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Abstract 
 

Abstract 

The importance of mitochondria for cellular respiration, ATP synthesis and involvement in cell 

signaling pathways impacting cell proliferation, differentiation or death is now recognized. Due to 

the broad roles of mitochondria in cellular function, it is not surprising that mitochondrial 

malfunction has been shown to be a crucial factor in several diseases, including metabolic and 

neuromuscular diseases and also pathophysiological processes such as aging. However, it 

remains unclear how mitochondria interact with other organelles. While it is known that 

mitochondria have physical contact sites with other organelles, the communication via signaling 

pathways remains unclear. This thesis focuses on the mechanisms by which acute and chronic 

mitochondrial stresses impact lysosomal biogenesis and function.  

In order to approach our goals, cellular models of acute and chronic mitochondrial malfunction 

were generated using chemical inhibitors of mitochondrial function or silencing the expression of 

a key mitochondrial respiratory chain subunit. This thesis shows that mitochondrial malfunction 

regulates lysosomal biogenesis via microphtalmia transcription factor family. Furthermore, we 

found that this increase in lysosomal biogenesis correlates with an increase in autophagic flux.  

Interestingly, we found that the effect of mitochondrial malfunction over lysosomal biogenesis acts 

in different manners depending on the persistence of the mitochondrial defect. Acute mitochondrial 

malfunction triggers lysosomal biogenesis which is AMPK-dependent. However, chronic 

mitochondrial malfunction results in AMPK repression, in an uncoordinated transcriptional 

program lysosomal biogenesis and in dysfunctional swollen lysosomes, with the consequent 

accumulation of autophagolysosomes. This thesis also shows that cells with chronic mitochondrial 

malfunction are not able to trigger the canonical TFEB pathway.  

Furthermore, we found that those dysfunctional lysosomes that have a pH less acidic than the 

control cells could be the cause of the decreased lysosomal performance since the optimal pH for 

lysosomal enzymes is acidic (4.5-5). We also found that pharmacologic activation of a lysosomal 

calcium channel, MCOLN1, is able to rescue the aberrant morphology of the swollen lysosomes 

present in chronic mitochondrial malfunction and most interestingly, also rescues the pH in those 

lysosomes taking it back to the range observed in control cells. 

This work contributes to the knowledge of mitochondrial-lysosomal interactions, revealing an 

integrated perspective which shows differences between acute and chronic mitochondrial 

malfunction and the diversity of their effects on lysosomal homeostasis. Moreover, the discovery 
1 
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of the pivotal role played by the MCOLN1 channel, in lysosomal impairment caused by chronic 

mitochondrial malfunction, provides a target of interest for mitochondrial diseases. 
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Introduction 
 

1. Introduction  

1.1 Mitochondrion 

The word mitochondrion arises from the Greek words mitos (thread) and khondros (granule). The 

first references to mitochondria are from the mid-1800s when Albert von Kölliker described the 

presence of “granules" in the cells of striated muscles. These “granules” were named mitochondria 

only in 1898 by Carl Benda. In the beginning of the 20th century, mitochondria were described as 

the “power house” of the cell by Albert Claude. However, nowadays it is known that the role of 

mitochondria in the cell has evolved to include many other functions as well (Raimundo 2014). 

Mitochondria are involved in amino acid, sugar and fatty acid catabolism, calcium homeostasis, 

synthesis of heme, Fe-S clusters and steroids. Also, mitochondria are instrumental in many 

pathways related to cell signaling like cell proliferation and differentiation as well as in autophagy 

(Nunnari & Suomalainen 2012; Pernas & Scorrano 2015; Raimundo 2014) .  

In view of the fact that mitochondria are involved in such extensive variety of processes, it is 

not surprising that mitochondrial malfunction is implicated in several diseases, particularly 

neuromuscular diseases and metabolic disorders as well as pathophysiological processes such 

as aging or even cancer (Nunnari & Suomalainen 2012; Bratic & Larsson 2013; Tsai et al. 2009). 

 

1.1.1 Origin of the mitochondrion 

Since mitochondria were discovered, several theories about their origin have been proposed. The 

currently accepted theory is the Endosymbiotic Theory. This theory, proposed by Francis Taylor 

in 1974, was specially supported by Lynn Margulis and has been widely supported by genetic data 

(Scheffler 2008). According to the Endosymbiotic Theory, mitochondria resulted from an alpha-

proteobacterium engulfed by a eukaryotic progenitor over two billion years ago (Scheffler 2008; 

Dolezal et al. 2006), resulting in the formation of mitochondrial double membrane and in the 

presence of a second genome in the cell, the mitochondrial DNA (mtDNA).  

It is commonly accepted today that mitochondria have a monophyletic origin wherein a singular 

event in evolution originated this organelle. However, there is still a surprising difference among 

organisms with respect to the number and function of mitochondrial genes encoded by the mtDNA. 

For example, in mammals, 13 polypeptides of mitochondrial respiratory chain are encoded by 

mtDNA, whereas in freshwater protozoon Reclinomonas Americana, 23 polypeptides of 

mitochondrial respiratory chain are encoded by mtDNA (Lang et al. 1997). As part of evolution, 
3 
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several genes were transferred from the mitochondrial to the nuclear genome. The following 

sections of this thesis will focus on mammalian mitochondria. 

 

1.1.2 Mitochondrial structure and morphology 

At structural level, mitochondria are described as very dynamic double-membrane-bound 

organelles, with a huge diversity in their morphology (Youle et al. 2012). Mitochondria look similar 

to small bacteria, usually with a spaghetti-like shape, of no fixed length and about 1μm in diameter 

(Fig. 1) (Palade, 1953; Sjostrand, 1953). 

 
Figure 1. Mitochondrial network – Mitochondrial network in Hela cell (100X). The cells were transfected with cyan fluorescent 
protein targeted to mitochondria (mito-CFP). 

 

The mitochondrion is an organelle present in Eukaryotic cells delimited by two membranes. The 

outer mitochondrial membrane (OMM), separates the cytoplasm from the intermembrane space 

(IMS). The inner mitochondrial membrane (IMM) separates the mitochondrial matrix from the IMS.  

The OMM is permeable to molecules up to 8 kDa due to the presence of a β-barrel protein called 

porin, also known as voltage-dependent anion-selective channel (VDAC), that has a diameter of 

2 to 3 nanometers (Zalman et al. 1980; Benz 1994). On the other hand IMM has a protein:lipid 

ratio higher than usual and its permeability is tightly controlled in order to maintain the proton 

gradient generated by the mitochondrial respiratory chain and used by the ATP synthase. 

Furthermore, another difference between the IMM and the OMM is the presence of invaginations 
4 
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called cristae in the IMM. The mitochondrial respiratory chain and the oxidative phosphorylation 

complexes reside in the areas of the IMM that form these cristae (Bernardi & Azzone 1981; 

Ishihara et al. 2006; Pernas & Scorrano 2015). Recently, it has been identified that the intra-cristae 

space is another mitochondrial compartment (Raimundo et al. 2016; Pernas & Scorrano 2016). 

The number of cristae in the mitochondrion seems to correlate with the energy demands of the 

cell (Rossignol et al. 2004) (Fig. 2).  

 

 
Figure 2. Mitochondrial structure – Scheme of a mitochondrion with the outer mitochondrial membrane (OMM), the inner 
mitochondrial membrane (IMM) and between them is the inter membrane space (IMS). The IMM is folded, thus generating the 
cristae (where the respiratory chain complexes are located) and encloses the mitochondrial matrix. In the mitochondrial matrix 
resides the mitochondrial DNA (mtDNA). 

 

Inside the IMM is the mitochondrial matrix, where the processes involved in mitochondrial 

metabolism as well as the maintenance, replication, transcription and translation of mtDNA take 

place (Scalettar et al. 1991). One of the principal characteristics of the mitochondrion is that it has 

its own genetic material, the mitochondrial DNA. In mammals this mtDNA, which has 16569 base 

pairs, encodes 2 ribosomal RNAs (rRNAs), 13 polypeptides of mitochondrial respiratory chain and 

22 transfer RNAs (tRNAs). The rest of the proteins present in the mitochondrion, around 1500, 

are nuclear-encoded, translated by ribosomes in the cytoplasm and translocated into the 

mitochondria through dedicated protein import complexes. These include, for example, the 

translocase of the outer mitochondria membrane (TOM) complex, placed in the OMM (Chacinska 

et al. 2009; Lightowlers et al. 2015; Chacinska et al. 2010) and the translocase of the inner 
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mitochondria membrane 23 (TIM23) complex. TOM and TIM, in cooperation with the 

presequence-associated motor (PAM) complex, catalyze the translocation of the nuclear encoded 

protein precursors to the matrix. The TIM23 complex also mediates the sorting of precursor 

proteins with a ‘stop’ signal into IMM (Chacinska et al. 2009). There is also the translocase of the 

inner mitochondria 22 (TIM22) complex that assembles carrier proteins into the inner membrane, 

as well as the membrane mitochondrial oxidase assembly protein1 (Oxa1) that also mediates 

protein insertion from the matrix into the inner membrane (Neupert & Herrmann 2007; Chacinska 

et al. 2009). Furthermore, the tiny Tim proteins guide β-barrel precursor proteins, imported by 

TOM complex, across the IMS to the sorting and assembly machinery (SAM) that drives their 

integration in the OMM (Koehler 2000; Schleiff & Becker 2011). 

 

1.1.3 Mitochondrial dynamics 

Data obtained through in vivo microscopy show that mitochondria are dynamic organelles since 

they can move along their axis at a speed of 2 to 30 µm/min. This displacement correlates with 

changes in the mitochondrial shape, thinning and thickening of mitochondrion and rearrangement 

of cristae (Scheffler 2008). However there are other ways in which mitochondria change their 

shape, like fission and fusion. The rates of mitochondrial fission/fusion are usually equilibrated, 

however they can favor one of the directions of this equilibrium in order to adapt to different stress 

conditions (Youle et al. 2012; Wai & Langer 2016) (Fig. 3). Several proteins are involved in 

mitochondrial fission and fusion. In mammals, the core proteins involved in fission are dynamin-

related protein 1 (Drp1) which cycles on and off to the mitochondria from the cytoplasm and the 

mitochondrial proteins placed in OMM that recruit Drp1, such as fission 1 protein (FIS1), 

mitochondrial fission factor (MFF) and mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 

and MiD51) (Smirnova et al. 1998; Gandre-Babbe & Bliek 2008; Yoon et al. 2003; James et al. 

2003; Losón et al. 2012). For example, when the cell is growing and dividing, under conditions of 

impaired oxidative phosphorylation (OXPHOS) or loss of mitochondrial membrane potential, Drp1 

translocates to the OMM where it oligomerizes, forming spirals that constrict OMM and IMM until 

the fragmentation of the mitochondrion. On the other hand, when there is an increase in mtDNA, 

such as in cells with mitochondrial Transcription Factor 1 (TFAM) depletion, mitochondria fuse 

becoming hyperfused. The proteins involved in the mitochondrial fusion are the mammalian 

orthologues mitofusin 1 (Mtf1) and mitofusin 2 (Mtf2) (Santel & Fuller 2001; Ishihara et al. 2004; 

West et al. 2015), which are anchored in the OMM and are required to fuse the OMM while the 
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fusion of IMM needs optic atrophic 1 (OPA1), which is in the membrane of the mitochondrial cristae 

facing the IMM (Olichon et al. 2003; Frezza et al. 2006; Wai & Langer 2016). 

 
Figure 3. Mitochondrial dynamic balance – Mitochondria in mouse embryonic fibroblast under different metabolic stimuli. 
Under nutrient withdrawal, mild stress and increase of OXPHOS, there is an increase in mitochondrial fission (green), while 
under nutrient excess, severe stress and decreased of OXPHOS, there is an increase in mitochondrial fusion (red). Figure from  
Wai & Langer 2016. 

 

1.1.4 Mitochondrial metabolism 

1.1.4.1 Citrate cycle 

The citrate cycle and OXPHOS are two essential sets of reactions in order to satisfy the energy 

demands in eukaryotic cells. These two processes are connected by the generation of NADH and 

FADH2 in the citrate cycle, which then transfer electrons to molecular oxygen, reducing it to water 

in the mitochondrial respiratory chain. The transfer of electrons is coupled with the transfer of 

protons from the matrix to the IMS generating an electrochemical gradient that is used to generate 

energy and store it in form of ATP (Korla & Mitra 2013).  
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The citrate cycle, also known as tricarboxylic acid (TCA) cycle or Krebs cycle, was proposed by 

Krebs and Johnson in 1937 (Krebs & Johnson 1937). The enzymes that catalyze the reactions of 

the citrate cycle are in the mitochondrial matrix, except succinate dehydrogenase (SDH) which is 

associated with the matrix side of the inner membrane and is a part of both the citrate cycle and 

the respiratory chain (complex II) (Addink et al. 1972).  

Acetyl-CoA is the initial substrate of citrate cycle, it is mainly generated by oxidation of pyruvate 

but also from fatty acid and amino acid metabolism. Once that acetyl-CoA enters the citrate cycle, 

a series of chemical reactions start. The overall reaction of the citrate cycle is represented by the 

equation: 

Acetyl-CoA + 2H2O + 3NAD+ + GDP + Pi + FAD → 

3NADH + 3H+ + FADH2
 + GTP + CoA-SH + 2CO2 

The citrate cycle and the mitochondrial respiratory chain have several “contact” points, such as 

complex II which catalyzes the oxidation of succinate to fumarate with the associated reduction of 

FAD to FADH2. Furthermore, the reduction of NAD+ to NADH is also accomplished in the citrate 

cycle and NADH is used to feed complex I of the mitochondrial respiratory chain (Scheffler 2008; 

Korla & Mitra 2013).     

 

1.1.4.2 Respiratory chain and oxidative phosphorylation 

Mitochondrial respiratory chain or electron transport chain (ETC) defines a group of protein 

complexes placed in the IMM, where it operates as the site of OXPHOS through the use of ATP 

synthase. The respiratory chain is involved in the transfer of electrons from electron donors to 

electron acceptors via redox reactions. This transfer of electrons is coupled with the pumping of 

H+ across the membrane and the generation of an electrochemical gradient, composed by pH 

gradient and membrane potential (Δψ) across the inner membrane. This electrochemical gradient 

is used by the mitochondrial ATP synthase, also referred to as Complex V, to transform adenosine 

diphosphate (ADP) in adenosine triphosphate (ATP) (Mitchell & Moyle 1969; Scheffler 2008).  

The operation of the respiratory chain is well characterized. NADH and FADH2 are oxidized to 

NAD+ and FAD in the complex I and complex II respectively. Ubiquinol carries electrons from both 

complexes to the complex III which in turn, through the ubiquinone cycle, transfers the electrons 

to cytochrome c. This protein will then pass the electrons to complex IV (cytochrome c oxidase). 

In complex IV, the electrons are passed to their terminal acceptor O2 thus forming H2O. During 
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this process, protons are pumped from the mitochondrial matrix into IMS in complex I, III, and IV, 

thereby generating the electrochemical gradient that is used by ATP synthase to generate ATP - 

the energy “currency” of the cell (Andreyev et al. 2005) (Fig. 4). 

 
Figure 4. Mitochondrial respiratory chain and oxidative phosphorylation – The respiratory chain complexes (I-IV), 
ubiquinone and cytochrome c (cyt c) and ATP synthase are displayed. The black dots in the complexes represent the subunits 
encoded by mtDNA.  Figure adapted from DiMauro and Schon, 2008. 

 

Currently it is known that the respiratory chain complexes form multimeric structures called 

respirasomes or supercomplexes (Schägger & Pfeiffer 2000). For example, in mammals almost 

all of complex I is associated to dimmers of complex III (III2); there are supercomplexes formed 

by complex I1-III2-IVn (Schägger & Pfeiffer 2000); ATP synthase can form dimmers (Schäfer et al. 

2006; Wittig et al. 2006). It has been shown that the deficiencies in complex III or IV affect complex 

I (Enríquez 2016). Furthermore supercomplexes are also related to the increase in the efficiency 

of electron transfer and a consequent decrease in the production of reactive oxygen species 

(Maranzana et al. 2013; Enríquez 2016).    

 

1.1.5 Uncoupler of respiratory chain  

The generation of the ATP by ATP synthase requires orthophosphate (Pi), ADP and energy. The 

energy is provided by the electrochemical gradient across the inner membrane, generated by the 
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respiratory chain. One of the methods employed in this thesis to induce mitochondrial malfunction 

includes using uncouplers which are protonophores that move protons through IMM due to their 

ability to diffuse through the membrane. The uncouplers decrease the membrane potential 

uncoupling the proton gradient and reducing the ability of ATP synthase to function optimally. 

Some commonly used uncouplers are carbonyl cyanide m-chlorophenyl hydrazone (CCCP), 

carbonyl cyanide-p-trifluoromethoxyphenol hydrozone (FCCP), 2,4-dinitrophenol or dicumarol 

(Kessler et al. 1976; Lim et al. 2001; Lou et al. 2007). The uncoupling of mitochondrial respiratory 

chain allows the return of protons from the IMS into the mitochondrial matrix without ATP 

production. In this system, proton leakage causes a decrease in the membrane potential across 

the inner membrane and an increase in the mitochondrial respiration rate. This means that in the 

presence of an uncoupler, for example CCCP, the complexes I-IV of respiratory chain function 

normally but the synthesis of ATP cannot occur although ATP synthase is not inhibited (Terada 

1990; Miles 2003; Lou et al. 2007). 

 

1.1.6 Cytochrome c reductase or bc1 complex  

Cytochrome c reductase, bc1 complex or complex III is a transmembrane protein complex that is 

the third complex of ETC. This complex receives electrons from complex I and II, through 

ubiquinol, and transfers these electrons to cytochrome c, through the Q-cycle or ubiquinone cycle.  

In mammals, complex III is formed by 11 subunits with a molecular weight of 240 kb. Only one 

complex III subunit is encoded by mtDNA, namely cytochrome b. All other complex III subunits 

are nuclear encoded. This complex has three redox components: cytochrome b with two hemes, 

FeS protein with a Rieske [Fe-S] center and cytochrome c1 (Iwata et al. 1998; Fry & Green 1978; 

Rieske 1976; Xia et al. 1997).   

The cytochrome bc1 has two active sites. Ubiquinol is oxidized at site Q0 and releases protons to 

the IMS and ubiquinone is reduced in Q1 and uptakes protons from the matrix. The existence of 

these two sites is essential for the Q-cycle. The Q-cycle takes advantage of the lipid-solubility of 

ubiquinone and ubiquinol, which allows them to diffuse in the membrane (Saraste 1999). A key 

point in the Q cycle is the separation of the electron paths of the two electrons received from 

ubiquinol at Q0. The first electron goes to the Rieske Fe-S which shuttles it to the cytochrome c1 

while the second electron from ubiquinol goes to cytochrome b. The bifurcation of this pathway 

couples the transfer of electrons to cytochrome c with the pumping of protons to the IMS (Iwata et 

al. 1998; Xia et al. 1997; Saraste 1999). 
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It has been shown that defects in bc1 complex lead to several mitochondrial disorders like 

mitochondrial myopathy, encephalomyopathy, or cardiomyopathy (Fig. 5) (Hoffman et al. 1993; 

Kennaway 1988) . 

 
Figure 5. Cytochrome reductase deficiency in humans – Examples of organ/system involvement in patients with mutations 
in mitochondrial and nuclear genes affecting complex III of mitochondrial respiratory chain, Figure from Bénit et al. 2009. 

 

In order to generate a model of mitochondrial malfunction in this thesis, knock-downs of ubiquinol-

cytochrome-c reductase complex core protein 1 (UQCRC1), which is the largest nuclear encoded 

subunit of the complex (Hoffman et al. 1993), were generated. UQCRC1 is a core subunit of the 

cytochrome-c reductase and is involved in the mitochondrial electrochemical gradient (Hoffman et 

al. 1993).  

 

1.1.7 Cytochrome c oxidase  

Cytochrome c oxidase or complex IV is a large transmembrane protein complex that is the last 

complex of the ETC. Its function is to accept electrons that cytochrome c carries from complex III 

and reduce O2 into water while simultaneously pumping protons into the IMS to maintain the 

electrochemical gradient. In mammals, complex IV is formed by 13 different subunits and has a 
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molecular weight of 204 kDa. Ten of these subunits are nuclear encoded, but the three biggest 

(COX I, II and III) are encoded by mtDNA and are essential for the function of the complex. 

Cytochrome c oxidase is a metalloprotein containing two heme iron and two copper as well as 

zinc and magnesium (Tsukihara et al. 1996; Kadenbach et al. 2000; Li et al. 2006; Brunori et al. 

1987). The transfer of electrons from cytochrome c to complex IV is mediated by four metal 

centers. The electrons are delivered to the CuA of COX II, then transferred to the heme center of 

COX I before reducing the oxygen that binds the heme a3-CuB. The electron transport through 

the metal centers is coupled with proton pumping to IMS (Vygodina et al. 2013; Shoubridge 2001; 

Scheffler 2008).  

Patients with mutations in genes (nuclear or mitochondrial) related with the cytochrome c oxidase 

show a heterogeneous range of phenotypes. Cytochrome c oxidase deficiencies are mainly 

autosomal recessive disorders. Mutations in the mtDNA affecting this complex are rare 

(Shoubridge 2001). There are several phenotypes linked to cytochrome c oxidase deficiency 

including cardioencephalomyopathy, hepatic fail, stroke and Leigh syndrome (Fig. 6) (Shoubridge 

2001; Barrientos et al. 2002)  

 

Gene Clinical features 
Mitochondrial encoded COX subunits 

COXI 

 
Sideroplastic anemia  
Motor neuro-like degeneration  
Multisystemic disorder  
Myoglobinuria  

COXII Encephalomyopathy  
Myopathy  

COXIII  

 

MELAS 
Myoglobinuria  
Encephalomyopathy  
Leigh-like syndrome  

Heme A biosynthesis 
COX10  

 
Ataxia, tubulopathy 

Copper metabolism and insertion 

SCO1 

SCO2  

 
Hepatic failure, encephalopathy 
Cardioencephalomyopathy 

COX assembly 
SURF1  

 
Leigh’s syndrome 

 
Figure 6. Patients with mutations that affect cytochrome oxidase – Genetic and clinical heterogeneity of patients with COX 
deficiencies. Figure adapted from Barrientos et al. 2002. 
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In this thesis, sodium azide was used to inhibit cytochrome c oxidase (complex IV) by binding the 

oxygen reduction site in COX I (heme a3-CuB), without affecting the activities of complexes I and 

III in a significant way (Bennett et al. 2002; Ishii et al. 2014).  
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1.2 Lysosomes   

Lysosomes were first described in 1955 when Christian de Duve identified a new organelle that 

formed a pool of soluble hydrolases capable of degrading proteins, carbohydrates, lipids or 

nuclear acids (de Duve 2005; Ballabio 2016; Lim & Zoncu 2016). For a long time, lysosomes were 

considered to be the “trash can” or “suicide bag” of the cells; the place where all materials that 

were not useful anymore were degraded. There are several routes to deliver materials to the 

lysosomes; the extracellular material is delivered through endocytosis or phagocytosis, while the 

intracellular material is delivered through autophagy (Lim & Zoncu 2016; Ballabio 2016). 

Lysosomes are no longer seen as just ‘trash cans’ of the cell. Currently it is known that the activity 

of lysosomes go beyond cellular clearance; lysosomes are involved in other processes like 

exocytosis, plasma membrane repair, transcriptional regulation and a reservoir of amino acids, 

metabolites and ions (Fig. 7) (Perera & Zoncu 2016; Lim & Zoncu 2016; Ballabio 2016).  

 
Figure 7. Roles of the lysosome in cellular processes. Figure adapted from Lim & Zoncu 2016. 

 

Since lysosomes are involved in a broad range of processes, it is not surprising that lysosomal 

malfunction is implicated in several diseases like lysosomal storage disorders (LSDs), 

neurodegeneration, as well as pathophysiological process such as aging or cancer (Platt et al. 

2012; Cuervo 2008; Perera & Zoncu 2016). 

 

1.2.1 Endolysosomal pathway and lysosomal formation 

The biogenesis of lysosomes requires a continuous replenishment of newly synthesized 

components. Both the soluble hydrolases and lysosomal membrane proteins have to be 
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transported along the biosynthetic pathway that comprises the endoplasmic reticulum (ER), the 

Golgi apparatus and the trans-Golgi network (TGN). 

The lysosomes result from a combined pool of vesicles that are derived from TGN and early 

endosomes budding from the plasma membrane. Due to this complexity there are several theories 

to explain the endosome-lysosome relationship (Luzio et al. 2000; Perera & Zoncu 2016; Luzio et 

al. 2007). The most accepted theory explains that, in general, early endosomes are formed in the 

peripheral cytoplasm budding from the plasma membrane. These organelles have a slightly acidic 

intraluminal pH of approximately 6.0. The early endosomes can fuse again with the plasma 

membrane or go through a gradual maturation process (Perera & Zoncu 2016; Appelqvist et al. 

2013; Hu et al. 2015; Luzio et al. 2003). The maturation is accompanied by intravacuolar 

acidification, and the reception of hydrolases and lysosomal membrane proteins from the TGN. 

The correct targeting of lysosomal proteins from the TGN to the endo-lysosomal system is an 

essential process in lysosomal biogenesis and maintenance. The process can be direct, from the 

TGN to the endosomal system, or indirect involving transport to the plasma membrane and 

endocytosis (Fig. 8) (Appelqvist et al. 2013; Braulke & Bonifacino 2009; Van Meel & Klumperman 

2008).  

 

 
Figure 8. Endolysosomal pathway - The pathway starts with budding from the plasma membrane of the early endosomes that 
can maturate gradually and become late endosomes or fuse back with the plasma membrane. From the trans-Golgi network 
(TGN) begins the budding of vesicles with lysosomal proteins cargo that fuse with endosomes and lysosomes. Figure adapted 
from Appelqvist et al. 2013 
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1.2.2 Lysosomal structure  

Lysosomes are membrane bound organelles present in Eukaryotic cells and are found in different 

shapes, sizes and numbers varying among species. In high eukaryotes, lysosomes are spherical 

organelles, with a typical size between 0.5-1µm, that contain about 60 different acid hydrolases at 

an acidic pH of 4.5-5 (Mindell 2012; Zhou et al. 2013).  

These organelles are limited by a phospholipid bilayer membrane of 7-10 nm. This membrane 

contains lysosomal membrane proteins like lysosomal integral membrane protein 2 (LIMP2) or the 

most abundant lysosomal transmembrane proteins like lysosomal associated membrane protein 

1 or 2 (LAMP1 and LAMP2). These proteins are usually highly glycosylated, probably forming a 

continuous glycoprotein layer at the luminal side called glycocalix. This glycocalix acts as a barrier 

that protects the lysosomes against self-digestion (Perera & Zoncu 2016; Schwake et al. 2013; 

Settembre et al. 2013) (Fig. 9).  

 
Figure 9. Schematic view of a lysosome -  The schematic above illustrates the most relevant lysosomal proteins namely 
lysosomal associated membrane protein 1 or 2 (LAMP1 and LAMP2), lysosomal integral membrane protein 2 (LIMP2) and 
lysosomal associated membrane protein 3 (CD63), as well as the proton pump V-type-H+-ATPase (V-ATPase), the MCOLN1 
channel and the BORC complex. Figure adapted from Schwake et al. 2013 
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Lysosomes contain approximately 60 different acid hydrolases which can digest a huge variety of 

molecules like proteins, lipids, carbohydrates and nucleic acids. These acid hydrolases are 

active at optimal pH of 4.5-5 (Ballabio 2016; Perera & Zoncu 2016). In order to get a lumen with 

the optimal acidic pH, the lysosomes have a proton pump, the V-type-H+-ATPase (V-ATPase), 

which is involved in acidification of endocytic vacuoles like lysosomes (Merkulova et al. 2015; 

Cotter et al. 2015). 

Lysosomes are dynamic organelles that move in the cytoplasm influenced by the processes they 

are involved in, for example, it has been shown that lysosomal position regulates mammalian 

target of rapamycin complex 1 (mTORC1) signaling. When lysosomes are peripheral, mTORC1 

is activated by nutrients (Korolchuk et al. 2011).The lysosomal positioning is regulated by the 

BLOC-one-related complex (BORC) which is a multi-subunit complex formed by eight subunits 

(Pu et al. 2015). This complex associates to the lysosome, recruiting the Arf-like GTPase (Arl8) 

and starting a chain of reactions that ends with the translocation of the lysosomes to the peripheral 

cytoplasm (Pu et al. 2015). However BORC is not the only entity involved in lysosomal positioning. 

The small GTPase Rab7, which recruits Rab-interacting lysosomal protein (RILP), has also been 

shown to be involved in lysosomal centripetal movement (Pu et al. 2015; Cantalupo et al. 2001). 

In addition, recently the mucolipin 1 (MCOLN1 or TRPML1), most relevant for its role as the 

principal Ca2+ channel in the lysosomes, has been reported as a mediator of lysosomal movement 

(Li et al. 2016). It is thus evident that motility of lysosomes is a complex process with several 

regulators. 

 

1.2.3 Lysosomal pH 

As previously stated, it is fundamental for the optimal functioning of the lysosomal acid hydrolases, 

that the lysosomal pH is maintained at 4.5-5. In order to acidify the lysosomal lumen, there is a 

proton gradient from the cytoplasm to the lumen of the lysosomes which is due to the activity of 

the V-ATPase, a transmembrane protein that uses ATP energy to pump the protons into the 

lysosome. The V-ATPases are formed by 14 subunits divided into cytosolic V1 domains and 

integral V0 domains. These domains can dissociate in a reversible manner, in order to regulate 

the activity of the pump (Fig. 10) (Merkulova et al. 2015; de Duve 2005; Cotter et al. 2015).  

The proton gradient generated by the ATPase also generates a difference in the voltage in the 

lysosomal membrane.  To dissipate the transmembrane voltage generated by the ATPase, which 

can inhibit the proton pumping, proton movement is accompanied by the movement of a 
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counterion. This counterion could be a cation release to the cytoplasm or an anion transport into 

the lysosomal lumen (Mindell 2012; DiCiccio & Steinberg 2011).  

 

 
Figure 10. Assembly of V-ATPase in mammalian cells – The assembly of the V-ATPase is related to its activity. The assembly 
of the V1 and V0 domains occurs in response to increase of glucose and in response to epidermal growth factor 
(EGF), phosphoinositide 3 kinase (PI3K) and mechanistic target of rapamycin complex 1 (mTORC1). Figure adapted from Cotter 
et al. 2015. 

 

1.2.4 Lysosomal Ca2+  

Lysosomes have been reported as organelles that store calcium. The concentration of Ca2+ in 

lysosomes is 400 to 600 µM while in the cytosol it is about 100nM (Christensen et al. 2002). 

However, while the hydrolytic function of the lysosomes is well known, the Ca2+ related functions 

are not completely elucidated. With its elevated lysosomal concentration, it is reasonable to 

assume that the calcium levels are tightly regulated by channels (Raffaello et al. 2016). There are 

several channels involved in Ca2+ homeostasis in lysosomes like MCOLN1, H+/Ca2+ exchanger or 

the two-pore channel 2 (TPC2) (Raffaello et al. 2016; Galione 2011).  However, the MCOLN1 

cation-permeable channel, also called TRPML1, has been reported as the principal Ca2+ channel 

in the lysosomes. Human mutations in MCOLN1 result in mucolipidosis type IV (ML-IV), a 

neurodegenerative LSD that exhibits membrane trafficking defects. It has been reported that 

reactivation of MCOLN1 channel in FIG4 cells, a mutation that leads to LSD with accumulation of 
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Ca2+ in the lysosomes, induces a release of lysosomal Ca2+ and an improvement in the phenotype 

of the disease, showing the relevance of Ca2+ homeostasis in lysosomes (Li et al. 2016).  

 
1.2.5 Lysosomal amino acid sensing 

Lysosomes are the center of nutrient sensing and metabolic regulation thanks to the physical and 

functional relation existing between lysosomes and mammalian target of rapamycin complex 1 

(mTORC1), which is a highly conserved regulator of cell growth (Laplante & Sabatini 2009; Bar-

Peled & Sabatini 2014). V-ATPases, placed in the lysosomal membrane, are essential for the 

amino acid activation of mTORC1 that control cell proliferation and growth according to nutrient 

availability.  

The V-ATPase responds with conformational changes to the amino acid concentration in the 

lysosomes. Besides, V-ATPase interacts directly with the Ragulator complex on the lysosomal 

surface, and Ragulator, a trimeric complex that interacts with Rag GTPases when the 

concentration of amino acids in the lysosomes is high, recruits mTORC1 to the lysosomal surface 

where it is activated by Ras homolog enriched in brain (RHEB) (Fig. 11). The response of 

mTORC1 to amino acids depends on the interaction of Ragulator with the V-ATPase domains. 

 
Figure 11. mTORC1-lysosome amino acid sensing pathway – A) Under low amino acid levels Ragulator binds to V-ATPase 
in the inactive confirmation. B) Under high amino acid levels Ragulator and V-ATPase change their conformations to an active 
state thereby changing the conformation of Rags that recruit mTORC1 to the lysosomal surface where it is activated by Rheb. 
Figure adapted from Bar-Peled & Sabatini 2012. 
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The interaction between the membrane domain V0 and Ragulator is independent of amino acid 

levels but the interaction of Ragulator with the cytosolic domain V1 becomes weak with  increasing  

amino acid levels (Peña-Llopis et al. 2011; Stransky & Forgac 2015; Bar-Peled, Schweitzer & 

Zoncu 2013; Bar-Peled & Sabatini 2012). 

It is necessary to mention that mTORC1 also regulates the transcription factor EB (TFEB), 

reported as the master regulator of lysosomal biogenesis, which will be discussed in the following 

chapter (Settembre et al. 2012). 

In conclusion, the relation between V-ATPase assembly and mTORC1 activation is a method to 

control cell growth that would take place in presence of enough nutrients to sustain it.   
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1.3 Autophagy 

The concept of autophagy emerged during the 1960s, from Christian de Duve, a term that denotes 

“self-eating”. A few years after de Duve discovered the lysosomes, he observed that the cell was 

able to degrade intracellular components by enclosing them into membranes and delivering them 

to the lysosomes. Unfortunately, the advances in this field were limited. Only in the early 1990s, 

Yoshinori Ohsumi was able to identify essential genes for autophagy called autophagy related 

genes (Atg) in the yeast Saccharomyces cerevisiae through the use of a genetic approach (Shen 

& Mizushima 2014; Ohsumi 2014; Tsuboi & Ohsumi 1992; Tsukada 1993). These genes were 

used to elucidate the mechanisms involved in autophagy and to demonstrate that it is a highly 

conserved process among eukaryotes (Fig. 12).  

Yeast Mammals Function 

Atg1 ULK1, 2 Kinase 

Atg2 Atg2A, B Atg9/Atg2-Atg18 complex 

Atg3 Atg3 E2-like enzyme 

Atg4 Atg4A, B, C, D Hydrolases 

Atg5 Atg5 E3-like enzyme 

Atg6 Beclin-1 Regulator 

Atg7 Atg7 E1-like enzyme 

Atg8 LC3A, B, C 

GABARAP, L1, L2 

Ubiquitin-like modifiers and 

regulators 

Atg9 Atg9A, B Atg9/Atg2-Atg18 complex 

Atg10 Atg10 E2-like enzyme 

Atg12 Atg12 Modifier 

Atg13 Atg13 Regulator 

Atg14 Atg14 Regulator 

Atg16 Atg16L1, 2 Regulator 

Atg17 RB1CC1 E3-like enzyme 

Atg18 WIPI-1 Atg9/Atg2-Atg18 complex 
 
Figure 12. List of some autophagy related genes in yeast and their mammalian homologs - Adapted from Kesidou et al. 
2013. 
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1.3.1 Types of autophagy  

Autophagy is a highly conserved pathway that recycles cellular components in order to keep 

cellular homeostasis, becoming an essential quality control mechanism in cells. Autophagy is 

divided in three different principal types: macroautophagy, chaperone-mediated autophagy (CMA) 

and microautophagy (Fig. 13) (Cuervo 2008; Zaffagnini & Martens 2016). 

 

 
Figure 13. Scheme of types of autophagy in mammalian cells – In microautophagy, complete regions of cytosol are 
sequestered by lysosomal projections or invaginations. In chaperone-mediated autophagy, cytosolic proteins are targeted with 
chaperones recognized by the lysosomal protein LAMP2. In macroautophagy, regions of the cytosol are sequestered by newly 
formed double membrane organelles and delivered to the lysosomes. Figure from Cuervo 2008. 

 

Microautophagy: This type of autophagy is not well characterized in mammalian cells. It is a 

process in which the lysosomal membrane is invaginated or projected in order to sequester 

cytosolic components into intralysosomal vesicles. Microautophagy is mainly characterized like a 

non-selective type of autophagy even though there are pieces of evidence that show that 
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peroxisomes can be selectively degraded through this way in yeast (Sakai et al. 1998). The main 

roles of microautophagy are membrane homeostasis, cell survival under nitrogen restriction and 

maintenance of size of organelles (Cuervo 2008; Li et al. 2012).  

Chaperone-mediated autophagy: CMA is a type of selective autophagy for soluble cytosolic 

proteins that require unfolding of the protein before being delivered to the lysosomes. The 

selectivity comes through the recognition of the KFERQ motif, by a cytosolic chaperone, in the 

protein that is targeted for degradation and it is then delivered to the surface of the lysosome. In 

order to arrive to the lysosomal lumen, the protein interacts with the lysosome-associated protein 

type 2A (LAMP-2A) and a complex of lysosomal chaperones. Chaperone-mediated autophagy 

reaches its maximum activity under oxidative stress (Kaushik et al. 2006; Cuervo 2008; Kiffin et 

al. 2005).   

Macroautophagy: Macroautophagy (hereafter autophagy) is the most extensively studied and 

quantitatively more important type of autophagy. This type of autophagy is a highly dynamic 

process in which complete regions of the cytosol, with all their contents, are sequestered by an 

 

Figure 14. Scheme of ubiquitin-dependent and ubiquitin-independent autophagy in selective macroautophagy - LC3 
proteins can recognize LIR motif (yellow) of organelles marked for selective autophagy. The left side represents the ubiquitin-
dependent autophagy where the organelle was marked with ubiquitin chains that recruit autophagy receptor, which have LIR 
motif, that are recognized by LC3. On the right is the ubiquitin-independent autophagy in which LC3 interacts with the LIR motif 
present in the autophagy receptors that are in the organelle membrane. Figure adapted from Khaminets 2016. 

23 
 



Introduction 
 

autophagosome. This type of non-selective autophagy is fundamental in the cell maintenance. 

However this process can also be highly selective, targeting specific protein aggregates or 

organelles, like mitochondria, ribosomes or endoplasmic reticulum, acting like an internal cell 

quality control mechanism. Selective autophagy is controlled by autophagy receptors that link 

organelles or protein aggregates with the autophagosome through their interaction with LC3II. 

Those autophagy receptors can be ubiquitin (Ub) chains or other autophagy receptors like 

sequestosome-1 (p62/ SQSTM1), which bind LC3II through a short LC3-interacting region (LIR) 

motif (Fig. 14) (Cuervo 2008; Khaminets 2016). 

 

1.3.2 Mitophagy 

For a long time autophagy was thought to be only a non-selective process fundamental for the 

maintenance of the cell. However, this simplistic view of autophagy has evolved and currently it is 

known that autophagy can be a highly selective process, essential for cell quality control, in which 

specific organelles or protein aggregates are targets. For the purpose of this study, we focus on 

mitophagy, the specific autophagic degradation of mitochondria. Mitophagy was observed by 

Christian de Duve in 1966, in mammalian cells, using electron microscopy (De Duve, Christian 

and Wattiaux 1966). However, the way in which the mitochondria were sequestered by the 

autophagosomes was unclear for a long time. Currently, there are two different main models that 

attempt to describe the mechanism of mitophagy.  

Parkin-dependent mitophagy: This is the most studied mechanism of autophagy in mammals 

by which damaged mitochondria are degraded by mitophagy after the activation of PTEN induced 

putative kinase 1 (PINK1) and Parkin RBR E3 ubiquitin protein ligase (Parkin). When mitochondria 

are damaged, showing a decrease of mitochondrial potential or an increased amount of misfolded 

proteins, PINK1 is stabilized on the OMM and recruits Parkin which in turn ubiquitinates several 

proteins localized in the OMM like mitochondrial fusion proteins 1 and 2  (Mfn1 and Mfn2), 

translocase of outer mitochondrial membrane 20 (TOMM20), and voltage dependent anion 

channel (VDAC), in order to initiate mitophagy (Jin & Youle 2012; Lazarou et al. 2015; Ni et al. 

2015; Ding & Yin 2012). On the other hand, PINK1/Parkin activation recruits other autophagy 

receptors like sequestosome-1 (p62/ SQSTM1) and optineurin to the mitochondria. These 

receptors interact with LC3II in order make selective autophagy possible (Fig. 15) (Geisler et al. 

2010; Ni et al. 2015; Lazarou et al. 2015).   
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Figure 16. Scheme of Parkin-dependent mitophagy - Depolarized mitochondria stabilize PINK1 which recruits Parkin. Parkin 
ubiquitinates proteins of OMM and recruits autophagy receptors like p62/ SQSTM1 and optineurin that have a LIR motif that 
interacts with LC3II starting mitophagy.  

 

Parkin-independent mitophagy: Even though the most accepted mitophagy mechanisms are 

mediated by PINK1/Parkin mediation, there are increasing studies that support the existence of 

mitophagy induced in a Parkin independent way. Autophagy receptors have been found in OMM 

and under mitochondrial damage, these receptors target mitochondria for selective autophagy.  

 

 

Figure 16. Scheme of Parkin-independent mitophagy - In the absence of Parkin autophagy receptors like NIX, BNIP3, 
FUNDC1 or cardiolipin, the cell can mediate mitophagy through the interaction of their LIR motif with LC3.  
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For example, Fun14 Domain containing 1 (FUNDC1), BCL2-interacting protein 3 (BNIP3) and NIX 

or cardiolipin under mitochondrial stress conditions presents their LIR motif targeting the damaged 

mitochondria for degradation (Fig. 16) (Liu et al. 2012; Novak et al. 2010; Chu et al. 2014; Ding1 

& Yin 2012; Ni et al. 2015).  

 

1.3.3 Autophagosome  

Autophagosomes are double-membrane-bound organelles, unlike vesicles, involved in other 

pathways like microautophagy (Cuervo 2008). In mammals, these organelles have a diameter 0.5-

1.5 µM and their formation occurs between 5 and 10 minutes after autophagy induction 

(Mizushima et al. 2002; Shibutani & Yoshimori 2014).  

 

Autophagosomes are formed from an expanding membrane sac or phagophore, which is a flat 

membrane, in the cytoplasm. This initial phagophore is an isolated membrane that expands its 

size engulfing portions of the cytoplasm, proteins and organelles. The phagophore formation starts 

in the phagophore assemble site (PAS), one in yeast and multiple in mammals. The formation 

process needs phosphoinositide 3-kinase (PI3K), which is  largely formed by different Atg proteins 

(Fig. 17) (Shibutani & Yoshimori 2014; Mizushima et al. 2002).  

 

Figure 17. Scheme of autophagy - A) Formation of the phagophore. B) Cytosolic material is sequestered by an expanding 
membrane sac. C) The double-membrane is completely closed forming an autophagosome. D) The outer membrane of the 
autophagosome fuses with a lysosome to form an autophagolysosome. E) The inner membrane and the cargo is degraded in 
the autophagolysosomes. Figure from Zhiping Xie and Daniel J. Klionsky   
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However, this is only the classical view of the autophagosomal membrane origin. Currently new 

hypotheses are appearing in the field.  

The relation between phagophore formation and other membranes like the plasma membrane  

(Ravikumar et al. 2011), the membrane of endoplasmic reticulum (Axe et al. 2008), mitochondrial 

membrane or even the contact sites between mitochondria and ER (Hailey et al. 2011; Hamasaki 

et al. 2013), open new insights into ways in which autophagosomes can be generated (Fig. 18) 

(Rubinsztein et al. 2012) . 

 

 

Figure 18. Membrane sources for phagophores – The proposed source of lipids and proteins for the phagophore formation 
are the endoplasmic reticulum, mitochondria and plasma membrane. Figure from Rubinsztein et al. 2012. 

 

When the initial formation of the phagophore is done, the membrane continues to elongate through 

a complex sequence of processes in which several Atg proteins are involved. The membrane 

elongation starts with the recruitment of Atg12–Atg5–Atg16 complex to the membrane which in 

turn promotes the lipidation of microtubule-associated protein 1A/1B-light chain 3 (LC3) and its 

insertion into the phagophore membrane as LC3-II. The Atg12–Atg5–Atg16 complex is then 

detached from the membrane, to be recycled before it fuses to become an autophagosome. LC3II 

present in the outer membrane is delipidated, removed and recycled, but the inner membrane 

conserves the attached LC3II (Fig. 19) (Abada & Elazar 2014; Mizushima et al. 2002; Shibutani & 

Yoshimori 2014). This conversion makes LC3II a good marker for autophagosomes. 
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Figure 19. Model of the Atg12–Atg5–Atg16 complex 
autophagosome formation - The Atg12–Atg5–Atg16 complex 
is recruited to the initial phagophore and mediates LC3 
lipidation. After the membrane starts elongating, the complex 
remains associated with the membrane through LC3. Atg12–
Atg5–Atg16 complex with the lipidated LC3 forms a coat-like 
structure that stabilizes the structure of the phagophore during 
the elongation. Figure adapted from Abada & Elazar 2014. 

 

Finally, the mature autophagosomes fuse with the lysosomes to become autolysosomes or 

autophagolysosomes. It must be stated, however, that  the autophagosomes, as dynamic 

structures, can fuse with early and late endosomes (Mizushima et al. 2002), showing that 

endosomes, lysosomes and autophagosomes form a very dynamic pathway with different  

branches. Different groups of proteins are involved in the complicated fusion process. In higher 

Eukaryotes, lysosomal membrane proteins (LAMP1, V-ATPase), cytoskeleton proteins or Soluble 

N-ethylmaleimide sensitive fusion Attachment Protein REceptor (SNARE), like syntaxin 17 (Stx 

17) or vesicle-associated membrane protein 8 (VAMP8) among others are required (Shen & 

Mizushima 2014). Under autophagy induction, Stx17 is recruited to the autophagosomal 

membrane. In the mature autophagosome, Stx17 recruits synaptosomal-associated protein 29 

(SNAP-29) which interacts with VAMP8, located in the lysosomal membrane, forming a SNARE 

complex. The formation of this complex drives the fusion of autophagosomal and lysosomal 

membranes (Itakura et al. 2012). When fusion takes place, the inner membrane of the 

autophagosome and its cargo are quickly degraded by lysosomal enzymes thereby finishing the 

recycling process. 
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1.4 Signaling pathways 

Since this thesis is focused on the pathways that mediate communication between mitochondria 

and lysosomes, it is important to dedicate a part of this introduction to these organelles and the 

signals related to them. 

  

1.4.1 Stress signaling and mitochondria 

Defects of mitochondrial metabolism are the cause for a wide range of diseases. For a long time, 

the general understanding was that the cause of mitochondrial diseases was the impaired capacity 

of the damaged mitochondria to generate energy, i.e. to synthesize ATP. This decrease in ATP 

synthesis implies that the cells with higher energetic needs, like neurons or cardiomyocytes, would 

be affected in mitochondrial disorders. However, it is currently accepted that mitochondrial 

signaling and mitochondria-related pathologies are connected. Numerous studies support such 

views, some of them for example showing that mitochondria can release cytochrome c (cyt c) to 

initiate apoptosis or reactive oxygen species (ROS) to activate hypoxic gene expression (HIF) (Liu 

et al. 1996; Chandel et al. 2000; Raimundo 2014). Moreover, it is known that there are signaling 

pathways connecting mitochondria, nucleus and cytoplasm like AMPK signaling, mitochondrial 

unfolded protein response (mitoUPR) or Ca2+ release (Rizzuto et al. 2012; Cereghetti et al. 2008; 

Raimundo 2014; Pellegrino et al. 2012). There are several mitochondrial signals, like citrate, which 

through regulation of acetyl-coenzyme A (acetyl-CoA) levels affect the acetylation of numerous 

proteins which in turn affect the activity of several signaling pathways (Kaelin Jr. W.G. & McKnight 

2013). Also, nitric oxide (NO) which is a reactive nitrogen species (RNS) that regulates 

mitochondrial structure, biogenesis and the activity of proteins involved in signaling pathways like 

c-Jun N-terminal kinase (JNK), which is involved in autophagy, or S-Nitrosylation peptides that 

can trigger mitoUPR (Nisoli 2003; Nakamura et al. 2013). Other mitochondrial signaling pathways 

are regulated by metabolites like succinate and fumarate which can easily cross the OMM due to 

their small size and can cross IMM using carriers or transporters. Fumarate and succinate can 

regulate HIF pathway, while fumarate accumulation upregulates heme pathway (Fig 20) (Kaelin 

Jr. W.G. & McKnight 2013; Raimundo 2014; Laukka et al. 2016; Isaacs et al. 2005). There are 

several more mitochondria-related pathways; however, due to its relevance to this project, we will 

focus more on the reactive oxygen species (ROS) signaling (Fig. 20). 
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Figure 20. Scheme of mitochondrial signals – The scheme shows some of the signals that are 

released from the mitochondrion and their functions. 
 

1.4.2 Mitochondria and ROS 

The reactive oxygen species or ROS include all chemical species with an unpaired electron in an 

oxygen atom such as superoxide anion radical O2-., hydroxyl (·OH) and singlet oxygen. The half-

life of O2-. is very short and it is rapidly converted in hydrogen hydroperoxide (H2O2) by the 

superoxide dismutases (SOD) (Zorov et al. 2014; Murphy 2009). There are several sources of 

ROS in the cells like peroxisomes (Sandalio et al. 2013), endoplasmic reticulum (Cao & Kaufman 

2014) and mitochondria (Murphy 2009). In mitochondria ROS is generated by the respiratory 

chain, where O2-. is produced in the complexes I and III (Fig. 21). Most of the O2- is released to the 

mitochondrial matrix and converted into H2O2 by SOD2, while the O2- released to the IMS is 

converted into H2O2 by SOD1 (Murphy 2009; Reczek & Chandel 2015).  

 
Figure 21. Mitochondrial respiratory chain and ROS – The majority of mitochondrial ROS is produced in complex I and III of 
the respiratory chain. While complex I releases ROS into the mitochondrial matrix, complex III releases ROS to both the matrix 
and the IMS.  
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For a long time, ROS were considered only as toxic products that caused oxidative damage in the 

cell, but currently it is known that ROS are also involved in signaling from mitochondria to nucleus 

and cytosol (Murphy 2009). The signaling activity of ROS raises the question of how ROS cross 

the mitochondrial membrane. There are several hypotheses, albeit controversial, which try to 

clarify that question. In isolated mitochondria of rat heart, it has been shown that superoxide can 

cross through voltage dependent anion channel (VDAC) (Han et al. 2003). Furthermore, 

superoxide can be transformed into H2O2 that can then cross membranes, supporting H2O2 as a 

good mitochondrial signal (Han et al. 2003). Another way in which ROS trigger signaling is through 

the citrate release, since superoxide can damage the enzyme citrate aconitase (Kaelin Jr. W.G. & 

McKnight 2013). Currently, it is also known that ROS are involved in cellular response to hypoxia 

(Chandel et al. 1998), trigger AMPK activation and E2F1-dependent apoptosis (Raimundo et al. 

2012). 

 

1.4.3 Lysosomes and signaling 

Given that lysosomes are the end point of multiple processes, they have emerged as a key factor 

in the maintenance of the metabolic homeostasis. As it was mentioned before in this thesis, 

lysosomes are involved in crucial cellular processes like cell and tissue remodeling, elimination of 

damaged cellular components or nutrient regulation during starvation (Lim & Zoncu 2016). One of 

the principal functions of the lysosome is related to its close physical and regulatory connection 

with mTORC1, as mentioned earlier. The connection between lysosomes and mTORC1 is based 

on the sensing of nutrients by mTORC1 and its response triggering pathways that lead to cell 

growth and proliferation as well as to the repression of lysosomal biogenesis (Bar-Peled & Sabatini 

2014; Martina & Puertollano 2013b). Since we already described how lysosomes recruit and 

activate mTORC1 and the recruitment of mTORC1 to the lysosomal surface is only possible in 

presence of amino acids (Sancak et al. 2010), we are going to focus on the response of mTOCR1 

to amino acid starvation. 

During amino acid starvation, mTORC1 is cytoplasmic and inactive but in the presence of amino 

acids the Rag GTPases, which are tethered to the lysosomal surface by the Ragulator, recruit 

mTORC1 to the lysosomal membrane allowing its activation by Rheb (Fig. 22) (Lim & Zoncu 2016). 

When mTORC1 is active, it can regulate several biological processes like, for example, protein 

synthesis, through allowing the eukaryotic translation initiation factor 4E (EIF4E) to promote cap-
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dependent translation and the stimulation of ribosomal protein S6 kinase beta-1 (S6K1) activity. It 

also promotes synthesis of lipids through the positive regulation of sterol regulatory element-

binding transcription factor 1 (SREBF1) and of peroxisome proliferator-activated receptor-gamma 

(PPARg) (Porstmann et al. 2008; Laplante & Sabatini 2009). Other metabolic processes that are  

 

regulated by mTORC1 are the mitochondrial metabolism, regulating oxygen consumption, ATP 

and mitochondrial membrane potential (Schieke et al. 2006; Laplante & Sabatini 2009). The most 

relevant regulatory pathway for us is the involvement of mTORC1 in the regulation of lysosomal 

biogenesis by transcription factor EB (TFEB).  

 

1.4.4 TFEB  

The transcription factor EB is a basic helix–loop–helix (bHLH) leucine zipper transcription factor 

that belongs to a family of transcription factors called microphtalmia family. This family has four 

members which are microphtalmia-associated transcription factor (MITF), transcription factor EB 

(TFEB), transcription factor E3 (TFE3) and transcription factor EC (TFEC). The importance of this 

transcription factor family for this project originates from the fact that in 2009 it was shown that 

genes encoding for lysosomal proteins have a palindromic motif of 10 base pairs (bp), 

GTCACGTGAC, called Coordinated Lysosomal Expression and Regulation (CLEAR) element. 

The CLEAR element is located within 200 bp from the transcription start site and that mediates 

the start of the transcription of these lysosomal genes. In addition, overlaps were found between 

the CLEAR element and the E-box that is a known target site for MITF family members. With these 

 
Figure 22. mTORC1 amino acid regulation – The scheme shows in the left side how under amino acid starvation mTORC1 is 
inactive but when there is amino acid availability, shown on the right, Rag GTPases recruit mTORC1 to the lysosomal surface 
where it is activated by Rheb.  Figure from Sancak et al. 2010. 
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data the four members of the family were tested and it was reported that TFEB is the master 

regulator of lysosomal biogenesis and its overexpression increases the expression of lysosome-

related genes like LAMP1, hexosaminidase subunit alpha  (HEXA) or Cathepsin D (Fig. 23) 

(Sardiello & Ballabio 2009; Settembre et al. 2011).  

 
Figure 23. Response of lysosomal genes to TFEB – Fold changes of lysosomal related genes under TFEB overexpression 
(blue) or TFEB silencing (red). Figure from Sardiello & Ballabio 2009 
 

In addition to TFEB regulation being connected to the lysosomes through mTORC1 (Settembre et 

al. 2012; Martina et al. 2012), it has been shown that under amino acid starvation TFEB is 

translocated to the nucleus where it is active and this translocation is regulated by mTORC1 

(Sardiello & Ballabio 2009; Settembre et al. 2011). Under conditions of amino acid abundance, 

mTORC1 is at the lysosomal surface where it can be activated by Rheb, as described above. The 

activation of mTORC1 allows the phosphorylation of TFEB at S142 and S211, which keep TFEB 

in the cytoplasm. However, under amino acid deprivation, the conformation of Rag GTPases 

changes thus abolishing the presence of mTORC1 at the lysosomal surface. mTORC1 becomes 

cytoplasmic and inactive and also prevents phosphorylation of TFEB, enabling its translocation to 

the nucleus, where it can bind the CLEAR region and initiate the transcription of lysosome related-

genes (Fig. 24) (Settembre et al. 2012; Martina et al. 2012; Roczniak-Ferguson et al. 2012).  
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However, it has recently been shown that mTORC1-dependent activation was not the only 

interaction between mTORC1 and one MITF family member. Currently, it is known that mTORC1 

phosphorylates TFEB and MITF allowing its binding to 14-3-3 proteins, keeping them in the 

cytoplasm. Also, under amino acid starvation, mTORC1 cannot phosphorylate TFEB and MITF 

and they are translocated into the nucleus where both can bind to the CLEAR element (Fig. 25) 

(Martina & Puertollano 2013). In addition, TFE3 has been reported to be retained in the cytoplasm  

 
Figure 25. TFEB and MITF regulation by mTORC1 – The left side shows how active mTORC1 phosphorylates TFEB and 
MITF allowing that it’s binding to 14-3-3 proteins keeping them in the cytoplasm. In the right, inactive mTORC1 does not 
phosphorylate TFEB and MITF, thus they cannot bind 14-3-3 proteins and are translocated to the nucleus. Figure adapted from 
Martina & Puertollano 2013 

 
Figure 24. TFEB regulation by mTORC – Active mTORC1 phosphorylates TFEB keeping TFEB in the cytoplasm (left). Under 
amino acid starvation mTORC1 is cytoplasmic and inactive, TFEB is not phosphorylated and is translocated into the nucleus 
where it binds the CLEAR region thus regulating transcription of lysosome related-genes (right). Figure from Settembre et al. 
2012 
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by 14-3-3 proteins due to the phosphorylation induced by mTORC1, acting in similar way as TFEB 

and MITF (Fig. 25) (Martina et al. 2014). Furthermore, since TFEB and MITF are bHLH leucine 

zipper transcription factors, it is necessary that they form a dimer to work correctly, meaning that 

the MITF family members can form homodimers or heterodimers making the regulation more 

complicated (Steingrimsson et al. 2002).  

On the other hand, recent studies have shown that mTORC1 activity is not the only way to regulate 

TFEB. Calcineurin can dephosphorylate TFEB and allow its translocation to the nucleus due to 

the lysosomal Ca2+ signaling. The Ca2+ release through the MCOLN1 channel activates calcineurin 

which dephosphorylates TFEB, at S211, rendering it unable to bind 14-3-3 proteins. This promotes 

TFEB translocation to the nucleus where it binds to the CLEAR region (Fig.26) (Medina et al. 

2015). 

 

 
Figure 26. Regulation of TFEB and MITF by calcineurin – This scheme shows how Ca2+ released from lysosomes, through 
MCOLN1 channel, activates calcineurin that dephosphorylates TFEB. Figure from Medina et al. 2015. 

 

However, amino acid starvation is not the only stimulus that induces MITF family members’ 

activation. For example, nuclear translocation of TFEB, MITF and TFE3 has been reported under 

mitochondrial stress. But, recent studies show that deletion of different members of MITF family 

is compensated by the others (Nezich et al. 2015). 
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1.4.5 AMPK  

In the context of signaling related to mitochondria and lysosomes, it is necessary to mention AMP-

activated protein kinase (AMPK) due to its connection to these organelles via signaling pathways. 

AMPK is a highly conserved serine/threonine kinase that is closely connected to the maintenance 

of cellular energy homeostasis by its ability to switch off ATP-consuming processes and switch on 

catabolic pathways (Hardie 2015; Jeon 2016). In order to produce more energy, AMPK activates 

glucose, glycolysis, acid uptake, fatty acid oxidation. AMPK also promotes mitochondrial 

biogenesis and mitophagy (Cantó et al. 2010; Zong et al. 2002; Hardie & Ashford 2014; Egan et 

al. 2011).  

AMPK can be activated by AMP, also can be activated by a major increase at 100 fold of upstream 

kinases that phosphorylate Thr172 placed in the ‘activation loop’ of AMPK kinase domain. AMPK 

can also be activated by the v-ATPase-Ragulator complex and the Ca2+/calmodulin-activated 

protein kinase (CaMKKb) (Hurley et al. 2005; Vingtdeux et al. 2010; Zhang et al. 2014; Hardie 

2015). It has been shown that mitochondria can regulate AMPK activation through ROS signaling  

(Emerlinga et al. 2009; Raimundo et al. 2012). Furthermore, recent studies report that 

mitochondrial ROS signaling can induce the release of Ca2+ to the cytoplasm and that Ca2+ 

translocation activates CaMKKb which in turn activates AMPK (Sinha et al. 2015; Mungai et al. 

2011; Zhang et al. 2016). 

In the context of the connection between AMPK and lysosomes, recent studies suggest that 

activation of AMPK by liver kinase B1 (LKB1) can occur at the lysosomal surface. Under the 

conditions of nutrient deprivation, LKB1 and AMPK are recruited to Ragulator complex, which is 

involved in mTORC1 activation (Zhang et al. 2014). These results suggest that nutrient availability 

is involved in regulation of mTORC1 and AMPK through their recruitment to the surface of 

lysosomes in a Ragulator-dependent manner (Bar-Peled & Sabatini 2014).  

In summary, when these different pathways are considered as an elaborate network, the 

interactions between mitochondria and lysosomes become an interesting group of signaling 

alternatives that require further elucidation. 
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1.5 Interactions between mitochondria and lysosomes 

For a long time, the organelles were studied like a group of independent islands. However, 

currently the interactions among organelles are receiving far more attention and are considered 

in two contexts: as contact sites and as signaling pathways. 

 

1.5.1 Contact sites between mitochondria and lysosomes 

Recently, a body of evidence emerged suggesting that contact sites between organelles are key 

points in the coordination of cellular physiology. In prior years, an increasing number of contact 

sites have been identified, like endoplasmic reticulum with plasma membrane, Golgi, endosomes 

and mitochondria (Hönscher et al. 2014), as well as between mitochondria and endosomes 

(Charman et al. 2010). However, while contact sites have been identified between mitochondria 

and vacuoles in yeast, the identification of their homologues in mammals, responsible for the 

contact between mitochondria and lysosomes, is not clear yet (Hönscher et al. 2014; Elbaz-Alon 

et al. 2015). 

 
Figure 27. Mitochondria-vacuole contact sites – Representative figure of mitochondrial contact sites with lysosome-like 
vacuole (vCLAMP) and with endoplasmic reticulum (ERMES). Figure adapted from Hönscher et al. 2014. 
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Lately, the existence of a contact site named vacuole and mitochondria patch (vCLAMP) has been 

reported, that serves as a contact site between mitochondria and lysosome-like vacuole in yeast 

(Hönscher et al. 2014). vCLAMP is located close to the endoplasmic reticulum-mitochondria 

encounter structure (ERMES), which is a known contact site between endoplasmic reticulum and 

mitochondria in yeast (Fig 27) (Elbaz-Alon et al. 2014; Hönscher et al. 2014).  

It has been reported that ERMES and vCLAMP have a close relation: upon diminution of one of 

the components there is an increase in the other, while depletion of both vCLAMP and ERMES 

results in cell death (Elbaz-Alon et al. 2014).  

 

1.5.2 Signaling pathways between mitochondria and lysosomes 

In prior years, several studies and reviews were focused on the cross-talk between mitochondria 

and lysosomes (Raimundo et al. 2016) and in the context of this project, we focus on the signaling 

pathways that connect these two organelles. 

It is already known that damaged mitochondria trigger signaling, for example, ROS increase 

occurs as a consequence of  mitochondrial damage in neurodegenerative diseases such as 

Parkinson, Alzheimer or amyotrophic lateral sclerosis (ALS) (Patten et al. 2010). In the familiar 

form of ALS the SOD1 is dysfunctional, leading to the increase in ROS level (Rosen et al. 1993). 

Interestingly, a recent study reported that mitochondrial ROS activates MCOLN1 channels 

triggering Ca2+ release from the lysosomes (Zhang et al. 2016), which in turn activates TFEB by 

calcineurin-dependent dephosphorylation (Medina et al. 2015; Zhang et al. 2016). However, 

another study shows that mitochondrial malfunction can induce lysosomal biogenesis in a TFEB-

dependent manner while also triggering mitochondrial biogenesis (Ivankovic et al. 2016). Also, 

there are reports of TFEB nuclear translocation in a PINK1-Parkin-dependent manner in Parkin-

expressing HeLa cells under chemically induced mitochondrial malfunction (Nezich et al. 2015). It 

is important to note that there are other studies reporting that mitochondrial malfunction leads to 

impaired lysosomal capacity, in mitochondrial transcription factor A (TFAM) knock-out T-

lymphocytes (Baixauli et al. 2015) and in mouse fibroblast with apoptosis inducing factor (AIF), 

optic atrophy 1 (OPA1) or PINK1 deletion (Fig. 28) (Demers-Lamarche et al. 2016). 
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On the other hand, in the context of how lysosomal malfunction affects mitochondrial function, it 

is important to mention lysosomal storage diseases (LSDs) in which mutations that affect 

lysosomal proteins induce an impaired lysosomal function (Raimundo et al. 2016). In patients 

affected by Pompe´s disease, due to LSD caused by mutations that induce deficiency of lysosomal 

alpha-D-glucosidase (GAA), a decrease in the activity of complexes I, II and III of the mitochondrial 

respiratory chain has been reported (Selak et al. 2000). Moreover, in GAA knock-out mice, several 

mitochondrial defects have been reported like dysregulation in Ca2+ homeostasis, increase in 

ROS, decrease in mitochondrial membrane potential and oxygen consumption, as well as 

alterations in mitochondrial morphology (Lim et al. 2015). Also, mitochondrial perturbation have 

been reported in other LSDs like Gaucher´s disease, wherein accumulation of fragmented 

mitochondria and diminution in the activity of complexes I, II and III of the mitochondrial respiratory 

chain was found (Osellame et al. 2013). Although the mechanisms that regulate how dysfunctional 

lysosomes affect mitochondria are not clear, recent evidence suggests the involvement of Ca2+. 

Specifically, Ca2+ homeostasis experiences dysregulation (Lim et al. 2015) and cytoplasmic Ca2+ 

 
Figure 28. Mitochondrial malfunction affects lysosomes – Scheme that represents how mitochondrial malfunction affects 
lysosomes, triggering Ca2+ homeostasis dysregulation and TFEB-associated lysosomal biogenesis. The lysosomal biogenesis 
can be a mechanism to compensate the lysosomal impairment caused by mitochondrial malfunction as well as an attempt to 
remove damaged mitochondria. Figure from Raimundo et al. 2016.  
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displays an increase leading to the translocation of DRP1 into mitochondria, where it triggers 

mitochondrial fragmentation (Fig. 29) (Cereghetti et al. 2008).    

 
Figure 29. Lysosomal malfunction affects mitochondria - Scheme that represents how mitochondrial malfunction affects 
lysosomes through a decrease in lysosomal capacity which in turn leads to an accumulation of autophagosomes and lysosomes 
with undigested cargo. Other effects of lysosomal malfunction include the accumulation of damaged mitochondria and the 
dysregulation of Ca2+ stores with increase in cytoplasmic Ca2+ and translocation of DRP1 to mitochondria, resulting in 
mitochondrial fragmentation. Figure from Raimundo et al. 2016. 

 

The study of organelle interactions has recently emerged as a novel field to which our results on 

the mechanisms of communication between mitochondria and lysosomes will contribute.  
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Aims 

Currently, it is recognized that mitochondria function as signaling platforms and that dysfunctional 

mitochondria can perturb the signaling of the cells affecting decisions such as proliferation, 

differentiation, autophagy and death. However, little is known about the mechanisms used by 

mitochondria to communicate with the rest of the cell organelles and specifically with lysosomes. 

The main goal of this project is to explore how mitochondrial malfunction affects lysosomes and 

the lysosomal-related pathway of autophagy. The work described in this text aims to: 

• Generate cellular models of acute and chronic mitochondrial malfunction. 

 

• Describe how acute and chronic mitochondrial malfunction affect lysosomes and 

macroautophagy. 

 

• Determine the relevance of the microphtalmia transcription factor family in lysosomal 

biogenesis triggered by mitochondrial malfunction. 

 

• Identify the signaling pathways that connect acute and chronic mitochondrial malfunction 

with lysosomes.  

 

• Monitor lysosomal function in chronic mitochondrial malfunction, which we hypothesize is 

impaired, and in the case of lysosomal dysfunction to identify the cause of the dysfunction 

and design a rescue strategy. 
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2. Materials and methods 

2.1 Materials 

2.1.1 Suppliers 

All the reagents and the laboratory equipment used for the experiments described in 

this thesis were purchased from the companies listed below (Table1).  

Table 1. Companies and institutions that have provided the materials and instruments 

Company City/State Country 

Abcam Cambridge  UK 

Addgene Cambridge, MA USA 

Alfa Aesar Haverhill, MA USA 

AMRESCO Solon, OH USA 

AppliChem GmbH  Darmstadt Germany 

ATCC (LGC Standards GmbH) Wesel Germany 

BD Bioscience Heidelberg Germany 

Beckman Coulter GmbH Krefeld Germany 

Becton, Dickinson and Company Franklin Lakes, NJ USA 

Biometra Göttingen Germany 

Bio-Rad Hercules, Ca USA 

BioTek Winooski, VE USA 

BioVision Milpitas, CA USA 

Carl Roth, GmbH + CoKG  Karlsruhe Germany 

Carl Zeiss Oberkochen Germany 

CAWO Düsseldorf Germany 

Cell Signaling Beverly, MA  USA 

Corning GmbH HQ Wiesbaden Germany 

CytoOne - USA Scientific, Inc. Orlando FL USA 

DSHB Iowa City, IA USA 
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Dianova Hamburg  Germany 

Eppendorf Hamburg Germany 

Epson Suwa Japan 

Fisher Scientific Schwerte Germany 

Fluka - Sigma-Aldrich Schnelldorf Germany 

Foma Bohemia Czech Republic 

GE Healthcare Little Chalfont  UK 

GE Dharmacon Lafayette, CO USA 

Gibco Paisley  UK 

Integrated DNA Technologies Coralville, IA USA 

InvivoGen San Diego, CA USA 

Invitrogen Carlsbad, CA  USA 

Labnet International Inc. Edison, NJ USA 

Life Technologies Carlsbad, CA  USA 

Millipore Darmstadt  Germany 

New England Biolabs GmbH Frankfurt am Main Germany 

Novus Cambridge  UK 

Paul Marienfeld GmbH & Co. KG Lauda-Königshofen Germany 

PEQLAB Biotechnologie GMBH Erlangen Germany 

Phoenix Instrument GmbH Garbsen Germany 

Promega Madison, WI USA 

Sigma Aldrich Saint Louis, MO  Germany 

Sigma-Aldrich Chemie GmbH  Schnelldorf Germany 

Synaptic Systems GmbH Göttingen Germany 

StartLab GmbH Hamburg Germany 

Thermo Fisher Scientific Waltham, MA  USA 

TH-Geyer Renningen Germany 

Volu-Sol Salt Lake City, UT USA 
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VWR-International Hannover  Germany 

 

2.1.2 Reagents 

The chemicals used for the experiments described in this thesis, with their 

correspondent suppliers and codes, can be found in the list below (Table 2). 

Table 2. List of reagents 

Product Supplier Code 

A769662 InvivoGen inh-a769 

Acridine orange  Sigma Aldrich A6014 

Acrylamide solution 40% AppliChem A0385 

Ammonium Persulfate (APS) AMRESCO 0486 

BSA Sigma Aldrich A7906 

Bromophenol blue Carl Roth T116.1 

CaCl2 Alfa Aesar L13191 

CCCP Fluka 857815 

Cold fish gelatin Sigma  G7765 

DAPI Carl Roth C6335.1 

D(+)-Glucose  Carl Roth 275227941 

DMSO Sigma Aldrich D8418 

Dorsomorphin (compound C) Sigma P5499 

DTT AppliChem A2948 

Ethanol Absolut BD Bioscience 354052 

Ethanol 70% VWR 84858.440 

FCCP Sigma Aldrich C2920 

FK506 InvivoGen tlrl-fk5 

Glycerol Carl Roth 7530.1 

Glycine VWR 0167 

Goat Serum Life Technologies  10000C 
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HaltTM Protease & Phosphatase single use 

Inhibitor Cocktail 

Thermo Scientific 78442 

HEPES Carl Roth HN77.2  

HCl Sigma Aldrich H1758 

H2O Nuclease-free  VWR E476 

KCl Volu-Sol 83608.26  

Methanol VWR 20903.368 

2-Mercapthoethanol Carl Roth 4227.3 

MgCl2 VWR 8.14733.0100 

MgSO4 – 7H2O Sigma Aldrich 63138 

ML-SA1 Sigma Aldrich SML0627 

Mowiol 4-88 AppliChem  A9011  

NaCl AppliChem A1430,0010 

NaHCO3 Carl Roth P029.3 

NaH2PO4 – H2O        Carl Roth K300.1 

NaN3 Sigma Aldrich 52002-1006 

N-dodecylmaltoside Carl Roth CN26.2 

Nonidet®P-40 Substitute AMRESCO E109-50ML 

Paraformaldehyde (PFA) AppliChem A3813 

Puromycin 100mg Fisher Scientific BP2956-100 

SDS Sigma Aldrich L4509-500G 

Skim Milk Powder Fluka 70166 

TEMED Sigma Aldrich T7024 

Torin1 BioVision 2273  

Tris AMRESCO 0497 

Tris Base Sigma Aldrich T1503 

Tris-HCl Carl Roth 9090.2 

Triton X-100 AMRESCO 0694 
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Tween 20  AMRESCO 0777-1L 

Uridine Sigma Aldrich U3003 

YM201636 InvivoGen inh-ym20 

 

2.1.3 Kits and disposals 

The kits and disposals used throughout this project, with their correspondent suppliers 

and codes, can be found in the table below (Table 3) 

Table 3. Kits and disposals 

Product Supplier Code 

Amersham Hybond PO45 PVDF GE Healthcare 10600023 

Centrifuge tubes 15 mL Corning CentriStar Corning 430791 

Centrifuge tubes 50 mL Corning CentriStar Corning  430829 

CRYSTAL RNA Mini Kit New England 

Biolabs 

31-010-404 

Cuvettes PMMA VWR-International 634-0678 

DQ-BSA Green  Life Technologies D12050 

FACS Tubes Polystyrene Round-Bottom 5 

mL 

Corning 352052 

Fugene R 6 Transfection Reagent Promega E2691 

High Performance chemioluminiscence 

film 

GE Healthcare 28906837 

iScrip cDNA Synthesis Kit Bio-Rad 170-8891 

iTaqTM Universal SYBR Green Supermix Bio-Rad 172-5124 

Lipofectamin 2000 Reagent Invitrogen 11668-019 

LuminataTM Classico Western HRP 

Substrate 

Millipore WBLUC0500 

LuminataTM Crescendo Western HRP 

Substrate 

Millipore WBLUC0500 

Lysotracker Green DND-26 Life Technologies L7526 
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Lysotracker Red DND-99 Life Technologies L7528 

Medical X-Ray Film Foma -----  

Microscope slides Carl Roth 2111 

Microseal B seal Bio-Rad MSB1001 

MitoSOXTM Red  Life Technologies M36008 

Mitotracker Green FM Life Technologies M7514 

Mitotracker Deep Red FM Life Technologies M22426 

PageRuler Plus Prestained Protein Ladder Thermo Scientific 26619 

PCR plate 384-well skirted ABI-Type 

(Universal) 

StartLab E1042-3840 

Pierce BCA Protein Assay Kit Thermo Scientific 23225i 

Protein Assay Dye Reagent Concentrate Bio-Rad 500-0006 

Serological Pipette 5 mL StartLab E4860-0511 

Serological Pipette 10 mL StartLab E4860-1011 

Serological Pipette 25 mL StartLab E4860-2511 

Test Tube Soda Glass VWR-International 212-003 

Tips 10 µL TipOne StartLab S111-3210 

Tips 20 µL TipOne StartLab S120-1810 

Tips 200 µL TipOne StartLab S1120-8800 

Tips 1000 µL TipOne StartLab S1111-6001 

Tubes 8 Twin Strip Start PCR  StartLab 11402-3700 

Tubes 0.5 mL molecular probes Life Technologies Q33856 

Tubes 1.5 mL StartLab E1415-1500 

Tubes 2 mL StartLab S1620-2700 

XFe 96 extracellular flux assay kit 

Seahorse 

BD Bioscience 102416-100 

Western Blot Paper TH-Geyer 4-01-60-0041 
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2.1.4 Buffers and solutions 

The list of buffers and solutions used for experiments described in this thesis and their 

composition can be found in the table below (Table 4). 

Table 4. Buffers and solutions 

Buffer/solution Composition 

BSA 5% BSA                                           5 gr 

TBST                                     100 mL 

Blocking buffer 5 % milk Skim milk                                  40 gr 

TBST                                     800 mL 

Blocking solution 

immunocytochemistry 

PBS        5 mL 

Cold fish gelatin 10%     50 µL 

Triton X-100 0.1%         5 µL 

BSA                0.15 g 

Goat serum                 50 µL 

EBSS medium CaCl2               200 mg   

MgSO4 – 7H2O            200 mg 

KCl              400 mg  

NaHCO3                           2.2 gr   

NaCl                            6.8 gr             

NaH2PO4 – H2O                     140 mg  

D-Glucose                               1 gr  

ddH2O                    Bring up 1 L  

Freezing medium DMEM high glucose                 35 mL  

FBS                                          10 mL 

DMSO                                        5 mL 

Hypertonic buffer Tris                                          2.42 gr 

KCl              31.08 gr  

MgCl2                                      0.15 gr 

Glycerol                                  200 mL 

ddH2O                     Bring up 1 L 

Hypotonic buffer Tris                                          1.21 gr 

KCl                0.74 gr  

MgCl2                                      0.15 gr 

48 
 



Materials 
 

ddH2O                     Bring up 1 L 

Imaging buffer NaCl                                        0.75 gr 

KCl             18.64 mg  

CaCl2                                                        22.19 mg 

MgCl2                                                           9.52 mg 

HEPES                                      0.24 g 

ddH2O               Bring up 100 mL 

Mowiol Mowiol 4-88                                2.4 gr 

Glycerol                                         6 gr 

Tris 0.2 M pH 8.5                        12 mL 

ddH2O                                           12 mL 

NaN3 10 % NaN3                                              1 gr 

ddH2O                                          10 mL 

N-dodecylmaltoside 1.5% N-dodecylmaltoside                  0.15 gr 

PBS                                            10 mL 

Protease/phosphatase              100 µL 

Resolving gel 12%  

(4 gels) 

Tris-HCl 1.5 M pH 8.8                   5 mL 

10% SDS                                   200 µL 

40% Acrylamide                            6 mL 

10% APS                                   100 µL 

TEMED                                        20 µL 

 ddH2O                                         8.7 mL 

Running buffer 5X Tris Base                                15 gr 

Glycine                                         72 gr 

SDS                                                3 gr 

ddH2O                       Bring up 1 L 

Running buffer 1X Running buffer 5X                            1 L 

ddH2O                                                4 L 

SDS loading buffer Tris/HCl 0.5 M pH 6.8                  12 mL 

Glycerol                                       47 mL 

SDS                                              12 gr 

Bromophenol blue                       60 mg 

ddH2O                   Bring up 95 mL 

2-Mercaptoetanol        Add fresh 5 µL each 95 µL buffer  
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Stacking gel 4%  

(4 gels) 

Tris-HCl 0.5 M pH 6.8                  2.5 mL 

10% SDS                                     100 µL 

40% Acrylamide                              1 mL 

10% APS                                        50 µL 

TEMED                                           10 µL 

ddH2O                                          6.43 mL 

TBST 10X Tris Base                                     24.2 gr 

NaCl                                               80 gr 

Tween 20                                      10 mL 

ddH2O                           Bring up 1 L    

TBST 1X TBST 10X                                          1 L 

ddH2O                                                  9 L 

Transfer buffer 10X Tris Base                                      30.3 gr 

Glycine                                          144 gr 

SDS                                                 10 gr 

ddH2O                    Bring up 800 mL 

Transfer buffer 1X Transfer buffer 10X                       250 mL   

Methanol                                       500 mL 

ddH2O                                           1750 mL 

XF Seahorse assay media DMEM                                             8.3 gr 

GlutaMax-1                                     10 mL 

Sodium Pyruvate                            10 mL 

NaCl                                              1.85 gr 

ddH2O                                           1000 mL 

 

2.1.5 Primers 

The primers used for PCR in the context of this thesis were found in Primer Bank 

(Harvard Medical School) and ordered from Integrated DNA Technologies. The list of 

these primers, with their sequences, is in the Table 5. 

Table 5. List of primers 

Primer Sequence Tm ºC 

CTSD-F ATTCAGGGCGAGTACATGATCC 56.7 
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CTSD-R CGACACCTTGAGCGTGTAG 55.6 

CTSF-F AGAGAGGCCCAATCTCCGT 58.1 

CTSF-R GCATGGTCAATGAGCCAAGG 56.8 

GAA-F TGCCCTCGCAGTATATCACAG 56.6 

GAA-R GAGACCCGTAGAGGTTCGC 57.3 

GAPDH-F GGAGTCAACGGATTTGGTCG 56 

GAPDH-R GACAAGCTTCCCGTTCTCAG 55.7 

HPRT-F ACCAGTCAACAGGGGACATAA 55.8 

HPRT-R CTTCGTGGGGTCCTTTTCACC 58.2 

LAMP1-F CAGATGTGTTAGTGGCACCCA 57.3 

LAMP1-R TTGGAAAGGTACGCCTGGATG 57.3 

MITF-F GCCTCCAAGCCTCCGATAAG 57.8 

MITF-R GCACTCTCTGTTGCATGAACT 55.5 

TFEB-F ACCTGTCCGAGACCTATGGG 58.2 

TFEB-R CGTCCAGACGCATAATGTTGTC 56.2 

UQCRC1-F GGGGCACAAGTGCTATTGC 57.1 

UQCRC1-R GTTGTCCAGCAGGCTAACC 56.1 

 

2.1.6 Cell culture media and compounds 

In the context of this thesis different media and compounds were used. The lists of cell 

culture media (Table 6) and compounds (Table 7) with the correspondent information 

are below. 

Table 6. Cell culture media  

Product Supplier Code Compounds 
added 

EBSS medium House made ------- 1 mM Pyruvate 

200 µM Uridine 

DMEM high glucose Gibco 41965-062 10% FBS 

1% P/S 

51 
 



Materials 
 

DMEM high glucose + pyruvate Gibco 41966-029 10% FBS 

1% P/S 

200 µM Uridine 

Dulbecco´s Modified Eagle´s 

Medium Base 8.3g/L 

Sigma D5030-1L ------ 

Opti-MEM  (1X) Gibco 11058-

021(6) 

------ 

 

Table 7. Cell culture compounds 

Product Supplier Code 

D(+)-Glucose Carl Roth 275227941 

Fetal Bovine Serum Heat Inactivated Gibco 10500-064 

GlutaMax-1 (100X) Gibco 35050-061 

PBS  Sigma P44177-100TAB 

Penicillin/Streptomycin Gibco 15140-062 

Sodium Pyruvate Sigma S8636 

Triplet Express (1X) Gibco 12605-010 

Uridine Sigma U3003-56 

 

2.1.7 Cell culture devices 

In order to manipulate the cell cultures, different devices were used during the 

experiments performed in the context of this thesis. The list of devices with their 

supplier and code is below (Table 8). 

Table 8. Cell culture devices 

Product Supplier Code 

60 x 20 mm TC dish CytoOne CC7682-3354 

100 x 20 mm TC dish CytoOne CC7682-3394 

150 x 20 mm TC dish CytoOne CC7682-3617 

6-well TC plate CytoOne CC7682-7506 
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12-well TC plate CytoOne CC7682-7512 

96-well TC plate CytoOne CC7682-7596 

96-well TC plate black Thermo Scientific 137104 

Cell scrapper StartLab CC7600-0202 

Countess cell counting chamber slides Invitrogen C10283 

Coverslips Marienfeld 017580 

Cryogenic vial 2 mL Fisher Brand 1050026 

Filter syringe 0.22 Ø Rotilabo CME Carl Roth SE2M35I07 

Syringe Inject  Becton. Dickinson and 

Company 

4606205 

Trypan Blue 0.4% Life Technologies T10282 

 

2.1.8 Plasmids and siRNA 

The transfections were done with shRNA, pcDNA and siRNA listed below (Table9). 

Table 9. Plasmids and siRNAs 

Plasmid/siRNA Supplier Code 

shRNA-UQCRC1 GE Dharmacon TRCN0000046483 

shRNA-UQCRC1 GE Dharmacon TRCN0000046484 

shRNA-UQCRC1 GE Dharmacon TRCN0000046485 

shRNA-UQCRC1 GE Dharmacon TRCN0000046486 

shRNA-UQCRC1 GE Dharmacon TRCN0000046487 

shRNA-TFEB GE Dharmacon TRCN0000013108 

shRNA-TFEB GE Dharmacon TRCN0000013109 

shRNA-TFEB GE Dharmacon TRCN0000013110 

shRNA-TFEB GE Dharmacon TRCN0000013111 

shRNA-TFEB GE Dharmacon TRCN0000013112 

pEGFP-N1-TFEB Addgene 38119 
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LAMP1-mGFP Addgene 34831 

pEGFP-LC3 Addgene 24920 

pmRFP-LC3 Addgene 21075 

pcDNA-mito-cyan Gift from Dr. Ira Milosevic Unpublished 

pLKO.1-blast-scrambled Addgene 26701 

pcDNA-CnA Gift from Prof. Luca Scorrano Cereghetti et al. 2008 

siRNA-MITF  Integrated DNA Technologies 69000547 

siRNA-MITF Integrated DNA Technologies 69000571 

siRNA-MITF Integrated DNA Technologies 69000568 

 

 

2.1.9 Antibodies 

Different primary and secondary antibodies were used for immunoblotting and 

immunocytochemistry (Table 10, 11). 

Table 10. Primary antibodies for western blot and immunocytochemistry 

Antibody Company Code Applications 

ATP6V0A1 SySy 109 002 Western blot 

ATP6V1A Novus NBP1-33021 Western blot 

GAPDH Sigma Aldrich G9545 Western blot 

H4A3 (LAMP1) DSHB ------ Immunocytochemistry 

Histone3 (96C10) Cell Signaling 3638 Western blot 

HPRT Abcam ab10479 Western blot 

LAMP1 Abcam ab24170 Western blot 

LC3B (D11) Cell Signaling 3868 Western blot 

TFEB Novus NBP1-67872 Western blot 

UQCRC1 Abcam ab110252 Western blot 
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Table 11. Secondary antibodies for western blot and immunocytochemistry 

Antibody Company Code Applications 

Goat anti-mouse IgG Dianova 115-035-146 Western blot 

Goat anti-mouse 

Alexa 488 

Life Technologies A-11001 Immunocytochemistry 

Goat anti-rabbit IgG Dianova 115-035-144 Western blot 

 

2.1.10 Cell lines 

In the context of this thesis, HeLa cells, provided by ATCC, were used as a mammalian 

cell model, which is a common practice in the field. HEK293T cells, provided by ATCC, 

were used as packaging cells during the production of virus for the generation of stable 

UQCRC1 knock-downs. 

 

2.1.11 Instruments 

The instruments used in this thesis, their applications and the companies that produced 

them are listed in Table 12. 

Table 12. Equipment 

Instrument Company Applications 

Ace Block Digital Dry Bath Labnet Incubate Eppendorf tubes 

with fixed temperature 

Bio-Rad Power Pack HC 

Mini-Protean Tetra 

System 

Bio-Rad Run and transfer western 

blots 

CAWOMAT 2000 CAWO Develop film 

Centrifuge 5415C Eppendorf Centrifuge Eppendorf 

tubes 

Centrifuge 5415R Eppendorf Centrifuge Eppendorf 

tubes with controlled 

temperature 

Centrifuge 5810R Eppendorf Centrifuge Falcon tubes 
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with controlled 

temperature 

Centrifuge Allegra X-15R Beckman Coulter Centrifuge plates with 

controlled temperature 

Countess C10281 Invitrogen Count cells 

FACS CantoTMII BD Biosciences Determination pf 

lysosomal mass. 

mitochondrial membrane 

potential and ROS 

measurement 

Gene Quant 1300 GE Healthcare Measure protein 

concentration 

Hood Herasafe Thermo Scientific Cell manipulation 

Incubator Heracell 150i Thermo Scientific Grow cells at 37ºC 

Microscope Zeiss Axio 

Vert A1 

Zeiss Imaging cells 

Multichannel pipette Eppendorf Research Pipette small volumes in 

96-well plates 

Nanodrop 2000C Peqlab Measuring of RNA 

concentration 

Pipettes Eppendorf Research Pipette small volumes 

Pipette gun accu-jet pro BRAND Pipette big volumes 

pHmeter pH7110 WTW Inolab Measuring pH 

Precision balance 

Explorer 

OHAUS To weigh reagents 

Quant Studio 6 Flex Life Technologies Real time quantitative 

PCR 

Revolver wheel Labnet Rotate Eppendorf tubes 

Scanner Epson Perfection 

V850 Pro 

Epson Scan films 

Seahorse XF96 Agilent Measure the oxygen 
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extracellular Flux Analyzer consumption rate (OCR) 

of live cells 

Spinning disk confocal 

microscope  

Perkin Elmer Fluoresce imaging 

SYNERGYM1 microplate 

reader 

BioTek Determination of 

lysosomal mass and 

proteolytic capacity 

Thermocycler UNO II Biometra cDNA synthesis 

Vortex RS-VA10 Phoenix Instrument Mix 

 

2.1.12 Software 

The software that was used in the realization of this thesis and the information about 

the companies that made them is listed in the table below (Table 13). 

Table 13. Software 

Software Company City/State Country 

FACS DIVATM software BD Biosciences Heidelberg Germany 

GraphPad Prism 6 GraphPad Software Inc.  La Jolla. CA USA 

ImageJ National Institutes of Health  Bethesda. MD USA 

Matlab MathWorks Natick, MA USA 

Mendeley Mendeley Ltd.     London UK 

Microsoft Office Microsoft Corporation Redmond. WA USA 

Photoshop CS4 Adobe Systems San Jose. CA USA 

Volocity Perkin Elmer      Waltham. MA USA 
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2.2 Methods 

2.2.1 Cell work 

2.2.1.1 Growth conditions 

HeLa cells were grown in Dulbecco's Modified Eagle Medium high glucose medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) and 1% Penicillin/Streptomycin (P/S) at 37°C 

and 5% CO2. HeLa UQCRC1kd and scrambled control cells were grown in DMEM high glucose 

medium with pyruvate supplemented with 10% FBS, 1% P/S and 200 µM uridine at 37°C and 

5% CO2. All media and solutions used for cell work were either autoclaved or filtered. Cells were 

counted using a cell counter, they were about 60-80% confluent when harvested for experiments 

and plated at least 24 hours before the experiment. The seeding cell number, which was 

changed according with the area of the plate, was: 

10 cm plate → 1x106 cells/plate 

6 cm plate → 1x105 cells/plate 

6-well-plates → 120000 cells/well 

12-well-plates → 35000 cells/well 

96-well-plates → 12000 cells/well 

 

2.2.1.2 Starvation treatment 

HeLa cells were plated in 10 cm plates for RNA extraction. The cells were washed with PBS and 

the medium was replaced with EBSS medium. After the time of starvation ended, the medium 

was aspirated and the cells were washed with warm PBS and incubated with 1 mL of TrypLE 

Express Enzyme during 3 minutes at 37°C.  After these 3 minutes, 2 mL of EBSS were added 

and cells were centrifuged for 5 minutes 800 x g at 4°C. The supernatant was aspirated and the 

pellets were kept at -80ºC until the RNA was extracted. 

 

2.2.1.3 Chemical treatments 

HeLa cells were plated in 10 cm plates for protein/ RNA extraction or in coverslips placed in 12-

well-plates for microscopy. They were treated with the following compounds: sodium azide 
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(NaN3) 15 mM, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) 10 μM, dorsomorphin 

(compound C) 10 μM, Torin1 250 nM, FK506 (Tacrolimus) 5 μM, ML-SA1 20nM, YM2010636 1 

μM, A769662 100 μM. To treat the cells, the medium was aspirated and after the cells were 

washed with PBS, the medium was replaced with fresh DMEM medium plus the correspondent 

chemical. After 4 hours, the medium was aspirated and the cells were washed with warm PBS 

and depending on the use the samples could be: 

• Protein/RNA: incubated with 1 mL of TrypLE Express Enzyme for 3 minutes at 37°C.  

After these 3 minutes, 2 mL of EBSS were added and cells were centrifuged for 5 

minutes 800 x g at 4°C.  The supernatant was aspirated and the pellets were kept at -

80ºC until the protein or the RNA was extracted. 

 

• Microscopy: cells were fixed with 4% PFA overnight at 4ºC. After, PFA was aspirated 

and the cells were washed twice with PBS and stored at 4ºC in dark until use. 

  

2.2.1.4 Transient knock-downs 

HeLa cells were plated 24h before transfection in 6 cm plates for protein/RNA extraction or in a 

12-well-plate with coverslips for microscopy and were transfected using FuGENE HD 

Transfection Reagent (1.5 μg DNA: 4.5 μl Fugene). The transfecting mix was prepared by 

adding in a microcentrifuge tube 50 μl of Opti-MEM medium and 4.5 μl of Fugene 6 directly into 

the medium. This was mixed and incubated for 5 minutes at room temperature (R/T). In the 

meanwhile, in another microcentrifuge tube with 50 μl of Opti-MEM medium 1.5 μg of DNA was 

added and mixed. During the incubation time the DMEM high glucose of the cells was replaced 

with DMEM high glucose with pyruvate, uridine, FBS and P/S. When the incubation was 

finished, the DNA dilution was added to the Fugene dilution, mixed and incubated for 15 minutes 

at R/T. After the incubation time was over, the total volume of transfecting mix was added to the 

plate/well dropwise and gently mixed. Between 4 to 6 hours post-transfection the medium was 

changed by fresh medium and cells were grown for at least 24 hours before they had to be 

collected for protein/RNA or used in microscopy according to the procedures previously 

explained. 

 

2.2.1.5 Selection of stable knock-downs 
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The selection of stable knock-downs was done in DMEM with Puromycin (6 mg/mL).When the 

control HeLa cells were death, the selection was completed and the cells were grown and stored 

in liquid nitrogen. 

 

2.2.2 Molecular biology 

2.2.2.1 RNA isolation from cells 

Ribonucleic acid (RNA) isolation was done using CRYSTAL RNA Mini Kit BIOLAB. Cell pellets 

were in 2 mL Eppendorf tubes, where 400 µL of Lysis Solution RL and 4 µL of 2-

Mercaptoethanol (β-SH) were added. After incubation at R/T for 2 minutes, the pellet was re-

suspended with a pipette. The samples were incubated at room temperature for 3 minutes and 

later were transferred at Spin Filter D placed in Receiver Tubes 2 mL and centrifuged for 2 

minutes at 10000 x g. The column was discarded and 400 µL of 70 % ethanol were added to the 

flow-through and mixed gently by pipetting. The flow-through with ethanol was transferred to 

Spin Filter R in Receiver Tubes 2 mL and Centrifuged for 2 minutes at 10000 x g. After the 

column was placed and the flow-through was discarded, 500 µL of Washing Solution HS were 

added to the Spin Filter R and the tubes were centrifuged for 1 minute at 10.000 x g. The column 

was shifted to a new collection tube and 700 µL of Washing Solution LS were added to the Spin 

Filter R. After Centrifugation at 10000 x g for 1 minute, the flow-through was discarded and the 

Spin Filter R was placed in a new collection tube and it was centrifuged for 2 minutes at 10000 x 

g to dry the membrane. The Spin Filter R was moved in a new 1.5 mL collection tube and 20 µL 

of RNAase-free water was added directly to the spin column membrane to elute the RNA. The 

tube was incubated for 1 minute at room temperature and was later centrifuged for 1 minute at 

6000 x g to collect the RNA.  

RNA quantification and quality control was done using the Nanodrop. Only samples with 

concentration >10 ng/μl were used for cDNA synthesis. RNA was stored at -80°C until it was 

used for cDNA synthesis. 

 

2.2.2.2 cDNA synthesis 

To continue with the analysis of RNA expression, the complementary Deoxyribonucleic Acid 

(cDNA) was generated from RNA extracted previously, using iScript cDNA synthesis kit. The 
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RNA samples and the components of the kit were thawed over the ice and later kept on it. A 

master mix was prepared for n+1 samples with these components:  

 

Components    Volume/Reaction 

5x iScript reaction mix   4 μl 

iScript reverse transcriptase   1 μl 

 

First the calculations to have 1 μg of total RNA in 20 μl of reaction were done per each sample. 

Later, in labeled PCR-tubes the following were added:  

 

Components        Volume/Tube 

Nuclease-free water    x μl 

RNA template     y μl 

Mastermix    5 μl 

Final volume              20 μl 

 

The complete reaction mix was mixed with a vortex and shortly centrifuged before it was 

incubated in a thermocycler with the following steps: 

 

25ºC   5 minutes  

42ºC   30 minutes  

85ºC   5 minutes  

4ºC  ∞  

 

After cDNA was synthesized it was 100 times diluted in double-distilled water (ddH2O) and stored 

at -20°C until it was used in qPCR. 
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2.2.2.3 qPCR 

The cDNA was used to perform quantitative real time polymerase chain reaction (qPCR), 

performed as at least technical triplicates. Mastermixes were prepared for each gene counting 

n+1 wells.  

 

Components    Volume/Reaction 

SYBR® Green    3.6 μl 

Reverse primer (25 μM)  0.2 μl 

Forward primer (25 μM)  0.2 μl 

 

In the 384-well-plate the 4 μl/well cDNA were pipetted and later 4 μl/well of mastermix were 

added. Before placing the plate in the qPCR machine, it was sealed and centrifuged for a short 

time. The reaction was performed following the qPCR protocol: 

 

95ºC     5 minutes  

95ºC   30 seconds  

60ºC   30 seconds        x 40  

72ºC   30 seconds 

95ºC   30 seconds  

60ºC   30 seconds 

72ºC   30 seconds 

 

Data were analyzed with QuantStudio™ Real-Time PCR Software.  
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2.2.2.4 DQ-BSA assay 

The initial stock of DQ Green BSA was prepared fresh, by re-suspending 1 mg in 1 mL sterile 

PBS. The cells were plated in transparent 96 well-plate and the medium was changed by fresh 

DMEM with DQ Green BSA (10 µL/mL) and incubated at 37°C for 1 hour. After incubation, the 

wells were washed 2 times with warm PBS and the medium replaced by 100 µL/well of EBSS 

medium. The plate was placed in the plate reader and readings were taken every 5 minutes 

during 4 hours in the plate reader (excitation 505 nm and emission 515 nm). In order to 

normalize the data, when the assay was completed, the amount of protein per well was 

measured using Pierce assay. 

 

2.2.2.5 Lysosomal quantification plate reader 

Plate reader was used in order to determine lysosomal mass using LysoTracker Red DND-99. 

The cells were plated in a black 96-well-plate with at least 20 replicates for each condition. The 

cells were washed with warm PBS and the medium was replaced with DMEM with LysoTracker 

Red DND-99 200 nM and incubated for 30 minutes at 37°C. Later, cells were washed with warm 

PBS twice and fresh medium was added (100 µL/well). The plate was placed in the plate reader 

and readings were taken every 5 minutes during 4 hours (excitation 494 nm and emission 521 

nm). When the assay was completed, the amount of protein per well was measured using Pierce 

assay and used to normalize the data.  

 

2.2.2.6 Protein concentration determination using Pierce BCA assay 

Protein concentration determination using Pierce BCA Protein Assay Kit was done to help with 

the normalization using protein amount of assays in which the cells were plated in 96-well-

plates.  

After the assay was completed, the medium was aspirated and 125 uL of ddH2O was added. The 

plate was incubated for 1 hour at R/T with a mild shaking to lysate the cells. After the incubation, 

100 uL of double dye working mixture were added to each well (25 Pierce BCA buffer: 1 Pierce 

BCA dye). After 30 minutes of incubation at 37°, the plate was read at 562 nm in the plate 

reader. The results were analyzed using Microsoft Excel 2013 and protein concentration was 

calculated based on the calibration curve, obtained with the same kit and bovine serum albumin 

(BSA), and used to normalize other assays using plate reader. 
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2.2.2.7 FACS determinations 

Flow cytometry (FACS) was used in order to determine lysosomal mass, mitochondrial 

superoxide and mitochondrial membrane potential. In order to perform these experiments, the 

cells were plated in 6-well-plate, triplicates for each condition plus the corresponding controls 

(not stained and stained in basal conditions). The cells were washed with warm PBS and the 

protocol to be followed varies depending on the results to be determined. 

Lysosomal mass determination: The medium was replaced with DMEM with 200 nM 

LysoTracker® Green DND-26 and incubated for 10 minutes at 37°C.  

Mitochondrial superoxide determination: In this case, the PBS always contains 0.5 µM 

Glucose. The medium was replaced with warm PBS containing 0.5 µM Glucose and 5 µM 

MitoSOX. Stained and non-stained control, were also prepared alongside positive controls with 

100 µM H2O2 or 100 µM antimycine which were incubated for 20 minutes at 37°C.  

Mitochondrial membrane potential determination: The medium was replaced with medium 

containing 70 nM Mitotracker Green FM and 90 nM Mitotracker Deep Red FM and the cells were 

incubated for 30 minutes at 37°C.  

Once the incubation was over, cells were washed with warm PBS twice and 500 uL of TrypLE 

Express Enzyme were added before the cells were incubated for 3 minutes at 37°C. After cells 

were collected, 1 mL of PBS was added to the well and it was centrifuged for 5 minutes at 800 g 

and 4°C. The supernatant was aspirated, cells were re-suspended in 1mL of cold PBS and 

transferred to FACS tubes. The tubes were kept on ice until they could be read using a Calibur 

flow cytometer using GFP 530/30 (lysosomal mass), PI 585/42 (mitochondrial superoxide) and 

PE 585/42 (mitochondrial membrane potential). Data was analyzed using the DIVA software.  

 

2.2.2.8 Mitochondrial oxygen consumption determination 

Determination of mitochondrial oxygen consumption was performed using Seahorse XF96 

extracellular Flux Analyzer in accordance to the manufacturer’s instructions. HeLa stable 

UQCRC1kd and corresponding scrambled control cells were plated in a Seahorse plate (10000 

cell/well) using DMEM high glucose with pyruvate, uridine, FBS and P/S. On the other hand 

200µL/well of XF Calibrant Solution were added into each well of the cartridge for hydration of 

the Seahorse sensor microplate and the plate was incubated overnight at 37°C. Next day, the 

medium was replaced by XF assay medium (180 µL/well) and incubated in Seahorse incubator 
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at 37°C for 1 hour without CO2. In the meanwhile, different compounds were pipetted in the 

corresponding wells of the sensor microplate according to the manufacturer’s instructions:  

 

 A – Oligomycin 10 µM (25 µL/well) 

 B – FCCP 4 µM (28.5 µL/well) 

 C – Antimycine / Rotenone 0.4 µM (32.5 µL/well) 

 D – XF medium (30 µL/well) 

 

When the assay was completed, the amount of protein per well was measured with Pierce 

assay. Data was normalized to protein amount shown by Pierce assay.  

 

2.2.2.9 Nuclear isolation 

The nuclear isolation was done starting with cells plated in 15 cm plates with 80% confluence. 

The cells were washed with ice-cold PBS twice, collected with scraper and ice-cold PBS and 

centrifuged for 5 minutes at 2000 x g at 4°C. The supernatant was removed and the pellets kept 

at -20°C. The cells were re-suspended in 3 volumes of hypotonic buffer of pH 7.9 and were 

transferred to Eppendorf tubes. Non-ied P-40 was added to the tubes with a final concentration 

of 0.6%. The tubes were mixed using a vortex and incubated for 30 minutes on ice. When the 

incubation is completed, the tubes were centrifuged for 5 minutes at 800 g at 4°C. The 

supernatants (cytoplasmic extract) were collected into new tubes and kept at -20°C until use. 

The pellet was re-suspended in 3 volumes of hypertonic buffer of pH 7.9 and the tubes were 

incubated in rotation at 4°C for 30 minutes. When the incubation was completed, the tubes were 

centrifuged for 30 minutes at 15000 g and 4°C. The supernatant (nuclear extract) was collected 

into new tubes and kept at -20°C until they were used for western blot.     
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2.2.3 Protein biochemistry 

2.2.3.1 Sample preparation 

The cell pellets were re-suspended in an appropriated volume of 1.5% N-dodecylmaltoside (50 – 

100 µL, depending on the amount of cells) by pipetting. Later, the cell suspensions were 

transferred to 1 mL Eppendorf tubes and mixed by rotation at 4°C for 30 minutes. At the end of 

the 30 minutes, the tubes were centrifuged at 4°C for 20 minutes at 15700 g. After the 

centrifugation, the supernatants (whole cell extracts) were transferred into new 1 mL Eppendorf. 

The protein concentration was determined by Bradford assay.  

 

2.2.3.2 Protein concentration determination using Bradford assay 

Protein concentration was determined using Protein Assay Dye Reagent Concentrate (Bio-Rad) 

according to manufacturer’s instructions. First, the standard curve was established using bovine 

serum albumin (BSA). To determine the protein concentration in a glass tube, 1 µL of sample 

was added to 800 µL of ddH2O and after 200 µL of Protein Assay Dye Reagent Concentrate 

were added. The tubes were mixed using vortex and incubated in the dark at R/T for 5 minutes. 

The mix was transferred into a plastic cuvette and absorbance at 595 nm was measured using a 

GeneQuant 1300 spectrophotometer. Protein concentration was calculated based on the 

calibration curve using Microsoft Excel 2013. All the samples were measured in duplicates. 

 

2.2.3.3 SDS-PAGE 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed to 

separate denaturized proteins according to their molecular weight. Gels were prepared with 40% 

acrylamide solution. The resolving 12% gels were buffered with Tris/HCl of pH 8.8, and the 

stacking 4% gels were buffered with Tris/HCl of pH 6.8. The gels were prepared with 1mm 

thickness using the Bio-Rad system. After the resolving part was poured between the gel 

glasses, it was covered with 1mL of isopropanol to prevent air bubbles. When the gel was 

polymerized, isopropanol was removed, the stacking part was added and the 10-well comb was 

carefully inserted. The complete polymerized gel was stored in a box filled with running buffer at 

4°C or used immediately. 
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In order to separate proteins from cellular extracts according to their molecular weight, samples 

were mixed with 6x SDS loading buffer and with the appropriate volume of ddH2O to load the 

same amount of protein in each well and boiled for 5 minutes at 95ºC. The electrophoresis run 

was performed in Mini-Protean Tetra System (Bio-Rad) with an initial voltage of 80 V until the 

samples got in the resolving gel, which was then changed to 180 V. As a standard of molecular 

weight, the Page Ruler plus Prestained was used. The markers appear at 250, 130, 100, 70, 55, 

35, 25, 15 and 10 KDa. 

2.2.3.4 Western blotting 

The transfer of separated proteins from the SDS gel into a polyvinylidene fluoride membrane 

(PVDF) was done using a wet blotting system. The PVDF membranes were activated for 15 sec 

in pure methanol, washed with ddH2O for 3 minutes and equilibrated on transfer buffer. Gels and 

western blot papers were equilibrated in transfer buffer too. Later, the gel and membrane were 

assembled together between 4 layers of western blot papers. The transfer was done from the 

gel to the PVDF membrane at 100 V during 80 minutes. 

 

2.2.3.5 Immunostaining 

After the transfer was completed, the PVDF membranes were blocking in 5% milk (blocking 

solution) for 1 hour with mild shaking. Following blocking, membranes were washed three times 

with Tris-buffered saline with Tween 20 (TBST) for 10 minutes and incubated in primary antibody 

(blocking solution) for 1 hour at R/T or overnight at 4 °C. Before incubating the membrane with 

HRP-secondary antibodies, the membranes were washed with TBST three times for 10 minutes 

at R/T. The concentration of HRP-secondary antibodies was 1:5000 or 1:10000 in blocking 

solution and the incubation was 1 hour at room temperature. After three more washes with TBST 

buffer, the chemioluminiscence was detected, after 3 minutes of incubation with Luminata 

Clasico Western HRP Substrate, using medical X-ray films and a Curix 60 processor. The films 

were scanned and the bands were quantified using ImageJ.  

 

2.2.4 Microscopy 

2.2.4.1 Mitochondria/lysosomes microscopy  
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To study mitochondria or lysosomes using dyes, cells were plated in coverslips placed in 12-

well-plates. Later, the procedure varies depending on the kind of mitochondrial malfunction. 

Acute mitochondrial malfunction: The cells were treated for 4 hours or transfected as it was 

previously described. After the treatment/transfection was done, the medium was replaced by 

DMEM high glucose with FBS and P/S with 12.5 nM Mitotracker Red/50 nM Lysotracker Green 

and incubated at 37°C for 15 minutes or transfected with plasmid that encodes a fluorescent 

protein. After the incubation, the coverslips were washed with PBS, mounted in a chamber with 

imaging buffer and imaging was performed using a spinning disk confocal microscope.  

Chronic mitochondrial malfunction: The cells were transfected with plasmid that encodes a 

fluorescent protein and fixed with PFA. The coverslips were mounted on slides using Mowiol and 

when they were dry, sealed with nail polish and stored in dark at 4°C until imaging using a 

spinning disk confocal microscope. 

 

2.2.4.2 Immunostaining in stable UQCRC1kd 

The cells, plated in coverslips placed in 12-well-plates, were washed with PBS and fixed using 

PFA. After the PFA was removed, the coverslips were washed twice with PBS and 500 µL of 

blocking solution was added and incubated for 1 hour at R/T with mild shake. In the meanwhile, 

the primary antibody was prepared in blocking solution (2 µg/mL). When the blocking was 

completed, the coverslips were incubated overnight at 4°C with the primary antibody. The day 

after, the antibody was removed and the coverslips were washed with PBS for 10 minutes, 

thrice. After the wash, the coverslips were incubated with secondary antibody goat α-mouse 

Alexa 488 (1:200) for an hour at R/T in the dark. When the incubation was completed, the 

antibody was removed and the coverslips washed with PBS for 10 minutes, thrice, but in the 

second wash DAPI was added to the PBS (1:5000). The coverslips were mounted on slides 

using Mowiol, and when they were dry, sealed with nail polish and stored in dark at 4°C until that 

were imaged with the help of spinning disk confocal microscope. The images were analyzed 

using ImageJ.  

 

2.2.4.3 Lysosomal pH determination with acridine orange 

To determine if lysosomal pH is affected in cells with mitochondrial perturbations, the stable 

UQCRC1 knock-down and scrambled control cells were plated in coverslips placed in 12-well-
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plates. The next day, the stable UQCRC1kd were treated for 4 hours with ML-SA1 20nM 

(Sigma) and scrambled and stable UQCRC1kd using DMSO as control. After the incubation, the 

cells were incubated for 20 minutes with acridine orange 20µM and then washed 3 quick times 

and later, 3 more times for 5 minutes with PBS. After the wash, the coverslips were mounted in a 

chamber with imaging buffer and imaging was performed with a spinning disk confocal 

microscope. Cells were imaged in time-lapse to capture signal in the red and green channels. 

Photodamage was induced by continuous illumination between images at 488 nm. The images 

were analyzed using a MatLab script (Stagi et al. 2014).  

 

2.2.5 Statistical analysis 

The data were analyzed using Microsoft Excel 2013 and normalized to loading control. All the 

values were represented in correlation to the corresponding control, which was set to 1 (expect 

in microscopy experiments in which the total number was kept). Final graphs were done using 

GraphPad Prism 6. 
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3 Results 

3.1 Acute mitochondrial malfunction 

3.1.1 Effect of acute mitochondrial malfunction caused by chemicals on lysosomes 
and autophagy 

To study acute mitochondrial malfunction there are several ways to induce it, like exercise or Ca2+ 

increase (Kwong et al. 2015; H. Li et al. 2016; Raimundo 2014). In addition, there are other 

approaches to trigger acute mitochondrial malfunction and in this thesis we decided to perturb the 

respiratory chain using inhibitors and an uncoupler. 

In order to investigate the effects of acute mitochondrial malfunction on lysosomes, HeLa cells 

were treated with sodium azide (NaN3) that inhibits complex IV and carbonyl cyanide m-

chlorophenyl hydrazone (CCCP) which uncouples mitochondrial respiratory chain from oxidative 

phosphorylation (Ishii et al. 2014; Ivankovic et al. 2016) (Fig. 30). 

 

Figure 30. Induction of acute mitochondrial malfunction by chemicals - Scheme representing mitochondrial respiratory 
chain where NaN3 and CCCP act to induce acute mitochondrial malfunction. 

 

To study the effect of those acute mitochondrial malfunctions on mitochondrial shape and 

lysosomal number, HeLa cells were treated with NaN3 and CCCP for 4 hours and stained with 

Mitotracker-Red and Lysotracker-Green. We assessed mitochondrial stress using microscopy. In 

the past, mitochondrial fission had been shown to be a phenotype of mitochondrial stress 
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(Cereghetti et al. 2008). Following these treatments, we observed mitochondria fragmented in 

cells treated with NaN3 and even more in cells treated with CCCP (Fig. 31A). Also, a clear increase 

in the number of lysosomes was observed in cells treated with NaN3 and the increase was stronger 

in cells treated with CCCP. Later, the lysosomes were quantified, using ImageJ, and the increase 

in the number of lysosomes was found to be significant (Fig. 31B). 

 
Figure 31. Representative images of mitochondria and lysosomes under acute mitochondrial malfunction triggered by 
chemicals – A) Microscopy in HeLa cells stained with Mitotracker Red and Lysotracker Green, showing that NaN3 and CCCP 
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trigger mitochondrial fragmentation and increase in lysosomal number. B) Quantification showing an increase in the number of 
lysosomes per cell under acute mitochondrial malfunction 

To verify that the increase in lysosomal number under acute mitochondrial malfunction was not 

an artifact related to the use of Lysotracker due to its reported pH sensitivity (Yapici et al. 2015), 

similar experiment was performed using HeLa cells previously transfected with GFP tagged  

lysosomal associated membrane protein 1 (LAMP1-GFP) (Fig 32A).  

 
Figure 32. Representative images of mitochondria and lysosomes under acute mitochondrial malfunction triggered by 
chemicals, in cells with LAMP1-GFP – A) Microscopy, in HeLa cells tagged with Mitotracker Red and LAMP1-GFP, showing 
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that NaN3 and CCCP trigger mitochondrial fragmentation and increase in lysosomal number. B) Quantification showing an 
increase in the number of lysosomes per cell under acute mitochondrial malfunction. 

Again, the increase in lysosomal number was obvious in cells treated with NaN3 and even more 

clear in cells treated with CCCP. Images were quantified using Image J, as it was done before. As 

expected, the result confirmed that the increase in lysosomal number was significant in both 

treatments (Fig. 32B). 

With these results in mind, we decided to study the effects of acute mitochondrial malfunction on 

autophagy. To investigate those effects, the cells were treated again with NaN3 and CCCP for 4 

hours and an immunoblotting assay was performed with the whole cells extracts to detect 

microtubule-associated proteins 1B light chain 3B (LC3B). LC3B is in the cytoplasm but after a 

pots-translational modification, it is translocated to the autophagosomal membrane where it is 

called LC3II (Tanida et al. 2005). The treated cells showed an increase in autophagy as indicated 

by the LC3II/LC3I ratio, meaning that there were more autophagosomes in stressed cells than in 

control cells (Fig. 33).  

 
 

Figure 33. Autophagy under acute mitochondrial malfunction – A) Western blot of LC3 in HeLa cells treated with NaN3 and 
CCCP during 4 hours. B) Quantification showing an increase in of LC3II/LC3I ratio corresponding with an increase in autophagy 
under acute mitochondrial malfunction caused by NaN3 or CCCP. 
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These results indicate that acute mitochondrial malfunction, caused by inhibition of mitochondrial 

respiratory chain, induces an increase in lysosomal number and triggers autophagy. 

3.1.2 Effects of acute mitochondrial malfunction caused by transient UQCRC1 
knock-downs on lysosomes and autophagy.  

With the aim of investigating the effects of acute mitochondrial malfunction on lysosomes and 

autophagosomes more extensively, we decided to use another kind of stress. This was aimed at 

elucidating whether the effects observed were not merely due to chemical treatment rather due to 

a mitochondrial stress response, as there could be concerns if the chemicals were not specific 

enough.  

To achieve this goal, we used transient knock-downs, in this case, ubiquinol-cytochrome C 

reductase core protein 1 knock-downs (UQCRC1kd) in HeLa cells, which affects complex III of 

the mitochondrial respiratory chain (Fig. 34). 

 
Figure 34. Induction of acute mitochondrial malfunction by transient knock-down - Scheme that represents mitochondrial 
respiratory chain and UQCRC1, which is a subunit of complex III. 

  

These cells were transfected with shRNA, and 24 hours post-transfection the cells were stained 

using Mitotracker-Red and Lysotracker-Green. Also, the images were acquired using a spinning-

disk confocal microscope and we observed, once again, a strong increase in the number of 

lysosomes and mitochondrial fragmentation (Fig 35).   
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Figure 35. Representative images of mitochondria and lysosomes in cells under acute mitochondrial malfunction 
triggered by transient UQCRC1kd – Microscopy, in HeLa cells stained with Mitotracker Red and Lysotracker Green, showing 
mitochondrial fragmentation and increase in lysosomal number. 

 

In order to confirm the increase of lysosomes in transient UQCRC1kd and at the same time check 

the effect of this acute response on autophagy, we double transfected UQCRC1kds with LAMP1-

GFP and LC3-RFP (Fig. 36A). The result showed an expected increase in lysosomes in UQCRC1 

and a correlated increased in autophagosome number and both corresponded with an increase 

in the number of autophagolysosomes as shown in the magnified image (Fig. 36B).  

These results confirm that the previous observation, in which acute mitochondrial malfunction 

induced by chemicals triggered an increase in the number of lysosomes and autophagosomes, 

was due to the mitochondrial stress and not due to the system we used to induce the stress. We 

can therefore conclude that acute mitochondrial malfunction induces an increase in the number of 

lysosomes and autophagosomes regardless of the stress source. 
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Figure 36. Representative image of lysosomes and autophagosomes in cells under acute mitochondrial malfunction 
triggered by transient UQCRC1kd – Microscopy, in HeLa cells tagged with LAMP1-GFP and LC3-RFP showing, in the left 
side, an increase in autophagosomes and lysosomes in UQCRC1kd. In the right side, there are zooms showing colocalization 
of LC3 and LAMP1 that represents an increase of autophagolysosomes in UQCRC1kd. 

 

3.1.3 Effects of acute mitochondrial malfunction on lysosomal biogenesis 

At this point, it was clear that acute mitochondrial malfunction was increasing the number of 

lysosomes. But what was not clear to us, was whether this increase was due to division of 

lysosomes or because mitochondrial stress was triggering lysosomal biogenesis. 

With this in mind, we investigated if lysosomal biogenesis was affected by acute mitochondrial 

malfunction. In order to study how lysosomal-related genes were responding to the mitochondrial 

dysfunction, HeLa cells were treated with the mitochondrial uncoupler, CCCP, and the transcript 

levels of several genes encoding lysosomal proteins were measured using qPCR. It was observed 

that the transcript levels of lysosomal-related genes such as Lysosomal-associated membrane 
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protein 1 (LAMP1), Alpha Acid Glucosidase (GAA), Cathepsin D (CTSD) and Cathepsin F (CTSF) 

were increasing during the treatment (Fig. 37).  

This result shows that the increase in lysosomes due to acute mitochondrial dysfunction is likely 

to have been caused by an activation of lysosomal biogenesis. 

 

3.1.4 Effects of acute mitochondrial malfunction on TFEB/MITF levels 

Given the previously reported role of transcription factor EB (TFEB) in coordinated lysosomal 

biogenesis (Sardiello et al. 2009) and keeping our results in mind, we wanted to elucidate if TFEB 

 
Figure 37. Effects on transcript levels of lysosomal-related genes caused by acute mitochondrial malfunction –  
Normalized transcript levels showing that increase along the time of LAMP1, GAA, CTSD and CTSF in cells the treated with 
CCCP. 
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was involved in the lysosomal increase induced by acute mitochondrial malfunction. Again, HeLa 

cells were treated with CCCP and collected at different time points. A western blot analysis was 

performed and the results show that, under acute mitochondrial malfunction, there is an increasing 

trend in TFEB amount that reaches a maximum around 8-12 hours (Fig. 38A, B). 

 

Figure 38. Effects on TFEB protein amount caused by acute mitochondrial malfunction – A) Western blot of TFEB in HeLa 
cells treated with CCCP and collected at different time points. B) Quantification of TFEB showing and increase in the protein 
amount during the treatment with CCCP. 

 

However, it must be stated that TFEB belongs to the microphtalmia family that is formed by four 

members; TFEB, MITF, TFE3 and TFEC (Kuiper et al. 2004). Also, TFEB and MITF have been 

found to respond to similar stressors (Martina and Puertollano 2013) being translocated to the 

nucleus, where they can form homo- and hetero-dimers (Martina et al. 2014). To address the role 

of microphtalmia transcription factors TFEB and MITF and under acute mitochondrial malfunction, 

HeLa cells were treated with CCCP. We then monitored the transcript levels of TFEB and MITF 

over time. Both transcription factors show a similar response with an up-regulation in response to 

mitochondrial stress that is followed by a return to the baseline under both treatments (Fig. 39). 
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On the other hand, it was evident that they have different reaction times. While MITF was steeply 

upregulated and downregulated, TFEB had a more sustained expression returning to the basal 

line gently. (Fig. 39).  

 

 

Since TFEB and MITF transcript levels increase strongly, initially in response to mitochondrial 

stress, this could be the trigger for the observed lysosomal biogenesis: 

In order to identify which transcription factor was responsible for the increase in lysosomal number, 

a set of stable TFEBkd were generated. The efficiency of the silencing was checked using western 

blot and the most efficient was used (Fig. 40A). Since MITF and TFEB are members of the same 

family and there is the possibility that the activity of one affects the activity of the other, MITF was 

silenced using siRNA in scrambled and stable TFEBkd (Fig. 40B). The efficiency of MITFkd was 

tested using qPCR. Also, it was checked that TFEBkd has no effect on MITF and that MITFkd has 

no effect over TFEB (Fig. 40C).  

 
Figure 39. Effects TFEB and MITF transcript levels caused by acute mitochondrial malfunction – Normalized transcript 
levels showing that TFEB levels are and fast up-regulation with a mild turning to the base line during the treatment, while MITF 
has a fast up-regulation follow by a fast down-regulation. 
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Figure 40. Effects of TFEB knock-down on MITF and of MITF knock-down on TFEB – A) Western blot of five different stable 
TFEBkds in HeLa. B) Quantification of stable TFEBkds. C) Graph showing that transcript levels of TFEB are not decreased by 
MITFkd and that transcript levels of MITF are not affected by TFEBkd. 

 

Once the independency of TFEB and MITF was confirmed, the cells were treated with CCCP in 

order to verify which of the two transcription factors was related to lysosomal biogenesis under 

acute mitochondrial malfunction. As it was expected, CCCP treatment induced an increase in the 

expression levels of lysosomal-related genes tested in scrambled cells (Fig. 41). Although the 

TFEB/MITF knock-down cells were not able to mimic the changes in the transcription levels of 

almost all the lysosomal genes, like LAMP1 or CTSD, they could not inhibit the induction of GAA 

(Fig. 41). These results show that induction of lysosomal biogenesis caused by acute 

mitochondrial malfunction is, at least, partially dependent on TFEB/MITF. 
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Figure 41. Effects on transcript levels of lysosomal-related genes caused by acute mitochondrial malfunction on TFEB 
and MITF knock-downs – Graphs showing that acute mitochondrial malfunction induces increase in the expression levels of 
lysosomal-related genes in scrambled cells. While the TFEB/MITF knock-down cells were not increasing transcription levels on 
almost all the lysosomal genes, like LAMP1 or CTSD, they could not inhibit the induction of GAA. 

 

3.1.5 Acute mitochondrial malfunction and AMPK 

Finally it was necessary to address the mechanism by which acute mitochondrial malfunction was 

driving lysosomal biogenesis. It was already shown that acute mitochondrial malfunction activated 

TFEB/MITF signaling (Fig 37), and this signaling resulted in increased lysosomal biogenesis (Fig. 

31, 32). However, it was necessary to determine the connection between acute mitochondrial 

malfunction and TFEB/MITF. It is known that AMPK responds to mitochondrial stress (Raimundo 
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et al. 2012). At the same time, AMPK represses mTORC1 which in turn represses TFEB activity 

(Fig. 42). With this in mind, the next experiment was designed to define the role of AMPK in this 

response.  

 
Figure 42. Pathway that connects acute mitochondrial malfunction with lysosomal biogenesis – Acute mitochondrial 
malfunction triggers TFEB-dependent lysosomal biogenesis via AMPK.  

 

In order to determine the role of AMPK in lysosomal biogenesis under acute mitochondrial 

malfunction, HeLa cells were treated with CCCP and with dorsomorphine (compound C), which is 

a known inhibitor of AMPK (Zhou et al. 2001; Fryer et al. 2002). After 4 hours of treatment the 

transcript level of lysosomal-related genes such as LAMP1, GAA, CTSD or CTSF were strongly 

increased as it was expected. Despite of this, when the cells were treated simultaneously with 

CCCP and the AMPK inhibitor, compound C, the increase was blocked (Fig. 43A). These results 

suggest that AMPK signaling is needed for the activation of lysosomal biogenesis by acute 

mitochondrial malfunction. This activation is triggered through TFEB/MITF signaling as shown in 

Fig. 43B, in which treatment with CCCP increased the transpiration levels of TFEB family 
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members while when the cells were treated with compound C simultaneously, the response was 

ablated. 

 
Figure 43. Effects on transcript levels of lysosomal-related genes and MITF family caused by acute mitochondrial 
malfunction in presence of an AMPK inhibitor – A) Normalized transcript levels showing that acute mitochondrial malfunction 
induces an increase of LAMP1, GAA, CTSD or CTSF that was blocked in the presence of AMPK inhibitor. B) Normalized 
transcript levels showing that acute mitochondrial malfunction induces increase of TFEB, MITF and TFE3 that was blocked in 
the presence of AMPK inhibitor. 
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Furthermore, we tested if the activation of AMPK alone, without any kind of mitochondrial stress, 

was enough to trigger lysosomal biogenesis. For this purpose, the cells were treated with 

A769662, a known activator of AMPK (Zhang et al. 2014), for 4 hours and the transcript levels of 

lysosomal-related genes were measured (Fig. 44). The qPCR showed that the transcript levels of 

lysosomal genes did not change. This implies that AMPK activation alone is not enough to trigger 

TFEB/MITF-dependent lysosomal biogenesis in the absence of mitochondrial stress. 

 
Figure 44. Effects on transcript levels of lysosomal-related genes by an AMPK activator – The graph shows the absence 
of changes in the transcript levels of lysosomal-related genes in the presence of AMPK activator. 

 

3.1.5 Acute mitochondrial malfunction and calcineurin 

Furthermore, TFEB is not only regulated by AMPK but the regulatory pathway of TFEB also 

involves calcineurin. (Medina et al. 2015) (Fig 45A). Our previous results showed the importance 

of AMPK, showing that it is necessary for the lysosomal biogenesis mediated by TFEB. However, 

it is important to also determine if calcineurin plays a role in this process.  

In order to determine the role of calcineurin in TFEB regulated lysosomal biogenesis, during acute 

mitochondrial malfunction, HeLa cells were treated with CCCP and with FK506, a known inhibitor 

84 
 



Results 
 

of calcineurin (Cereghetti et al. 2008; Medina et al. 2015). The results showed that while the cells 

treated with CCCP had increased transcription levels of genes related to lysosomes, like LAMP1, 

GAA, CTSD or CTSF, in the cells treated simultaneously with CCCP and FK506, the increase was 

in general not ablated (Fig. 45B). From this result, we can conclude that the induction of lysosomal 

biogenesis under acute mitochondrial malfunction is mainly through AMPK and calcineurin-

independent. 

 
Figure 45. Acute mitochondrial malfunction and calcineurin – A) Pathway connecting acute mitochondrial malfunction with 
lysosomal biogenesis. B) Acute mitochondrial malfunction increases the transcription levels of LAMP1, GAA, CTSD or CTSF, 
while under calcineurin inhibition the increase in lysosomal-related genes in general was not ablated. 
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3.2 Chronic mitochondrial stress 

3.2.1 Chronic mitochondrial malfunction model 

In order to study chronic mitochondrial stress we generated a cellular model of stable 

UQCRC1kd in HeLa cells in which the expression of UQCRC1 is permanently reduced. 

Ubiquinol-cytochrome C reductase core protein 1 (UQCRC1) is the largest nuclear-encoded 

subunit of complex III of the mitochondrial respiratory chain (Hoffman et al. 1993). This core 

protein is involved in the electron transfer from ubiquinol (QH2) to ferricytochrome c with the 

coupled translocation of protons across the mitochondrial inner membrane (Hoffman et al. 

1993). UQCRC1 perturbations were described in relation with mitochondrial diseases such as 

myopathy, encephalomyopathy and cardiomyopathy (Kennaway 1988) or neurological disorders 

like the Rett syndrome (Kriaucionis et al. 2006). 

Different regions of UQCRC1 gene were silenced using diverse shRNAs. The efficiency of the 

UQCRC1 knock-down was proven through western blot analysis to determine which short 

hairpin RNA (shRNA) led to the strongest silencing (Fig. 46) and the two strongest knock-downs 

were used in subsequent experiments. 

 

Figure 46. Western blot of stable UQCRC1 knock-down – A) Western blot of five different UQCRC1kds in HeLa. B) Graph 
showing the quantification of UQCRC1kds. 
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3.2.2 Effects of stable UQCRC1 knock-down on mitochondria 

As UQCRC1 is a core subunit of complex III of the mitochondrial respiratory chain, we proposed 

that silencing it would perturb respiratory chain function and as a consequence affect the 

integrity of mitochondria. To determine the effect of UQCRC1 knock-down in mitochondria 

different methods were applied.  

The stable UQCRC1kd cells were transfected with a cyan-fluorescence protein targeted to the 

mitochondria and fixed 24 hours post-transfection. The mitochondrial morphology was observed 

using a spinning-disk confocal microscope. Again, with mitochondrial fission as an indicator of 

mitochondrial stress (Cereghetti et al. 2008), we observed that chronic mitochondrial stress, 

caused by UQCRC1kd, resulted in a clear mitochondrial fragmentation (Fig 47).  

 
Figure 47. Representative images of cells with and without chronic mitochondrial malfunction – Microscopy of HeLa 
cells tagged with a cyan-fluorescence protein targeted to the mitochondria showing, in the left side, an increase in 
mitochondrial fragmentation in stable UQCRC1kd. 
 
After this initial experiment in which stable UQCRC1kd showed a phenotype that corresponded 

to mitochondrial stress, it was necessary to study other parameters to confirm that mitochondria 

were actually affected.  

It is well characterized that some defects in mitochondrial respiratory chain subunits perturb 

mitochondrial oxygen consumption rate (OCR) (Invernizzi et al. 2012) and we verified this using 
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the impact of UQCRC1kd on OCR. This effect was measured by Real Time Respirometry 

(Seahorse Biosciences). The results confirmed a decrease in OCR associated with UQCRC1kd 

(Fig.48A). On the other hand, mitochondrial stress is associated with the production of reactive 

oxygen species (ROS) (Raimundo et al. 2012), which we found to be significantly increased in 

UQCRC1kd compared to the control (Fig. 48B). Also, the mitochondrial membrane potential was 

measured using flow cytometry and as expected, the membrane potential was reduced in the 

stable UQCRC1kd in comparison to the scrambled cells (Fig. 48C).  

 
Figure 48. Effects on mitochondria caused by chronic mitochondrial malfunction – A) Stable UQCRC1kd showing a 
decrease in oxygen consumption rate. B) Stable UQCRC1kd showing an increase in reactive species production. C) Stable 
UQCRC1kd showing a decrease in mitochondrial membrane potential. 

 

3.2.3 Effects of chronic mitochondrial malfunction on lysosomal morphology and 
function                                                                                                                               

Having shown the effects of stable UQCRC1kd on mitochondria, we studied the effect of chronic 

mitochondrial malfunction on lysosomes. With this aim, we first evaluated lysosomal mass in 
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stable UQCRC1kd and observed an increase in the amount of LAMP1 at protein level in the 

UQCRC1kds (Fig. 49A, B). This increase in lysosomal mass was confirmed using HeLa stable 

UQCRC1kd stained with Lysotracker Green. The intensity of Lysotracker was measured with 

two independent systems, plate reader (Fig. 49C) and fluorescence-activated cell sorting (Fig. 

49D). As it was expected, in both cases, the increase of lysosomal mass in stable UQCRC1kds 

was confirmed. 

 

Despite showing an increase in lysosomal mass using LAMP1 protein levels and Lysotracker 

intensity, we decided to further check the abundance of other lysosomal proteins. We observed 

increased amounts of v-ATPase Subunit A1 (ATP6V0A1) and v-ATPase Subunit V1 Subunit A 

 
Figure 49. Effects on lysosomes caused by chronic mitochondrial malfunction – A) Western blot of LAMP1 in stable 
UQCRC1kd. B) Quantification of LAMP1 showing an increase under chronic mitochondrial malfunction. C) Graph showing an 
increase in relative LysoTracker intensity in stable UQCRC1kd determined by plate reader. D)  Graph showing an increase in 
relative LysoTracker intensity in stable UQCRC1kd determined by flow cytometry. 
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(ATP6V1A); subunits of the vacuolar proton pump (V-ATPase) (Fig. 50 A, B), which are in 

agreement with the data described above.  

 
Figure 50. Effects on lysosomal mass caused by chronic mitochondrial malfunction – A) Western blot of ATP6V0E1 
and ATP6V1A in stable UQCRC1kd. B) Quantification showing trend to increase of ATP6V0E1 and ATP6V1A under chronic 
mitochondrial malfunction. C) Microscopy images of HeLa cells stained with LAMP1 green showing an increase in lysosomal 
mass in stable UQCRC1kd. D) Quantifications showing that increase in lysosomal mass of UQCRC1kd was related to an 
increase in the lysosomal size.  
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We set out to determine whether the increase in lysosomal mass correlated with an increase in 

the number of lysosomes. We stained the lysosomes by immunocytochemistry using an 

antibody against the lysosomal protein LAMP1 on fixed HeLa UQCRC1kds and images were 

taken using a spinning-disk confocal microscope. Surprisingly, it became very clear that there 

was no increase in the number of the lysosomes (Fig. 50C). However, the lysosomes appeared 

larger in the UQCRC1kds and quantification, using ImageJ, confirmed a significant increase in 

the area of the lysosomes (Fig. 50D). We concluded from these results that chronic 

mitochondrial stress induced an increase in lysosomal mass, which was associated with an 

enlargement of the lysosomes. 

Given that is has been widely shown that most LSDs present enlarged lysosomes, (Li et al. 

2016), we found it necessary to evaluate the proteolytic capacity of these enlarged lysosomes 

using DQ-BSA. DQ-BSA is an assay in which a labeled derivative of bovine serum albumin 

(BSA) is driven to the lysosomes through phagocytosis. Once the DQ-BSA is in the lysosome, 

the proteolytic activity of the lysosomes releases the fluorophore thereby increasing the 

fluorescence that is measured by the plate reader. In the UQCRC1kds the proteolytic activity of 

the lysosomes was found to be compromised, even if there was an increase in lysosomal mass 

(Fig. 51). 

 
Figure 51. Effects on lysosomal proteolytic capacity caused by chronic mitochondrial malfunction – Chronic 
mitochondrial malfunction decreases the proteolytic capacity of the lysosomes measured by DQ-BSA assay. 
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These results show that long term mitochondrial malfunction induces an increase in lysosomal 

mass which is reflected as an increase in the size of the lysosomes but not as an augmented 

lysosomal number. These swollen lysosomes show a reduction in proteolytic activity which 

suggest that checking autophagy is relevant. 

 

3.2.4 Effects of chronic mitochondrial malfunction on autophagy 

Since there was an effect on lysosomes, caused by long term mitochondrial malfunction, the 

logical follow-up was to study how chronic mitochondrial malfunction affects autophagy.  

Again, as a marker of autophagosomes, we determined the ratio LC3BII/LC3BI. In UQCRC1kd 

cells, we found an increase in LC3BII/LC3BI. This result means that in this model of chronic 

mitochondrial malfunction, there is an increase in autophagosomes (Fig. 52A, B).  

 
Figure 52. Effects of chronic mitochondrial malfunction on autophagy – A) Western blot of LC3B in stable UQCRC1kd. B) 
Graph showing an increase of LC3II/LC3BI ratio under chronic mitochondrial malfunction. 
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We investigated this result further by microscopy. UQCRC1kd and scrambled control cells were 

transfected with LC3-GFP. The images confirmed the previous result, showing clearly more 

autophagosomes in stable UQCRC1kds cells (Fig. 53A) and this was confirmed by quantification 

with ImageJ (Fig. 53B).  

 
Figure 53. Effects of chronic mitochondrial malfunction on autophagosomes – A) Microscopy of HeLa cells tagged with 
LC3-GFP. B) Quantification showing an increase in number of autophagosomes in stable UQCRC1kd. 
 

Given that chronic mitochondrial malfunction drives in an increase in autophagosomal number 

and in lysosomal mass, corresponding to lysosomal area but not number, it was logical to 

evaluate abundance of autophagolysosomes. Stable UQCRC1kds were transfected with LC3-

RFP and LAMP1-GFP and imaged using the spinning disk confocal microscope. The images 

showed clearly more autophagolysosomes in UQCRC1kds cells, a phenotype that correlates 
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well with our previous observations of the effects of chronic mitochondrial malfunction on 

lysosomes and autophagy (Fig. 54).  

 

 
Figure 54. Representative image of autophagolysosomes in cells under chronic mitochondrial malfunction – 
Microscopy of HeLa cells tagged with LAMP1-GFP and LC3-RFP showing an increase in autophagolysosomes in stable 
UQCRC1kd. 
 

3.2.5 Effect of chronic mitochondria malfunction on lysosomal biogenesis 

Since chronic mitochondria malfunction seems to have an effect on lysosomal size and function, 

and our previous results showed an increase in lysosomal biogenesis in acute mitochondrial 

malfunction, we set to investigate the effect of chronic mitochondrial malfunction on lysosomal 

biogenesis. With this goal, the transcript levels of several lysosomal-related genes like LAMP1, 

GAA, CTSD and CTSF were measured, as described before. We also verified the transcript 

level of UQCRC1 as confirmation of the knock-down (Fig. 55B). The results showed an 

uncoordinated lysosomal biogenesis, with consistent downregulation and upregulation of LAMP1 

and CTSF respectively. The expression levels of GAA and CTSD were as well inconsistent 

among biological replicates of UQCRC1kds (Fig 55A). This uncoordinated lysosomal biogenesis 
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signaling could be due to the fact that the transcription factors did not function as they normally 

do.  

 

 
Figure 55. Effect of chronic mitochondrial malfunction on lysosomal biogenesis – A) Graph showing that chronic 
mitochondrial malfunction leads to an uncoordinated response of lysosomal-related genes. B) Graph showing that UQCRC1kds 
show a transcript level smaller than 40%. 
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3.2.6 Effect of chronic mitochondrial malfunction on TFEB localization 

Having found an aberrant lysosome biogenesis in chronic mitochondrial malfunction, we 

investigated the role of TFEB in this response. The amount of TFEB was determined in stable 

UQCRC1kds and found to have increased in whole cell extracts (Fig. 56A, B).  

 
Figure 56. Effects of chronic mitochondrial malfunction on TFEB – A) Western blot of TFEB in stable UQCRC1kd. B) 
Graph showing an increase of TFEB under chronic mitochondrial malfunction. 
 

However, the abundance of TFEB protein does not necessarily reflects its activity. TFEB, when 

localized in the cytoplasm, is inactive, but its nuclear translocation drives its activity and the 

transcription of lysosomal genes (Roczniak-ferguson et al. 2012; Settembre et al. 2012). In order 

to determine TFEB localization, we prepared nuclear and cytoplasmic extracts (Raimundo et al. 

2008) and the nuclear extract was used to run a western blot. We found an increase in TFEB 

nuclear extracts of stable UQCRC1kds (Fig. 57A, B). To support this result, HeLa stable 

UQCRC1kd were transfected with TFEB-GFP and imaged with the spinning disk confocal 

microscope to determine the localization of TFEB. (Fig. 57C). The percentage of cells with 

nuclear TFEB was higher in UQCRC1kds (Fig. 57D) in agreement with the nuclear extract result. 
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The results of these experiments show that, in stable UQCRC1kds, TFEB is more abundant and 

it is nuclear localized despite not presenting normal activity. This is however inconsistent with 

the uncoordinated lysosomal biogenesis we found. 

 

 
Figure 57. Effects of chronic mitochondrial malfunction on TFEB localization – A) Western blot of TFEB in nuclear 
extracts of stable UQCRC1kd. B) Graph showing an increase of TFEB under chronic mitochondrial malfunction in the nuclear 
extracts. C) Microcopy of stable UQCRC1kd HeLa cells tagged with TFEB-GFP. D) Graph showing an increase in the 
percentage of cells with nuclear TFEB in chronic mitochondrial stress.  
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3.2.7 Effect of chronic mitochondrial malfunction on TFEB regulation 

Since in stable UQCRC1kds there was an uncoordinated lysosomal biogenesis, despite TFEB 

being nuclear, it is reasonable to assume that this chronic mitochondria deficiency does not 

trigger TFEB dependent lysosomal biogenesis in the canonical way. The canonical response to 

TFEB activation shows that under starvation, TFEB migrates to the nucleus and triggers 

lysosomal biogenesis (Sardiello and Ballabio 2009; Settembre et al. 2011). To elucidate if stable 

UQCRC1kds are able to trigger this canonical response, the cells were subjected to amino acid 

starvation with EBSS medium. 

We monitored lysosomal biogenesis for expression of TFEB-dependent genes. Unlike in control 

cells, UQCRC1kd cells could not trigger the canonical TFEB response. In some cases, like 

CTSF or CTSD, the regulation of these genes was in the same direction, but in others like 

LAMP1 or GAA, it was in the direction opposite to the canonical response to TFEB activity (Fig. 

58). These results suggest that even under amino acid starvation, the TFEB response in 

UQCRC1kds does not follow the canonical pathway. 

 

 
Figure 58. Effects of chronic mitochondrial malfunction on TFEB regulation – The graph shows increase in the transcript 
level of lysosomal-related genes in scrambled starved cells, while the stable UQCRC1kd still shows a misregulation in the 
transcription of lysosomal-related genes even under starvation.  
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3.2.8 Effects of chronic mitochondrial malfunction on lysosomal Ca2+ homeostasis 

Since TFEB is not working as predicted, we focused on a mechanism known to regulate its 

activity. Lysosomal Ca2+ was reported to regulate calcineurin, a phosphatase that 

dephosphorylates TFEB and induces its nuclear translocation (Medina et al. 2015). 

 
Figure 59. Effects of chronic mitochondrial malfunction on lysosomal Ca2+ homeostasis – The graph shows no global 
changes in lysosomal-related genes in calcineurin inhibited stable UQCRC1kd compared to changes in lysosomal-related 
genes in stable UQCRC1ks. 
 

To study the effect of long term mitochondrial malfunction on lysosomal Ca2+ homeostasis, 

stable UQCRC1kd were transfected with a dominant negative calcineurin (CnA) (Cereghetti et 

al. 2008). The transcript levels of lysosomal-related genes were measured and in cells 

transfected with CnA, we observed no global changes in transcript levels of lysosomal-related 

genes compared to the transcription levels of lysosomal-related genes in stable UQCRC1kds. 

These results show that calcineurin repression has no effect suggesting that the effects that 
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were observed on lysosomal biogenesis under chronic mitochondrial malfunction are 

independent of calcineurin or that calcineurin was already repressed (Fig. 59). 

The presence of enlarged lysosomes has been reported in lysosomal disorders like 

mucolipidosis IV (Zou et al. 2015) (Dong et al. 2010). This increase in lysosomal size was 

related to the accumulation of Ca2+  inside the lysosomes (Dong et al., 2010).  

With this in mind, we tested the hypothesis that Ca2+ trapped inside the lysosomes could be the 

cause of the swollen lysosomes that were shown in Fig. 50C. Since MCOLN1 channel is known 

to be an important point of Ca2+ release from the lysosomes, we decided to manipulate MCOLN1 

channel to test if there was relation between lysosomal Ca2+ and swollen lysosomes (Fig. 60A).  

In order to study how MCOLN1 manipulation affects lysosomal size in stable UQCRC1kd cells, 

they were treated with YM201636 and ML-SA1. It is known that YM201636 is an inhibitor of 

PIKFYVE, an enzyme needed to transform PI3P into PI(3, 5)P2 (Zolov et al. 2012), which in turn 

is an activator of MCOLN1 channel (Dong et al. 2010). On other hand, ML-SA1 is a synthetic 

activator of MCOLN1 channel (Zou et al. 2015). Following four hours of treatment, the cells were 

fixed, LAMP1 immunocytochemistry was performed and images were taken using a spinning-

disk confocal microscope (Fig 60B). These results shows that while in the control cells the 

activation of MCOLN1 with ML-SA1 has no effect on the lysosomal size, in stable UQCRC1 the 

same treatment induced a clear reduction in the size of the lysosomes. On the other hand, the 

inactivation of MCOLN1 using YM201636 had no clear effect on the size of lysosomes in 

UQCRC1kd cells. However, there was an enlargement of lysosomes in the control cells treated 

with YM201636. These results imply that Ca2+ is involved in the appearance of swollen 

lysosomes in chronic mitochondrial malfunction.  
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Figure 60. Representative images showing the effects of MCOLN1 manipulation on lysosomal size in chronic 
mitochondrial malfunction – A) Pathway that connects AMPK with MCOLN1 channel B) Microscopy of HeLa cells stained 
with LAMP1 green in which it is possible to appreciate that repression of MCOLN1 channel in scrambled cells induces an 
increase in lysosomal size while activation of MCOLN1 channel in stable UQCRC1kd leads to a diminution of lysosomal size. 
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2.2.9 Effects of chronic mitochondria malfunction on AMPK signaling 

In order to study the relationship between chronic mitochondria deficiency and lysosomal 

biogenesis more deeply, it was necessary to investigate the pathway that mediates the 

communication between lysosomes and mitochondria. Following the pathway that we showed 

previously (Fig. 62A) along with our result in acute mitochondrial malfunction which 

demonstrated that AMPK was required for lysosomal biogenesis, we evaluated AMPK activity in 

stable UQCRC1kd cells. We found that AMPK activity decreased, as shown with the reduction in 

the ratio AMPK-P/AMPK (Fig. 62B). In our model of chronic mitochondrial stress, AMPK is 

repressed and at the same time AMPK is an upstream regulator of MCOLN1 which in turns 

regulates lysosomal Ca2+ homeostasis. As shown earlier, when MCOLN1 was activated in stable 

UCRC1kd, the size of lysosomes was reduced. This result suggested that lysosomal size is 

probably influenced by AMPK activation. In order to test this, stable UQCRC1kd cells were 

treated with different chemicals that regulate parts of the hypothetical pathway (Fig. 61A). 

Following four hours of treatment with these chemicals, the cells were fixed and an 

immunocytochemistry of LAMP1 was performed. Images were taken using a spinning-disk 

confocal microscope (Fig. 61B). 

 
Figure 61. Effects of chronic mitochondrial malfunction on AMPK – A) Pathway that connects AMPK with autophagy via 
TFEB B) Western blot showing decrease in AMPK activity in stable UQCRC1kd. 
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Figure 62. Representative images showing the effects of AMPK signaling manipulation on lysosomes in chronic 
mitochondrial malfunction – A) Pathway that connects mitochondrial malfunction with lysosomal biogenesis via AMPK B) 
Microscopy of HeLa cells stained with LAMP1 green in which it is possible to appreciate effects on lysosomes caused by 
AMPK signaling manipulation. C) Graphs showing how in stable UQCRC1kd, treatments with AMPK activator (A769662) and 
calcineurin inhibitor (FK506) rescued the lysosomal size. However, only the cells treated with AMPK activator retained the 
lysosomal number compared to the control cells. 
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As the compounds were dissolved in dimethyl sulfoxide (DMSO), the control in this case was 

UQCRC1kd treated DMSO. While in UQCRC1kd treated with A769662 (AMPK activator) (Zhang 

et al. 2014) and Torin1 (mTORC1 inhibitor) (Settembre et al. 2012) there was no change in the 

number of lysosomes; in UQCRC1kds treated with Tacrolimus (FK506) (calcineurin inhibitor) 

(Medina et al. 2015), there was an increase. Treatment with the AMPK inhibitor, compound C 

(Vingtdeux et al. 2010), resulted in a decrease in the number of lysosomes. With respect to the 

area of the lysosomes, there was a reduction in the knock-downs treated with A769662 and 

FK506 in comparison to the area in UQCRC1kd treated with DMSO. While in the other 

treatments (Torin-1 and compound C) the lysosomes were even bigger (Fig. 62B, C). 

Despite the fact that AMPK activation was able to reduce the lysosomal size pointing to its role 

in regulating MCOLN1, we did not observe an increase in the number of lysosomes. In order to 

confirm that lysosomal biogenesis was not active, we monitored lysosomal biogenesis in 

UQCRC1kds cells supplemented with the AMPK activator A769662. The results showed an 

uncoordinated lysosomal biogenesis with consistent downregulation of LAMP1 and GAA in both 

treated and untreated UQCRC1kds and upregulation of CTSD and CTSF in both conditions of 

UQCRC1kds (Fig. 63).  

 
Figure 63. Effects of AMPK activation chronic on lysosomal biogenesis under mitochondrial malfunction – The graph 
shows an uncoordinated lysosomal biogenesis with downregulation of LAMP1 and GAA in UQCRC1kds with or without AMPK 
activation and upregulation of CTSD and CTSF in both conditions. 
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The results show that chronic mitochondrial malfunction unlike the acute case represses AMPK 

signaling which dysregulates lysosomal Ca2+ homeostasis thereby resulting in swollen 

lysosomes with reduced proteolytic capacity. 

3.2.10 Effects of chronic mitochondria malfunction on lysosomal pH 

Our data show that in chronic mitochondrial malfunction, the lysosomes present impaired 

proteolytic capacity (Fig.51) together with an increase in lysosomal area (Fig.50), which was also 

described in other studies (Demers-Lamarche et al. 2016). We therefore examined lysosomal 

pH, in stable UQCRC1kds and scrambled cells, using acridine orange (Zdolsek et al. 1990; Stagi 

et al. 2014). After triggering lysosomal photo-oxidative damage with blue light (Stagi et al. 2014), 

we found that stable UQCRC1kd lysosomes take longer to lose acridine orange fluorescence 

than the control cells (Fig. 64). 

 

 

 

 
Figure 64. Effects of chronic mitochondrial malfunction on lysosomal pH – A) Graph showing the acridine orange red 
fluorescence in scrambled, stable UQCRC1kd and stable UQCRC1kd + ML-SA1 and its evolution along time. B) Bar charts 
representing the area under the curve, shown in graph A, and that shows the alkalization in stable UQCRC1kds and its rescue 
in stable UQCRC1kds treated with ML-SA1. 
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This result means that the pH in our model of chronic mitochondrial malfunction is less acidic 

than in the control. Moreover, we also monitored lysosomal pH in stable UQCRC1kds treated 

with ML-SA1, which we found causes a decrease in lysosomal size, and interestingly we the 

activation of MCOLN1 channel rescues the alkalization of lysosomes in chronic mitochondrial 

malfunction (Fig. 64). These results together with the previous one, in which direct and indirect 

MCOLN1 activation decreased lysosomal size, suggest that the function of this channel is 

closely related to the lysosomal dysfunction triggered by chronic mitochondrial malfunction. 
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4. Discussion 

In recent years, numerous studies have addressed the influence of mitochondrial malfunction on 

the function of other organelles. It has been reported that mitochondrial malfunction can trigger 

endoplasmic reticulum stress and unfolded protein response (Haynes et al. 2013). Moreover, 

there are recent studies addressing the effect of mitochondrial malfunction on lysosomal 

biogenesis and function (Nezich et al. 2015; Baixauli et al. 2015; Demers-Lamarche et al. 2016).   

 

This project is fad on the communication between mitochondria and lysosomes and particularly 

addresses the effects of mitochondrial malfunction on lysosomal biogenesis and function. We 

found that acute and chronic mitochondrial malfunction yields opposite effects on lysosomal 

biogenesis. Acute mitochondrial malfunction triggers TFEB/MITF-dependent lysosomal 

biogenesis via AMPK, while chronic mitochondrial malfunction actually results in lysosomal 

capacity saturation and repression of TFEB/MITF-dependent lysosomal biogenesis. 

 

4.1 Acute mitochondrial malfunction triggers lysosomal biogenesis and 
autophagy 

In this study, we induced acute mitochondrial malfunction with chemicals, like NaN3, to inhibit 

complex IV (Ishii et al. 2014) and CCCP to uncouple respiratory chain from oxidative 

phosphorylation (Ivankovic et al. 2016). On the other hand, we generated transient knock-down 

of UQCRC1, a core subunit of complex III (Hoffman et al. 1993) 

In order to tackle the question of differential response of lysosomes to acute and chronic 

mitochondrial malfunction, we started by studying the lysosomal response to acute mitochondrial 

malfunction using imaging techniques. We observed that acute mitochondrial malfunction, 

chemically or genetically induced, causes mitochondrial fragmentation and also an increase in 

the number of lysosomes (Fig 31, 32 and 35). This demonstrates that acute mitochondrial 

malfunction leads to an increase in lysosomal number regardless of the source employed to 

induce the malfunction. Also, the analysis of lysosomal biogenesis showed that the increase in 

transcript levels of lysosome-related genes, like LAMP1, GAA, CTSD and CTSF was caused by 

acute mitochondrial malfunction (Fig. 37).  

So far we have found that acute mitochondrial malfunction triggers lysosomal biogenesis, 

thereby increasing the number of lysosomes, independent of the stress source. However, 

lysosomes fuse with autophagosomes to continue with the autophagy (Kovacs et al. 1982; 
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Fengsrud et al. 1995), we have observed that under acute mitochondrial stress an increase in 

autophagy occurs, represented by an increase in autophagosomes, regardless of the stress 

source (Fig. 33, 36).   

 

4.2 Acute mitochondrial malfunction triggers TFEB/MITF-dependent lysosomal 
biogenesis  

TFEB has been reported as the master regulator of lysosomal biogenesis due to its ability to 

bind to the CLEAR region and regulate transcription of lysosome-related genes (Sardiello et al. 

2009; Pastore et al. 2013). Also, there are studies showing that short-term mitophagy bursts 

affect the regulation of the microphtalmia transcription factor family (Nezich et al. 2015). With 

this in mind, together with our results indicating an increase in lysosomal biogenesis in response 

to acute mitochondrial stress, we decided to monitor TFEB/MITF activity finding an increase in 

TFEB and MITF. This increase corresponds to the first hour of induction of acute mitochondrial 

malfunction (Fig. 39).  

It is known that the members of the microphtalmia family, that is a bHLH leucine zipper 

transcription factor, need to be homodimerized or heterodimerized to work correctly 

(Steingrimsson et al. 2002). We found that silencing of TFEB did not affect the MITF expression, 

whereas silencing of MITF results in an increase in TFEB expression (Fig. 40), suggesting the 

possibility of a compensatory mechanism and pointing to the cooperation of both transcription 

factors in acute mitochondrial stress induced lysosomal biogenesis. This was confirmed after 

monitoring lysosome-related genes, under acute mitochondrial malfunction, with combinations of 

TFEB and MITF deletions. We show that deletion of TFEB, MITF or both, decreases the 

expression of majority of the tested lysosome-related genes. However, some of the genes were 

still responding to the stress, suggesting that other members of the MITF family, like TFE3, could 

be compensating for the absence of TFEB and MITF. Additionally, these results are in 

accordance to the work presented by Nezich et al. in which it was necessary to perform the 

ablation of multiple MIT/TFE transcription factors to cause defects in mitophagy (Nezich et al. 

2015). 

 

4.3 TFEB/MITF-dependent lysosomal biogenesis is AMPK-dependent 
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In order to address the pathway connecting acute mitochondrial malfunction and TFEB/MITF-

dependent lysosomal biogenesis, we turned to AMPK due to its known involvement in response 

to mitochondrial stress (Raimundo 2014). While the exact mechanism leading to AMPK 

activation in acute mitochondrial malfunction is still not clear, several AMPK activators are 

already known, for example ROS (Raimundo et al. 2012; Emerlinga et al. 2009), Ca2+ (Sinha et 

al. 2015; Mungai et al. 2011) and decreased energy (Hardie & Ashford 2014). These AMPK 

activators are signals of acute mitochondrial malfunction. We found that while acute 

mitochondrial malfunction triggers transcription of lysosome-related and MITF family genes, 

such a response was absent under AMPK inhibition (Fig. 43), suggesting that AMPK is required 

for the activation of MITF gene family and therefore to trigger lysosomal biogenesis. On the 

other hand, we found that AMPK activation alone is not enough to trigger TFEB/MITF-dependent 

lysosomal biogenesis in the absence of mitochondrial malfunction stimuli (Fig. 44). AMPK has 

broad roles in cellular signaling, for example, in the regulation of compensatory mitochondrial 

biogenesis by upregulation of the transcription coactivator peroxisome proliferator-activated 

receptor gamma, coactivator 1 alpha (PGC1-α) (Yan et al. 2013); activation of autophagy 

through  ULK1/2 activation resulting in formation of autophagosomes (Egan et al. 2010); as well 

as the regulation of mTORC1 activity (Gwinn et al. 2008).  Furthermore, AMPK was recently 

shown to have the ability to regulate TFEB activity in embryonic stem cells through mTORC1 

regulation (Young et al. 2016). With all this in mind, we can suggest a model in which acute 

mitochondrial malfunction triggers TFEB/MITF-dependent lysosomal biogenesis that is also 

AMPK-dependent. The activation of AMPK can thus be triggered by mitochondrial signaling like 

ROS or Ca2+ and at the same time AMPK can regulate TFEB/MITF through mTORC1 activity. 

 

4.4 TFEB/MITF-dependent lysosomal biogenesis is calcineurin-independent 

mTORC1 has been well characterized as a TFEB/MITF regulator. When mTORC1 is present at 

the lysosomal surface, it is active and it phosphorylates TFEB and MITF allowing them to bind 

the 14-3-3 proteins and keeping them in the cytoplasm where they are inactive. However, when 

mTORC1 is inactive, it cannot phosphorylate TFEB and MITF and they are translocated to the 

nucleus where they can bind to the CLEAR region on the promotors of lysosome-related genes 

and trigger their transcription (Settembre et al. 2012; Martina et al. 2012; Martina & Puertollano 

2013). mTORC1 is not the only regulator of TFEB activity. Recently, calcineurin has been 

reported as TFEB regulator, wherein it can dephosphorylate S211 of TFEB rendering it unable to 

bind 14-3-3 proteins and it is translocated to the nucleus where it can trigger transcription of 
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lysosome-related genes (Medina et al. 2015). However, we found that under acute mitochondrial 

malfunction, TFEB/MITF-dependent lysosomal biogenesis is calcineurin-independent (Fig. 45); 

the increase in the transcript levels of lysosome-related genes triggered by acute mitochondrial 

stress is still present when calcineurin is inhibited. 

A summary of all this information allowed us to propose the pathway that connects acute 

mitochondrial stress with TFEB/MITF-dependent lysosomal biogenesis (Fig. 65). In the proposed 

pathway, mitochondrial malfunction leads to a modification in the release of a signaling 

molecule, for example ROS, which activates AMPK, a known repressor of mTORC1. mTORC1 

repression allows nuclear translocation of TFEB/MITF and the nuclear localization of TFEB/MITF 

would allow the transcription of lysosome-related genes like LAMP1, GAA, CTSD and CTSF.   

 
Figure 65. Lysosomal biogenesis pathway in acute mitochondrial malfunction - This pathway shows how acute 
mitochondrial malfunction triggers lysosomal biogenesis. Acute mitochondrial malfunction releases signaling that triggers 
TFEB/MITF-dependent lysosomal biogenesis via AMPK activation, increasing lysosomal number and autophagy. 
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4.5 Chronic mitochondrial malfunction triggers uncoordinated lysosomal 
biogenesis and dysfunctional lysosomes 

Previously, in this thesis, it was shown that acute mitochondrial malfunction triggers TFEB/MITF-

dependent lysosomal biogenesis and now we will focus on how mitochondrial malfunction 

affects lysosomal biogenesis in chronic mitochondrial malfunction. Recently, two studies 

addressed the effect of long term mitochondrial malfunction on lysosomal function and 

biogenesis. Impairment of mitochondrial respiration due to deletion of the mitochondrial 

transcription factor A (TFAM) triggers a program of incomplete lysosomal biogenesis and causes 

a perturbation of lysosomal function in mouse T cells upon activation (Baixauli et al. 2015). On 

the other hand, induction of long term mitochondrial malfunction by deletion of mitochondrial 

proteins like AIF, OPA1 or PINK1 caused the appearance of large lysosomes with compromised 

functionality in MEFs (Demers-Lamarche et al. 2016). In agreement with those studies, we show 

that chronic mitochondrial malfunction, caused by the repression of a core subunit of the 

complex III of mitochondrial respiratory chain, triggers an uncoordinated lysosomal biogenesis 

(Fig. 55). This uncoordinated response is characterized by an inconsistent expression of the 

lysosome-related genes, in which some of them are upregulated like CTSF and others 

downregulated like LAMP1. Interestingly, this uncoordinated response in lysosomal genes 

correlates with an increase in lysosomal mass (Fig. 49), which can in its entirety be attributed to 

an increase in lysosomal size and not in their number (Fig. 50). Using imaging techniques, we 

found that the cells with chronic mitochondrial malfunction are characterized by the presence of 

huge vesicles denoted as lysosomes. Remarkably, we also found that chronic mitochondrial 

malfunction leads to enhanced autophagy, resulting in an increase of LC3II/LC3I ratio, pointing 

to the presence of more autophagosomes (Fig. 52). In this case, using imaging techniques we 

have confirmed that under chronic mitochondrial stress there is an increase in the number of 

autophagosomes (Fig. 53) and that this correlates with an increase in autophagolysosomes (Fig. 

54). 

In summary, chronic mitochondrial malfunction leads to an uncoordinated response of lysosome-

related genes response (Fig. 55), the appearance of swollen lysosomes without increase in their 

number (Fig. 49, 50), the increase in autophagosome number (Fig 53), and other phenotypes 

like the loss of mobility in the big lysosomes. Therefore, our finding that chronic mitochondrial 

malfunction leads to a decrease in lysosomal proteolytic capacity was expected (Fig. 51).  

These results together point to the fact that chronic mitochondrial malfunction triggers 

uncoordinated lysosomal biogenesis that leads to accumulation of morphologically altered 
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lysosomes with an impaired function. Our findings are in agreement with the studies of Demers-

Lamarche and Baixauli. However, the mechanisms underlying the impairment of lysosomal 

function under chronic mitochondrial malfunction are not yet fully understood.  

 

4.6 Chronic mitochondrial malfunction triggers a non-canonical TFEB pathway 

Since we found an uncoordinated response in lysosome-related genes whose transcription was 

reported to be dependent on TFEB (Settembre et al. 2012), it was not surprising to find that 

TFEB amount was increased in chronic mitochondrial malfunction (Fig. 56). However, it is known 

that TFEB activity depends on its localization: under normal conditions, TFEB is in the cytoplasm 

where it is inactive but can be active upon its translocation to the nucleus (Settembre et al. 

2012). In this thesis, we show that chronic mitochondrial malfunction not only leads to an 

increase in TFEB but it also triggers an increase in the nuclear localization of TFEB (Fig. 57). 

Previous studies have connected TFEB nuclear translocation with activation of lysosome-related 

genes transcription (Sardiello & Ballabio 2009; Baixauli et al. 2015), however our results do not 

support that observation. Therefore, we explored the possibility that chronic mitochondrial 

malfunction is able to trigger a TFEB-dependent lysosomal biogenesis in a canonical way. We 

found that even under amino acid starvation, which is the system initially used to trigger TFEB-

dependent lysosomal response (Sardiello et al. 2009), our model of chronic mitochondrial 

malfunction was not able to activate the canonical TFEB response (Fig. 58). This implies that 

chronic mitochondrial malfunction triggers an uncoordinated lysosomal biogenesis via a non-

canonical TFEB pathway. 

 

4.7 Chronic mitochondrial malfunction caused dysfunctional calcium lysosomal 
homeostasis AMPK-dependent 

Given that TFEB did not display the same behavior, as proposed in the case of amino acid-

dependent activation (Sardiello et al. 2009; Settembre et al. 2013), we have focused on 

calcineurin, another reported inductor of TFEB nuclear translocation (Medina et al. 2015). 

Interestingly, we did not find global changes in the expression of lysosome-related genes 

suggesting that calcineurin repression has no effect on non-canonical TFEB pathway (Fig. 59). 

One possible reason for this could be that calcineurin is not involved in this alternative TFEB 

pathway or alternatively, because TFEB was already repressed by a lack of lysosomal Ca2+ 

release. Medina et al. reported that it is the release of Ca2+ from the lysosomes, through the 
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MCOLN1 channel, that serves as a trigger for another way to induce TFEB nuclear translocation 

via calcineurin activation. On the other hand, there are reports of swollen lysosomes in 

mitochondrial and lysosomal disorders that have been connected to Ca2+ accumulation in 

lysosomes (Dong et al. 2010; Zou et al. 2015). With all this in mind, we decided to check how 

MCOLN1 manipulation affects lysosomal morphology and we found that upon activation of 

MCOLN1 channel in chronic mitochondrial malfunction, the lysosomes displayed smaller size 

while the inhibition of MCOLN1 channel regulators in the control scrambled gave rise to a further 

increase in lysosomal size (Fig. 60), corroborating our idea of Ca2+ being trapped in the 

lysosomes. Furthermore, AMPK activity, supposedly activated by increased mitochondrial ROS 

level (Fig. 48), is repressed in chronic mitochondrial malfunction (Fig. 61), and is located 

upstream of the activation of MCOLN1 channel that in our model seems to be inactive. We 

further tried to elucidate if a connection exists between the AMPK deficiency and lysosomal size 

and we found that AMPK and mTORC1 repression aggravate the phenotype of swollen 

lysosomes, while AMPK activation and calcineurin repression were rescuing the phenotype (Fig. 

62). However, since AMPK activation was rescuing the lysosomal size without an increase in the 

lysosomal number, supporting our previous results that pointed towards a misregulation of 

lysosomal Ca2+, it was natural to monitor expression of lysosome-related genes. We have found 

that the uncoordinated response was still present (fig. 63), suggesting that AMPK activation was 

acting through MCOLN1, thereby reducing the lysosomal size. 

 

4.8 Chronic mitochondrial malfunction increases lysosomal pH misregulating 
lysosomal calcium homeostasis 

Our data point towards the accumulation of Ca2+ in the lysosomes (Fig. 60, 62) as the cause of 

the swollen lysosomes present in chronic mitochondrial malfunction (Fig.50), supported by 

studies showing changes in lysosomal pH associated with chronic mitochondrial stress (Demers-

Lamarche et al. 2016; Baixauli et al. 2015), correlation between lysosomal size and pH (Stagi et 

al. 2014) or correlation between alterations in lysosomal pH and dysfunctional Ca2+ homeostasis 

(Christensen et al. 2002; Zou et al. 2015). Therefore, we investigated lysosomal integrity after 

photo-oxidative damage triggered by blue light of the lysosomal dye acridine orange (Stagi et al. 

2014; Zdolsek et al. 1990) in our model of chronic mitochondrial malfunction. Interestingly, we 

found that in stable UQCRC1kd, lysosomes were protected from membrane disruption and 

leakage of the dye (Fig.64) that is correlated with an increase in the fluorescence, suggesting 
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that under chronic mitochondrial malfunction there is an increase in lysosomal pH (e.g. less 

acidic).  

This result is in agreement with the observations of Demers-Lamarche and could explain the 

observed accumulation of dysfunctional lysosomes (Fig. 50) and of autophagosomes (Fig. 52, 

53), since lysosomal enzymes need to be at acidic pH for an optimal function (Ballabio 2016; 

Perera & Zoncu 2016). 

Furthermore, we found that misregulation of lysosomal pH in cells with chronic mitochondrial 

malfunction is connected to Ca2+ accumulation in lysosomes: after activation of MCOLN1 

channel, triggering Ca2+ release from lysosomes, the lysosomal integrity after photo-oxidative 

damage by orange acridine is rescued and it is comparable to lysosomal integrity in control cells 

(Fig. 64). This result suggests that in chronic mitochondrial malfunction pH and Ca2+ regulation 

of lysosomes are connected, and that lysosomal Ca2+ homeostasis is dependent of AMPK 

activity allowing us to propose an alternative pathway (Fig. 66)  
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Figure 66. Lysosomal biogenesis pathway in chronic mitochondrial malfunction – Pathway representing how chronic 
mitochondrial malfunction triggers uncoordinated lysosomal biogenesis and accumulation of Ca2+ in swollen lysosomes. 
Chronic mitochondrial malfunction represses AMPK activity, needed to activate PIKFYVE, which in turn transforms PI(3)P to 
PI(3,5)P2, an activator of MCOLN1 channel. MCOLN1 activation will release Ca2+ from the lysosomes accompanied by a 
decrease of lysosomal pH. Simultaneously Ca2+ release will activate calcineurin that relocates TFEB to the nucleus and 
triggers canonical lysosomal biogenesis. 
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Summary and conclusions 

In recent years there has been a growing interest in studying the role of mitochondrial 

malfunction in cellular function. However, studies about the impact of mitochondrial defects on 

other organelles have received less attention.  

This thesis addresses the effect of mitochondrial malfunction, mainly originating from respiratory 

chain stress on lysosomal biogenesis and function. In the context of this thesis, it was shown 

that acute and chronic mitochondrial malfunction have different effects on the lysosomes. While 

acute mitochondrial malfunction triggers TFEB/MITF-dependent lysosomal biogenesis via 

AMPK, chronic mitochondrial malfunction results in an alternative TFEB signal trigger and 

uncoordinated lysosomal biogenesis with the appearance of swollen dysfunctional lysosomes. 

Moreover, we show that in chronic mitochondrial malfunction, a relationship exists between the 

formation of aberrant lysosomes with the accumulation of Ca2+ and pH increase inside those 

lysosomes. Furthermore, we propose that AMPK downregulation can be responsible for the 

calcium dysregulation and we show that MCOLN1 channel activation, direct or via AMPK 

activation, can rescue the accumulation of swollen lysosomes. We also show that MCOLN1 

channel activation can rescue the alkalization of the lysosomes in chronic mitochondrial 

malfunction. 

To conclude, this thesis contributes to a more comprehensive understanding of the 

communication between mitochondria and lysosomes and highlights the importance of 

distinguishing between acute and chronic mitochondrial malfunction, presenting a different 

perspective in the context of dealing with different kinds of mitochondrial stresses and their 

effects on other organelles. 
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