles is part of the Supplementary Material
(Figure S1). In these, 13 of 19 genes that are at least identified at
two time points not including the 1 h time point after stimulation
show a sustained pattern, indicative of a secondary cellular
response. The genes without such a sustained pattern are PLAU,
CTGF and IL1A, being already active 1 h after EGF stimulation
or genes showing an intermediate activation.

Next, we investigated the pattern of proteins in the static
consensus networks as well as the identified steiner nodes. The
first group comprises the intersection of differentially abundant
phosphoproteins in the proteomic data set and the potential
upstream proteomic regulators of the differentially expressed
genes. The second group is derived by generating Steiner trees
after mapping the consensus molecules to the PPI network and
might be functionally interesting, as its nodes are candidates for
the regulation of the unconnected, mapped proteins. The static
consensus profiles of the included proteins and the steiner node
identified in this analysis are shown in Figure 5C. Transcription
factor STAT3 is identified on the transcription factor layer at all-
time points. MAPK1 is identified 4–8 h after EGF stimulation.
PRKAR2B is identified later on (18–24 h after stimulation) on the
protein layer. VAV1 is identified as a Steiner node in the static
consensus graph 24 h after stimulation.

Additionally, we wanted to test in how far our integratory
pathway-based approach is able to trace pathway crosstalk in
the given data sets. In order to do so we chose a crosstalk
mechanism which we expected to be reflected in the data set as
it is not exclusively based on phosphorylation or ubiquitylation
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FIGURE 5 | Static consensus analysis results. (A) Static consensus graph for time point 1 h after EGF stimulation. (B) Static consensus profiles for members of

the static consensus graph 1 h after EGF stimulation. Colors in the heatmap correspond to colors used in the consensus graphs, “white” boxes represent no

membership in the consensus graph at that time point after EGF stimulation. Genes known to be IEGs (according to Tullai et al., 2007) are framed in black. (C) Static

consensus profiles for selected proteins.

events. This mechanism is characterized by the activation
of metalloproteinases (MMPs) by G-protein-coupled-receptors
(GPCRs; Yarden and Sliwkowski, 2001). Upon activation MMPs
cleave membrane-tethered ErbB ligands, which enables their
binding to ErbB receptors, thereby positively regulating the ErbB
signaling pathway. With EGFR being a receptor of the ErbB
family our approach could identify a considerable number of
the mentioned regulatory molecules in the consensus molecules
(Table 2). Expression of different MMPs is observed starting at
time point 4 h after EGF stimulation. Differentially expressed
ErbB ligands for the different time points after EGF stimulation
could be identified (such as self-induced EGF and AREG).

Exploiting Dynamic Information of Coupled
Time Course Data Sets
Our pathway-based approach additionally enables the utilization
of the complete time-series for each molecule in order to
generate a probabilistic network displaying those nodes of the
network with a high posterior probability of interaction. The
dynamic analysis is based on the simplifying assumption of a
gradual change in signaling over time, as existing high-frequency
components are not considered due to the small sampling rate.
Each consensus molecule at any time point after EGF stimulation
was taken into account. With this approach we obtained the
probabilistic network displayed in Figure 6. This network is a

TABLE 2 | Consensus analysis.

Time after EGF

stimulation [h]

1 4 8 13 18 24

MMPs − MMP1 MMP1 MMP1 MMP1 MMP1

MMP1 MMP1 MMP1 MMP2

MMP1 MMP1 MMP1 MMP10

ErbB ligands − − − EGF AREG AREG

EGF EGF

Regulatory molecules identified on the gene layer that are hypothesized to be involved

in the signaling crosstalk via GPCRs and MMPs. GPCRs activate MMPs which then

cleave the membrane-bound ErbB ligands leading to activated ErbB signaling (Yarden and

Sliwkowski, 2001). Although differential expression is not direct evidence for the activity

of these molecules, such regulatory mechanism can be hypothesized here.

reduced way to look at activating or inhibiting relationships
between consensus proteins and genes. Here, we observe mainly
activating relationships corresponding to an activation of the
regulatory effect of EGF stimulation and not to upregulation
directly. Likewise an inhibiting relationship in the network does
not imply a downregulation, but the inhibition of the effects
induced by EGF stimulation.

In total, we could identify five subgroups in the consensus-
based dynamic network by mapping them to the times in which
they are part of the consensus graphs (Figure 6): (1) immediate
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early signaling processes, (2) early, but sustained gene expression
changes, (3) intermediate gene expression changes, (4) late gene
expression changes, and (5) continuous protein phosphorylation
changes. In the group of the “immediate early signaling
processes” most early response genes that were identified in the
static consensus profiles are activated by the protein MAPK1
and the gene IL1A. This group reflects early phosphorylation
induced transcriptional changes. The next group, consisting of
five genes, is the group of “early, but sustained gene expression
changes” upon EGF stimulation. It includes CTGF, a connective
growth tissue factor. Its regulation is activated by MAPK1,
FKBP5, GADD45A and also self-activation is observed. CTGF
itself has activatory influence on gene members of its own group
(IGFBP3, FKBP5), but also onmembers of the “intermediate gene
expression changes” group and the “late gene expression changes”
group. Two further members (PLAU and ODC1) are influenced
by IL1A, a hub gene in the network, which we assigned to the
“immediate early signaling processes” group and to the “late gene
expression changes” group, as it shows immediate membership
in the static consensus graphs, but also a late response profile.
A small group showing intermediate gene expression changes
comprises TFRC and GADD45A. We observe in the graph
that GADD45A activates itself, but also PCNA, a gene of the
“late gene expression changes” group. PCNA is additionally self-
activated, as well as externally activated by the ErbB ligand AREG
and ASPH, the aspartate beta-hydroxylase. AREG and ASPH
are upregulated late after EGF stimulation. IL1A also activates
SLC3A2, the solute carrier family 3 member 2, and inhibits

LAMA3, a proliferating cell nuclear antigen, laminin alpha 3.
The second protein being part of the network is the transcription
factor STAT3. The changes in STAT3 phosphorylation are found
in the consensus graphs over all time points, thus we assign it
to the group of “continuous protein phosphorylation changes.”
Beside the activating influence of MAPK1 also autoregulation of
STAT3 can be detected.

Time Profile Clustering
In order to identify co-regulation patterns in the signaling
response after EGF stimulation we performed time profile
clustering. We obtained four dynamic co-regulation patterns of
which two exhibit positive regulation and two exhibit negative
regulation. Both positive and negative clusters each comprise one
cluster of immediate regulation and one of delayed regulation.
The clusters are depicted in Figure 7. Corresponding molecule
membership in the four different clusters is listed in the
Supplementary Material (Table S1). Cluster 1 is immediately
activated and thus contains various immediate early genes,
but also the proteins MAPK1 and STAT3, which are part
of the consensus-based dynamic analysis. Compared to the
groups identified in the latter analysis this cluster constitutes
the immediate early signaling processes together with early,
but sustained gene expression changes. Cluster 2 is the biggest
cluster with 52 members and is the delayed positively regulated
cluster. Cluster 3 only comprises two members (RARRES3 and
SLC3A2), both of which are showing a delayed negative dynamic
co-regulation. Cluster 4 is the early negatively regulated cluster.

FIGURE 6 | Probabilistic network displaying result of the consensus-based dynamic analysis. For network inference all consensus genes and proteins at any

time point were considered. For visualization of the dynamic bayesian network a probability threshold was chosen corresponding to a probability of an edge to be

present by chance of 0.15. Five groups could be identified comprising direct immediate early signaling processes, continuous protein phosphorylation changes, late

gene expression changes, intermediate gene expression changes and early, but sustained gene expression changes upon stimulation. Activating regulatory effects are

depicted with green edges whereas inhibiting regulatory effects are depicted as red edges. Consensus protein nodes are colored in red, consensus transcript nodes

in green. Activation/inhibition refers to changes in the regulatory effects initiated by EGF stimulation, not to activated or inhibited expression.
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FIGURE 7 | Fuzzy c-means time profile clustering revealed 4

co-regulation clusters with distinct cluster sizes. Two of the clusters

exhibit positive regulation and two exhibit negative regulation. Both positive

and negative clusters each comprise one cluster of immediate regulation and

one of delayed regulation. The clusters contain both protein and gene

expression changes. Cluster membership is listed in the Supplementary

Material.

Time Course Integration
The results of the time-course integration based on the
consensus analysis results are displayed in Figure 8 and
in the Supplementary Material (Figure S8). Of the five
phosphoproteins that were measured over time in the
coupled data set we could identify four phosphoproteins
with their downstream transcripts being part of our consensus
analysis and mapping to differentially abundant proteins
(MAPK1, STAT3, MAPK14, and PRKAR2B). MAPK1
downstream analysis revealed four transcripts (Figure 8A),
which mapped to significantly differential proteins, CYR61—
cysteine-rich angiogenic inducer 61, CCND1—cyclin D1,
SERPINB2—serpin peptidase inhibitor, clade B, member
2, and THBS1—thrombospondin 1. MAPK1 itself shows
increased phosphorylation levels in the very beginning after EGF
stimulation and again between 1 and 13 h after EGF stimulation.
In regard to temporal coordination CYR61 shows correlating
temporal expression on the transcript and protein layer up to
time point 4 h after EGF stimulation, but then a rather opposed
pattern. CCND1 belongs to the group of cyclins and thus
exhibits a specific expression and degradation pattern over the
cell cycle, in this way contributing to the temporal coordination
of mitotic events. Here we can observe an opposed temporal
pattern of transcripts and proteins over the whole timespan
measured: While on the mRNA layer, CCND1 shows higher
expression levels after EGF stimulation, the corresponding
proteins are found at lower levels over the whole time course.
High mRNA-to-protein levels have already been reported by
Waters et al. (2012). In the time-course SERPINB2 shows slowly
rising levels of transcripts after EGF stimulation, whereas on
the protein layer there is a direct decrease, an intermediate
increase, and a second decrease again to the 0-level at 18 h
after EGF stimulation. THBS1 protein levels are similar to that

of SERPINB2, however, here we observe rather correlating
transcript levels in the beginning and deviating ones after the
18 h time point.

STAT3 is the phosphoprotein showing the most downstream
transcripts that match to significantly regulated proteins
(Figure 8B). STAT3 itself shows sustained high expression
levels over the whole time-course. All MAPK1 downstream
transcripts that are part of the consensus analysis also belong
to the downstream transcripts of STAT3. Further ones are
SLC3A2, FKBP5, PPP2CA, CD44, and ODC1. All of these except
for ODC1 show anti-correlating patterns between transcripts
and proteins until 4 h after EGF stimulation. For later time
points most pairs exhibit correlating behavior. MAPK14 also
has CYR61, CCND1, and SERPINB2 as downstream targets
with corresponding proteins being significantly differentially
abundant, whereas for PRKAR2B only CYR61 could be
identified.

DISCUSSION

Pathway Layer Based Integration
In the downstream and upstream analyses the results indicate
that pathway identification based on differentially abundant
phosphoproteins and differentially expressed transcripts is
effective. In both pathway sets those pathways known to be
activated by EGF stimulation were identified reliably in the
different databases, expectedly the “EGF signaling pathway”
itself. This shows, that the two data sets are in concordance on
the pathway layer even if they are measured on different cellular
layers and analyzed individually. Based on these initial results
a pathway-based integration was considered to be constructive.
However, downstream and upstream analyses might also
introduce false positive findings, which we aimed to reduce from
further analysis steps by the subsequent intersection analysis.
The small set of phosphoproteins measured over time gives a
strong basis for the pathway layer based integration as they were
selected carefully for the experiment and belong to key pathways
in EGF signaling. However, a larger set of phosphoprotein data
as obtained now e.g., from mass-spectrometry approaches could
lead to more robust results.

Consensus Analysis Enables Identification
of Regulatory Dynamics
In order to evaluate our methods it is important to first
classify the data according to their temporal transcriptional
domains. According to Avraham and Yarden (2011) feedback
mechanisms in EGFR signaling can be assigned to two temporal
domains, one of them being the immediate group which
includes receptor endocytosis, secondary phosphorylation and
further protein modifications, the other constituting the late
group which includes newly synthesized adaptors, transcriptional
repressors, RNA-binding proteins and phosphatases of the
mitogen-activated protein kinase (MAPK) pathway. Especially
the integrated data with parallel time points between 1 and
24 h after EGF stimulation thus reflects the late group capturing
the transcriptional regulation with a wave-like regulation of
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FIGURE 8 | Time course integration. (A) MAPK1 downstream consensus transcripts identified were mapped to differentially abundant proteins. (B) Time course

integration for downstream consensus transcripts of STAT3. Note that the measurement range of the expression profiles across platforms can vary. Phosphoprotein

time course data is shown in solid, black lines, non-matching transcript data in solid, gray lines and matching transcript and proteome data in rainbow color palette

with proteins depicted as solid lines and transcripts depicted as dotted lines.

immediate early genes (IEGs), delayed early genes (DEGs),
secondary response genes (SRGs; Avraham and Yarden, 2011)
and their corresponding subsequent protein expression. IEGs
are known to induce transcriptional changes of DEGs which
then reduce the regulation of IEGs in a feedback subsequently,
but initiate regulation of SRG expression. Based on this
transcriptional regulation scheme the measured time points in
the investigated data sets capture stimulation of both IEGs and
DEGs 1 h after EGF stimulation while in subsequent time points
we expect only regulation of SRGs, conferring the stable cellular
phenotype.

We used the static consensus analysis in order to generate a
static view on the integrated networks at each time point. Via
static consensus profiles we can identify transcription factors
with regulatory effects and their regulated consensus molecules
on the gene layer at the 1 h time point. A large number of those
genes were already reported to be IEGs in the cellular response to
growth factor stimulation according to Tullai et al. (2007). PLAU
and CTGF, regulated as well at later time points, apparently
have an additional function in the definition of the phenotype.
The two-phase regulation pattern indicates 2-fold tasks and
can be interpreted to underly direct or indirect auto-feedback
regulation.

The static consensus profiles of most SRGs, in contrast, are
supposed to show a sustained activity. This is exactly what we
find in our consensus graph analysis.

Due to the low number of differentially abundant
phosphoproteins as a starting point the number of intersecting
proteins from downstream and upstream analyses are low,
as well. MAPK1 is involved in a variety of cellular growth
processes such as proliferation and differentiation, thus its

presence in the consensus graph corresponds well to the
expected cellular response after EGF stimulation. As a regulatory
subunit of the cAMP-dependent protein kinases PRKAR2B is
involved in various cellular functions. With its late activity we
suspect an involvement in the cellular reconstruction processes
taking place for the final phenotype definition. The VAV
proteins are guanine nucleotide exchange factors that activate
pathways leading to cytoskeletal actin rearrangements and
transcriptional alterations (Han et al., 1998). Thus, its functional
association can be linked to cellular restructuring during
proliferation.

In EGF signaling several pathways are involved which do not
only process signals in a linear way but also enable cross-pathway
regulatory influence on transcription. Oda et al. (2005) tried to
compress all known signaling interactions into a comprehensive
pathway map, resulting in a bow-tie architecture signaling
pathway. As this network has to convey fine-tuned messages,
it is deducable that slight dysregulation results in pathological
transcriptional responses. Many crosstalk mechanisms have been
investigated in more detail, most of them under pathological
conditions. However, in order to understand the consequences
of such dysregulation it is essential to also have a detailed
understanding of physiological pathway crosstalk mechanisms.
This is why we reviewed the consensus molecules in terms of
their possible role in the crosstalk described by Yarden and
Sliwkowski (2001). The large number of identified consensus
molecules implicated in this crosstalk on the gene layer supports
our hypothesis, that they are part of this signaling crosstalk
mechanism.

As the described regulatory dynamic patterns are based on two
independent data sets from different platforms we suppose that
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this pattern is not identified due to measurement bias and thus
has a biologically relevant function in the cellular response.

Identification of Regulatory Mechanisms
by Exploiting Dynamic Information of
Coupled Time Course Data Sets
In order to fully exploit the dynamic information of the time
course data sets, we inferred a probabilistic network based on all
consensus molecules. This network enables an identification of
important players in the cellular response to EGF as well as the
determination of inhibitory or activating regulation patterns.

The consensus proteins which are part of the dynamic
network are MAPK1 and STAT3, both being part of the
starting phosphoprotein data set. This indicates, that their
important role in EGF signaling can be confirmed as such via
the transcriptomic data set. STAT3 is a transcription factor,
which is phosphorylated upon growth factor stimulation of
the cell and builds homo- or heterodimers, which can then
translocate to the nucleus and activate transcription (Park et al.,
1996). It has multiple target genes with its protein products
being involved in proliferative processes. MAPK1 is associated
with cellular processes such as proliferation, differentiation and
transcriptional regulation. Both show a self-activation as well as a
mutual activation, which illustrates their functional relevance in
EGF signaling. This regulatory interaction between MAPK1, also
known as ERK2, and STAT3 is triggered via the activation of the
MAPK/ERK cascade upon EGF stimulation, leading to MAPK1
phosphorylation by upstream kinases. STAT3 transcriptional
activation by phosphorylation of STAT3 pS727 is then performed
by the serine/threonine kinase ERK (Zhang and Liu, 2002),
leading to activation of STAT3, which then acts as transcription
factor and initiates the expression of downstream target genes.
Target genes of STAT3 that might lead to further activation of
MAPK1 are e.g., downstream transcription factors, multiplying
indirectly the effective activation, or EGFR allowing for binding
of more EGF. Furthermore, JAK2 is a target gene of STAT3,
which can contribute to positive auto-feedback of STAT3 via the
JAK-STAT pathway (Dauer et al., 2005).

Beside the already discussed early regulation processes and the
protein phosphorylation changes of STAT3, the other identified
groups are particularly interesting for further interpretation:
The regulation of CTGF, the connective growth tissue factor,
is activated by MAPK1, FKBP5, GADD45A and by itself.
Interestingly, we observe auto-feedback regulation here, as
already suspected from the static consensus profiles. CTGF
is a hub gene in the consensus-based dynamic network, so
the activation of its downregulation upon EGF stimulation is
associated with downregulation of other genes in this cluster,
such as FKBP5, or genes of the “intermediate gene expression
changes” group. One of these isGADD45A, the growth arrest and
DNA-damage-inducible alpha, which activates the regulation of
PCNA. It is known to comprise increased transcript levels when
cells are subjected to arrest conditions, treatment with DNA-
damaging agents and environmental stresses (Hollander et al.,
1993), thus we suspect the experimental design of the experiment
with the chosen growth arrest time to be of no direct harm

to the cells. PCNA, the proliferating cell nuclear antigen, is a
cofactor of DNA polymerase delta and plays a central role during
DNA replication. In DNA damage response it is positioned at
the replication fork coordinating replication with DNA repair
and DNA damage tolerance pathways (Cazzalini et al., 2014).
Thus, its function is intensely needed in the phase of cellular
remodeling and proliferation. The link between GADD45A and
PCNA, that we determined with our integrative analysis, was
previously reported (Chen et al., 1995).

AREG is upregulated in the “late gene expression changes”
group as part of the regulatory pathway crosstalk loop via
metalloproteinases described above and presumably provides an
additional amplifying cellular way of an activation cascade after
initial EGF stimulation. Also ASPH, which is thought to play
an important role in calcium homeostasis (Treves et al., 2000),
is part of this group. With its diverse roles e.g., as a messenger
between cellular compartments calcium regulation is essential for
proliferating cells.

IL1A, as another hub in the network, has immediate and
late regulatory influence. In the “late gene expression changes”
group it activates SLC3A2, solute carrier family 3 member 2, and
inhibits LAMA3, proliferating cell nuclear antigen, laminin alpha
3. With their functions in regulating intracellular calcium levels,
amino acid transport, formation and function of the basement
membrane, cell migration and mechanical signal transduction
and DNA replication, this part of the network rather shows the
expression changes which represent the secondary (late) response
of the cells.

In summary, we identified MAPK1, IL1A and CTGF as
main players driving EGF stimulation response in the cell.
Interestingly, we could detect the link between GADD45A and
PCNA in two independent high-throughput time course data
sets measured on different platforms using our pathway-based
integration approach. As a matter of course, with a higher
temporal resolution of the coupled time course measurements
more accurate results can be identified by our approach, as less
intermediate time points need to be estimated. To gain insight
into the biological response after an external stimulation at least
four time points after the stimulation time point are necessary,
though there is a high information content in such coupled data
sets on the different cellular layers. The chosen time points and
the temporal resolution, however, need to be adjusted specifically
to the cellular signaling dynamics and the stimulation of choice
in order to reflect the crucial time points of regulation.

Time Profile Clustering Identifies Four
Dynamic Co-Regulation Patterns Ruling
EGF Signaling
With our time profile clustering approach we could identify
four co-regulation patterns with distinct functions in the cellular
response to EGF signaling. Cluster 1 contains many of the
directly upregulated immediate early genes. Most of these are
in fact downregulated again after their early response, which is
not reflected by this cluster, as it contains also a considerable
number of genes that are secondary response genes and are only
upregulated at later time points (such as MMP1 or MMP10)
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or immediate early genes which are upregulated again at later
time points (PLAU or IL1A). Our hypothesis, that cluster 2
includes mainly genes upregulated as secondary response genes,
responsible for the phenotype definition, holds true, when having
a closer look to the members: We observe CCND1, the cyclin
family protein, ANXA1 and ASPH, LAMA3 and AREG, which
were identified in the consensus-based dynamic analysis in
the group of late gene expression changes, VEGFC, a vascular
endothelial growth factor promoting angiogenesis, CCND2—
cyclin D2, NME1—nucleoside diphosphate kinase 1, which has
been associated with high tumor metastatic potential based
on different studies (MacDonald et al., 1996) and many more
genes which act during cellular proliferation and migration. As
cell cycle inhibitory protein coding genes we can observe the
membership of CDKN1A, the cyclin-dependent kinase inhibitor
1A, which is tightly controlled by transcription factor p53 (He
et al., 2005). Its membership in cluster 2 might be due to the
high importance of balancing proliferation processes against
growth stimulating processes in physiological tissue. Further we
observe PTHLH, the parathyroid hormone-like hormone, to be
part of this cluster, which regulates the epithelial-mesenchymal
interactions during formation of mammary glands and teeth
(Wysolmerski, 2012). Additionally the protein PRKAR2B is part
of this cluster, indicating its late activation, which we already
observe in the phosphoproteome data individually. However,
here we see the confirmation that it is part of the consensus
data from the two independent data sets generated on different
platforms. Also MMP2 is part of cluster 2 as well its regulatory
counterpart, TIMP1, a metallopeptidase inhibitor. As the other
metalloproteinases identified in the static consensus graphs
(MMP1 and MMP10) are not members of cluster 2, but of the
immediately positively regulated cluster 1, it can be assumed,
that TIMP1 activation might also have a negative regulatory
impact on these late after EGF stimulation. In the delayed
downregulated cluster 3 we observe RARRES3, the retinoic acid
receptor responder 3, which is known for its growth inhibitory
effects (Hsu and Chang, 2015). A late downregulation thus
can have the function of preventing contrasting growth signals.
SLC3A2, the solute carrier family 3 member 2, encodes a subunit
of a cell surface transmembrane protein complex responsible
for regulation of L-type amino acid transport, which is essential
for cellular growth and proliferation (Yanagida et al., 2001).
Cluster 4, the early negatively regulated cluster, comprises CTGF,
the connective tissue growth factor, whose downregulation might
enhance proliferation of cells upon EGF stimulation. A further
member is IGFBP3, the insulin-like growth factor binding protein
3, which potentiates insulin-like growth factor action and thereby
also stimulates growth promoting effects (Cubbage et al., 1990).
Supposedly, the cells do need less proliferating activation via IGF,
when there is the growth-promoting stimulation of EGF. This
underlines again that signaling patterns are tightly regulated in
regard to their dynamics.

Time Course Integration of Consensus
Graphs with Proteome Data
Wewere interested in how far our approach reveals the dynamics
of elements in the regulatory cascade of a stimulation induced

phosphorylation cascade triggering a specific gene expression,
which then leads to the generation of proteins needed in the
cellular response to that particular stimulation. Therefore, after
integrating the phosphoproteome data in the first pathway
layer based integration, we integrated in a second step also the
proteome data with the results of our pathway-based integrative
analysis dynamically. The delay between consensus transcript
generation and their corresponding protein generation reflects
the time the cell needs for the complete translational and post-
translational process. However, it is known that differences
in protein abundance are only attributable to mRNA levels
by about 20–40% (Brockmann et al., 2007). This underlines
the importance of post-translational modification and is the
reason why we assumed the correlation between increasing
and decreasing transcript expression and corresponding protein
generation to be rather marginal.

For the interpretation of these results we need to be aware of
the different ranges of the expression ratios in the data sets of
different platforms. Thus, a direct comparison of the expression
levels between transcripts and proteins is not possible, however,
a dynamic interpretation is feasible.

Dynamically, we observe both correlating and non-correlating
expression level patterns between transcripts and corresponding
proteins. Based on the time resolution of the measurements
we assume the time delay reflecting the translational and post-
translational processes to be not necessarily observable in the
data, as they can lie in a wide time range. Indeed, correlating
behavior seems not to be shifted in time in our analysis for certain
transcripts (e.g., for CYR61 up to 4 h after EGF stimulation
or THBS1 up to 13 h after EGF stimulation), however, when
performed on a time-series data set with higher resolution, such
time shifts might be observable. Non-correlating expression level
patterns indicate post-translational modifications or a possibly
very rapid degradation of mRNA or the protein product, which
is not captured in the low resolution time measurements. Of the
identified pairs CYR61 is a growth factor inducible protein which
promotes the adhesion of endothelial cells (Brigstock, 2002),
CCND1 is a protein contributing to coordination of mitosis.
High levels of SERPINB2 have been observed to exhibit an anti-
proliferative effect (Croucher et al., 2008). In the time courses
we see an intermediate increase of its protein levels, but an
overall anti-correlating pattern between protein and transcript
levels. THBS1, thrombospondin 1, is known as angiogenesis
regulator (Chandrasekaran et al., 2000). Its protein levels are
similar to that of SERPINB2, however, here we observe rather
correlating expression levels, indicating less post-transcriptional
modification. Also changes in the correlation behavior can be
observed, indicative for a secondary regulatory influence. This
could be induced by variations in mRNA degradation, protein
degradation rates or post-translational modifications.

From the transcript/protein pairs that are observed as part
of the regulatory loops CYR61, THBS1, and CCND1 clearly
have a high influence on EGF stimulated cells during cellular
proliferation, differentiation and survival, while the detection of
SERPINB2 is more intriguing. It is known to inhibit urokinase
plasminogen activators (PLAUs), but its physiological function
has not been characterized comprehensively, although activity
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in the adaptive immune response has been reported (Schroder
et al., 2011). As we based the time-course integration on the
consensus analysis the discussed time-courses are supported by
both transcriptome and proteome data set. Thus, we hypothesize
the interaction of SERPINB2 and PLAU, its inhibition target, to
be of high relevance for proliferative processes. Our hypothesis is
supported also by literature in the context of cancer: SERPINB2
has been associated with increased survival in breast cancer
patients (Duffy, 2004).

With the integrated time-courses of phosphoproteins,
downstream consensus-graph transcripts and their
corresponding proteins the data implies an extensive post-
translational modification of a number of proteins. This we see
in the transcript/protein pairs investigated in detail here, but also
in the downstream transcripts depicted in gray in Figure 8, with
no corresponding proteins in the list of significantly differentially
abundant proteins. Therefore, our results correspond to what
is known about the low percentage of protein concentration
variations that are affected by mRNA abundances directly (Vogel
and Marcotte, 2012). However, our approach not only enables
a general overall classification of correlating or anti-correlating
transcript/protein pairs, but in addition a time-resolved
interpretation of consensus-based regulatory processes.

Comparison of Separate Data Set Analysis
with Integrated Consensus-Based Analysis
To comprehensively assess the advantage of our data integration
approach based on public pathway knowledge we compared
its results with the ones gained by a separate analysis of the
individual proteomic and transcriptomic data sets. Waters et al.
(2012) performed a separate pathway analysis and reported
network statistics, such as the number of nodes in the largest
cluster, the number of edges in the network and the two primary
hub nodes, however, this analysis was limited to datameasured 0–
4 h after EGF stimulation. Interestingly, the hub genes identified
in the microarray based network were the transcription factors
FOS and EGR1, while the hub proteins identified in the proteome
data were EGFR and ITGB1. Comparing these results to our
results from the pathway-based integrative analysis, we likewise
observe FOS and EGR1 to be highly important regarding
regulatory mechanisms during the initial cellular response. Yet,
we additionally derived further information than what is given
by the separate analysis: We evaluated these genes to play a
significant role in the immediate early cellular reaction based
on static consensus profiles. Furthermore, we saw that these are
mainly influenced by IL1A and the phosphorylation of MAPK1
directly as well as indirectly. Based on the time profile clustering
we saw on top that they belong to the early positively regulated
cluster. The protein hubs that are identified via the separate
analysis, however, cannot be found in our consensus analysis,
as the consensus is confined to the small set of measured
phosphoproteins.

In a second separate analysis of the proteomic and
transcriptomic data sets Waters et al. (2012) performed separate
gene set enrichment on the basis of differentially expressed
proteins and transcripts. The three most significant biological
processes identified for the transcriptomic data set were “cell

cycle,” “mitosis,” and “protein folding,” while for the proteomic
data set the most significant process was “protein synthesis.” In
a comparison the authors found considerable differences in the
gene set enrichment results. Although this type of analysis is
widely used for gene expression data it is arguable in how far
“gene set” and “protein set” enrichment should be compared
directly due to the different biological layers the data and
possibly also network knowledge originates from. Thus, we see an
inherent problem in the simplified layer-unspecific comparison
with subsequent interpretation. Additionally, the results allow no
conclusions or hypothesis generation on the molecular level.

In summary, we conclude that the integrated analysis of
the two data sets moves the focus to the dynamic interplay
of regulatory mechanisms and enables a layer specific and
detailed regulatory analysis of the cellular response to external
stimulation.

Comparison of Data Integration
Approaches in Coupled High-Throughput
Data Sets
The data integration approaches applied by Waters et al. (2012)
were based on RNA/protein pairs cross-referenced between the
platforms. However, no layer-specific analysis was performed.
In a canonical correlation analysis the 199 RNA/protein pairs
comprising all measurement time points were investigated with
the result of intense post-transcriptional regulation on the
protein layer. The benefit compared to a simple correlation
analysis is that it captures also concordance or disconcordance of
pairs when a temporal delay is observed. With our time-course
integration we could also observe this effect, individually for
specific phosphoprotein initiated signaling cascades. With our
approach it is additionally possible to analyze transcriptional and
translational dynamics of each cascade individually.

In the integrative analysis of Waters et al. (2012) major cell
processes of the combined data were then ranked to early (0–
4 h), intermediate (8–13 h) and late (18–24 h) time domains after
EGF stimulation. A general shift from categories “cytoskeletal
organization” and “regulation of cell cycle” (0–4 h) toward anti-
apoptotic and cell adhesion pathways (8–13 h) was observed.
An increased representation of the “mitosis” category between
18 and 24 h after stimulation corresponded to an increase of
mitotic cells monitored by flow cytometry in parallel. A direct
comparison of the analyses results is not possible here, though
the results we found in the consensus-based dynamic analysis of
the data agree roughly with the results of Waters et al. (2012),
when comparing the function of individual consensus molecules
with the GO biological process category names. Although having
category names enables in general a better overview of the
data, it does not allow individual identification of regulatory
interactions. Therefore, we consider our approach as valuable
additional method in order to get a better understanding of the
dynamic biological processes.

Furthermore, integrated signaling networks from all data sets
were investigated in Waters et al. (2012). Not surprisingly, the
microarray data set contributed the highest number of nodes in
the merged network. Compared to the signaling networks from
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single data sets, the integrated network comprised increasingly
linked nodes, reflected in the number of edges and the degree of
the largest cluster reported. The two primary hub nodes of the
integrated network were FOS and SRC, while the hub nodes in the
network generated from exclusively microarray data were FOS
and EGR1, generated exclusively from proteome data EGFR and
ITGB1 and exclusively from phosphoproteome data STAT3 and
MAPK1. Interestingly, we also found FOS and EGR1, as well as
STAT3 and MAPK1 as consensus molecules in our consensus-
based dynamic analysis with considerable regulatory influence
during the cellular response after EGF stimulation. The proteome
hub nodes EGFR and ITGB1, as well as the hub node SRC from
the integrated network were not part of our results due to the
low number of phosphoproteinsmeasured in the study. However,
we found already considerable amount of regulatory mechanisms
when including only the phosphoproteome data set as initial data
set in our analysis. TheMMP cascades identified in the integrated
analysis fromWaters et al. (2012) as most robust response to EGF
stimulation were identified as consensus molecule based process
by our approach as well.

Unfortunately, in the integrated analysis of Waters et al.
(2012) only time domains were considered in contrast to our
individual time point analysis. This enables a rough summarized
view on the signaling process, yet it does not fully exploit the
information encoded in the dynamics. Likewise, the GO term
analysis performed is based on a subset of RNA/protein pairs and
results in a summarized interpretation, but it does not enable
an individual regulatory mechanistic interpretation. Thus, we
consider our approach as valuable complement in the analysis of
coupled high-throughput data sets.

CONCLUSION

The presented data integration approach shows a way to gain
a much deeper understanding of biological processes if time-
course measurements and data from different high-throughput
platforms representing the different functional layers of the cell
are combined. Our approach enables a functional linking of
regulatory processes over the transcriptional and translational
cycle, even if the temporal resolution of the example data set is
quite low, data has only beenmeasured on two functional cellular
layers and the phosphoproteome data set is very limited. This sets
the basis for the integration of further cellular layers, as following
regulation upon external perturbation in a detailed way provides
a much deeper understanding of biological processing.

Bioinformatic tools like the R package pwOmics promote
the generation of coupled data sets as they offer the possibility
of an integrated analysis and help to sort the vast data
sets in a biologically interpretable manner. By applying the
different analysis steps implemented in pwOmics we showed that
biological interpretation is facilitated and the results correspond
to current biological knowledge about EGF stimulation generated
in low and high-throughput experiments. Furthermore, we
identified interesting regulatory relationships that were not
observed yet in physiological EGF signaling. As our approach
considers data from the different functional cellular layers
individually, it enables to identify the regulatory interplay

between these layers.We have demonstrated this in the consensus
analysis, which is able to identify the molecular response minutes
to hours after stimulation as feedback mechanism with a wave-
like regulatory pattern generated by IEGs, DEGs, and SRGs and
their corresponding proteins. We could also identify previously
published pathway crosstalk via activation of MMPs (Yarden
and Sliwkowski, 2001). Furthermore, we could ascertain the
link in EGF signaling between the two molecules GADD45A
and PCNA, in the investigated data sets, which was previously
reported (Chen et al., 1995). Interestingly, we also found PTHLH
in the consensus molecules as part of the secondary cellular
response, which is involved in the formation of mammary
glands (Wysolmerski, 2012). Furthermore, we could identify the
regulatory interaction of PLAU and SERPINB2 to be also of
high relevance in physiological EGF signaling. Compared with
the previously performed integrative analysis on the coupled
data set we gain a complementary, and much more detailed
view on cellular signaling processes, enabling the generation of
biological hypothesis about individual regulatory mechanisms
involved in the dynamic interplay of signaling pathways and
feedback responses. With the examples stated above we could
show, that our integrative approach is able to identify regulatory
patterns, molecular interactions and dynamically orchestrated
cellular response mechanisms.

In order to link the different functional cellular layers it is
beneficial and necessary to integrate knowledge from public
databases which builds a frame for placing and linking the
individual analysis results. This has the advantage of utilizing a
vast amount of collected and curated information, which stays
unused otherwise and can add an additional information layer
for interpretation of the data. On the other hand this prior
knowledge also directs the results in a certain extent, thus the
quality of the databases used has to be taken into consideration
when interpreting the overall results. A further caveat is that the
public database knowledge available in most databases is not cell
type or tissue specific resulting in a generalized analysis. However,
as more cell type or tissue specific knowledge is collected such
databases can be build up and integrated in the presented analysis
workflow.

In the consensus-based dynamic analysis we make the
simplifying assumption of a gradual change of signaling over
time. Clearly, this does not hold true for individual cells and
still is a rough assumption for a set of cells as there have been
found oscillatory mechanisms which work at high frequencies
(Avraham and Yarden, 2011), for example, and which are purely
not identifiable via such a time resolution. However, we can
still gain a lot of knowledge about the regulatory processes
that are encoded in the comparably slow dynamic processes.
Of course, there can be even more biologically functional layers
measured in high-throughput experiments in a parallel manner
over time, such as siRNA, epigenetic influences etc. At the
moment such data sets are still rare, but we expect them
to be generated increasingly. It will be interesting for future
projects to include such additional layers into an integrative
analysis.

We showed that the hypotheses on regulatory mechanisms
generated via our integrative approach could be confirmed with
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independent low-throughput data sets. Although such time-
course data sets measured in parallel enable a detailed analysis, it
is not yet possible to infer from these data sets every regulatory
aspect in detail. Nevertheless, our approach is a step toward
portraying the whole picture of regulatory influences on the
molecular level.
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Figure S1 | Static consensus profiles of all members of the static

consensus graphs. Color coding corresponds to the one used in the static

consensus graphs (red, consensus proteins; yellow, steiner node proteins;

lightblue, consensus transcription factors; green, consensus genes).

Figure S2 | Static consensus graphs for time points 1h after EGF

stimulation.

Figure S3 | Static consensus graphs for time points 4h after EGF

stimulation.

Figure S4 | Static consensus graphs for time points 8h after EGF

stimulation.

Figure S5 | Static consensus graphs for time points 13h after EGF

stimulation.

Figure S6 | Static consensus graphs for time points 18h after EGF

stimulation.

Figure S7 | Static consensus graphs for time points 24h after EGF

stimulation.

Figure S8 | Time course integration for phosphoproteins MAPK14 and

PRKAR2B. Downstream consensus transcripts identified for MAPK14 and

PRKAR2B were mapped to differentially abundant proteins. Note that the

measurement range of the expression profiles across platforms can vary.

Phosphoprotein time course data is shown in solid, black lines, non-matching

transcript data in solid, gray lines and matching transcript and proteome data in

rainbow color palette with proteins depicted as solid lines and transcripts depicted

as dotted lines.

Table S1 | List of molecule cluster membership in the time profile analysis.

Data origin is encoded in the abbreviation after each protein/gene name (_g,

microarray data; _p, proteome data).

Table S2 | Lists of pathways identified in the downstream analysis based

on the phosphoprotein data for time points 0.25, 1, 4, 8, 13, 18, and 24h

after EGF stimulation. Table includes information about the pathway database

used for pathway identification (as part of their ID) and the corresponding pathway

names.

Table S3 | Lists of pathways identified in the upstream analysis based on

the differentially expressed transcripts for time points 1, 4, 8, 13, 18, and

24h after EGF stimulation.
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Abstract 

Integrating  time-course  information  from different  data  types  has  emerged as  essential  element  of 

systems biology approaches to improve our understanding of dynamic cellular responses. Driven by the 

growing interest in generation of matched high-throughput datasets, we developed a methodology to 

systematically identify  individual signaling axes that are triggered by activated receptors and to link 

them  to  their  transcriptional  response.  For  this  purpose  we  used  a  public  time-resolved 

phosphoproteome dataset and generated time-shifted transcriptome data to analyze activated B cell 

receptor signaling dynamics. We integrated these datasets by a cellular layer-specific pathway-based 

approach, using public knowledge from biological databases. By construction of consensus graphs, 

reflecting layer-specific concordant information between the two data types, we were able to confirm 

known B cell receptor signaling links, e.g. PLCG2 activation following phosphorylation of the tyrosine 

kinase SYK. In addition, we found hitherto unknown relationships that we hypothesize to be implicated 

in BCR signaling. Furthermore, we were able to determine dynamically activated individual signaling 

axes by cross-platform analysis. Thus, integration of matched high-throughput datasets from different 

cellular layers is a promising approach to broaden our view on complex cellular signaling processes 

and thereby refine our mechanistic understanding of the cell.
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Introduction 

Functional  integration  of  different  molecular  layers  of  the  cell  has  gained more and more interest 

recently, in parallel with the increased generation of high-throughput datasets by different technical 

methods. These efforts have already revealed interesting findings in the context of systems biology and 

systems medicine (Ritchie et al., 2015; Du and Elemento, 2015; Wang et al., 2015). However, so far 

less  emphasis  has  been  put  on  the  integration  of  time-series  datasets  from  different  technology 

platforms,  although these datasets  may enable a  detailed cross-examination of  effectors  and effect 

propagation throughout different cellular layers (Bar-Joseph et al., 2012). Aberrant signal propagation 

is often linked to malignant transformation of cells, giving rise to major diseases. One such example are 

B cell malignancies, which are characterized by aberrantly activated B cell receptor (BCR) signaling. 

The B cell receptor is a control instance for B cell differentiation, homeostasis and function, as both 

maturation and survival of the cell are regulated by BCR signaling (Rickert, 2013). 

Because of the pivotal role of BCR signaling for B cell physiology and pathophysiology, an improved 

understanding  of  BCR  signaling  axes  is  needed.  Detailed  investigation  has  been  performed  by 

transcriptional profiling of e.g.  chronic lymphocytic leukemia patient samples (Ferreira et al., 2014). 

BCR engagement induces multiple signaling events by reversible phosphorylation of effector proteins 

that have been studied by phosphoproteomics (Satpathy et al., 2015; Corso et al., 2016). In addition 

signaling crosstalk and various feedback regulations have been described for BCR signaling pathways 

(Seda and Mraz, 2014; Song et al., 2013; Wang et al., 2012). However, all of these studies focus on one 

individual molecular layer of the complex signaling response, rather than integrating different layers.

Nonetheless, time-resolved layer-specific studies have demonstrated that signaling mechanisms cannot 

be fully captured when only single time points within a signaling response are monitored (Irish et al.,  

2006; Corso et al., 2016). Hence a detailed molecular characterization of signaling mechanisms acting 

not only in space but also in time requires time-series approaches. A time-resolved study demonstrating 

different temporal modes of RNA- and protein-layer regulations in response to misfolding stress in 

mammalian cells was published recently by Cheng et al. (2016). Following time-series data on different 

molecular layers thus clearly adds information with the potential to decipher molecular mechanisms in 

more detail (Wachter and Beißbarth, 2016).
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To  date  open  questions  remain,  for  example,  whether  specific  associations  between  dynamic 

transcriptional  and  post-translational  processes  can  be  determined  that  are  intrinsic  to  a  specific 

biological system. The scope of this study was (i) to systematically characterize the phosphoproteome 

and the transcriptome dynamics in BCR stimulated cells, (ii) to link the two processes over time, and 

(iii)  to  integrate  them  to  improve  our  understanding  of  BCR  signaling  and  its  downstream 

consequences. Using a pathway-based layer-specific integration of phosphoproteome and transcriptome 

data  we  were  able  to  identify  time-dependent  consensus  molecule  sets.  Moreover,  we  could 

characterize those individual  signaling axes  in the cellular  response that  were supported by cross-

platform analysis and gain further insights into signaling patterns by a correlation trajectory analysis.

Results

BCR signal propagation on phosphoproteome and transcriptome levels

In  a  previous  study  we  systematically  characterized  BCR  signaling  dynamics  by  a  stable-isotope 

labeling by amino acids in cell culture (SILAC) based phosphoproteome analysis (Corso et al., 2016). 

In this study phosphosite levels were measured in unstimulated Burkitt lymphoma cell lines and after 2, 

5,  10  and  20  min  of  BCR  stimulation  (Fig  1A).  In  total,  we  detected  1024  phosphosites  with 

significantly  differential  abundance  in  at  least  one  of  the  analyzed  stimulation  durations,  with 

approximately  three  times  more upregulated  than downregulated phosphosites  for  each  stimulation 

duration (Fig 1B). To elucidate the corresponding downstream transcriptional activation in these cells 

we have now analyzed gene expression by RNA-sequencing in cells that were left unstimulated or were 

stimulated through their BCR for various stimulations (10, 20, 60 and 120 min) (Fig 1A, Fig S1-3). 

While we observed both up- and downregulated phosphosites on the phosphoproteome level, we almost 

exclusively found upregulated transcripts upon BCR stimulation (Fig 1B-D, Tab S1). Notably, early 

upregulation was observed for immediate early response genes, such as FOS or EGR-1.

Pathway-based integration of phosphoproteome and transcriptome data identifies key players of 

BCR signaling
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We used the pathway-based data integration approach implemented in our R package 'pwOmics' for 

data integration of the different data sets, as it takes the different molecular layers that we analyzed by 

different  technologies  into  consideration  (Wachter  and  Beißbarth,  2015; 

https://bioconductor.org/packages/devel/bioc/html/pwOmics.html).  Furthermore,  we  extended  this 

approach by including signaling axes identification steps, which were incorporated into the 'pwOmics' 

package. The pathway-based integration compares the molecules identified in a 'downstream analysis' 

starting  from  the  differentially  phosphorylated  phosphosites  with  the  molecules  identified  in  an 

'upstream analysis' starting from differentially expressed transcripts in a layer specific manner. The 

different identification steps are performed using biological database knowledge, in particular pathway 

databases  Biocarta (Nishimura, 2001), KEGG (Kanehisa et al., 2014), Pathway Interaction Database 

(PID) (Schaefer et al., 2009) and Reactome (Fabregat et al., 2016), as well as transcription factor (TF) 

target gene relations from the TRANSFAC® database (Matys et al., 2006). In addition, we incorporated 

information from the PhosphoSitePlus database about activatory and inhibitory downstream signaling 

of phosphoproteins to prefilter consensus molecules in the 'upstream' and the 'downstream analysis'. 

Moreover,  we  integrated  a  filtering  step  based  on  phosphorylation/dephosphorylation  of 

phosphoproteins  and  up-/downregulation  of  transcript  expression  levels,  respectively.  Fig  2 

summarizes these new functions of the 'pwOmics' package.

In the 'downstream analysis' of the differentially phosphorylated phosphoproteins we first identified 

signaling pathways that were potentially affected according to public knowledge from the pathway 

databases  mentioned  above.  As  expected,  these  pathways  contained  the  Biocarta  'BCR  signaling 

pathway', the PID 'BCR signaling pathway' and the KEGG 'B cell receptor signaling pathway' for all 

analyzed stimulation time points (Tab S2). Accordingly, these PID and Biocarta pathways could be 

identified for all time points in the 'upstream analysis', confirming the pathway-level to be the adequate 

level  for  integration  of  these  data  sets.  The  lacking  identification  of  the  KEGG  'B  cell  receptor 

signaling pathway' in the 'upstream analysis' can be attributed to low numbers of significantly regulated 

transcripts, resulting from a conservative preprocessing of the dataset. 

For all time points with available phosphoproteome and transcriptome data we performed a pathway-

based integration to find functional links throughout the signaling axes. Via the 'downstream' and the 
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'upstream analysis' we arrived at potential molecules implicated in the different molecular layers, such 

that building the intersect on each layer reduced false positive identifications in a layer-specific manner. 

Thus sets of 'consensus molecules' represented by consensus proteins, consensus TFs and consensus 

genes/transcripts  were  identified  for  their  role  in  BCR signaling  at  individual  time  points.  Fig  3 

displays  the  corresponding  time-shifted  consensus  graph,  comprising  the  intersect  of  consensus 

proteins identified in intersection analysis pooling phosphoproteome data from 2, 5 and 10 min of 

stimulation and transcriptome data from 60 and 120 min of stimulation. This pooled integration allows 

to capture the overall signaling effect over time throughout the different molecular layers. Individual 

time-shifted consensus graphs for subsequent time points demonstrate that early signaling is governed 

to a greater extent by the phosphoproteome layer, whereas later time points are characterized by a more 

pronounced impact of the transcriptional layers. These time-resolved consensus graphs are depicted in 

Fig EV1, a consensus graph for phosphoproteome and transcriptome data that were obtained after the 

same BCR stimulation duration is shown in  Fig S4.  These consensus graphs exemplify that by our 

method the  complex individual  datasets  could  be  condensed to  interpretable  heterogeneous graphs 

comprising integrated knowledge from both high-throughput technology platforms. 

Next we investigated how much the integrated consensus graph reflects known regulatory signaling 

nodes. We found, that indeed knowledge about BCR signaling was collected so far either by layer-

specific high-throughput data or by individual experiments. Such individual experiments link upstream 

protein  signaling  to  downstream  transcriptional  changes,  but  are  typically  restricted  to  a  certain 

signaling  axis  or  pathway.  In  total  we  could  map  around  50  %  of  the  identified  consensus 

phosphoproteins  and  approximately  80  %  of  the  identified  consensus  transcripts  to  previously 

published resources confirming the ability of our integration approach to identify relevant regulatory 

molecules. Phosphoproteins frequently associated with BCR signaling and identified by our integration 

approach included in particular CD19, SYK, MAPK1, MAPK3,  BLNK, PLCG1, PLCG2 , CBL and 

PIK3CA.

While CD19 is a co-receptor of the BCR, SYK being recruited to the BCR leads to MAPK1 and 

MAPK3 activation. SYK can phosphorylate both PLCG1 and BLNK. The latter, upon phosphorylation, 

leads to the generation of docking sites that bind BTK and PLCG2, which are involved in initiation of 
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downstream NFAT activation via intracellular calcium levels. Another substrate of SYK, enhanced by 

Y317  phosphorylation,  is  the  E3  ubiquitin  ligase  CBL,  known as  an  inhibitor  of  SYK-dependent 

signaling.  In  parallel  PIK3CA is  triggered  SYK-dependently,  activating  the  AKT/mTOR pathway. 

(Young and Staudt, 2013; Geahlen, 2009)

As the described signaling regulations are highly dependent on the phosphorylation patterns, our next 

step  was  to  dissect  the  individual  contribution  of  consensus  phosphoprotein  sites  on  downstream 

signaling. Therefore, we analyzed their dynamic profiles. In  Fig 4  these phosphorylation profiles are 

linked to  corresponding downstream consensus  transcription  factors  and consensus  transcripts.  We 

observe a clear separation of four clusters in these sites, with SYK(Y525), SYK(Y526), SYK(Y348) 

and SYK(Y352) constituting the most upregulated cluster.  SYK(Y525) and SYK(Y526) are known to 

be  phosphorylated  after  BCR  engagement  in  an  autophosphorylation  reaction,  SYK(Y348)  and 

SYK(Y352) are modified by autophosphorylation in vitro upon crosslinking of the BCR. All of these 

modifications induce enzymatic activity. (Geahlen, 2009) 

Furthermore,  we  observe  an  intermediately  upregulated  cluster  dominated  by  SYK  which  is 

represented  by  different  phosphorylation  patterns.  CBL,  APC,  PIK3CA,  CRKL,  BLNK,  NCK1, 

PLCG1, IQGAP1 and MAPK3 are exclusively found in this cluster, whereas CD22, RPS6KA3, TSC2, 

ABI1,  MAPK7,  RAF1,  CD19,  PTPN6  and  LYN  are  exclusively  found  in  the  third,  just  slightly 

upregulated cluster. The latter includes a number of negative regulators such as CD22, an inhibitory co-

receptor of the BCR. Its humanized anti-CD22 monoclonal antibody was previously tested in clinical 

trials in order to raise the threshold of BCR activation (Sieger et al.,  2013). Also PTPN6 (SHP-1) 

negatively regulates signaling via the BCR (Ono et al., 1997), together with LYN in an inhibitory loop 

via  CD22  and  SHIP1  (Packard  and  Cambier,  2013).  More  interesting,  though,  are  the  SYK 

phosphosites upregulated in addition to the highly upregulated cluster of SYK phosphosites, as they 

might be possible therapeutic targets for pathologically activated BCR signaling. CBL is an inhibitor of 

SYK-dependent  signaling by targeting SYK for ubiquitination (Geahlen,  2009;  Sohn et  al.,  2003). 

Interestingly, all phosphosites of CBL that were at least identified to be significantly regulated at one 

time point show high expression values early on with subsequent decrease of the ratios. This pattern 

could also be observed in the highly up-phosphorylated cluster for SYK(Y525) and SYK(Y526) and in 

the  intermediately  up-phosphorylated  cluster  for  the  SYK phosphosites  Y348,  Y631,  Y296,  Y630, 
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Y525, S295, Y352, Y323 and Y296, which indicates a possible regulatory interaction. However, other 

SYK sites and specifically MAPK3 sites are showing an opposite pattern with increasing expression 

levels over time. While CBL, PIK3CA, CRKL, BLNK, NCK1, PLCG1 and MAPK3 are well known to 

be implicated in BCR signaling, the function of APC and IQGAP1 is less well described, but clearly 

identified via our pathway-based layer-specific integration approach. 

In  addition,  we  observe  a  downregulated  phosphosite  cluster,  which  consists  of  EPS15(S790), 

PAG1(Y181),  SNIP1(S49,  S52),  ASAP1(S839)  and  SQSTM1(S266).  While  SNIP1,  ASAP1  and 

SQSTM1 are only observed in the downregulated cluster,  EPS15 and PAG1 are also found in the 

slightly  upregulated  cluster  with  different  phosphorylation  patterns.  SNIP1  has  been  described  as 

inhibitor of NFkB-signaling (Kim et al., 2001) and as part of a signature of pre-germinal center-derived 

B-Cell  Non-Hodgkin Lymphomas (Rolland et  al.,  2014).  In B cell  receptor signaling activation of 

NFkB signaling can take place via BCL10/MALT1 and the recruitment of IKK (Ferch et al., 2007). 

SQSTM1, in contrast, has been described as ubiquitin-binding scaffold protein positively regulating 

NFkB signaling (Long et al., 2010). ASAP1 belongs to the Ras superfamily of small GTPases and is 

involved  in  cytoskeletal  rearrangement  (Büchse  et  al.,  2011).  Besides  its  known  functions  in 

intracellular trafficking and potential function in transcriptional regulation, EPS15 was described as 

regulator of B-cell lymphopoieses (van Bergen en Henegouwen, 2009; Pozzi et al., 2012). However, 

the individual phosphosites implicated here have not been described in regard to human B cell receptor 

signaling before to the best of our knowledge. Regardless, PAG1 phosphorylation on Y181 has been 

described in BL cell lines before (Rolland et al., 2014). Downregulation of this cluster of specifically 

modified proteins upon BCR stimulation can be interpreted as a propagation effect necessary for the 

stimulation signal to be transmitted throughout the cell.  

Downstream of the phosphoprotein layer, however, we see a combinatorial response of transcriptional 

changes affected by propagation through the transcription factor layer. We observe early immediate 

response genes like FOS, EGR1, EGR2 and EGR3 highly upregulated early after BCR stimulation, as 

expected. Furthermore, we observe PIM1 and TXNIP to be downregulated at late time points. PIM1 is a 

protooncogene encoding a serine/threonine protein kinase (Zhu et al., 2002). Overexpression of PIM1 

in mice leads to tumor formation, inhibitors of PIM1 have been shown to induce death of cancer cells 
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(Magnuson  et  al.,  2010).  TXNIP  was  described  previously  as  antitumor  gene  as  it  forms  a 

transcriptional repressor complex (Han et al., 2003). Interestingly, CCL4 exhibits a positive regulation 

peak at 20 min of BCR stimulation. The expression of this chemokine is needed to attract T cells in the 

immune response (Takahashi  et  al.,  2015).  While  the integrated consensus graph allows to draw a 

functional  link  between  the  upstream  phosphoprotein  activation  and  downstream  transcriptional 

response, it does not provide information on individual signaling propagation axes so far. 

Systematic characterization of signaling axes and feedback mechanisms

We were interested in following BCR dependent signaling from the activated receptors via protein 

phosphorylation to the transcriptome response. As typically layer-specific characterization of signaling 

is performed, we investigated if time-series datasets for different molecular layers enable a new and 

biologically more reasonable perspective of signal transduction. We therefore performed a systematic 

analysis  of  downstream signaling  starting  from the  set  of  phosphosites  being at  least  significantly 

regulated  at  one  stimulation  duration  (Fig  5A).  This  resulted  in  a  time-resolved  overview on  the 

number  of  target  genes  in  activated  pathways  downstream of  the  corresponding  phosphoproteins. 

Additionally,  the  number  of  matching  transcripts  to  these  target  genes  could  be  identified  in  the 

transcriptome data, individually for up- and downregulation. This is demonstrated in  Fig 5B  on the 

example of the phosphoprotein Epidermal Growth Factor Receptor Pathway Substrate 15 (EPS15) in 

detail. EPS15 is involved in receptor-mediated endocytosis of epidermal growth factor. We observe that 

according to pathway databases EPS15 is implicated in 13 signaling pathways, with seven pathways 

having a large number (>600) of target genes. Most of these are linked to Erbb1 signaling. As expected, 

we  observe  more  matching  transcripts  at  late  transcriptome  measurement  time  points  and  higher 

numbers of matching transcripts in pathways with high numbers of downstream target genes. Signaling 

axes downstream of the tyrosine kinase SYK are provided in Fig S5. 

Correlation trajectories – identification of time-resolved correlation patterns

Next,  we  systematically  analyzed  time  resolved  correlation  patterns  for  our  set  of  consensus 

phosphoproteins.  By  comparing  the  same  order  of  measurements  (phosphoproteome  2  min  vs. 

transcriptome 10 min, phosphoproteome 5 min vs. transcriptome 20 min, phosphoproteome 10 min vs. 

transcriptome 60 min and phosphoproteome 20 min vs. transcriptome 120 min), we assumed a delay in 

9

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271



signaling from the phosphorylation cascade to RNA synthesis of about 8 min,  with a slower RNA 

synthesis  compared  to  the  phosphorylation  cascade  itself.  These  assumptions  are  based  on 

measurements  of  human RNA synthesis  rates that  were previously measured to  be 1.3-4.3 kb/min 

(Maiuri et al., 2011). Based on these numbers we checked the first transcriptome data time point (10 

min) for the approximate maximal time durations needed to synthesize its significantly differentially 

expressed transcripts, in case transcript length information from UCSC Genome Browser (Kent et al., 

2002)  was  available.  Only  a  small  number  of  transcripts  from three  genes  (DNAJB1,  EGR2 and 

NR4A1) exceeded the threshold of 8 min (Fig EV2). While the additional time needed for further RNA 

processing steps is hard to estimate, we can still assume that 8 min after the first phosphoproteome data 

measurement we might capture almost all transcripts in the measurements.

Fig 6 exemplarily shows correlations of PAG1, PLCG2 and PTPN6 phosphoprotein expression levels 

with expression levels of some of their transcripts affected downstream. Only those transcripts were 

taken into consideration that were found to be differentially regulated in the transcriptome data set. 

Complete  correlation  results  for  these  consensus  phosphoproteins  are  provided  in  Fig  S6.  Such 

correlation  trajectories  give  detailed  insights  into  regulatory  relationships  from a  response-specific 

point of view instead of a layer-specific one. Very similar correlation patterns can be observed for  

different phosphosites of one protein,  e.g.  for PAG1. However,  also diverse correlation patterns of 

differently  phosphorylated  proteins  such  as  for  PLCG2 are  identified.  Similar  correlation  patterns 

might  indicate  same upstream regulators,  whereas  diverse  phosphoprotein  patterns  hint  to  varying 

upstream regulatory influences of the investigated sites. While for the two sites depicted for PAG1 

upstream regulation seems to be similar starting at 2 min of BCR stimulation, there is clearly a higher 

change in phosphorylation levels for PAG1(Y417) up to 2 min. Very similar patterns observed for a set 

of differently phosphorylated phosphoproteins on different  downstream transcripts  (e.g.  for PTPN6 

starting from 5 min phosphoproteome/ 20 min transcriptome) indicates very similar transcriptional 

regulation of these transcripts with upstream influence of similarly regulated phosphosites. In this case 

PTPN6 influence is negative and expression levels of the immediate early genes EGR2 and EGR3 are 

decreasing after early regulatory involvement.

The presented results are certainly biased towards information in the databases which were used for 
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identification  of  the  signaling  axes.  Nevertheless,  they  provide  a  layer-integrated  and  summarized 

signal-specific view on the BCR signaling response and enable detailed investigation of individual 

signaling axes.

Discussion

Layer-specific high-throughput measurements have been the basis of experimental studies in past years, 

yet more and more emphasis is now given to a multi-omics characterization in order to investigate 

biological hypotheses with a systems focus. Furthermore, different studies show that time-series data 

sets are particularly important to understand complex cellular responses, as these responses can be 

composed of different temporal modes interacting in a time-dependent manner (Buescher et al., 2016). 

With the emergence of multi-omics time-series data sets, that are still rare, but expected to be generated 

increasingly  (Bar-Joseph  et  al.,  2012;  Rajasundaram  and  Selbig,  2016),  the  need  of  appropriate 

analyses workflows arises. Using a parallely measured phosphoproteome and transcriptome data set of 

BCR stimulated  human cells,  we demonstrate  that  a  response-specific  signal  propagation  tracking 

enables a more focused characterization than a layer-specific one. We incorporated time-series data on 

the  different  cellular  layers  to  track  regulatory  relationships  in  their  particular  signaling  axes 

throughout different layers, thus arriving at a very detailed and systematic characterization of BCR 

stimulated downstream cellular adaptations. 

Several studies have investigated paired links between phosphoproteome and transcriptome data sets 

before with slightly different  foci.  Oyama et  al.  (2011) linked SILAC-LC/MS time course data  to 

GeneChip time course data through prediction of TF motif activity for understanding the molecular 

mechanisms of tamoxifen resistance at a system level in breast cancer. Rotival et al. (2015) generated 

LC-MS/MS and transcriptome data to identify regulators of macrophage multinucleation in the rat. 

They first characterized multinucleation-specific transcription factors by transcription factor binding 

site enrichment  analysis,  before mapping those together with the phosphopeptide data to a  protein 

interaction network and identifying pairs in closer than random vicinity. These examples show various 
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applications, yet are alike in their aim to characterize different cellular response layers in one system. 

This shows that a flexible integration workflow as presented here has multiple potential applications, 

especially if time course data is considered. Our approach to systematically integrate phosphoproteome 

and  transcriptome  time  series  data  sets  will  thus  provide  a  useful  option  for  many  experimental 

applications in which such parallel data sets are measured to characterize cellular response in detail. 

To facilitate  the  integrative  analysis  of  comparable  time-series  high-throughput  data  sets  we have 

presented here a pathway-based layer-specific integration approach with a focus on cellular response 

that  covers  more  than  one  cellular  layer.  As  part  of  the  integration  we deliberately  accept  a  data 

reduction step, mapping phosphoproteome data to signaling pathways. However, individual activating 

or  inhibitory  downstream  effects  are  considered,  as  part  of  individual  signaling  axes  at  specific 

stimulation durations. The potentiation of downstream effects due to a high number of signaling axes 

acting in concert results in a combinatorial transcriptional effect. With a comparison of 'downstream 

analysis' results to the transcriptome data set, we aim to filter out those phosphorylation changes that 

are not strong enough to result  in a significant transcriptional change of target genes downstream, 

thereby controlling the number of false positives and setting a threshold for identification. With the 

incorporation of a filtering step based on regulatory concordance and further public knowledge from 

the  PhosphoSitePlus  database,  we  arrived  at  heterogeneous  consensus  graphs  that  are  feasible  for 

biological interpretation on the one hand, but also capture signaling contributions confirmed by both 

data types on the other hand. These graphs could highlight molecular players of the cellular response as 

confirmed by published resources over different cellular layers. Although the presented approach is 

inherently biased through the intense use of databases for linking purposes, resulting consensus graphs 

and signaling  axes  do benefit  from combining various  knowledge domains  from different  cellular 

layers. The downside of this public knowledge-based approach is that it will not predict nor emphasize 

newly discovered associations. Nevertheless, we were able to unfold the signaling axes affected by 

BCR  signaling  in  a  very  detailed  manner.  This  allowed  us  to  investigate  individual  correlation 

trajectories of phosphosites and their affected transcripts downstream. These correlation patterns show 

that there are different classes of downstream effects for individual phosphorylation patterns, starting 

from almost  same  effects  on  different  downstream transcripts  through  very  similar  transcriptional 

regulation effects of different transcripts towards very diverse phosphorylation patterns which also hint 

12

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360



to diverse functions in downstream signaling.

We conclude that a response-specific instead of a layer-specific investigation of signaling axes can lead 

to further insights into regulatory mechanisms. We strongly believe that integration of different data 

types is an indispensable step towards this response-specific perspective. Furthermore, we hope that the 

presented integrative approach can contribute to improve our understanding of regulatory mechanisms 

in  cellular  responses  and  thus  help  to  identify  required  therapeutic  interventions  in  deregulated 

signaling pathways. 

Materials and Methods

Cell culture, BCR stimulation and cell lysis

The human DG75 lymphoma cell line was kindly provided by A. Rosenwald, Institute of Pathology, 

University  of  Wuerzburg,  Wuerzburg,  Germany.  Cell  culture,  BCR stimulation  and cell  lysis  was 

performed as described in Corso et al. (2016).

Phosphoproteome analysis & Mass spectrometry data analysis

Protein digestion for phosphoproteome analysis, phosphopeptide enrichment for pYome analysis, LC-

MS/MS analysis and data processing was performed as described in Corso et al. (2016).  Downstream 

data analysis of MaxQuant (Version 1.5.0.25) results was performed with Perseus (Version 1.5.0.15). 

Global phosphoproteome and pYome datasets of the SILAC-labelled cell line DG75 were analysed in 

independent sessions. Briefly, reverse and contaminant entries were removed, as were phospho-sites 

with a localization probability lower than 0.75. Sites were considered as quantified if at least 50% of 

biological  replicates  (global  phosphoproteome 2/4  and  pYome  1/2)  had  valid  values.  Ratios  were 

logarithmized (log2). For the global phosphoproteome and the pYome, sites with a SILAC ratio < -2 SD 

or  >2  SD  of  at  least  one  time  point  were  considered  as  significantly  regulated.  Global 

phosphoproteome  and  pYome  datasets  were  merged,  filtering  out  pY  measurements  in  global 

phosphoproteome  that  were  measured  in  pYome  and  pS/pT  measurements  in  pYome  that  were 

measured in global phosphoproteome. Raw files and MaxQuant search results have been deposited to 

the  ProteomeXchange  Consortium  (http://proteomecentral.proteomexchange.org)  via  the  PRIDE 
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partner repository (Vizcaíno et al., 2015) with the dataset identifier PXD003492.

RNA-Sequencing

Six biological replicates, each of DG75 cells either unstimulated or BCR-stimulated for 10 minutes, 20 

minutes, 1 hour and 2 hours, were prepared. Additionally, for each time point unstimulated control cells 

were harvested and immediately frozen in liquid nitrogen. Pellets were thawed in RNAlater (Qiagen) 

and total RNA was extracted by using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s 

instructions for extraction of total  RNA from human cells.  The RNA Integrity Number (RIN) was 

determined for all samples on an Agilent 2100 Bioanalyzer by using the Eukaryote Total RNA Nano 

Chip (Agilent). All RNA samples had an RIN of > 8. Sequencing libraries were prepared from the poly-

An RNA fraction of 1 µg total RNA by using the TruSeq RNA Sample Preparation Kit according to the 

manufacturer’s  instructions  (Illumina).  Paired-end  sequencing  was  performed  on  an  Illumina 

HiSeq2000; 100 bp were generated for each read. A mean of 63 M (standard deviation 12 M) reads was 

generated for each of the 60 samples.  Sequences were aligned to the RefSeq human transcriptome 

using bwa, and raw 'hits'  per transcript were merged genewise (Li and Durbin,  2009;  Pruitt  et  al., 

2014). These counts per gene were analysed using DeSEQ (Anders and Huber, 2010) describing gene 

expression as a generalised linear model including treatment (BCR vs. CONTROL), a factorial time 

effect  and the combined effect  as full  model;  a  model lacking the combined effect  was used as a 

reduced model. The resulting p values (indicating a change over time depending on the treatment) were 

adjusted according to Benjamini-Hochberg (Benjamini and Hochberg, 1995). Raw data was deposited 

on NCBI's  Gene Expression Omnibus (Edgar et  al.,  2002) and are accessible through GEO Series 

accession number GSE90120.

Data integration

Data integration of  phosphoproteome and transcriptome data  was done with R package 'pwOmics' 

(Wachter and Beißbarth, 2015). Functionality of the package was updated and extended throughout this 

analysis.  Input  phosphoproteome  data  was  prefiltered  to  include  only  phosphoproteins  with  sites 

showing at least one significant regulation of at least one time point. For generation of the consensus 

molecule set pathway databases Biocarta (Nishimura, 2001), KEGG (Kanehisa et al., 2014), Pathway 

Interaction  Database  (Schaefer  et  al.,  2009)  and  Reactome  (Fabregat  et  al.,  2016)  as  well  as 
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TRANSFAC® database (Matys et al., 2006), version Biobase 2015.4, were used. Consensus graphs 

were generated based on protein-protein-interaction (PPI) database STRING (Franceschini et al., 2013) 

and TRANSFAC data, using the shortest path approximation of the Steiner tree algorithm (Sadeghi and 

Fröhlich, 2013). The utility of the pwOmics package was extended to compare not only differentially 

regulated  molecules,  but  to  include  regulation  concordance.  Prior  to  analysis,  PhosphoSitePlus 

(Hornbeck et al., 2014) database knowledge about downstream signaling activation or inhibition was 

included  in  the  analysis:  Regulatory  sites  were  downloaded  (03/2016)  and  prefiltered  for  human 

phosphorylation  sites.  Sites  annotated  as  'activity,  induced'  and  'activity,  inhibited'  were  included 

filtering step of the analysis. In case no PhosphoSitePlus database information was available for a 

certain site, a direct comparison of downstream and upstream analyses was performed. Data integration 

analyses steps were done in R version 3.2.2.

Visualization

Heatmaps  generated  with  the  'ComplexHeatmap'  R  package  (Gu  et  al.,  2016)  show  supervised 

hierarchical clustering using euclidean distance and complete linkage. Missing values of sites were 

imputed with the 'impute'  R package (Hastie et  al.,  2016) based on 10 nearest neighbours prior to 

plotting. In consensus phosphoprotein heatmap four clusters were identified with k-means clustering. 

Network graphs were generated with the 'pwOmics'  (Wachter  and Beißbarth,  2015) package using 

'igraph'  (Csardi  and Nepusz,  2006)  and then  visualized  with  Cytoscape  (Cline  et  al.,  2007)  using 

communication R package 'RCy3' (Shannon et al., 2013) and Cytoscape App 'CyREST' (Ono et al., 

2015). References used in Fig 3 include Niiro and Clark, 2002; Pauls et al., 2016; Niiro et al., 2012; Su 

et al., J Biol Chem, 1999; Yin et al., 2007; Ingham et al., 1996; Castello et al., 2013; Goldfeld et al., 

1992; Wen et al., 2003; Franke et al., 2011; Tabrizi et al., 2009; Dörner et al., 2015; Krzysiek et al., J  

Immunol, 1999.
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Figure legends

Fig  1:  Paired  phosphoproteome  and  transcriptome  data  sets  show  characteristic  expression 

changes  after  BCR  stimulation.  (A)  BCR  stimulation  durations  of  phosphoproteome  and 

transcriptome measurements.  Time scale  is  log-transformed.  (B)  Number  of  significantly regulated 

sites/transcripts  at  corresponding  BCR  stimulation  durations.  Bars  above  zero-level  indicate 

upregulation numbers, bars below zero-level downregulation numbers. Phosphoproteome data is shown 

individually  for  serine  phosphorylated  sites  (pS),  threonine  phosphorylated  sites  (pT)  and tyrosine 

phosphorylated sites (pY). Regulated transcripts are abbreviated as T.  (C)  Heatmap displaying log2 

ratios of phosphosites being at least differentially phosphorylated at one stimulation duration compared 
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to  no  stimulation.  (D)  Heatmap  displaying  fold  changes  of  transcripts  being  at  least  significantly 

regulated at one time point compared to no stimulation. 

Fig  2:  R  software  tool  'pwOmics'  enables  pathway-based  and  layer-specific  integration  of 

phosphoproteome  and  transcriptome  data.  (A)  In  the  'downstream  analysis'  preprocessed 

phosphoproteome data is used to identify signaling pathways of differentially phosphorylated sites. 

These  pathways are  scanned for  transcription  factors.  In  a  next  step  downstream target  genes  are 

identified. In the 'upstream analysis' differentially expressed transcripts are used to identify upstream 

transcription factors. Signaling pathways containing these transcription factors are then evaluated in 

regard to potential proteomic regulators. 'Downstream' and 'upstream analyses' are performed for each 

stimulation duration. Intersecting molecules can be defined as a consensus molecule set C on each of 

the three molecular layers – protein layer depicted in red, transcription factor layer depicted in blue and 

transcript/gene layer depicted in green. (B) The extension of our R software tool 'pwOmics' provides a 

more  sophisticated  approach  to  define  consensus  molecule  sets:  Both  direction  of  regulation  and 

phosphorylation information from the PhosphoSitePlus database about enzymatic downstream activity 

are used to define the consensus sets for the protein, the transcription factor and the transcript/gene 

layer.  If  database  information  for  an  individual  phosphosite  is  available  it  is  used  to  prefilter  the 

consensus sets taking into consideration concordance of regulation, otherwise no prefiltering step is 

performed. P refers to protein layer, TF refers to transcription factor layer, T refers to transcript/gene 

layer, ↓ refers to downregulation, ↑ refers to upregulation.

Fig  3: Integrated  omics  data  based  consensus  graph can  be  confirmed to  a  large  extent  by 

literature.  Time-shifted consensus graph based on the intersect  of consensus proteins identified in 

intersection  analysis  pooling  phosphoproteome  data  from  2,  5  and  10  min  of  stimulation  and 

transcriptome data from 60 and 120 min of stimulation. Graph displays consensus proteins in red oval 

shapes, transcription factors in blue hexagons and genes/transcripts in green rectangles. Protein-protein 

dependencies are shown in solid lines, whereas transcription factor target gene relations are represented 

in dashed lines. Molecules are framed in colors according to literature references of studies of B cell 

receptor  signaling.  Multiple  frames were used for multiple  references.  Reference annotation is  not 

exhaustive,  but  clearly  shows  that  studies  so  far  were  mainly  either  individual  experiments  that 
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investigated individual proteins or signaling pathways, or high-throughput based and focusing on one 

molecular layer.

Fig  4: Highly  regulated  phosphorylation  patterns  identified  in  integrative  analysis  can  be 

attributed mostly to SYK.  Heatmaps show temporal changes of phosphosite  log2 ratios and fold 

changes  of  those consensus  proteins  and consensus  transcripts,  respectively,  which  are  part  of  the 

consensus graph in Figure 4. Phosphosites of proteins are annotated with S (serine), T (threonine) or Y 

(tyrosine)  phosphorylation,  together  with  the  annotation  of  multiple  phosphorylation  events  (M). 

Missing values are displayed in 'grey' inside the heatmap. The color bar encodes different phosphosites 

of one protein with the same color, proteins with just one phosphosite differentially phosphorylated at  

least on one stimulation duration are shown in 'grey'. Connecting lines between TFs and transcripts 

show regulatory relationships as depicted in Figure 3.  

Fig  5:  Signaling  axes  triggered  by  BCR  stimulation  can  be  identified  for  individual 

phosphoproteins.  (A) Downstream  signaling  of  individual  phosphoproteins  affects  target  gene 

expression via  signal propagation through pathways. To reduce false positive identifications,  target 

genes  are  cross-checked  against  transcriptome  data  by  comparison  with  differentially  regulated 

transcripts.  Each  phosphoprotein  can  affect  multiple  pathways  at  each  BCR  stimulation  duration, 

further affecting different sets of target genes. Comparison with transcriptome data can be performed in 

the same temporal  order  of measurements (as indicated here)  or  with larger  time shifts.  Feedback 

signaling will take place changing protein levels corresponding to transcripts that were affected initially 

by  BCR stimulation,  as  indicated  by  blue,  dashed  arrows.  This  has  a  further  impact  on  different 

signaling pathways at later time points. (B)  Upper panel:  Downstream signaling of phosphoprotein 

EPS15. Number of potentially affected target genes identified for each pathway found in signaling axes 

downstream of EPS15. Lower panel: Affected target genes matching differentially regulated transcripts. 

Left  plot shows number of matching upregulated transcripts, right plot shows number of matching 

downregulated  transcripts  when  comparing  affected  target  genes  of  the  indicated  pathways  with 

transcriptome data.  Colors  indicate  BCR stimulation durations  with 'red'  corresponding to  10 min, 

'green' corresponding to 20 min, 'cyan' corresponding to 60 min and 'purple' corresponding to 120 min 

of BCR stimulation.
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Fig 6: Correlation trajectories of phosphosites affecting downstream transcripts, exemplarily for 

phosphoproteins PAG1, PLCG2 and PTPN6. Each protein specific panel shows selected transcripts. 

In  each  plot  log2  ratios  of  indicated  phosphosites  are  plotted  against  fold  changes  of  affected 

transcripts. BCR stimulation times of phosphoproteome and transcriptome data are indicated in the 

legend, with filled circles indicating 2 min of BCR stimulation in phosphoproteome and 10 min of 

BCR  stimulation  in  transcriptome  data,  filled  diamonds  indicating  5  min  and  20  min  of  BCR 

stimulation in phosphoproteome and transcriptome data, respectively, filled triangles indicating 10 min 

and 60 min of BCR stimulation in phosphoproteome and transcriptome data, respectively, and filled 

squares indicating 20 min of BCR stimulation in phosphoproteome and 120 min of BCR stimulation in 

transcriptome data.  Short  distances  between symbols  indicate  small  phosphorylation  and transcript 

level  changes,  whereas  large  horizontal  and  vertical  distances  between  symbols  indicate  large 

phosphorylation and transcript level changes, respectively. Incomplete trajectories are shown in case of 

missing values (e.g. PTPN6_Y525_M2).

Expanded View Figure Legends

Fig  EV1:  Individual  time-shifted  consensus  graphs  for  subsequent  time  points  of 

phosphoproteome and transcriptome measurements. Graph displays consensus proteins in red oval 

shapes, transcription factors in blue hexagons and genes/transcripts in green rectangles. Protein-protein 

dependencies are shown in solid lines, whereas transcription factor target gene relations are represented 

in dashed lines. Phosphoproteome/transcriptome stimulation durations are indicated for each graph.

Fig  EV2:  Significantly  regulated  transcripts  (10  min  after  stimulation)  and  maximal  time 

durations  needed for RNA synthesis. UCSC Genome Browser  was used to  assess  the  transcript 

lengths. Maximal synthesis duration of Maiuri et al. (2011) was used to calculate maximal synthesis 

durations.

Appendix material

Fig S1: Principal component analysis of RNA-Seq data set. 
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Fig S2: Sample heatmap of RNA-Seq data set. 

Fig  S3:  Venn  diagram  showing  overlap  of  significantly  regulated  transcripts  for  different 

stimulation times. 

Fig  S4:  Consensus  graph based on same measurement  time  points  of  phosphoproteome and 

transcriptome data. 

Fig S5: Signaling axes downstream of SYK. 

Fig S6: Exemplary correlation trajectories of PAG1, PLCG2 and PTPN6 signaling axes.

Tab  S1:  Significantly  regulated  transcripts.  Transcriptome  data  analysis  revealed  35  transcripts 

differentially regulated after 10 min of BCR stimulation, 59 transcripts differentially regulated after 20 

min of BCR stimulation, 65 transcripts differentially regulated after 60 min of BCR stimulation and 87 

transcripts differentially regulated after 120 min of BCR stimulation. 

Tab S2: BCR signaling related 'upstream' and 'downstream pathways' identified in integrative 

analysis. 
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5 Discussion

In this work, I adressed a very specific integration problem, composed of linking different but

specific data types in a biologically meaningful way. These data sets containing (phospho-

)proteomic and transcriptomic data measured in parallel are still very rarely generated,

however, with the increasing use of different high-throughput platforms to characterize a

single biological experiment, such data sets gain in importance and require appropriate

analysis workflows (Gomez-Cabrero et al., 2014).

In the previous chapters, I introduced a pathway-based level-specific data integration

method for (phospho-)proteomic and transcriptomic data. This method takes into considera-

tion the molecular levels on which the data is generated and finds common regulatory influ-

ences between the different molecular levels. Signaling analysis based on the integrated data

enables a comprehensive analysis of co-regulation patterns, consensus networks and inferred

causal links between consensus molecules. This is complemented by the response-specific

identification of signaling axes. In Chapter 2 pwOmics: An R package for pathway-based

integration of time-series omics data using public database knowledge the implementation

of this method as R package ’pwOmics’ is presented. To demonstrate its functions on

parallely measured phosphoproteome, transcriptome and proteome data, two data sets were

investigated. They were generated with different high-throughput methods and analyzed with

a focus on different biological questions. Thus a rough comparison of the data integration

approach applied on different input data is possible. Chapter 3 Decoding Cellular Dynamics

in Epidermal Growth Factor Signaling Using a New Pathway-Based Integration Approach for

Proteomics and Transcriptomics Data demonstrates the proposed approach on the example of

physiological EGFR signaling. It reveals feedback signaling events and pathway crosstalk that

has been described previously, but also identifies new regulatory interactions that might give

rise to generation of new biological hypothesis. Chapter 4 Integration of phosphoproteome

and transcriptome data to link B cell receptor activation with gene expression dynamics gives

a systematic overview on time-resolved signaling events throughout different molecular levels

and thereby identifies response-specific signaling axes instead of layer-specific signaling axes.

The results of the presented integration approach reveal that the linkage of the different

data domains via biological databases and the subsequent integration allows identifying basic

molecular components. Regulatory interactions, which are of biological importance for the

cellular response, can be captured whereas it is not possible to cover different molecular

levels just based on individual data sets. However, the use of databases gives a strict and
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biased filtering towards those components that have been characterized already, which is

symptomatic for a database-guided approach.

Here, results have been confirmed as far as possible based on already available knowledge

on the different signaling pathways in the specific experimental settings. Furthermore, the

investigated signaling pathways are already well characterized on different molecular levels

individually (Oda et al., 2005; Reddy et al., 2016; Ferreira et al., 2014; Satpathy et al., 2015).

This permits to evaluate results independently, however, further experimental validation will

be necessary. Often, integration approaches are validated by checking certain individual

processes that are testable in individual experiments. This validation approach has the

advantage that individual regulatory mechanisms can be cross-checked, yet, it omits a

considerable number of regulatory mechanisms in case they are not directly testable in the

laboratory. Further validation might also include further regulatory linkage between data

sets over time as signaling is expected to be reflected on each molecular level.

The R package ’pwOmics’ developed during the course of this work is available on

Bioconductor, an open source software framework for the development of tools for the

analysis and comprehension of genomic high-throughput data.

5.1 Deciphering level-exceeding molecular mechanisms

The biological rationale of coupling different data types as presented in Section 1.3.1 Un-

derlying biological rationale stays a prevailing need in the light of diseases that could not

be characterized even with very sensitive high-throughput methods applied on one or even

several molecular levels individually (Haider and Pal, 2013). In order to understand cellular

responses it is therefore crucial to not only compare the different data sets, but to integrate

them in a biologically meaningful way.

This includes a very thorough consideration of both the links between the different

levels as well as the finely regulated temporal sequences of cellular signaling. Surely, this

consideration needs to go together with careful drafting of the scope of the applied approach.

So far, a lot of very individual proteomic and transcriptomic data integration approaches have

been published with different hypotheses and scopes (Section 1.3.3, Integration approaches),

which shows that there is a high need and a high potential for such approaches. When

exclusively regarding the scope of understanding molecular mechanisms and relationships

between and within different types of molecular structures, many approaches have been

developed, yet most of them are not implemented in a way that allows public use. Still, in

the context of increasing focus on systems-wide characterization, many researchers generate

data sets on more than one molecular level and would benefit considerably by having access

to corresponding analysis tools and pipelines (Gomez-Cabrero et al., 2014).

In this work, I chose the integration to be performed on the level of signaling pathways,

implying a link of the different data types via pathway knowledge. This includes a data

reduction step in terms of downstream effects of phosphoproteins, yet it channelizes the
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regulatory influence between the different molecular levels and thus links the effectors with

the affected molecules. The downstream and upstream analyses of the phosphoproteome

data set and the transcriptome data set were chosen to be primarily performed individually.

This has the advantage that intermediate results can be retrieved, such as the set of signaling

pathways, in which there are differentially abundant phosphoproteins or the set of signaling

pathways which is involved upstream of the differentially expressed transcripts. Furthermore,

it enables level-specific data integration based on the intersect of molecules on each level,

thereby reducing false positive identifications introduced in the database knowledge extraction

step. According to Table 1.1 (Section 1.3.3, Integration approaches) the basic idea of this

integration approach falls into the category of topological network approaches with an

identification of common regulators.

The presented approach relies on a sound preprocessing of the individual data sets, such

that in case different significance thresholds are chosen for the individual data sets also a

more or less conservative result can be generated. This gives high flexibility to investigate

more and less conservative settings in the integration tool ’pwOmics’.

The choice of the integration level and the methodical success of linking the effectors

to the affected molecules are further discussed in Section 5.1.1 Pathway-based integration:

Linking effects and effectors. The data sets investigated with the presented approach illustrate

different analysis foci, dependent on either the number of parallely measured data points or

the high-throughput methods used. This is discussed in Section 5.1.2 Data set characteristics

and potential.

In addition, further optimization would be possible by the use of disease specific instead of

general pathway models. One example for cancer-specific pathway models has been published

by (Kuperstein et al., 2015), however, generation of disease-specific models needs a very

careful data curation. Although at the moment consideration of such models in the presented

integration approach is still very limited, future optimization is possible, as there is an

increasing number of data sources providing disease-specific information (Wu et al., 2010;

Mizuno et al., 2012).

5.1.1 Pathway-based integration: Linking effects and effectors

Signaling pathways have developed throughout evolution and have been adjusted in different

species according to the particular environmental challenges. They channel information flow,

cross-link between signaling axes and provide the interface to metabolic changes, ion fluxes

and all changes a cell has to undergo in case of external stimulation. Likewise, they keep

up basic cellular functions (Jordan et al., 2000). As pathways are the systems in which

both initial cellular reactions take place and late-response changes are initiated forming the

basis for an enduring cellular adjustment, they build the biological layer on which these

effects can be measured easily with high-throughput methods today. These measurements

also reflect positive or negative combinatorial feedback influence that enables an adjustment

of the cellular signaling system over time. Yet, when analyzing these data, also input and
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output of information have to be interlinked to understand the individual pathway effects in

more detail.

Multi-layered data sets enable a step-by-step tracking of the information flow. With

the different layers also mechanistic dependencies are predefined, which are usually flexibly

dependent on the cellular environment. Given the complex signaling interdependencies, this

tracking can be performed in a more refined manner the higher the temporal resolution of

measurements is.

The consequence of not considering signaling pathways individually in data integration

but using just a union or intersect of molecule sets, is the erroneous assumption of perfect

correlation between protein and RNA expression (see Section 1.3.1, Underlying biological

rationale) and a neglection of cellular dynamics. In addition, significance thresholds can either

lead to very small subsets of identified molecules, which cannot be interpreted easily, or to

very large numbers of molecules constituting a challenge for biological interpretation, as well.

Nevertheless, there is still a big challenge associated with the use of pathway knowledge as

integration basis, which is the bias inherent in pathway databases. This is further discussed

in Section 5.3.2, Database biases and restrictions.

Furthermore, the ‘classical’ signaling pathways commonly do not describe the three-

dimensional signaling space. Hence, if not associated with certain structures such as e.g.

membrane proteins, the localization of molecules is disregarded. This means a simplification

in regard to concentration gradients and molecular transport times takes place. Such

detailed information can nowadays be used to set up detailed bottom-up mathematical

models, however, it requires data sets to be highly resolved, both in time and in space. An

example for the importance of this interdependency is colocalization of signaling molecules, as

stochastic effects have been described to have an impact on signaling speed (Josić et al., 2011).

Both detailed spatial information and stochastic influences are not taken into account when

integrating different high-throughput data sets with pathway models. Instead measurements

are considered as results of signaling in cellular space. Consequently, the idea presented in

this work is inference of cellular mechanisms activated with stimulation rather than providing

a model which can reflect cellular processes completely.

5.1.2 Data set characteristics and potential

While the queried biological databases have a high influence on the presented integration

approach, the data set characteristics provide different potential for it, dependent on the

number of parallely measured data points and the high-throughput methods used. While the

EGFR signaling data set comprises few, but carefully selected phosphoproteins, the BCR

signaling data includes a large phosphoproteome data set that is not preselected by researchers,

but confined by the measurement method only. In addition, the measurement methods

deviate strongly: The EGFR signaling data set comprises PowerBlotTM measurements on the

phosphoprotein and microarray measurements on the transcriptome level, while phosphosites

in the BCR signaling data set have been measured with mass spectrometry and transcriptome

data with RNA-Seq. As a result, the first setting allows a much more focused view on the
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integrated data, but at the same time it encounters the problem of having a biased selection

of phosphoproteins. The second setting of BCR signaling avoids this problem and gives a

more unbiased view on the integrated results.

A higher number of parallely measured time points in the EGFR signaling data set

enables retrieval of time-course information by inference of a probabilistic network, while

the shifted time points measured on the different molecular layers in the BCR signaling

data set allow for a detailed tracking of signal propagation over time through the different

layers. Furthermore, the more sensitive methods used in the BCR signaling data set provide

a more detailed insight into molecular mechanisms. The EGFR signaling data set reflects

physiological signaling conditions, while in the BCR stimulation setting, the cellular response

of a BL cell line is measured. For these cells, it is not clear yet, in how far activated BCR

signaling is affected by the pathological state of the cell.

In both cases a comparison of the analysis results with a comparable pathological

respectively physiological setting would improve understanding of molecular changes caused

by the disease. Larger data sets consisting of more regulatory layers, e.g. miRNA expression

or epigenetics, would have further potential to broaden the knowledge of cellular responses

from a systems point of view.

5.2 Data integration findings: From known regulatory patterns

towards newly identified cellular response characteristics

The data integration findings presented in Chapter 3 Decoding Cellular Dynamics in Epi-

dermal Growth Factor Signaling Using a New Pathway-Based Integration Approach for

Proteomics and Transcriptomics Data and Chapter 4 Integration of phosphoproteome and

transcriptome data to link B cell receptor activation with gene expression dynamics exemplify

the prospects of systems biology in terms of understanding complex biological systems. Both

EGF signaling and BCR signaling are very well characterized due to their high impact on

different human malignancies. This made it possible to address two different foci in the

presented studies.

1. Network inference just based on data already pre-filtered according to the consensus

molecules identified in the integratory analysis, enabling hypothesis formation on sig-

naling crosstalk and time-dependent signal propagation.

2. Systematic identification of signaling axes in a response-specific way instead of level-

specific way, allowing to track effect propagation throughout different molecular levels

and to then correlate upstream signaling with downstream transcriptional effects.
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5.2.1 Decoding cellular dynamics in epidermal growth factor signaling

Data integration for the EGF signaling data set enabled to derive specific dynamic patterns.

Findings of the integrated analysis could confirm known regulatory response patterns of the

cell upon an external stimulation. These are characterized by a primary and by a secondary

cellular response (Tullai et al., 2007), reflecting early adaptation processes and long-lasting

cellular changes. Also in the analysis of the co-regulation patterns via time profile clustering

main signaling patterns could be characterized, including early immediate signaling (both

up- and downregulation) and a late cellular response.

Static consensus profiles, reflecting the molecules’ membership in the static consensus

graphs at each time point of measurement, hint towards auto-feedback signaling. These

observation could be done e.g. for PLAU, urokinase-type plasminogen activator, and CTGF,

connective tissue growth factor. Auto-feedback of CTGF could be confirmed in the dynamic

consensus analysis, where CTGF could be mapped to early, but sustained gene expression

changes. Interestingly, CTGF is part of the early negatively regulated cluster, so that its

downregulation might contribute to enhanced proliferation of cells upon EGF stimulation.

As time-series data allow for the identification of interactions, pathway crosstalk was

one of the main foci of data integration in this data set. Crosstalk not characterized by

posttranslational modification, such as the activation of matrix metalloproteinases (MMPs)

by G-protein-coupled receptors (Yarden and Sliwkowski, 2001) could be identified very clearly

at late time points after stimulation (4-24 hrs after EGF stimulation). This included MMP1,

MMP2, MMP10 and ErbB ligands AREG and EGF, the latter one triggering time-shifted

self-induction. However, the results are constrained by the small amount of phosphoprotein

data available in this dataset.

Nevertheless, inference of a probabilistic network enabled identification of regulatory

effects between the different molecular layers. A subsequent mapping to the time domains of

the consensus molecules revealed the main trajectory of the system, thus making it possible to

follow signaling changes. Known regulatory patterns were identified such as the indispensable

task of MAPK1 and STAT3 to activate downstream transcriptional changes. As STAT3

is also a transcription factor, which builds homo- and heterodimers upon phosphorylation,

translocates to the nucleus and activates transcription (Park et al., 1996), it also triggers a

cellular feedback response. This feedback can go through JAK2, a target gene of STAT3,

activating positive auto-feedback to STAT3 (Dauer et al., 2005).

Interestingly, SERPINB2 was identified as a consensus molecule which is differentially

abundant in the protein dataset. SERPINB2 is known to inhibit urokinase plasminogen

activators (PLAUs), which I hypothesized to be feedback-regulated based on the static

consensus profiles. As both identification of SERPINB2 and PLAU is based on the integrated

measurements of EGF stimulation effects on different platforms, relevance in the proliferation

processes can be assumed. This hypothesis is e.g. supported by a study showing SERPINB2

to by associated with increased survival in breast cancer patients (Duffy, 2004).
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The success of integrating gene expression dynamics and protein abundance dynamics

is heavily influenced by translational and post-translational processes as well as molecular

degradation processes. Due to the wide dynamic range of such processes they are not always

observable in the data. Results indeed do not very clearly show time-shifted correlations in the

dynamics, as expected. This might be attributed to the low time resolution of measurements,

to post-translational modifications of the proteins, to a rapid degradation of mRNA or of

protein products.

The presented study on EGF signaling thus revealed new hypotheses in regard to reg-

ulatory patterns and demonstrated the gain of an integratory data analysis over purely

level-specific analysis.

5.2.2 Systematic data integration of DG75 B cell receptor stimulation - phos-

phoproteome and transcriptome data in concert

Integration of B cell receptor signaling data from different molecular levels enabled identifi-

cation of signaling axes in a response-specific instead of a level-specific way. Pathway-based

consensus analysis of phosphoproteome and transcriptome data could confirm known key

players in B cell receptor signaling, but also identify so far unknown signaling links. In this

study, time-dependent signaling patterns as well as transcriptional changes were identified

and linked by identification of signaling axes.

With a systematic tracking of signaling events from the side of the receptor via phos-

phorylation cascades in responding pathways to their downstream effects on transcription

I could clearly characterize different dynamic phases in the cellular response in the inte-

grated consensus molecule sets. These could be separated in a first very active phase on

the phosphoproteome level, that leads to increasing transcriptional changes during further

time points. To generate a more general view on the cellular response phosphoproteome

data from early time points after stimulation and transcriptome data from late time points

after stimulation were pooled in the integration process. The resulting pooled consensus

view on the cellular response covers a high number of molecules known to be implicated in

BCR signaling, as shown in a comparison with literature ressources. While the presented

cross-platform integration approach enabled level-specific comparison of the molecular levels

and thus covers consensus molecules derived from different measurement platforms, previ-

ous knowledge was generated either in high-throughput on just one molecular level or in

experiments just covering very specific signaling axes.

The consensus set of molecules implicated in BCR signaling could then be checked further

in regard to phosphorylation dynamics. Besides phosphosites known to be implicated in

BCR signaling and highly upregulated in our data, such as SYK(Y525) and SYK(Y526)

which are autophosphorylated after BCR engagement, we could observe a high number

of additionally upregulated SYK phosphosites. These are very interesting in regard to

therapeutic intervention in BCR signaling.
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Apart from well-known BCR signaling members, we also identified APC and IQGAP1 as

consensus proteins. These belong to the phosphoproteins upregulated after BCR stimulation,

however, the sites identified in this study have not been listed in the PhosphoSitePlus

database (Hornbeck et al., 2015) yet. APC is a tumor suppressor known as negative WNT

signaling pathway regulator and its activity is correlated with its phosphorylation status.

IQGAP1 is involved in the regulation of cell morphology and motility. This finding is an

example which constitutes an interesting result for designing further experimental studies.

Apart from upregulated phosphosites, we also identified a number of downregulated sites,

including PAG1(Y181), previously described in BL cell lines (Rolland et al., 2014).

A further benefit of tracking individual signaling propagation is the possibility to observe

dynamic changes in the phosphoproteome data as a function of its transcripts being affected

downstream. Such correlation trajectories can give insights into upstream phosphorylation

of phosphoproteins in the investigated cellular response and into the downstream regulation

in regard to transcription. However, cautious interpretation of these correlations is necessary

as the transcriptional pattern is essentially a combinatorial effect of upstream regulation.

The response-specific integrated information compiled by the presented data integration

method introduces a database bias on analysis results, but it nevertheless forms a step

towards a systems characterization. This systems view can be refined further by including

a higher number of regulatory molecular levels. In summary, these results help to identify

regulation patterns in the complex chain of effectors and effects constituting BCR signaling.

5.3 Limitations of the presented cross-platform integration ap-

proach

The presented cross-platform integration approach is facing a number of methodological as

well as computational challenges. As linking of different molecular levels is performed purely

based on database knowledge, the results clearly depend on the selection of databases. While

database curation and currentness of data can vary strongly across different databases, a

research bias towards those molecules being investigated more intensely is observed. Thus,

the results can only be as reliable as the input database knowledge used and will therefore

not reflect interactions between molecules discovered only recently. Furthermore, mapping

between the different databases and molecular IDs proves to be an additional challenge,

for which a generalized standard would greatly improve the efforts of systems biology and

systems medicine approaches.

As input data for the presented approach is the pre-processed data from individual

platforms, the integrative analysis is very flexible on the one hand, while it is dependent on

the selected significance thresholds of the input data on the other hand.

Biological simplification of protein activity is done in the course of data reduction.

Therefore it is crucial to ensure it is complemented by bottom-up knowledge collected in

individual experiments. Here, this knowledge was introduced by including PhosphoSitePlus
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database (Hornbeck et al., 2015) knowledge when information regarding protein activation

was available. This allowed to prefilter consensus molecule sets accordingly.

Methodologically and due to financial considerations it is not feasible to generate data

sets with a very high dynamic resolution of measurements. Currently, this prevents applying

classical time-series methods and makes it necessary to use an estimation procedure to

generate dense data points for the dynamic consensus analysis. In this way dynamic changes

are used to retrieve more information, however, only low frequency changes can be captured.

Individual limitations regarding genomic data integration, database biases, time resolution

of measurements and data standardization are described in more detail in the following

subsections.

5.3.1 Limits of genomic data integration

While prospects of genomic data integration are very promising, there are also multiple

limitations and caveats. More evidence supporting a certain molecular link should increase

confidence in a prediction as multiple features from different sources increase knowledge

coverage. However, the increase of predictive power is usually limited and depends on whether

the features are well selected and independent (Lu et al., 2005). Furthermore, for integratory

methods it proves difficult to assess the statistical power of the approach universally, so that

an interpretation or evaluation of results has to be performed with caution. Data reduction

steps might neglect relevant functional associations in favor of non-relevant associations. In

addition, the extraction of primary variables often used during data reduction might be

challenging in terms of arriving at interpretable models (Ritchie et al., 2015).

The presented approach performs a filtering step to identify features that are of relevance

based on two different data sets, thus uses increased knowledge coverage. As variables

are not derived by factor analysis, but directly selected in the integratory filter process,

interpretation of primary variables is not a problematic issue in this case. However, data from

multiple molecular layers intrinsically has dependent correlation structures. Nevertheless,

incorporation of time-series data and dynamic bayesian network inference was able to identify

of causal influences as indicated by literature comparison.

At the moment, a further restriction of genomic data integration is the ongoing debate

whether it is preferable to generate knowledge in width covering rather more molecular layers

or in depth generating data with more sensitive techniques, but on fewer molecular layers.

Analysis methods need to be customized according to these decisions. With improving

methods and decreasing costs for data generation, this issue will loose its importance in

future. At the moment, it is still reasonable to challenge whether additional data from a

different molecular layer would add to the overall understanding of underlying molecular

mechanisms.
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5.3.2 Database biases and restrictions

Besides the obvious research bias that is found in databases due to more intensely investigated

hub genes, database quality or a lack thereof needs to be taken into account when setting

up models and assessing analysis results. Especially when using this biological knowledge

for linking effects and effectors, it needs to be taken into consideration that most databases

include mixed findings of different experiments, conducted in different tissues, cell lines etc.

Thus, an estimate of the extent of actual knowledge that can be transferred undoubtedly on

the experiment of interest is challenging, given the complex structure of cellular signaling and

molecular links making up a cellular response. Additionally, there might be biases during

the construction of the database itself. Such biases have been studied e.g. for the case of

the miRBase (Griffiths-Jones et al., 2006). Analysis of historic versions of this database as

subsets of today’s or the final database revealed a strong dependence of the network topology

on the point of time at which the data was retrieved (Saturnino et al., 2014). Such a bias is

often neglected when interpreting results based on database knowledge.

Furthermore, the current offer of signaling databases and further biological databases is

structurally divided into modular parts, e.g. individually reflecting signaling pathways from

receptor layer to transcription factors, individually reflecting transcription factor binding,

individually reflecting protein-protein interactions. This can be attributed to the complexity

of modeling universal signaling in the cell, but also leads to i) problems in combining

knowledge from different databases and ii) the tendency to judge one of these modules as

an independent unit. As reflected in the idea of the rather holistic view of systems biology,

this clearly is of questionable value from a biological point of view. Therefore, there is a

parallel trend in building up integratory databases, based on e.g. data centralization, data

warehousing, dataset integration, or direct links between the data (Lapatas et al., 2015).

These raise awareness on the challenge of standards adoptions and common file formats,

and additionally foster solutions that are taking into account the different structures of

different data types. These efforts might lead to a rather response-specific instead of a unit-

or module-specific investigation of data, which would reflect the true molecular interplay

between different molecular layers more appropriately.

As the presented integration approach is restricted by only allowing to retrieve e.g.

pathway information provided in a BioPAX format (a standardized pathway exchange

format), the number of pathway databases which can be scanned for biological information

is limited. With further integration of other databases either data integration methods or

database output formats need to be very flexible in order to successfully combine information.

5.3.3 Time resolution effects on network inference

When considering time-series data, an important question to address is the sampling rate. If

sampling during the experiment is insufficient, the system is underdetermined and cannot

lead to a uniquely identifiable model. The number of measurements should be determined

dependent on the measurement error, the variation in the data, the number of biomarkers
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investigated in an experiment and the sparseness of the connectivity of the network. The

sampling rate should in theory be i) adjusted to the scale in which the biomarker variation is

expected to occur, ii) adjusted to the speed in which changes are occurring in certain time

spans, if known in advance, and iii) higher than 2K [K + log(N)], with K denoting regulatory

inputs per gene and N denoting the number of biomarkers. (McKinney, 2009)

As the number of regulatory inputs per gene is typically unknown, the presented approach

uses interpolation between measurement time points. Nevertheless a careful interpretation of

the results gained by the presented data integration method is required because high noise

levels in the system might cause deviation from smooth profiles. As stated above, inferred

molecular links are thus rather a basis for further experimental validation than the high

confidence outcome of an in silico experiment.

Furthermore, usage of high sampling rates is usually restricted due to limited financial

ressources. This requires a thorough deliberation of the required experimental output and

the actual aim of the study beforehand. Both from a methodological as well as biological

point of view defining the focus of the study proves to be crucial, as for certain research

questions dynamic cellular processes play a role e.g. cell cycle processes. In that case cellular

synchronization is necessary to avoid interfering molecular dependencies.

5.3.4 Data standardization

Data standardization is a major challenge when working with multiple data sets from different

platforms. This is reflected in efforts of integrative databases, in enforcement of database

standards (Field et al., 2009), in agreements on a minimal set of information when publishing

experimental data (Burgoon, 2006), and in efforts for unique nomenclature (Gray et al., 2016).

Apart from issues addressing rather individual data set annotations, an important problem

in data integration that is frequently underestimated is thus the challenge of integrating data

sets from different platforms, which are archived in different databases. Here, questions on

data file formats are an issue, as well as annotation on possible preprocessing steps performed

on the data. On top, if further prior knowledge is involved when integrating data, different

data types and pathway information from pathway databases needs combined processing,

which today still requires individual solutions.

Dependent on the methodological approach of integration, the actual pooling of the

data can take place in very different steps of the data analysis (compare Subsection 1.3.3

Integration approaches). This gives a certain range of complexity to the formal integration

problem, but the selection of the integration step should always be done in regard to the

biological question.

In this work HUGO gene symbols were used for ID matching with databases. Different

nomenclature was translated and then mapped against databases using these IDs. Further-

more, the BioPAX format using standard OWL (RDF/XML) syntax (a pathway language

exchange format) was used to extract pathway knowledge such as gene sets and their corre-

sponding topology. This enabled using large and widely known pathway databases but also
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entailed the exclusion of databases not providing their pathways in BioPAX format. Though

it was not the focus of this work, translation between such different formats is possible, yet

it might require working with partly different information from different databases, showing

again the importance of standardization.

Furthermore, certain simplifications in the integration process connected to data anno-

tation and hence connected to standardized data storage were accepted. These include i)

non-unified origin of knowledge in biological databases (different cell lines, different tissues) as

discussed in Section 5.3.2 Database biases and restrictions and ii) no individual consideration

of combinations of phosphorylations (multiplicity) compared to single phosphorylations,

affecting downstream signaling of phosphoproteins as well. The first is commonly the case

when pathway-based methods are used and can be resolved with more specific pathway

models in future. The second is part of the data reduction process during integration and

needs to be addressed in future work in a more detailed way.
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The focus of this thesis was to develop an integration approach for proteome and transcriptome

high-throughput data, as growing numbers of coupled omics data sets on different molecular

levels are publicly available. However, time-series data sets covering multiple molecular levels

are still rare. To scientifically evaluate any improvement in terms of modeling a molecular

system functionally, a systematic analysis on the added value of integration of additional data

types is needed. Evaluation criteria could include identification of biomarkers or identification

of promising therapeutic targets. Different molecular layers include e.g. miRNA expression,

epigenetic regulation, mutation data etc. and are of considerable interest for approaching a

more holistic view of multi-layer data analysis. Such additional layers can be included into

the presented integrative analysis very easily in case prior biological knowledge is available

for linking the layers in a database-guided way.

Though with the presented integration approach some limitations are faced as discussed

in Section 5.3 Limitations of the presented cross-platform integration approach, it can be

easily extended to other species for which a sufficient amount of public biological knowledge

is available. Further specification could be accomplished by using specific disease databases

or databases that are tissue-specific. In fields with very dense data availability, such as cancer

research, this specification could be based on specific cancer pathway databases (e.g. Atlas

of Cancer Signalling Network, Kuperstein et al. (2015)). Also the so-called disease map

approach is currently further explored for a number of diseases with high research focus.

Moreover, the stimulation data presented here deals with cell population measurements,

such that the observed expression changes and the integration results cannot be directly

transferred to individual cell signaling. Yet, the number of single cell approaches for

expression measurements is constantly increasing. These approaches can give deeper insights

into individual cellular mechanisms and cell-cell-communication in case of e.g. tumor samples

which include both tumor and stroma cells so that a clear distinction of cellular expression

levels can only be applied when single cell measurements are used. Our presented integration

approach could easily be applied to such measurements, in case parallel extraction and

measurement of different molecular levels is feasible.

It is important to note that the presented results are reflecting only one specific state of

either physiological or pathological signaling. For an in-depth understanding, an additional

comparison of these integration results to the opposite state would be highly beneficial.



 6 Conclusions and Outlook

In this way, identifying either temporal or molecular deregulation would be possible and

potential therapeutic targets could be predicted.

The presented integration approach combines diverse information sources in order to yield

better linkage between the measured data sets by making use of already known molecular

interactions. In this context molecular dependencies were identified for future experimental

validation that are already known in other contexts. Furthermore, response-specific signaling

can be tracked through different molecular layers with the presented approach. However, as

discussed in Section 5.3 Limitations of the presented cross-platform integration approach no

knowledge on interactions of newly measured molecules is possible so far. Thus benefits of

high sensitivity screening methods are not exploited, as no newly identified interactions are

highlighted. Nevertheless, this might form an interesting objective for further optimization.

In summary, the presented integration approach can clearly provide guidance in the

formation of further experimental hypotheses to elucidate the complex cellular signaling

response upon perturbation of the system. Furthermore, it can prove consideration of

individual molecular levels to be valuable for cross-platform integration in terms of structuring

and focusing results for biological interpretation. The R package which was developed in the

course of this thesis (‘pwOmics’) is publicly available, can be applied for data from single

time points or time series data sets and facilitates exploiting different open source databases.
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This appendix provides the supplementary material of Chapter 4 Integration of phospho-

proteome and transcriptome data to link B cell receptor activation with gene expression

dynamics:
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Figure S1. Principal component analysis of RNA-Seq data set. Normalized log2 counts were prefiltered to
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Figure S2. Sample heatmap of RNA-Seq data set. Transcriptome data is displayed plotting sample-to-sample
distances in a heatmap showing Euclidean distance between the samples and individual replicates. Normalized
log2 counts were used to ensure stabilized variance.





Figure S3. Venn diagram showing overlap of significantly regulated transcripts for different stimulation
times. High overlap of significantly regulated transcripts at late time points (60 and 120 min of BCR
stimulation) can be observed, whereas short BCR stimulation durations show less overlap.
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Figure S4. Consensus graph based on same measurement time points of phosphoproteome and transcriptome
data. Small node sizes indicate nodes identified in consensus graph based on data from 10 min of BCR
stimulation, big node sizes correspond to nodes identified in consensus graphs based on data from 20 min of
BCR stimulation. Intermediate node sizes indicate nodes identified in consensus graphs based on data from
both 10 min and 20 min BCR stimulation times.





0

200

400

600

800

Target genes of SYK_downstream

N
o.

 o
f t

ar
ge

t g
en

es

bp
3_

nc
i_

pi
d_

p_
20

00
16

_n
fk

ap
pa

ba
ty

pi
ca

lp
at

hw
ay

bp
3_

bi
oc

ar
ta

_p
id

_p
_1

00
13

0_
il2

pa
th

w
ay

bp
3_

re
ac

to
m

e_
pi

d_
p_

50
02

94
_G

P
V

I_
m

ed
ia

te
d_

ac
tiv

at
io

n_
ca

sc
ad

e
bp

3_
bi

oc
ar

ta
_p

id
_p

_1
00

09
5_

nk
ce

lls
pa

th
w

ay
bp

3_
ke

gg
_p

id
_p

_7
30

06
5_

hs
a0

46
64

bp
3_

nc
i_

pi
d_

p_
20

01
83

_a
lp

ha
sy

nu
cl

ei
n_

pa
th

w
ay

bp
3_

nc
i_

pi
d_

p_
20

00
41

_a
vb

3_
op

n_
pa

th
w

ay
bp

3_
nc

i_
pi

d_
p_

20
00

25
_n

fk
ap

pa
bc

an
on

ic
al

pa
th

w
ay

bp
3_

bi
oc

ar
ta

_p
id

_p
_1

00
16

5_
fc

er
1p

at
hw

ay
bp

3_
re

ac
to

m
e_

pi
d_

p_
50

09
85

_P
la

te
le

t_
ac

tiv
at

io
n_

tr
ig

ge
rs

bp
3_

bi
oc

ar
ta

_p
id

_p
_1

00
22

7_
bc

rp
at

hw
ay

bp
3_

ke
gg

_p
id

_p
_7

29
89

8_
hs

a0
46

62
bp

3_
ke

gg
_p

id
_p

_7
26

58
0_

hs
a0

43
80

bp
3_

ke
gg

_p
id

_p
_7

30
25

4_
hs

a0
46

66
bp

3_
re

ac
to

m
e_

pi
d_

p_
50

02
89

_P
la

te
le

t_
A

ct
iv

at
io

n
bp

3_
nc

i_
pi

d_
p_

20
01

63
_a

ur
or

a_
a_

pa
th

w
ay

bp
3_

nc
i_

pi
d_

p_
20

00
68

_t
xa

2p
at

hw
ay

bp
3_

nc
i_

pi
d_

p_
20

00
30

_c
d4

0_
pa

th
w

ay
bp

3_
nc

i_
pi

d_
p_

20
01

07
_a

vb
3_

in
te

gr
in

_p
at

hw
ay

bp
3_

ke
gg

_p
id

_p
_7

29
46

5_
hs

a0
46

50
bp

3_
nc

i_
pi

d_
p_

20
01

28
_i

l2
3p

at
hw

ay
bp

3_
nc

i_
pi

d_
p_

20
00

57
_r

et
_p

at
hw

ay
bp

3_
re

ac
to

m
e_

pi
d_

p_
50

02
86

_F
or

m
at

io
n_

of
_P

la
te

le
t_

pl
ug

bp
3_

nc
i_

pi
d_

p_
20

00
97

_i
l2

_p
i3

kp
at

hw
ay

bp
3_

nc
i_

pi
d_

p_
20

00
05

_b
cr

_5
pa

th
w

ay
bp

3_
nc

i_
pi

d_
p_

20
00

03
_f

ce
r1

pa
th

w
ay

bp
3_

nc
i_

pi
d_

p_
20

00
46

_a
ur

or
a_

ki
na

se
_p

at
hw

ay
bp

3_
nc

i_
pi

d_
p_

20
00

11
_l

ys
op

ho
sp

ho
lip

id
_p

at
hw

ay
bp

3_
nc

i_
pi

d_
p_

20
00

85
_p

lk
1_

pa
th

w
ay

bp
3_

nc
i_

pi
d_

p_
20

01
73

_p
lk

_p
at

hw
ay

bp
3_

nc
i_

pi
d_

p_
20

00
80

_i
l2

_1
pa

th
w

ay
bp

3_
nc

i_
pi

d_
p_

20
00

33
_i

l1
2_

2p
at

hw
ay

bp
3_

nc
i_

pi
d_

p_
20

00
61

_c
d8

tc
rp

at
hw

ay
bp

3_
nc

i_
pi

d_
p_

20
00

21
_t

cr
_p

at
hw

ay
bp

3_
re

ac
to

m
e_

pi
d_

p_
50

02
85

_H
em

os
ta

si
s

bp
3_

nc
i_

pi
d_

p_
20

01
01

_p
75

nt
rp

at
hw

ay
bp

3_
nc

i_
pi

d_
p_

20
00

81
_c

xc
r4

_p
at

hw
ay

bp
3_

nc
i_

pi
d_

p_
20

00
66

_f
as

pa
th

w
ay

bp
3_

nc
i_

pi
d_

p_
20

00
73

_i
l1

pa
th

w
ay

bp
3_

nc
i_

pi
d_

p_
20

00
84

_t
nf

pa
th

w
ay

bp
3_

nc
i_

pi
d_

p_
20

01
66

_p
i3

kc
ia

kt
pa

th
w

ay
bp

3_
nc

i_
pi

d_
p_

20
00

96
_p

i3
kc

ip
at

hw
ay

bp
3_

nc
i_

pi
d_

p_
20

01
88

_f
ak

_p
at

hw
ay

bp
3_

nc
i_

pi
d_

p_
20

00
31

_m
et

_p
at

hw
ay

bp
3_

nc
i_

pi
d_

p_
20

01
31

_s
yn

de
ca

n_
1_

pa
th

w
ay

bp
3_

nc
i_

pi
d_

p_
20

00
55

_t
ra

il_
pa

th
w

ay
bp

3_
nc

i_
pi

d_
p_

20
00

20
_g

ly
pi

ca
n_

1p
at

hw
ay

bp
3_

nc
i_

pi
d_

p_
20

00
83

_e
rb

b1
_r

ec
ep

to
r_

pr
ox

im
al

_p
at

hw
ay

bp
3_

nc
i_

pi
d_

p_
20

01
11

_e
rb

b1
_d

ow
ns

tr
ea

m
_p

at
hw

ay
bp

3_
nc

i_
pi

d_
p_

20
01

43
_e

rb
b1

_i
nt

er
na

liz
at

io
n_

pa
th

w
ay

bp
3_

nc
i_

pi
d_

p_
20

01
33

_e
rb

b_
ne

tw
or

k_
pa

th
w

ay
bp

3_
nc

i_
pi

d_
p_

20
01

09
_s

yn
de

ca
n_

pa
th

w
ay

bp
3_

nc
i_

pi
d_

p_
20

00
08

_g
ly

pi
ca

np
at

hw
ay

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

● ●

●

●

●
● ● ●

● ●
● ● ●

●
●

●

Figure S5, A. Signaling axes downstream of SYK. Identified signaling pathways with the corresponding
numbers of their target genes are displayed. For each pathway the biopax version, internal pathway IDs and
pathway names are given.
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Figure S5, B. Signaling axes downstream of SYK. Number of target genes matching to upregulated transcripts
per signaling pathway. For each pathway the biopax version, internal pathway IDs and pathway names are
given. ‘Red’ color indicates 10 min, ‘green’ indicates 20 min, ‘cyan’ indicates 60 min and ‘purple’ indicates
120 min of BCR stimulation in transcriptome data set.
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Figure S5, C. Signaling axes downstream of SYK. Number of target genes matching to downregulated
transcripts per signaling pathway. For each pathway the biopax version, internal pathway IDs and pathway
names are given. ‘Red’ color indicates 10 min, ‘green’ indicates 20 min, ‘cyan’ indicates 60 min and ‘purple’
indicates 120 min of BCR stimulation in transcriptome data set.
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Figure S6, A. Exemplary correlation trajectories of PAG1. Shown are correlations of PAG1 phosphosites
with downstream transcripts NR4A1, DDIT3, TNF, IER3 and CD69. Individual sites are annotated,
including indication of single ( M1) or multiple phosphorylation events ( Mx). Plotting symbols denote
different BCR stimulation durations used for correlation analysis: a filled circle indicates 2 min of BCR
stimulation of phosphoproteome data and 10 min of BCR stimulation duration in transcriptome data. A
filled square, a filled triangle and a filled diamond indicate 5 and 10 min of BCR stimulation, 10 and 60
min of BCR stimulation and 20 and 120 min of BCR stimulation of phosphoproteome and transcriptome,
respectively.
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Figure S6, B. Exemplary correlation trajectories of PAG1. Shown are correlations of PAG1 phosphosites
with downstream transcripts BTG2, NFKBIA, SNAI1, ZC3H12A, CD83 and JUN. Individual sites are
annotated, including indication of single ( M1) or multiple phosphorylation events ( Mx). Plotting symbols
denote different BCR stimulation durations used for correlation analysis: a filled circle indicates 2 min of
BCR stimulation of phosphoproteome data and 10 min of BCR stimulation duration in transcriptome data.
A filled square, a filled triangle and a filled diamond indicate 5 and 10 min of BCR stimulation, 10 and 60
min of BCR stimulation and 20 and 120 min of BCR stimulation of phosphoproteome and transcriptome,
respectively.



 7 Appendix

0 2 4 6

−
1.

0
0.

0
1.

0

ZFP36

FC downstream transcript

lo
g2

 r
at

io
 P

A
G

1

●

●

PAG1_Y417_M1
PAG1_Y181_M1

0 2 4 6

−
1.

0
0.

0
1.

0

RHOB

FC downstream transcript
lo

g2
 r

at
io

 P
A

G
1

●

●

PAG1_Y417_M1
PAG1_Y181_M1

0 2 4 6

−
1.

0
0.

0
1.

0

FOS

FC downstream transcript

lo
g2

 r
at

io
 P

A
G

1

●

●

PAG1_Y417_M1
PAG1_Y181_M1

0 2 4 6

−
1.

0
0.

0
1.

0
HSPA1A

FC downstream transcript

lo
g2

 r
at

io
 P

A
G

1

●

●

PAG1_Y417_M1
PAG1_Y181_M1

0 2 4 6

−
1.

0
0.

0
1.

0

EGR1

FC downstream transcript

lo
g2

 r
at

io
 P

A
G

1

●

●

PAG1_Y417_M1
PAG1_Y181_M1

0 2 4 6

−
1.

0
0.

0
1.

0

UBC

FC downstream transcript

lo
g2

 r
at

io
 P

A
G

1

●

●

PAG1_Y417_M1
PAG1_Y181_M1

Figure S6, C. Exemplary correlation trajectories of PAG1. Shown are correlations of PAG1 phosphosites
with downstream transcripts ZFP36, RHOB, FOS, HSPA1A, EGR1 and UBC. Individual sites are annotated,
including indication of single ( M1) or multiple phosphorylation events ( Mx). Plotting symbols denote
different BCR stimulation durations used for correlation analysis: a filled circle indicates 2 min of BCR
stimulation of phosphoproteome data and 10 min of BCR stimulation duration in transcriptome data. A
filled square, a filled triangle and a filled diamond indicate 5 and 10 min of BCR stimulation, 10 and 60
min of BCR stimulation and 20 and 120 min of BCR stimulation of phosphoproteome and transcriptome,
respectively.
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Figure S6, D. Exemplary correlation trajectories of PAG1. Shown are correlations of PAG1 phosphosites
with downstream transcripts MCL1, HBEGF, TNFSF9, ADM, ADORA2A and NAB2. Individual sites are
annotated, including indication of single ( M1) or multiple phosphorylation events ( Mx). Plotting symbols
denote different BCR stimulation durations used for correlation analysis: a filled circle indicates 2 min of
BCR stimulation of phosphoproteome data and 10 min of BCR stimulation duration in transcriptome data.
A filled square, a filled triangle and a filled diamond indicate 5 and 10 min of BCR stimulation, 10 and 60
min of BCR stimulation and 20 and 120 min of BCR stimulation of phosphoproteome and transcriptome,
respectively.
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Figure S6, E. Exemplary correlation trajectories of PAG1. Shown are correlations of PAG1 phosphosites
with downstream transcripts EGR3, IER2, CCL4, NR4A3, PTGER4 and TSC22D3. Individual sites are
annotated, including indication of single ( M1) or multiple phosphorylation events ( Mx). Plotting symbols
denote different BCR stimulation durations used for correlation analysis: a filled circle indicates 2 min of
BCR stimulation of phosphoproteome data and 10 min of BCR stimulation duration in transcriptome data.
A filled square, a filled triangle and a filled diamond indicate 5 and 10 min of BCR stimulation, 10 and 60
min of BCR stimulation and 20 and 120 min of BCR stimulation of phosphoproteome and transcriptome,
respectively.
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Figure S6, F. Exemplary correlation trajectories of PAG1. Shown are correlations of PAG1 phosphosites
with downstream transcripts NR4A2, DUSP1, SGK1, JUNB, EGR2 and TXNIP. Individual sites are
annotated, including indication of single ( M1) or multiple phosphorylation events ( Mx). Plotting symbols
denote different BCR stimulation durations used for correlation analysis: a filled circle indicates 2 min of
BCR stimulation of phosphoproteome data and 10 min of BCR stimulation duration in transcriptome data.
A filled square, a filled triangle and a filled diamond indicate 5 and 10 min of BCR stimulation, 10 and 60
min of BCR stimulation and 20 and 120 min of BCR stimulation of phosphoproteome and transcriptome,
respectively.
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Figure S6, G. Exemplary correlation trajectories of PAG1. Shown are correlations of PAG1 phosphosites
with downstream transcripts PIM1, KLF2, MIR17HG, FOSB and BCL2A1. Individual sites are annotated,
including indication of single ( M1) or multiple phosphorylation events ( Mx). Plotting symbols denote
different BCR stimulation durations used for correlation analysis: a filled circle indicates 2 min of BCR
stimulation of phosphoproteome data and 10 min of BCR stimulation duration in transcriptome data. A
filled square, a filled triangle and a filled diamond indicate 5 and 10 min of BCR stimulation, 10 and 60
min of BCR stimulation and 20 and 120 min of BCR stimulation of phosphoproteome and transcriptome,
respectively.
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Figure S6, H. Exemplary correlation trajectories of PLCG2. Shown are correlations of PLCG2 phosphosites
with downstream transcripts FOS, EGR3, IER2, CCL4 and NR4A3. Individual sites are annotated, including
indication of single ( M1) or multiple phosphorylation events ( Mx). Plotting symbols denote different BCR
stimulation durations used for correlation analysis: a filled circle indicates 2 min of BCR stimulation of
phosphoproteome data and 10 min of BCR stimulation duration in transcriptome data. A filled square,
a filled triangle and a filled diamond indicate 5 and 10 min of BCR stimulation, 10 and 60 min of BCR
stimulation and 20 and 120 min of BCR stimulation of phosphoproteome and transcriptome, respectively.
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Figure S6, I. Exemplary correlation trajectories of PLCG2. Shown are correlations of PLCG2 phosphosites
with downstream transcripts PTGER4, TSC22D3 and NR4A2. Individual sites are annotated, including
indication of single ( M1) or multiple phosphorylation events ( Mx). Plotting symbols denote different BCR
stimulation durations used for correlation analysis: a filled circle indicates 2 min of BCR stimulation of
phosphoproteome data and 10 min of BCR stimulation duration in transcriptome data. A filled square,
a filled triangle and a filled diamond indicate 5 and 10 min of BCR stimulation, 10 and 60 min of BCR
stimulation and 20 and 120 min of BCR stimulation of phosphoproteome and transcriptome, respectively.
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Figure S6, J. Exemplary correlation trajectories of PTPN6. Shown are correlations of PTPN6 phosphosites
with downstream transcripts FOS, EGR2, EGR1, EGR3 and MCL1. Individual sites are annotated, including
indication of single ( M1) or multiple phosphorylation events ( Mx). Plotting symbols denote different BCR
stimulation durations used for correlation analysis: a filled circle indicates 2 min of BCR stimulation of
phosphoproteome data and 10 min of BCR stimulation duration in transcriptome data. A filled square,
a filled triangle and a filled diamond indicate 5 and 10 min of BCR stimulation, 10 and 60 min of BCR
stimulation and 20 and 120 min of BCR stimulation of phosphoproteome and transcriptome, respectively.
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Figure S6, K. Exemplary correlation trajectories of PTPN6. Shown are correlations of PTPN6 phosphosites
with downstream transcripts ZC3H12A, NR4A1, DDIT3 and PIM1. Individual sites are annotated, including
indication of single ( M1) or multiple phosphorylation events ( Mx). Plotting symbols denote different BCR
stimulation durations used for correlation analysis: a filled circle indicates 2 min of BCR stimulation of
phosphoproteome data and 10 min of BCR stimulation duration in transcriptome data. A filled square,
a filled triangle and a filled diamond indicate 5 and 10 min of BCR stimulation, 10 and 60 min of BCR
stimulation and 20 and 120 min of BCR stimulation of phosphoproteome and transcriptome, respectively.





transcript FC 10 min FC 20 min FC 60 min FC 120 min pval 10 min pval 20 min pval 60 min pval 120 min

IER2 0.898877 0.77991 0.56392 0.429895 0 0 0 0
DUSP2 1.44534 0.939853 0.688184 0.51372 0 0 0 0
EGR1 4.61662 2.87565 1.79698 1.38 0 0 0 0
FOS 3.97273 2.64775 1.54659 1.10914 0 0 0 0
ZFP36 0.925194 0.605675 0.513937 0.37069 0 0 0 0
DNAJB1 1.71619 0.269482 0.191192 0.115444 0 0.000175681 0.0190433 0.0429147
HSPA6 5.11522 0.0307162 0.0519797 0.0890261 0 1 1 1
HSPA1A 2.02843 0.0861656 0.118637 0.0711855 0 1 1 1
HSPA1B 1.92289 0.073793 0.11578 0.0716291 0 1 1 1
EGR2 2.99214 2.65119 1.78136 1.31823 0 0 0 0
DUSP1 1.08208 0.467116 0.3528 0.216036 0 5.76087e-10 8.42387e-08 2.59081e-06
JUNB 0.814865 0.522757 0.360846 0.246827 1.777e-13 0 3.135e-11 4.86337e-11
FOSB 1.93343 2.06105 1.31529 0.870958 8.09986e-10 0 0 0
JUN 0.758139 0.116225 0.10874 0.067803 1.11433e-08 1 1 1
BTG2 0.628427 0.52281 0.317804 0.210104 1.98188e-07 0 1.608e-08 6.22389e-09
IER5 0.625487 0.193644 0.119639 0.0706648 1.23749e-06 0.0926485 1 1
TNF 2.51687 2.16818 1.2023 0.888341 1.27205e-06 0 0 0
CHAC1 0.674111 0.297348 0.27795 0.224405 1.27205e-06 0.000203632 1.54549e-05 7.07964e-09
PPP1R15A 0.593314 0.343875 0.343117 0.231689 2.52977e-06 4.62114e-08 5.3425e-10 6.0353e-11
HSPA7 4.30952 -0.346937 -0.224317 -0.166723 4.27544e-06 1 1 1
NR4A1 1.39024 1.71702 1.34756 0.996219 2.52209e-05 0 0 0
MIR17HG 1.1053 0.378228 0.187848 0.17612 3.12949e-05 0.00772546 0.320875 0.0456173
TXNIP 0.542619 -0.105036 -0.270113 -0.250803 4.81715e-05 1 1.06866e-05 1.1524e-12
EGR3 2.55122 2.89461 2.03173 1.51508 0.000167522 0 0 0
CD69 0.912548 1.04559 0.477789 0.375597 0.000288893 0 0 0
IER3 0.938795 0.59316 0.285875 0.26671 0.000415033 6.42588e-08 0.0258843 1.24141e-05
CCL4L1 2.05041 2.38899 1.7281 1.38554 0.000670149 0 0 0
ZFP36L1 0.475482 0.368497 0.384052 0.253746 0.0010698 1.60213e-09 8.54117e-13 2.67522e-13
CCL4L2 2.26746 2.0456 1.59999 1.34184 0.0010698 2.35029e-11 0 0
CCL3L1 0.924158 1.49624 1.20157 0.964506 0.0179711 0 0 0
UBC 0.392394 0.17699 0.148842 0.107556 0.0266059 0.12939 0.315449 0.0836633
MCL1 0.394966 0.391784 0.257066 0.156282 0.0279714 2.49597e-11 2.54994e-05 0.000135787
IER5L 0.769104 0.497417 0.39815 0.293665 0.0315334 0.000710678 1.5555e-06 7.56668e-06
TOB1 0.435011 0.268778 0.205271 0.153283 0.0315477 0.00092251 0.0122771 0.000909436
EGR4 1.4726 1.83762 1.51255 1.1192 0.0385073 0 0 0
CCL3 0.567912 1.42124 1.15321 0.933006 1 0 0 0
CCL3L3 0.87778 1.53734 1.25659 1.04811 0.136349 0 0 0
DUSP5 0.309166 0.751598 0.563627 0.449869 1 1.12454e-13 0 0
SGK1 0.536627 0.619831 0.450235 0.341725 0.354302 6.40987e-13 2.69759e-10 2.14018e-12
SIK1 0.238515 0.434018 0.231935 0.168373 1 5.02571e-11 0.00163092 0.000159121
ZC3H12A 0.157208 0.420883 0.239586 0.181997 1 2.27337e-09 0.00148142 0.000376916
CD83 0.0743205 0.401075 0.266585 0.228204 1 1.57978e-06 0.00754083 7.90662e-10
NR4A3 -0.00544226 1.15378 1.68301 1.31272 1 1.88483e-05 0 0
SERTAD1 0.203868 0.338169 0.231264 0.17695 1 0.000100254 0.00595974 0.000322009
RGS16 0.330978 0.292666 0.210072 0.133905 0.807781 0.000100323 0.00742463 0.00924937
CSRNP1 0.0778398 0.31181 0.379539 0.299893 1 0.00012462 1.47149e-10 0
IL8 0.275687 0.480222 0.388541 0.224814 1 0.000463558 4.39811e-05 0.00615824
HBEGF 0.329401 0.528039 0.390946 0.379289 1 0.000896118 1.63983e-08 0
CXCR5 0.064964 0.323173 0.187827 0.19024 1 0.00126797 1 0.0086598
PPP1R10 0.0790118 0.251378 0.171453 0.0874702 1 0.00190574 0.109988 0.654776
MYADM 0.0743141 0.300749 0.115954 0.124214 1 0.00205196 1 0.360549
SNAI1 0.226339 0.323897 0.210034 0.149621 1 0.00214554 0.0685462 0.0283572
TSC22D3 0.223783 0.25113 0.209838 0.117673 1 0.00221987 0.00651308 0.0524958
TNFSF9 0.244224 0.396563 0.302602 0.261929 1 0.00230716 3.75129e-05 4.34489e-06
RGS1 0.214969 0.260546 0.390184 0.250579 1 0.00263407 5.59243e-12 2.29305e-11
ZNF547 0.181317 0.412882 0.138806 0.143287 1 0.00354656 1 0.414741
ICAM4 0.388421 0.867151 0.326737 0.339863 1 0.00488034 0.826387 0.232101
NFKBIA 0.24957 0.221316 0.126744 0.0702029 1 0.00708412 1 1
CCL4 1.1601 2.25967 1.31439 1.335 1 0.0086615 0.0432062 0.000288599
NRARP 0.338102 0.301058 0.230631 0.199815 1 0.0123162 0.0192497 0.000560227
KCNJ2 0.0519212 0.876718 0.657892 0.456855 1 0.0132692 0.00162858 0.00315792
ZNF124 0.284766 0.288163 0.14227 0.111868 1 0.0170912 1 0.459707
SPRY2 0.281906 0.277646 0.341832 0.247883 1 0.0181058 4.72061e-07 2.87123e-08
RND1 0.219337 0.247913 0.212622 0.160778 1 0.0244133 0.0166918 0.00153999
TMEM88 0.325295 1.00165 0.555419 0.472756 1 0.0289874 0.0131198 0.0190766
PTGER4 0.154874 0.267611 0.326834 0.305588 1 0.0306995 2.04945e-06 4.28035e-13
UGCG 0.254038 0.317009 0.0760837 0.118064 1 0.0348147 1 0.347963
DDIT4 0.259479 0.0504784 0.325925 0.257938 1 1 4.76113e-09 9.30512e-14
NFKBID 0.176451 0.39693 0.36376 0.298222 1 0.0687118 2.34912e-07 0.000210738
KBTBD8 0.171403 0.208504 0.295293 0.210311 1 0.0575247 1.17252e-06 6.05144e-08
DDIT3 0.00843464 0.114505 0.280935 0.208262 1 1 5.14104e-06 4.79955e-08
BHLHE40 0.23153 0.251245 0.312059 0.268738 1 0.0614772 5.93692e-06 1.4781e-10
LOC284454 0.0346837 0.738084 0.543331 0.452365 1 0.557436 1.47303e-05 0.000455611
MAFF 0.125756 0.336047 0.378709 0.291694 1 0.240532 5.20475e-05 3.35079e-06
GEM 0.254578 0.303712 0.344643 0.240525 1 0.225907 0.000114127 0.000116145
KDM6B 0.121974 0.190032 0.238244 0.187004 1 0.0872722 0.000260815 7.67399e-05
NR4A2 0.587349 0.764722 0.663135 0.709053 1 0.258929 0.00511642 3.08752e-07
KLF10 0.204841 0.051959 0.216179 0.170003 1 1 0.00548948 9.09888e-05
DLX2 -0.0445832 0.428411 0.412269 0.273898 1 0.518874 0.0122771 0.0282669
RASGEF1B 0.258688 0.22648 0.295403 0.122199 1 1 0.0126346 1
RHOB 0.660251 0.519637 0.410082 0.284112 1 0.126685 0.018907 0.0509604
LOC100270804 0.0246037 -0.202219 -0.39149 -0.0626732 1 1 0.0350282 1
NAB2 -0.0549711 -0.0340899 0.198013 0.402793 1 1 0.0768889 0
SRGN 0.0562056 0.25569 0.159058 0.17678 1 0.0547523 0.280674 2.58658e-05
HVCN1 -0.0666527 0.171103 0.152464 0.172623 1 0.471036 0.384898 4.95841e-05
EFNA2 0.985101 0.754158 0.627064 0.661192 1 0.939154 0.0709778 0.000103733
LOC100302650 -0.039493 0.490527 0.430506 0.469478 1 1 0.196009 0.000329886
SEMA7A -0.255297 0.141834 0.349018 0.380536 1 1 0.190073 0.000547502
ADM 0.586198 0.153728 0.231286 0.302101 1 1 0.338612 0.00127502
PRRG4 0.268596 0.264592 0.225374 0.218519 1 0.707693 0.21935 0.00130399
BCL2A1 -0.0641556 0.175936 0.22193 0.217221 1 1 0.227679 0.00145361
KLF2 0.594434 0.487803 0.382199 0.327254 1 0.0926485 0.0518502 0.00204494
PIM1 0.2376 -0.0704204 -0.157896 -0.142479 1 1 0.298709 0.00350623
LRRC32 -0.347494 -0.0890668 0.0637566 0.262294 1 1 1 0.00528206
RGS2 0.384135 0.13077 0.16667 0.132901 0.0707673 1 0.124289 0.00615824
MIDN 0.159223 0.180665 0.155017 0.132151 1 0.16551 0.273975 0.00650499
EVI2A 0.122465 0.215062 0.115075 0.132207 1 0.497578 1 0.0086598
RILPL2 0.0526796 0.0512769 0.184432 0.139406 1 1 0.0741345 0.0088366
KIAA1683 1.00122 0.879236 0.500903 0.576837 1 0.741506 1 0.0097694
ADORA2A -0.0547623 0.0874963 0.13503 0.145984 1 1 0.833818 0.0229761
C14orf43 0.209615 0.136761 0.152389 0.119367 1 1 0.283218 0.0272863
C18orf1 0.0842281 0.214164 0.148843 0.1305 1 0.0926485 0.833818 0.0272863
KLHL21 0.0318724 -0.0547449 -0.15429 -0.123129 1 1 0.317873 0.0278579
LOC100507489 1.21098 1.30996 0.998263 0.932946 1 1 0.375295 0.0407371
EVI2B 0.122289 0.17445 0.109703 0.11876 1 0.274631 1 0.0429147

Table S1. Significantly regulated transcripts. Fold changes (FC) and Benjamini-Hochberg adjusted p-values
(pval) are given.



 7 Appendix

Biocarta KEGG PID Reactome

Downstream analysis

2 min BCR stimulation x x x
5 min BCR stimulation x x x
10 min BCR stimulation x x x
20 min BCR stimulation x x x

Upstream analysis

10 min BCR stimulation x x
20 min BCR stimulation x x
60 min BCR stimulation x x
120 min BCR stimulation x x

Table S2. BCR signaling related ’upstream’ and ’downstream pathways’ identified in integrative analysis.
Pathways identified in the layer-specific pathway-based integration approach based on mapping with pathway
databases Biocarta (Nishimura, 2001), KEGG (Kanehisa et al., 2014), Pathway Interaction Database
(Schaefer et al., 2009) and Reactome (Fabregat et al., 2016).



References

Altenbach, S. B., Vensel, W. H., and DuPont, F. M. (2010). Integration of transcriptomic

and proteomic data from a single wheat cultivar provides new tools for understanding the

roles of individual alpha gliadin proteins in flour quality and celiac disease. Journal of

Cereal Science, 52(2):143–151.

Bahar Halpern, K., Caspi, I., Lemze, D., Levy, M., Landen, S., Elinav, E., Ulitsky, I., and

Itzkovitz, S. (2015). Nuclear Retention of mRNA in Mammalian Tissues. Cell Reports,

13(12):2653–2662.

Balbin, O. A., Prensner, J. R., Sahu, A., Yocum, A., Shankar, S., Malik, R., Fermin, D.,

Dhanasekaran, S. M., Chandler, B., Thomas, D., Beer, D. G., Cao, X., Nesvizhskii, A. I.,

and Chinnaiyan, A. M. (2013). Reconstructing targetable pathways in lung cancer by

integrating diverse omics data. Nature Communications, 4:2617.

Bar-Joseph, Z., Gitter, A., and Simon, I. (2012). Studying and modelling dynamic biological

processes using time-series gene expression data. Nature Reviews Genetics, 13(8):552–564.
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Torres-Garćıa, W., Brown, S. D., Johnson, R. H., Zhang, W., Runger, G. C., and Meldrum,

D. R. (2011). Integrative analysis of transcriptomic and proteomic data of Shewanella

oneidensis: missing value imputation using temporal datasets. Molecular bioSystems,

7(4):1093–1104.
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