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Abstract 

The Transforming Growth Factor-β (TGFβ)/SMAD signaling pathway can function as 

either a tumor suppressor or metastasis promoter during tumor progression. In normal 

epithelial cells and early stages of epithelial tumorigenesis TGFβ functions as a tumor 

suppressor to decrease cell proliferation or induce apoptosis. However, during 

malignant progression tumor cells no longer respond to the anti-proliferative effects of 

TGFβ, but instead undergo an epithelial-to-mesenchymal transition (EMT) whereby 

cells acquire a migratory and invasive phenotype which promotes tumor metastasis. 

Resolution of the dichotomy in TGFβ function and a further understanding of its tumor 

suppressor and metastasis promoting functions may uncover new strategies for the 

treatment of epithelial cancers. Previous studies have demonstrated an important role 

of the TGFβ-Inducible Early Gene-1 (TIEG1)/Krüppel-like Factor-10 (KLF10) as a 

central regulator of TGFβ/SMAD signaling and the anti-proliferative functions of TGFβ. 

In this study we examined the role of KLF10 in controlling the TGFβ-induced EMT and 

show that depletion of KLF10 results in a more pronounced induction of EMT. 

Moreover, chromatin immunoprecipitation (ChIP) and chromatin immunoprecipitation-

sequencing (ChIP-seq) analysis shows that KLF10 directly binds to GC-rich 

sequences in the promoter region of the EMT-promoting transcription factor 

SLUG/SNAI2 to repress its transcription. Consistent with these findings, an analysis 

of KLF10 in lung cancer revealed that KLF10 levels are decreased in lung cancer vs. 

normal samples. Furthermore, in vivo study revealed a significantly increased tumor 

incidence and tumor size in Klf10-/- mice compared to the wild type mice. Additional 

ChIP studies showed that KLF10 recruits HDAC1 to the SNAI2 promoter and is 

required for the removal of activating histone acetylation marks. These findings reveal 

a previously unknown function of KLF10 in suppressing TGFβ-induced EMT and 
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represent a significant advancement in the understanding the molecular dichotomy of 

TGFβ function during tumor progression. 

In a more global approach, we have utilized a dual LSD1/HDAC inhibitor 4SC-202 to 

study the effect on tumor cell phenotype. We have shown that combined inhibition of 

LSD1 and HDACs significantly block the TGFβ-induced EMT. Immunohistochemical 

staining of LSD1 in pancreatic cancer samples revealed that LSD1 is highly expressed 

in a subset of tumors. Consistent with this finding, in our xenograft study we have 

shown that 4SC-202 significantly decreases the tumor size. Together these findings 

revealed the potential role of small molecule inhibitors against epigenetic modifiers in 

targeted anticancer therapy.
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1. Introduction 

Cancer is considered to be a disease of accumulation of genetic abnormalities like 

mutation, amplification, deletion or translocation. At the cellular level, the process of 

conversion of a normal cell to a cancer cell (tumor initiation) starts with the 

accumulation of genetic alterations in systems that regulate the cell behavior. This 

allows a single normal cell to break open the barrier of controlled cell division and start 

proliferating abnormally in an uncontrolled manner (Hanahan and Weinberg, 2011). 

Furthermore, these abnormalities help cancer cells to survive and proliferate in the 

local microenvironment in the initial stage and help them to metastasize in the later 

stage. During the course of progression from a pre-malignant to a metastatic tumor 

the gene expression pattern plays an important role, which includes the expression of 

a specific subset of genes and the repression of others. Epigenetic has emerged as a 

central player in the regulation of gene expression. In the recent past, various studies 

have uncovered the underlying epigenetic changes involved in cancer development 

and progression. Therefore, cancer is no longer considered as a disease of only 

genetic mutations but rather a disease of genetic and epigenetic abnormalities (Baylin 

and Jones, 2011; Esteller, 2007; Sandoval and Esteller, 2012). Moreover, it is believed 

that the aberrations in epigenetic regulators and genetic mutations cooperatively fuel 

tumor development and progression (Hitchins et al., 2011; Schepers and Clevers, 

2012; Sharma et al., 2010). 

1.1 Chromatin structure 

The literal meaning of ‘epigenetics’ is ‘outside genetics’. However, the term 

epigenetics is used to describe the heritable change in the cellular phenotype that 

occurs without any change in the genome (Berger et al., 2009). In eukaryotic cells, 

chromatin is composed of DNA, RNA and proteins. Within the nucleus, DNA is 
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wrapped around an octamer of the four core histone proteins forming a structure called 

the nucleosome, the basic unit of chromatin structure (Kornberg, 1974). Each 

nucleosome contains approximately 147 base pairs of DNA and two each of the 

histones H2A, H2B, H3 and H4 (Fig.1) (Dawson and Kouzarides, 2012; Kouzarides, 

2007). Additionally, histone H1 binds to the DNA wrapped around the nucleosome and 

linker DNA between two nucleosomes and helps in maintaining the chromatin 

structure (Laybourn and Kadonaga, 1991). Histones are basic proteins that contain a 

globular domain and a charged amino terminal “tail” that protrudes out from the 

nucleosome (Kornberg, 1974; Luger et al., 1997). Histone tails are prone to undergo 

post-translational modifications at specific amino acid residues that lead to alteration 

in chromatin structure (Campos and Reinberg, 2009). 

 

 

 

 

 

 

 

 

 

 

Figure 1: Structure of nucleosome. The nucleosome is a basic structure of chromatin. Each nucleosome is 

composed of an octamer of histones H2A, H2B, H3 and H4 (each of the histones are present as dimer). 

Approximately 147 base pairs DNA are wrapped around the histone octamer. In addition, histone H1 holds the 

end of the nucleosomal DNA and also holds together two nucleosomes thus, helps to maintain the chromatin 

structure. Dynamic post-translational histone modifications take place at the tail regions of the histones. 
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Based on the degree of compaction and ease of accessibility, chromatin has been 

divided into two major forms: “heterochromatin” is the highly condensed state of the 

chromatin and considered to contain the transcriptionally inactive region of the 

genome, whereas “euchromatin” is the more open and easily accessible form and 

comprises the more actively transcribed parts of the genome (Fig.2). Euchromatin is 

associated with key cellular processes like replication and transcription that require 

direct access to the DNA. In contrast, heterochromatin regions are repetitive elements 

and primarily contain inactive genes (Cheung and Lau, 2005; Li, 2002; Weintraub and 

Groudine, 1976). 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematics showing euchromatin and heterochromatin. (A) Euchromatin is an open state of 

chromatin which is easily accessible to the binding partners like transcription factors. It is mainly associated with 

actively transcribed region of the genome. (B) Heterochromatin is a highly condensed state of chromatin and is 

considered to be the transcriptionally inactive part of the genome. It contains repetitive elements that are 

associated with centromere and telomere. 
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1.1.1 Histone modifications 

A variety of post-translational epigenetic modifications occur at the level of DNA and 

histone proteins, thereby altering chromatin structure and modulating gene expression 

by controlling the accessibility of DNA to transcription factors or by directly recruiting 

transcriptional co-factors. Post-translational histone modifications include methylation, 

acetylation, phosphorylation, ubiquitination and sumoylation and are carried out in a 

highly specific manner by chromatin-modifying enzymes (Fig.3). Many of these histone 

modifications take place on the N- and C-terminals of the tail of histone proteins which 

are protruding from the nucleosome. The enzymes responsible for carrying out histone 

modifications are highly specific and act on defined amino acid residues. 

Depending on the signaling conditions in the cell, different types or combinations of 

these modifications are present on different genes and provide a plethora of possible 

combinations of chromatin modifications. The combinations of modifications or 

“histone code” can lead to the suppression (gene silencing) or expression (gene 

activation) of particular genes and thereby determine cell fate, for example, by 

directing cell proliferation and differentiation. The “histone code” hypothesis predicts 

that the pattern of histone modifications present on the histone tails forms a code that 

can be “read” by proteins or protein complexes that then positively or negatively direct 

DNA-associated processes such as transcription, co-transcriptional RNA processing, 

DNA replication and DNA repair (Feinberg and Tycko, 2004; Jenuwein and Allis, 

2001). Post-translational histone modifications are dynamic and reversible in nature, 

allowing a high level of epigenetic plasticity in response to extrinsic and intrinsic 

stimuli. Whereas some of these modifications appear to be exclusively associated with 

active genes and others with inactive genes, some exceptions have been found. 
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For example, the so-called “bivalent domains” are genomic regions frequently located 

near the promoters of selected developmental genes in embryonic stem cells. These 

genes exhibit both activating (H3K4me3) and repressive (H3K27me3) histone 

modifications on the same gene at the same time (Bannister et al., 2002; Bernstein et 

al., 2006; Rice and Allis, 2001; Strahl and Allis, 2000; Zhang and Reinberg, 2001). 

 

Figure 3: Schematics of different post-translational histone modifications. Different types of histone 

modifications take place at the NH2- and COOH- terminal end of the histone tail. These include acetylation, 

methylation, ubiquitination, phosphorylation and sumoylation. Histone modifications are carried out by 

epigenetic regulators in a very specific manner at certain amino residues on the histone tails. Some of the most 

well studied ones are shown here.  
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1.1.2 Epigenetic regulators and their interplay 

In a multicellular organism different cell types have different functions, which is mainly 

attributed to a defined and specific subset of genes that they express. Dynamic 

covalent modifications of nucleosomal DNA and histones by epigenetic regulators lead 

to changes in chromatin architecture and remodelling in a way that allows the cell 

specific gene expression and silencing. Moreover, these epigenetic regulators either 

act alone or get recruited in a large complexes to modify the chromatin structure and 

regulate its accessibility to the transcriptional machinery (Hayes, 2002; Horn and 

Peterson, 2002; Narlikar et al., 2002).  

Epigenetic regulators can be broadly classified into four types: “epigenetic writers” are 

the enzymes responsible for modifying histone substrates by adding chemical marks 

such as methyl or acetyl groups (e.g., histone lysine and arginine methyltransferases, 

histone acetyltransferases); “epigenetic readers” are the proteins that recognize 

specific modifications or combinations of modifications that have been placed on the 

histone proteins (e.g., bromo- and chromodomain-containing proteins); “epigenetic 

erasers” are the enzymes that catalyse the removal of the histone modifications (e.g., 

histone deacetylases and histone demethylases); and finally, chromatin remodelling 

enzymes and histone chaperones physically alter chromatin structure by moving, 

removing, adding, or replacing nucleosomes or specific histones within the chromatin 

(Kouzarides, 2007; Lee et al., 2010; Strahl and Allis, 2000; Taverna et al., 2007; Wilson 

and Roberts, 2011). Thus, the modulation of the expression or activity of any of these 

classes of epigenetic regulators can have wide-ranging effects on the cellular 

transcriptional profile and might thereby impact  cell fate determination and important 

tumor relevant processes such as proliferation and EMT. 
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1.2 Epithelial-to-mesenchymal transition 

Tumor metastasis requires a cascade of biological processes that enables cancer cells 

to move from the primary tumor site to distant organs, to become acclimatized to the 

foreign tissue microenvironment and to begin to proliferate again, thus giving rise to 

secondary tumor. Metastasis occurs through a cascade of steps that involves 

dissemination form primary tumor, primary invasion, intravasation, survival during 

circulation, extravasation, formation of micrometastasis and finally colonization to form 

macrometastasis (Fidler, 2003a; Mishra and Johnsen, 2014; Scheel and Weinberg, 

2012; Valastyan and Weinberg, 2011). 

Epithelial-to-mesenchymal transition (EMT) is a phenomenon including changes in the 

cellular phenotype allowing epithelial cells to convert into mesenchymal cells (Fig.4). 

During EMT, epithelial cells lose their characteristic features like polarity and cell-cell 

adhesion through the dissolution of tight junction (claudins and occludins) and 

adherens junction (E-cadherin and cytokeratins) and, in contrast display increased 

expression of mesenchymal markers (e.g., N-cadherin, Vimentin, Fibronectin, and 

alpha-smooth muscle actin) and become migratory and invasive (Kang and 

Massagué, 2004; Scheel and Weinberg, 2012; Sleeman et al., 2012; Tiwari et al., 

2012). 

EMT is an evolutionary conserved process that plays an important role in normal 

embryonic development (e.g., EMT is indispensable during gastrulation and neural 

crest formation) during which cells need to migrate over long distances in order to give 

rise to various adult tissues and organs (Nieto, 2013). Once the embryonic cells have 

migrated to their final destination, they frequently undergo a reverse process of EMT 

known as the mesenchymal-to-epithelial transition (MET), which facilitates their 

differentiation into multiple cell lineages (Craene and Berx, 2013). Similarly, 
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disseminated tumor cells (DTCs) frequently revert to an epithelial phenotype by 

undergoing MET in order to colonize at distant metastatic sites and to give rise to 

secondary tumors.  

A stringent balance between EMT and MET is essential for maintaining tissue 

homeostasis. The ability of cells to switch between epithelial and mesenchymal 

phenotypes is called cellular plasticity and is also an important characteristic of 

aggressive metastatic cancer cells (Hugo et al., 2007; Polyak and Weinberg, 2009). 

 

Figure 4: The process of EMT. EMT involves a dynamic change in the cellular phenotype and conversion from 

epithelial to mesenchymal type. The expression of epithelial markers like E-cadherin, cytokeratin are 

downregulated and mesenchymal markers like N-cadherin, Vimentin are upregulated. During the transition, 

there is an intermediate phase where cells express moderate levels of both epithelial as well as mesenchymal 

markers (Modified from (Mishra and Johnsen, 2014). 
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1.2.1 Master regulators of EMT 

Certain key transcription factors orchestrate the induction of EMT during normal 

embryonic development and cancer progression and also act, at least in part, as 

transcriptional repressors of E-cadherin (CDH1) gene expression. Loss of E-cadherin 

is considered to be the fundamental event in EMT during normal development and 

cancer progression, its expression being down-regulated in advanced stage tumors. 

Many different extracellular signals have been shown to induce EMT including 

fibroblast growth factor, transforming growth factor-β (TGFβ), Notch and Wnt signaling 

(Bailey et al., 2007; Shipitsin et al., 2007; Vincan and Barker, 2008; Vogelstein and 

Kinzler, 2004; Wang et al., 2006; Yang and Weinberg, 2008a). Most of these 

extracellular factors carry out their action by regulating the transcription factors that 

repress epithelial genes such as CDH1 and promote the transcription of genes that 

impart cells an invasive phenotype (Peinado et al., 2004a, 2007; Thiery and Sleeman, 

2006).  

Transcription factors involved in orchestrating EMT (EMT-TFs) include SNAIL1 

(SNAI1), SLUG (SNAI2), ZEB1 (TCF8), ZEB2 (SIP1) and the basic helix-loop-helix 

factors (bHLH) E47 (TCF3) and TWIST1 (Craene and Berx, 2013; Moreno-Bueno et 

al., 2008; Peinado et al., 2007; Thiery and Sleeman, 2006). SNAIL1 suppresses the 

transcription of the CDH1 gene by binding to E-boxes present in the promoter region 

of the gene where it recruits co-repressors to down-regulate its expression and 

promote EMT (Batlle et al., 2000; Cano et al., 2000). ZEB1 and ZEB2 has also been 

shown to directly bind to the CDH1 promoter to inhibit its transcription, thereby 

decreasing E-cadherin expression (Comijn et al., 2001; Eger et al., 2005). The bHLH 

protein E47 has also been shown to repress the E-cadherin expression by directly 

binding to the CDH1 promoter (Pérez-Moreno et al., 2001). Similarly, Twist1 also 
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decreases E-cadherin expression and cooperates with the epigenetic regulator and 

stem cell marker BMI1 (Vesuna et al., 2008; Yang et al., 2010). Thus, these EMT-TFs 

all repress the epithelial phenotype and promote a mesenchymal phenotype by 

regulating the expression of central genes (e.g., CDH1) involved in EMT to promote 

changes in cell morphology, cell adhesion, proliferation, cell survival, migration and 

invasion. 

1.2.2 Mesenchymal-to-epithelial transition in tumor metastasis 

Recent reports have highlighted the necessity for disseminated tumor cells to revert 

to epithelial phenotype in order to successfully establish macrometastasis at distant 

sites (Peinado et al., 2011; Zheng and Kang, 2014). It is believed that tumor cells at 

the metastatic site revert back to epithelial phenotype that allows them to proliferate 

and populate the secondary tumor by undergoing MET (Fig. 5) (Brabletz, 2012; 

Chaffer et al., 2007). Dynamic state of EMT and occurrence of MET is further 

strengthened by the fact that DTCs show characteristic feature of EMT whereas 

resulting secondary metastatic cells are largely epithelial (Bonnomet et al., 2012; Chao 

et al., 2010; Zheng and Kang, 2014). However, it is not well understood why DTCs 

need to revert back to an epithelial character to form macrometastasis. Previously it 

has been shown that EMT regulators put a block on cell growth and division (Chaffer 

et al., 2006; Ocaña et al., 2012; Tsai et al., 2012; Vega et al., 2004). This implies that 

in order to form macrometastasis DTCs need to proliferate immediately after 

colonization therefore, they need to revert back to an epithelial state. Furthermore, the 

E-cadherin gene (CDH1) has been shown to be differently methylated in primary 

(hypermethylated) and metastatic (demethylated) tumors strengthening the 

occurrence of MET (Graff et al., 2000; Nass et al., 2000). 
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Figure 5: Tumorigenesis and metastasis requires EMT and MET. After dissemination from the primary tumor 

via EMT, disseminated cells have to enter into and travel through the blood vessels (intravasation). After 

reaching the distant site, cells exit the blood vessels (extravasation) and start to colonize. To be able to seed the 

secondary tumor, the cells need to revert back to an epithelial phenotype by undergoing MET. Modified from 

(Mishra and Johnsen, 2014).  
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1.2.3 EMT and cancer stem-like cells 

Cancer stem-like cells (CSCs) are a small sub-population of cells within the tumor that 

have the ability of self-renewal and give rise to new tumor when injected into an 

immunocompromised mice model. The first study to show the existence of 

subpopulation of tumor cells that has the ability to seed new tumor was carried out in 

human acute myeloid leukaemia (AML) (Lapidot et al., 1994). In subsequent study 

these leukaemia initiating cells were isolated based on cell surface markers and were 

shown to have higher capacity to form a tumor compared to bulk of the tumor cells 

(Bonnet and Dick, 1997). Since then, CSCs have been isolated in different types of 

cancers including breast (Al-Hajj et al., 2003; Ginestier et al., 2007), lung (Eramo et 

al., 2007), prostate (Collins et al., 2005), pancreatic (Hermann et al., 2007) and colon 

(Ricci-Vitiani et al., 2007).  

Since the discovery of CSCs many possibilities have been proposed to understand 

their evolution. One of the breakthrough study showed that EMT can generate the 

epithelial cells with stem cell-like properties (Mani et al., 2008). Furthermore, these 

CSCs expressed a cell surface marker CD44highCD24low compared to the rest of the 

population which was CD24highCD44low. Later, another study showed that EMT-TF 

ZEB1 is involved in generation and enhanced tumorigenic potential of CSCs (Chaffer 

et al., 2013). Another stud in pancreatic cancer showed that dissemination of tumor 

cells occurred in the early stage which was associated with EMT and disseminated 

cells exhibited the stem cell properties (Rhim et al., 2012). 

Conventional chemotherapeutics target the actively dividing cells. However, targeting 

CSCs with the conventional therapy is not an option as these cells remain in quiescent 

state and are not actively dividing which to certain extent is attributable to their 

mesenchymal properties (Pece et al., 2010; Roesch et al., 2010). Furthermore, CSCs 
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are resistant to chemo- and radiotherapeutics because of increased expression of 

multi-drug resistance pump (like ABCG2) that can readily efflux the drugs out of the 

cells (Zhou et al., 2001). This implies that conventional therapies that targets the bulk 

of the tumor cells but is ineffective against the CSCs will result in relapse of the tumor 

after certain period (Fig. 6).  
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Figure 6: Conventional versus targeted cancer therapy against CSCs. Conventional therapy targets actively 

dividing cells. However, CSCs are usually in quiescent state and are not actively dividing. Therefore, bulk of the 

tumor cells are killed but the CSCs are spared which can repopulate and seed secondary tumor resulting in 

relapse. On the other hand, therapy specifically targeting CSCs will result in regression of tumor because bulk of 

the tumor cells do not have the self-renewal capacity hence, cannot seed the formation of new tumor.  

 

1.3 Epigenetic regulation of EMT 

The plasticity and reversibility of the epithelial and mesenchymal phenotypes in tumor 

cells and the dynamic activation and repression of genes involved in the EMT and 

MET processes is an outcome of increased binding of EMT-TFs to the enhancer or 

promoter regions and the epigenetic state of the target genes.  Furthermore, post-

translational histone modifications play an important role in determining the 

accessibility of transcription factors and epigenetic regulators to chromatin. Several 

studies have uncovered the underlying mechanism of interplay of epigenetic modifiers 

and other transcription factors in the regulation of EMT. 

1.3.1 DNA methylation in EMT 

DNA methylation is of the best characterized and most extensively studied chromatin 

modifications that plays an important role in maintaining a stable and heritable 

transcriptional repression of gene expression. DNA methylation is carried out by a 

family of DNA methyltransferase (DNMT) enzymes that covalently transfer a methyl 

group to the cytosine residues of the DNA, most commonly (more than 98 %) occurring 

at the CpG dinucleotides (Bird, 2002; Cedar and Bergman, 2009). CpG islands that 

are present around promoter regions of the genes are abnormally hypermethylated 

during malignant transformation, thereby leading to transcriptional repression and the 

silencing of important cell regulatory genes such as tumor suppressor genes 

(Robertson, 2005).  
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Loss of E-cadherin is the hallmark of EMT and aberrant promoter hypermethylation of 

the CDH1 gene has been reported in many types of epithelial cancers (Chang et al., 

2002; Chen et al., 2003; Lombaerts et al., 2006; Yoshiura et al., 1995). Recently, 

dimethylation of histone H3 on lysine 9 (H3K9me2) has been shown to be required for 

the DNA methylation of the CDH1 promoter (Dong et al., 2013). Similarly, direct 

interaction between DNMT1 and SNAIL has been shown to be responsible for the 

repression of CDH1 gene (Espada et al., 2011). DNA methylation has been show to 

act cooperatively with histone modifications to repress target genes. One of the studies 

have reported that concomitant occurrence of DNA methylation, histone methylation 

and deacetylation at the CpG island within the CDH1 promoter resulted in gene 

repression (Koizume et al., 2002).  

DNA methylation has been shown to be involved in generation of cancer stem-like 

cells. A detailed comparison of DNA methylation patterns between CD44highCD24low 

and CD44lowCD24high cells have demonstrated that the CD44highCD24low -enriched 

population of cells displays higher expression and hypomethylation of the genes 

encoding EMT-TFs, implying that changes in DNA methylation play an important role 

during the induction of EMT (Bloushtain-Qimron et al., 2008). 

1.3.2 Role of various histone modifications in EMT 

Epigenetic changes like histone methylation and acetylation have been frequently 

shown to be associated with numerous disorders including different types of cancer. 

Post-translational histone modifications alter the chromatin structure in a way that 

results in aberrant gene expression and altered cell phenotype which are common 

features of cancer (Fraga et al., 2005; Seligson et al., 2005). 
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1.3.2.1 Histone methylation 

The methylation of histone proteins usually occurs at the amino acid side chains of 

arginine and lysine residues and is carried out by histone methyltransferases (HMT). 

Depending on the substrate that they act upon, they can be further classified as lysine 

(KMT) or arginine (PRMT) methyltransferases (Kouzarides, 2007). Arginine residues 

can be mono-, asymmetrically, or symmetrically dimethylated, whereas lysine 

residues can be mono-, di-, or trimethylated. Histone methylations can be activating 

or repressive depending on which position of amino acid that has been modified. 

Examples of lysine methylation events that are well characterized include methylation 

at K4, K9, K27, K36 and K79 of histone H3 and at K20 of histone H4. Trimethylations 

of K4 (H3K4me3), K36 (H3K36me3) and K79 (H3K79me3) are generally considered 

to be “active marks” and are frequently associated with expressed genes, whereas 

transcriptionally silenced genes are marked with repressive marks including 

H3K9me2, H3K9me3 and H3K27me3 (Kouzarides, 2007). 

Histone methylation has been shown to be involved in EMT. A recent study has shown 

that EMT-TF SNAIL interacts with G9a (histone methyltransferase) and helps in the 

recruitment of G9a and DNMT to the CDH1 gene promoter leading to its repression 

(Dong et al., 2012). Another study have uncovered an interaction of SNAIL1 with 

another H3K9 methyltransferase SUV39H1, which also methylates H3K9 and 

promotes DNA methylation and the repression of the CDH1 promoter (Dong et al., 

2013). Furthermore, the methyltransferase SET8, which catalyzes the repressive mark 

H4K20me1, has been shown to promotes EMT and breast cancer metastasis by 

interacting with the EMT-TF Twist at the CDH1 promoter (Yang et al., 2012).  

Additionally, members of the polycomb repressive complex (PRC1 and PRC2) have 

been shown to be involved in promoting EMT. PRC1 contains the ubiquitin ligases 
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BMI1 and RING1, whereas PRC2 contains the HMT EZH2 and the additional subunits 

EED and SUZ12. EZH2 works together with SUZ12 and EED to catalyze the 

repressive trimethylation of H3K27 on the promoters of target genes leading to their 

repression (Sparmann and van Lohuizen, 2006). SNAIL has been shown to recruit 

PRC2 subunits EZH2 and SUZ12 to the CDH1 promoter, which in turn catalyzes 

H3K27me3 and leads to gene repression (Herranz et al., 2008). 

1.3.2.2 Histone demethylation 

Histone methylation was initially believed to be a highly stable and irreversible 

modification. However, many recent studies have disproven this supposition through 

the identification of histone demethylases and have provided important new insights 

into the nature of the dynamic regulation of histone methylation. Histone demethylases 

act as molecular “erasers” to remove methyl groups from lysine side chains (Shi and 

Whetstine, 2007; Trojer and Reinberg, 2006). The first histone demethylase identified 

was LSD1 (KDM1A), which was initially shown to remove mono- or dimethyl groups 

from H3K4, leading to transcriptional repression (Shi et al., 2004). The second class 

of histone demethylases belongs to the Jumonji-domain family of proteins, which 

contain a conserved Jumonji C (JmjC) domain and, in contrast to LSD1, can frequently 

fully demethylate trimethylated lysine residues by successively removing all three 

methyl group (Klose et al., 2006).  

Histone demethylation has been shown to be linked with promoting EMT. A recent 

study has reported that physical interaction between SNAIL and LSD1 lead to 

recruitment of LSD1 to the promoter of epithelial genes and subsequent removal of 

H3K4me2 causing transcriptional repression (Lin et al., 2010). Another histone 

demethylase, KDM6B (JMJD3) has also been shown to promote EMT in breast 

cancer. Chromatin immunoprecipitation (ChIP) analyses have revealed that KDM6B 
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enhances the expression of SNAIL1 by removing the repressive mark H3K27me3 from 

its promoter, with KDM6B-induced EMT being dependent upon SNAIL1 expression 

(Ramadoss et al., 2012). Another study have highlighted the role of KDM4B (JMJD2B) 

in increasing the expression of vimentin by interacting with β-catenin and 

demethylating repressive H3K9 mark on VIM gene promoter (Zhao et al., 2013). 

1.3.2.3 Histone acetylation  

Histone acetylation is probably the best characterized reversible histone modification. 

Histone proteins contain numerous lysine residues that can be acetylated by various 

histone acetyltransferases under various conditions. Most frequently, histone 

acetylation is associated with active transcription (You and Jones, 2012). Histone 

acetylation involves the transfer of an acetyl group from acetyl coenzyme-A to the side 

chain of lysine residues of histone proteins, thereby neutralizing the positive charge of 

the lysine residue and potentially loosening the chromatin structure because of the 

decreased interaction between the DNA and nucleosome. Recognition of acetylated 

lysine residues is performed by the bromodomain-containing family of proteins, which 

are components of several chromatin remodelling and transcriptional coactivator 

complexes, including some histone acetyltransferase and methyltransferase 

complexes (Dawson and Kouzarides, 2012). All core histone proteins are subject to 

modification. For instance, histones H3 and H4 both have a large number of lysine 

residues that can be acetylated (e.g., H3K9, H3K14, H3K18 and H4K16).  

Some studies indicate a role of histone acetylation in promoting EMT. 

Acetyltransferase activity of p300/CBP and the subsequent hyperacetylation of Smad2 

and Smad3 has been reported to be enhanced during TGFβ-induced EMT (Ko et al., 

2013). However, a more detailed study of the role of histone acetylation in tumor 
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progression and the EMT program might open new avenues for epigenetic drug-based 

anticancer therapy. 

1.3.2.4 Histone deacetylation 

The reversal of histone acetylation is carried out by histone deacetylases (HDACs). In 

contrast to histone acetylation, histone deacetylation is associated with gene 

repression. HDACs restore the positive charge on the lysine residues of histone tails, 

preventing the recognition by bromodomain epigenetic readers and compacting the 

chromatin structure. Therefore, chromatin is less accessible for the binding of 

transcription factors and the recruitment of the transcriptional machinery to target 

genes (Glozak and Seto, 2007; Ropero and Esteller, 2007). HDACs are generally 

present in multi-subunit complexes in association with other proteins such as 

Mi2/NuRD, Sin3A and Co-REST (Dawson and Kouzarides, 2012). So far, 18 human 

HDACs have been identified and have been divided into four major classes based on 

sequence homology: Class I (HDACs 1, 2, 3, and 8), Class II (HDACs 4, 5, 6, 7, 9, 

and 10), Class III (Sirtuins including SIRT 1–7) and Class IV (HDAC11). Class I, II and 

IV HDACs require a Zn2+ ion for their catalytic action in contrast to Class III HDACs, 

which require NAD+ as a cofactor (Marks et al., 2001). 

Several studies have reported the involvement of HDACs in cancer progression and 

EMT. In two different studies, the HDAC1/2 complex has been demonstrated to be 

recruited to and to repress the expression of the CDH1 promoter by either SNAIL 

(Peinado et al., 2004b) or ZEB1 (Aghdassi et al., 2012a). Furthermore, a Class III 

HDAC, SIRT1 has been shown to promote EMT and the metastatic growth of prostate 

cancer cells. SIRT1 directly represses the CDH1 promoter via its interaction with 

ZEB1, whereby it reduces RNA Polymerase-II recruitment and leads to transcriptional 

repression (Byles et al., 2012). Additionally, SIRT2 has been shown to be involved in 
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promoting EMT in hepatocellular carcinoma by regulating GSK3β/β-catenin signaling 

(Chen et al., 2013a). Together these findings highlight the role of HDACs in EMT and 

metastasis thus suggesting a potential target for anti-metastasis therapy. 

1.4 Epigenetic therapy against EMT 

Epigenetic mechanisms play a crucial role in the regulation of gene expression in 

healthy cells and aberrant changes in these mechanisms have been linked to the 

onset and progression of cancer. Because of the reversible nature of the epigenetic 

modifications and the amenability of epigenetic modifiers and readers to small 

molecule inhibitors, they might serve as ideal targets for therapeutic intervention. 

Indeed, efforts are being made to develop drugs that can restore the normal epigenetic 

state in cancer cells by inhibiting the enzymes that add or remove epigenetic 

modifications and the proteins that recognize them. Indeed, inhibitors for many of the 

epigenetic modifiers discussed in this review have previously been shown to be 

successful in blocking EMT and tumor metastasis (Fig. 7). 

Hypermethylation of the CDH1 gene promoter has been shown to be one of the 

reasons for its silencing during EMT, however, treatment of E-cadherin-negative 

cancer cells with the DNMT inhibitor 5-azacytidine results in the reversal of gene 

repression and the restoration of the cell morphology to a more epithelial-like state 

(Yoshiura et al., 1995). However, other studies suggest that DNMT inhibition actually 

promotes tumor invasion and EMT in breast cancer. One of the studies involving the 

treatment of breast cancer cells with 5-aza-2′-deoxycytidine resulted in increased 

invasiveness and metastatic capacity (Ateeq et al., 2008). Thus, more data are 

required to fully assess the potential of DNMTs as therapeutic targets against cancer 

metastasis and EMT. 
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Figure 7: Targeting EMT by different small molecule inhibitors against epigenetic modifiers. Various epigenetic 

modifiers (writers and erasers) have been shown to be involved in regulating EMT. Targeting these epigenetic 

modifiers by small molecule inhibitors might be an effective treatment option to block cancer metastasis. Several 

such inhibitors have been recently discovered and tested: BRD4770 (Yuan et al., 2012), Entinostat (Kummar et 

al., 2007), Romidepsin (Saijo et al., 2012), TCP derivatives (Harris et al., 2012; Schenk et al., 2012), GSK-J1 

(Kruidenier et al., 2012), GSK-126 (McCabe et al., 2012), MM-102 (Senisterra et al., 2013) and EPZ004777 (Daigle 

et al., 2011). Figure is adapted from (Mishra and Johnsen, 2014).  
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Most histone modifications are highly dynamic in nature. Because of the reversibility 

and plasticity of these modifications, histone-modifying enzymes represent promising 

potential therapeutic targets for the prevention or treatment of cancer metastasis and 

EMT. So far, a major focus has been directed to the potential utility of histone 

deacetylase inhibitors (HDACi) in cancer treatment. The HDACi trichostatin A (TSA) 

has been shown to effectively suppress TGFβ-induced EMT (Chen et al., 2013b; 

Kaimori et al., 2010; Lei et al., 2010; Witta et al., 2006; Yoshikawa et al., 2007). 

However, there are reports showing that HDACi can enhance the effect of TGFβ-

induced EMT (Ji et al., 2015; Kong et al., 2012). Therefore, additional in vivo data and 

clinic l trials for HDACi will be required to address the concerns over their use in 

targeting EMT. Furthermore, combinatorial therapy of HDACi with other epigenetic 

modifier can be a potential option (O’Connor et al., 2006). 
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Figure 8: Inhibiting EMT can enhance the cancer metastasis. Inhibition of EMT in some cancer types can result 

in increased metastasis. Dissemination of tumor cells in some cancer types occur quite early. Inhibiting EMT in 

these types of cancer may result in MET hence, enhanced metastasis.  
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1.5 Transforming Growth Factor-β Signaling  

Transforming growth factor-β (TGFβ) signaling is an evolutionary conserved 

ubiquitous signaling pathway which is crucial for the development and homeostasis of 

multicellular organisms. The importance of TGFβ signaling in multicellular organisms 

is evident from its effects on key cellular processes like proliferation, differentiation, 

migration and extra-cellular matrix production (Massague, 2000; Massagué et al., 

2000). Furthermore, TGFβ signaling is dispensable in embryonic development where 

it plays an important role in organ morphogenesis, tissue homeostasis and immune 

system modulation. TGFβ is widely known for inducing epithelial-to-mesenchymal 

transition (EMT) that allows epithelial cells to lose their polarity and attain a 

mesenchymal shape. During embryonic development, EMT is required for cells to 

migrate from the site of their origin and participate in tissue and organ formation at 

distant sites. Further, numerous cell types in the body respond to the effects of TGFβ 

however, these effects are highly cell specific and context dependent (Massagué, 

2012). Perturbation in TGFβ signaling has been implicated in a number of pathological 

diseases including developmental disorders, organ fibrosis and cancer, which is to 

some extent attributed to its pleiotropic effects in different cell types. 

1.5.1 Molecular mechanism of TGFβ signaling 

TGFβ signaling occurs through two different transmembrane receptors: TGFβ type-I 

(RI) and type-2 (RII) receptors (Fig. 9). Both RI and RII have serine/threonine kinase 

activity and are present as inactive dimers. While RI is required for phosphorylating 

the R-SMADs which then carry out the downstream signaling, the only known function 

of RII is to activate RI. The active dimer TGFβ ligand binds to the extracellular domain 

of RII which recruits and facilitates the formation of a hetero-tetrameric complex 

between RI and RII. In this complex, the activated RII kinase phosphorylates the 
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serine/threonine residues of the GS domain in RI resulting in its activation. Activated 

RI initiates the intracellular signaling by phosphorylating the receptor regulated R-

SMADS SMAD2 and SMAD3, resulting in their increased affinity for the common-

mediator SMAD (Co-SMAD or SMAD4), which is required for the further downstream 

signaling. R-SMADs and Co-SMADs form a complex and translocate to the nucleus. 

SMAD complex together with DNA binding cofactors and co-activators or co-

repressors regulate the target gene expression. As different cell types express specific 

interactors of the SMAD complex, TGFβ signaling targets different genes in a cell-type 

specific manner (Derynck and Zhang, 2003; Massagué, 2000; Shi and Massagué, 

2003).  

Negative regulation of TGFβ signaling is carried out by inhibitory SMADs like SMAD7 

and SMURFs (SMURF1 and 2) which provide a negative feedback loop. SMAD7 binds 

to the type-1 receptor, blocks the phosphorylation of R-SMAD and inhibits the complex 

formation between R-SMAD and Co-SMAD (Nakao et al., 1997). Additionally, 

SMURFs are involved in ubiquitination followed by proteasome-mediated degradation 

of active SMAD2 in the nucleus. TGFβ receptors are also targeted for proteasomal 

degradation by SMAD7 in cooperation with SMURF1 and SMURF2. SMAD7 forms a 

complex with SMURF1 and 2 in the nucleus and translocates to the plasma membrane 

upon TGFβ stimulation, it recruits ubiquitin ligases to the active TGFβ type-1 receptor 

which leads to its proteasomal degradation (Ebisawa et al., 2001; Kavsak et al., 2000; 

Suzuki et al., 2002). 
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Figure 9: The Transforming Growth Factor-β signaling pathway. TGFβ signaling occurs through the association 

of type-1 (RI) and type-2 (RII) transmembrane receptors which are present as dimers. Both RI and RII contain a 

serine/threonine kinase domain in their cytoplasmic domains. TGFβ ligand binding to the transmembrane 

receptors (RI and RII) activates the RII which in turn phosphorylates the GS domain (inactive in the basal state) 

of RI leading to its activation. Activated RI then phosphorylate the R-SMAD (receptor activated SMADs) which 

binds to Co-SMAD and form a complex. The complex then translocates to the nucleus and, in cooperation with 

the DNA binding cofactors and co-activators/repressors regulates the target gene expression.  
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1.5.2 TGFβ signaling in cancer 

TGFβ regulates a plethora of cellular processes like proliferation, apoptosis and 

differentiation in nearly all types of cells. Further, it also maintains tissue homeostasis 

and regulates cellular microenvironment thus, abnormality in TGFβ signaling often 

results in tumorigenesis. Components of TGFβ are often found to be mutated in 

malignancies especially in metastatic cancers (Antony et al., 2009; Caestecker et al., 

2000; Chung et al., 1996; Levy and Hill, 2006; Lu et al., 1996; Myeroff et al., 1995). 

Cancer cells become resistant to the tumor suppressive effects of TGFβ and in later 

stages cancer cells use TGFβ signaling to migrate, invade and metastasize (Dalal et 

al., 1993; Kingsley et al., 2007; Massagué, 2008). TGFβ is like a double edged sword: 

it can act as a tumor suppressor as well as an oncogene in a cancer stage specific 

manner. 

1.5.2.1 Tumor suppressive role of TGFβ 

Cell proliferation and apoptosis are pivotal to control tumor formation and abnormality 

in these processes can be damaging. Downregulation of TGFβ receptor expression or 

impairment in their availability at the extracellular surface in tumor cells makes them 

resistant to growth inhibitory effects of TGFβ. Additionally, mutation in genes encoding 

SMAD proteins (SMAD2 and SMAD4) have been implicated in tumor development, 

implying that SMADs can be important regulators of tumor suppressive function of 

TGFβ (Coffey et al., 1988; Laiho et al., 1990; Moses et al., 1990). 

TGFβ keeps a check on cell proliferation by activating CDK (cyclin-dependent kinase) 

inhibitors p15 and p21 and blocking the passage of cells to the G1 phase of the cell 

cycle. TGFβ induced p21 interacts with and inhibits the activity of CDK2-cyclinE/A 

complex thus, causes cell cycle arrest. Similarly, p15 interacts with and inhibits the 

activity of CDK4/6-cyclinD complex (Datto et al., 1995; Hannon and Beach, 1994; 
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Reynisdóttir et al., 1995; Sandhu et al., 1997). Furthermore, mutant p53 has been 

shown to confer resistance to cancer cells against growth arrest by TGFβ by hindering 

the CDK4 inhibition (Ewen et al., 1995). Additionally, TGFβ induces cell growth arrest 

by deactivating c-Myc, a potent growth-inducing transcription factor. Elevated levels 

of c-Myc are inhibitory to anti-proliferative effects of TGFβ thus making the cells 

resistant (Alexandrow et al., 1995; Staller et al., 2001; Warner et al., 1999). 

In addition to its anti-proliferative effect, TGFβ exert an anti-apoptotic effect, which is 

cell type and context dependent. The exact mechanism behind the anti-apoptotic 

effects of TGFβ remains elusive, however, the Daxx adaptor protein, which is involved 

in JNK mediated apoptotic event has been shown to interact with the TGFβ type-II 

receptor during TGFβ induced apoptosis (Perlman et al., 2001). Moreover, activation 

of caspase 3 and 8 and deactivation of Bcl-xL (B-cell lymphoma-extra) large has been 

also implicated in the pro-apoptotic effects of TGFβ (Rotello et al., 1991; Saltzman et 

al., 1998; Selvakumaran et al., 1994).  

1.5.2.2 Tumor promoting effects of TGFβ 

Although TGFβ has an anti-tumor activity, tumor cells in the later stage become 

refractory to its growth inhibitory effects. One of the proposed mechanism is that tumor 

cells that become unresponsive to tumor suppressive functions of TGFβ express 

elevated levels of proto-oncogenes like c-Myc (Akiyoshi et al., 1999; Chen et al., 2001; 

Luo et al., 1999). Tumor cells that become unresponsive to the growth inhibitory 

effects of TGFβ but retain its functional signaling activity exhibit enhanced capacity of 

migration and invasion (Moustakas and Heldin, 2007). Furthermore, tumor- derived 

TGFβ is utilized by the tumor cells to escape the immune surveillance. Tumor-secreted 

TGFβ allows them to escape the host immune system by inhibiting the growth of key 

immune cells like macrophages, natural-killer cells, T-lymphocytes and neutrophils 
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(Ashcroft, 1999; Letterio and Roberts, 1998). Additionally, tumor-derived TGFβ also 

promotes the secretion of angiogenic factors that sustains the formation of a 

metastatic tumor (Noboru Ueki et al., 1992; Schwarte-Waldhoff et al., 2000; Stearns 

et al., 1999; Wikström et al., 1998). 

One of the most widely investigated outcomes of deregulated TGFβ signaling is 

epithelial-to-mesenchymal transition (EMT) (Derynck and Akhurst, 2007). TGFβ 

induced EMT has been frequently shown to be associated with metastatic cancer. 

EMT helps the cells to disseminate and migrate to distant sites such that they may 

give rise to metastatic tumor (Kingsley et al., 2007; Oft et al., 1998; Thiery and Chopin, 

1999). TGFβ is a potent inducer of EMT and TGFβ induced EMT has been shown to 

generate cells with the capacity to propagate new tumor, termed as cancer stem-like 

cells or tumor-initiating cells (Mani et al., 2008; Shipitsin et al., 2007). TGFβ stimulation 

in normal and transformed mammary epithelial cells resulted in the acquisition of stem 

cell-like properties and the capacity to form mammospheres. Furthermore, TGFβ 

transformed mammary epithelial cells exhibited high tumorigenic potential in vivo. 

TGFβ is involved in promoting distal metastasis of tumor cells. Previously it has been 

shown that TGFβ promotes breast cancer cells to metastasize to the lung by activating 

the expression of the angiopoietin-like 4 (ANGPTL4) gene in disseminated tumor cells. 

ANGPTL4 helps the tumor cells to invade through the pulmonary walls and colonize 

(Padua et al., 2008).  
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1.6 Krüppel-like Transcription Factors 

Krüppel-like factors (KLFs) are a highly conserved family of zinc-finger containing 

DNA-binding transcription factors. KLFs are expressed in a wide variety of human 

tissues and play a role in regulating a diverse array of cellular processes. The wide 

range of cellular processes that KLFs have been linked with includes growth and 

development, cell proliferation, differentiation, apoptosis and pluripotency (Bieker, 

2001). KLFs share a homology with transcription factor Sp1, which also comprises 

C2H2-type zinc-fingers, therefore, they are broadly classified as Sp1/KLF family 

(Kaczynski et al., 2003). The first member of the KLF family was discovered in 1993 

and was named EKLF (Erythroid Krüppel-like factor or KLF1) based on its homology 

to the Krüppel gene of Drosophila melanogaster (Miller and Bieker, 1993). The KLF 

family comprises 17 known members which are grouped according to their structural 

and functional similarities and are named KLF1-17 in order of their discovery. KLFs 

have varied tissue expression, some of them are ubiquitously expressed (KLF6, 

KLF10 and KLF11) while others are specific to certain tissue types (like KLF1 in 

erythroid cells, KLF2 in lung), thus, they have mutually exclusive as well as similar 

functions (Armstrong et al., 1998; Black et al., 2001; Turner and Crossley, 1999).  

KLFs share a structural homology in their carboxy-terminal end where three zinc-finger 

domains are located. The first two zinc-fingers contain 25 amino acids each, while the 

third zinc-finger contains 23 amino acids and each of them can bind to three base 

pairs of the target DNA sequence. However, the functional diversity among the KLFs 

results from the differences in their functional amino terminal end (containing an 

activation or a repression domain) that allows them to recruit different binding partners 

like co-activators or co-repressors (Dang et al., 2000; Suske et al., 2005). Based on 

their functional divergence KLFs have been placed into three categories. KLFs 3, 8 
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and 12 (Group 1) interact with carboxy-terminal binding protein (CtBP), and thus, 

mainly function as transcriptional co-repressors. KLFs 1, 2, 4, 5, 6 and 7 (Group 2) 

interact with histone acetyltransferases and function as transcriptional activators. 

KLFs 9, 10, 11, 13, 14 and 16 (Group 3) interact with the transcriptional co-repressor 

Sin3A and thus, have repressor function (Kaczynski et al., 2003; Zhang and Bieker, 

1998). KLFs 15 and 17 however, do not possess a specific motif sequence for 

interacting partners. 

1.6.1 Krüppel-like Factors in cancer 

KLFs have been implicated in tissue development and physiology of different organ 

systems. Perturbation in the functions of KLFs is associated with a wide variety of 

disorders including obesity, respiratory and cardiovascular disorders, inflammatory 

conditions and cancer. KLFs have an altered function in different types of cancer and 

they have regulatory effects on various processes like cancer cell proliferation, 

apoptosis and metastasis. Since different KLFs have varied expression in wide range 

of tissues and cancers they can either act as tumor suppressors or oncogenes in 

context dependent manner (Limame et al., 2010; Tetreault et al., 2013). 

KLFs have been implicated in regulating cell growth and proliferation in normal and 

cancer cells mainly by targeting important cell cycle regulators like cyclin dependent 

kinases (CDKs) and CDK inhibitors like CDKN1A and CDKN1B. KLF4 has been 

shown to inhibit tumor cell proliferation in various cancer types including pancreatic, 

colorectal, lung and cervical cancer (Hu et al., 2009; Li et al., 2012; Zammarchi et al., 

2011). However, the anti-proliferative effects of KLF4 are prone to switch into an 

oncogenic function depending on the expression of CDKN1A. Inactivation of CDKN1A 

results in a blockage of antitumor function of KLF4, thus switching it into an 

oncoprotein, indicating that the outcome of KLF4 function is dependent on CDKN1A 
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expression (Rowland and Peeper, 2006). Similarly, KLF6 generally inhibits cancer cell 

proliferation in different cancer types like NSCLS, HCC and prostate cancer through 

CDKN1A and CDKN1B (Narla et al., 2001). However, mutant forms or spliced isoforms 

of KLF6 promote cancer cell proliferation and tumorigenesis. 

KLFs have been also implicated in regulating apoptosis, a mechanism that cancer 

cells have to circumvent. KLF4 promotes apoptosis in myeloid leukaemia cells by 

enhancing the expression of the pro-apoptotic BAX gene and repressing the anti-

apoptotic BCL2 gene (Li et al., 2010). Similarly, KLF6 promotes apoptosis and inhibits 

tumorigenesis in melanoma cells by deactivating ERK2 and cyclin-D1 (Huh et al., 

2010). However, KLF6 and other KLFs have also been shown to exert anti-apoptotic 

effects through their spliced isoforms. Downregulation of KLF6 in NSCLC (non-small 

cell lung cancer) and HCC (hepatocellular carcinoma) cell lines induces apoptosis, 

implying that KLF6 has an anti-apoptotic function in these cancers (Narla et al., 2005).  

Additionally, KLFs exert their anti-tumorigenic role by modulating various signaling 

pathways involved in promoting cancer. KLF4 inhibits Wnt/β-catenin signaling by 

abrogating the TCF4 and β-catenin binding, thus, exerts a negative effect on cell 

proliferation (Evans et al., 2010). Furthermore, KLFs have also been implicated in 

modulating the estrogen (ER) and NOTCH signaling pathways. KLF5 exerts 

contrasting effects on breast cancer cells depending on their ER status. It has anti-

proliferative effects on ER+ breast cancer cells, however, it does not affect the 

proliferation of ER- breast cancer cells (Guo et al., 2010). This finding shows that the 

cellular context has a great impact on KLF function and gives insight into the divergent 

roles of KLFs. 
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1.6.2 Krüppel-like Factor-10 

Krüppel-Like Factor-10 (KLF10) is a member of the zinc-finger containing Krüppel-like 

family of transcription factors and was originally identified as an early response gene 

for TGFβ in human fetal osteoblasts hence also termed as TGFβ-Inducible Early 

Gene-1 or TIEG1 (Subramaniam et al., 1995). Remarkably, the KLF10 expression 

level was increased within 30 min of TGFβ treatment and was increased up to 10-fold 

more than the basal expression 2 hrs post-treatment. Since the discovery of KLF10, 

numerous studies have reported a role in various cellular processes and altered 

function in various disorders including cancer. 

Similar to other KLF family members, KLF10 contains three zinc-finger domains on its 

carboxy-terminal end and shares a homology with the Sp1 transcription factor. KLF10 

has three repression domains (R1, R2 and R3) which are spread across the gene and 

preferentially bind to GC rich regions in the DNA to regulate target gene transcription. 

Additionally, KLF10 contains Src homology-3 (SH3) binding domains at the C-terminal 

end (Fig. 10). The KLF10 gene contains 5 coding exons and encodes a 480 amino 

acid protein (Subramaniam et al., 2007). Interestingly, KLF10 shares great homology 

with the EGR-alpha (early growth response-alpha) gene and they are transcribed from 

alternative promoters of the same gene located on chromosome 8q22.2 

(Subramaniam et al., 1998). However, KLF10 and EGR-alpha proteins differ by 12 

amino acids at their amino terminal end and KLF10 expression is higher compared to 

EGR-alpha in most tissues (Fautsch et al., 1998). Furthermore, the unique N-terminal 

end of the KLF10 protein distinguishes it from EGR-alpha and rest of the KLF family 

members (Blok et al., 1995). 
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Figure 10: Protein structure of KLF10. KLF10 encodes a 480 amino acid protein. At the C-terminal end it has 3 

zinc-finger domains which allow it to bind to the target DNA. Additionally, it contains 3 unique repression 

domains R1, R2 and R3. Several proline-rich SH3 (Src homology-3) domains are present at the C-terminal end 

(modified from Subramaniam et al., 2007). 

 

1.6.3 The role of KLF10 in TGFβ Signaling 

KLF10 was identified as an early response gene to TGFβ and thereafter, various 

studies have focussed on elucidating the role of KLF10 in regulating the TGFβ 

signaling pathway. Overexpression of KLF10 has been shown to imitate some of the 

general effects of TGFβ signaling in different cell types. For instance, overexpression 

of KLF10 in osteosarcoma cells resulted in enhanced alkaline phosphatase activity 

and decreased cell proliferation in a manner similar to TGFβ (Hefferan et al., 2000). 

Furthermore, KLF10 overexpression has been shown to mimic anti-proliferative 

effects of TGFβ in various cell lines (Chalaux et al., 1999; Ribeiro et al., 1999; 

Tachibana et al., 1997). Additionally, KLF10 overexpression has been shown to elicit 

the anti-proliferative effects of TGFβ by activating p21 expression (Johnsen et al., 

2004) 

TGFβ signaling is governed via SMAD proteins R-SMAD (SMAD2 and 3) and co-

SMAD (SMAD4) which play an activating role in the while, the inhibitory SMAD7 is 

responsible for the negative feedback loop (Fig. 11). KLF10 has been shown to 

positively regulate TGFβ signaling by enhancing the expression of SMAD2 and 

repressing SMAD7 gene. KLF10 binds to a specific element in the proximal promoter 

region of the SMAD7 gene which represses SMAD7 expression, thus releasing the 
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negative feedback loop of TGFβ signaling (Johnsen et al., 2002a). However, even in 

the absence of SMAD7, KLF10 is still capable of enhancing TGFβ signaling, implying 

that KLF10 may have another target. In another study, it has been shown that in 

addition to repressing inhibitory SMAD7 gene, KLF10 activates the transcription of 

SMAD2 gene thus, a dual mechanism has been proposed through which KLF10 

enhances the TGFβ signaling (Johnsen et al., 2002b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Role of KLF10 in TGFβ signaling. KLF10 enhances TGFβ signaling through a dual mechanism. KLF10 

activates SMAD2 expression, thus, providing a positive feedback loop. Additionally, KLF10 binds to the promoter 

region of the inhibitory SMAD7 gene and inhibits its expression which can no longer inhibit the phosphorylation 

of the R-SMADs (receptor-activated SMADs) and thus, releases the negative feedback loop.  
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1.7 Lysine-Specific Demethylase 1  

Histone methylation which usually occurs at the lysine and arginine amino acid residue 

of the histone tail, was considered to be stable and irreversible. However, discovery 

of the first histone demethylase, lysine-specific demethylase 1 (LSD1; also known as 

KDM1A or BHC110 or AOF2) changed this perception (Shi et al., 2004) and histone 

methylation is considered as more dynamic in nature. 

1.7.1 Structure of LSD1 

The LSD1 recombinant protein contains three functional domains: SWIRM domain 

(SWI3, RSC8,Moira), OXIDASE domain (also known as AOL or amine oxidase-like) 

and TOWER domain (Fig. 12) (Chen et al., 2006; Stavropoulos et al., 2006). N-

terminal region of LSD1 is unstructured and is dispensable for its catalytic activity 

(Forneris et al., 2005).  

 

Figure 12: Protein structure of LSD1. Recombinant LSD1 protein is composed of 852 amino acid residues and 

three functional domains. Towards the C-terminal end it has OXIDASE domain and on N-terminal end SWIRM 

domain. In between SWIRM and OXIDASE domain is TOWER domain. Modified from (Chen et al., 2006). 

 

To further understand the mechanism behind demethylase activity of LSD1, crystal 

structure was elucidated (Chen et al., 2006; Stavropoulos et al., 2006). Crystal 

structure revealed that LSD1 is composed of three different structural domains which 

are arranged in a form of highly asymmetric molecule (̴ 60 Å wide and ̴ 140 Å high) 

(Stavropoulos et al., 2006). N-terminal SWIRM domain and C-terminal OXIDASE 

domain comprise the core of the protein that binds non-covalently to the FAD and 

functions as the enzymatic domain. While the TOWER domain protrudes from the core 
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and provides the platform for the interacting partners. The SWIRM domain is 

comprised of six-helical bundle structure and is packed against the OXIDASE domain, 

which contains two functional lobes, an FAD-binding lobe and substrate-binding lobe 

(Stavropoulos et al., 2006). The catalytic site of the LSD1 is located within the 

substrate-binding domain (Fig. 13). 

 

Figure 13: Structure of LSD1 in ribbon representation. Crystal structure of LSD1 depicting various domains 

(SWIRM, TOWER and OXIDASE) and active catalytic site. Adapted from (Stavropoulos et al., 2006). 

 

1.7.2 Histone demethylation activity of LSD1 

LSD1 was discovered as a histone demethylase which specifically demethylates lysine 

4 residue of histone 3 and hence act as a transcriptional repressor (Shi et al., 2004). 

LSD1 is a component of different types of transcriptional repressor complexes 

including HDAC1, HDAC2 and CoREST. LSD1 catalyses demethylation of mono- or 
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dimethylated H3K4 via FAD-dependent oxidative reaction (Hakimi et al., 2003a; 

Humphrey et al., 2001; Shi et al., 2004). Furthermore, LSD1 has also been shown to 

act as transcriptional activator by demethylating repressive H3K9 methylation marks 

(Kahl et al., 2006). Interaction of LSD1 with androgen (AR) or estrogen (ER) nuclear 

hormone receptors have been implicated in its switch for substrate specificity to 

H3K9me1/me2 (Metzger et al., 2005; Perillo et al., 2008). Therefore based on its 

substrate specificity LSD1 can act as transcriptional repressor as well as activator (Fig. 

14). These contrasting functions of LSD1 could be due to different interacting partners 

that can modulate its substrate specificity. 

 

Figure 14: Dual function of LSD1. LSD1 can exert its demethylase activity on target gene to cause repression or 

activation. (A) LSD1 in complex with co-repressors like CoREST and HDACs, demethylate the active histone marks 

H3K4me1/me2 and causes transcriptional repression. (B) In presence of AR or ER, LSD1 changes the substrate 

specificity and acts as a transcriptional coactivator by demethylating mono- and dimethylated H3K9 repressive 

marks.  
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1.8 Aims of the study 

The Transforming Growth Factor-β (TGFβ)/SMAD signaling pathway can function as 

either a tumor suppressor or metastasis promoter during tumor progression. In normal 

epithelial cells and early stages of epithelial tumorigenesis TGFβ functions as a tumor 

suppressor to decrease cell proliferation or induce apoptosis. However, during 

malignant progression tumor cells no longer respond to the anti-proliferative effects of 

TGFβ, but instead undergo an epithelial-to-mesenchymal transition (EMT) whereby 

cells acquire a migratory and invasive phenotype which promotes tumor metastasis. 

Resolution of the dichotomy in TGFβ function and a further understanding of its tumor 

suppressor and metastasis promoting functions has been an elusion for decades. 

Previous studies have demonstrated an important role of the TGFβ-Inducible Early 

Gene-1 (TIEG1)/Krüppel-like Factor-10 (KLF10) as a central regulator of TGFβ/SMAD 

signaling and the anti-proliferative functions of TGFβ.  

Therefore, one of the aims of this study was to investigate the potential role of KLF10 

in TGFβ-induced EMT. To elucidate the molecular mechanism we have peroformed 

various cell culture based assays, mice model and high-throughput ChIP-seq and 

RNA-seq.  

In a more global approach, we have investigated the efficacy of small molecule 

inhibitors against the epigenetic modifiers in regulating the tumor cell phenotype. For 

this purpose we have utilized various small molecule inhibitors which are either in 

clinical trials or clinical development. To unravel the mechanism we have performed 

high-throughput ChIP-seq and RNA-seq, xenograft study in mice and cell culture 

based assays.
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2. Materials 

2.1 Technical equipment 

 

 

EQUIPMENT COMPANY 

Agarose gel chamber Harnischmacher Labortechnik, Kassel 

Balance  Sartorius AG, Goettingen 

Bandelin Sonoplus Sonicator Bandelin electr. GmbH & Co. KG, Berlin 

Bioruptor® Plus Sonicator Diagenode SA, Liege, Belgium 

Biological safety Cabinet “Safe 2020” Thermo Fisher Scientific, Waltham, USA 

CFX96TM Optical Reaction Module Bio-Rad Laboratories GmbH, Muenchen 

C1000TM Thermal Cycler Bio-Rad Laboratories GmbH, Muenchen 

Centrifuge 4 °C (Fesco 21) Thermo Fisher Scientific, Waltham, USA 

Centrifuge (Magefuge 1.OR) Thermo Fisher Scientific, Waltham, USA 

Centrifuge 4 °C (5417R) Eppendorf AG, Hamburg 

Counting chamber (Neubauer) Brand GmbH & Co. KG, Wertheim 

DynaMagTM 96 side Life Technology, Carlsbad, USA 

DynaMagTM 2 Life Technology, Carlsbad, USA 

Eclipse TS100 Nikon, Tokyo, Japan 

Electrophoresis & Electrotransfer Unit GE healthcare Europe GmbH, Muenchen 

Gel iX Imager 
Intas Science Imaging GmbH, 
Goettingen 

HERAcell 150i CO2 Incubator Thermo Scientific, Waltham, USA 

Isotemp® water bath Thermo Fisher Scientific, Waltham, USA  

Invert Microscope “Axiovert 40 CFL” 
Carl Zeiss MicroImaging GmbH, 
Goettingen 

Magnet stirrer “MR3001” Heidolph GmbH & Co. KG, Schwabach 

Microwave  Clatronic International GmbH, Kempen 

Mini Trans-BlotTM Cell Bio-Rad Laboratories, Hercules, USA 

Mini-PROTEAN Tetra Cell Bio-Rad Laboratories, Hercules, USA 

Mr. Frosty® cryo Freezer Thermo Fisher Scientific, Waltham, USA 

Nano Drop® ND-1000 Peqlab Biotechnology GmbH, Erlangen 

pH meter  inoLab® WTW GmbH, Weilheim 

Pipette Aid® portable XP Drummond Scientific Co., Broomall, USA 
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2.2 Consumable materials 

  

Pipettes “Research” series Eppendorf AG, Hamburg 

Power supply Power pack P25T Biometra GmbH, Goettingen 

PowerPacTM Basic Power Supply Bio-Rad Laboratories,Hercules, USA 

PowerPacTM HC Power Supply Bio-Rad Laboratories,Hercules, USA 

Qubit® 2.0 Fluorometer Invitrogen GmbH, Karlsruhe 

Repeat pipette  Gilson Inc., Middleton, USA 

Refrigerator  Liebherr GmbH, Biberach 

Scanner Epson V700 Photo Seiko Epson, Suwa, Japan 

Shaker “Rocky” Schutt Labortechnik GmbH, Goettingen 

Test tube rotator Schutt Labortechnik GmbH, Goettingen 

Thermo mixer C Eppendorf AG, Wessling-Berzdorf 

Vortex-Genie 2 
Electro Scientific Industr. Inc., Portland, 
USA 

X-ray cassettes Rego X-ray GmbH, Augsburg 

-20 °C Freezer Liebherr GmbH, Biberach 

-150 °C Freezer (MDF-C2156VAN) Panasonic, Kadoma, Japan 

-80 °C Freezer “Hera freeze” Thermo Fisher Scientific, Waltham, USA  

2100 Bioanalyzer Agilent Technology, Santa Clara, USA 

MATERIAL COMPANY 

Cellstar tissue culture dish 100x20 mm Greiner Bio-One GmbH, Frickenhausen 

Cellstar tissue culture dish 145x20 mm Greiner Bio-One GmbH, Frickenhausen  

Cellstar PP-tube 15 and 50ml Greiner Bio-One GmbH, Frickenhausen 

Cellstar 6- and 12-well cell culture 
plate 

Greiner Bio-One GmbH, Frickenhausen 

Cryo Tube Vial (1.8 ml) 
Thermo Fisher Scientific, Waltham, 
USA 

Cell scraper (16 cm) Sartstedt AG & Co., Nümbrecht 

DNA loBind Tube (0.5 and 1.5 ml) Eppendorf AG, Wessling-Berzdorf 

Gel blotting paper (Whatman paper) Sartorius AG, Göttingen 

Glass coverslip (18 mm) Gebr. Rettberg GmbH, Göttingen 
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2.3 Chemicals 

 

HybondTM-PVDF Transfer Membrane GE Healthcare Europe GmbH, München 

Microtube 1.5 ml, conical VWR International GmbH, Darmstadt 

Microtube 0.5 ml, 1.5 ml, 2 ml Sarstedt AG & Co., Nümbrecht 

NORM-JECT syringe Henke Sass Wolf GmbH, Tuttlingen 

PCR plate white(96-well Multiplate®) Bio-Rad Laboratories GmbH, München 

Parafilm® M 
Pechiney Plastic Packaging, Chicago, 
USA 

Petri dish 92x16 cm Sarstedt AG & Co., Nümbrecht 

PET track-etched cell culture inserts BD Bioscience, Franklin Lakes, NJ, USA 

Pipette tips Greiner Bio-One GmbH, Frickenhausen 

Pipette filter tips Sarstedt AG & Co., Nümbrecht 

Shandon coverplate Thermo Fisher Scientific, Waltham, USA 

Syringe filter, Ca-membrane Sartorius AG, Göttingen 

Ultra low attachment plates Cornig Life Sciences, NY, USA 

X-ray films “Super RX” Fujifilm Corp, Tokyo, Japan 

CHEMICAL COMPANY 

Acetic acid Carl Roth GmbH & Co., KG, Karsruhe 

Adefodur WB developing concentrate  Adefo-Chemie Gmbh, Dietzenbach 

Adefodur WB fixinf concentrate Adefo-Chemie Gmbh, Dietzenbach 

Agarose Biozym Scientific GmbH, Oldendorf 

Agencourt® AMPure® XP Beads Beckman Coulter Inc. Brea USA 

Ammonium persulfate Carl Roth GmbH & Co. KG, Karsruhe 

Ammonium sulfate Carl Roth GmbH & Co. KG, Karsruhe 

Ampicillin AppliChem GmbH, Darmstadt 

Aprotinin Carl Roth GmbH & Co. KG, Karsruhe 

Bovine Serum Albumin (BSA) Carl Roth GmbH & Co. KG, Karsruhe 

Bromophenol blue Sigma-Aldrich Co., St. Louis, USA 

Calcium chloride Carl Roth GmbH & Co. KG, Karsruhe 

Chloroform Carl Roth GmbH & Co. KG, Karsruhe 
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Co-precipitant Pink Bioline, Luckenwalde 

Glycine Carl Roth GmbH & Co. KG, Karsruhe 

Hydrochloric acid Carl Roth GmbH & Co. KG, Karlsruhe 

ImmobilonTM Western HRP substrate Merck Millipore KGaA, Darmstadt 

Iodoacetamide Sigma-Aldrich Co., St. Louis, USA 

Isopropanol Carl Roth GmbH & Co. KG, Karlsruhe 

Leupeptin Carl Roth GmbH & Co. KG, Karlsruhe 

Linear Acrylamide Thermo Fisher Scientific, Waltham, USA 

Lithium Chloride (8 M) Sigma-Aldrich Co., St. Louis, USA 

Magnesium chloride Carl Roth GmbH & Co. KG, Karlsruhe 

Methanol Carl Roth GmbH & Co. KG, Karlsruhe 

Monopotassium phosphate Carl Roth GmbH & Co. KG, Karlsruhe 

N-ethylmaleimide Sigma-Aldrich Co., St. Louis, USA 

Nickel chloride (NiCl2) Sigma-Aldrich Co., St. Louis, USA 

NonidetTM P-40 Sigma-Aldrich Co., St. Louis, USA 

Opti-MEM GIBCO®, Invitrogen GmbH, Darmstadt 

PBS tablets Sigma-Aldrich Co., St. Louis, USA 

Pefabloc SC Carl Roth GmbH & Co. KG, Karlsruhe 

Penicillin-Streptomycin solution Sigma-Aldrich Co., St. Louis, USA 

Peptone Carl Roth GmbH & Co. KG, Karlsruhe 

Potassium chloride  AppliChem GmbH, Darmstadt 

Potassium dihydrogen phosphate Carl Roth GmbH & Co. KG, Karlsruhe 

Protein A SepharoseTM CL-4B  GE Healthcare, Uppsala, Sweden 

RNase inhibitor 
New England Biolabs, Frankfurt am 
Main 

RNAiMAX Invitrogen GmbH, Karlsruhe 

Roti® Phenol Carl Roth GmbH & Co. KG, Karlsruhe 

Rotipherose® Gel 30 Carl Roth GmbH & Co. KG, Karlsruhe 

Rotipuran® chloroform Carl Roth GmbH & Co. KG, Karlsruhe 

Rotipuran® isoamylalcohol Carl Roth GmbH & Co. KG, Karlsruhe 

SepharoseTM CL-4B GE Healthcare, Uppsala, Sweden 

Skim milk powder Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium acetate Carl Roth GmbH & Co. KG, Karlsruhe 
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2.4 Kits and Reagents 

  

Sodium Azide AppliChem GmbH, Darmstadt 

Sodium chloride Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium deoxycholate AppliChem GmbH, Darmstadt 

Sodium dodecylsulfate (SDS) Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium Fluoride AppliChem GmbH, Darmstadt 

di-Sodium hydrogen phosphate Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium hydroxide Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium pyruvate GIBCO®, Invitrogen GmbH, Darmstadt 

SYBR Green I Roche Diagnostics GmbH, Mannheim 

TEMED Carl Roth GmbH & Co. KG, Karlsruhe 

Tris Carl Roth GmbH & Co. KG, Karlsruhe 

Triton X-100 AppliChem GmbH, Darmstadt 

Trypsin-EDTA Life Technology, Carlsbad, USA 

TRIzol® Reagent Invitrogen GmbH, Karlsruhe 

Tween-20 AppliChem GmbH, Darmstadt 

Trehalose Pancreac AppliChem GmbH, Darmstadt 

Xylene Carl Roth GmbH & Co. KG, Karlsruhe 

KIT and REAGENT COMPANY 

Agilent High Sensitivity DNA Kit Agilent Technology, Santa Clara, USA 

LipofectamineTM 2000 Life technology, Carlsbad, USA 

LipofectamineTM RNAiMAX Life technology, Carlsbad, USA 

Microplex Library PreparationTM Kit Diagenode SA, Liege, Belgium 

Microplex Library PreparationTM v2 Kit Diagenode SA, Liege, Belgium 

NEBNext® UltraTM Library Prep Kit New England Biolabs, Ipswich, USA 

Qubit dsDNA HS Assay Life Technology, Carlsbad, USA 

Immobilon Western Chemiluminiscent 
HRP substrate 

Millipore, Billerica, USA 

SuperSignal® West Femto Maximum Thermo Fisher Scientific, Waltham, USA 
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2.5 Nucleic acids 

2.5.1 siRNA Oligonucleotides 

For preparing the transfection mix individual siRNAs against the respective genes 

were pooled in a 1:1:1:1 ratio. 

 

 

2.5.2 RT-PCR Primers 

Reverse transcription primers were purchased from Sigma-Aldrich, Germany. 

qPCR Primers 

qPCR primers were designed using the primer designing tool of the NCBI 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

  

siRNA Target sequence (5’-3’) Source Cat. No. 

siKLF10 #1 CACCAGACCUGCCCAAUGA Dharmacon D-006566-01 

siKLF10 #2 GAAGUGAGCAAGCUAAAUG Dharmacon D-006566-02 

siKLF10 #3 GAUAAGGAGUCACAUCUGU Dharmacon D-006566-03 

siKLF10 #4 GAAGAACCCACCUAAAUGU Dharmacon D-006566-04 

Non-targeting 
siRNA-5 

- Dharmacon D-001210-05 

Luciferase GL2 
duplex control 
siRNA 

CGUACGCGGAAUACUUCGA Dharmacon  

siLSD1 #1 UGAAUUAGCUGAAACACAA 
Thermo 
Scientific 

D-009223-01 

siLSD1 #2 GACAAGCUGUUCCUAAAGA 
Thermo 
Scientific 

D-009223-02 

siLSD1 #3 GUAAAGCCACCCAGAGAUA 
Thermo 
Scientific 

D-009223-03 

siLSD1 #4 CUAUAAAGCUCCAAUACUG 
Thermo 
Scientific 

D-009223-04 
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ChIP Primers 

  

Gene name Primer sequence (5’-3’) Reference 

E-cadherin F CTTTGACGCCGAGAGCTACA This study 

E-cadherin R AAATTCACTCTGCCCAGGACG This study 

N-cadherin F GGGTCATCCCTCCAATCAAC This study 

N-cadherin R ACCTGATCCTGACAAGCTCT This study 

MMP2 F TGGATGATGCCTTTGCTCGT This study 

MMP2 R TATCCATCGCCATGCTCCCA This study 

MMP7 F CGGATGGTAGCAGTCTAGGGAT This study 

MMP7 R TCAGAGGAATGTCCCATACCCA This study 

SNAI2 F TCGGACCCACACATTACCTTG This study 

SNAI2 R AAAAAGGCTTCTCCCCCGTG This study 

SNAI1 F CCAGTGCCTCGACCACTATG This study 

SNAI1 R CTGCTGGAAGGTAAACTCTGGAT This study 

TJP3 F CAGAGCATGGAGGATCGTGG This study 

TJP3 R TCAGGTTCTGGAATGGCACG This study 

ZEB1 F GCGCAGAAAGCAGGCGAACCC This study 

ZEB1 R CCCTTCCTTTCCTGTGTCATCCTCC This study 

CD24 F GCTCCTACCCACGCAGATTT This study 

CD24 R GAGACCACGAAGAGACTGGC This study 

HNRNPK F ATCCGCCCCTGAACGCCCAT Karpiuk et al., 2012 

HNRNPK R ACATACCGCTCGGGGCCACT Karpiuk et al., 2012 

RPLP0 F GATTGGCTACCCAACTGTTG Fritah et al., 2005 

RPLP0 R CAGGGGCAGCAGCCACAAA Fritah et al., 2005 

Gene name Primer sequence (5’-3’) Reference 

SNAI2 TSS F CCAGTTCGCTGTAGTTTGGC This study 

SNAI2 TSS R CAGACCCGCTGGCAAGAT This study 

SNAI2 TR F AGTGATGGGGCTGTATGCTC This study 

SNAI2 TR R CTCCCTCCCTTTTCTTTCCCAG This study 
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2.6 Buffers 

2.6.1 ChIP buffers 

 

Nuclear preparation buffer 

 

 

 

 

 

Dilution buffer 

 

 

 

 

 

 

IP buffer 

  

Component 
Stock concentration 

[M] 

NaCl 5 

EDTA (pH 8.0) 0.5 

Tris-HCl (pH 7.5) 1 

NP-40 (v/v) 10 % 

Triton-x 100 (v/v) 10 % 

NaF 0.5 

Component 
Stock 

concentration [M] 

NaCl 5 

EDTA (pH 8.0) 0.5 

Tris-HCl (pH 8.0) 1 

NP-40 (v/v) 10 % 

Sodium deoxycholate (w/v) 10 % 

NaF 0.5 

Component 
Stock 

concentration [M] 

NaCl 5 

EDTA (pH 8.0) 0.5 

Tris-HCl (pH 8.0) 1 

NP-40 (v/v) 10 % 

Sodium deoxycholate (w/v) 10 % 

NaF 0.5 

SDS (w/v) 10 % 
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Wash buffer 

 

 

 

 

 

 

 

Sonication buffer-1 

 

 

 

 

Sonication buffer-2 

 

 

 

 

 

 

 

TE buffer 

 

  

Component 
Stock 

concentration [M] 

LiCl 8 

EDTA (pH 8.0) 0.5 

Tris-HCl (pH 8.5) 1 

NP-40 (v/v) 10 % 

Sodium deoxycholate (w/v) 10 % 

NaF 0.5 

Component 
Stock concentration 

[M] 

EDTA (pH 8.0) 0.5 

Tris-HCl (pH 8.0) 1 

SDS (w/v) 1 % 

Component 
Stock concentration 

[M] 

EDTA (pH 8.0) 0.5 

Tris-HCl (pH 8.0) 1 

Component 
Stock concentration 

[M] 

NaCl 5 

EDTA (pH 8.0) 0.5 

Tris-HCl (pH 8.0) 1 

NP-40 (v/v) 10 % 

NaF 0.5 
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Cross-linking buffer 

 

 

 

 

Proteinase inhibitors 

 

 

 

 

 

 

 

 

2.6.2 Western blot buffers 

SDS separating gel (X %) 

 

 

 

 

Stacking gel (5%) 

 

 

  

Acrylamide X % 

Tris-HCl (pH 8.8) 375 mM 

SDS (w/v) 0.1 % 

APS (v/v) 0.1 % 

TEMED 0.04 % 

Acrylamide X % 

Tris-HCl (pH 6.8) 125.5 mM 

SDS (w/v) 0.1 % 

APS (v/v) 0.1 % 

TEMED 0.1 % 

Inhibitor  Stock concentration  

NiCl2  1 mM 

Pefabloc 1 mM 

Aprotinin/Leupeptin 1 ng/µl 

N-ethylmaleimide 1 mM 

Indole acetamide 10 µM 

Glycerol 2-phosphate 
disodium salt hydrate 

10 mM 

Component 
Stock concentration 

[M] 

Formaldehyde  37 % 

PBS 1X 
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Transfer buffer 

 

 

 

6X Laemmli buffer 

 

 

 

 

 

 

Western salts (10X) 

 

 

 

 

Running buffer 

 

 

 

 

TBS  

 

 

 

 

 

 

  

Component Stock Concentration 

NaCl 150 mM 

KCl 2.68 mM 

Na2HPO4x2H2O 4.29 mM 

KH2PO4 (pH 7.4) 1.47 mM 

Glycine 200 mM 

Tris 25 mM 

SDS (w/v) 0.1 % 

Glycine 1.92 M 

Tris-HCl (pH 8.3) 250 mM 

SDS (w/v) 0.02 % 

Tris-HCl (pH 6.8) 0.35 M 

Glycerol 30 % 

SDS (w/v) 10 % 

DTT 9.3 % 

Bromophenol blue 0.02 % 

Western salts (10X) (v/v) 10 % 

Methanol (v/v) 15 % 
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TBS-T  

                             TBS + 0.1 % (w/v) Tween-20  

RIPA buffer 

 

 

 

Blocking solution 

 

 

Proteinase inhibitors 

 

 

 

 

2.6.3 qRT-PCR buffer 

 

 

 

 

 

 

 

  

PBS 1 X 

NP-40 (v/v) 1 % 

Sodium deoxycholate (v/v) 0.5 % 

SDS (w/v) 0.1 % 

TBST 1 X 

Skimmed milk (w/v) 5 % 

Component  Concentration  

Tris-HCl (pH 8.8) 75 mM 

(NH4)2SO4 20 mM 

Tween-20 0.01 % 

MgCl2 3 mM 

dNTPs 200 µM 

Taq DNA polymerase 0.5 U/reaction 

Triton X-100 0.25 % 

Trehalose  300 mM 

Random primer 30 nM 

SYBR Green I 1:80,000 

Inhibitor  Stock concentration  

Pefabloc 1 mM 

Aprotinin/Leupeptin 1 ng/µl 

Glycerol 2-phosphate 
disodium salt hydrate 

10 mM 
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2.7 Proteins, enzymes and standards 

2.7.1 Antibodies 

Primary antibodies 

Primary antibodies for ChIP, western blot and immunofluorescence were used in 

below mentioned concentration and dilutions. The antibody dilutions for western blot 

analysis were supplemented with 0.01% sodium azide. 

 

Antibody Source Cat. No. Clone IF WB ChIP 

Vimentin 
Santa 
Cruz 

sc6260 v9 1:400 1:2500  

E-cadherin 
Cell 

Signaling 
3195 24E10 1:200 1:1000  

N-cadherin 
Cell 

Signaling 
#13116 D4R1H  1:1000  

ZEB1 Sigma  HPA027524  1:200 1:500  

ZO-1 
Cell 

Signaling 
8193 D7D12 1:200   

SNAI2 
Cell 

Signaling 
9585 C19G7 1:200 1:1000  

SNAI1 Abcam ab17732   1:1000  

KLF10 Abcam ab184182 EPR12102(2)  1:1000 1 µg 

CD24 
Hans 
Peter 

 SWA11  1:2  

p21 
(CDKN1A) 

Cell 
Signaling 

#2947 12D1  1:1000  

H3K9Ac Diagenode C15410004    1 µg 

H3K27Ac Diagenode C15410196    1 µg 

HDAC1 Diagenode C15410053    2 µg 

LSD1 
Cell 

Signaling 
#2184 C69G12   1 µg 

H3K4me1 Diagenode C15410194    1 µg 

HDAC2 
Santa 
Cruz 

sc-7899 H54   1 µg 

HSC-70 
Santa 
Cruz 

sc7298 B-6  1:10000  

IgG (non-
specific) 

 ab46540    1 µg 
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Secondary antibodies 

 

2.7.2 Enzymes 

 

2.7.3 Molecular weight standards 

 

2.8 Cell culture medium 

DMEM cell culture medium 

DMEM phenol red-free medium 

10% fetal bovine serum 

100 U/ml penicillin 

100 µg/ml streptomycin 

 

 

Standard  Company  

Gene RulerTM DNA-Ladder Fermentas GmbH, St. Leon-Rot 

PageRulerTM Prestained Protein Ladder Fermentas GmbH, St. Leon-Rot 

Enzyme Company 

Taq DNA Polymerase Prime Tech, Minsk, Belarus 

Reverse Transcriptase (M-MuLV) New England Biolabs, FFM 

Proteinase-K Life Technology, Carlsbad, USA 

RNase A Qiagen GmbH, Hilden 

RNase Inhibitor New England Biolabs, FFM 

NAME Source Cat. No. WB IF 

Anti-mouse (IgG)-HRP Santa Cruz  1:10,000  

Anti-rabbit (IgG)-HRP Santa Cruz  1:10,000  

Alexa Fluor® 594 Goat Anti-
Mouse IgG (H+L) 

Life Technologies A11005  1:500 

Alexa Fluor® 488 Goat Anti-
Rabbit IgG (H+L) 

Life Technologies A11008  1:500 
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DMEM/F12 cell culture medium 

DMEM phenol red-free medium (high glucose) 

10% fetal bovine serum 

100 U/ml penicillin 

100 µg/ml streptomycin 

MEM cell culture medium 

MEM phenol red-free medium (high glucose) 

10% fetal bovine serum 

1% L-Glutamine 

100 U/ml penicillin 

100 µg/ml streptomycin 

Cell freezing medium 

DMEM - 42% 

Fetal bovine serum - 50% 

DMSO - 8% 

PBS for cell culture 

1 PBS tablet per 500 ml of distilled H2O 

 

2.9 Cell lines 

 

Cell line Species Origin  Source 

A549 Human  Lung adenocarcinoma 
Prof. Ekkehard Dikomey, UKE, 
Hamburg 

Panc1 Human  Pancreatic cancer 
Dr. Elisabeth Heßmann, University 
Medical Center, Göttingen 

L3.6 Human Pancreatic cancer 
Dr. Elisabeth Heßmann, University 
Medical Center, Göttingen 

BxPC3 Human 
Pancreatic 
adenocarcinoma 

Dr. Elisabeth Heßmann, University 
Medical Center, Göttingen 
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2.10 Growth factors and inhibitors 

 

2.11 Software and online tools 

 

 

NAME SOURCE 

useGalaxy https://usegalaxy.org/ 

Galaxy Cistrome http://cistrome.org/ap/root 

Galaxy Deeptools http://deeptools.ie-freiburg.mpg.de/ 

REVIGO GO analysis http://revigo.irb.hr/ 

DAVID GO analysis https://david.ncifcrf.gov 

Gene Set Enrichment Analysis  http://software.broadinstitute.org/gsea/index.jsp 

R statistical software https://www.r-project.org/ 

DESeq2 package 
https://bioconductor.org/packages/release/bioc/
html/DESeq2.html 

DiffBind package (version 3.2) 
http://bioconductor.org/packages/release/bioc/h
tml/DiffBind.html 

GREAT analysis software http://bejerano.stanford.edu/great/public/html/ 

ReMap online tool http://tagc.univ-mrs.fr/remap/ 

Oncomine database https://www.oncomine.org/resource/main.html 

Kaplan-Meier plotter 
http://kmplot.com/analysis/index.php?p=backgr
ound 

Zeiss ZEN lite software 
http://www.zeiss.com/microscopy/en_de/produc
ts/microscope-software/zen-lite.html 

Bio-Rad CFX Manager 3.1 Bio-Rad Laboratories, Hercules, USA 

Image Lab Version 5.2 build 
14 

Bio-Rad Laboratories, Hercules, USA 

Integrative Genome Viewer 2 
https://www.broadinstitute.org/software/igv/dow
nload 

Primer designing tool/NCBI 
primer-BLAST 

www.ncbi.nlm.nih.gov/tools/primer-blast/ 

NAME Company 

Recombinant Human TGF-β1 R&D Systems® GmbH, Germany 

SP2509 (LSD1 inhibitor) Selleckchem, USA 

Vorinostat Selleckchem, USA 

Resminostat 4SC AG, Martinsreid, Germany 

4SC-202 4SC AG, Martinsreid, Germany 
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3. Methods 

3.1 Cell culture 

3.1.1 Culturing of adherent cells 

A549 (lung adenocarcinoma) and Panc1 (pancreatic ductal carcinoma) cells were 

cultured in phenol-red free high-glucose Dulbecco’s modified Eagle’s medium 

(DMEM) whereas BxPC3 (pancreatic adenocarcinoma) and L3.6 (pancreatic cancer 

cell) were grown in minimum essential medium Eagle (MEM). Media was 

supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 µg/ml 

streptomycin at 37 °C and 5% CO2. 

For TGFβ treatment, cells were washed once with 1X PBS and fresh medium was 

added. Cells were treated with 5 ng/ml TGFβ for either 90 min or 72 hours. 

Cells were treated with different inhibitors for 12 hours at following concentrations: 

4SC-202 (1 µM), SP2509 (500 nM), Resminostat (1 µM), Vorinostat (1 µM). 

3.1.2 siRNA mediated reverse transfection 

siRNA mediated reverse transfection was performed using LipofectamineTM 

RNAiMAX according to the manufacturer’s instruction. For transfection in a 6-well 

plate, 30 pmol of used siRNA’s were diluted in 500 µl of opti-MEM per well following 

which 5 µl of LipofectamineTM RNAimAX was added and mixed gently. Transfection 

mix was then incubated at RT for 20 min. While the transfection mix was incubating 

cells were washed twice with 1X PBS and trypsinized and diluted in antibiotics free 

medium. Cells were counted using Neubauer counting chamber and approximately 

250,000 cells were added to each well containing transfection master mix. For 

transfections in 10 cm culture plates a four times higher volume of the reagents and 

cell number was used.  
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3.1.3 Migration assay 

A transwell migration assay was performed to monitor the migration potential of the 

cells upon knock-down of a gene of interest as well as various treatment conditions. 

Post-transfection cells were trypsinized and approximately 25,000 cells were seeded 

into the upper chamber of the cell culture inserts (por size 8.0 µm) which were pre-

equilibrated with serum-free medium for approximately 30 minutes.  Cells were 

allowed to migrate through the membrane for 48 hours. Cells from the upper side of 

the membrane were scraped off using a Q-Tip without disturbing the cells on the other 

side. Migrated cells were then fixed with 100% methanol for 10 min. Following fixation 

cells were stained with crystal violet (0.1%) dissolved in 10% (v/v) formaldehyde for 

10 min. For getting rid of excess staining inserts were rinsed in distilled water twice 

and allowed to dry. Migrated cells were visualized under the microscope. 

3.1.4 Colony formation assay 

Initially, approximately 250,000 cells were seeded in a 6-well plate and transfection 

was performed. 24 hour post-transfection cells were washed with PBS and the 

medium was replaced with medium containing antibiotics. 48 hour later cells were 

trypsinized and approximately 2,000-3,000 cells were seeded into each well of a 6-

well plate and allowed to grow for 5-7 days and during this time period they were 

treated with inhibitors at the respective concentrations. Next, colonies were fixed with 

100% methanol for 10 minutes and subsequently stained with 0.1% crystal violet for 

20 minutes at RT. Cells were destained with tap water to remove excess stain and 

allowed to dry at RT. Plates were then scanned with a Scanner Epson V100 photo. 
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3.2 Molecular biology 

3.2.1 RNA isolation 

RNA isolation was performed using QIAzol® reagent according to the manufacturer’s 

instructions. Briefly, medium was sucked off and cells were washed twice with PBS 

and then lysed by adding 500 µl QIAzol® reagent per well. Cells were gently scraped 

and collected into 1.5 ml tubes. RNA was isolated by chloroform extraction and 

isopropanol precipitation method. In short, 100 µl chloroform was added to the 

samples which were then vortexed for approximately 20 min and centrifuged at 

10,000g for 20 min at 4 °C. The upper aqueous phase was collected and then samples 

were precipitated with isopropanol overnight at -20 °C. On the following day samples 

were centrifuged at maximal speed for 20 min at 4 °C, pellets were washed twice with 

70% ethanol, dried and resuspended in 40 µl DEPC-treated water. The RNA 

concentration was measured using NanoDrop and used for cDNA synthesis or RNA-

seq. 

3.2.2 cDNA synthesis 

For cDNA synthesis 1 µg of total RNA was mixed with 6 µl of master mix containing 2 

µl of 15 µM random primers and 4µl of 2.5 mM dNTP mix, volume was brought up to 

16 µl with DEPC-treated water and incubated for 5 min at 70 °C. Next, 4 µl of reverse 

transcription master mix containing 2 µl 10x reaction buffer, 10 units RNAse inhibitor, 

25 units of M-MuLV reverse trascriptase and 1.625 µl DEPC-treated water were added 

to each sample. cDNA synthesis was performed at 42 °C for 1 h followed by enzymatic 

inactivation at 95 °C for 5 min. Samples were then diluted with DEPC-treated water to 

a volume of 50 µl. 
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3.2.3 Quantitative real-time PCR 

Quantitative real-time PCR was performed in a reaction volume of 25 µl. For each 

reaction 1 µl of cDNA or ChIP DNA was mixed with 8.5 µl of ddH2O, 1.5 µl of 5 µM 

primer mix (reverse and forward) and 14 µl of qRT-PCR mix. qRT-PCR mix was 

prepared with following the reagents: 75 mM Tris-HCL (pH 8.8), 20 mM (NH4)2SO4, 

0.01% Tween-20, 3 mM MgCl2, 200 µM dNTs, 20 U/ml Taq polymerase, 0.25% Triton 

X-100, 1:80,000 SYBR Green I and 300 mM Trehalose.  

The PCR was reaction was performed using the following two-step protocol 

    95 °C   –   2 min 

    95 °C   –   15 sec 

    60 °C   –   1 min             40x                        

The PCR reaction was followed by a melting curve analysis from 60 °C to 95 °C with 

read every 0.5 °C. 

A standard curve made from all the cDNA samples was used for the quantification. 

HNRNPK was used as an internal reference gene to normalize all the qRT-PCR 

samples following statistical analysis. The expression levels were displayed relative to 

the control sample and expressed as “relative mRNA levels”. In case of ChIP qRT-

PCR, quantification was performed using a standard curve made from the ChIP input 

DNA. ChIP samples were normalized to their corresponding input sample and 

displayed as “% of input”. 

3.2.4 Chromatin-immunoprecipitation (ChIP) 

3.2.4.1 Cross-linking and sonication 

For ChIP experiments cells were either grown in 10 cm or 15 cm plates. Cells were 

cross-linked with 1% formaldehyde in PBS for either 10 min (histone modifications 
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ChIP) or 15 min (KLF10 and HDAC1 ChIP) at RT. The formaldehyde cross-linking 

reaction was then quenched by adding 1.25 M glycine for 5 min. After that cells were 

washed twice with ice-cold PBS. 1 ml of nuclear preparation buffer (lysis buffer) 

containing proteinse inhibitor cocktail was added on to the cells which were then 

scraped and collected into a 1.5 ml tubes. Nuclei were then centrifuged at 12,000g for 

1 min at 4 °C, the supernatant was discarded and the pellet was gently resuspended 

in 1 ml nuclear preparation buffer and again centrifuged. The final pellet was 

resuspended in 200 µl sonication buffer-1 (1% SDS) containing an proteinase inhibitor 

cocktail and incubated on a rotating wheel for 15 min at 4 °C. Next, the SDS content 

was diluted to 0.33% by adding 100 µl of sonication buffer-2 (no SDS) to each sample. 

Samples were then sonicated using Bioruptor® Pico (Diagenode) at high power with 

30 sec on/off pulse for 25 or 30 cycles. Sonicated samples were then centrifuged at 

12,000 at 8 °C for 10 min and if there was no visible pellet then proceeded with pre-

clearing step. 

3.2.4.2 Shearing check 

To confirm that sonication was efficient and chromatin was sheared properly a 

shearing check was performed before proceeding with pre-clearing step. Briefly, 10 µl 

of the sonicated chromatin sample were taken in a separate tube and 100 µl of 

sonication buffer-1 and 1 µl of Proteinase-K (20mg/ml) was added and incubated 

overnight in a thermo-shaker at 65 °C (800 rpm). On the following day samples were 

briefly spin down and DNA isolation was performed by phenol/chloroform/isoamylic 

alcohol extraction as described above (for visualizing the pellet pink precipitant was 

used). DNA was dissolved in 15 µl Tris 10 mM (pH 8) containing 100 µg/ml RNAseA 

and incubated 1 h at 37 °C (700 rpm). DNA was then mixed with the loading dye and 

run on a 1.5% agarose gel at 100 V. The gel was analyzed on gel documentation and 
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shearing was considered efficient if most of the fragments were found to be 

concentrated around 150-300 bp range in all the samples. 

3.2.4.3 Pre-clearing and immunoprecipitation 

For pre-clearing 100 µl of 50% sepharose bead slurry was added to the samples and 

incubated for 1 h at 4 °C. Following pre-clearing, samples were centrifuged, 

supernatant was discarded and the pellet was resuspended in dilution buffer 

containing a proteinase inhibitor cocktail. The desired number of aliquots was made 

and samples were either snap frozen in liquid nitrogen and stored at -80 °C or 

proceeded with the immunoprecipitation step. 10 µl input sample (10% of ChIP extract) 

for the corresponding ChIP sample was taken in separate tube and snap frozen.  For 

the immunoprecipitation step 100 µl of chromatin extract was diluted up to 500 µl using 

IP buffer containing proteinse inhibitor cocktail and incubated with the appropriate 

amount (refer to materials) of the respective antibody overnight on a rotating wheel at 

4 °C. Chromatin complexes were then pulled down by adding 30 µl of Protein-A 

sepharose 50% slurry prepared in IP buffer and incubated for 2 h at 4 °C. Afterwards, 

samples were centrifuged at 2000g for 2 min at 4 °C following which washing steps 

with different buffers (ice-cold) were carried out in the following order: thrice with IP 

buffer, twice with wash buffer, twice with IP buffer and twice with TE buffer. Between 

the washing steps beads were gently mixed to make sure the beads are in suspension 

with the buffers. In the subsequent downstream sample processing steps input 

samples were also included.  

3.2.4.4 DNA isolation 

Immunprecipitated chromatin complexes were treated with 15 µl RNAse A (10µg) 

diluted in 10 mM Tris pH 8 (0.2 µg/µl) and incubated for 30 min at 37 °C. Next, any 

protein bound to DNA was removed by treating the samples with 1 µl of Proteinase-K 
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(20 mg/ml) and incubated overnight at 65 °C on a thermo-shaker. On next day, 

samples were centrifuged at 2,000g for 2 min at RT and the supernatant was 

transferred to a fresh tube. DNA was precipitated by adding 10 µl of 8 M LiCl and 4 µl 

colorless co-precipitant (Bioline). Subsequently, 200 µl of premixed 

phenol/chloroform/isoamylic alcohol (25:24:1) was added to each sample and 

vortexed for 30 sec and then centrifuged at maximal speed for 2 min at RT. The 

aqueous phase was collected in a fresh tube and back extraction was performed by 

adding 200 µL Tris pH 8 10 mM + 0.4 M LiCl and vortexed for 30 sec. Samples were 

centrifuged at maximal speed and again the aqueous phase was collected and pooled 

with the first one. Precipitation was performed by incubation with 1 ml 100% ethanol 

overnight at -80 °C. On the following day samples were centrifuged at 15,000g for 30 

min at 4 °C. Pellets were washed with 70% ethanol and again centrifuged at 15,000g 

for 5 min. All the ethanol was removed and pellets were dried and dissolved in 40 µl 

of DEPC-treated water. 5 µl ChIP DNA was aliquot into a separate tube and diluted 

for analysis by quantitative real-time PCR to check for the efficiency of ChIP. ChIP 

with non-specific IgG antibody was performed to subtract the background binding in 

the main samples. ChIP samples were normalized to input DNA ad represented as “% 

of Input”. 

3.3 Protein biochemistry 

3.3.1 Sample preparation and SDS-PAGE 

For extracting the protein, the cells were washed with 1x PBS and scraped in ice-cold 

RIPA buffer containing proteinase inhibitor cocktail (1 mM Pefabloc, 1 ng/µl 

Aprotinin/Leupeptin, 10 mM BGP and 1 mM NEM). To shear the genomic DNA 

samples were sonicated for 10 cycles at 30 sec on/off pulse using a Bioruptor® Pico 

(Diagenode) at high power. Subsequently, cell lysates were diluted with Laemmli 
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buffer to 1x and boiled at 95 °C for 10 min. Protein samples of interest were separated 

using denaturing agent SDS (sodium dodesylsulfate) in a polyacrylamide gel upon 

electrophoresis (SDS-PAGE). Composition of resolving and stacking gels used are 

described in the Materials section. Polyacrylamide gels were run in SDS running buffer 

at 20 mA/gel. 

3.3.2 Western blot analysis 

After separating the proteins by SDS-PAGE they were detected by western blot 

analysis (Towbin et al., 1979) using specific antibodies against protein of interest. 

Separated proteins were then transferred to a nitrocellulose membrane at 100 V for 2 

h depending on the size of the protein following which the membranes were incubated 

with blocking solution (5% skimmed milk in TBS-T) for 1 h to prevent non-specific 

antibody binding. After that the membranes were incubated with the respective 

antibodies prepared in blocking solution (antibody dilution is described in Materials 

section) overnight at 4 °C. On the next day, membranes were washed three times with 

TBS-T buffer and incubated with horseradish peroxidase-conjugated secondary 

antibodies in blocking solution for 1 h at RT. Membranes were again washed three 

times with TBS-T buffer and HRP signals were detected using enhanced chemo 

luminescence and either exposed to X-ray films or western blot imager (Biorad). 

3.3.3 Immunofluorescence  

Cells were grown onto glass coverslip in 24-well plate. Cells were gently washed with 

1x PBS twice and fixed with 4% paraformaldehyde for 10 minutes and then washed 

with 1x PBS. Permealization was achieved using 0.1% Triton X-100 (prepared in PBS) 

for 10 minutes following which cells were washed twice with 1x PBS. Cells were 

blocked in 10% FBS in 1x PBS for 20 minutes (to avoid non-specific antibody binding) 

and then incubated with the primary antibody (diluted in blocking solution) overnight 
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at 4°C. On the next day cells were washed three times with 1x PBS and then incubated 

with the respective Alexa-488 (A11008) or Alexa-594 (A11005) conjugated secondary 

antibody (Invitrogen) for 1 h at RT. Cells were washed twice with 1x PBS and then 

incubated with DAPI (Sigma, D9542) diluted 1:15,000 in 1x PBS for 5 minutes at room 

temperature. The coverslip was then mounted on to the glass slide using mounting 

medium (Dako, S3023). Images were captured using the AXIO Scope.A1 microscope 

from Zeiss and data was analyzed using the ZEN 2 lite software. 

3.4 Next generation sequencing 

3.4.1 Chromatin immunoprecipitation-sequencing (ChIP-seq) 

After checking the efficiency of chromatin immunoprecipitation by quantitative real-

time PCR isolated DNA was used for sequencing. To ensure that amount of DNA is 

high enough for the purpose of library preparation DNA concentration was measured 

using a Qubit dsDNS HS assay on a Qubit® 2.0 Fluorometer. ChIP sequencing was 

performed in triplicates. 

3.4.1.1 Library preparation 

2-10 ng DNA were used for the library preparation. DNA samples were first 

resonicated to get fragments of 200-300 bp size using Bioruptor® Pico (Diagenode). 

Fragmented DNA was then used to prepare the library with NEBNext Ultra DNA library 

preparation kit (New England Biolabs) (for KLF10 ChIP) or MicroPlex™ Library 

Preparation Kit v2 from Diagenode® (for the all other ChIPs) according to the 

manufacturer’s protocol. Briefly, end prep reaction was performed by adding end prep 

enzyme mix and end prep reaction buffer (total reaction volume 65 µl) to each sample 

and completing the process on a thermal cycler programmed for 20 °C for 30 min and 

65 °C for 30 min. Afterwards, adaptor ligation was performed where the following 

components were mixed to the samples: Blunt/TA ligase master mix (15 µl), NEBNext 
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adaptor for Illumina (2.5 µl) and ligation enhancer (1 µl) in a final volume of 83.5 µl and 

samples were incubated in a thermal cycler for 15 min at 20 °C. Upon completion 3 µl 

of USER enzyme were added and samples were incubated for 15 min at 37 °C. Size 

selection of the adaptor ligated DNA was performed using 0.9x AMPure XP beads on 

a magnetic stand with two washing steps with 80% alcohol. Beads were allowed to dry 

and then resuspended in 28 µl of 10 mM Tris pH 8.0. Subsequently, PCR amplification 

was performed with 23 µl of the DNA during which specific Index primers (barcode) 

were used for each DNA library to allow that after sequencing samples can be 

separated. Afterwards, PCR amplified DNA was cleaned using AMPure XP beads and 

the DNA was resuspended in 33 µl 10 mM Tris pH 8.0. 

Each ChIP DNA library concentration was measured using Qubit® 2.0 Fluorometer 

and fragment sizes of the libraries were analyzed using Agilent Bioanalyzer 2100 (High 

Sensitivity DNA assay). 12 ChIP DNA libraries were pooled together to a final 

concentration of 10 nM which was later diluted to 2 nM. cDNA libraries were then 

sequenced using HiSeq 2500 (Illumina) sequencer at the Transcriptome Analysis 

Laboratory, Göttingen. 

3.4.2 RNA sequencing 

RNA sequencing was performed in either duplicates or triplicates. Before proceeding 

with the library preparation RNA integrity was checked on an agarose gel and by 

visualizing the bands under gel documentation. Once the RNA integrity was confirmed 

the samples were used for library preparation. 

3.4.2.1 Library preparation 

RNA library preparation was performed using the NEBNext® Ultra™Library Prep Kit 

according to the manufacturer’s instructions. Briefly, 500 ng to 1 µg of total RNA were 

used for the further downstream processing. From the total RNA, mRNA enrichment 
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was performed using a polyadenylayed magnetic beads following which RNA was 

fragmented by incubating the samples at 94 °C for 15 min in a thermal cycler. 

Subsequently, fragmented and primed mRNA was used for the first and second strand 

cDNA synthesis. Double-stranded cDNA was then purified using Agencourt AMPure 

XP beads and afterwards end repair reaction (single base overhangs at the 5’ end) 

which was immediately followed by adaptor ligation (sequencing adaptor) and 

purification steps. Purified adaptor ligated cDNA was then PCR amplified where one 

universal common primer was used for all the samples while for the purpose of 

barcoding a specific index primer was used for each sample that later allows the 

separation of individual sample loaded on the same lane of the sequencer. 

3.5 Bioinformatic analysis of ChIP and RNA sequencing data 

3.5.1 Analysis of ChIP-sequencing data 

Raw ChIP sequencing data was processed and analyzed using tools available on 

publicly accessible servers (Galaxy, Galaxy/Cistrome and Galaxy/deepTools). Before 

proceeding with the downstream processing of the data all the files were checked for 

their quality by running FASTQ quality check (FastQC) command on Galaxy (S. 

Andrews Babraham Institute) to ensure that the quality of the raw data was good 

enough to be processed further. 

3.5.2 Mapping and Peak Calling 

After performing the quality check on the raw data the FASTQ files were used to align 

the sequenced reads to the human genome. For this purpose the Bowtie2 function on 

Galaxy was used and the reads were aligned to human reference genome (hg19, 

GRCh37) (Langmead and Salzberg, 2012). Final aligned files from the Bowtie2 tool 

were in SAM format (Sequence Alignment/Map) which were converted to BAM format 

(Binary Alignment/Map) using the SAMtools package on Galaxy (Li et al., 2009).  
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The BAM files (BAM files from the triplicate ChIP sample were merged) containing the 

mapped and aligned reads were used for the purpose of peak calling using Model-

based Analysis of ChIP-seq 2 (MACS2) tool available on Galaxy (Zhang et al., 2008). 

Using the signal from the input sample as the background MACS2 provides the 

significantly enriched genomic regions in the ChIP sample calling them as a peak. 

Minimum FDR (q-value) cutoff for peak detection was set to 0.05 and. 

3.5.3 Normalization and visualization of ChIP sequencing data 

The BAM files were used for the purpose of normalization using the bamCoverage tool 

available on the public server Galaxy/deepTools (Ramírez et al., 2014). The tool 

divides the genome into bins of specific size (default setting ‘50’ was used) and then 

it calculates the number of reads that overlaps with each of the bins in the whole 

genome. The total number of mapped reads was then normalized using the reads per 

kilobase per million (RPKM) option. Recently ENCODE Project Consortium has listed 

specific genomic loci which were described as artificial high signal regions which were 

excluded from the purpose of normalization. The bamCoverage output file ‘bigwig’ was 

then used to visualize the binding intensities at individual genomic regions using 

Integrative Genomics Viewer software (Robinson et al., 2011). To determine the 

enrichment at various genomic locations, Cis-regulatory Annotation System (CEAS) 

was used which gives the relative enrichment of the ChIP regions at specific genomic 

locations compared to the whole genome (Shin et al., 2009). Furthermore, bigwig files 

were used to generate heatmaps and aggregate profile plots over defined genomic 

regions (deepTools and Cistrome). 

3.5.4 Differential Binding analysis 

Differential binding analysis was performed for the H3K4me1 and H3K27ac binding 

sites using DiffBind (Ross-Innes et al., 2012) package on R. Genomic coordinate file 
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for all the genes was obtained using UCSC genome browser (Karolchik et al., 2004). 

Significantly enriched H3K4me1 bound regions were used to perform GREAT 

(Genomic Region Enrichment of Annotations Tool) analysis (McLean et al., 2010) to 

find the associated genes. ReMap was performed on the genomic regions from 

GREAT to find the enriched transcription factors at the given genomic regions (Griffon 

et al., 2014). Motif analysis was preformed using SeqPos motif tool on 

Cistrome/Galaxy (He et al., 2010). 

3.5.5 Analysis of RNA-sequencing data 

RNA-seq was performed in triplicates for all the experiments (duplicate for A549 cells). 

The quality of the raw data (FASTQ) was checked using the FastQC tool on Galaxy. 

Fastq files were mapped to the human genome (hg19) using the TopHat tool on 

Galaxy (settings were set to ‘very sensitive’) (Kim et al., 2013). BAM files were then 

coordinate sorted using SortSam (version 1.126.0) from Picard tools on Galaxy. 

Subsequent files were then used for read counting using the HTSeq tool (version 

0.6.0) (Anders et al., 2015) and then htseqcount files were used for measuring 

differential gene expression using DESeq2 package on R (Bioconductor version 3.2) 

(Love et al., 2014). Gene Ontology (GO) analysis was performed using the DAVID 

(Database for Annotation, Visualization and Integrated Discovery) software (Huang et 

al., 2009). Significantly enriched GO categories were selected based on the FDR value 

≤ 0.05. Gene Set Enrichment Analysis (GSEA) was performed with standard 

parameters (1000 permutations of gene sets, Signal2Noise ranking metric) and 

significantly enriched pathways (c5.all gene sets) were selected (Subramanian et al., 

2005). Molecular Signatures Database (MSigDB) was used to compute the overlap 

between available gene set and the gene set from our RNA-seq data. 
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3.6 Xenograft study 

For each animal, one million tumor cells were resuspended in 20 µl of a 1∶1 mixture of 

DMEM medium and BD Matrigel Matrix High Concentration (HC), Growth Factor 

Reduced (GFR) (BD Bioscience) and kept on ice until transplantation. 8 to 16 weeks 

old virgin NMRI foxn1nu/nu mice (Janvier Labs) were anesthetized by Isofluran 

inhalation-narcosis (2-3 %, Forene). The cell suspensions were injected with a 0.3 ml 

Micro-Fine syringe (BD Bioscience) into left abdominal flank. The operation was 

performed under sterile conditions. After the mice has developed tumor, they were 

randomly divided into two groups (n=12 per group): control and treated. Mice were 

treated with either vehicle (methylcellulose) or 4SC-202 for days (twice per day). 

Mouse weight and size of growing tumors were measured every day.
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4. Results 

1. KLF10 and epithelial-to-mesenchymal transition 

In this study the role of KLF10 in TGFβ-induced epithelial-to-mesenchymal transition 

(EMT) was investigated. The main focus of the study was to uncover the molecular 

mechanism through which KLF10 acts as a tumor suppressor and whether it can play 

a role in metastasis. Previous studies have well documented the role of KLF10 in 

cancer and also as a central regulator of TGFβ signaling, which is frequently perturbed 

in different types of cancer. 

TGFβ signaling is one of the most important and potent drivers of cancer metastasis, 

which is the leading cause of cancer-related death. It was therefore, the goal of the 

study to find out if KLF10, a central regulator of TGFβ signaling, can block its pro-

metastatic effects. 

4.1 KLF10 as a tumor suppressor 

4.1.1 KLF10 expression is downregulated in lung and breast cancer 

In order to elucidate the role of KLF10 as a tumor suppressor it was important to check 

if KLF10 expression is perturbed in cancer compared to the normal tissues. For this 

purpose the publicly available Oncomine database was utilized. The Oncomine 

database contains a large collection of gene expression datasets from different types 

of cancer, allowing the users to check the expression of any particular gene in a wide 

range of independent datasets from different cancer types. Oncomine gene 

expression datasets for lung adenocarcinoma and breast carcinoma were utilized to 

check for the expression levels of KLF10. Consistent with a potential tumor suppressor 
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function, KLF10 gene expression was significantly downregulated in lung 

adenocarcinoma compared to normal lung (Fig. 15). 

Figure 15: KLF10 expression in lung adenocarcinoma. KLF10 expression was found to be significantly 

downregulated in lung adenocarcinoma compared to the normal lung samples as shown in four independent 

datasets. Data was generated using publicly available Oncomine database. 

 

Furthermore, given previous data indicating decreased expression of KLF10 in breast cancer 

(Reinholz et al., 2004; Subramaniam et al., 1998), we also examined the available datasets 

for breast carcinoma and found that KLF10 expression was significantly downregulated in 

invasive breast carcinoma compared to the normal breast (Fig. 16). Low KLF10 expression in 

invasive carcinoma supports the tumor suppressor role of KLF10 as well as a possible role in 

regulating metastasis. Previously it was shown that KLF10 expression in breast cancer is 

stage dependent highest being in normal breast and almost complete loss of expression in 

metastatic breast cancer (Subramaniam et al., 1998). 
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Figure 16: KLF10 expression in breast carcinoma. KLF10 expression was found to be significantly downregulated 

in invasive breast carcinoma compared to the normal breast samples as shown in four independent datasets. 

Data was generated using publicly available Oncomine database.  

 

4.1.2 KLF10 expression correlates with disease outcome 

In line with decreased expression of KLF10 in cancer samples we sought to investigate 

if KLF10 expression level can be a prognostic marker to predict the disease outcome 

in cancer patients. For this purpose we utilized an online survival analysis tool called 

Kaplan-Meier Plotter to determine the prognostic role of KLF10 in lung and breast 

cancer. We found that lung cancer patients with low KLF10 expression have poor 

overall survival rate as compared to the patients with high KLF10 expression (Fig. 

17A). Furthermore Kaplan-Meier plotter for breast cancer (luminal-B subtype) 
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revealed that low KLF10 expression was related to poor disease and metastasis free 

survival (DMFS) compared to high KLF10 expression (Fig. 17B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: KLF10 expression level can predict disease outcome. (A) Kaplan-Meier plot for lung adenocarcinoma 

showing that patients with high KLF10 expression have significantly higher overall survival (OS) probability 

compared to patients with low KLF10 expression. (B) Kaplan-Meier plot for breast cancer (subtype ‘luminal B’) 

showing that patients with high KLF10 expression have significantly higher disease and metastasis free survival 

(DMFS) compared to the patients with low KLF10 expression. 
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4.2 KLF10 knock-out results in tumor formation in vivo 

In order to gain further insight into the tumor suppressor role of KLF10 in an in vivo 

model system for lung cancer we carried out a study in Klf10 knock-out mice. To 

induce lung tumor formation in Klf10 knock-out mice and wild type mice we utilized the 

commonly used laboratory chemical carcinogen DMBA which has been previously 

reported to induce lung cancer with a high incidence (Duro de Oliveira et al., 2013). 2-

5 day old mice were treated with DMBA and then allowed to develop tumors over a 

period of four months following which they were they were analyzed for lung tumor 

incidence and tumor size. Importantly neither wild type nor the Klf10 knock-out mice 

had any other genetic alterations such as KRAS or EGFR.  

 

 

Figure 18: KLF10 mutation results in tumor formation. (A) Microscopic images of cancerous lesions in KLF10 

knock-out mice lung. (B) Increased tumor incidence in KLF10 knock-out mice compared to the wild type mice, p-

value = 0.03. (C) Increased tumor size in KLF10 knock-out mice compared to wild type mice, p-value = 0.05. (WT= 

wild type, Het= heterozygous, KO= knock-out). 
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After four months of DMBA treatment, wild type and Klf10 knock-out mice were 

analyzed for tumor formation (Fig. 18A). Interestingly, Klf10 knock-out mice had more 

lung tumors compared to the wild type mice implying that mutation in KLF10 resulted 

in significantly increased tumor incidence (Fig. 18B). Furthermore, we also observed 

significantly higher tumor size in Klf10 knock-out mice compared to the wild type mice 

(Fig. 18C). These results from our in vivo study not only establish a tumor suppressor 

role for KLF10 in lung cancer but also strengthen the notion that loss of KLF10 

expression can promote tumor formation. 

4.3 KLF10 and TGFβ signaling 

Our data supports that KLF10 acts as a tumor suppressor and low KLF10 expression 

is associated with poor overall survival rate in lung cancer patients. Previous data 

suggests that KLF10 is an important regulator of TGFβ signaling (Johnsen et al., 

2002a) and overexpression of KLF10 has been shown to mimic the anti-proliferative 

function of TGFβ (Johnsen et al., 2004). Previous studies have well documented the 

pro-metastatic effects of TGFβ in late stages of cancer (Dalal et al., 1993; Friedman 

et al., 1995; Gorsch et al., 1992; Huang et al., 2003). One of the most important goals 

of this thesis work was to find out if KLF10, being a central player in TGFβ signaling, 

can fine tune the balance between anti-proliferative and pro-metastatic functions of 

TGFβ signaling. To investigate this we performed a transcriptome-wide study to 

determine the effect of KLF10 on TGFβ regulated genes. 

4.3.1 The majority of TGFβ regulated genes are affected by KLF10 

In order to study the transcriptome-wide effects of KLF10 on TGFβ regulated genes 

we performed high throughput RNA sequencing. Since KLF10 expression was 

perturbed in lung adenocarcinoma patients we chose A549 (lung adenocarcinoma) 

cell line. In parallel we also performed the same study in another cell line, Panc1 
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(pancreatic epithelial cancer cell line) where overexpression of KLF10 in these cells 

has been shown to induce TGFβ like anti-proliferative effects and apoptosis. 

Furthermore, A549 and Panc1 cell lines are TGFβ responsive. Initially cells were 

transfected with either non-targeting control siRNA or siRNA targeting KLF10 and 24 

hours post-transfection cells were either treated with TGFβ or vehicle. Total RNA was 

isolated 72 hours post treatment and was used to perform mRNA sequencing. 

Significantly (padj ≤ 0.05) up (log2fc ≥ 1.5) or down (log2fc ≤ -1.5) regulated genes 

were selected for further analysis. In the heatmap, “TGFβ vs Control” represents 

significantly regulated genes in TGFβ-treated cells compared to the vehicle (control) 

treated cells and “siKLF10+TGFβ vs TGFβ” represents significantly regulated genes 

in KLF10-depleted TGFβ-treated cells compared to the cells treated with TGFβ alone. 

Remarkably a significant fraction of TGFβ-regulated genes was affected by KLF10 

depletion both in A549 as well as Panc1 cells (Fig. 19). However, there was a certain 

number of genes that remained unaffected by KLF10 depletion, implying that these 

genes do not require KLF10 for their regulation. Interestingly some TGFβ-upregulated 

genes were further upregulated, whereas some downregulated genes were further 

downregulated following KLF10 depletion whereas a number of other genes were 

differently regulated by KLF10 depletion. Strikingly, we obtained similar results from 

transcriptome-wide studies in two different cancer cell lines which could mean that the 

effect of KLF10 on TGFβ signaling is a general phenomenon in different cancer types.  
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Figure 19: Transcriptome wide effects of KLF10 on TGFβ regulated/targeted genes. Heatmap from RNA-seq 

data in A549 and Panc1 cells showing significant number of TGFβ regulated/targeted genes were affected by 

KLF10. A549 and Panc1 cells were transfected with non-targeting control siRNA or siRNA targeting KLF10. 24 

hours post-transfection cells were treated with or without TGFβ for 72 hours following which RNA was harvested 

and used for high-throughput RNA sequencing. Heat map was generated using statistically significant up and 

down regulated genes in the TGFβ vs control condition (padj-value ≤ 0.05, cutoff of ± 1.5 log2fold change, red 

color represents upregulated and green color represents downregulated genes). 
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4.3.2 KLF10 affects pathways related to EMT and metastasis 

In order to investigate the biological relevance of the TGFβ regulated genes which 

were affected by KLF10, we selected the significantly regulated genes from ‘TGFβ vs 

Control’ and ‘siKLF10+TGFβ vs TGFβ’ conditions with a cutoff of log2fc ±1 and padj 

value ≤0.05. Initially, we identified the genes which were overlapping between two 

conditions (TGFβ affected or following KLF10 depletion) for which we made a Venn 

diagram using the list of significantly regulated genes. As shown in the Venn diagram 

(Fig. 20A & B), in A549 cells 448 (upregulated) and 206 (downregulated) genes 

whereas in Panc1 cells 114 (upregulated) and 147 (downregulated) genes were found 

to be overlapping. Further we pooled the overlapping set of up and down regulated 

genes and performed gene ontology (GO) analysis using DAVID (Database for 

Annotation, Visualization and Integrated Discovery) online tool. Interestingly, all the 

top enriched pathways were related to cell adhesion, extracellular matrix, cell motility 

and cell migration in both A549 and Panc1 cells (Fig. 20C & D). One of the important 

characteristics of differentiated cells is that they adhere to the extracellular matrix and 

to neighboring cells. However, during metastasis cells lose their cell-cell contact and 

overcome the extracellular matrix barrier enabling migration to distant sites. As gene 

ontology analysis revealed that several pathways related to EMT and metastasis were 

enriched following KLF10 depletion, we hypothesized that KLF10 can inhibit cancer 

cells from entering into EMT and thereby suppress metastasis. The rationale behind 

this hypothesis was that KLF10 differentially regulates subsets of genes controlled by 

TGFβ signaling. Notably TGFβ is one of the best characterized growth factors that 

induces EMT in cancer cells (Xu et al., 2009). 
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Figure 20: KLF10 regulates pathways pertaining to EMT. Significantly up or down regulated genes from the RNA-

seq data were merged and used to plot Venn diagram for A549 (A) and Panc1 (B) cells. Significant number of 

genes regulated by TGFβ and KLF10 were found to be overlapping. Overlapping up and down regulated genes 

were merged to perform DAVID gene ontology analysis. Top enriched pathways in DAVID analysis were related 

to EMT in both A549 (C) as well as Panc1 (D) cells. 
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4.3.3 KLF10 regulates EMT and metastasis signature 

To gain further insight into the transcriptome-wide effects of KLF10 we investigated 

the pathways affected following KLF10 depletion. GSEA (Gene Set Enrichment 

Analysis) is a tool that can be used to identify significantly enriched pathways in cancer 

that are predefined for a particular set of genes. For our GSEA analysis we used ‘c2.all’ 

curated gene set and analyzed significantly enriched pathways. Interestingly, 

significantly enriched pathways were related to poorly differentiated metastatic cancer 

with EMT-like phenotype. GSEA results support the hypothesis that perturbation of 

KLF10 expression results in an EMT-like phenotype leading to metastatic cancer (Fig. 

21A & C). 

Patients diagnosed with metastatic cancer often have a poor life expectancy. In our 

Kaplan-Meier plot analysis we observed that low KLF10 expression is associated with 

poor survival of lung cancer patients. In support of that finding, GSEA revealed a 

significant enrichment of pathways associated with poor survival in lung cancer. 

Further, we used Molecular Signatures Database (MSigDB) in GSEA to look for 

pathways associated with significantly regulated genes from our transcriptome data. 

Remarkably various pathways related to EMT and metastasis were significantly 

enriched. Notably, the gene set KRAS signaling was significantly enriched. KRAS 

signaling is quite frequently mutated and is one of the most important driver mutations 

in lung cancer. These types of analyses were also performed for Panc1 transcriptome 

data which also showed enrichment of several EMT and metastasis related pathways. 

Again the most striking finding was the enrichment of gene set related to KRAS 

signaling which is also quite frequently mutated in pancreatic cancer (Fig. 21B & D). 
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Figure 21: KLF10 regulates EMT and metastasis signature. For GSEA TGFβ-treated sample was compared with 

siKLF10+TGFβ sample. Veh_TGFβ represents sample treated with siControl and TGFβ. GSEA in A549 (A) and 

Panc1 (C) cells revealed enrichment of gene sets related to poorly differentiated and metastatic cancers in 

siKLF10+TGFβ-treated sample compared to the siControl+TGFβ-treated sample. Molecular signature database 

further confirmed the enrichment of EMT like phenotype and driver mutations (B) and (D).  
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4.4 Genome-wide occupancy of KLF10 

Our results strongly suggested that KLF10, can play an important role in blocking 

metastasis by fine-tuning the balance between anti-proliferative and pro-metastatic 

functions of TGFβ signaling. This finding was supported by transcriptome data. In 

order to uncover direct mechanisms of action and identify key target genes of KLF10 

we performed genome-wide occupancy studies. For this purpose we performed 

chromatin-immunoprecipitation followed by deep sequencing (ChIP-seq).  

4.4.1 KLF10 is enriched on promoter region 

We examined the enrichment of KLF10 binding at specific genomic locations like 

promoter, coding exons, introns using a tool called Cis-regulatory Annotation System 

(CEAS). CEAS gives the relative enrichment of ChIP binding regions at specific 

genomic locations compared to the whole genome. Interestingly, CEAS revealed that 

as compared to the genome the majority of the KLF10 binding sites (42.6%) were 

confined to the promoter region of genes in comparison to the whole genome (1.1%) 

(Fig. 22A & B)). CEAS analysis also revealed that a significant portion (29.8%) of 

KLF10 binding sites were confined to coding exons whereas a very small percentage 

of them were confined to introns (12.8%) and distal intergenic regions (4.3%). 

Additionally we also performed aggregate plot analysis to look for the KLF10 signals 

around the transcriptional start sites (TSS) of the KLF10 bound genes. Consistent with 

the results of CEAS analysis, we observed that highest KLF10 signal intensity near 

the TSS region of the gene whereas very low signal was observed 5Kb upstream or 

downstream of the TSS (Fig. 22C). Taken together these results corroborate that the 

transcription factor KLF10 is mostly recruited to the promoter region and coding exons 

of target genes genome-wide. Furthermore, as compared to the genome, very few 

KLF10 binding sites were found to be enriched on introns and distal intergenic regions. 
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Figure 22: KLF10 binding sites are confined to the promoter region. (A) Pie chart depicting the relative 

enrichment of KLF10 binding regions at various genomic locations compared to the whole genome. (B) 

Percentage enrichment of KLF10 binding regions around the promoter region and various locations in the gene 

compared to the genome. (C) Aggregate plot depicting average KLF10 signal ±5 Kb around the transcriptional 

start site (TSS). 

 

4.5 KLF10 targets the EMT transcription factor SNAI2 

EMT is coordinated by key transcription factors which are induced in response to 

external stimuli or growth factors like TGFβ. SNAI2 is one of the most important EMT 

transcription factors (EMT-TF) which has been shown to directly repress E-cadherin 

gene expression, thus initiating a key step in EMT. In our transcriptome data we found 

that expression of SNAI2 (but not the other EMT-TFs) was significantly upregulated 

following KLF10 depletion. Based on this observation we next investigated whether 

SNAI2 may be a central target of KLF10 in controlling metastasis. 

4.5.1 KLF10 depletion significantly enhances SNAI2 expression 

To validate our finding from the transcriptome data examined changes in the 

expression level of SNAI2 mRNA and protein levels by qRT-PCR, western blotting and 

immunofluorescence. Briefly, A549 cells were transfected with control siRNA or siRNA 
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targeting KLF10. 24 hours post-transfection cells were treated with TGFβ to examine 

the immediate gene activation (90 minutes) as well as sustained gene expression 

changes (72 hours). After treatment both RNA and protein samples were harvested.  

For comparison we performed similar experiments in Panc1 and MDA-MB-231 cells. 

In Panc1 cells were only treated for 72 hours and since MDA-MB-231 cells display 

high basal levels of TGFβ signaling and mesenchymal phenotype we did not treat the 

cells with TGFβ. Interestingly, qRT-PCR results revealed that there was a significant 

increase in gene expression of SNAI2 following KLF10 depletion both in A549 as well 

as Panc1 cells (Fig. 23A & B). Furthermore, at protein level we observed similar results 

in A549 cells as well as Panc1 cells (Fig. 23C). Strikingly, despite having a strong 

mesenchymal phenotype knock-down of KLF10 in MDA-MB-231 cells resulted in 

further elevation of SNAI2 protein levels (Fig. 23C). Furthermore, in 

immunofluorescence staining we observed a strong nuclear staining of SNAI2 in 

KLF10-depleted A549 cells treated with TGFβ which further supports the finding at 

gene expression and protein level (Fig. 23D). Taken together these results revealed 

that KLF10 depletion led to significant increase of SNAI2 expression implicating that 

SNAI2 could be an important target gene of KLF10 
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Figure 23: KLF10 depletion resulted in increased SNAI2 expression. (A) & (B) qRT-PCR analysis for SNAI2 in A549 

and Panc1 cells respectively. Significantly increased expression of SNAi2 was observed following KLF10 depletion 

in TGFβ-treated cells compared to the control cells (Veh). Data is represented as mean ± SD. n=3. (C) Western 

blot for SNAI2 in A549, MDA-MB-231 and Panc1 cells. Protein level of SNAI2 was increased following KLF10 

depletion. (D) Immunofluorescence staining for SNAI2 in A549 cells. Strong nuclear staining of SNAI2 was 

observed in KLF10-depleted cells treated with TGFβ. Nuclei were stained with DAPI. Scale bar represents 50 µm. 
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4.5.2 KLF10 directly binds to the SNAI2 promoter 

After confirming the change in SNAI2 gene expression following perturbation of KLF10 

expression we investigated if KLF10 directly binds to SNAI2 gene and represses it. To 

address this question we went back to KLF10 ChIP-seq data to check if there is an 

enrichment of KLF10 binding on SNAI2 gene. Remarkably we observed a prominent 

KLF10 peak around the promoter region of the SNAI2 gene which was consistent with 

the transcriptome wide data where we observed significantly enhanced expression of 

SNAI2 upon KLF10 depletion (Fig. 24A). To confirm that KLF10 indeed directly binds 

to SNAI2 we designed primers across the transcriptional start site (TSS) of the SNAI2 

gene where a KLF10 peak was visualized. For a control we also designed primers 

within the transcribed region (TR) of the gene where KLF10 occupancy was not 

observed and used it as a negative site. Consistent with the ChIP-seq results, qRT-

PCR analysis of ChIP samples showed a significant enrichment of KLF10 binding on 

the TSS region of the SNAI2 gene, while the TR displayed background levels of KLF10 

enrichment (Fig. 24B). Similar ChIP experiments in Panc1 and MDA-MB-231 cells 

confirmed these results (Fig. 24C & D). Taken together, these results show that: first, 

we identified SNAi2 as a target gene of KLF10 and second it further strengthened the 

role of KLF10 in blocking metastasis. Furthermore, similar results obtained in three 

cell lines representing different epithelial cancer types and strongly support the finding 

that SNAI2 is a general target gene for KLF10. 
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Figure 24: KLF10 directly bind to SNAI2 promoter. (A) ChIP-seq profile of KLF10 on SNAI2 gene. Significant peak 

was observed around TSS of SNAI2 but no peak was observed within the gene. Transcription direction is 

indicated by black arrow mark. Scale bar represents 1 kilobase. (B) ChIP analysis of KLF10 occupancy on 

transcriptional start site (TSS) and transcribed region (TR) of SNAI2 gene in A549 cells. Immunoprecipitated DNA 

is compared to input and shown as percentage. IgG antibody was used as a negative control to subtract the 

background level and is shown as black dotted line. Data is represented as mean ± SD. n=3. (C) & (D) ChIP analysis 

of KLF10 occupancy on TSS and TR of SNAI2 gene in Panc1 and MDA-MB-231 cells respectively.  
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4.6 KLF10 represses SNAI2 transcription by an epigenetic mechanism 

After finding out the target gene for KLF10 we sought to elucidate the mechanism by 

which KLF10 is repressing SNAI2. Since KLF10 is a transcription factor and does not 

have an enzymatic activity it cannot repress or activate a gene on its own which means 

there must be an interacting partner. Previous studies reported that KLF10 can interact 

and form complex with co-repressors like histone deacetylases (HDACs) (Jin et al., 

2012) and demethylases like KDM6B (Kim et al., 2010) and recruit them on to the 

target gene to cause transcriptional repression. 

4.6.1 KLF10 is required for recruitment of HDAC1 to the SNAI2 gene 

Based on the previous reports we performed ChIP experiments for HDAC1 to check 

for its recruitment to the SNAI2 gene promoter and if there is any change in the 

recruitment upon KLF10 depletion. We used the primers designed on TSS of SNAI2 

to check for the enrichment of HDAC1 at the KLF10 binding site. We observed that 

HDAC1 was recruited on to the SNAI2 TSS in the presence of KLF10. However, there 

was a significant decrease in the recruitment of HDAC1 after KLF10 depletion implying 

that HDAC1 is involved in the repression of SNAI2 by KLF10 (Fig. 25A). Knock-down 

of KLF10 was confirmed by western blotting (Fig. 25B). Interestingly, we observed that 

even though HDAC1 recruitment was decreased after TGFβ treatment alone, it was 

significantly stronger decreased after KLF10 depletion, which further supports the 

potential role of KLF10 in regulating the pro-metastatic function of TGFβ signaling. 
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Figure 25: KLF10 form co-repressor complex with HDAC1 to repress SNAI2. (A) ChIP qPCR results showing that 

HDAC1 is recruited by KLF10 on to the SNAI2 TSS which significantly decreased upon KLF10 depletion. 

Immunoprecipitated DNA is compared to input and shown as percentage. IgG antibody was used as a negative 

control to subtract the background level and is shown as black dotted line. Data is represented as mean ± SD. 

n=3. (B) Western blot results confirming the knock-down of KLF10. β-actin was used as a loading control. 

 

4.6.2 KLF10 depletion leads to enhanced acetylation of the SNAI2 gene 

Histone deacetylases are epigenetic “erasers” which remove the activating acetylation 

marks from histones, thus attenuating gene expression. Therefore we next 

investigated if KLF10 depletion results in alterations in the acetylation status of the 

SNAI2 gene. To address this question we performed a ChIP-seq experiment for active 

acetylation marks H3K9ac and H3K27ac with the same treatment condition as 

described above for HDAC1 ChIP. Interestingly, ChIP-seq data revealed that SNAI2 

gene was already marked with some amount of H3K9ac and H3K27ac marks which 

could mean that the gene is poised for activation. However, we observed significantly 

enhanced H3K9ac and H3K27ac around the TSS of the SNAI2 gene following KLF10 

depletion compared to the control TGFβ condition (Fig. 26A & C). Furthermore, we 

also confirmed this finding by performing qRT-PCR from the ChIP samples to check 

for the enrichment of acetylation marks around TSS region of SNAI2. As expected 

qRT-PCR results showed a significant increase in H3K9ac and H3K27ac marks at the 

SNAI2 TSS upon KLF10 depletion (Fig. 26B & D). Taken together these results 
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confirm cooperative activity between KLF10 and HDAC1 where KLF10 serves to 

recruit HDAC1 to the SNAI2 promoter, resulting in reduced acetylation of the gene and 

subsequent gene repression. 

 

 

 

Figure 26: KLF10 depletion results in enhanced acetylation on the SNAI2 gene. (A) & (C) ChIP-seq profile of 

H3K9ac and H3K27ac respectively in untreated (control), TGFβ-treated (TGFβ) and TGFβ-treated and KLF10 

depleted (siKLF10+TGFβ) conditions on SNAI2. Increased acetylation was observed upon KLF10 depletion. Scale 

bar is represented in kilobase. (C) & (D) ChIP qRT-PCR analysis for H3K9ac and H3K27ac respectively confirming 

the significantly increased acetylation on SNAI2 upon KLF10 depletion. Immunoprecipitated DNA is compared 

to input DNA and shown as percentage. IgG antibody was used as a negative control to subtract the background 

level and is shown as black dotted line. Black arrow indicates the direction of the transcription and red lines 

mark the sites where primers were designed. Data is represented as mean ± SD. n=3.   
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4.6.3 KLF10 depletion is associated with enhanced acetylation 

To further elaborate the finding that KLF10 promotes a repressed state of the target 

gene, we examined whether deacetylation generally requires KLF10 at its target 

genes. To address this question we checked for the average H3K9ac and H3K27ac 

signals (±5Kb) around the TSS region of KLF10-bound genes genome-wide in an 

aggregate plot for all the KLF10-bound genes. Interestingly, we observed a similar 

trend in the H3K9ac and H3K27ac acetylation marks across the KLF0 bound genes. 

Notably, the highest average signal for H3K9ac was observed upon KLF10 depletion 

and was even higher than the signal obtained after TGFβ treatment (Fig. 27A). 

Furthermore, as compared to H3K9ac a slightly different trend was observed for 

H3K27ac. Average H3K27ac signal for TGFβ condition was higher than the signal 

obtained after KLF10 depletion. However, the overall highest signal was observed 

following TGFβ treatment and KLF10 depletion (Fig. 27B). In general, KLF10 depletion 

leads to an overall increase in the H3K9ac and H3K27ac marks on its target genes. 

Additionally, these results indicate that deacetylation could be a general mechanism 

of action of KLF10 to repress target gene expression. In summary, these data suggest 

that KLF10 acts together with HDAC1 to inhibit the acetylation of the target gene, 

making the chromatin inaccessible to the transcriptional machinery, thus ultimately 

leading to inhibition of gene transcription. 

 

 

 

 

 



Results  

94 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: KLF10 depletion is associated with enhanced acetylation marks on its target genes. (A) & (B) 

Aggregate plot analysis of the ChIP-seq data for H3K9ac and H3K27ac respectively, on the KLF10-bound genes 

genome-wide. Analysis was performed at ±5 Kb around the TSS of the genes. Overall increased signal for H3K9ac 

and H3K27ac was observed on the genes upon KLF10 depletion.   
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4.7 KLF10 regulates EMT and metastasis 

Results from the previous experiments pointed towards a potential role of KLF10 in 

regulating the pro-metastatic function of TGFβ by directly repressing the expression 

of SNAI2, one of the important EMT-TFs regulating EMT. Based on these findings we 

examined if perturbation of KLF10 expression indeed has an impact on TGFβ-induced 

EMT.  

4.7.1 KLF10 depletion enhances TGFβ-induced EMT  

To test the effect of perturbing KLF10 expression on TGFβ-induced EMT we 

performed several cell culture based assays in A549 cells. During EMT cells undergo 

morphological changes, lose cell-cell adhesion and attain an elongated mesenchymal 

shape. When treated with TGFβ cells depleted for KLF10 became more 

mesenchymally shaped compared to cells treated with TGFβ alone but having intact 

KLF10 (Fig. 28A). Initiation of EMT is marked by the downregulation of epithelial 

markers and upregulation of mesenchymal markers. To test this in our model system 

we performed gene expression analysis, western blotting and immunofluorescence 

staining for classical EMT markers. As shown in Fig. 28B, epithelial markers (E-

cadherin and MMP7) were significantly downregulated and mesenchymal markers (N-

cadherin and MMP2) were significantly upregulated following KLF10 depletion in 

TGFβ-treated cells compared to the cells treated with TGFβ alone. Additionally, we 

also observed the same trend at the protein level. As depicted in Fig. 28D, there was 

a complete loss of E-cadherin expression upon KLF10 depletion. In parallel we also 

performed similar experiments in Panc1 cells which showed similar results 

(downregulation of epithelial markers and upregulation of mesenchymal markers) at 

both gene expression and protein levels (Fig. 28C & E). Moreover, we also performed 

immunofluorescence staining for epithelial and mesenchymal markers. As shown in 
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Fig. 28F, epithelial markers ZO-1 and E-cadherin were completely lost whereas the 

mesenchymal marker Vimentin was significantly upregulated upon KLF10 depletion in 

TGFβ-treated cells. Taken together these results confirm that KLF10 indeed 

suppresses the TGFβ-induced EMT.  
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Figure 28: KLF10 depletion enhances TGFβ-induced EMT. (A) Phase contrast images showing the morphological 

changes in the cells upon undergoing EMT. Magnification 10x. (B) In A549 cells gene expression level of epithelial 

(E-cadherin and MMP7) and mesenchymal (N-cadherin and MMP2) markers were analyzed by qRT-PCR and 

shown as “relative mRNA levels” as compared to HNRNPK expression level. Data are represented as mean ± SD. 

n=3. ***p ≤ 0.005, **p ≤ 0.01, *p ≤ 0.05. (C) In Panc1 cells gene expression level of epithelial (E-cadherin) and 

mesenchymal (N-cadherin) marker was analyzed by qRT-PCR and shown as “relative mRNA levels” as compared 

to HNRNPK expression level. Data are represented as mean ± SD. n=3. ***p ≤ 0.005, **p ≤ 0.01, *p ≤ 0.05. (D) 

Western blot analysis of whole cell protein lysates from A549 cells showing significant loss of E-cadherin upon 

TGFβ treatment in KLF10 depleted cells. KLF10 blot shows upregulation of KLF10 protein level upon TGFβ 

treatment and complete loss following siRNA mediated knockdown. HSC70 was used as a loading control. (E) 

Western blot analysis of whole cell lysates from Panc1 cells showing loss of epithelial marker and upregulation 

of mesenchymal markers upon KLF10 depletion. HSC70 was used as a loading control. (F) Immunofluorescence 

staining showing enhanced EMT induction upon TGFβ treatment in KLF10 depleted cells. Cells were stained for 

epithelial markers (ZO1 and E-cadherin) and mesenchymal marker (Vimentin). Nuclei were stained with DAPI. 

Scale bar represents 50 μm. 
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4.7.2 KLF10 depletion results in enhanced migratory potential 

One of the hallmark features of EMT is that it imparts the cells with potential to migrate 

to distant sites thereby promoting metastasis. As we have demonstrated in the earlier 

experiments that low expression of KLF10 can result in an enhanced EMT-like 

phenotype we speculated that KLF10 depletion might lead to increased cell migration. 

To address this question we performed transwell migration assays with A549 and 

MDA-MB-231 cells. Cells were transfected with control or KLF10 siRNAs and were 

allowed to grow for 48 hours. Post-transfection cells were seeded into 8.0 μm PET 

track-etched membrane cell culture inserts and were treated with or without TGFβ for 

48 hours. Migration assay results revealed that KLF10 depletion leads to significantly 

enhanced migratory potential in cells treated with TGFβ compared to the cells treated 

with TGFβ alone (Fig. 29). Strikingly, even MDA-MB-231 cells, which are highly 

metastatic, showed increased migration capacity upon KLF10 depletion.  

 

 

 

 

 

 

 

 

 

 

Figure 29: KLF10 depletion results in enhanced migratory potential. Transwell migration assay was performed 

in A549 and MDA-MB-231 cells using Boyden chamber inserts (8.0 µm). Cells were transfected with control or 

KLF10 siRNA and after 48 hours were split and seeded into the upper chamber of the inserts (25,000 cells). Cells 

were treated with or without TGFβ for additional 48 hours following fixation with 100% methanol and staining 

with crystal violet. Increased migration was observed upon KLF10 depletion in both A549 as well as MDA-MB-

231 cells. Image represents 10 x magnifications. 
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2. Pharmacological inhibition of epigenetic regulators using 

small molecule inhibitors 

After investigating the potential role of transcription factor KLF10 in TGFβ-induced 

EMT, we wanted to take a more global approach and study the effects of 

pharmacological inhibition of epigenetic modifiers using small molecule inhibitors 

which are either in clinical trials or clinical development. Epigenetic regulators 

controlling DNA and histone modifications have been shown to be frequently 

deregulated in cancer and are major focus of targeted therapies. Several small 

molecule inhibitors targeting epigenetic regulators have been developed and either in 

clinical development or clinical trials. LSD1 is frequently overexpressed in many 

cancer types and its high expression in prostate cancer was correlated with tumor 

relapse (Kahl et al., 2006; Metzger et al., 2005). Given the potential role of LSD1 and 

HDACs in tumorigenesis and tumor progression we have utilized small molecule 

inhibitors against LSD1 (SP2509) and HDACs (Vorinostat and Resminostat). To 

investigate the potential of combined inhibition of LSD1 and HDACs as a targeted 

therapy we have used dual LSD1/HDAC inhibitor 4SC-202 which is currently under 

clinical development (http://www.4sc.com/product-pipeline/clinical/4sc-202/). 

4.8 4SC-202 blocks-TGFβ induced EMT and drives the cells towards 

differentiation 

4.8.1 Transcriptome wide effect of 4SC-202 on TGFβ regulated genes 

4SC-202 is an epigenetic drug candidate currently under clinical development. 

According to the phase-I clinical data it targets the important signaling pathways 

involved in cancer development and progression. Since EMT is one of the key steps 

in the formation of metastatic cancer we sought to investigate if 4SC-202 can inhibit 

EMT. Initially, we wanted to determine the transcriptome wide effect of 4SC-202 on 



Results  

100 | P a g e  
 

the TGFβ regulated genes by a RNA sequencing study. We chose Panc1 cells as a 

model system to induce EMT via TGFβ since our previous study showed that Panc1 

cells respond to TGFβ stimulation and undergo EMT. We treated the cells with TGFβ 

(5 ng/ml) and 4SC-202 (1 µg/ml) alone or in combination for 12 hours. Control cells 

were treated with DMSO (vehicle). After 12 hours post-treatment RNA samples were 

harvested and used for library preparation followed by RNA sequencing. For further 

analysis we selected the significantly (padj ≤ 0.05) up- (log2fc ≥ 1.5) or down- (log2fc 

≤ -1.5) regulated genes and TGFβ-regulated genes were compared to differentially 

regulated genes upon 4SC-202 treatment. As depicted in the heatmap Fig. 30, the 

majority of the TGFβ upregulated genes (shown in red) were downregulated after 4SC-

202 treatment whereas TGFβ downregulated genes (shown in green) were 

upregulated in the 4SC-202 sample. Interestingly, the effect of TGFβ was essentially 

totally blocked by 4SC-202 which indicates that 4SC-202 can block the TGFβ-induced 

EMT. LSD1 has been shown to be frequently overexpressed in different types of 

metastatic cancer with an aggressive phenotype. Furthermore, LSD1 which is inhibited 

by 4SC-202, has been shown to promote EMT and impaired LSD1 expression has 

been found to be associated with blocked EMT (Fig. 30). Our findings from the 

transcriptome study correlate well with the inhibition of EMT by reduced LSD1 

expression as treatment with 4SC-202 completely reversed the effect of TGFβ on its 

target genes many of which are involved in inducing EMT. Taken together these 

results revealed a potential function of 4SC-202 in inhibiting EMT.  
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Figure 30: Transcriptome wide effects of 4SC-202 on TGFβ regulated genes. Heatmap of RNA-seq data from 

Panc1 cells. Significant numbers of TGFβ regulated/targeted genes were affected by 4SC-202. Panc1 cells were 

treated with or without TGFβ (5 ng/ml) for 72 hours to induce EMT and thereafter 4SC-202 was added to the 

cells for 12 hours. Heat map was generated using statistically significant (padj-value ≤ 0.05) up (red) and down 

(green) regulated genes (cutoff of ± 1.5 log2fold change). As depicted in the heatmap, TGFβ upregulated genes 

were downregulated and downregulated genes were reactivated upon 4SC-202 treatment.  
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4.8.2 4SC-202 regulates pathways related to cellular homeostasis and 

maintaining cell identity 

To gain additional insight to the effects of 4SC-202 action we investigated the 

signature pathways and genes differentially regulated by 4SC-202. Initially, we 

performed Gene Set Enrichment Analysis (GSEA) to identify the significantly enriched 

pathways. Interestingly, GSEA results revealed that pathways pertaining to cellular 

homeostasis and organization of the cellular architecture were highly enriched in 4SC-

202 treated cells compared to the cells that had undergone TGFβ-induced EMT (Fig. 

31A). This could imply that, in the presence of 4SC-202 cells are pushed back to 

normal state or the epithelial state. Furthermore, we performed GO analysis using the 

statistically significantly regulated genes and then selected the top 100 GO terms to 

perform further analysis using online tool REVIGO (REduce VIsualize Gene Ontology). 

REVIGO takes into account a list of Gene Ontology terms and summarizes them into 

a cluster of meaningful non-redundant GO terms. As depicted in Fig. 31B, significantly 

enriched GO terms were all related to maintenance of cellular homeostasis by 

controlling cell division, organization of cellular components and regulation of gene 

expression. Interestingly several pathways involved in the organization or remodeling 

of chromatin and regulation of gene expression were also among the significantly 

enriched GO terms. The enrichment of GO terms like regulation of transcription by 

RNA Polymerase II, gene expression and chromatin silencing indeed point towards a 

cellular state where changes in chromatin state and gene expression status occur. 

These findings coincide with a recent report where the authors have shown that TGFβ-

induced EMT affects the chromatin morphology and also induces a global 

reprogramming of the chromatin state (McDonald et al., 2011). To further strengthen 

our findings we selected the list of significantly up- and down-regulated genes and 

used them to perform Gene Ontology (GO) analysis. GO analysis results revealed 
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that, most highly enriched GO terms were related to cell cycle, chromosome 

condensation, cytoskeleton organization and cellular response to stress (Fig. 31C). 

Taken together these results revealed that 4SC-202 affected genes are associated 

with pathways regulating cellular homeostasis and maintaining the cell identity. 
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Figure 31: 4SC-202 regulates pathways related to cellular homeostasis and maintaining cell identity. (A) GSEA 

comparing control versus 4SC-202 condition. Significantly enriched pathways are shown. (B) Results from 

REVIGO clustered the significantly enriched GO terms into meaningful non-redundant clusters showing the 

pathways related to gene expression and chromatin organization being highly represented. (C) Significantly (padj 

≤ 0.05) up or downregulated genes from the RNA-seq data were used to perform GO analysis using the DAVID 

online tool. Significantly enriched annotated cluster (selected based on p-value and FDR) with related GO term 

are shown. 
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4.8.3 4SC-202 blocks TGFβ-induced EMT  

Since EMT is one of the key steps in the formation of metastatic cancer we 

investigated whether 4SC-202 can inhibit or reverse the occurrence of EMT. To test 

this hypothesis we treated Panc1 cells with TGFβ (5 ng/ml) and 4SC-202 (1 µg/ml) 

alone or in combination for 12 hours. Control cells were treated with DMSO (vehicle). 

After 12 hours post-treatment RNA and protein samples were harvested. We 

performed gene expression analysis and western blot to check for the regulation of 

key EMT markers and investigate the effects of 4SC-202 treatment. Interestingly, in 

our gene expression results we observed that classical epithelial markers like E-

cadherin, TJP3 and MMP2 which were downregulated by TGFβ were significantly 

blocked in downregulation upon co-treatment with 4SC-202. Similarly, classical EMT 

markers like N-cadherin, SNAI1, ZEB1 and MMP7 which were upregulated upon TGFβ 

treatment were found to be significantly blocked in their regulation upon co-treatment 

with 4SC-202 (Fig. 32A). Furthermore, western blot results also showed similar effects 

of 4SC-202 on epithelial and mesenchymal markers (Fig. 32B). Next, we performed 

immunofluorescence staining for epithelial and mesenchymal marker and interestingly 

observed that expression of E-cadherin, which was lost following TGFβ treatment, was 

maintained with 4SC-202 co-treatment. Likewise, the mesenchymal marker ZEB1, 

which was significantly upregulated by TGFβ stimulation, was significantly blocked in 

its upregulation by 4SC-202 co-treatment (Fig. 32C). Taken together, these results 

revealed that 4SC-202 can indeed block TGFβ-induced EMT. 
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Figure 32: 4SC-202 blocks TGFβ-induced EMT. (A) qRT-PCR results showing that epithelial markers (E-cadherin, 

TJP3, MMP2) were re-expressed and mesenchymal markers (N-cadherin, ZEB1, SNAI1, MMP7) were 

downregulated following 4SC-202 treatment in TGFβ stimulated cells. Data is shown as “relative mRNA levels” 

as compared to RPLP0 expression level. Data are represented as mean ± SD. n=3. ***p ≤ 0.005, **p ≤ 0.01, *p ≤ 

0.05. (B) Western blot results showing the upregulation of epithelial marker protein (E-cadherin) and 

downregulation of mesenchymal marker proteins (Vimentin, N-cadherin, SNAI1, ZEB1) upon 4SC-202 treatment 

in TGFβ treated cells. HSC70 was used as a loading control. (C) Immunofluorescence staining showing enhanced 

EMT induction upon TGFβ treatment in Panc1 cells. However, EMT induction was reversed upon treatment with 

4SC-202. Cells were stained for the epithelial marker (E-cadherin) and mesenchymal marker (ZEB1). Nuclei were 

stained with DAPI. Scale bar represents 50 μm. 
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4.8.4 4SC-202 promotes a differentiated phenotype 

Having verified that 4SC-202 can prevent TGFβ-induced EMT next we investigated 

whether 4SC-202 can promote differentiation. We used the RNA and protein samples 

from the previous experiment and checked for the expression of CD24, a marker 

associated with a differentiated phenotype. Previous reports have shown that cancer 

stem-like cells are negative for CD24, implying that CD24-positive cells possess a 

differentiated phenotype. Interestingly, our gene expression analysis and western blot 

results revealed a significant upregulation of CD24 expression upon treatment with 

4SC-202 (Fig. 33A & B). To further confirm the association of 4SC-202 with a more 

differentiated phenotype we investigated whether it can inhibit the cell migration as 

cells that have undergone EMT have an enhanced migratory potential. To check this 

we performed transwell migration assay where cells were either treated with TGFβ or 

4SC-202 alone and also in combination. Interestingly migration assay results revealed 

that 4SC-202 completely blocked the TGFβ-induced migration (Fig. 33C). Taken 

together, these results validated that 4SC-202 can inhibit TGFβ-induced EMT and 

significantly block migration. However, its potential role in promoting differentiation will 

need to be validated further. 
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Figure 33: 4SC-202 treatment drives the cells towards differentiation. (A) qRT-PCR results showing that CD24, 

a marker associated with a differentiated cell phenotype was significantly upregulated following 4SC-202 

treatment in TGFβ-stimulated cells. Data is shown as “relative mRNA levels” as compared to RPLP0 expression 

levels. Data is represented as mean ± SD. n=3. ***p ≤ 0.005, **p ≤ 0.01, *p ≤ 0.05. (B) Western blotting results 

showing significantly enhanced expression of CD24 protein levels following 4SC-202 treatment in TGFβ- 

stimulated and non-stimulated cells. HSC70 was used as a loading control (C) Transwell migration assay was 

performed in Panc1 cells treated with TGFβ or 4SC-202 and their co-treatment. Panc1 cells displayed enhanced 

migration capacity upon TGFβ-stimulation. Migration potential of the cells was essentially blocked by 4SC-202 

treatment. Cells were fixed with 100% methanol and stained with crystal violet. Images were taken using light 

microscope at 10x magnification. 
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4.9 Target specificity of 4SC-202 

4.9.1 Similar gene expression pattern was observed in three different 

pancreatic cancer cell lines 

To further elucidate the mechanism of action of 4SC-202 we investigated whether or 

not its effects are specific. For this we performed transcriptome-wide studies across 

different pancreatic cancer cell lines. We chose three pancreatic cancer cell lines 

namely L3.6, BxPC3 and Panc1 and treated them with 4SC-202 for 12 hours while the 

control cells were treated with DMSO (vehicle). Before proceeding with further analysis 

of the transcriptome data we performed quality check and PCA (principle component 

analysis) plot to ensure that all the replicates from a given condition correlate with one 

another. As depicted in Fig. 34A, one of the replicates from control condition (vehicle) 

in L3.6 cells had a high variance compared to the other two replicates and hence, was 

not included in further analyses. Importantly, the PCA plot from vehicle-treated and 

4SC-202 treated samples revealed differences between two conditions within the 

same cell line (Fig. 34B). After confirming the quality of the data and any possible 

variability between the samples, we proceeded with further analyses of the RNA-seq 

data and compared the differentially regulated genes between the 4SC-202 and 

vehicle treated conditions in all three different cell lines. Statistically significant (padj ≤ 

0.05) up- (log2fold ≥ 1.5) or down- (log2fold ≤ 1.5) regulated genes in L3.6 cells were 

selected for the heatmap. As shown in the (Fig. 34C), the heatmap showed that the 

effect of 4SC-202 on the transcriptome of all the three cell lines was very similar. 

Having observed a similar pattern of gene regulation in the different pancreatic cancer 

cell lines following 4SC-202 treatment we investigated the common pathways that 

were enriched due to the affected genes. For this purpose we utilized the samples 

from all three cell lines and performed gene set enrichment analysis. Interestingly, 

several pathways related to the extracellular matrix and tissue development were 
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enriched which further suggests that 4SC-202 affects differentiation-related genes. 

Furthermore we also observed an enrichment of several pathways that were related 

to growth inhibition of different types of cancers like breast, colorectal and gastric (Fig. 

34D). Taken together these results revealed that 4SC-202 has a similar gene 

regulation pattern across three different pancreatic cancer cell lines and differentially 

regulated genes were found to associated with growth inhibitory effects on different 

types of cancers. 
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Figure 34: Similar gene expression pattern was observed in three different pancreatic cancer cell lines. (A) PCA 

plot from RNA-seq samples in L3.6 cell line showing that there was a large variance between one of the vehicle 

treated samples compare to the other two samples. This sample was not included in further analyses. Also 

noteworthy is the large variance between the vehicle and 4SC-202 treated samples. (B) PCA plot from RNA-seq 

samples in L3.6, BxPC3 and Panc1 cell lines showing the variance between vehicle and 4SC-202 treated samples. 

(C) Heatmap showing similar pattern of gene expression in L3.6, BxPC3 and Panc1 cell line following 4SS-202 

treatment. Statistically significant (padj ≤ 0.05) up (log2fold ≥ 1.5) or down (log2fold ≤ 1.5) regulated genes were 

selected for the heatmap. Upregulated genes are shown in red while downregulated genes are shown in green. 

(D) GSEA results showing the enrichment of pathways pertaining to extracellular matrix, tissue development and 

inhibition of cancer growth and development.  
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4.10 Comparative study of 4SC-202 with other HDAC inhibitors 

Since 4SC-202 has an inhibitory activity against HDACs (class I HDACs including 

HDAC1, 2 and 3) we performed a comparative study of 4SC-202 with two other potent 

HDAC inhibitors Resminostat (1 µM) and Vorinostat (1 µM) (also known as 

(suberoylanilide hydroxamic acid or SAHA). Resminostat is a potent and selective 

inhibitor of HDAC1, 3 and 6 while having a comparatively smaller potency against 

HDAC8. Vorinostat is a reversible pan-HDAC inhibitor with inhibitory activity against 

all 11 known human HDACs including both class-I and class-II HDACs. Both 

Vorinostat and Resminostat alter the chromatin structure of the transformed cells 

resulting in cell cycle arrest thus causing apoptosis and differentiation (Munshi et al., 

2006; Richon, 2006). We performed transcriptome analysis on L3.6 cells treated with 

either 4SC-202, Resminostat, Vorinostat or DMSO (vehicle). Further analysis of the 

RNA-seq data revealed that there was a high degree of similarity between the samples 

treated with Resminostat or Vorinostat as depicted by principle component analysis 

(PCA) plot (Fig. 35A). Interestingly, there was a significant difference between 

samples treated with 4SC-202 and samples treated with Resminostat or Vorinostat, 

pointing towards a difference in the mode of action of 4SC-202 compared to the other 

two HDAC inhibitors. To investigate the possible similarity or differences in the 

regulation of gene expression caused by these inhibitors we selected the significantly 

(padj ≤ 0.05) up or down regulated genes in any of the treatment condition and used 

these genes for a heatmap. Due to differences in the magnitude of effects different 

cut-off values (log2fc) were used for different inhibitor treatments to achieve an equal 

number of up or down regulated genes in each conditions. As depicted in the heatmap 

(Fig. 35B), and similar to the PCA plot, Resminostat and Vorinostat had quite similar 

effects and were clustered together while the effects of 4SC-202 was weaker but it still 
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showed some similarity in the observed effects. To further validate the differences in 

the pattern of gene regulation between these inhibitors we selected significantly 

regulated genes from all three treatment conditions and used those to plot a Venn 

diagram and check for potential overlap between the regulated genes. As shown in 

the Venn diagram (Fig. 35C), a significant portion of the Resminostat and Vorinostat 

regulated genes were found to overlap with each other. In contrast, the overlap of 

4SC-202 regulated genes with either Resminostat or Vorinostat was very low which 

again correlates well with the PCA and heatmap results. Interestingly despite notable 

differences in the overlapping set of regulated genes between the different inhibitors 

we observed that slightly over one thousand genes displayed overlap. We, thus 

performed Gene Ontology analysis to determine what common pathways may be 

regulated by all three substances. As shown in Fig. 35D, the Gene Ontology results 

revealed that apart from GO terms related to transcription regulation there were 

several enriched pathways related to or involved in cell morphogenesis and 

development of cell projections to facilitate cell-cell adhesion. Furthermore, GO terms 

related to cell differentiation and specifically neuronal differentiation was also enriched 

which implicates a potential role of 4SC-202 in promoting differentiation. Taken 

together these results revealed similarity in the action of 4SC-202, Resminostat and 

Vorinostat.  
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Figure 35: Comparative study of 4SC-202 with other HDAC inhibitors. (A) Principle component analysis (PCA) 

plot showing the variance and overlap within the replicates of each sample and also between two different 

samples. (B) Heatmap from the RNA-seq data in L3.6 cells treated with 4SC-202, resminostat and vorinostat 

showing that gene regulation pattern was similar for resminostat and vorinostat and they clustered together. 

However effects of 4Sc-202 were weaker in comparison to the other two inhibitors. (C) Venn diagram showing 
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that a significant portion of genes were overlapping between resminostat and vorinostat but in contrast overlap 

of any of them with 4SC-202 was very less. Over one thousand genes were overlapping between the three 

inhibitors. (D) DAVID Gene Ontology analysis was performed on the genes which were found to be overlapping 

between 4SC-202, resminostat and vorinostat. Enriched GO terms were associated with cell differentiation, 

angiogenesis, regulation of gene expression and transcriptional regulation. 

 

 

4.11 Transcriptome wide effects of 4SC-202 differ from LSD1 and HDAC 

inhibition alone or their co-treatment  

To further investigate the mechanism of action of 4SC-202 we performed a 

transcriptome wide study in L3.6 cells with LSD1 and HDAC1 inhibition alone or their 

combined inhibition and compared their effects with the effects of 4SC-202. We 

expected since 4SC-202 has an inhibitory effect against LSD1 and class I HDACs it 

will have effects on the gene expression similar to combined inhibition of LSD1 and 

HDACs. To inhibit the LSD1 activity we treated the cells with either siRNA against 

LSD1 (siLSD1) thus decreasing LSD1 gene expression or treated the cells with a 

specific LSD1 inhibitor SP2509 (LSD1i) (500 nM) which specifically inhibits the 

demethylase enzymatic activity of LSD1. Furthermore, for HDAC inhibition we again 

utilized the pan-HDAC inhibitor Vorinostat at the concentration used in the previous 

experiment. Cells were treated with the respective inhibitors at defined concentrations 

for 12 hours after which RNA was harvested and used for high throughput RNA 

sequencing. Interestingly as depicted in the PCA plot (Fig. 36A), siLSD1 and LSD1i 

had similar effect and correlated with each other. Furthermore, Vorinostat, 

siLSD1+Vorinostat and LSD1i+Vorinostat also correlated well with each other 

meaning that in the combined inhibition Vorinostat had stronger effects than LSD1i or 

siLSD1. Interestingly, we observed that 4SC-202 samples did not resemble 

siLSD1/LSD1i or Vorinostat or LSD1i+Vorinostat/siLSD1+Vorinostat combine 

treatments. To further validate the findings we used a heatmap analysis out of 
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significantly regulated genes in the different treatment conditions. We applied different 

cut-off (log2fold) values to select differentially regulated genes in different treatment 

conditions to have an equal number of regulated genes. We plotted the heatmap using 

the significantly regulated genes following treatment with 4SC-202 (Fig. 36B), 

Vorinostat (Fig. 36C) and LSD1i (Fig. 36D) and found that Vorinostat had a 

significantly stronger effect on gene expression compared to the siLSD1, LSD1i or 

4SC-202. Taken together, these results revealed that 4SC-202, a dual inhibitor of 

LSD1 and class I HDACs acts in a different manner compared to the either 

LSD1i/siLSD1 or HDAC alone or their co-treatment. 
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Figure 36: Transcriptome wide effects of 4SC-202 are different compared to LSD1 and HDAC inhibition alone 

or their co-treatment. (A) PCA plot depicting variability and correlation within and between the samples from 

the RNA-seq data in L3.6 cells treated with 4SC-202 (1 µM), SP2509 (500 nM), siLSD1 and Vorinostat (1 µM). (B) 

Significantly (padj ≤ 0.05) up (log2fc ≥ 1) or down (log2fc ≤ -0.7) regulated genes following 4SC-202 treatment 

were selected and then were compared for their regulation following treatment with Vorinostat, siLSD1, LSD1i, 

siLSD+Vorinostat and LSD1i+Vorinostat via a heatmap. Clustering was allowed between the samples and also 

between the genes. (C) Similar to the heatmap in B. Here the significantly (padj ≤ 0.05) up (log2fc ≥ 1.5) or down 

(log2fc ≤ -1.5) regulated genes were selected based on Vorinostat and then compared with the other treatments. 

(D) Similar to the heatmap in B or C. Here the significantly (padj ≤ 0.05) up (log2fc ≥ 0.65) or down (log2fc ≤ -

0.65) regulated genes were selected based on SP2509 and then compared with the other treatments.   
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4.12 4SC-202 blocks the colony forming ability of cells in vitro 

LSD1 has been reported to be highly expressed in poorly differentiated tumors and its 

inhibition has been shown to be associated with activation of all-trans-retinoic acid 

differentiation pathway in leukemia cells (Schenk et al., 2012; Schulte et al., 2009). 

Additionally, it has been reported that in human embryonic stem cells LSD1 maintains 

a balance between self-renewal and differentiation (Adamo et al., 2011). We observed 

that 4SC-202 upregulated the expression of CD24, a marker of differentiated cells and 

also inhibits TGFβ-induced migration in cells. We were further interested to investigate 

the effect of 4SC-202 on proliferation. We therefore examined the protein levels of the 

cell cycle regulator gene p21 (CDKN1A) following 4SC-202 treatment and observed 

significantly higher p21 levels (Fig. 37A). Elevated level of p21 protein was indicative 

of an anti-proliferative effect of 4SC-202. Therefore, we next investigated its effect on 

the colony forming ability of these cells. For this we performed a colony formation 

assay where we treated the cells with 4SC-202 and allowed them to grow for 7 days. 

In parallel we also treated the cells with either SP2509 or Vorinostat alone or in co-

treatment to check for their independent or cooperative effects and compared them 

with the effects of 4SC-202. Interestingly, 4SC-202 significantly impaired proliferation 

of the cells (Fig. 37B). Furthermore, SP2509 or Vorinostat alone had mild effects on 

the cells but their co-treatment significantly affected the colony forming capacity. 

Notably, the effect of the co-treatment was similar to the effects of 4SC-202. Taken 

together these results revealed that 4SC-202 has strong effects on the proliferation of 

cancer cells which could in part be due to the elevated levels of p21 expression. 
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Figure 37: 4SC-202 blocks the colony forming ability of cells in vitro. (A) Western blot results showing the 

elevated level of p21 (CDKN1A) protein level following 4SC-202 treatment as compared to the control samples 

(treated with DMSO). HSC70 was used as a loading control. (B) Proliefration assay was performed by seeding 

approx. 2500 cells per well in 6-well plates and allowing them to grow for 7 days. Cells were then fixed with 

100% methanol for 10 minutes at RT and then stained with 0.1% crystal violet for 20 minutes. Cells were treated 

with either DMSO, SP2509 (500 nM), Vorinostat (1 µM) or 4SC-202 (1 µM). 4SC-202 completely blocked the 

colony formation in cells which was in synergy with the co-treatment of SP2509 and Vorinostat.  
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4.13 4SC-202 regresses the tumor growth in vivo  

To evaluate the efficacy of 4SC-202 as an anticancer drug we investigated its effect 

on tumor growth and development in a xenograft model using L3.6 cells. Cells were 

implanted into immune-deficient mice and were allowed to grow to a certain size. After 

the development of tumors mice were randomly divided into two groups (n=12 per 

group) and either treated with methylcellulose (vehicle) or 4SC-202 (120 mg/kg) for 4 

days (twice per day). All the mice which were implanted with L3.6 cells developed 

tumors within a time frame of two weeks and treatment was started after the tumor 

size reached 100 mm3 (Fig. 38A & B). Tumor growth and size were analyzed for both 

the vehicle and 4SC-202 treated mice. Since LSD1 has been shown to be 

overexpressed in many different types of cancer, inhibition of LSD1 would be expected 

to have deleterious effects on the tumor growth. Consistently we observed a significant 

reduction in tumor size in 4SC-202-treated mice as compared to the vehicle-treated 

mice (Fig. 38C). However, further analysis of the dissected tumor tissue samples from 

the vehicle and 4SC-202 treated mice will be performed to examine the differentiation 

status of the tumor and expression of other tumor markers.  

We also performed immunohistochemistry analysis to investigate the expression 

status of LSD1 in human pancreatic cancer samples using tissue microarray (TMA). 

We observed a heterogeneous expression of LSD1 in different tumor samples from 

moderate to very high level. Representative images of the LSD1 staining in some of 

the pancreatic cancer samples are shown (Fig. 38D). Taken together from our 

xenograft study we have determined that 4SC-202 can inhibit the tumor growth in vivo. 

Furthermore, we have also shown that LSD1 is overexpressed in a subset of 

pancreatic cancers which further supports the hypothesis that targeting LSD1 can be 

a potential antitumor therapy. 
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Figure 38: Xenograft study revealed anti-tumor activity of 4SC-202. (A) Schematics of the experimental set-up 

for xenograft study. L3.6 cells were implanted into the mice and allowed to develop tumor. Mice were either 

treated with 4SC-202 (120 mg/kg) or vehicle (methylcellulose) for 4 days (twice daily). (B) Representative images 

of the tumor-bearing mice. (C) Graph showing the tumor size in the treated and control mice over the period of 

study. Significant reduction in the tumor size was observed in the 4SC-202 treated mice. (D) Representative 

images of the immunohistochemistry staining for LSD1. Tissue microarray (TMA) containing pancreatic cancer 

samples from various patients was used to examine the expression status of LSD1. 
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4.14 4SC-202 leads to a genome-wide enrichment of H3K4me1 and H3K27ac 

marks 

Since LSD1 and HDACs are associated with demethylation (H3K4me1 and H3K4me2) 

and deacetylation (like H3K27ac) activity respectively, we investigated the effect of 

their combined inhibition on global levels of H3K27ac and H3K4me1. We performed 

ChIP-seq for H3K27ac and H3K4me1 with and without 4SC-202 treatment and 

analyzed their genome-wide distribution. Initially, we checked for the change in levels 

of H3K27ac and H3K4me1 in western blot and observed a significant increase in the 

histone marks following 4SC-202 treatment (Fig. 39A & D). After confirming the 

inhibitory effect of 4SC-202 on HDACs and LSD1 we performed a ChIP-seq 

experiment and investigated the genome-wide enrichment of the above mentioned 

histone modifications around the TSS of all genes.  As depicted in the aggregate plot 

around the TSS region (± 5Kb), we observed a significant increase in the genome-

wide signal for H3K4me1 and H3K27ac histone marks in 4SC-202-treated condition 

compared to the control (Fig. 39B & E). These findings were also confirmed by the 

heatmap profile for the H3K4me1 and H3K27ac marks around the TSS region (± 3Kb) 

of the genes genome-wide. Interestingly, significantly enhanced signals for H3K4me1 

and H3K27ac were observed around the TSS of genes (Fig. 39C & F). Taken together 

these findings confirmed the inhibitory action of 4SC-202 on HDACs and LSD1 as their 

respective inhibition would result in enhanced acetylation and methylation of target 

histone residues. Since LSD1 and HDACs are often found in complexes where they 

cooperatively lead to the formation of repressive chromatin structure it is likely that 

they have a common set of target genes, therefore, further analysis of the genome-

wide data was performed on the genomic regions that are regulated by both LSD1 and 

HDAC based on H3K4me1 and H3K27ac ChIP-seq data. 
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Figure 39: 4SC-202 leads to genome-wide enrichment of H3K4me1 and H3K27ac marks: (A) & (D) L3.6 cells 

were treated with DMSO or 4SC-202 for 12 hours. Western blotting was performed to check for the protein 

levels of H3K27ac and H3K4me1 respectively. Samples were loaded in duplicate (samples are from technical 

replicates of the experiment). Significant enrichment of H3K27ac and H3K4me1 was observed in samples treated 

with 4SC-202. Total H3 was used as a loading control. (B) & (E) Aggregate profile plot for H3K27ac and H3K4me1 

respectively around the TSS (± 5Kb) of the all the genes genome-wide. The enrichment of both histone marks 

was significantly higher in 4SC-202 treated cells compared to the control (DMSO treated) cells. (C) & (F) Heatmap 

profile for H3K27ac and H3K4me1 respectively around the TSS (± 3Kb) region of the genes genome-wide. For 

plotting the heatmap the same maximum intensity was kept for the two treatment conditions for a better 

comparison. Significantly higher signal was observed for both histone modifications following 4SC-202 

treatment. 
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4.15 H3K4me1 enriched sites are mainly associated with distal intergenic 

regions 

Since H3K4me1 and H3K27ac histone marks have been shown to be associated with 

active enhancers and promoters we sought to investigate the enrichment of these 

histone modifications at various genomic locations genome-wide. We performed 

CEAS for H3K4me1 and H3K27ac histone marks and as depicted in the pie chart plot, 

fraction of H3K4me1 (33%) and H3K27ac (27%) enriched signals were associated 

with distal intergenic regions (Fig. 40A). Further, we performed DiffBind (differential 

binding analysis of ChIP-seq peak data) analysis which enables the determination of 

the differentially bound genomic regions between different datasets. We performed 

DiffBind analysis on H3K4me1 ChIP-seq data in comparison to control and 4SC-202 

treated samples to check for the regions that have the highest increase in H3K4me1 

signals and performed further analysis on those regions. As shown in the correlation 

plot (Fig. 40B), control samples correlated well with each other and similarly 4SC-202 

treated samples correlated with each other but there was no cross-correlation between 

different conditions indicating that control and treated samples had substantial 

differences. One of the replicates from control samples was not included in the 

analysis because the number of reads was significantly low. Furthermore, binding 

affinity plot (Fig. 40C) revealed that 4SC-202 treated samples had significantly higher 

differentially bound sites compared to the control samples. In addition we took the 

differentially bound sites enriched in the 4SC-treated samples compared to the control 

samples and visualized those genomic regions on the IGV tool. The peak intensity 

around individual differentially-bound genomic regions was significantly higher in 4SC-

202 treated samples compared to control samples (Fig. 40D).  
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Figure 40: H3K4me1 enriched sites are associated with distal intergenic regions. (A) CEAS was performed on 

H3K4me1 and H3K27ac ChIP-seq data to find the relative enrichment of ChIP binding regions at various genomic 

locations. As depicted in the pie chart, 33% of H3K4me1 and 27% of H3K27ac binding regions were confined to 

the distal intergenic regions compared to the whole genome. (B) Correlation plot showing the appropriate 

correlation between the replicates of the control and 4SC-202 treated samples. (C) Binding affinity plot showing 

the statistically significant (FDR ≤ 0.05) enrichment of differentially bound sites in the H3K4me1 ChIP-seq data 

from 4SC-202 treated samples compared to the control samples. (D) Differentially bound regions obtained from 

the DiffBind analysis which were enriched for H3K4me1 signals were visualized under the IGV. ChIP-seq profile 

for a few representative genes are shown in the figure. Significantly enhanced signal intensity and peak height 

was observed in 4SC-202 treated samples compared to the control samples. 
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4.16 H3K4me1 enriched distal intergenic elements are associated with key 

cellular processes 

In the recent past many studies have reported the importance of cis-regulatory 

elements that have been shown to play important role in the gene expression. Active 

enhancers display an enrichment of H3K4me1 and H3K27ac and can be located at a 

long distance (from ten to hundreds of Kb) from the promoter or TSS region of the 

genes. From DiffBind analysis we identified several differentially bound H3K4me1 

enriched regions and we wanted to know if the differentially bound regions are 

associated with enhancer elements. For this we selected statistically significantly (FDR 

≤ 0.05 and log2fc ≥ 2) enriched DiffBind regions and performed GREAT (Genomic 

Regions Enrichment of Annotation Tool) analysis to find out the regions that are 

located ± 5Kb around TSS (basal regulatory domain) plus up to 300Kb distal to TSS. 

As shown in the bar chart, the majority of the distal intergenic elements were located 

± 50Kb to 500Kb away from the TSS region (Fig. 41A). Furthermore GREAT analysis 

also revealed that the distal intergenic elements were associated with the key 

biological processes like apoptosis, regulation of cell adhesion (positive) and migration 

(negative) etc. as shown in the Fig. 41B. Interestingly we also observed that the 

associated GO cellular component terms were associated with a differentiated cell 

phenotype like cell-cell adhesion, tight junction and extracellular matrix (Fig. 41C). 

Enhancers are frequently regions that have a cluster of binding sites (specific DNA 

sequences or motifs) which provide a platform for recruiting different transcription 

factors and together regulate the expression of a specific set of genes. We therefore 

investigated which transcription factors are enriched or associated with the H3K4me1 

enriched regions using an online tool ReMap (Griffon et al., 2014). ReMap is a tool 

that has a broad collection of about 8 million TF binding sites generated from over 200 
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different TFs using publicly available and ENCODE ChIP-seq datasets. ReMap 

revealed that 99.31% of H3K4me1 enriched differentially bound sites overlapped with 

Remap sites (Fig. 41D). Furthermore, ReMap revealed that several important TFs like 

JUN and FOS that are well-known player in the regulation of key biological processes 

like cell proliferation and apoptosis were found to be significantly enriched at the given 

genomic regions (Fig. 41E). To further investigate the enrichment of TFs associated 

with the H3K4me1 enriched genomic regions we performed motif analysis using the 

SeqPos motif tool and found a significant enrichment of the motif for the members of 

AP1 complex of transcription factors (FOS, FOSB, FOSL2, JUN, JUNB, JUND), thus 

validating the enrichment of these TFs at the H3K4me1 associated genomic regions 

(Fig. 41F). Taken together these results revealed that 4SC-202 leads to the 

enrichment of H3K4me1 mark at the distal intergenic regions accompanying putative 

enhancers associated with various key TFs. Furthermore, the TFs that have been 

found to be enriched at the given sites may play a role in regulating subset of genes 

involved in promoting differentiation, apoptosis and regulating cell proliferation. 
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Figure 41: H3K4me1 enriched distal intergenic elements were associated with key cellular processes. (A) 

GREAT (Genomic Regions Enrichment of Annotations Tool) analysis of H3K4me1 enriched genomic regions. Bar 

graph is showing that majority of the H3K4me1 enriched distal intergenic regions were located 5 to 500 Kb away 

from the TSS region of the genes. (B) Significantly enriched (-log10 binomial p-value) GO Biological Processes 

associated with the distal intergenic regions are shown. Pathways regulating cell apoptosis, organelle 

organization, immune response and defense processes were found to be enriched. (C) Significantly enriched (-

log10 binomial p-value) GO cellular components associated with the distal intergenic regions are shown. GO 

terms related to maintenance of extracellular matrix, cell-cell adhesion and cell junction were found to be 

enriched. (D) Overview of the overlapping regions between the H3K4me1 enriched genomic regions form the 

ChIP-seq data and genomic regions from the ReMap tool. As depicted in the plot, 99.31% of the regions were 

found to be overlapping (marked in blue) while 0.69% regions did not map (marked in red). (E) Top-10 

significantly enriched TFs associated with the H3K4me1 enriched genomic regions are shown in the bar graph. 

The enrichment was based on the overlap between the provided genomic regions and the genomic sites from 

the ReMap (based on the publicly available and ENCODE datasets). (F) Motif analysis was performed on the 

H3K4me1 enriched genomic regions using SeqPos motif tool (version 1.0.0) of the Galaxy/Cistrome. Significant 

enrichment of the AP1-TF (TF-complex containing JUN and FOS TFs) was observed.
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5. Discussion 

DISCUSSION-I 

Tumor metastasis involves the accumulation of mutations that allow cancer cells to 

survive during uncontrolled proliferation, migration and colonization at distant sites to 

ultimately give rise to metastatic secondary tumors (Chambers et al., 2002; Fidler, 

2003b; Gupta and Massagué, 2006). One of the most important aspects of formation 

of the metastatic tumor is the ability of cancer cells to lose cell-cell adhesion i.e. break-

open the barrier of the extracellular matrix (Kalluri and Weinberg, 2009; Thiery and 

Sleeman, 2006). Cancer cells display cellular plasticity that allows them to undergo 

phenotypic changes through a process termed epithelial-to-mesenchymal transition 

(EMT) that can be induced through various external stimuli including growth factors 

and cytokines like TGFβ (Chaffer and Weinberg, 2011; Thiery, 2002). However, to be 

able to successfully colonize at distant sites and give rise to a secondary tumor cancer 

cells must revert back to an epithelial phenotype by undergoing mesenchymal-to-

epithelial transition (MET) (Hugo et al., 2007; Yao et al., 2011). TGFβ signaling is one 

of the important regulators of EMT and has been often found to be overexpressed in 

metastatic cancers (Derynck et al., 2001; Massagué et al., 2000). Many factors play a 

role in mediating the anti-proliferative and pro-metastatic roles of TGFβ but there is no 

concrete evidence that could dissect the dichotomy of the dual role of TGFβ under 

normal and cancer conditions (Massagué, 2008). Furthermore, in recent years 

epigenetics has been shown to play a major role during normal as well as cancer 

development, therefore it is indispensable to study the epigenetic factors in the 

regulation of EMT and MET during cancer progression and metastasis (KIESSLICH 

et al., 2013; Tam and Weinberg, 2013; Wu et al., 2012a). Moreover, understanding 
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the mechanisms behind the cancer metastasis may open new avenues for cancer 

treatment and therapeutics. 

5.1 KLF10 in tumor development and disease prognosis 

One of the causative factors in the transformation of a normal cell to a cancer cell is 

the loss of function of tumor suppressor genes. Most of the tumor suppressor genes 

encode proteins which are responsible to keep a regulatory brake on the cell 

proliferation. Understandably there is a loss of function or inactivation of tumor 

suppressor genes during tumor development thus allowing them to undergo 

uncontrolled cell proliferation. Among various classes of tumor suppressor genes are 

genes encoding regulators of apoptosis. KLF10, a well-known tumor suppressor, has 

been shown to induce apoptosis in pancreatic cancer (Panc1), hepatoma cell line 

(Hep3B) and oligodendroglia cells (OLI-neu) (Bender et al., 2004; Chalaux et al., 1999; 

Ribeiro et al., 1999; Tachibana et al., 1997). In our study we explored the expression 

status of KLF10 primarily in lung and breast cancer. Interestingly, in correlation with 

its tumor suppressor role we found that KLF10 expression levels were significantly 

downregulated across different datasets in lung cancer as well as breast cancer 

samples in comparison to the control sample. This finding fits well with the previous 

reports showing that KLF10 expression in breast cancer is inversely correlated with 

breast cancer stage with highest expression in normal breast tissue and minimum or 

complete loss of expression in advanced stage and invasive breast cancer (Reinholz 

et al., 2004; Subramaniam et al., 1998).  

It is a well-known fact that, in the path of conversion of a normal cell into a cancer cell, 

tumor suppressor genes play an inhibitory role unlike proto-oncogenes. Tumor 

suppressor genes generally operate by keeping a check on cell proliferation and 

induce apoptosis to maintain the tissue homeostasis. However, a loss of function 
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mutation or inactivation of tumor suppressor genes results in uncontrolled proliferation 

which is considered to be one of the most important hallmarks of cancer (Hanahan 

and Weinberg, 2011). To address the tumor suppressor function of KLF10 in an in vivo 

system we have utilized Klf10 knock-out mice carrying a loss of function mutation in 

the KLF10 gene. Previously it has been shown that the commonly used laboratory 

chemical carcinogen DMBA induces lung tumor formation in mice (Duro de Oliveira et 

al., 2013). In our study a significantly higher incidence of lung tumor was observed in 

Klf10 knock-out mice as compared to the wild type mice upon exposure to DMBA. 

Notably, Klf10 knock-out mice did not carry any other mutational background like 

KRAS or EGFR. 

5.2 KLF10 and dichotomy of TGFβ signaling 

Impairment of various signaling pathways regulating cellular functions like cell 

proliferation, differentiation and apoptosis is a frequent occurrence during malignant 

transformation. One such signaling pathway is TGFβ signaling, which is governed by 

various factors and perturbations in TGFβ signaling during tumorigenesis and tumor 

progression has been repeatedly reported (Yang and Weinberg, 2008b). The effects 

of TGFβ signaling are more dependent on cellular contexts and this paradigm has 

eluded the scientific world for many years (Massagué, 2012). How cells read and 

respond to the effects of TGFβ signaling in different manners has been a mystery for 

more than half a century and it still is a contradiction. The scientific community has 

been trying to find the factors that can dissect the dichotomy of the dual role of the 

TGFβ signaling during cancer development and progression. 

KLF10 has been previously reported to be a central player in TGFβ signaling where it 

either suppresses the inhibitory SMAD7 gene or upregulates the expression of the 

activating SMAD2 gene, thus enhancing the TGFβ signaling (Johnsen et al., 2002a, 
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2002b). We have performed a transcriptome-wide study in two different cell lines to 

determine if the effects of KLF10 on TGFβ regulated genes is a general phenomenon 

or is cell or cancer-type dependent. Transcriptome wide results in cell lines 

representing different cancer types showed the same result implying that effect of 

KLF10 on TGFβ signaling is a general phenomenon and not cancer-type specific. 

KLF10 is a tumor suppressor while TGFβ has tumor suppressing as well as tumor 

promoting functions. Previous studies have also shown that overexpression of KLF10 

can mimic the anti-proliferative function of TGFβ (Johnsen et al., 2004) while the loss 

of KLF10 resulted in a pro-proliferative effects of TGFβ in mouse embryonic 

fibroblasts. Therefore, it can be speculated that KLF10 can be a central factor that 

could dissect the dual role of TGFβ. 

5.3 KLF10 responsive genes are associated with differentiation  

In the transcriptome data we have shown that a significant portion of the TGFβ 

regulated genes were overlapping with KLF10 affected genes indicating that KLF10 

indeed targets genes involved in carrying out TGFβ functions. However, we were 

interested to elucidate whether the KLF10 responsive genes were associated with 

tumor suppressing or tumor promoting pathways. Cellular pathways like cell adhesion, 

extracellular matrix and cell migration were found to be significantly enriched GO terms 

in the Gene Ontology analysis. Since these pathways are associated with a cell that 

is rather in a differentiated state and these GO terms were enriched upon KLF10 

depletion it points towards the association of KLF10 with a differentiated cellular state. 

Furthermore, we also observed the enrichment of gene sets relevant for the formation 

of poorly differentiated and metastatic cancer upon KLF10 depletion. Enrichment of 

pathways related to cell differentiation on the one hand versus pathways related to 

metastatic cancer on the other hand speaks for the role of KLF10 in affecting or 
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regulating both the tumor suppressing as well as tumor promoting functions of the 

TGFβ.  

5.4 Role of KLF10 in cancer metastasis 

To be able to invade the surrounding tissues or metastasize to distant sites cancer 

cells must lose their polarity, cell-cell contacts and become more mesenchymal by 

undergoing EMT. TGFβ is a potent inducer of EMT and thereby exerts its tumor 

promoting function in later stages of cancer. In our study, various results indicated that 

KLF10 could play a role in inhibiting the formation of metastatic cancer by regulating 

the genes associated with TGFβ-induced EMT. 

5.4.1 KLF10 inhibits TGFβ-induced EMT 

One of the hallmarks of initiation of EMT is the loss of expression of E-cadherin. Loss 

of E-cadherin marks the onset of dissolution of cell-cell adhesion and extracellular 

matrix thus allowing the cells to break-free and be able to migrate. We observed that 

KLF10 depletion itself was able to cause a change in cellular morphology making the 

cells more elongated and mesenchymal-like. However, KLF10 depletion in TGFβ-

induced cells resulted in a complete loss of cell-cell contact and attainment of an 

elongated mesenchymal-like phenotype. Additionally, KLF10 depletion resulted in a 

significant loss of E-cadherin mRNA and protein expression which was coupled with 

elevated expression of genes associated with a mesenchymal phenotype.  

Matrix metalloproteinases (MMPs) are one of the important classes of proteolytic 

enzymes and their function of protein degradation regulates various cellular 

processes. Apart from their involvement in maintaining tissue homeostasis, regulating 

cell growth and differentiation they have also been implicated in invasion and 

metastasis of cancer (Egeblad and Werb, 2002; Kessenbrock et al., 2010). We have 
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noted significantly elevated level of MMP2 and downregulation of MMP7 following 

KLF10 depletion. Interestingly, various studies have reported the significance of 

MMP2 in the context of cancer development and progression. MMP2 is indispensable 

for angiogenesis and depletion of MMP2 has been shown to be associated with 

decreased angiogenesis in chicken chorioallantoic membrane model and also in 

Mmp2 deficient mice (Itoh et al., 1998). Furthermore, Mmp2 deficient mice have been 

shown to form less colonies or metastasis in lung compared to the wild type mice 

(Fang et al., 2000). Consistent with our findings, our transcriptome data suggest that 

KLF10 is indeed able to block TGFβ-induced EMT, which further strengthens the 

possibility that KLF10 could be a critical factor that can dissect the dual role (tumor 

suppressing and tumor promoting) of TGFβ signaling in cancer. 

5.4.2 KLF10 regulates EMT by targeting SNAI2 

Since our transcriptome-wide data indicated a potential role for KLF10 in regulating 

TGFβ-induced EMT it was important to identify the genome-wide binding sites of 

KLF10 in order to find potential target genes. Interestingly, in our genome-wide study 

for KLF10 we determined that most of the KLF10 binding sites were confined to the 

promoter region and coding exons of genes while very few were at the distal intergenic 

regions. One of the interesting and most important findings from our genome-wide 

study was that SNAI2 emerged as a direct KLF10 target gene. A significant KLF10 

peak was observed around the promoter region of the SNAI2 gene. SNAI2 is one of 

the most important transcription factors involved in the initiation of EMT by repressing 

the hallmark epithelial marker gene E-cadherin (Bolós et al., 2003; Hajra et al., 2002; 

Naber et al., 2013). SNAI2 has been shown to be frequently overexpressed in different 

types of cancer, mainly metastatic or advanced stage cancer. Especially in metastatic 

breast cancer, SNAI2 expression was found to be inversely correlated with the E-
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cadherin expression and is related to poor prognosis (Côme et al., 2006; Jethwa et 

al., 2008; Pérez-Mancera et al., 2005). SNAI2 has also been shown to promote tumor 

cell migration and invasion in lung adenocarcinoma and to generate cells with 

properties of cancer stem-like cells in breast cancer (Bhat-Nakshatri et al., 2010; Shih, 

2005). 

To rule out the possibility of SNAI2 being a target of KLF10 specifically in lung cancer 

we have performed a ChIP analysis in two other cancer cell lines. We consistently 

observed the enrichment of KLF10 binding on the TSS region of the SNAI2 gene in 

A549, Panc1 and MDA-MB-231 cells, whereas the binding in the transcribed region 

was equivalent to the background. Furthermore, there was a significant upregulation 

of SNAI2 mRNA and protein levels upon KLF10 depletion which further strengthened 

SNAI2 as the KLF10 target gene in its quest to block TGFβ-induced EMT. 

5.4.3 KLF10 represses SNAI2 by an epigenetic mechanism 

EMT involves tightly coordinated and reversible changes in the expression of epithelial 

and mesenchymal marker genes and this plasticity has recently been credited to a 

large extent to epigenetic changes (Serrano-Gomez et al., 2016; Wang and Shang, 

2013). Different classes of epigenetic regulators (readers, writers or erasers) are 

recruited by EMT regulators (EMT-TFs) to cause gene repression (of epithelial 

markers) or gene activation (of mesenchymal markers). Histone deacetylation is an 

epigenetic event that causes gene de-activation and is carried out by histone 

deacetylases (HDACs). HDACs remove the acetyl groups from the lysine residues of 

the histones thus making the chromatin more compact and limiting access for DNA 

binding transcription factors as well as transcriptional machinery to access the 

chromatin. HDAC1 is often found in complex with mSin3A together in a co-repressor 

complex and previous studies have reported that KLF10 also forms a co-repressor 
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complex with mSin3A to recruit HDAC1 in order to repress its target genes (Jin et al., 

2012; Zhang et al., 2001). We have shown that KLF10 recruits HDAC1 to the SNAI2 

promoter which leads to the transcriptional repression of the gene. Significantly 

reduced occupancy of HDAC1 on the SNAI2 promoter was observed upon KLF10 

depletion uncovering a mechanism behind the transcriptional regulation of SNAI2 by 

KLF10. Furthermore, previous studies have reported that in response to external 

stimuli like TGFβ and other growth factors, SNAI2 and other EMT-TFs like SNAI1 

(SNAIL) and ZEB1 recruit HDACs to the epithelial genes (especially E-cadherin) to 

repress them to initiate the EMT (Aghdassi et al., 2012b; von Burstin et al., 2009; 

Peinado et al., 2004a). HDACs (especially HDAC1 and HDAC2) have been shown to 

be overexpressed in different types of cancer and the most commonly targeted gene 

is p21 which plays an important role in regulating processes like cell proliferation, 

differentiation and apoptosis (Hrzenjak et al., 2006; Huang and Guo, 2006; Huang et 

al., 2005; Sambucetti et al., 1999; Song et al., 2005).  

The switch between histone acetylation and deacetylation is tightly coupled with active 

and repressed chromatin respectively. Active chromatin is marked by certain types of 

histone acetylation marks like H3K9ac and H3K27ac which contribute to an open and 

uncondensed chromatin structure accessible to the transcriptional machinery. We 

found that depletion of KLF10 leads to significantly enhanced H3K9 and H3K27 

acetylation on the promoter of SNAI2 and correlates with the decreased recruitment 

of HDAC1. Consistent with the finding that KLF10 forms a co-repressor complex with 

HDAC1, our genome-wide data for H3K9 and H3K27 acetylation marks show an 

overall increase in these acetylation marks on KLF10-bound genes genome-wide 

following KLF10 depletion. It has been reported that KLF10 recruits HDAC1 to the 

target genes and causing their repression through altering the chromatin structure due 
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to removal of acetylation marks by HDAC1 (Jin et al., 2012). Furthermore, this is the 

first genome-wide study of KLF10. Together these results uncovered the epigenetic 

mechanism by which KLF10 targets the important EMT-TF SNAI2 to block the TGFβ-

induced EMT. 

To summarize, we propose that in the absence or low expression of KLF10, following 

TGFβ ligand binding to its receptors, SMAD complex binds to and activate the SNAI2 

gene expression which in turn initiates the EMT program (Fig. 42).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: SNAI2 is activated in the absence of KLF10. In the absence of KLF10, in response to TGFβ stimulation 

cancer cells have elevated expression of SNAI2 which in turn then initiates the EMT program. 
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In the presence of KLF10, following TGFβ stimulation the SMAD complex activates 

KLF10 gene expression which in turn binds to the SNAI2 promoter and recruits 

HDAC1 leading to deacetylation and consequently transcriptional repression. 

Repressed SNAI2 cannot initiate the EMT program. Thus, cancer cells would no 

longer be able to metastasize (Fig. 43). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: KLF10 activation by TGFβ results in repression of SNAI2. Following TGFβ stimulation the SMAD 

complex binds to and activates the transcription of KLF10. High KLF10 expression results in inhibitory effects on 

SNAI2 expression. KLF10 binds to and recruits HDAC1 to the SNAI2 promoter leading to deacetylation and 

transcriptional repression. As a consequence cancer cells can no longer undergo EMT and cannot metastasize. 
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5.5 KLF10 specifically targets certain TGFβ regulated genes 

Previously it has been shown that KLF10 enhances TGFβ signaling through regulation 

of SMAD2 and SMAD7 expression (Johnsen et al., 2002a, 2002b). KLF10 has been 

shown to mimic the anti-proliferative effect of TGFβ (Johnsen et al., 2004) but nothing 

is known about role of KLF10 in pro-metastatic effects of TGFβ. In our transcriptome-

wide study we found that KLF10 specifically upregulates some and downregulates 

certain TGFβ regulated genes. Additionally, we also found that significant fraction of 

TGFβ regulated genes were unaffected by KLF10 depletion implying that they are not 

regulated by KLF10. This finding could support the hypothesis that KLF10 upregulates 

the genes involved in anti-proliferative effects of TGFβ whereas downregulates those 

involved in pro-metastatic effects of TGFβ, thus fine tune the balance between its 

contrasting functions. Furthermore, it is relevant to know what kind of pathways are 

regulated by KLF10 affected genes because that could further shed a light on 

mechanism behind the tumor suppressor action of KLF10 and importantly if KLF0 

expression level correlates with metastatic cancer. 

5.6 KLF10 and cancer stem cell theory 

Cancer stem cells (CSCs) are defined as a small subset of cells within a 

heterogeneous tumor population that have the capacity for self-renewal and sustaining 

the tumor growth (Clarke et al., 2006). These CSCs can be isolated based on specific 

cell surface marker expression and the most striking feature that distinguishes CSCs 

from the rest of the tumor cells is that they can repopulate themselves to generate 

parent tumors with similar heterogeneity (Eramo et al., 2007; Hermann et al., 2007; 

O’Brien et al., 2007; Singh et al., 2004). Cells undergoing EMT have been shown to 

acquire a characteristic similar to CSCs and were shown to generate tumors when 

implanted into a mouse model (Mani et al., 2008). We have found that KLF10 not only 
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inhibits the TGFβ-induced EMT but also blocks the migration capacity of the cells 

stimulated with TGFβ, which is one of the fundamental steps towards the formation of 

a metastatic tumor. Since CSCs are indispensable for repopulating the metastatic 

tumor, blocking their migratory potential may hinder them from reaching the distant 

site, consequently they will not be able to form metastases. Whether KLF10 depletion 

affects the enrichment of the CSC pool or not needs to be addressed in future studies.  

5.7 Therapeutic relevance of KLF10 for cancer treatment and prognosis  

Prognostic markers play an important role in cancer treatment by providing a way to 

accurately classify the disease events in a patient and whether or not a patient may 

survive the disease. We have elucidated that KLF10 expression may help to predict 

the disease outcome in lung and breast cancer (subtype Luminal B) patients. Low 

KLF10 expression was found to be associated with poor overall survival in lung cancer 

patients and poor disease and metastasis free survival (DMFS) in breast cancer 

patients. Most of the cancer related deaths, especially for lung cancer, are due to 

metastatic or advanced stage cancer, which is to a large extent based on a lack of 

proper molecular or prognostic markers that allow the early diagnosis of the cancers 

likely to metastasize. Based on our findings it can be speculated that KLF10 can 

indeed be established as a prognostic marker especially for lung cancer. Therefore, 

an in-depth investigation into this direction will be of significant therapeutic relevance.  

Furthermore, EMT has been shown to generate cells with stem-like characteristics, 

implying that these cells can stay dormant for a long time without undergoing division. 

Most chemotherapeutics target the actively dividing cell, and hence are not as effective 

against CSCs because they do not divide actively and are thus chemo-resistant and 

can repopulate later to give rise to metastatic tumors. Since we have shown that 

KLF10 can block EMT we hypothesize that analyzing the KLF10 expression level can 
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be useful in categorizing tumors as therapy responder and non-responder. Tumors 

with low or no KLF10 expression will most likely have an enriched pool of CSCs and 

may be more likely to progress to metastatic disease whereas tumors with high KLF10 

expression will likely be in a differentiated state with less probability of metastasizing. 

For this reason further in-depth research in this direction is required. 

Taken together, we have uncovered the previously unknown function of KLF10 in 

inhibiting TGFβ-induced EMT. Furthermore, in our transcriptome-wide study in two 

different cell lines we have shown that KLF10 affects a significant number of TGFβ 

regulated genes and most of the overlapping genes (KLF10 and TGFβ responsive) 

were found to be relevant for pathways regulating EMT and metastasis. Further, we 

have establish SNAI2 as a direct target gene for KLF10 through genome-wide ChIP-

seq (in A549 cells) and ChIP (in A549, Panc1 and MDA-MB-231 cells) studies. 

Mechanistically our study provides evidence that KLF10 forms a corepressor complex 

with HDAC1 and recruits it to the SNAI2 promoter to cause transcriptional repression. 

Furthermore, genome-wide analysis of the active histone marks H3K9ac and H3K27ac 

revealed significant increases in these two acetylation marks on the SNAI2 promoter 

following KLF10 depletion consistent with the recruitment of HDAC1 by KLF10 to 

repress SNAI2 expression. As KLF10 expression was found to be inversely correlated 

to the disease outcome in lung and breast cancer patients with low KLF10 expression 

resulting in poor overall survival, our study holds a clinical relevance. Further 

investigation might help to establish KLF10 as a prognostic marker. 
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DISCUSSION-II 

Epigenetic changes are pivotal for the regulation of gene expression and recent 

studies have highlighted the perturbation of various epigenetic modifiers during cancer 

development and progression, thus pointing towards cooperation between genetic and 

epigenetic events during malignant transformation (You and Jones, 2012). Cancer is 

now regarded as a disease of genetic and epigenetic abnormalities but, in contrast to 

genetic mutations, epigenetic alterations are reversible in nature. The reversible 

nature of epigenetic modifications offers a great possibility to design targeted therapies 

against specific modifiers and recently numerous such epigenetic drugs have been 

designed and are undergoing clinical testing as a targeted drug therapy (Dawson and 

Kouzarides, 2012; Yoo and Jones, 2006). Many anticancer drugs target the bulk of the 

cancer cells, but a small subset of cells (termed as cancer stem-like cells) are often 

resistant to these drugs and overtime develop resistance to other drugs as well and 

thus cannot be targeted anymore (Bozic et al., 2013; Diaz Jr et al., 2012; Komarova 

and Wodarz, 2005). Combination therapy has been proposed to be an answer to 

overcome drug resistance in cancer cells considering the likelihood of a cell being 

resistant to all the drugs used in combination (two or more) is smaller and may offer a 

better chance for the success of the treatment (Komarova and Boland, 2013). 

5.8 4SC-202 promotes differentiation 

One of the important reasons of the failure of therapeutics against cancer is the stem 

cell characteristic of a small subset of cancer cells that possess resistance against 

drugs (Dean et al., 2005). Therefore, it is essential to design drugs that can target 

these cancer stem-like cells by promoting a differentiated phenotype that no longer 

has the ability to repopulate the tumor. We found that 4SC-202 blocks the induction of 

EMT in cells stimulated with TGFβ and forces them towards an epithelial phenotype 
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as confirmed by enhanced expression of epithelial genes. Simultaneous inhibition of 

the EMT-TFs further supports a role of 4SC-202 in blocking the EMT-promoting effects 

of TGFβ and in turn promoting an epithelial cell phenotype. LSD1 has previously been 

shown to be required for the SNAI1 mediated epithelial-to-mesenchymal transition (Lin 

et al., 2010). Another study has reported that LSD1 inhibition attenuates the SNAI1-

mediated EMT, while combined inhibition of LSD1 and HDAC1 completely blocks it 

(Javaid et al., 2013). Furthermore, LSD1 has been shown to be responsible for 

causing chromatin reprogramming during TGFβ-induced EMT, which favors the 

transcriptional repression of epithelial genes (McDonald et al., 2011). Moreover, EMT 

has also been implicated in promoting migration of cancer cells and in our study we 

have shown that 4SC-202 completely blocks the TGFβ-induced migration in cells. It 

has also been reported that inhibiting the interaction between LSD1 and SNAI1 

abrogated the invasive potential (Ferrari-Amorotti et al., 2013), whereas 

overexpression of LSD1 results in enhanced migration and invasion of cancer cells 

(Lv et al., 2012). Furthermore, 4SC-202 strongly enhances the expression of the CD24 

gene, a well-regarded cell surface marker for differentiation which has been reported 

to be downregulated or absent in cancer stem cells (Jiang et al., 2011; Petkova et al., 

2013). Additionally, LSD1 was shown to play an important role in maintaining a 

balance between self-renewal and differentiation potential of human embryonic stem 

cells by targeting key developmental genes involved in differentiation through its 

demethylase activity (Adamo et al., 2011). In the same study loss of LSD1 has been 

shown to cause activation of key differentiation genes while its overexpression results 

in rescue of the effect implying that LSD1 is essential for maintaining an 

undifferentiated state.  
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5.9 4SC-202 and cell cycle regulation via p21 

Any anticancer drug would be expected to put a brake on the most important driving 

force of cancer development which is the uncontrolled cell proliferation with resistance 

to apoptosis. One of the important genes that has been shown to play a role in 

controlling cell proliferation is p21 (CDKN1A), which is a cyclin-dependent kinase 

inhibitor exerting its effect by regulating cell cycle arrest (Brugarolas et al., 1995; Deng 

et al., 1995; Wade Harper et al., 1993). In our study we have found that 4SC-202 

dramatically enhanced the expression of p21 protein levels within 12 hours of drug 

treatment, even in the cells stimulated with TGFβ. Previous studies have reported that 

loss of LSD1 has a direct effect on p21 expression (Lim et al., 2010). Furthermore, in 

our colony formation assay we have shown that 4SC-202 completely attenuated the 

colony forming ability of cancer cells. We also tested the effects of the LSD1 inhibitor 

SP2509 and the HDAC inhibitor Vorinostat either alone or in combinatorial treatment 

and demonstrated that effects of the combinatorial treatment were consistent with the 

4SC-202 effects. Previously it has been reported that in in vivo and in vitro model 

systems for acute myeloid leukemia (AML), LSD1 and HDAC inhibitors show better 

effects when used in combination than individually (Fiskus et al., 2014).   

5.10 4SC-202 decreases tumor growth in vivo 

LSD1 and HDACs are often overexpressed in different types of human cancer 

suggesting a potential tumorigenic role (Kahl et al., 2006; Lv et al., 2012; Müller et al., 

2013; Serce et al., 2012). Further, LSD1 has been largely found in association with 

HDAC1 and HDAC2 (Hakimi et al., 2002, 2003b). HDACs fuel the demethylase activity 

of LSD1 by creating hypoacetylated nucleosome thus facilitating LSD1 binding (Lee 

et al., 2006; Shi et al., 2005). We investigated the expression of LSD1 in pancreatic 

cancer and have determined that its expression level was in the range moderate to 
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very high, implying that it is overexpressed in a subset of pancreatic cancers. 

Furthermore, we explored the effects of inhibiting LSD1 and class-1 HDACs on the 

tumor growth in a xenograft mice model using the dual LSD1/HDAC inhibitor 4SC-202. 

Remarkably, combined inhibition of LSD1 and HDAC lead to significant decrease in 

tumor growth. LSD1 has been shown to interact with and inhibit p53 induced-apoptosis 

by repressing the transcriptional activation of p53 regulated genes (Huang et al., 

2007). Tumor suppressors act to maintain cellular homeostasis mainly by controlling 

aberrant proliferation of the cells where p53 represents one of the most extensively 

studied and commonly inactivated tumor suppressors in cancer. Therefore, 

perturbation in the activity of p53 can result in aberrant proliferation and survival of 

damaged cells that can lead to tumor development (Parant and Lozano, 2003; 

Symonds et al., 1994). Furthermore, HDACs have also been shown to modulate p53 

activity and alter its inhibitory activity on cell proliferation and apoptosis. HDAC2 has 

been shown to inhibit p53 activity by modulating p53-DNA binding (Harms and Chen, 

2007). Furthermore, HDAC1 has bene shown to inhibit the p53 dependent activation 

of cyclin-dependent kinase inhibitor p21 implying that HDAC1 is an antagonist to p53 

(Lagger et al., 2003). Since both LSD1 and HDACs have been shown to modulate p53 

function, it can be speculated that their inhibition can have antitumor effects in a p53 

dependent manner. 

5.11 Epigenetic therapies targeting EMT may result in increased metastasis 

Initiation of EMT is the first step towards cancer cell metastasis and it helps the cells 

to migrate from the primary site and invade to the surrounding tissues. For a cancer 

cell to be able to colonize at distant site and give rise to secondary tumor, it is important 

to revert back to epithelial phenotype by undergoing mesenchymal-to-epithelial 

transition (MET) (Nieto, 2013; Yao et al., 2011). We have shown that inhibition of LSD1 
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and HDACs blocked EMT. It has been reported that, disseminated breast cancer cells 

re-express epithelial markers like E-cadherin by undergoing MET at the distant site to 

form secondary tumor (Chao et al., 2010). Furthermore, a study conducted in a 

spontaneous mouse model for squamous cell carcinoma has shown that the EMT-TF 

Twist1 was able to promote EMT in the tumor cells. However, deactivation of Twist1 

was required in the circulating tumor cells to undergo MET and form secondary 

metastasis (Tsai et al., 2012). In another study it has been shown that reversal of EMT 

at distant metastatic site allows the cells to acquire stem cell properties and enhanced 

proliferation capacity that allows them to colonize and form metastasis (Ocaña et al., 

2012). We have shown that 4SC-202 treatment led to alterations in the expression of 

a subset of genes and pathways involved in differentiation, which was accompanied 

with inhibition of TGFβ-induced EMT. Inhibiting EMT has been considered as a 

therapeutic target to tackle metastatic spread of cancer. However, considering the 

recent data highlighting the importance of MET in metastatic colonization at distant 

site, inhibiting EMT cannot be a therapeutic strategy for all cancer types. In some 

cases like pancreatic and breast cancer, EMT and dissemination of cancer cells occur 

at a relatively early stage (Hüsemann et al., 2008; Rhim et al., 2012), thus inhibiting 

EMT in these types of cancer may promote metastasis. Therefore, an in-depth study 

is required to elucidate the epigenetic signature associated with EMT-TFs and their 

target genes. Furthermore, a better understanding of epigenetic mechanisms involved 

in the regulation of EMT will lead us to novel therapeutic targets which will be highly 

specific with minimal side effects (Bedi et al., 2014; Mishra and Johnsen, 2014). 

5.12 LSD1 can modulate tumor cell phenotype through enhancer regulation 

Recent studies have highlighted the importance of enhancer elements in regulating 

cell identity and maintaining tissue specificity during development and disease. 
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Enhancers are non-coding DNA (few hundred base pairs) elements that contain 

clusters of binding sites (6-10 bp long motif) which can be recognized by transcription 

factors in a sequence- and tissue-specific manner (Shlyueva et al., 2014). Enhancers 

play an important role in defining cell lineage by controlling the expression of specific 

sets of genes(Rada-Iglesias et al., 2011; Whyte et al., 2013). Interestingly, enhancers 

have distinct and unique chromatin landscape which is characterized by the presence 

of H3K4me1 (Heintzman et al., 2009). Additionally, the presence of active mark 

H3K27ac distinguishes active from “poised” enhancers (Creyghton et al., 2010).  

Recently various studies have highlighted that mutations in enhancer-associated 

factors can result in cancer development (Gröschel et al., 2014; Yamazaki et al., 2014; 

Zhang et al., 2016). Furthermore, another study carried out in colon cancer has shown 

that changes in the epigenetic landscape of enhancers can lead to perturbation in 

gene expression in a manner that can result in colon cancer (Akhtar-Zaidi et al., 2012). 

Since LSD1 demethylate H3K4me1, which is a marker for enhancers, it can be 

speculated that overexpression of LSD1 can result in deregulation of a subset of genes 

in an enhancer dependent manner that can result in tumorigenesis.  

Perturbation of cell fate commitment and acquisition of stem cell characteristics are 

important characteristics of cancer (Ben-Porath et al., 2008). Another study has shown 

that LSD1-mediated suppression of hematopoietic stem cell associated enhancers is 

required for their differentiation (Kerenyi et al., 2013). Since LSD1 is involved in 

governing the pluripotent and differentiation states of the cells, it can be inferred that 

inhibition of LSD1 activity can repress the differentiation-associated enhancers 

resulting in enrichment of cancer stem-like cells and increased metastasis. 
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5.13 LSD1 expression as a predictive biomarker for responsiveness to targeted 

therapy 

Several studies have highlighted the overexpression of LSD1 in poorly differentiated 

and aggressive form of cancers and has been shown to correlate with poor outcome 

(Jie et al., 2013; Lim et al., 2010; Lv et al., 2012; Yu et al., 2013). Furthermore, 

overexpression of LSD1 in NSCLC has been shown to be associated with cell 

proliferation, migration and invasive phenotype (Lv et al., 2012). In our study we have 

shown that LSD1 is highly expressed in a subset of pancreatic tumors. However, we 

did not observe any significant correlation to the patient survival. LSD1 has been 

shown to be involved in silencing of tumor suppressor gene BRCA1 (Wu et al., 2012b) 

and has been found to be inversely correlated with BRCA1 expression in triple-

negative breast cancer (Nagasawa et al., 2015). BRAC1 mutant tumors have been 

shown to be sensitive to PARP inhibitors (Turner et al., 2008) therefore, expression 

status of LSD1 in breast cancer has been proposed as biomarker for patients that will 

respond to PARP inhibition based therapies (Nagasawa et al., 2015). Since we have 

observed higher expression of LSD1 in a fraction of pancreatic tumors, it can be 

proposed that LSD1 expression may stratify the patients that will respond to targeted 

therapy. 

Taken together we have uncovered the previously unknown function of a transcription 

factor KLF10 in regulating the pro-metastatic function of TGFβ signaling by inhibiting 

TGFβ-induced EMT. Furthermore, we also show that KLF10 is required for recruitment 

of HDAC1 to SNAI2 promoter and consequently causing its repression. KLF10 

expression further correlated with poor outcome in lung adenocarcinoma and breast 

carcinoma (luminal B) patients which implicates a potential for KLF10 as a prognostic 

marker. In a more global approach we have investigated the efficacy of a small 
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molecule inhibitor against epigenetic modifiers. Several studies have highlighted the 

importance of LSD1 in tumorigenesis and promoting undifferentiated phenotype in 

cancer cells especially in breast cancer. Combined inhibition of LSD1 and HDACs is 

been considered as a potential approach for targeted therapy against certain types 

cancer. In our study we have utilized a dual LSD1/HDAC inhibitor 4SC-202 and show 

that combined inhibition of LSD1 and HDACs blocks the TGFβ-induced EMT and 

significantly decreases the tumor growth in vivo. Currently available small molecule 

inhibitors against LSD1 show poor selectivity and in vivo toxicity thus limiting their use 

in the patients. Further in-depth investigation of 4SC-202 is required to establish it as 

a potential targeted therapy option.
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