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Summary 

 

Various studies suggest that the main mechanism of biodiversity effects on ecosystem 

function is niche complementarity, but it is challenging to assess complementarity among 

plant species understanding its key mechanisms. The essential idea of niche 

differentiation is that individual species with complementary niches in an ecosystem will 

use resources more effectively leading to a higher primary productivity than in the 

corresponding monocultures. Therefore, we focused on differences in carbon (C) and 

nitrogen (N) allocation patterns above- and belowground between beech (Fagus sylvatica 

L.) and ash (Fraxinus excelsior L.) as one mechanism of niche differentiation in forests. 

The species-specific rhizodeposition and N nutrition, the linked microbial activity and the 

involved soil fauna play a crucial role on the C and N cycle in the tree-soil system. Interest 

on research regarding deciduous forests as an important sink for atmospheric carbon 

dioxide (CO2) and tree species which are able to enhance that function has increased in 

the last decades. Currently, we have a much more profound understanding on the 

significance of litter of individual tree species on the C and nutrient dynamics in deciduous 

forest, than that which exists on root-mediated effects. Root derived C and N enters the 

soil as exsudates, leakages or decaying root materials and stimulates microbial growth 

and activity in the rhizosphere and controls the turnover of C and N in the soil food web. 

However, there is a lack of comprehensive understanding how species identity affects the 

amount of plant-derived C and N and, consequently, the activity of the soil organisms in 

temperate mixed deciduous forests. For that reason this thesis aims to investigate the 

effect of beech and ash on the C and N cycle and its dynamics in the tree and the nutrient 

link to microbes, with special emphasize on mycorrhiza. 

Stable isotope analysis has been increasingly used to investigate and trace C and nutrient 

cycles and their structure, quantities and underlying mechanisms even in natural 

ecosystems in steady state. However, it has not been applied to quantitatively 

characterize species-specific in situ C and N dynamics in deciduous trees at the level of 

all major compartments above- and belowground. Therefore, I coordinated a pulse 

labeling experiment in the National Park Hainich were 13CO2 and Ca(15NO3)2 were applied 

on the canopy of beech and ash to focus on C and N allocation patterns from above- to 

belowground. The incorporation and allocation of C and N in the different tree 

compartments and the root-derived C and N in the soil food web were examined for 60 

days. Beech assimilated twice as much of the applied 13CO2 as ash (20% versus 9%, 

respectively) and transported the fixed C and N more rapidly than ash belowground. The 



Summary    VI 

  

incorporated 15N amounts (45%) into leaves were similar in both tree species. However, 

ash preferentially accumulated 15N and 13C in the roots and beech released more of this 

initially assimilated 13C and 15N via rhizodeposition into the soil, which was also 

subsequently recovered in microbial biomass. Thus more root-derived N was incorporated 

into soil animals under beech in comparison to ash and therefore was the contribution of 

root N to soil animal nutrition tree species - specific. After all plant-derived C and N could 

be detected in mesofauna decomposer and revealed therefore not only a C transfers from 

fungi and microbial biomass to the next higher trophic levels and demonstrated therefore 

that species-specific root N deposition has an imprint on the soil animal food webs. 

Additionally, the tracer recovery in soil and microbial biomass was determined three 

dimensionally (vertically and horizontally) and revealed horizontally a homogenous 

distribution to a distance of 55 cm from stem but also a clear vertically species-specific 

effect. The 13C and 15N allocation decreased with soil depth under beech up to 30 cm but 

ash allocated more 13C in 10-20 cm soil. Those results reflect the differences in root 

morphology of beech and ash and demonstrate again the tree species effect on the C and 

N cycle in the soil. 

Alongside with the major field experiment a laboratory study was performed. This 

experiment addressed specifically the tree species effect on the associated microbial 

rhizosphere community, which were identified, and its C uptake from tree quantified by 

following an isotopic labelling approach with 13CO2 of 1 m high beeches and ashes. The 

13C incorporation into phospholipid fatty acids (PLFA) reflected that utilization of the 

rhizodeposits by individual microbial community members was strongly affected by the 

tree species although differences in the overall community structure were less 

pronounced under the investigated tree species. Saprotrophic and ectomycorrhizal fungi 

under beech and ash – but also arbuscular mycorrhizal fungi and Gram negative bacteria 

under ash – revealed the vast majority of the 13C recovered in PLFA. 30% of the fungal 

PLFA C was replaced within 5 days by rhizodeposit-derived 13C under beech and 10% 

under ash, whereas freely associated bacterial groups reached maximally 3% 

replacement of their membrane lipids by 13C. This suggests that the direct C allocation via 

mycorrhizal symbioses dominates 1) the C allocation belowground in deciduous forests 

and 2) the C nutrition of fungi and makes PLFA to a valuable tool to differentiate C fluxes 

from trees into different types of mycorrhiza (ECM versus AMF). Despite the investigated 

differences of the tree species - specific C rhizodeposition, reviewing the role of 

mycorrhiza in various natural ecosystems and mycorrhization types revealed that 

presumably this high C allocation dynamics towards fungal partners is vastly driven by the 

P cycle, i.e. an exchange of C versus P. Consequently, the impact of mycorrhization on P 

cycling is a topic of global relevance requiring much higher attention in future research.  
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I compared two 15N leaf pulse labeling approaches to be able to trace 15N in belowground 

processes after rhizodeposition. Thus, suitability of these labeling approaches for the 

production of highly 15N enriched litter for subsequent decomposition studies could be 

evaluated. The leaf labeling with Ca(15NO3)2 and 15NH4Cl enabled both to focus on N 

allocation patterns from above- to belowground with the key purpose of understanding the 

linkages of the tree species and the soil N cycle in temperate mixed deciduous forests. 

15NH4Cl resulted in a higher incorporation and more homogenous distribution between the 

tree compartments in ash and beech and therefore, 15NH4Cl labelling is more appropriate 

for allocation studies. Both 15N tracers enable long-term labeling in in situ field studies on 

N rhizodeposition and allocation in soils as they did not cause any damage of the leaves 

but the leaf labeling with Ca(15NO3)2 might be the better choice to produce highly enriched 

15N leaf litter in comparison to 15NH4Cl, because more 15N remains in the leaves for further 

long term in situ litter decomposition and turnover studies.  

The species-specific plant-derived C allocation and maybe also N allocation are implying 

an increased microbial activity. This may presumably lead to higher N plant availability 

belowground and might therefore be one of the explanations for the positive effect of plant 

diversity on forest stand productivity due to niche partitioning. Such species - niche 

partitioning between trees might not only increase productivity of natural ecosystem but 

might similarly enhance productivity in tree-based land use systems. Therefore, the N 

cycle of a short rotation coppice was studied in an in-situ labeling approach with 15NH4NO3 

and NH4
15NO3 on fast growing willow and poplar tree cuttings. The experiment aimed to 

investigate N uptake and allocation within the tree soil system from belowground with the 

focus on biomass, especially wood production in the initial growth period. Poplar produces 

more biomass in the initial growth period and incorporated twice as much 15NO3ˉ from the 

N soil pool in comparison to the willow and might be therefore the better choice whenever 

nitrate surplus at agricultural sites should rapidly be bound in biomass. Poplar 

incorporated also three times more 15NO3ˉ than 15NH4
+, whereas willow incorporated 

exactly the same amount of 15N from both tracers. Those results broaden the general 

notion that deciduous trees prefer nitrate in contrast to ammonium and is evidence for 

species - specific uptake of NH4
+ or NO3ˉ in deciduous trees. However, further 

experiments which close the link between plant-derived N deposition as driver for 

decomposer activity and N uptake from the soil food web to raise wood productivity are 

required to understand the key mechanisms controlling the N cycle in such agroforest 

systems. 

In summary, this thesis deepens our understanding of the effect of tree species on the C 

and N cycles in soil. It demonstrates that rhizodeposition, fueling very specifically the 

activity of distinct microbial and fungal groups is one of the main mechanisms underlying 
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the observed tree-specific effects on C and N dynamics. This calls for further application 

of the here presented and evaluated labeling methods for other natural forests or 

agroforest ecosystems.  
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Zusammenfassung 

 

Diverse Studien deuten darauf hin, daß das wichtigste Instrumentarium für die Wirkung 

der Artenvielfalt auf die Funktionen eines Ökosystems die Nischen-Komplementarität ist, 

aber auch daß es sehr schwierig ist diese wechselseitige Ergänzung und ihre 

wesentlichen Mechanismen zwischen den Pflanzenarten zu verstehen. Der 

Grundgedanke der Nischendifferenzierung ist, daß individuelle Arten mit sich 

ergänzenden Nischen die in einem Ökosystem vorhandenen Ressourcen besser nutzen, 

um eine höhere primäre Produktivität zu erreichen als in Monokulturen. Darum haben wir 

uns auf die Unterschiede in der ober- und unterirdischen Verteilung von Kohlenstoff (C) 

und Stickstoff (N) zwischen Buche und Esche als ein Mechanismus der 

Nischendifferenzierung in Wäldern konzentriert. Die artenspezifische Rhizodeposition und 

der Stickstoffernährungszustand und die damit verbundene mikrobielle Aktivität spielen 

genauso wie die beteiligte Bodenfauna eine erhebliche Rolle im C und N Kreislauf des 

Baum-Boden Systems. Das Interesse der Forschungsvorhaben in den letzten 

Jahrzehnten bezog sich auf Laubwälder als wichtige Speicher für atmosphärisches CO2 

und Baumarten die in der Lage sind diese Funktion zu verbessern. Derzeit haben wir 

umfassendere Kenntnisse über die Bedeutung von Streu von einzelnen Baumarten auf 

die Kohlenstoff- und Nährstoffdynamik im Laubwald als über wurzelbezogene Effekte. 

Wurzelbürtiger C und N werden in den Boden als Exsudate, Verlust durch Auslaufen oder 

zerfallendes Wurzelmaterial abgegeben. Hier regen sie einerseits mikrobielles Wachstum 

und Aktivität in der Rhizosphäre an und kontrollieren andererseits den C und N Umsatz in 

der Nahrungskette im Boden. Dennoch fehlt uns das Verständnis wie sich spezielle Arten 

auf die Menge des pflanzenbürtigen C und N auswirken und somit die Aktivität von 

Bodenorganismen in Laubwäldern der gemäßigten Zone beeinflussen. Aus diesem Grund 

erforscht diese Dissertation die Effekte von Buche und Esche auf den C und N Kreislauf 

und seine Dynamik im Baum und weiterhin den Zusammenhang zwischen Nährstoffen 

und Mikroben, mit Fokus auf Mycorrhiza und Bodenfauna.  

Die stabile Isotopenanalyse wurde vermehrt eingesetzt um C und N Nährstoffkreisläufe 

und ihre Struktur, Mengen und die zugrunde liegenden Mechanismen zu untersuchen, 

und sogar um Prozesse in natürlichen Ökosystemen im Fließgleichgewicht verfolgen zu 

können. Trotzdem ist diese Methode bisher noch nicht angewandt worden um die 

artspezifische C und N Dynamik in Laubwäldern in allen wesentlichen Kompartimenten 

ober- und unterirdisch zu beschreiben. Deshalb koordinierte ich ein Pulse 

Markierungsexperiment im National Park Hainich, bei dem 13CO2 und Ca(15NO3)2 auf das 
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Laubdach von Buche und Esche aufgebracht wurde, um die C und N Verteilung von oben 

bis in den Boden genauer untersuchen zu können. Die Aufnahme und Verteilung von C 

und N in den verschieden Baumkompartimenten und der wurzelbürtige C und N in der 

Nahrungskette im Boden wurden 60 Tage lang untersucht. Buche assimilierte zweimal so 

viel 13CO2 wie Esche (20 bzw. 9%) und transportierte das aufgenommene C und N 

schneller in den Boden als Esche. Die von den Blättern aufgenommene Menge 15N (45%) 

war ähnlich in beiden Baumarten. Esche jedoch akkumuliert bevorzugt 15N und 13C in der 

Wurzel während Buche gibt mehr von dem anfangs assimilierten 13C und 

aufgenommenen 15N via Rhizodeposition an den Boden abgibt, welcher dann 

anschließend in der mikrobiellen Biomasse wieder gefunden werden konnte. Deshalb 

wurde auch mehr wurzelbürtiger N in die Bodenfauna unter Buche eingebaut als unter 

Esche, somit ist der Eintrag von Wurzelstickstoff in die Bodenfauna baumartspezifisch. 

Aufgrund der Tatsache, daß pflanzenbürtiger C und N in den Mesofauna Zersetzern 

wiedergefunden werden konnte, ist nicht nur bewiesen worden, daß ein C Transport von 

den Pilzen und der mikrobiellen Biomasse zu der nächst höheren trophischen Ebene 

stattfindet, sondern auch, daß die artspezifische Wurzel N Deposition einen Einfluss auf 

das Nahrungsnetz im Boden hat. Zusätzlich wurde die Tracer Wiederfindung im Boden 

und in der mikrobiellen Biomasse dreidimensional (vertikal und horizontal) bestimmt; 

diese zeigte horizontal eine homogene Verteilung bis zu 55 cm vom Stamm aber vertikal 

eine artspezifische Verteilung. Die Verteilung von13C und 15N war mit zunehmender 

Bodentiefe (0 - 30 cm) unter Buche abnehmend, doch Esche gab mehr 13C in die Tiefe 

von 10-20 cm in den Boden ab. Diese Ergebnisse reflektieren die Unterschiede in der 

Wurzelmorphologie von Buche und Esche und zeigten nochmals den Baumarteneffekt auf 

den C und N Kreislauf im Boden.  

Neben dem hauptsächlichen Feldversuch wurde ein Laborversuch durchgeführt. Dieses 

Experiment adressierte besonders den Baumarteneffekt auf die dazugehörigen 

mikrobiellen Gruppen, welche mit der 13CO2 Isotopenmarkierungsmethode an 1m hohen 

Buchen und Eschen identifiziert wurden. Die 13C Aufnahme in die Phospholipid Fettsäuen 

(PLFA) reflektierte, daß die Verwendung der Rhizodeposite von einzelnen mikrobiellen 

Gruppen stark von der Baumart beeinflusst wurde, obwohl die Struktur der mikrobiellen 

Gemeinschaft sich zwischen den untersuchten Baumarten nicht unterschied. 

Saprotrophe- und Ektomycorrhiza - Pilze von Buche und Esche – aber auch Arbuskuläre 

Mycorrhiza Pilze und gramnegative Bakterien unter der Esche – zeigten den Hauptteil des 

in den PLFA wieder gefundenen 13C. Von der pilzlichen PLFA C wurden innerhalb von 

fünf Tagen 30% durch das 13C aus der Rhizodeposition der Buche ersetzt und 10% aus 

der Rhizodeposition der Esche, freie assoziierte Bakterien hingegen tauschten nur max. 

3% ihrer Membranfette aus. Das deutet darauf hin, dass die direkte Verteilung von C via 
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Mycorrhiza-Symbiose sowohl die unterirdische Verteilung des C in Laubwäldern als auch 

die C Versorgung von Pilzen dominiert. Weiterhin hat sich die PLFA als eine geeignete 

Methode erwiesen, um Unterschiede im Kohlenstoffkreislauf von den Bäumen in die 

verschiedenen Mycorrhizaarten feststellen zu können. Die festgestellten Unterschiede in 

der 13C Aufnahme und Umsetzung von der ganzen Myco-Rhizosphäre beweisen auch, 

dass der Kohlenstoffkreislauf im Boden erheblich von der artspezifischen Rhizodeposition 

und den Verbindungen der Wurzel mit anderen Organismen abhängt. Beim Rezensieren 

der Rolle von Mycorrhiza in verschieden natürlichen Ökosystemen und der 

Mycorrhizaarten kam zum Vorschein, dass vermutlich die hohe C Verteilung zu den 

Pilzpartnern hauptsächlich durch den Phosphorkreislauf gesteuert wird, z.B. als 

Austausch von C gegen P (Phosphor). Demnach ist der Einfluss der Mycorrhizierung auf 

den Phosphorkreislauf ein Thema, welches weltweite Relevanz hat und nach mehr 

Aufmerksamkeit in der zukünftigen Forschung verlangt. 

Ich habe zwei 15N Pulsmarkierungsexperimente am Blatt durchgeführt um 15N in den 

unterirdischen Prozessen nach der Rhizodeposition verfolgen zu können. Dadurch konnte 

man diese Markierungsmethoden für die Produktion von hoch angereicherter Streu für 

weitere Zersetzungsstudien evaluieren. 15NH4Cl hatte eine höhere Aufnahme und eine 

homogenere Verteilung zwischen den Baum Kompartimenten in Buche und Esche zur 

Folge und deswegen ist sie geeigneter für Allokations-Studien. Beide 15N Tracer erlauben 

in situ Langzeit-Markierungsexperimente der N Rhizodeposition und Allokation im Boden, 

da sie keinen Schaden an den Blättern hinterlassen. Dennoch ist die Markierung der 

Blätter mit Ca(15NO3)2 im Vergleich zu 15NH4Cl die bessere Wahl, um hoch 15N 

angereichertes Blattstreu zu produzieren, da mehr des aufgenommenen 15N in den 

Blättern verbleibt für langzeitige Streu-Zersetzungs- und Umsatzstudien. Die 

artspezifische pflanzenbürtige C Allokation und vielleicht auch N Allokation impliziert einen 

Anstieg der mikrobiellen Aktivität. Das kann vermutlich zu einer höheren unterirdischen N 

Verfügbarkeit für Pflanzen führen und eine Erklärung für den positiven Effekt der 

Planzendiversität auf die Produktivität des Waldbestandes aufgrund von Nischen 

Partitionierung sein. Diese Arten – Nischen Partitionierung zwischen Bäumen könnte nicht 

nur die Produktivität in natürlichen Ökosystemen erhöhen, sondern auch die Produktivität 

von auf Holz basierenden Landnutzungssystemen. Deshalb wurde der Stickstoffkreislauf 

von einer Kurzumtriebsplantage mit einem Markierungsexperiment mit 15NH4NO3 und 

NH4
15NO3 an Weiden- und Pappelstecklingen untersucht. Das Experiment untersuchte die 

N Aufnahme und Allokation im Baum – Boden System von unten, mit Fokus auf die 

Biomasse und insbesondere auf die Holzproduktion in der anfänglichen 

Wachstumsphase. Die Weide zeigte keine Präferenz zwischen NH4
+ und NO3ˉ, aber es 

konnte mehr NH4
+ als bei der Pappel in den Baumkompartimenten gefunden werden. Die 
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Pappel hingegen produzierte mehr Biomasse in der anfänglichen Wachstumsphase, 

dennoch ist die Weide möglicherweise die bessere Wahl wenn Nitratüberschuss auf 

Agrarflächen schnell in Biomasse umgewandelt werden soll. Weitere Experimente, die 

eine Verknüpfung zwischen pflanzenbürtigem N Eintrag als treibende Kraft für die 

Zersetzungsaktivität und die Stickstoffaufnahme vom Bodennahrungsnetz und der 

wachsenden Nachfrage nach Holz untersuchen, sind erforderlich, um die 

Hauptmechanismen in der Regulation des Stickstoffhaushaltes zu verstehen.  

Zusammenfassend vertieft diese Dissertation unser Verständnis über Auswirkungen 

einzelner Arten auf den C und N Kreislauf im Boden. Sie zeigt, dass die Rhizodeposition, 

die einem baumartspezifischen Einfluss auf den C und N Kreislauf unterliegt, im 

Besonderen die Aktivität bestimmter mikrobieller und pilzlicher Gruppen verstärkt. Die 

untersuchten Markierungsmethoden bedürfen weiterer Anwendung in anderen 

Waldökosystemen und Landnutzungssystemen wie z.B. dem Agroforest. 
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1.1 Introduction 

1.1.1 The link between biodiversity and 

ecosystem functioning 

 

Global sustainability and human economic wealth depend on ecosystem products and 

services that result from biodiversity and associated ecological functions such as primary 

productivity, soil formation, and especially nutrient cycling (Wu, 2013; Wu et al., 2015). 

Previous research has made major progress in describing the relationship between 

species diversity and ecosystem processes and their underlying mechanisms to identify 

functionally important species (Loreau et al., 2001). However, even if most researchers 

have focused on the relationship of biodiversity and ecosystem function researchers have 

conducted most of their experiments to date in the grasslands and made only a few 

attempts in forests (Hector et al., 1999; Paquette and Messier, 2011; Spehn et al., 2005; 

Tilman et al., 1996). More research focused on the soil biochemistry of conifer forests, 

rather than deciduous forests, because procedures regarding afforestation and increased 

timber production and therefore planting of large areas of productive coniferous tree 

species in monocultures were imposed (Augusto et al., 2002; Berger et al., 2009a; Berger 

et al., 2009b; Mareschal et al., 2010). 

Ecological experiments and observations confirmed that ecosystem properties depend 

greatly on biodiversity in terms of the functional characteristics of organisms presents and 

their distribution and abundance over space and time in the ecosystem (Hooper et al., 

2005). Dynamics and amounts of C and N and other nutrient cycles are determined by the 

composition of aboveground diversity and belowground communities interacting with each 

other (Berger et al., 2009a; Berger et al., 2009b). Interestingly, the strongest effects of 

species richness on productivity were discovered in grasslands with a relatively low 

number of species (Hector et al., 1999; Tilman et al., 1996). Northern European forests, 

where beech is the most common deciduous tree, are also characterized by a low plant 

biodiversity (Thünen-Institut, 2012). European beech grows robustly under diverse 

environmental conditions and hydrological and soil chemical factors including soil 

moisture and nitrogen availability, due to its interspecific competitiveness and is 

preferentially used for the conversion of coniferous monocultures into mixed stands 

(Leuschner et al., 2006). However, the sensitivity of European beech to environmental 

constraints depends on neighborhood identity and competitive complementarity (Metz et 

al., 2016). 



Extended Summary    

2 

We expect that in such low-diversity ecosystems individual species and species 

composition might have an intensive impact on C and nutrient cycles above- and 

belowground and such effects can be controlled via litter and / or rhizodeposits. The 

following sections and the experiments of this thesis therefore provide new insights about 

plant-derived C and N input in the tree soil system and how they are influenced by tree 

species. 
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1.1.2 The species effects on the C and nutrient 

cycles belowground 

 

Various studies suggest that the main mechanism of biodiversity effects on ecosystem 

function is niche complementarity, but it is challenging to clearly quantify complementarity 

among plant species and to explain its key mechanisms (Wu et al., 2015). The essential 

idea of niche differentiation or facilitation is that different species with complementary 

niches in an ecosystem will use resources more effectively and this leads to higher 

primary productivity than in the corresponding monocultures (Cadotte, 2013; Loreau and 

Hector, 2001). Therefore, we conducted four studies to link C and N in the forest canopy 

with C and N in the soil and focused on differences in C and N allocation patterns above- 

and belowground between ash and beech as one mechanism of niche differentiation in 

forests (Studies 1, 2, 4, 5). Study 3 focused on mycorrhiza as link between P and C for 

further studies and the sixth study regarded a SRC as intermediate systems bringing the 

advantages of forests nutrient dynamics at least partially into agroecosystems and 

focused on primary productivity. 

One of the key ecosystem functions of forests, as a sink for atmospheric CO2, is mediated 

by the tree species which assimilate the CO2 and allocate it towards the soils as storage 

reservoir – and thus control the stored SOM (Goodale et al., 2002; Oostra et al., 2006; 

Vesterdal et al., 2008). The path from C rhizodeposition of plants continues via microbial 

uptake and mineralization or physical stabilization by occlusion in aggregates and 

micropores. Sequestration of C can also result in interactions with surfaces and metal ions 

or biochemical stabilization due to the molecular structure of the organic matter. The plant 

species influence not only the storage of C but also ecosystem processes such as plant 

biomass production, decomposition and especially nutrient cycling. (Gamfeldt et al., 2008; 

Hooper et al., 2005; Wu et al., 2015). Hence the sink function of the forest soil may be 

increased by the appropriate choice of tree species – a fact of increasing importance in 

light of global climate change. Therefore, we conducted an in situ pulse labeling 

experiment with 13CO2 on beech and ash to investigate the species-specific flux of tree-

derived C into the soil to be able to quantify the allocation of assimilates (Study 1 and 2). 

Most biodiversity experiments to date have focused on the species effects on 

aboveground processes and very little is known about belowground processes, soil 

microorganisms, and the soil fauna and their link to tree species in mixed-species forests 

(Scherer-Lorenzen et al., 2005). There is a knowledge gap regarding the amount, 

composition and dynamic of tree species-specific rhizodeposits and their effects the C and 
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N cycle in the soil food web. Rhizodeposits include a variety of compounds, such as 

sugars, amino and aromatic acids, proteins and enzymes to attract beneficial organisms in 

the rhizosphere. Approximately 30% of root-derived C is metabolized as low molecular 

substances by bacterial communities (Badri et al., 2009; Holtkamp et al., 2011). Soil 

microbes occur as active, viable, living, dormant, passive, dying, or dead organisms but 

only active microbes process the available substrate of the rhizodeposition and rely 

therefore on the species-specific amount and availability of plant derived organic carbon 

(Corg) (Blagodatskaya and Kuzyakov, 2013; Johnsen et al., 2001; Lennon and Jones, 

2011). Beech roots for example are associated with ECM while ash roots are associated 

with AMF (Meinen et al., 2009) and therefore it can be expected that not only the 

rhizodeposition is species - specific but also a divers microbial community and especially 

fungi will impact amounts and dynamics in the C and N cycle belowground. But very little 

is known about root derived C and N allocations in the microbial community in situ under 

trees. In the present study, we were able to trace by 13C incorporation into phospholipid 

fatty acids (PLFA) of the identified microbial groups, the microbial uptake and utilization of 

the rhizodeposits of beech and ash which gave us the possibility to study the effects of 

tree species diversity on microbial community structure (Study 2). 

The results of study two demonstrated the vital role of the microbial community and 

especially the mycorrhizal association on the C cycle in forest ecosystem. To broaden our 

understanding on the role of mycorrhiza in forest and other ecosystems, we reviewed the 

functions of the major mycorrhiza types on the nutritional cycles in the soil in diverse 

ecosystems (Study 3). Besides our own data from study 2, many previous reviews 

showed that in deciduous forests, large quantities of photoassimilates become allocated 

to mycorrhiza and rhizosphere microbes (Högberg et al., 2008)(cite here more), and 

mycorrhizal fungi function as pathways for C and nutrient exchange with and between 

plants (Klein et al., 2016; Perry et al., 1992). Actually most terrestrial plants are associated 

with mycorrhizal fungi and spend a significant part of their C resources for trading with 

fungi for nutrients, especially phosphorus (Allen, 1991). Mycorrhiza improves plant fitness 

using biochemical and biophysical strategies to increase the effectiveness and absorption 

surface to mobilize P and N from the soil (Johnson et al., 2010). The identity and 

composition of the microbial community and especially fungal species may influence plant 

community structure and ecosystem productivity (van der Heijden et al., 1998). The 

present study focused on the species-specific rhizodeposits of beech and ash into the 

PLFAs of different microbial groups to be able to estimate the fungal activity of the 

associated mycorrhiza (Study 2). As a result, mycorrhizal associations fuel the autotrophic 

system by maintaining nutrient supply and are therefore crucial constituents in ecosystem 

resilience especially facing the challenges of global change (Hynson et al., 2012; 
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Wallander et al., 2011). Consequently, an understanding of fungi in future management 

practices in order to maintain diverse ecosystems and their overall role for all kind of 

ecosystems, including deciduous forests, would benefit understanding of these crucial 

processes (Study 3). 

Besides direct allocation of C to mycorrhizal fungi, exchanging C for nutrients, plant 

rhizodeposits induce higher microbial activity for many microbial groups in the rhizosphere 

and consequently may lead to a higher SOM decomposition and N release from SOM - a 

process termed rhizosphere priming effect (Kuzyakov, 2002). Many recent studies 

suggest that the question, whether rhizodeposition causes a positive or negative 

rhizopriming – i.e. promotes SOM decomposition or stabilization – is driven by the 

microorganism's need for N (Bengtson et al., 2012; Cheng et al., 2014; Fontaine and 

Barot, 2005; Fontaine et al., 2003). Consequently, the N cycle is likely have a controlling 

function over SOM and other nutrient cycles and should receive particular consideration in 

natural ecosystems. This includes processes controlled microbially, i.e. from belowground 

like mineralization, nitrification, plant assimilation and microbial immobilization but add 

processes that add or remove N such as deposition, N fertilization, biological fixation, 

denitrification and leaching, which are regulated from aboveground (Hart et al., 1994). The 

types of tree species affect the amount of microbial biomass, and consequently N 

immobilization and mineralization, the composition and activity of the soil fauna and the 

storage of N by  the soil, e.g. through the input of N with their leaf litter (Finzi et al., 1998; 

Saetre et al., 1999; Vesterdal et al., 2008). About 50 to 60 % of plant-assimilated N in 

deciduous forests is annually returned via litterfall to the soil (Khanna et al., 2009) but little 

is known about the effect of species-specific N rhizodeposition in temperate mixed 

deciduous forests on the spatial and temporal variability of soil N cycling (Augusto et al., 

2002; Neirynck et al., 2000; Rothe and Binkley, 2001). Such studies exist for mature 

coniferous forests and for pure deciduous stands (Davidson et al., 1992; Hart et al., 1994) 

but are absent for mixed deciduous forests especially focusing on the role of individual 

tree species. To investigate the detailed effect of varying tree species on the soil N cycle 

in temperate mixed deciduous forests we performed an aboveground leaf-labeling 

experiment with Ca(15NO3)2 and 15NH4Cl to be able to focus on N allocation patterns from 

aboveground to belowground and to gain detailed information on the N cycle in soil-plant 

systems. As the outcome of such studies strongly depends on the chosen labeling 

approach and comparison between various widely used N tracers are absent, we also 

compared two leaf-labeling methods to be able to assess 1) the production of highly 15N 

enriched litter for subsequent decomposition studies and 2) the ability to use the 

respective tracer for assessing the N dynamics at the soil-plant interface (Study 4).  
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The species-specific rhizodeposition and therefore C and N amounts and availability in the 

soil influences the activity and relative abundance of fungi and bacteria that form the basis 

of soil food web. However, the interaction between plant roots, root exudates, and 

microorganisms can only be understood in relation to soil faunal activity because the 

microbial biomass, activity and composition is also impacted by a the micro-, meso- and 

macro-fauna (Bonkowski et al., 2000). Protozoal micro-fauna are considered to be 

effective bacterial predators because of their high turnover rates and high numbers in 

rhizosphere soil. They are known to increase plant growth because plant roots are able to 

compete with microorganisms for N released due to protozoan grazing (Zwart et al., 

1994). Protozoan grazing also changes the microbial community structure and therefore 

overall ecosystem properties (Krome et al., 2009; Rosenberg et al., 2009). Collembola 

and oribatid mites are known to feed selectively on certain ectomycorrhizal fungi (Hiol et 

al., 1994; Kanters et al., 2015; Remen et al., 2010) but the infection rate by arbuscular 

mycorrhiza and therefore plant growth was found to decrease with increasing collembolan 

density (Harris and Boerner, 1990). Therefore, is likely that the fungal community is 

subject to a selective feeding pressure by fungivorous microarthropods which may 

influence plant growth via grazing and it is likely that plants benefit to a different degree 

from the mutualistic relationship with protozoa. Therefore, we investigated in a 13C and 15N 

field labeling approaches the in situ flux of plant-derived C and N into the soil animal food 

web under trees with different mycorrhizal associations, beech (ECM) and ash (AMF). 

This aims to explore the role of root-derived C and N for the nutrition of soil animal 

species (Study 5) 

Whereas natural ecosystems such as deciduous forests are characterized by relatively 

closed nutrient, especially N cycles (Lukac and Godbold, 2011; Schulze, 2000) 

agricultural systems frequently suffer from a high annual loss of N (van Kessel et al., 

2009). Short rotation coppices (SRC) and agroforest systems can be regarded as 

intermediate systems bringing the advantages of forests nutrient dynamics at least 

partially into agroecosystems. However, the degree to which advantageous nutrient 

cycling can be gained by agroforestry has barely been investigated up to now – and surely 

strongly dependent on the forest management regime. Classical systems consist mainly 

of poplar and willow trees and aim for the production of high amounts of woody biomass in 

a relatively short period of time with lower fertilizer requirements, higher N-use efficiency, 

and lower N emission than conventional annual crops (Schmidt-Walter and Lamersdorf, 

2012). Although perennial energy crops like SRC with fast-growing trees have played only 

a minor role in bioenergy production, the total cultivated area for SRC increases 

constantly and promising alternative environmental-friendly way of biomass production. 

The widespread occurrence of N limitation to net primary production in terrestrial 
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ecosystems is something of a puzzle (Vitousek and Howarth, 1991). Recent research 

investigated N nutrition via ammonium and nitrate for many herbaceous plants and tree 

species like beech, spruce, ash and oak, but very little is known about the in situ N uptake 

related tree growth in willow and poplar (Buchmann et al., 1995; Nadelhoffer et al., 2004; 

Schulz et al., 2011). Furthermore, neither studies from forest nor from agroecosystems 

can be transferred to SRC as the tree – soil system is quite complex due to the 

differences to forests in leaf area index, transpiration rate, root distribution, root depth and 

effects on microclimate in the soil. Consequently, we investigated the N cycles in 

particular N nutrition and the avoidance of N limitation in SRC in the initial growth period 

focusing on the link between SRC dynamics and the tree biomass production of willow 

and poplar in the last study of this dissertation (Study 6). 
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1.1.3 Use of stable isotopes for tracing C and N 

in the plant- soil system 

 

Stable isotopes are ideally suited to solve biogeochemical problems in an ecosystem 

because stable isotope data can contribute to both source-sink (translocation) and 

process information (transformation) (Peterson and Fry, 1987). The stable isotopes 12C, 

13C, 14N and 15N used in the current work consist of the same number of protons and 

electrons, but differ in the number of neutrons and have therefore different atomic weights 

which can be measured with great precision with isotope ratio mass spectrometers. 

Naturally, the 12C (98.892%) and 14N (99.635%) isotopes dominate strongly in their 

distribution over 13C (1.108%) and 15N (0.365) (Sulzman, 2007) therefore the heavy 

isotopes can be used as a tracer. So if a C or N pool is significantly enriched or depleted 

relative to another pool it possible to track the flows from one pool to another pool and 

consequently enable stable isotopes a very precise quantification of fluxes between pools 

(Dawson et al., 2002). 

Stable carbon isotope labeling at the canopy scale is a very potent tool for tracing C 

allocation in forest ecosystems (Korner et al., 2005). Increasing concentrations of 

atmospheric CO2 encouraged studies on soil C cycling and especially C sequestration, 

storage, and stabilization (von Lützow et al., 2006).The nature of photosynthesis dictates 

the way of application in labeling experiments. N in contrast reaches the plant-soil system 

from aboveground via litter input, anthropogenic deposition and rainfall or from 

belowground via fixation or oxidation of N2 (Schulze 2000). This opens up many different 

labeling methods and due to the diverse N forms, a large number of tracer chemicals 

which can be used to increase our understanding of N cycle in ecosystems (for 

methodology see study 4). 
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1.2 Objectives 

 

This thesis targets to assess the effects of tree species diversity on allocation and 

dynamics of C and N within plant-soil system and nutrient utilization in the myco-

rhizosphere of ash and beech. 

In summary the objectives of the present work were to (Figure 1.2-1):  

 

1) identify species-specifics in N and C allocation within the tree and to quantify 

the C and N input into the different C and N compartments of beech and ash 

(Study 1). 

2) quantify the C and N allocation into the soil along a depth gradient down to 

30 cm (Study 1). 

3) determine the microbial utilization of root-derived C and N along the depth 

gradient down to 30 cm (Study 1). 

4) determine the spatial gradients of 15N and 13C allocation by rhizodeposition 

with increasing distance from beech and ash trees in the bulk soil and 

microbial biomass (Study 1). 

5) assess the tree-specific rhizosphere effect on microbial biomass (Study 1) 

and microbial community composition (Study 2) 

6) assess the utilization of beech and ash rhizodeposits by individual microbial 

groups with special focus on C allocation to the different mycorrhiza types 

(ECM versus AMF) of the two tree species (Study 2) 

7) generalize the knowledge on ecosystem functions of ECM and AMF with 

focus on P acquisition, uptake and storage and the linkage to the C cycle – 

i.e. the exchange of C for P and vice versa (Study 3). 

8) elucidate a suitability 15N leaf-labeling method to investigate N allocation 

patterns above- and belowground, i.e. the suitability of various approaches to 

assess belowground N allocation to allow the production of highly 15N 

enriched litter for subsequent decomposition studies (Study 4).  

9) quantify the uptake of tree-derived N and C by the soil meso- and 

macrofauna to assess their impact on forest C and N cycle (Study 5). 



Extended Summary    

10 

10) determine woody biomass growth in agroforestry systems with poplar and 

willow and link their biomass dynamics to the key nutrient N, i.e. the 

distribution patterns of nitrate and ammonium within different plant 

compartments (Study 6) 

11) identify not only species- but hybrid-specific effects on SRC’ N cycle via the 

identification of clone-specific inorganic N uptake preferences (Study 6) 

 

 

Figure 1.2-1: Overview of the studies within this thesis; Partitioning of photosynthetically 

fixed 13C and assimilated 15N between plant and soil pools. The colors of the arrows and 

symbols show which fluxes and pools are quantified in the different Studies. The 

partitioning of 13C and 15N was determined between leaf-, root-, and microbial biomass, 

bulk soil and soil meso- and macrofauna to determine the incorporation of assimilated C 

and N following pulse labeling into the shown pools. 
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1.3 Material and Methods 

1.3.1 Field site description 

 

To gain more insight into nutrient cycles and rhizodeposition of trees the 

Graduiertenkolleg 1086 "The role of biodiversity for biogeochemical cycles and biotic 

interactions in temperate deciduous forests" was founded. The objective was to determine 

the importance of biodiversity for nutrient cycles and biotic interactions in trees and their 

rhizosphere in temperate deciduous forests. The rhizosphere is the volume of soil that is 

directly influenced by plant root secretions (Hiltner, 1904). 

1.3.1.1 Hainich National Park (Study 1, 4 and 5) 

The experiment was conducted in a temperate deciduous beech forest the Hainich 

National Park (Thüringen, Germany) and the experimental site (10°05’ N, 10°30’ E, 300 

AMSL) was located in the southwest of Weberstedt. The Hainich, with an area of 

16000 ha, is the largest continuous and most diverse broad-leaved forest of Germany and 

has been declared World Heritage Nature Site in June 2011. Multiple aged deciduous 

trees grow there (Figure 1.3-1 B), the oldest of them having an age of at least 200 years. 

The forest predominantly consists of beech and the light intensity is approximately the 

same everywhere because the beech-dominated forest has a closed leaf cover (Figure 

1.3-1 A). The mean annual temperature is 7.5  C and the mean annual precipitation is 

670 mm. The soil at the experimental site developed from loess and was classified as 

Stagnic Luvisol (WRB, 2006) (Figure 1.3-1 C) that is underlaid by Triassic limestone. The 

forest floor is classified as mull-like moder and the mean thickness of the litter layer is 2.8 

± 0.1 cm (Langenbruch et al., 2014).The soil is characterized by a clay, slit and sand 

texture, pH values varies with the depth up to 30 cm from 4.2 to 4.4 (Table 1.3-1) 

(Guckland et al., 2009). Therefore the topsoil (0-10 cm) is rather acidic. The bulk density 

also increases with the depth from 1.2 – 1.5 g cm-3 (Table 1.3-1) (Guckland et al., 2009) 

 

Table 1.3-1: General soil properties of the investigated area. Data were taken 
from Guckland et al. (2009) 

Depth (cm) pH (H2O) Clay (%) Slit (%) Sand (%) Bulk density (g / cm3) 

0-10 4.2 14 83 3 1.2 

10-20 4.3 14 83 3 1.3 

20-30 4.4 14 82 4 1.5 
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Figure 1.3-1: General conditions in the National Park Hainich; Leaf cover (A); Multiple 

aged trees stand (B); Stagnic Luvisol up to 30 cm depth (C) 

1.3.1.2 Göttinger Wald (Study 2 and 4) 

The trees for the experiment were taken from a temperate deciduous beech forest – 

Göttinger Wald (51°35'15.39"N 9°58'57.95"E, 362 AMSL), located southeast of Göttingen, 

Lower Saxony, Germany. The climate can be described as maritime temperate (Cfb 

Köppen climate classification) with a mean annual precipitation of 613 mm and a mean 

annual temperature of 8.7 °C (Scheu and Poser, 1996). The Göttinger Wald is a 130–145-

year-old beech forest scattered with ash and maple and is considered to present the 

climax stage of a temperate woodland ecosystem growing on calcareous mull soil (Scheu 

and Poser, 1996) (Figure 1.3-2 A). The soil is a Renzina type (Figure 1.3-2 B) type with 

typical mull humus and the pH of the topsoil varies between 4.4 and 7.0 (Maraun et al., 

2001; Scheu and Poser, 1996). 

 

Figure 1.3-2: General 

conditions Göttinger Wald; 

Multiple aged trees stand 

(A); Redzina (picture from 

beech forest Teutoburger 

Wald (Begonia, 2010) 
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1.3.1.3 Short rotation coppice / Agroforest site Reiffenhausen (Study 6) 

The field experiment in 2011 was established as short rotation coppice and an Agroforest 

area in Reiffenhausen (51°39'83"N 9°98'75"E, 325 AMSL) - located southeast of 

Göttingen, Lower Saxony, Germany. An area of 1.6 hectars was established with cuttings 

of the commercial poplar hybrid Max 1 (Populus nigra L. x P. maximowiczii Henry) and the 

willow varity Tortois ((Salix viminalis L. x Salix Schwerinii Wolf) x S. viminalis) in March 

2011. The area was ploughed in autumn and harrowed in the winter and then divided in 

three parts. Two were monoculture sections of poplar and willow and one was planted as 

Agroforest with alternating twin rows of willow and pasture (Hartmann et al., 2014) (Figure 

1.3-3). The climate can be described as maritime temperate (Cfb Köppen climate 

classification) with a mean annual precipitation of 642 mm and a mean annual 

temperature of 9.2 °C The soil can be characterized as loamy sand (12% clay, 23% silt, 

65% fine sand). The soil at the experimental site was classified as stagnic Cambisol 

(WRB, 2006) (Hartmann et al., 2014). 

 

 

Figure 1.3-3: General set up in the short rotation coppice / agroforest site Reiffenhausen 

(modified Hartmann et al. 2014) 
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1.3.2 Experimental setup and realization of 

study 1, 4 and 5 

 

C and N uptake and allocation in the tree and the C and N input into soil by 

rhizodeposition and its uptake by microorganisms and soil fauna was studied by a in situ 

13CO2 pulse labeling and Ca(15NO3)2 leaf-labeling experiment. 

1.3.2.1 CO2 pulse labeling 

The 13C was applied as 13CO2 to the aboveground parts of 40 trees (3-4 m) (20 beeches, 

20 ashes) by simultaneously pulse labeling for 2h in individual chambers. The chambers 

were ca. 5 m high and 2.5 m in diameter consisting of transparent polyethylene film with a 

thickness of 80 µm which were hung from a wooden frame and closed properly with 

adhesive tape to avoid gas leakage (Figure 1.3-4 A). The 13CO2 pulse was produced by 

injecting 60 ml 5 M sulfuric acid (H2SO4) into a solution of 100 ml distilled water containing 

6.85 g sodium carbonate (Na2CO3) (Cambridge Isotope Laboratories, MA, USA) enriched 

to 99.0 atom% 13C. 500 ml polyethylene wide mouth bottles containing sodium carbonate 

were fixed to a bowl and placed inside the chamber (Figure 1.3-4 B). The chamber was 

then closed and sulfuric acid was carefully added from the outside into the Na2
13CO3 

solution using syringes, and the puncture holes caused by the syringes were sealed with 

tape. Sulfuric acid was added in fivefold excess to ensure complete evolution of 13CO2. A 

5-12 V fan inside each chamber guaranteed a uniform distribution of 13CO2 (Figure 1.3-4 

B). 

1.3.2.2 15N labeling 

Prior to the CO2 pulse labeling, 12 ml glass vials were used as reservoirs containing 

9.7 ml of a calcium nitrate solution. This 15N solution was made up of 36 g calcium nitrate 

(99.23 atom% 15N, Campro Scientific GMbH, Berlin, Germany) dissolved in 1200 ml 

sterilized water. Three leaves of beech and three leaflets of ash with a similar area were 

roughened to allow the uptake of the solution by the tree and then placed directly in the 

calcium nitrate solution in the vials. The vials were fixed on the branches at different 

heights for each tree (Figure 1.3-5 A). The vials were closed with ParafilmTM and 

additionally covered with a transparent bag to avoid spilling on the ground. The vials were 

installed on the trees three days before the CO2 labeling and were removed before the 

http://dict.leo.org/ende?lp=ende&p=ziiQA&search=adhesive&trestr=0x801
http://dict.leo.org/ende?lp=ende&p=ziiQA&search=wide&trestr=0x2001
http://dict.leo.org/ende?lp=ende&p=ziiQA&search=mouth&trestr=0x2001
http://dict.leo.org/ende?lp=ende&p=ziiQA&search=bottle&trestr=0x2001
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CO2 labeling with a cut behind the leaves to avoid contamination of the ground or other 

leaves.  

After the labeling the tree was cut down and all leaves and the stem were separated. The 

stem was sampled 10 cm above the start of the root, in the middle of the tree. and from 

the top part. Than the soil was sampled 10-15 cm from the tree with a split tube (Figure 

1.3-4 D) (diameter 7 cm) in three replicates (Figure 1.3-4 C). The intact core was divided 

into three depth intervals (0-10 cm; 10-20 cm; 20-30 cm) and sieved to 2 mm. Water 

content was determined in a subsample. Two samples of a diameter of 20 cm to a depth 

of 10 cm were taken per tree for the soil fauna extraction (Figure 1.3-4 C). The tree was 

then entirely uprooted to make sure it belongs to the labeled tree and roots were taken 10-

15 cm from the main root. All samples were freeze tried and weighed and grounded (PM 

4000, Retsch, Haan, Germany).  

A summary of the material and methods used to analyzes the samples from this 

experiment is given in Table 1.3-2. 

 

 

Figure 1.3-4: Chambers that were used for simultaneous in situ 13CO2 pulse labeling of 20 

replicates per tree species (A). Ventilation system inside the chamber (B); split tube for 

soil sampling with three replicates per tree (C), 7 cm soil cores taken subsequently from 

the soil surface down to 30 cm depth (D). 
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Table 1.3-2: Summary of the material and methods used in study 1, 4 and 5 

Aims Methods and analyzes 

Determination of the spatial gradients of 
15N and 13C allocation around the trees in 
the bulk soil and microbial biomass in 
three depth (0-10 cm, 10-20 cm, 20-30 
cm) and five different distances (15 cm, 25 
cm, 35 cm 45 cm and 55 cm) from the tree 

Sampling of bulk soil with three replicates 
per tree five days after the start of the CO2 
labeling 

Water content was determined in a 
subsample. 

Extraction and Sampling of soil animals to 
depth of 10 cm 

Soil animals were extracted by heat using 
a high-gradient canister method (Kempson 
et al., 1963) and stored in concentrated 
salt water at -7°C.  

Single individuals of large Oribatida were 
used, but for most Oribatida species 
several individuals had to be pooled and 
for Isopoda only the head was used. 

100 – 300 µg of animal tissue were 
transferred into tin capsules and dried at 
40 °C for 24 h.  

Determination of microbial biomass C and 
N 

Chloroform-fumigation-extraction method 
modified Brookes et al. (1985) and Wu et 
al. (1990) was used. K2SO4 extracts were 
freeze and weighed into tin capsules (> 20 
µg C per capsule for fumigated samples 
and > 40 µg C per capsule for 
unfumigated) for δ13C and δ 15N analysis 

Extractable Corg and organic N in the 
fumigated and non-fumigated samples 
was measured by catalytic oxidation (Multi 
N/C 2100 S, Analytik Jena, Germany). 

Determination of C and N partitioning, δ13C 
and δ15N signature of leaf, stem and root 
biomass, bulk soil and microbial biomass 
and δ13C signature of bulk soil in three 
depth (0-10, 10-20 and 20-30 cm)  

1, 5, 10, 20 and 60 days after labeling and 
δ 15N signature 4, 8, 13, 23 and 63 days 
after labeling  

Samples were measured by elemental 
analyzer NA1500 (Fison-instruments, 
Rodano, Milano, Italy) coupled to a Delta 
plus isotope ratio mass spectrometer 
(Finnigan MAT, Bremen, Germany) 
through a ConFlo III interface (Thermo 
Electron Corporation, Bremen, Germany) 
at the Centre for Stable Isotope Research 
and Analysis, University of Göttingen 

Determine C and N partitioning, δ13C and 
δ15N signature and soil meso- and 
macrofauna 20 days after labeling and 
δ 15N signature 23 days after labeling 

Samples were measured by elemental 
analyzer NA1500 (Fison-instruments, 
Rodano, Milano, Italy) coupled to a Delta 
plus isotope ratio mass spectrometer 
(Finnigan MAT, Bremen, Germany) 
through a ConFlo III interface (Thermo 
Electron Corporation, Bremen, Germany) 
at the Centre for Stable Isotope Research 
and Analysis, University of Göttingen 
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1.3.3 Experimental setup and realization of 

study 2 and 4 

 

40 Ashes and 40 beeches (approx.1 m) were taken from the forest with undisturbed soil, 

and the entire soil core was placed into pots. After a reestablishment time of two month, 

the pot was wrapped with plastic and closed airtight. An irrigation system and ventilation 

system was established within the plastic bags. 20 ashes and 20 beeches were then 

13CO2 pulse labeled in a closed chamber (Pausch et al., 2013; Riederer et al., 2015) 

(Figure 1.3-5 B). Ten beech and ash trees were sampled immediately after three days 

labeling with 13CO2 and two days exposure to 12CO2 and another 20 days after the start of 

the CO2 labeling. The 13CO2 pulse was produced by injecting 5 M lactic acid into a 0.5 M 

13C sodium-carbonate (Na2
13CO3) solution (99 13C atom%Sigma-Aldrich, Traufkirchen, 

Germany). The trees were exposed to 13CO2 for three days and to 12CO2 for two days for 

16 h day-1 with a maximum CO2 concentration of 1800 ppm. The CO2 concentration in the 

chamber was monitored using an infrared gas analyzer (CARBOCAP™ Serie GMM220, 

Driesen + Kern GmbH, Bad Bramstedt, Germany). To reduce dilution of the 13CO2 by 

plant-derived CO2 at night, CO2 in the chamber was absorbed by pumping the air through 

a 1 M NaOH solution. 

The experimental setup for the leaf-labeling with 15NH4Cl prior the CO2 labeling was 

comparable to study 1 (Figure 1.3-5 A). The glass vials, used in this experiment, 

contained 15N labeled ammonium chloride solution (98 at% 15N, Campro Scientific GmbH, 

Berlin, Germany). The 15N solutions were applied per gram aboveground biomass with 

3*10-5 mol per tree for 72 h in both experiments. 

After the labeling the tree was cut down and all leaves and the stem were separated. The 

stem was sampled 10 cm above the start of the root, in the middle of the tree. and from 

the top part. Than the soil was sampled next to the tree with a split tube ( 

Figure 1.3-5 C) (diameter 7 cm). The intact core was divided into two intervals (0-10cm 

and below 10 cm) and sieved to 2 mm and a subsample was stored at -20 °C until PLFA 

analysis. Water content was determined in a subsample. The tree was then entirely 

uprooted to make sure it belongs to the labeled tree and roots were taken in different 

sizes. All samples were freeze tried and weighed and grounded (PM 4000, Retsch, Haan, 

Germany). 

A summary of the material and methods used to realize the experiment is given in Table 

1.3-3. 
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Figure 1.3-5: Setup used for 15N labeling with Ca(15NO3)2 and 15NH4Cl (A), labeling 

chamber for 13CO2 pulse labeling of 20 replicates per tree species (B).; split tube for soil 

sampling (C) 

 

Table 1.3-3: Summary of the material and methods used in study 2 and 4 

Aims Methods and analyzes 

 Abundance of individual 
microbial community member to 
be assessed by the phospholipid 
fatty acid fingerprint  (soil sample 
from 0-10 cm depth next to the 
tree) 5 and 20 days after the 
start of the labeling 

 Determination of the 13C-content 
in the microbial groups. 

 Phospholipid extraction, purification, 
derivatization to determining free extractable 
fatty acids in soil. An improved method of 
Frostegård et al. (1991) was used to extract 
and purify phospholipids (fordetails see Study 
2)  

 The GC was coupled with a mass 
spectrometer, for measurement of free 
extractable fatty acids for compound 
identification and reconstruction of microbial 
groups (GC-MS) 

 the gas chromatography was coupled with an 
isotope ratio mass spectrometer for 
determination of 13C-content in the microbial 
groups (GC-IRMS) 

 Hewlett Packard 5890 GC Series II (30 m DB5 
columns (0.32 mm inner diameter and 0.25 
µm film thickness) coupled to Hewlett Packard 
5871 mass spectrometer 

 Determine C Partitioning, δ13C 
signature of leaf biomass, stem 
biomass, root biomass, bulk soil 
(0-10 cm) 5 and 20 days after 
the start of the labeling  

 Samples were measured by elemental 
analyser NA 1500 (Fison-instruments, 
Rodano, Milano, Italy) coupled to a Delta plus 
isotope ratio mass spectronometer (Finnigan 
MAT, Bremen, Germany) through a ConFlo III 
interface (Thermo Electron Corporation, 
Bremen, Germany) at the Centre for Stable 
Isotope Research and Analysis, Georg-August 
University 
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1.3.4 Experimental setup and realization of 

study 6 

 

Pots (PVC-tubes) with a height of 30 cm and an inner diameter of 6.5 cm were filled with 

4.2 kg soil (Figure 1.3-6). Each pot was prepared with five 5 cm layers containing soil 

amounts as given by the respective bulk densities (1.2 g cm-³). To obtain a uniform bulk 

density, each of the 5 cm layers was compacted separately by application of uniaxial 

pressure. After a reestablishment time of two month, twelve Poplar clones Max 1 (Populus 

nigra x Populus maximowiczii) and twelve willow clones Tordis (Salix viminalis x Salix 

schwerinii) x Salix viminalis) cuttings with an average diameter of 1.2 cm (± 0.1 cm) and 

height of 19.6 cm (± 0.3 cm) were immersed into the soil. Overall 24 plants, 12 willow 

cuttings and 12 poplar cuttings, were grown for 49 days plus seven days after the labeling 

(Figure 1.3-6) and the water content was adjusted weekly by weighing and irrigating to be 

greater than 50% of field capacity. 15NH4NO3, NH4
15NO3 (98 atom% 15N, Campro Scientific 

GmbH, Berlin, Germany) or NH4NO3 were applied as labeling or reference solutions with 5 

mg of label in two 10 ml injections in 10 cm soil depth per pot using a needle syringe next 

to the stem. No leaching of soil solution was detected during the entire experiment. The 

reference treatment was considered by adding the non-15N-enriched NH4NO3 solution. A 

summary of the material and methods used to analyze the experiment is given in Table 

1.3-4. 

After the labeling the tree was cut down and all leaves and the entire stem were 

separated. Than the soil was sampled in three intervals (0-10 cm, 10-20 cm and below 20 

cm) and sieved to 2 mm. Water content was determined in a subsample. The tree was 

then entirely uprooted to make sure it belongs to the labeled tree and roots were taken in 

different sizes. All leaves, stems, twigs and roots were washed after removal and dried at 

60 °C to a constant mass and soil was dried at 40 °C. All samples were weighed and 

grounded (PM 4000, Retsch, Haan, Germany). The initial mineral nitrogen concentration 

was determined through K2SO4 extraction. 60 ml 0.5 mol K2SO4 solution was added to 15 

g field moist soil and shaken and filtrated, the extracts were analyzed by continuous flow 

injection colorimetry (Cenco/Skalar Instruments, Netherlands). The total soil nitrogen 

content, measured by a C-N-analyzer, (CHN-O-Rapide, VarioEL, Elementar, Hanau, 

Germany) was 0.6 mg g-1 (± 0.03).  
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Figure 1.3-6: Setup that was used for 15N labeling of willow and poplar cuttings with 

15NH4NO3, NH4
15NO3 and reference treatment with NH4NO3 

 

Table 1.3-4: Summary of the material and methods usd in study 6 

Aims Methods and analyzes 

 Determine N Partitioning, δ 15N 
signature of leaf biomass, twig 
biomass, stem biomass and root 
biomass 7 days after labeling 

 3 to 5 mg of dried plant material were 
weighed into tin capsules. 

 Samples were measured by elemental 
analyzer NA1500 (Fison-instruments, 
Rodano, Milano, Italy) coupled to a Delta 
plus isotope ratio mass spectrometer 
(Finnigan MAT, Bremen, Germany) 
through a ConFlo III interface (Thermo 
Electron Corporation, Bremen, Germany) 
at the Centre for Stable Isotope Research 
and Analysis, University of Göttingen 

 Determine of the initial mineral N 
concentration 

 K2SO4 extraction 60 ml 0.5 mol K2SO4 
solution was added to 15 g field moist 
soil. After shaking and filtrating, the 
extracts were analyzed by continuous 
flow injection colorimetry (Cenco/Skalar 
Instruments, Netherlands) 

 Determination of the total cation 
exchange capacity an pH of the soil 

 procedure described by Meiwes (1984) 
was used for the total cation exchange 
capacity and the pH was measured with a 
digital pH-meter (inolab, WTW, Weilheim, 
Germany) in water and KCl.  
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1.4 Results 

 

In the framework of this dissertation, a full C and N partitioning for beech and ash in 

deciduous forests was performed by various experimental approaches. A summarization 

of the main results of the flux partitioning is given in Figure 1.4-1 and studies 1 – 6 are 

summarized in Table 1.4-6. 

 

 

Figure 1.4-1: Summary of main results (all numbers show the incorporation in % of the 

applied tracer 5 days after the labeling for C values and 8 days for N values ; C values are 

always displayed in black, N values in red) 
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Table 1.4-1: Overview of the objectives and main results of the study 1.  

Study 1: 

Allocation and dynamics of C and N within plant-soil system of ash and beech 

Objectives Main results 

 Estimation and partitioning of 
photosynthetically fixed C between 
two common deciduous tree 
species, beech (Fagus sylvatica L.) 
and ash (Fraxinus excelsior  L.) into 
different plant compartments and 
soil/microorganisms by 
rhizodeposition, during a period of 
60 days in summer 

 Estimation and determination 
of  applied N via leaf-labeling with 
Ca(15NO3)2 and its allocation into 
plant compartments and soil by 
rhizodeposition between plant and 
soil C pools and the uptake by 
microorganisms up to a depth of 30 
cm  

 Vertical profiles of C and N 
allocation in soil 

 Horizontal profiles of C and N 
rhizodeposition with increasing 
distance from the tree 

 The photosynthetic C assimilation is 
twice as high in beech than in ash (beech 
(20,2%), ash (9.1%) of the applied 13CO2) 

 N incorporation is very similar between 
both tree species (45% of the applied 
Ca(15NO3)2) 

 Photosynthates were transported 
belowground more rapidly in beech than in ash 

 Ash allocated more 13C and 15N from the 
above- into the belowground plant biomass and 
accumulated 15N and 13C in the roots.  

 Beech released more of this initially 
assimilated 13C (2.0% relative 13C allocation) 
and 15N (0.1% relative 15N allocation) via 
rhizodeposition into the soil than ash (0.2% 
relative 13C, 0.04% relative 15N allocation), which 
was also subsequently recovered in microbial 
biomass. 

 Both tree species incorporate the most 
13C into the microbial biomass of the topsoil (0-
10cm) but incorporate the most 15N in microbial 
biomass in a soil depth of 10-20 cm  

 13C and 15N allocation decreased with 
soil depth under beech but ash allocated more 
13C in 10-20 cm soil 

 13C and 15N tracer in the soil were  
homogenously distributed in all soil depth along 
the investigated distance of 60 cm from the tree 

In summary, belowground C allocation of ash remained mainly in roots whereas beech 

released a large portion of the belowground C and N into the rhizosphere, boosting 

microbial activity. Whereas no lateral gradients in C and N rhizodeposition could be found 

there were clear vertical gradients with beech rhizodeposition dominating the first 10 cm of 

the soil, whereas ash tended to a slightly deeper maximum of rhizodeposition (10-20 cm). 

Consequently, the two tree species’ strongly deviating quantity, quality and spatial 

distribution of C and N investment in belowground processes (quantified as C and N 

allocation) might be one of the mechanisms to achieve resource partitioning in the 

ecosystem.  
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Table 1.4-2: Overview of the objectives and main results of the study 2.  

Study 2 

The tree species matter: Belowground carbon input and utilization in the 
mycosphere  

Objectives Main results 

 Comparison of the composition of 
the microbial community structure under 
beech (Fagus sylvatica) and ash (Fraxinus 
excelsior) 

 Species-specific incorporation and 
allocation of assimilated 13C into different 
plant compartments and soil under beech  
and ash during 20 days 

 Microbial uptake and utilization of 
the rhizodeposits by 13C incorporation into 
phospholipid fatty acids (PLFA), reflecting 
rhizodeposits utilization by the microbial 
community  

 The photosynthetic C assimilation 
is higher in ash than in beech (beech 
(21%), ash (31%) of the applied 13CO2) 

 Photosynthates are transported 
more rapidly through the tree into the soil 
in beech  

 Ash allocates twice as much 13C 
belowground as beech until day 20 

 Approximately 0.01% of the 
applied 13C was incorporated into PLFAs 
of all functional microbial groups under the 
two species 

 Microbial community structure 
under ash and beech is similar but 
incorporation varied significantly between 
microbial groups 

 Saprotrophic fungi beech and ash 
– but also AMF and Gram negative 2 
bacteria under ash – incorporated most 
13C and twice as much 13C was 
incorporated into the fungal biomarker 
18:2ω6,9 under beech than under ash 

 30% of the fungal PLFA biomarker 
C was replaced by rhizodeposit-derived 
13C under beech but only 10% under ash 
within 5 days; none of the other microbial 
groups reached a similarly high C 
replacement  

In summary, most of the plant-derived 13C was recovered in PLFA of saprotrophic and 

ectomycorrhizal fungi under beech and ash but also arbuscular mycorrhizal fungi and 

Gram negative bacteria under ash. Furthermore, quantification of the relative C allocation 

into the different tree specific mycorrhiza types revealed that the direct C allocation via 

mycorrhizal symbioses dominates the C nutrition of fungi. Consequently, the C cycle in 

forest soils strongly depends on species-specific rhizodeposition, mycorrhizal root 

associations and tree-species-specific C turnover in the microbial groups of the rhizo-

mycosphere. 
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Table 1.4-3: Overview of the objectives and main results of the study 3. 

Study 3 

Mechanisms of phosphate acquisition by mycorrhiza  

Objectives Main results 

 Review of phosphorus acquisition, 
uptake and storage in the major 
mycorrhizal systems in plants 

 Unravelling current state of 
knowledge on the exchange of C for P 
between plant and mycorrhiza 

 Orchid mycorrhizas as a special 
case were compared to the ecto- and 
arbuscular mycorrhiza  

 Mycorrhiza use biochemical, e.g. 
chelation and acidification, biophysical 
strategies, e.g. protoplasmic streaming 
and occupy much larger space compared 
to the roots to take up dissolved, and 
mobilize sorbed, organic and mineral P 
forms from soil behind the P depletion 
zone of the root. 

 mycorrhiza ensure diverse P 
storage pools and P mobilization 
processes and adapts rapidly to changing 
environmental conditons 

 Orchid mycorrhiza shows 
bidirectional C and N transfer and P 
uptake and transfer to roots  

 advantages for orchids to link via 
ECM particularly in nutrient  deficient soils 

 ECM are more efficient in the 
uptake and transport of P, and are able to 
access a broader spectrum of P sources 
compared to AM there are  

In summary, the P uptake, P storage und transport of P in fungus- plant interface varies 

between the main mycorrhiza types (ECM, AMF). However, all types of mycorrhizal 

symbiosis show a rapid bidirectional transfer of P and carbohydrates between roots and 

hyphae at the fungus-root interface, which involves both, the passive efflux of P and 

carbohydrates through the fungal and plant plasma membranes into the interfacial 

apoplast and active exchange of nutrients between both partners. Therefore, not only the 

tree species-specific mycorrhizal association will impact the phosphorous uptake by the 

plant but also the species-specific root-derived C allocation. However, more research is 

required to assess regulation mechanism to obtain P from the soil in exchange for C from 

trees and to understand deviating mechanisms and function for individual species, stage 

of the lifecycle or in different ecosystem. 
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Table 1.4-4: Overview of the objectives and main results of the study 4.  

Study 4 

How to decide the nitrogen leave labeling tracer for broad-leaved trees 

Objectives Main results 

 Comparison of two leaf-labeling 
methods Ca(15NO3)2 and 15NH4Cl and 
their effects on N cycles in the soil-
plant systems  

 Comparison of N allocation patterns 
from aboveground to belowground into 
plant compartments and soil by 
rhizodeposition between plant and soil 
C pools in beech and ash between the 
two labeling methods  

 Evaluation of the applicability for the 
production of highly 15N enriched litter 
for subsequent decomposition studies  

 Evaluation of both methods for the 
applicability in allocation studies 

 Beech and ash incorporated 
generally more 15N from the applied 
15NH4Cl compared to Ca(15NO3)2 in all 
measured compartments.  

 Ash had highest 15N incorporation 
(45% of the applied with Ca(15NO3)2) in its 
leaves and both tree species kept over 
90% of all fixed 15N from Ca(15NO3) in their 
leaves, whereas only 50% of the 15N from 
the 15NH4Cl tracer remained in the leaves 
and 50% were allocated to stem, roots 
and soil.  

 15N incorporation from both tracers 
salts was species-specific: the leaf-
labeling with 15NH4Cl results in a more 
homogenous distribution between the tree 
compartments in both tree species  

 No damage of the leaves by both 
salts 

In summary, both 15N tracers enable long-term labeling in situ field studies on N 

rhizodeposition and allocation in soils. However, 15NH4Cl is more appropriate for allocation 

studies and leaf-labeling with Ca(15NO3)2 is the more suitable method to produce highly 

enriched 15N leaf litter for further long term in situ decomposition and turnover studies. 
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Table 1.4-5: Overview of the objectives and main results of the study 5. 

Study 5 

Beech trees fuel soil animal food webs via root-derived nitrogen 

Objectives Main results 

 Determination of root-derived C and 
N for the nutrition of soil animal species 
under young beech (Fagus sylvatica) and 
ash (Fraxinus excelsior) trees 

 Evaluation of the distribution of C 
and N in the decomposer system 

 Higher 15N signatures in fine roots 
of ash as compared to beech.  

 More root-derived 15N was 
incorporated into soil animals from the 
beech as compared to the ash 
rhizosphere 

 13C was only incorporated soil 
animals under beech  

 Higher 15N signatures in primary 
decomposers (Porcellium conspersum 
Xenillus tegeocranus, Steganacarus 
magnus) than in secondary decomposers 
(Damaeus gracilipes, Damaeus riparius) 

In summary, this experiment revealed that soil animal food webs rely not only on root C 

but also on root N. While ash keeps its N in the roots, beech allocates it in the rhizosphere 

and therefore soil animals might not feed as much on the roots as on the well N supplied 

microorganisms The incorporation of 15N in the decomposers system reflects trophic 

levels. However, the contribution of root N to soil animal nutrition varies with tree species 

and is linked to species-specific rhizodeposition. 
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Table 1.4-6: Overview of the objectives and main results of the study 6.  

Study 6 

Specific Nmin uptake patterns of two widely applied poplar and willow clones for short 
rotation coppices – implications for management practices 

Objectives Main results 

 Comparison of N uptake 
from belowground between willow 
clone Tordis and poplar clone 
“Max 1” assessed by two labeling 
approaches, with 15NH4NO3 and 
NH4

15NO3  

 Comparison of 15N 
allocation patterns from 
belowground to aboveground in 
willow and poplar and between 
labeling approaches 

 Estimations for the 
biomass production in SRC or 
agroforest systems  for 
subsequent applications in 
bioenergy retrieval 

 The overall 15N incorporation of the 15N in the 
soil pool in the tree was for poplar clones higher for 
applied 15NO3ˉ (97%) than for 15NH4

+ (34%) and the 
same for both treatments in the willow clones (49%) 

 The highest incorporation of 15N was found in 
poplar leaves (70 ± 1%) from 15NO3ˉ and was almost 
three times higher than in willow (25 ± 1%). 

 Leaves incorporated and allocated the most 15N 
in both tree species from both tracers followed by twigs, 
stem and roots.  

 Poplar allocated 73% of the assimilated 15NO3ˉin 
the leaves which is 30% more 15NO3ˉ in comparison to 
willow 51% and poplar and willow allocated 60% of the 
15NH4

+ the leaves  

 Poplar allocated only half of the 15NO3 in twigs 
and roots in comparison to willow.  

 Willow allocates twice as much 15NO3ˉ in its 
roots in comparison to 15NH4

+ and twice as much15NH4
+ 

in its stem 15NO3ˉ 

 Comparing biomass production, poplar clones 
(12.5 ± 1 g·tree-1 NH4

15NO3; 12.0 ± 1.1 g·tree-1 15NH4 

NO3) showed a significantly higher dry matter yield than 
willow clones (9.5 ± 0.8 g·tree-1 NH4

15NO3; 11.9 ± 0.8 
g·tree-1 15NH4 NO3) 

 The average height of the 12 willow clones 
including the reference trees was 40.1 ± 4.7 cm and of 
poplar clones 37.3 ± 3.2 cm after 56 days of growth.   

In summary, the poplar hybrid is not only the better choice for biomass production but also 

to fix an excess of nitrate from arable fields and might be therefore more appropriate, in 

case of N surplus and high risk of N leaching in case of ecological considerations, e.g. in 

groundwater-endangered areas with intensive agriculture. All measured compartments of 

poplar incorporated almost all of 15NO3ˉ (97%) from the N soil pool and only a third of the 

15N (34%) from 15NH4
+. This supports support the general notion that deciduous trees 

prefer nitrate in contrast to conifers which are well adapted to ammonium but only in the 

case of poplar. Willow incorporated exactly the same amount of 15N from both tracers 

therefore is the preferential uptake of NH4
+ or NO3ˉ might be species - specific in 

deciduous trees. 
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The following table (Table 1.4-7) opposes literature outcomes and the novel results of this 

dissertation and brings the experimental context in relation to the eco-physiological 

knowledge on beech and ash.  

 

Table 1.4-7: Literature knowledge of basic research in italic type and novel research in 

regular type 

 Beech Ash Conditions of 
experiments 

Distribution  Most climatic regions of 
Europe, most common 
tree in the European 
temperate zone (Puhe and 
Ulrich, 2001) 

Up to 2000 m (Houston 
Durrant et al., 2016) 

European temperate 
zone 

Up to 1600-2000 (Beck 
et al., 2016) 

Trees selected 
from the 
European 
temperate zone, 
300 – 362 
AMSL 

Climatic 
constrains 

High summer 
temperatures, 

sensitive to late frosts 
(Paule, 1995) 

Extended summer 
drought, 

seedlings vulnerable to 
late spring frost (Beck 
et al., 2016) 

All experiments 
performed in the 
range of optimal 
climatic 
conditions 

Stands Species-poor 
multilayered forest stands 
with beech as 
dominating tree 
species(Heiri et al., 2009) 

Rarely forms pure 
stands,  more often 
small groups in mixed 
stands(Beck et al., 
2016) 

Experimental 
trees taken from 
diverse broad-
leaved forest  

Light 
demand 

Most shade tolerant 
broadleaved tree in its 
range (Praciak, 2013) 

Very light demanding 
but shade tolerant 
(Diekmann, 1996) 

Conditions 
varied between 
field and lab 
experiment 

Higher CO2 assimilation 
(20% of the applied CO2) 
one day after labeling  

Lower CO2 assimilation 
(9% of the applied CO2) 
one day after labeling 

Field:  shaded, 
closed leaf 
cover: 

Light intensity 
varied between 
10 - 
696 µmol m-2 s-1 

Lower CO2 assimilation 
(21% of the applied CO2) 
five days after labeling 

Higher CO2 assimilation 
(31% of the applied 
CO2) five days after 
labeling 

Laboratory: 
Light intensity 
was 420 
µmol m-2 s-1 

Growth 
height 

30 – 40 m, occasionally 
reaching 50 m (Packham 
et al., 2012) 

20 - 35 m, occasionally 
reaching 45 m 
(Ellenberg, 2009)  

Field: 3-4 m  

Laboratory: 1 m  
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Age, 

Fruiting  

150 - 300 years 

Each 5 - 8 years (Houston 
Durrant et al., 2016) 

20 to 30 years 

fruiting annually, 
higher production every 
2 - 5 years 

1-10 years, 

Not fruiting 

Usage  Wear-resistance, excellent 
bending capabilities, fine 
grained, knot-free, hard, 
fire wood and charcoal, 
used for boatbuilding, 
flooring, stairs, furniture, 
musical instruments, 
plywood, panels, 
veneering and tools 
(Houston Durrant et al., 
2016) 

Elasticity, hardness, 
and pressure, shock 
and splintering 
resistance, used for 
tools, car and boat 
frames, veneers, 
furniture, and flooring 
(Beck et al., 2016) 

 

Threads Herbivory (deer, weevils 
(Strophosoma 
melanogrammum, 

Otiorhynchus scaber)) 
Fungus (Ganoderma 
applanatum, susceptible 
hosts to Phytophthora 
ramorum) 

Herbivory (ash borer 
(Agrilus planipennis))  

Fungus (ashdieback 
(Hymenoscyphus 
fraxineus), Nectria 
galligena), 

Bacterium 
(Pseudomonas 
syringae) 

None at the 
sites 

Litter / 
Leaves 

High C-to-N ratio (53) and 
high lignin content (85 mg 
g-1 dry matter), 
which retards 
decomposition 
processes(Guckland et al., 
2009;Jacob et al., 2010) 

Ash litter, in contrast, is 
characterized by high 
quality, low C-to-N ratio 
(31) and low lignin 
content (25.3 mg g-1 dry 
matter)(Guckland et al., 
2009) 

 

Incorporated less 

assimilated C and leaf-
derived N into leaves 5 
days after application 

Incorporated more 
assimilated C and leaf-
derived N into leaves 5 
days after application 

Field: 3-5 m 
high trees with a 
leaf biomass of 
71 ± 5 g for 
beech and 45 ± 
3 g for ash 

Incorporated less C and 
but more N into leaves 

Incorporated more C 
and but less N into 
leaves 

Laboratory: 1 m 
trees with a leaf 
biomass of 9 ± 1 
for beech and 5 
± 1 for ash 
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Root 
morhology 
and C 
allocation to 
roots 

Beech in contrast has a 
heart root system, in 
which several major roots 
are developed, growing 
parallel at depth (Schütt et 
al., 2006). 

Beech has 25% less root 
biomass (<5 mm) in 0-20 
cm depth than ash (Oostra 
et al., 2006;Meinen et al., 
2009). 

The ash root grows as 
a typical tap root 
system. (Schütt et al., 
2006). 

Ash also has more fine 
roots and a more 
vigorous root growth 
(Meinen et al., 
2009;Cesarz et al., 
2013). 

. 

Lower assimilated C and 
leaf-derived N 
incorporation into roots 

which displayed lower root 
biomass;  

C and N allocation to roots 
decreased with depth 

Higher assimilated C 
and leaf-derived N 
incorporation, into the 
roots of a higher root 
biomass;  

Allocated most C into 
roots at 10-20 cm depth 

Field: 3-5 m 
trees with a root 
biomass of 7 ± 1 
for beech and 5 
± 1 for ash  

Lower incorporation of 
assimilated C into roots, 
which displayed a higher 
root biomass 

Higher incorporation of 
assimilated C into roots 
which showed  a lower 
root biomass 

 

1 m trees with a 
root biomass of 
13 ± 1 for beech 
and 18 ± 4 for 
ash 

Tree species-specific root morphology was reflected in the allocation of 
assimilated  C and leaf-derived N allocation into different soil depth 

soil Prefers moderately fertile 
ground, calcified (Paule, 
1995) 

Fertile, mesic to moist 
slopes and alluvial 
ground, but also on dry 
soils esp. calcareous, 
sun-exposed slopes in 
beech forests 
(Oberdorfer, 1992) 

 

Similar incorporation of 
rhizodeposits-derived C 
into soil, but rezodeposit-
derived N incorporation 
into soil is lower 

Similar incorporation of 
rhizodeposits-derived C 
into soil but 
rezodeposit-derived N 
incorporation into soil is 
higher 

Field:  Stagnic 
Luvisol , 
rhizodeposits-
derived C and N 
release 
quantified for 3-
5 m high trees 

Lower rhizodeposits-
derived C and N 
incorporation into soil  

Higher rhizodeposits-
derived C and N 
incorporation into soil 

Laboratory: 
Orthic Renzina 
type with typical 
mull humus 
underlaid by 
Triassic 
limestone, 
rhizoseposit-
derived C and N 
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incorporation 
queantified for 1 
m high trees 

The C and N cycle in forest soils strongly depends on species-specific 
rhizodeposition 

pH of the 
soil 

3.5 - 8.5 (Walthert et al., 
2013), optimum lightly 
acidic(Paule, 1995) 

> 5.5, optimum 7 
(Dobrowolska et al., 
2011) 

Field-Site: 4.2 
to 4.4 
(Guckland et 
al., 2009)  

Laboratory Soil: 
4.4 and 7.0 
(Scheu and 
Falca, 2000)  

Mycorrhiza Ectomycorrhizal (ECM) 
fungi such as 
Byssocorticium atrovirens, 
Lactarius subdulcis and 
Xerocomus chrysenteron, 
which are also 
saprothrophic (Shi et al., 
2002). 

Mycorrhizal colonization 
rate is higher (Cesarz et 
al., 2013) 

Arbuscular mycorrhizal 
fungi (Meinen et al., 
2009); 

Mycorrhizal colonization 
rate is lower (Cesarz et 
al., 2013) 

 

Most of the plant-derived 
C allocated into PLFA 
(0.010%) was recovered 
in PLFA of saprotrophic 
and ectomycorrhizal fungi 

Most of the plant-
derived C allocated into 
PLFA was recovered in 
PLFA of saprotrophic 
and ectomycorrhizal 
fungi (0.004%) and 
arbuscular mycorrhizal 
fungi (0.003%) 

No inoculation – 
natural, site-
specific 
mycorrhizal 
association was 
established 

The C and N cycle in forest soils strongly depends on species-specific 
mycorrhizal root associations and there is a direct C allocation via 
mycorrhizal symbioses which dominates the C flux to the rhizomicrobial 
community 

Belowgroun
d food web 

(decompose
rs and 
higher 
trophic 
levels) 

Prokaryote 
microorganisms suffer 
from the presence of 
beech roots due to low 
pH, therefore increased 
fungal-to-bacterial 
ratio(Cesarz et al., 2013), 

Micro-arthropods did not 
affected litter mass loss 
from (Lummer et al., 2012) 

Micro-arthropods 
affected litter mass loss 
from high-N ash - 
effects of soil micro-
arthropods are driven 
by litter quality (Lummer 
et al., 2012) 

 

Higher rhizodeposits-C Lower rhizodeposit Field: in-situ 
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incorporation into 
microbial biomass, 

Higher incorporated of 
root-derived N in the soil 
fauna  

incorporation into 
microbial biomass, 

Less root-derived N was 
incorporated in soil 
fauna and incorporated 
more 13C in soil fauna 

food web of 3-5 
m trees, 
trenched at a 
60cm distance 
to the stem 

Higher fungal to-bacterial 
ratio 

Lower fungal to-
bacterial ratio, 

Main parts of the plant-
derived C was 
recovered in Gram 
negative bacteria under 
ash, 

More abundant 
protozoa and other soil 
fauna members 

Laboratory: 
Food web 
established 
after 2 month of 
pre-
establishment 
of the trees in a 
shaded area 
under the 
canopy of 
mature beech 
trees  

C turnover in the microbial groups of the rhizo-mycosphere depends 
strongly on the tree species. Gram negatives are less relevant in 
rhizodeposit uptake than mycorrhizal groups in the myco-rhizosphere. 
Low amounts and rhizodeposit uptake of actinomycetes were present 
under both trees species which indicates that actinomycetes depend 
less on rhizodeposits and are likely SOM decomposers in broadleaf 
forests. More root-released N was incorporated in primary decomposers 
than in secondary decomposers 
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1.5 Conclusions 

 

Understanding the ecosystem functions arising from tree and soil biodiversity requires a 

profound knowledge of species-specific effects on forests C and nutrient cycles and the 

interactions between above- and belowground. Study such cycles and interactions is 

especially challenging in forests due to high spatial heterogeneity, tall trees dominating all 

processes, large C and N stocks in forest soils, etc. As pool sizes in such systems react 

extremely slow to environmental changes, the in-situ 13C and the two investigated 15N leaf-

labeling methods enabled successful tracing of C and N fluxes even in steady state 

conditions and revealed deep insights into the interactions at the plant-soil-atmosphere 

interface delivering a more detailed picture on the crucial role of microorganisms in this 

system.  

In conclusion, I could prove that tree species (here beech and ash) strongly control major 

process of C and N cycle by their assimilation and allocation pattern. C and N dynamics 

above- and belowground demonstrated that rhizodeposits act as the major C and N 

source for microbial communities and are one way of niche differentiation in forests. A 

clear dominance of C allocation via mycorrhizal association could be found in this these 

and this major belowground C allocation pathway is highly species-specific as beech and 

ash are associated with different mycorrhiza types. Special emphasis should be placed on 

mycorrhization in this and other natural ecosystems as fungal partners provide 

mechanisms overcoming limitations of key plant nutrients such as P and are linked with 

many other microbial groups in the myco-rhizosphere mediating major processes of C, N 

and P dynamics. Together with higher trophic levels, fueling C and nutrient cycles of 

mesofauna decomposer, such belowground biotic interactions are likely to increase 

ecological functions and improve the resilience of forest ecosystems.  

Overall, this thesis contributes to the elucidation of the species-specific fate of C and N in 

trees, their rhizodeposits and in the soil microbial community. The presented results 

pushed the knowledge about C and N cycles one step further to assess the ability of 

forest ecosystems to sequester C above- and belowground and to improve conservation 

projects in deciduous forest systems and estimate their influence on the global C cycle. 

Furthermore, I considered an alternative land use system to the biomass production in 

deciduous forest, comparing not species and clone-specific effects on biomass production 

and N cycle. Also in such agroforestry systems, species-specifics can strongly effect the N 

cycle, but in those fast-growing systems N uptake preferences are a major controlling 

factor. Overall, SRC were identified as a promising environmental-friendly way of biomass 
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production facing the raising demand of bioenergy. These results on C and N partitioning 

in various tree species contribute to an improved understanding of the effects species-

specific C and nutrient dynamics can have on the C and N cycles in forest and 

agroforests. 
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Abstract 

 

Forest management requires a profound understanding of how tree species affect carbon 

(C) and nitrogen (N) cycles in ecosystems. The large C and N stocks in forest soils 

complicate research on the effects of tree species on C and N pools. In-situ 13C and 15N 

labeling in undisturbed, natural forests enable not only tracing of C and N fluxes, but also 

reveal insight into the interactions at the plant-soil-atmosphere interface.  

In-situ dual 13C and 15N pulse labeling of 20 beeches (Fagus sylvatica L.) and 20 ashes 

(Fraxinus excelsior L.) allowed tracing of the fate of assimilated C and N in trees and soils 

in an unmanaged forest system in the Hainich National Park. Leaf, stem, root and soil 

samples as well as microbial biomass were analyzed to quantify the allocation of 13C and 

15N for 60 days after labeling and along spatial gradients in the soil with increasing 

distance from the stem.  

For trees of similar heights (~ 4 m), beech (20%) assimilated twice as much as ash (9%) 

of the applied 13CO2, but beech and ash incorporated similar 15N amounts (45%) into 

leaves. The photosynthates were transported belowground through the phloem more 

rapidly in beech than in ash. Ash preferentially accumulated 15N and 13C in the roots. In 

contrast, beech released more of this initially assimilated 13C (2.0% relative 13C allocation) 

and 15N (0.1% relative 15N allocation) via rhizodeposition into the soil than ash (0.2% 

relative 13C, 0.04% relative 15N allocation), which was also subsequently recovered in 

microbial biomass. These results on C and N partitioning contribute to an improved 

understanding of the effects of European beech and ash on the C and N cycles in 

deciduous broad-leaved forest. Differences in C and N allocation patterns between ash 

and beech are one mechanism of niche differentiation in forests containing both species. 

 

 

Key-words: 13CO2 labeling, Ca(15NO3)2; carbon and nitrogen cycles, tree rhizodeposition; 

species effects, deciduous forest  
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2.1.1 Introduction 

 

Soil organic carbon (SOC) and its turnover play a crucial role in sustainable forest 

management and for mitigation of greenhouse gas (CO2) emissions. Forest C and N 

budgets affect tree growth, the acquisition of resources such as light, nutrients and water 

and consequently forest productivity of standing biomass and C sequestration in soil 

organic matter (Litton et al., 2007). The government forestry department is conducting a 

broad-scale conversion of monocultures to mixed forest stands in Germany and, 

therefore, the impact of tree species diversity on the chemical, physical and biological 

characteristics of soil is of particular interest. Where forests have been considered in 

previous research, the focus has been on soil biochemical properties of conifers, rather 

than deciduous trees. (Augusto et al., 2002; Berger et al., 2009a; Berger et al., 2009b; 

Mareschal et al., 2010). Mareschal et al. (2010) showed for three conifers and beech that 

they affect various chemical properties of topsoil and have an impact on soil fertility. 

Schleuß (2014) also showed for the first time that mixed forests with mainly beech are 

superior with respect to Corg stabilization in the clay and fine silt fractions of the subsoil 

compared with monospecific beech forests. He also pointed to a pronounced species 

identity and/or diversity effect on soil C storage in an old growth forest with near steady 

state soil conditions. However, large differences between various broad-leaved species in 

C and N allocations can be expected, considering their niche differentiation concerning 

light acquisition, nutrient uptake, interactions with mycorrhiza types and soil morphology. 

The effects of these differences on C and N allocations have not been analyzed to date.  

N fluxes in the xylem of trees are regulated by three processes: remobilization from 

internal reserves, root uptake of N from the soil, and phloem–xylem recycling (Dambrine 

et al., 1995; Grassi et al., 2003). Trees are rarely C limited and tree growth is mostly 

limited by N availability (Millard and Grelet, 2010). Trees accumulate large amounts of C 

as non-structural carbohydrates and lipids (Wurth et al., 2005) and the processes 

regulating the storage of an abundant resource like C are quite different from the seasonal 

allocation of scarce resources such as N. Remobilization of stored N in the tree biomass 

is essential for the growth of temperate deciduous trees, especially in spring, and the 

relative contributions of remobilized N and N taken up by roots to the N used for growth 

depends on tree age, soil fertility and other environmental factors (Millard, 1996; 

Dyckmans and Flessa, 2001). Regulation of N uptake by roots could involve shoot–root 

cycling of N, because an inverse correlation has been found between the concentrations 

of amino acids and amides in phloem sap and nitrate uptake by the roots of beech 

(Gessler et al., 1998), and Prunus persica (Youssefi et al., 2000). We hypothesize that 
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there are species-specific patterns of C and N allocation in the tree compartments due to 

differences in remobilization and recycling processes and, therefore, differences in the 

amount of rhizodeposition into the soil. 

Beech and ash differ considerably in their mycorrhizal association. Beech is associated 

with ectomycorrhiza while ash associates with arbuscular mycorrhiza (Meinen et al., 

2009). A rapid transfer of photosynthates to ectomycorrhiza has indeed been reported 

(Leake et al., 2001; Esperschütz et al., 2009; Hogberg et al., 2010). Callesen et al. (2013) 

discovered in ash and beech that the δ15N pattern reflected tree species-related traits 

affecting the N cycling as well as site fertility and former land use, and possibly differences 

in N leaching. They also mentioned that the tree species δ15N patterns reflected 

fractionation caused by uptake of N through mycorrhiza rather than due to nitrate leaching 

or other N transformation processes. We also hypothesize differences in the C and N 

allocation patterns between beech and ash. We also expect beech to be more rapid in its 

allocation of C and N through the tree compartments, belowground and more prolific in its 

rhizodeposition than ash. Furthermore beech and ash differ in their root morphology. The 

ash root grows as a typical tap root system. Beech in contrast has a heart root system, in 

which several major roots are developed, growing parallel at depth (Schütt et al., 2006). 

Therefore we expect differences in the 13C and 15N allocation between beech and ash at 

different depths. We assume that beech shows depth-related rhizodeposition while ash 

might exhibit a peak in C and N deposition at a certain depth. 

Bauhus et al. (1998) reported that microbial biomass is on average lower in forest floor 

beneath conifers than beneath deciduous species and concluded that microbial variables 

are sensitive to tree species, stand age and soil type. However, they did not explore to 

what extent the trees directly affect soil C and N turnover and microbial biomass through 

their rhizodeposits. Quantifying the C flux from plant shoots to roots is necessary in order 

to estimate the contribution of recently fixed plant photosynthates to ecosystem C cycling 

and microbial biomass (Ostle et al., 2000; Rangel-Castro et al., 2004). Tracing 

photosythetically assimilated C after 13CO2 labeling and observing the subsequent 13C flux 

through rhizodeposition into soil and microbial communities is a powerful tool for the 

investigation of C turnover in forest soils (Potthoff et al., 2003). To date, there have been 

very few studies using labeling of trees under field conditions to investigate C and N 

turnover in soil (Högberg et al., 2008; Epron et al., 2011; Shibistova et al., 2012). 

Nevertheless, field studies on the C flux from the tree canopy to belowground are 

necessary because laboratory mesocosms may not realistically reproduce the complexity 

and dynamics found in the field, especially in the case of forests (Högberg et al., 2008). 

Furthermore, long-term experiments are necessary to achieve a more complete 

understanding of C and N cycling in forest ecosystems.  



Introduction    Study 1    

47 

The aim of this study was to quantify C and N allocation into plant compartments of beech 

and ash and to investigate whether there is a species effect on the surrounding soil and 

microbial biomass and its C gain from the tree. Generally, two approaches for dual isotope 

labelling of plants are possible: (i) using natural pathways of CO2 assimilation by 

photosynthesis and N uptake from soil or (ii) transfer of Corg and N into the stem of plants 

by passive uptake through transpiration flow (Wichern et al., 2011). However, it is not 

known how the applied C and N isotopes are distributed within a deciduous tree, or 

whether dual isotope labeling also works for medium-sized trees under field conditions in 

a temperate forest ecosystem. We therefore conducted an in-situ pulse-labeling 

experiment using 13C and 15N to investigate the C and N allocation from the atmosphere 

via the plant compartments into soil by two broad-leaved tree species: beech (Fagus 

sylvatica) and ash (Fraxinus excelsior). 
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2.1.2 Material and Methods 

2.1.2.1 Site description 

The experimental site (10°05’ N, 10°30’ E) was located in the southwest of Weberstedt, 

within the province of Thuringia, Germany, in the northeastern part of the Hainich National 

Park. The Hainich, with an area of 16000 ha, is the largest contiguous and most diverse 

broad-leaved forest of Germany and a part of it has been a UNESCO world natural 

heritage site since 2011. It has not been managed for forestry since 1990.  

The mean annual temperature is 7.5 °C and the mean annual precipitation is 670 mm. 

The mean elevation of our site was 300 m a.s.l. The forest site had deciduous trees of 

diverse ages with a long-term forest history of at least 200 y and grows on a Stagnic 

Luvisol (WRB 2006) developed from loess that is underlaid by Triassic limestone. 50 trees 

scattered within a maximum distance of 300 m from the center of the site were chosen for 

their height. The light intensity was approximately the same everywhere because the 

beech-dominated forest had a closed leaf cover. Nevertheless, slight differences in light 

intensity might have been possible due to different numbers of leaf layers. 

2.1.2.2 Experimental design and sampling setup 

2.1.2.2.1 13CO2 pulse labeling 

Within a regeneration area of uniform light intensity under a closed beech canopy, 50 

trees (25 beech, 25 ash) with approximately similar height  (3-4 m) were chosen scattered 

with a maximum distance of 300 m from the center of the site. Of these 50 trees 20 ashes 

(Fraxinus excelsior) and 20 beeches (Fagus sylvatica) were selected to perform a pulse 

labeling experiment, leaving 5 trees of each species as unlabeled reference trees. The 

aboveground biomass is listed in Table 2.1-1. 

 

Table 2.1-1: Mean above biomass 

Tree  

species 

Leaf Biomass (g) 

Mean +/-  SD 

Stem Biomass (g) 

Mean +/-  SD 

Beech 71 ± 5 402.8 ± 60.7 

Ash 45 ± 3 180 ± 10 

 

All leaves, stems and twigs were removed, tried and weighed. Labeling was performed on 

four or eight trees of each species on three consecutive days (8 trees on 16.08.2011 from 

http://dict.leo.org/ende?lp=ende&p=ziiQA&search=world&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=ziiQA&search=natural&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=ziiQA&search=heritage&trestr=0x8001
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11.30 to 13.30; 16 trees on 17.08.2011 from 9.30 to 12.30 and also 16 trees on 

18.08.2011 from 9.30 to 11.30).  The 20 trees of each species were considered as 

replicates, since the labeling was done on sunny days with similar light and microclimatic 

conditions (Table 2.1-2). 

The 13C was applied as 13CO2 to the aboveground parts of the plants by simultaneously 

pulse labeling trees in individual chambers. The chambers were ca. 5 m high and 2.5 m in 

diameter consisting of transparent polyethylene film with a thickness of 80 µm which were 

hung from a wooden frame and closed properly with adhesive tape to avoid gas leakage. 

The 13CO2 pulse was produced by injecting 60 ml 5 M sulfuric acid (H2SO4) into a solution 

of 100 ml distilled water containing 6.85 g sodium carbonate (Na2CO3) (Cambridge 

Isotope Laboratories, MA, USA) enriched to 99.0 atom% 13C. 500 ml polyethylene wide 

mouth bottles containing sodium carbonate were fixed to a bowl and placed inside the 

chamber. The chamber was then closed and sulfuric acid was carefully added from the 

outside into the Na2
13CO3 solution using syringes, and the puncture holes caused by the 

syringes were sealed with tape. Sulfuric acid was added in fivefold excess to ensure 

complete evolution of 13CO2. A 5-12 V fan inside each chamber guaranteed a uniform 

distribution of 13CO2. Samples of CO2 inside the chambers at the beginning and end of the 

treatment were taken to determine the change in CO2 concentration.  

 

2.1.2.2.2 15N labeling 

Prior to the CO2 pulse labeling, 12 ml glass vials were used as reservoirs containing 

9.7 ml of a calcium nitrate solution. This 15N solution was made up of 36 g calcium nitrate 

(99.23 atom% 15N, Campro Scientific GMbH, Berlin, Germany) dissolved in 1200 ml 

sterilized water. Three leaves of beech and three leaflets of ash with a similar area were 

cut 3 times on the edges to allow the uptake of the solution by the tree and then placed 

directly in the calcium nitrate solution in the vials. Three vials were fixed on the branches 

at different heights in each tree. The vials were closed with Parafilm and additionally 

covered with a transparent bag to avoid spilling on the ground. The vials were installed on 

the trees 3 days before the CO2 labeling and were removed before the CO2 labeling with a 

cut behind the leaves to avoid contamination of the ground or other leaves. Sampling was 

done after 4, 8, 13, 23, and 63 days. Leaf application of the 15N tracer was chosen 

because it allows the investigation of a unidirectional allocation belowground.  

 

 

http://dict.leo.org/ende?lp=ende&p=ziiQA&search=adhesive&trestr=0x801
http://dict.leo.org/ende?lp=ende&p=ziiQA&search=wide&trestr=0x2001
http://dict.leo.org/ende?lp=ende&p=ziiQA&search=mouth&trestr=0x2001
http://dict.leo.org/ende?lp=ende&p=ziiQA&search=bottle&trestr=0x2001
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2.1.2.3 Sampling and isotope analysis 

Of the 20 labeled trees of each species, five sets of four trees along with one reference 

tree were selected randomly for sampling at five time intervals (1, 5, 10, 20 and 60 days) 

after CO2 labeling (or 4, 8, 13, 23 and 63 days after 15N labeling). The plastic chamber 

was removed after the labeling period of 2 h and samples of four beeches and four ashes 

and a reference to each species were taken at each of the five time intervals.  

All leaves of each tree were harvested completely, mixed after drying and subsampled. 

Stems were sampled 10 cm above the start of the root, in the middle of the tree and from 

the top part. Root samples were taken 15 cm from the main root after the tree was entirely 

uprooted to make sure it belongs to the labeled tree. Soil was sampled 15 cm from the 

tree with a split tube in three replicates. The intact core was divided into 3 depth intervals 

(0-10cm; 10-20 cm; 20-30 cm) and all soil samples were sieved to 2 mm. For the analysis 

of leaves, stem, root and bulk soil C and N content and δ13C and δ15N values, all samples 

were freeze dried, ground in a ball mill (Retsch Schwingmühle MM2, Haan, Germany) and 

stored in a desiccator until further analysis.  

Leaf and soil samples were filled into tin capsules for measurement of relative N and C 

isotope abundances using an elemental analyzer NA1500 (Fison-instruments, Rodano, 

Milano, Italy) coupled to a Delta plus isotope ratio mass spectrometer (Finnigan MAT, 

Bremen, Germany) through a ConFlo III interface (Thermo Electron Corporation, Bremen, 

Germany). δ13C and δ15N values were calibrated based on co-measured certified IAEA 

Standards (IAEA-600, USGS26, USGS40, USGS41, IAEA-CH-6, IAEA-CH-7, NBS 18, 

IAEA-N-1, IAEA-N-2 and IAEA-NO-3). 

2.1.2.4 Calculation of 15N and 13C  

Plant uptake from sources of different isotope composition results in changes to their δ15N 

and δ13C values and follows a two component mixing model according to Gearing (1991), 

as shown in equation (1), 

    
refcerappliedTra

reflabelled

componentincTracer
atat

atat
CC

%%

%%




      (1) 

where [C]component is the C content of the component (mmol ∙ gdried soil;leaf;stem;root
-1) and 

[C]incTracer  is the total amount of 15N or 13C incorporated into the plant in (mmol ∙ gdried 

soil;leaf;stem;root
-1), at%labelled is the 13C or 15N values of the labeled sample of the tree (leaf, 

stem, root, soil), at%ref  the 13C or 15N values of the unlabeled reference sample of the tree 
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(leaf, stem, root, soil), and at%appliedTracer the 13C enrichment of the added CO2 or, 

respectively, 15N enrichment of the added Ca(15NO3)2 . 

2.1.2.5 Microbial biomass analysis 

A portion of the 2 mm sieved soil was transferred into a plastic bag and stored at 5 °C for 

chloroform fumigation-extraction. For the determination of microbial C and N content and 

δ13C and δ15N values, two subsamples of 15 g were taken. One of these was directly 

extracted and the other was fumigated with chloroform for 4 days in a desiccator, to be 

able to extract C and N from the lyzed microbial cells. 

Both the fumigated and unfumigated samples were extracted with 45 ml of 0.05 M K2SO4 

and placed on a horizontal shaker for 1.5 hours. After shaking, the samples were 

centrifuged for 15 min at 3000 rpm, the supernatant was filtered (Rotilab® round cellulose 

filters, type 15A) and captured in 50 ml plastic centrifuge tubes. 

C and N content was measured on a TOC analyser multi C/N® (Analytik Jena, Jena, 

Germany). For δ13C measurements, the samples were freeze-dried and then measured 

on the same unit as the bulk soil samples. 

13C and 15N incorporation into fumigated and unfumigated extracts was calculated 

according to the mixing model in equation 1. Microbial biomass C and N was calculated 

as the difference between fumigated and unfumigated amount, 13C and 15N uptake and 

corrected by an extraction coefficient of 0.45 for C (Wu et al 1990) and 0.54 for N 

(Brookes et. al. 1985). 

2.1.2.6 Statistics 

Field replications were corrected for outliers using the Nalimov outlier test with 

significance levels of 95% (when four repetitions were available). An analysis of variance 

(ANOVA) was calculated to quantify how single variables contributed to the observed 

variances of the data. Tukey HSD tests for post hoc comparison were used to compare 

isotope enrichment or total 13C or 15N uptake as dependent variables, while tree species, 

plant compartment and within-individual variation were used as independent variables 

(significance level of p < 0.05). The error bars show a standard error of the mean (SEM) in 

all graphs. Linear Regression of the relative 13C and 15N incorporation over time in soil 

(Figure 2.1-4) and microbial biomass (Figure 2.1-5) was fitted to the data according to a 

least square algorithm. 
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2.1.3 Results 

2.1.3.1 13C and 15N dynamics aboveground 

At one day after labeling, beech had taken up 20.2% and ash 9.1% of the applied 13CO2 in 

all measured compartments (Figure 2.1-1). The 13C allocation has been calculated per 

gram dry weight, therefore these values are comparable despite differences in tree 

biomass (Table 2.1-1). Beech allocated significantly more 13C to its leaves, stem and soil 

than ash. However, the roots did not differ in their 13C allocation at day one after labeling 

(Figure 2.1-1). Leaves and stem were both highly enriched in 13C (Figure 2.1-1) which 

reflects a rapid photosynthetic uptake in both trees but twice as much in beech than in 

ash. About 80% of the 13C recovered in all compartments was located in the leaves at day 

one and about 20% in the stem, for both tree species. The 13C signal was particularly 

pronounced for leaves and revealed a significant difference in dynamics between beech 

and ash. A rapid initial decrease in 13C incorporation to values of about 20% of the initially 

incorporated 13CO2 values was observed. However, beech showed this drop immediately 

and remained at the level of 20% from day 5 to day 60, whereas ash reached this 20% 

mark by continued decrease until 20 days after labeling. The 13C signal in the stem 

remained constant in beech and ash from day 1 until day 60 after labeling with the 

exception of a significant increase of the relative 13C allocation at day 60 in beech (Figure 

2.1-2 A).  
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Figure 2.1-1: Upper panels: Total 13C incorporation on day 1 in above- (left) and 

belowground (right) C pools; Lower panel: Total 15N allocation of the maximal incorporated 

Ca(NO3)2 on day 13 for beech and day 8 for ash in above- (left) and belowground (right) N 

pools; in 0-30 cm depth and at a distance of 15 cm radius from the tree, beech (black 

symbols) and ash (red symbols). Error bars show SEM. * shows significant (p < 0.05) 

differences of the different compartments between ash and beech. 

 

Whereas the highest total 13C incorporation was always observed for day 1, the highest 

15N uptake from the applied Ca(15NO3)2 into beech was recorded 13 days after removing 

the label solution, at 46.0%. The highest 15N uptake from the applied Ca(15NO3)2 into ash 

was detected 8 days after the labeling, at 45.4% (Figure 2.1-1). This time lag in 15N uptake 
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might be due to the lack of measurement of twigs. The absolute allocation rates of the 

applied 15N differed neither in leaves nor in the stem between the tree species. 97.5% of 

the assimilated 15N was located in the leaves on day 13 in beech and 99.3% on day 8 in 

ash (Figure 2.1-2 C). For both trees, 15N in the leaves decreased thereafter. The first 

sampling at day 4 after the start of N labeling and the sampling at day 23 revealed that 

ash incorporated significantly more 15N into the stem (0.5% of maximal incorporated N) 

than beech (0.05% of maximal incorporated N). An immediate consistent increase of the 

relative 15N allocation into the stem in both trees over the entire experimental period could 

also be observed. However, the increase of the relative 15N allocation from leaves to stem 

over time in beech was more rapid than in ash. Beech had a relative 15N allocation of 

5.4% on day 63 after the labeling in comparison to ash with 3.1% (Figure 2.1-2 C).  

In summary, in this experiment beech fixed twice as much 13C by photosynthesis as ash, 

but both tree species incorporated a similar 15N amount into leaves. Beech showed a 

more rapid transport of photosynthates through the tree and allocated twice as much of 

the assimilated 13C into the stem.  

 

Figure 2.1-2: 13C allocation (in % of the initially assimilated 13CO2 at day one) in (A) leaves 

(diamonds) and stem (squares), (B) roots (triangle) and soil (circles), 0-30 cm depth at a 

distance of 15 cm from the tree. Relative 15N allocation of the maximal incorporated 

Ca(NO3)2 (day 13 for beech and day 8 for ash) in (C) leaves and stem (D) roots and soil at 

15 cm distance from tree at 0-30 cm depth in beech (black symbols) and ash (red 
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symbols); Error bars show SEM; * shows significant (p ˂ 0.05) differences of leaves and 

roots between beech and ash for individual sampling dates. # shows significant (p ˂ 0.05) 

differences of stem and soil between beech and ash for individual sampling dates. 

2.1.3.2 13C and 15N dynamics belowground 

A slight increase of relative 13C incorporation observed over time in roots and soil was in 

accordance with the decrease in leaves and stem and reflects the belowground 

translocation of assimilated 13C in both tree species (Figure 2.1-2 A, B). The rapid 13C 

transport in beech (Figure 2.1-2 B) showed that already at day one, beech released much 

more 13C into the soil (2.0 % of initially assimilated 13C) than ash (0.2% of initially 

assimilated 13C). This can also be observed for all soil depths in the 13C incorporation into 

microbial biomass (Figure 2.1-3 B). 13C allocation in the microbial biomass had already 

peaked one day after labeling and showed a depth-related abundance in beech (Figure 

2.1-3 B). Figure 2.1-3 (A) shows that ash displayed similar dynamics at all soil depths with 

a peak allocation of 13C into the soil at day 20, while beech had an initially higher and 

more constant rhizodeposition over the 60 days (Figure 2.1-3 A). On day five after 

labeling, 13C allocation to the root was higher in ash than in beech (Figure 2.1-2 B). Most 

microbial biomass 13C incorporation under ash was lower than the detection limit. Despite 

the fact that measurement accuracy is higher for microbial biomass than for soil (due to 

the high activity of microbial biomass in 13C incorporation and a large passive C pool in 

soil), there was no significant enrichment of microbial biomass under ash. The low 

absolute 13C assimilation of ash accounts for the low enrichments in microbial biomass, 

and there were no differences to the unlabeled reference. 
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Figure 2.1-3: Relative 13C allocation (% of the initially assimilated 13CO2 at day one) in (A) 

soil at 0-10 cm depth (circle), 10-20 cm depth (triangles), 20-30 cm depth (diamonds) and 

(B) microbial biomass depending on depth and time at 15 cm distance from the tree and in 

beech (black symbols) and ash (red symbols). Relative 15N allocation of the maximal 

incorporated Ca(NO3)2 (day 13 for beech and day 8 for ash) in (C) soil and (D) microbial 

biomass depending on depth and time. Error bars show SEM; * shows significant (p ˂ 

0.05) differences between beech and ash at one depth of 0-10 cm, # at a depth of 10-20 

cm; small letters show differences between depths in one tree species: (a) shows 

significant (p ˂ 0.05) differences between beech soil at a depth of 0-10 cm to both other 

depths for individual sampling dates (b) shows differences between ash soil at a depth of 

10-20 cm to both other depths for individual sampling dates. 

 

13 days after the N labeling a significant difference in the 15N signal was measured in the 

soil sampled at 15 cm distance from beech (0.1% of the maximal incorporated 15N) and 

ash (0.04% of the maximal incorporated 15N) (Figure 2.1-2 D). Beech allocated more of 

the incorporated 15N to soil but less 15N to its roots – a behavior which is similar to the 13C 

partitioning between soil and roots (Figure 2.1-2 B). Beech also displayed a significantly 

depth-related rhizodeposition with a maximum in the 0-10 cm soil segment starting at day 

13 after labeling (Figure 2.1-3 C). The rapid transport of assimilates in beech is also 

noticeable in the N allocation. While the 15N signal is evident in the soil of beech at day 13, 
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it takes until day 65 to show a pronounced signal in ash soil. This peak on day 13 for 

beech is also reflected in the N allocation to the microbial biomass. Beech allocated only 

one tenth of its incorporated 15N to the microbial biomass, whereas for ash almost all was 

taken up into microbial biomass. 15N incorporation into microbial biomass was significantly 

higher in soil of 10-20 cm depth under ash than at other depths for ash and the same 

depth for beech (Figure 2.1-3 D). 

In summary, beech has an initially higher and more constant rhizodeposition than ash and 

beech also displays a higher 13C uptake by microbial biomass than ash. However, ash 

provides almost all of its exudated 15N for uptake into microbial biomass in comparison to 

beech. Only 10% of the exudated 15N was taken up by microorganisms under beech. 

2.1.3.3 Spatial gradients of 15N and 13C allocation around the trees 

The allocation of 13C at increasing distances from the tree was investigated at day 5 after 

13C labeling (day 8 after the start of 15N labeling). At any given soil depth there was no 

change in 15N or 13C exudation along the investigated 60 cm distance. However, there 

were differences between the soil depths, with ash allocating significantly more 13C to the 

10-20 cm depth than to any other depth throughout the 60 cm distance from the tree 

(Figure 2.1-4). For beech, 13C and 15N enrichment was always highest in the top 10 cm 

compared to the other soil depths. However, due to the large C pools in these forest soils, 

the 13C enrichment was too low to draw conclusions on the 20-30 cm depth for either tree 

species or to see any clear effects of increasing distance from the trees.  
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Figure 2.1-4: Relative 13C allocation (in % of the initially assimilated 13CO2) with linear fits 

in soil at 0-10 cm depth (circle/solid line), 10-20 cm depth (triangles/long dash line), 20-30 

cm depth (diamonds/dotted lines) and distance from the tree at day 5 after labeling and in 

beech (black symbols/lines) and ash (red symbols/lines). For parameters of the linear 

regressions see Table 2.1-3. Relative N allocation of the maximal incorporated 15N (day 

13 for beech and day 8 for ash) with linear fits in soil depending on depth and distance 

from the tree. Error bars show SEM. 

 

For both tree species, the 13C allocation to soil displayed a positive trend with increasing 

distance from the tree, related to the increase of the rooted soil volume with distance. For 

both tree species, the highest 13C and 15N incorporation into the microbial biomass was 

found in the top 10 cm (Figure 2.1-5). Thus, spatial allocation to microbial biomass does 

not reflect the distribution of allocation to soil, which might be connected with root 

distribution or might indicate that the amount of C input is not controlling microbial 13C 



Results    Study 1    

59 

incorporation. The distance effect is less pronounced in the 15N allocation in both tree 

species (Figure 2.1-4; Figure 2.1-5). 

In summary, a depth-related rhizodeposition 13C and 15N was evident under beech. Ash 

allocated more 13C to the 10-20 cm soil depth. And at any given soil depth there was no 

change in 15N or 13C exudation along the investigated 60 cm distance.  

 

Figure 2.1-5: Relative 13C allocation (in % of the initially assimilated 13CO2) with linear fits 

in microbial biomass at 0-10 cm depth (circle/solid line), 10-20 cm depth (triangles/long 

dash line), 20-30 cm depth (diamonds/dotted lines) depending on depth and distance from 

the tree at day 5 after labeling and in beech (black symbols/lines) and ash (red 

symbols/lines). For parameters of the linear regressions see Table 2.1-3. Relative N 

allocation of the maximal incorporated 15N (day 13 for beech and day 8 for ash) with linear 

fits in microbial biomass depending on depth and distance from the tree. Error bars show 

SEM.  
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2.1.4 Discussion 

2.1.4.1 C allocation within plant-soil system depending on tree species  

Given the major importance of belowground C and N allocation for soil processes, we 

used a quantitative method for investigating the coupling of canopy C assimilation with 

belowground processes. Therefore, we were able to trace directly the C fluxes into the soil 

by two tree species. This study revealed that beech assimilated twice as much of the 

applied 13CO2 as ash, but beech and ash incorporated similar 15N amounts into leaves. 

The photosynthates were transported belowground through phloem more rapidly in beech 

than in ash and ash preferentially accumulated 15N and 13C in the roots. However, beech 

released more 13C and 15N via rhizodeposition into the soil than ash, which was also 

subsequently recovered in microbial biomass. This approach enables tracing of above- 

and belowground C and N allocation and consequently can reveal the controlling influence 

of individual tree species on broad leaf forest C and N cycles. Pulse-labelling of trees with 

13CO2 and 15N allows quantification of at least three important aspects of whole-plant C 

and N metabolism: 1) the portion of assimilated C and incorporated N, 2) the rate of 

transfer of C and N between compartments, 3) the residence time of C and N in these 

compartments. Only a few in-situ labelling experiments on tall trees have been reported 

(Carbone et al., 2007; Högberg et al., 2008; Andersen et al., 2010; Keel et al., 2012; 

Shibistova et al., 2012) and even fewer experiments have provided quantitative insights 

into C residence times in short-lived storage pools and of transfer rates among plant 

compartments and between plants, soil and the atmosphere (Plain et al., 2009; Epron et 

al., 2011; Warren et al., 2012). The many differences between individual tree species 

cause tremendous challenges in tree labeling studies – especially if focused on time-

series allocation patterns. The necessity to harvest the entire tree to receive a full isotopic 

budget means that over time series not only other time points but also other tree 

individuals have to be compared. This introduces high variability to the data, as can be 

seen in Figure 2 und 3. Nevertheless, such tree labeling studies in the field offer unique 

opportunities to trace C and N allocation patterns under natural conditions. 

The transfer time of photosynthates to ecosystem respiration has been indirectly 

estimated by tracing natural 13C fluctuations related to climate-induced variations in 13C 

discrimination during photosynthesis. Time lags were observed for tall Douglas fir trees 

(Bowling et al., 2002; McDowell et al., 2004), mixed hardwood forest (Mortazavi et al., 

2005) and beech and oak (Epron et al., 2012). Epron et al. (2012) came to the conclusion 

that the relationship between the rate of C transfer and the time lag of peak 13CO2 efflux 

from the soil differs between broad-leaved species (oak and beech) and pine. Dannoura 
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et al. (2011) and Wingate et al. (2010) stated that the distinctly different transfer time of 

13C belowground between two broad-leaved species and pine is caused by differences in 

the velocity of photosynthate transport via the phloem sap. In our study, we just compared 

two broad-leaved species and a rapid photosynthetic uptake in beech was detected, but 

also a species-specific time lag between beech and ash in the 13C allocation belowground. 

The higher photosynthetic 13CO2 fixation can be partially attributed to the higher leaf 

biomass (p < 0.01) and thus photosynthetically active tissue in beech than in ash. 

However, the leaf area, not measured in this study, may be an even more accurate 

physiological tree parameter to characterize photosynthetic capability. Nevertheless, it can 

be stated that the CO2 fixation capacity of beech is significantly higher than of ash trees of 

similar tree height. Tree size and age may also affect CO2 uptake and distribution. 

However, in this study we could unfortunately not repeat the measurements on the trees 

of different sizes, although that would be an interesting approach for further studies. 

Already at day one after labeling the relative 13C allocation of the assimilated CO2 was 

about 80% in the leaves and about 20% in the stem in both tree species. Beech and ash 

transported about 75% of the initially incorporated C away from the leaves which resulted 

in the clear peak of 13C allocation in the stem of beech. Ash showed a slower decrease of 

C in the leaves and just a slight increase in the stem which might be explained by leaf 

respiration of most of the assimilated C. Thus, there was no time lag difference detectable 

in the uptake of the 13C between the two tree species, but there was already a difference 

in time lag noticeable in the allocation into the stem. However, there might also be a 

difference in the velocity of photosynthate transport via the phloem sap, which causes the 

time lag of the C transport observed for ash and beech.  

Ryan et al. (1996) showed that the dark respiration from foliage and fine roots at night was 

linearly related to biomass and N content, but N was a better predictor of CO2 efflux than 

plant biomass. They concluded that the higher the N content, the greater the CO2 efflux 

produced. Langenbruch et al. (2012) showed in the same forest that ash litter has a higher 

N content than beech, which would support our findings for dark respiration with regard to 

the results of Ryan et.al (1996). Therefore, our study leads to the conclusion that ash 

respires most of the assimilated C directly in the leaves - presumably at night, whereas 

beech allocates more of the assimilated C belowground. 

Trees like beech accumulate more Corg in the forest floor and less Corg in the mineral soil 

compared to ash (Langenbruch et al., 2012). This property of beech was mainly attributed 

to the high C:N and lignin:N ratio in litter, which slows decomposition (Guckland et al., 

2009b; Kooijman and Cammeraat, 2010). However Vesterdal et al. (2008) showed that 

the forest floor and litter fall C:N ratios were not related, whereas the C:N ratio of mineral 
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soil (0–30 cm) better indicated N status  of the tree under beech and ash on rich soil. They 

already suggested that European deciduous tree species differ in C and N sequestration 

rates within forest floor and mineral soil. However, Callesen et.al. (2015) stated recently 

that the average forest SOC stock remains unchanged over decades for soils < 4.1% C in 

the top mineral soil, whereas the sink/source status of very C rich and organic soils 

remains uncertain.  Thus, besides the slow litter decomposition under beech, 

rhizodeposition could be another reason explaining the higher C accumulation. 

Nevertheless, Meinen et al. (2009) and Cesarz et al. (2013) showed that ash has more 

fine roots and a more vigorous root growth than beech, which should also lead to more 

rhizodeposition. Ash also preferentially invested the assimilated 13C into the root biomass 

in our study. Already five days after the labeling, the relative 13C allocation into the root of 

ash was significantly higher than in beech. However, our experiment also revealed rapid 

13C transport through the beech tree, and also significantly higher 13C allocation via the 

roots into the soil in beech. At day one after labeling, beech had already allocated 2% of 

the assimilated 13CO2 into the soil. This is 10 times more C than observed for ash. Beech 

also showed an initially higher and more constant rhizodeposition over the 60 days than 

ash. These findings demonstrate that the 13CO2 labeling technique applied in our 

experiment is suitable to investigate C rhizodeposition into soil under tall trees in 

deciduous forests in situ.  

Comparison of various ecosystems revealed that the relative belowground translocation of 

assimilated C for trees is smaller than, for example, for grasses (Kuzyakov and Domanski, 

2000). Our results demonstrate clearly that there is a species effect in the rhizodeposition 

even if two deciduous tree species are compared. This finding has to be considered in 

further labeling experiments. Only a small proportion of the rhizodeposits remain in the 

soil because most of the C rhizodeposits are decomposed to CO2 by microorganisms 

(Kuzyakov and Larionova, 2006; Werth et al., 2006; Jones et al., 2009). Microbial biomass 

is composed of a large number of various microorganisms and includes the extraradical 

mycelium of mycorrhizal fungi. A rapid transfer of photosynthate to ectomycorrhiza has 

indeed been reported (Leake et al., 2001; Esperschütz et al., 2009; Hogberg et al., 2010) . 

The results in our experiment corroborate those findings. Beech is associated with 

ectomycorrhiza and ash roots with arbuscular mycorrhiza (Meinen et al., 2009). For 

beech, 13C allocation into the microbial biomass peaked already at day one after the 

labeling and showed a depth-related abundance. This can be explained by the fast 

transfer of C from roots to mycorrhizal fungi in beech.  

We conclude that 13C labelling of trees offers the unique opportunity to trace the fate of 

labelled CO2 into the tree and its release to the soil and the atmosphere in forests in situ. 

Thus, pulse labelling enables the quantification of C partitioning in forests and the 
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assessment of the role of C and N partitioning for growth of individual tree compartments, 

resource acquisition and C sequestration in soils dependent on season and tree growth 

stage (Epron et al., 2012). 

2.1.4.2 N allocation within plant-soil system depending on tree species  

To investigate the partitioning of N among soil, litter, below- and above-ground biomass, 

15N-nitrate (15NO3
-) as well as 15N-ammonium (15NH4

+) has been added to the soil in 

predominantly coniferous forest ecosystems (Preston and Mead, 1994; Buchmann et al., 

1995; Tietema et al., 1998; Perakis and Hedin, 2001; Compton and Boone, 2002). The 

results from those studies showed that inorganic N allows a rapid and localized 

investigation of the N partitioning between plants and microorganisms from soil (Kuzyakov 

and Xu, 2013). In this experiment, N tracer was added to leaves, in contrast to the other 

studies. 

The highest 15N uptake from the applied Ca(15NO3)2 was observed 13 days after the start 

of the N labeling from beech trees, at 46.0% (Figure 2.1-1). For ash the relative 

incorporation was similar, but this maximum occurred earlier, i.e. 8 days after the labeling. 

Thus, almost half of the applied 15N could be recovered in the trees. However, the delay in 

the 15N incorporation maximum was unexpected as the highest total 13C recovery was 

observed for day one after labelling in both tree species. This delay in the maximum of N 

recovery might be due to the labeling of a limited number of leaves, leading to N allocation 

from the labelled leaves through twigs to other leaves. However, our results revealed that 

the N redistribution in the beech crown proceeds faster than in ash. 

Fine roots of ash are almost absent in some parts of the soil profile but are clustered in 

other parts, forming hot spots within the profiles (Schütt et al., 2006; Pausch and 

Kuzyakov, 2011). Beech in contrast has a heart root system in which several major roots 

are developed, growing in parallel into the depth (Schütt et al., 2006). These differences in 

root distribution within the pedon can account for the depth-related 15N rhizodeposition of 

beech with a maximum in the topsoil, whereas ash, with lower absolute 15N allocation into 

soil, showed a more homogenous 15N distribution in our study. The fact that roots in 

different soil depths show altered physiological activities might be the reason for ash 

displaying significantly higher 15N incorporation in the microbial biomass in 10-20 cm in 

comparison to the topsoil and to beech at the same depth. 15N of the ash allocated to the 

soil was almost completely incorporated into the microbial biomass. In contrast, for beech 

only one tenth of its N was allocated to microbial biomass. This indicates that ash N 

exudates are more microbially available, presumably in the form of N-rich, low-molecular 

weight root exudates like amino acids. In contrast, such monomeric substances may only 
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make up a small proportion of the N released by beech: Beech rhizodeposition may be 

dominated not by root exudates but by more stable structural compounds like proteins. 

Another explanation for the contrasting 15N distribution between ash and beech in soil and 

microbial biomass could be the types of mycorrhiza the tree species associate with. 

Beech is associated with ectomycorrhiza and ash roots with arbuscular mycorrhiza 

(Meinen et al., 2009). The type of mycorrhizal association may also affect root activity. 

Meinen et al. (2009) showed by microscopic inspection of beech and ash that the 

mycorrhizal colonization rate was significantly higher in beech than in ash roots (Cesarz et 

al., 2013). This may account for the higher 15N allocation into soil and microbial biomass in 

beech in our experiment.  

Ash has more fine roots with a more vigorous root growth than beech and in general fine 

roots tend to contain more N (Meinen et al., 2009; Cesarz et al., 2013). Our study showed 

that ash incorporated more 15N into roots and had less rhizodeposition into the soil, which 

can be explained by the morphology of the ash root system. The results suggest that 

beech and ash differentially impact soil processes: Ash preferentially invests allocated C 

and N in root biomass formation whereas beech affects the belowground system via root 

exudates and associated changes in rhizosphere microorganisms and C dynamics. 

Therefore, the individual strategies of C and N allocation of beech and ash are 

representative examples of niche strategies of two broad-leaved trees in deciduous 

forests. Although we cannot conclude which distinct advantages beech and ash achieve 

from their individual niche strategies, our results suggest that differences in C and N 

allocation patterns between ash and beech provide a higher diversity of soil functions. 

Especially in species-poor systems like broad-leaved forest, tree diversity will increase 

functional diversity in soils and thus improve ecosystem stability compared to forests with 

pure stands of a single tree species.  
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2.1.5 Conclusions 

 

Tree species effects on C and N allocation and dynamics above- and belowground were 

investigated for beech and ash. Beech assimilates more CO2 than ash trees of similar 

size, presumably due to a higher amount of photosynthetically active leaf biomass. Ash 

stores more C and N in the plant biomass, at least in August. Beech had a faster 

belowground transfer of photosynthate including a faster release of C in root exudates to 

microorganisms feeding on rhizodeposition. A lower and slower C transfer belowground 

by ash compared to beech was discovered and all C released by ash into soils was 

recovered in microbial biomass.  

The labeling with Ca(15NO3)2 clearly revealed different N allocation patterns for beech and 

ash: Whereas ash allocated 0.2% of the maximal incorporated 15N belowground mainly for 

root growth after 63 days, beech distributed only 0.1% of the maximal incorporated 15N 

into the root. Nevertheless, of the 15N allocated belowground, beech allocated the greater 

proportion to the soil (1.3% of the total 15N recovery) while only 0.6% were released by 

ash after 63 days. However, no methods currently exist to differentiate between direct 

translocation from root to mycorrhizal hypha and exudation and microbial uptake from soil 

solution.  

Furthermore, for other tree species dominant in various forest ecosystems, the 

composition of root exudates and the fate of C in the soil microbial community need to be 

investigated to be able to understand C and N cycles. This knowledge is essential to 1) 

assess the ability of forest ecosystems to sequester C above- and belowground and 2) to 

improve conservation projects in deciduous forest systems and estimate their influence on 

the global C cycle.  
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Table 2.1-2: Mean temperature and humidity, during the labeling period for 13C 
from 8 am to 7 pm 

Day of labeling 

 

Mean Temperature (°C)  

+/-   SD 

Mean relative Humitidy 
(%)  

+/-   SD 

16.08.2011 17 ± 2 80 ± 7 

17.08.2011 21 ± 3 68 ± 20 

18.08.2011 22 ± 3 72 ± 12 

 

 

Table 2.1-3: Parameter list for the Linear Regression of 13C and 15N incorporation 
over time 

Linear Regression of the relative 
13

C 
and 

15
N incorporation over time in 

Slope 
Y-axis 
gap 

Regression 
coefficent R

2
 

Significance 

p-value 

F-
value 

Beech soil 0-10 cm 0.014 0.631 0.115 0.577 0.389 

Beech soil 10-20 cm 0.010 -0.057 0.232 0,411 0.907 

Beech soil 20-30 cm 0.001 0.423 0.001 0.954 0.004 

Ash soil 0-10 cm 0.010 -0.057 0.232 0.411 0.907 

Ash soil 10-20 cm 0.084 0.043 0.832 0.031 14.864 

Ash soil 20-30 cm 0.002 0.109 0.125 0.559 0.429 

Beech Mibi 0-10 cm 0.012 0.401 0.267 0.373 1.0912 

Beech Mibi 10-20 cm 0.005 0.053 0.455 0.212 2.500 

Beech Mibi 20-30 cm 0.008 0.153 0.285 0.354 1.196 

Ash Mibi 0-10 cm 0.062 -0.734 0.900 0.014 26.906 

Ash Mibi 10-20 cm 0.002 0.325 0.012 0.859 0.037 

Ash Mibi 20-30 cm 0.018 -0.284 0.658 0.096 5.770 
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Abstract 

 

Rhizodeposits act as major carbon (C) source for microbial communities and rhizosphere-

driven effects on forest C cycling receive increasing attention for maintaining soil 

biodiversity and ecosystem functions. By in situ 13CO2 pulse labeling we investigated 

microbial utilization of rhizodeposits by analyzing 13C incorporation into phospholipid fatty 

acids (PLFA) of beech- (Fagus sylvatica) and ash-associated (Fraxinus excelsior) 

rhizomicrobial communities. Plant compartments and soil samples were analyzed to 

quantify the allocation of assimilates. For trees of similar height (~ 1 m), ash assimilated 

more of the applied 13CO2 (31%) than beech (21%), and ash allocated twice as much 13C 

belowground until day 20. Approximately 0.01% of the applied 13C was incorporated into 

total PLFAs, but incorporation varied significantly between microbial groups. Saprotrophic 

and ectomycorrhizal fungi under beech and ash – but also arbuscular mycorrhizal fungi 

and Gram negative bacteria under ash – incorporated most 13C, with incorporation 

decreasing from day 5 to 20. This indicates tree-species-specific C turnover in microbial 

groups. PLFA allowed differentiation of C fluxes from trees into mycorrhiza as twice as 

much 13C was incorporated into the fungal biomarker 18:2ω6.9 under beech than under 

ash. Within 5 days, 30% of the fungal PLFA-C was replaced by rhizodeposit-derived 13C 

under beech but only 10% under ash. None of the other microbial groups reached a 

similarly high C replacement, suggesting direct C allocation via ectomycorrhizal 

symbioses dominates the C flux belowground. Overall, the results suggest that the C 

cycle in forest soils depends on tree species-specific rhizodeposition and mycorrhizal root 

associations. 

Key-words: 13CO2 labeling, Carbon cycle, Tree rhizodeposition; Species effects, 

Deciduous forest, PLFA  
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2.2.1 Introduction 

 

The total forest area of the world in 2005 was estimated to be about 4 billion ha or 30% of 

the total land area [1]. Forests store 80% of the terrestrial aboveground biomass and thus 

determine the C balance of terrestrial ecosystems [2]. An estimated 73.5 t ha-1 of carbon 

(C) are stored in the soils (0-30 cm) of the world’s forests, which is more than in the living 

tree biomass (71.5 t ha-1) [1]. The C stock in the litter horizon of European forests is 

estimated to be 6.1 t ha-1 and the C stock in mineral soil 113 t ha-1 [1]. Beech is the most 

common deciduous tree in Germany, covering an area of 1.68 million ha, which is 15.4% 

of the entire forest area [3]. Beech therefore is of great economic value and ecological 

importance in Central Europe [4]. Ash makes up ca. 10% of the forest area in Germany 

and is seen as a promising species for the future forestry industry [5]. These two tree 

species therefore are major representatives of forests in Germany and taken as model 

species for investigating C allocation of trees belowground [6, 7]. Notably, the link 

between tree species identity and soil microorganisms in mixed-species forests remains 

little studied [8]. 

C allocation to roots and into the rhizosphere has received little attention in trees [9-11]. 

Up to 90% of the net primary production of trees enters the soil as detritus [12], where 

fungi and bacteria subsist on rhizodeposits and show a high metabolic versatility. The 

amount, composition and dynamics of rhizodeposits and their ecological functions, 

especially those of trees, are poorly investigated [13]. This calls for focusing on feedback 

mechanisms between rhizodeposits and the microbial community composition. 

Phospholipids – biomarkers for microbial community composition – are fundamental 

membrane components of all living cells [2]. Certain fatty acids are marker molecules for 

certain microbial groups [14] and can be used to characterize microbial communities, 

including Gram positive and Gram negative bacteria as well as fungi. They also can be 

used to assess the effects of plant species diversity on soil microbial communities [2]. 

Gram negative and Gram positive bacteria differ not only in their cell wall composition but 

also in their ecophysiological functions [15].  

This study was part of a nine-year project that investigated soil organic matter (SOM) 

formation under broad-leaved trees dominating in Germany. SOM stocks were higher in 

mixed stands as compared to mono-specific stands [16, 17]. SOM accumulation in the 

litter layer was highest under beech (0.81 kg m-2) and lowest in stands with highest 

diversity and the lowest abundance of beech (0.27 kg m-2) [18]. Beech accumulates more 

Corg in the forest floor but less Corg in the mineral soil as compared to ash, confirming that 
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the species-specific litter quality affects major characteristics of forest soils [19]. Beech 

litter has high C-to-N ratio (53) and high lignin content (85 mg g-1 dry matter), which 

retards decomposition processes. Ash litter, in contrast, is characterized by high quality, 

low C-to-N ratio (31) and low lignin content (25.3 mg g-1 dry matter) [18, 20, 21]. 

Therefore, ash litter decomposes faster than beech litter, returning nutrients to the soil 

faster [22, 23].  

We chose ash and beech not only because of their different litter quality and nutrient 

allocation patterns, but also because of differences in root morphology and mycorrhiza 

types [24]. Beech roots are associated with ectomycorrhizal (ECM) fungi such as 

Byssocorticium atrovirens, Lactarius subdulcis and Xerocomus chrysenteron, which are 

also saprotrophic and decompose diverse carbon sources [25]. In contrast, ash roots are 

associated with arbuscular mycorrhizal fungi [24] and ash presents a typical tap root 

system. Beech has a heart root system in which several major roots are developed, 

growing downward in parallel [26]. Ash exhibits fine roots of larger diameter, lower specific 

root area and lower specific root tip abundance than beech [24].  

We hypothesized 1) the composition of microbial groups under beech to differ from that 

under ash, and 2) belowground C allocation and transformation to differ between microbial 

groups. In detail, we expected saprotrophic fungi to be more abundant under beech than 

under ash, and AMF to be more abundant under ash than under beech. We used PLFAs 

to investigate differences in microbial community structure under the two tree species. To 

analyze the incorporation of rhizodeposits into microorganisms, we pulse labeled ash and 

beech trees with 13CO2. We quantified the allocation of rhizodeposits into various microbial 

groups by 13C-PLFA and inspected C incorporation into individual microbial groups, 

especially into mycorrhizal fungi and Gram negative bacteria. 
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2.2.2 Material and Methods 

2.2.2.1 Site description  

The experimental site – Göttinger Wald (51°35'15.39"N 9°58'57.95"E, 362 AMSL) – is 

located southeast of Göttingen, Lower Saxony, Germany. The region is characterized by 

mild winters and humid summers with an annual precipitation of 613 mm and a mean 

annual temperature of 8.7 °C [27]. The Göttinger Wald is a 130–145-year-old beech forest 

scattered with ash and maple. The soil is an Orthic Renzina with typical mull humus [28]. 

The pH of the topsoil varies between 4.4 and 7.0 [29, 30]. Forty ash and 40 beech trees 

with a height of ca. 1 m (73-177 cm) were chosen in May 2012.  

2.2.2.2 Experimental design and sampling setup 

Ash and beech seedlings (approx.1 m) were taken from the forest with undisturbed soil, 

and the entire soil core was placed into 23-cm-diameter pots of a depth of 26 cm. The 

trees had a reestablishment time of 2 months; they were kept in a shaded area under the 

canopy of mature beech trees and then transferred to an outdoor greenhouse. The 

seedlings were irrigated regularly, and herbs were removed by cutting the shoots at the 

soil surface. Shortly before the start of the experiment, the pot was wrapped with plastic 

and closed airtight with Terostat (Teroson Terostat-VII, Henkel, Düsseldorf, Germany) to 

avoid 13CO2 re-uptake from soil respiration [10]. An irrigation system was established 

consisting of PVC tubes (Deutsch & Neumann, Berlin, Germany) with an inner diameter of 

6 mm and fixed with cable ties to the plastic wrapping (OBO Bettermann GmbH & Co. KG, 

Menden, Germany). A ventilation system was used within the plastic bags.  

The 13CO2 pulse labeling was conducted on 20 ashes and 20 beeches in a chamber with 

a surface area of 1 x 1 m² and approximately 2 m high [31, 32]. Twenty beeches and 20 

ashes remained unlabeled as reference trees. Conditions in the chamber were kept at 

1,013 hPa, 20 °C and 70% relative humidity; light intensity was 420 µE for 16 h day-1. The 

seedlings were labeled in four labeling periods involving batches of ten seedlings each. 

Five beech and ash seedlings of each batch were sampled immediately after three days 

labeling with 13CO2 and two days exposure to 12CO2: Another 5 beech and ash seedlings 

of each batch were sampled 20 days after the start of the labeling. The reference 

seedlings were kept under similar conditions. 

Seedlings were acclimatized for two days in the chamber at 400 ppm with unlabeled CO2 

produced by injecting 5 molar lactic acid in a 0.5 molar solution of 12C sodium carbonate 

(KMF Laborchemie Handes, Lohmar, Germany). The 13CO2 pulse was produced by 
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injecting 5 molar lactic acid into a 0.5 molar 13C sodium-carbonate (Na2CO3) solution 

(Sigma-Aldrich, Traufkirchen, Germany) enriched with 99 atom% 13C. The seedlings were 

exposed to 13CO2 for three days and to 12CO2 for two days for 16 h day-1 with a maximum 

CO2 concentration of 1800 ppm. The CO2 concentration in the chamber was monitored 

using an infrared gas analyzer (CARBOCAP™ Serie GMM220, Driesen + Kern GmbH, 

Bad Bramstedt, Germany). To reduce dilution of the 13CO2 by plant-derived CO2 at night, 

CO2 in the chamber was absorbed by pumping the air through a 1 M NaOH solution. 

Samples of 5 beech and 5 ash seedlings and 5 reference seedlings of each species were 

harvested 5 and 20 days after the CO2 pulse labeling. Soil was sampled next to the stem 

of the tree in the pot with a split tube. The intact core was sampled at depths of 0-10 cm 

and below 10 cm 5 and 20 days after labeling. Only the 0-10 cm depth sample was 

considered because the highest 13C incorporation into microbial biomass was recorded in 

the top 10 cm in a field experiment under beech and ash [9]. The soil was removed from 

the column, weighed and the water content was determined in a subsample. Each soil 

sample was sieved to 2 mm and stored at -20 °C until PLFA analysis. 

2.2.2.3 PLFA analysis and calculation 

2.2.2.3.1. Phospholipid extraction, purification, derivatization and measurement 

An improved method of Frostegård et al. [33] was used to extract and purify phospholipids 

(for details see [34]). Six grams of soil were used for extraction and polar lipids were 

eluted four times with 5 ml of water-free methanol. Twenty-five milliliters of the internal 

standard 1 (IS 1) phosphatidylcholine-dinonadecanoic acid (1 mg ml-1 in methanol) were 

added prior to extraction. Fatty acids were saponified to free fatty acids and derivatized 

into fatty acid methyl esters (FAMEs) [35] for measurement on a GC. Fifteen milliliters of 

an internal standard 2 (IS 2) tridecanoic acid methyl ester (1 mg ml-1 in toluene) were 

added before the samples were transferred to auto sampler vials. External standards 

consisting of the 27 fatty acids given in Supplementary Table 2.2-3 and internal standard 

1 were prepared with total fatty acid contents of 1.0, 4.5, 9.0, 18.0, 24.0 and 30.0 mg, 

respectively, and derivatized and measured together with the samples. 

Table 2.2-1 lists the grouping of the individual fatty acids, whereby each of these groups 

represents an ecophysiological or functional microbial group in soil. The table includes 

only those fatty acids that are not ubiquitous but at least partially specific for a certain 

microbial group. 
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Table 2.2-1: Identified microbial groups and their specific fatty acid amounts 
(mean ± SEM) in soil of beech and ash seedlings. 

Microbial groups Abbreviation  Fatty acids Under beech 

(μg g
-1

 dry 
soil) 

Under ash 

(μg g
-1

 dry 
soil) 

   day 5 day 
20 

day 5 day 20 

Gram positive 1 G+1  i14:0 

a16:0 

i17:0 

20:1ω9 

0.030 
± 

0.002 

0.040 
± 

0.007 

0.032 
± 

0.003 

0.035 
±0.002 

Gram positive 2  G+2  i15:0 0.067 
± 

0.001 

0.074 
± 

0.002 

0.076 
± 

0.003 

0.074 
± 

0.001 

Gram positive 3 G+3  a15:0 

a17:0 

0.076 
± 

0.004 

0.069 
± 

0.005 

0.087 
± 

0.007 

0.079 
± 

0.002 

Gram positive 4 G+4  i16:0 0.030 
± 

0.001 

0.030 
± 

0.002 

0.028 
± 

0.001 

0.026 
± 

0.001 

Actinomycetes 1 Ac1  10Me16:0 0.022 
± 

0.001 

0.028 
± 

0.003 

0.028 
± 

0.002 

0.022 
± 

0.001 

Actinomycetes 2 Ac2  10Me18:0 0.030 
± 

0.002 

0.018 
± 

0.002 

0.028 
± 

0.004 

0.023 
± 

0.001 

Gram negative 1 G-1  16:1ω7 

cy17:0 

0.061 
± 

0.001 

0.069 
± 

0.004 

0.067 
± 

0.003 

0.04 ± 
0.001 

Gram negative 2/ 

Arbuscular mycorrhizal fungi 

G-2  18:1ω7 0.114 
± 

0.011 

0.099 
± 

0.010 

0.108 
± 

0.008 

0.104 
± 

0.003 

Gram negative 3 G-3  cy19:0 0.160 
± 

0.009 

0.136 
± 

0.017 

0.137 
± 

0.008 

0.142 
± 

0.005 

Gram negative/ 

Fungi 

G-/F  18:1ω9 0.075 
± 

0.004 

0.069 
± 

0.005 

0.058 
± 

0.003 

0.056 
± 

0.002 

Saprothrophic fungi/ 
Ectomycorrhizal fungi/ 
Animals 

SF  18:2ω6.9 0.028 
± 

0.001 

0.031 
± 

0.003 

0.021 
± 

0.004 

0.024 
± 

0.001 

Arbuscular mycorrhizal 
fungi/ Bacteria 

AMF 16:1ω5 0.026 
± 

0.002 

0.028 
± 

0.003 

0.027 
± 

0.002 

0.026 
± 

0.001 

Protozoa/  

Animals widespread 

Pr  20:4ω6 0.102 
± 

0.010 

0.097 
± 

0.013 

0.128 
± 

0.015 

0.132 
± 

0.004 
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2.2.2.3.2. Calculation of plant 13C uptake and 13C incorporation into plants and 

PLFA 

Plant uptake from sources of different isotope composition results in changes in their 

isotopic signature and follows a two component mixing model [36], 

 
   

refcerappliedTra

reflabelled

componentincTracer
atat

atat
CC

%%

%%
13






      (1) 

where [C]component is the carbon content of the component (mmol gdryComponent
-1)and [C]incTracer 

is the total amount 13C incorporated into the respective components, i.e. soil, leaf, stem 

and root, in (mmol gdryComponent
-1), at%labelled is the 13C of the labeled sample of the seedling 

(leaf, stem, root, soil), at%ref  the 13C of the unlabeled reference sample of the seedling 

(leaf, stem, root, soil), and at%applied Tracer the 13C enrichment of the added CO2. The 

incorporation is not expressed as absolute incorporation, but divided by the amount of 

added 13C to present incorporation as % of applied 13C. 

The measurement of the FAMEs, calculations and drift corrections are described in detail 

in Dippold and Kuzyakov [37]. Subsequently, the 13C incorporation into the PLFA 

([13C]incTracer-PLFA) of the microbial community was determined according to equation 1, 

using the PLFA amount (μg g-1 dry soil) as pool size. Similar to the incorporation into tree 

biomass, incorporation into microbial PLFAs is presented as % of applied 13C.  

 

2.2.2.3.3. Calculation of PLFA replacement 

Besides 13C incorporation, which yields a quantitative value for the 13C flux into the 

membranes of a specific microbial group, the 13C replacement was calculated. In contrast 

to the incorporation, the 13C replacement is fully independent of pool size and merely 

represents the amount of a certain fatty acid that is replaced by newly incorporated 13C. 

Although this value does not provide the quantitative relevance of a C flux into this 

microbial group, it does contain ecological information: it shows the relevance of the 

rhizodeposit-derived 13C as a C source for the respective microbial group. Replacement of 

membrane lipids by 13C is calculated by dividing the 13C incorporation [13C]incTracer of a 

certain fatty acid by the amount of C in this fatty acid (equation 2).  

 

13C/12Crepl = ([13C]incTracer-PLFA / Total CPLFA ) * 100 %       (2)  

 

with [13C]incTracer-PLFA  amount of 13C incorporated into PLFA (μmol 13C per gdry soil)  
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Total CPLFA   amount of PLFA Carbon (μmol C per gdry soil). 

 

PLFAs were classified using the amounts of the individual fatty acids for corresponding 

microbial groups by factor analysis with a principal component extraction method. The 

classified data were compared with the literature for pure culture fatty acid fingerprints to 

determine functional microbial groups. Incorporation of 13C into individual fatty acids was 

summed to quantify the incorporation of individual microbial groups.  

2.2.2.4 Statistical analysis 

The labeling and subsequent 13C analyses were done with 10 independent replicates. 

Field replicates were tested for normal distribution using the Kolmogorov Smirnoff test, for 

homogeneous variances using Levene’s test and corrected for outliers using the Nalimov 

outlier test with significance levels of 95% [38]. 13C enrichment and PLFAs as dependent 

variables were investigated for significant differences between tree species using Tukey’s 

Honestly Significance Difference (Tukey’s HSD) post hoc test (p < 0.05) following nested 

one-way analysis of variance (ANOVA) using Statistica (version 7, Statsoft GmbH, 

Hamburg, Germany) to inspect effects of tree species on plant compartments and soil 

microbial groups. The error bars in graphs show standard errors of the mean (SEM) of the 

ten replicates. PLFAs were classified for corresponding microbial groups by a factor 

analysis of C contents of the entire dataset. Fatty acids were categorized according to 

previous studies [14, 39] and combining fatty acid biomarker and their isotopic ratios will 

allow insights into belowground trophic interactions [40].  
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2.2.3 Results 

2.2.3.1 13C dynamics in trees and soil 

Beech had approximately twice as much leaf and stem biomass but less root biomass 

than ash (Table 2.2-2).  

 

Table 2.2-2: Mean plant biomass (± SEM), soil mass and specific leaf area of 
beech and ash 

 Beech Ash 

Leaf biomass (g per tree) Mean +/-  SEM 8.7 ± 0.5 3.9 ± 0.3 

Stem biomass (g per tree) Mean +/-  SEM 37.0 ± 1.7 21.1 ± 1.3 

Root biomass (g per tree) Mean +/-  SEM 15.4 ± 1.0 20.3 ± 1.1 

Specific leaf area (cm
2
) 268 ± 22 566 ± 91 

 

Leaves, stem and roots of both species were highly enriched in 13C. Five days after the 

labeling, up to 20% and 30% of the applied 13CO2 were recovered in all measured 

compartments of beech and ash, respectively (Figure 2.2-1). Ash assimilated one third 

more 13C in all measured compartments but recovered with 34 % twice as much in leaves 

as beech. In the stem, beech incorporated 8% 13C of the applied 13CO2, i.e. four times 

more than ash. Ash significantly increased the 13C in the stem by three times until day 20 

after labeling, while 13C values in beech remained constant. Furthermore, the 13C 

incorporation was particularly pronounced in ash roots: approximately 48% of the 13C in all 

compartments was recovered at day 5 in the roots (versus only 33% in beech). 

Approximately 10% of the 13C incorporated in all compartments could be recovered after 5 

days in the soil under both tree species and decreased to below 5% until day 20. 

In summary, ash fixed 30% more 13C by photosynthesis than beech. Beech showed a 

more rapid transport of photosynthates through the tree and allocated initially twice as 

much of the assimilated 13C into the stem than ash, but only one fourth of the assimilated 

13C into the root. The 13C incorporation into the soil did not differ between the species, but 

beech showed a significant 13C release to the soil from day 5 to day 20. 
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Figure 2.2-1: Total 13C incorporation (% ± SEM, N = 10) of the applied 13CO2 in leaves, 

stem, roots and soil (0-10 cm depth) on day 5 and 20 after labeling of beech (black 

circles) and ash (grey triangles). * significant (p < 0.05) differences in 13C incorporation in 

compartments between ash and beech on day 5, + significant differences on day 20 after 

labeling. Lower case letters show significant (p ˂ 0.05) differences between day 5 and day 

20 after labeling in beech (b) and ash (a). 

2.2.3.2 Abundance of microbial groups in ash and beech soil 

Many fatty acids within the Gram positives showed a deviating pattern, resulting in a 

subdivision into four groups. Similarly, four groups of Gram negatives and two groups of 

Actinomycetes were separated by the PCA.  

The dominating PLFA groups under both tree species were Gram negatives, Gram 

negatives/Fungi and Protozoa. The lowest amounts of microbially derived fatty acids 

under both trees species were detected for actinomycetes, AMF and SF. In general, the 

PLFA amount in both tree species differed by only approximately 0.01 μg g-1 dry soil 

between species and between sampling dates. The fatty acids derived from the G-/F 

group were significantly higher under beech 5 days after labeling. In contrast, the Pr-

derived fatty acids were higher under beech and displayed the highest amount of fatty 
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acids (0.16 μg g-1 dry soil). Similarly, the sum of fatty acids under beech and ash did not 

differ significantly, reflecting steady state of the microbial biomass. 

 

 

Figure 2.2-2: Amount of fatty acids (µg g-1 soil) in microbial groups in ash (grey triangle) 

and beech soil (black circle). Error bars show SEM (N = 10); * significant (p ˂ 0.05) 

differences between the tree species 5 days after the start of the 13C labeling. 

2.2.3.3 13C incorporation of PLFA of individual groups 

The microbial group SF (18:2ω6.9) showed high 13C incorporation in their PLFA (0.010 to 

0.004% 13C of applied 13CO2) both under beech at day 5 and 20 after labeling (p < 0.05) 

and under ash (0.004 to 0.002 % 13C of applied 13CO2) (Figure 2.2-3). AMF and Gram 

negative 2 also showed high 13C incorporation under ash and incorporated more 13C (p < 

0.05) than under beech 5 and 20 days after labeling. The 13C incorporation into the 

microbial groups under ash was higher than into the respective groups under beech by a 

factor of 2 to 12.  

In the SF and G-/F group the 13C incorporated decreased by half from day 5 to 20 after 

labeling. Actinomycetes 1 increased the 13C incorporation by a factor of two from day 5 to 

20 after labeling in beech soil (in ash by a factor of four). The strongest drop in the 13C 
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incorporation in ash occurred in AMF, where only one third of the incorporation at day 5 

remained at day 20. In general, the incorporation into Gram negatives, SF and Pr 

exceeded the incorporation into Gram positives and actinomycetes by a factor of 10. 

Especially SF under both tree species, but also AMF and Gram negative 2 bacteria under 

ash, displayed the highest 13C incorporation and showed a fast drop from day 5 to 20. The 

13C incorporation into PLFAs of mycorrhizal fungi confirmed the mycorrhization of the tree 

species. 

 

 

Figure 2.2-3: 13C incorporation into PLFAs (% of 13C input) of applied CO2 in microbial 

groups in ash (grey triangle) and beech soil (black circle). Error bars show SEM (N = 10); 

+ significant (p ˂ 0.05) differences between beech and ash at day 5 and * at day 20 after 

labeling. Lower case letters indicate significant (p ˂ 0.05) differences between day 5 and 

day 20 after labeling in beech (b) and ash (a). 

2.2.3.4 13C replacement of PLFA of individual groups 

Fungi in beech soil replaced more of their PLFA-C by 13C than all other microbial groups 

(Figure 2.2-2). Microbes in ash soil replaced less of their PLFA-C by 13C in the microbial 

group SF than in beech soil. Nonetheless, more 13C in PLFAs were replaced in microbial 

group SF than in all other microbial groups in ash soil 20 days after labeling (Figure 

2.2-4). Three microbial groups in ash soil also showed major differences in the 

replacement of their PLFA-C by 13C 5 days after labeling (Figure 2.2-2). Notably, Gram 

positives, actinomycetes and Gram negatives replaced less 13C in their PLFAs than SF 

and AMF.  

The 30% C replacement within 5 days indicates fast PLFA turnover and suggests that 

tree-derived C is the major C source for ECM fungi in beech soil. Ash mycorrhizal fungi 
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replaced only 10% of their fatty acid C by tree-derived C during the same period. None of 

the other microbial groups reached a similarly high C replacement in such a short time as 

these fungal groups. This underlines that the direct C allocation via mycorrhizal symbioses 

dominates the nutrition of these fungal groups. 

 

 

Figure 2.2-4: 13C replacement (% of PLFA-C) of microbial PLFAs in ash (grey triangle) 

and beech soil (black circle). Error bars show SEM (N = 10); symbols indicate significant 

differences to all other microbial groups in beech (*) and ash (+) 20 days after labeling and 

in beech (#) 5 days after 13C labeling (p ˂ 0.05). Lower case letters (a, b, c) indicate 

significant differences between microbial groups in ash 5 days after 13C labeling (p ˂ 

0.05). 
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2.2.4 Discussion 

 

Forest trees compete for light and soil resources, but the paths and amounts of the 

photosynthetically fixed C below the ground are little understood.  

2.2.4.1 C allocation within the plant-soil system as affected by tree species 

Much attention has been given in the last decade to belowground C and the related soil 

processes under temperate tree species [9, 22, 41, 42]. Here, we quantified the link 

between canopy C assimilation and belowground processes by 13C labeling and tracing 

the flux of C into the soil and into microbial groups. Beech assimilated 21% and ash 30% 

of the applied 13CO2 in all plant compartments 5 days after labeling. A field 13CO2 labeling 

experiment with 3-4-m-tall beech trees assimilated 20% but ash trees only 9% of the 

applied 13CO2 into plant compartments after a 5-h labeling period [9]. The difference in the 

initial 13CO2 uptake between those experiments could be the labeling duration, reflecting 

the more rapid photosynthate transport in beech as compared to ash.  

Tree size and age may also affect CO2 uptake and distribution [9]. The 1-m-high ash trees 

have only half of the leaf biomass of beech but twice the specific leaf area. This might 

explain the 30% higher incorporation of the applied 13C into ash as compared to beech. 

The fact that beech initially allocated twice as much of the assimilated 13C into the stem 

than ash supports the results of Sommer et al. [9]. Beech has 25% less root biomass (<5 

mm) in 0-20 cm depth than ash [24, 43]. Ash also has more fine roots and a more 

vigorous root growth [24, 41]. All these differences in root morphology and biomass help 

explain why beech roots incorporated only one fourth of the assimilated 13C as compared 

to ash roots. The relative 13C allocation into roots was significantly higher in ash than in 

beech 5 days after the labeling in a field experiment [9]. Evidently, ash has a higher root 

biomass than beech and preferentially invests the assimilated 13C into roots, at least 

partially explaining its higher rhizodeposition (Figure 2.2-1). 

2.2.4.2 Microbial community structure  

The microbial fatty acids (Table 2.2-2) were generally similar in soil under beech and ash, 

as well as between 5 and 20 days after labeling. Beech, however, was associated with 

less Gram negative bacteria and fungi. Prokaryote microorganisms suffer from the 

presence of beech roots due to low pH (Figure 2.2-2) [41]. Consequently, the ratio of 

fungal-to-bacterial biomass increased in the soil under beech [41] and our study confirms 
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this: the fungal-to-bacterial ratio was higher under beech than under ash (Figure 2.2-2). 

Nonetheless, such an increase in fungal abundance is attributable not only to the lower 

pH, but also because 18:2ω6.9 is representative for saprotrophic and furthermore ECM 

fungi, which only are associated with beech. 

Figure 2.2-2 illustrates that similar and rather low amounts of actinomycete fatty acids 

(Ac1, Ac2) were present in soil of both trees. This indicates that actinomycetes depend 

less on rhizodeposits than other microorganisms. Actinomycetes can degrade complex 

organic polymers and are positioned late in the microbial reaction chain [44]. Accordingly, 

they might not compete well for the large amount of easily degradable SOM initially 

released from decaying roots [45]. The significant increase in the 13C incorporation in the 

PLFA of actinomycetes over time might therefore also be linked to the decreased 13C 

enrichment in fungi and might even reflect a 13C flow from fungi to Actinomycetes from 

day 5 to 20. The more abundant protozoa/ soil fauna in ash soil also may indicate a more 

intensive grazing. 

Thus, microbial community structure in forest soil seems to be mainly influenced by soil 

properties, not directly by tree species. Although community structure was not significantly 

affected by tree species, there were profound differences in rhizodeposit incorporation into 

individual microbial groups.  

2.2.4.3 Incorporation and replacement of root C into the microbial community  

The microbial group SF (18:2ω6.9) incorporated most 13C under beech, and only a minor 

fraction of the root-derived 13C was transferred into bacteria. AMF had no enrichment 

under beech because its roots are associated with ECM, whereas ash roots are 

associated with arbuscular mycorrhiza [24]. The 13C signature of the fungal biomarker 

(18:2ω6.9) could be influenced by an additional 13C signal derived from linoleic acid from 

root hairs [46]. Furthermore, the pool size of fungal-derived linoleic acid is sufficiently high 

to use it as biomarker even if plant roots are much larger (but have a lower surface area-

to-volume ratio) than fungal hyphae [40]. Therefore, the contribution of root tissue to the 

soil PLFA pool is relatively small and the 18:2ω6.9 13C enrichment presumably mainly 

reflects 13C incorporation into ectomycorrhizal fungi. This may explain why the microbial 

group SF, which includes saprotrophic fungi and ECM fungi in beech soil, had a much 

higher replacement of their PLFA-C by 13C than all other microbial groups. 

The PLFAs of AMF (16:1ω5), Gram negative 2 (18:1ω7) and SF (18:2ω6.9) were highly 

13C enriched in ash and incorporated more 13C than beech. We are aware, that the 

16:1ω5 marker is not specific for AMF and especially in agroecosystems frequently Gram 

negative derived [34, 47]. However, in this fungal-dominated soil, a clear difference in the 
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dynamic of 13C replacement can be observed between the specific Gram negative 

markers and the 16:1ω5 - which has an extremely high enrichment 5 days after labeling 

that significantly decreases to day 20. This suggests that 16:1ω5 might be derived from a 

microbial group with a different turnover than the Gram negatives and thus more likely 

represents the AMF. AM fungi release plant-fixed 13C from their mycelium to bacterial and 

fungal populations in the (myco-)rhizosphere [48]. Therefore, the 13C enrichment in the 

Gram negative 2 and SF under ash might be due to direct uptake of C released from the 

roots by saprotrophic fungi and bacteria. Alternatively, it might be an indirect path via AMF 

distributing C in the myco-rhizosphere. Trees may interact in more complex ways e.g. 

over myco-rhizosphere, including substantial C exchange, although competition for 

resources is commonly considered to be the dominant tree-to-tree interaction in forests 

[49]. 

These results support the finding of Frostegard and Baath [50] and Zelles [14] and 

indicate that the 18:2ω6.9 biomarker is not specific for ectomycorrhiza and also includes 

saprotrophic fungi as indicated by 13C incorporation in ash soil. This could also be 

attributed to the low content of these fatty acids in AMF hyphae containing 18:2ω6.9 and 

taking up rhizodeposit 13C. However, 18:2ω6.9 can also be plant-derived but it is rather 

unlikely that amounts and enrichments in the membranes of beech and ash cells are 

strongly deviating. The highly significant difference in 13C incorporation in beech and ash 

soil consequently is not dominated by plant origin but more likely is due to an 

ecophysiological difference between the tree species, such as mycorrhization. 

Furthermore, the 20:0 fatty acid, an unspecific-eucaryotic fatty acid, not only has low 

amounts suggesting low contamination of soil samples by root cells, but also was less 

enriched in 13C by factor of 100 as compared to 18:2ω6.9 suggesting that even if 

eucayotic cells are co-extracted their contribution to the 13C enrichment is negligible. 

Generally, eukaryotic groups such as fungi cannot take up as much low molecular weight 

C from soil solution as do prokaryotes because the turnover of the larger, more complex 

biomass of eukaryotes is slower than that of prokaryotes [51-53]. Under both tree species, 

the 13C incorporation into mycorrhizal fungal PLFA decreased from day 5 to day 20. This 

indicates that root-derived C is rapidly incorporated into mycorrhizal hyphae and that the 

incorporated C is turned over fast, at least in their membranes. SF and the G-/F group 

decreased by more than half from day 5 to 20 after labeling. As this 13C decrease is 

similar to the 13C decrease in AMF, the 18:1ω9 fatty acid is probably at least partially also 

indicative for mycorrhizal fungi. Overall, the results suggest that PLFA analysis is a 

valuable tool to differentiate C fluxes from trees to different mycorrhiza types. 

Although Gram negatives take up root exudates fast and show a rapid turnover [51], they 

do not exchange their biomass (and thus their PLFA-C) as rapidly as mycorrhiza. None of 
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the other microbial groups reached a similarly high and fast C replacement as the fungal 

groups. Therefore, the direct C flux into mycorrhiza is highly efficient and dominates the C 

nutrition of these fungal groups. Gram negatives are less relevant in 13C uptake than 

mycorrhizal groups (Figure 2.2-3), but more relevant than most Gram positive groups. The 

13C incorporation into Gram negatives, SF and Pr was higher by as much as a factor of 10 

than into Gram positives and Actinomycetes. The 13C incorporation and enrichment did 

not differ for most Gram positives (including Actinomycetes) between ash and beech soil. 

Actinomycetes are a subgroup of Gram positives, and some studies suggest that they 

incorporate less C from dissolved C sources than free-living prokaryotic Gram positives 

[54]. Our results support this interpretation and suggest that most of the C taken up by 

prokaryotic groups is provided as soluble root exudates by the trees. Gram positives have 

been suggested to mainly rely on old soil organic matter and complex compounds [8]. 

Accordingly, uptake of C from more complex rhizodeposits may explain the significant 

increase from day 5 to 20 after labeling of the 13C incorporation into the PLFA of the 

Actinomycetes 1 in beech and ash soil.  

Amino acid labeling in soil revealed Gram negative prokaryotes with the highest 13C 

incorporation indicating that Gram negatives react fast to low molecular weight organic 

substances (LMWOS) [51]. In beech soil Gram negatives incorporated almost no 13C, but 

in ash soil incorporation of 13C into Gram negative 2 was the highest of all microbial 

groups 20 days after labeling. This suggests that ash released higher amounts of LMWOS 

than beech. 

A one-order-of-magnitude-higher incorporation of 13C into the ectomycorrhizal partner of 

beech as compared to ash suggests that direct C allocation into mycorrhizal fungi is 

reduced in ash. However, most prokaryotic groups show equal or higher 13C incorporation 

in ash than in beech maybe due to higher exudate release of ash feeding freely 

associated rhizomicrobial community members. We detected very low 13C incorporation 

into Pr in ash and almost none in beech soil (Figure 2.2-3). The higher incorporation in 

ash soil indicates higher 13C fluxes through soil food webs under this tree species [41], 

which is consequently likely to be derived from the prokaryotic groups serving as main C 

source for protozoa. This grazing of prokaryotes by protozoa is also a very likely 

explanation for the higher 13C turnover in prokaryotic PLFAs under ash versus beech 

Overall, the results suggest that C cycling in microbial food webs is faster under ash than 

beech, where higher 13C fluxes pass via the bacterial versus the fungal branch of the soil 

food web. However, systematic patterns and processes underlying variations in the 

composition of fatty acids and their 13C/12C ratio are under discussion as many markers, 

especially the protozoan one, are not absolutely specific [40, 55]. So, final conclusions 
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must be expressed with precaution and should be complemented by direct measurement 

of C and N fluxes into higher trophic level organisms [56, 57]. 
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2.2.5 Conclusions 

 

Our results highlight the importance of microbial communities and especially mycorrhizal 

communities for belowground C fluxes. The microbial community structure was similar but 

the C utilization differed in many respects between microbial groups in beech and ash soil. 

The higher belowground C allocation by ash affects the 13C incorporation and replacement 

in various microbial groups. SF under beech incorporated the most 13C with the 

incorporation decreasing from day 5 to 20. This decrease in 13C incorporation also 

occurred in ash, but ash also incorporated much of its assimilated 13C in AMF and Gram 

negative 2 bacteria. LMWOS-adapted groups, like Gram negatives, take up more 13C in 

ash than in beech soil. This is because such groups have a fast cellular turnover and 

therefore more rapidly release 13C from their cells. Some of this released 13C is 

incorporated into higher trophic levels such as protozoa and soil fauna. The results 

suggest that combining tree species with different root, rhizodeposition and mycorrhiza 

types will increase ecological functions and improve the resilience of forest ecosystems 

which is of increasing importance in face of global change.  
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Table 2.2-3: Fatty acids in the external standard 

*for 45 m ± 0.5 m column lengths, deviations of ± 15 s possible 

FA-type Name Common name Abbreviation 
Retention time 

(s)* 

Saturated 

Tetradecanoic acid Myristic acid 14:0 1530 

Pentadecanoic acid - 15:0 1778 

Hexadecanoic acid Palmitic acid 16:0 2120 

Heptadecanoic acid Margaric acid 17:0 2593 

Octadecanioc acid Stearic acid 18:0 3179 

Eicosanoic acid Arachidic acid 20:0 4384 

Branched 

chain 

11-Methyltridecanoic acid Anteisomyristic acid a14:0 1472 

12-Methyltridecanoic acid Isomyristic acid i14:0 1458 

12-Methyltetradecanoic acid 12-Methylmyristic acid a15:0 1699 

13-Methyltetradecanoic acid 13-Methylmyristic acid i15:0 1677 

13-Methylpentadecanoic acid Anteisopalmitic acid a16:0 2011 

14-Methylpentadecanoic acid Isopalmitic acid i16:0 1982 

14-Methylhexadecanoic acid 14-Methylpalmitic acid a17:0 2445 

15-Methylhexadecan acid 15-Methylpalmitic acid i17:0 2404 

Cyclo- 

propane 

cis-9,10-
Methylenhexadecanioc 

acid 

cis-9,10-Methylpalmitic 
acid 

cy17:0 2501 

cis-9,10-
Methylenoctadecanoic 

acid 

Dihydrosterculic acid cy19:0 3690 

Methylated 
10-Methylhexadecanoic acid 10-Methylpalmitic acid 10Me16:0 2306 

10-Methyloctadecanoic acid Tuberculostearic acid 10Me18:0 3429 

Mono- 

unsaturated 

9-Tetradecaeoic acid Myristoleic acid 14:1w5c 1502 

cis-11-Hexadecenoic acid - 16:1w5c 2071 

cis-9-Hexadecenoic acid Palmitoleic acid 16:1w7c 2035 

cis-Octadecenoic acid Cis-Vaccenic acid 18:1w7c 3036 

cis-9-Octadecenoic acid Oleic acid 18:1w9c 3001 

11-Eicosenoic acid Eicosenoic acid 20:1w9c 4220 

Poly- 

unsaturated 

cis,cis-9,12-Octadecadienoic 
acid 

Linoleic acid 18:2w6,9 2950 

6,9,12-Octadecatrienoic acid g-linolenic acid 18:3w6,9,12 2981 

cis,cis,cis,cis-5,8,11,14- 

Eicosatetraenoic acid 
Arachidonic acid 20:4w6 3931 
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Abstract 

 

Mycorrhizas and their diverse phosphorus (P) acquisition mechanisms have been 

investigated for more than a century, with a large body of literature devoted to the major 

mycorrhizal types like ectomycorrhiza (ECM) and arbuscular (AM). In comparison, little is 

known about the nutritional partnerships at the interfaces between orchid, fungus, and 

soil. Unlike almost all other plants, seeds of many orchids lack germination without an 

appropriate endophyte. The orchid protocorm development to seedlings is also strongly 

limited without mycorrhizas, a feature that greatly influences their distribution and 

ultimately. To date research on orchid-mycorrhiza interactions have focused mainly on C 

and N, and only little is known for P. This is in contrast to the fact that orchids live in some 

of the most phosphorus impoverished environments on earth – ancient soils in South 

Africa’s Cape region and southwest Australia and the surprisingly large number of tropical 

epiphytic orchid species that utilise rock, bark or twig substrates for acquisition. 

Mycorrhiza are able to take up dissolved, and to mobilize sorbed, organic and mineral P 

forms from soil behind the P depletion zone of the root using biochemical and biophysical 

strategies to increase the effectiveness and absorption surface to mobilize P from the soil. 

Here we provide a comparative review of phosphorus acquisition, uptake and storage in 

the major mycorrhizal systems in plants. We focus on orchid mycorrhizas and identify the 

knowledge gaps that require further research if we are to advance our understanding of 

this, the largest family of the angiosperms. 

 

 

Key-words: arbuscular mycorrhiza, ectomycorrhiza, mineral nutrient, orchid mycorrhiza, 

phosphorus metabolism, phosphorus transport 
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2.3.2 Introduction 

 

Mycorrhizal fungi occur in many soil types and a very wide range of climatic conditions 

from arctic tundra to desert environments and the humid tropics. Mycorrhizal fungi may 

function as necrotrophs and antagonists of host or non-host plants with roles that vary 

during the lifespan (host) of their associations (Smith and Read, 1997; Brundrett, 2004). 

There is a large body of literature regarding mycorrhizal symbiosis, but many knowledge 

gaps exist surrounding the ecophysiological benefits to both fungus and host plant. 

Certain soil microorganisms colonize roots of higher plants and form symbiotic 

relationships that benefit one or both partners. Nodulating bacteria, for example, Rhizobia 

in Legumes and mycorrhizal associations formed by fungi with roots and stems enables 

plants to acquire resources more efficiently than would happen without the fungal 

interactions. The uptake of P, particularly in P-limiting environments (Lambers et al., 

2008), may be a critical element of orchid-fungal interaction. Plants have developed a 

variety of strategies to increase P uptake capacity or availability of P in soil, because P is 

one of the most difficult nutrients for plants to acquire, however the most common of these 

strategies worldwide is AM symbiosis (Smith et al., 2011) (Table 2.3-1). Mycorrhizal 

associations are broadly divided into four categories: arbuscular AM, ECM, ericoid (ERM) 

and orchid mycorrhiza (OM) (Tinker, 1975; Handreck, 1997; Bücking and Heyser, 2000; 

Lambers et al., 2008; Smith and Read, 2008) (Table 2.3-1).  

Mycorrhizas are dynamic associations comprising various phylogenetic, morphological, 

and functional categories (Table 2.3-1). Ectomycorrhizal associations are important in 

many habitats but are restricted to woody and few herbaceous perennials, although they 

may also co-associate with other plants, including orchids (Smith and Read, 2008; 

Yagame et al., 2012; Yagame and Yamato, 2013). Ectomycorrhizal fungi form a dense 

fungal mantle around the fine roots and an intercellular hyphal “Hartig” net (Table 2.3-1). 

ECM fungi belong to higher Basidiomycota and Ascomycota and are septated fungi 

(Smith and Read, 2008; Tedersoo and Smith, 2013). Arbuscular, ericoid and orchid 

mycorrhiza each in their own way represent unrelated host and fungus lineages of 

endomycorrhizal associations with contrasting morphological and anatomical features in 

infected tissues in the host (Lewis, 1973; Brundrett and Abbott, 2002). Arbuscular 

mycorrhizal associations are endophytic, obligate symbiotic fungi that are the most 

widespread in the plant kingdom (Schüßler et al., 2001).  
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Table 2.3-1: Summary of types of mycorrhizal associations 

Ectomycorrhiza (ECM) Associations of higher fungi with land plants with short 
lateral roots where a hyphal mantle encloses the root 
and a Hartig net comprising labyrinthine hyphae 
penetrates between root cells 

 

Arbuscular mycorrhiza (AM) Mycorrhizal association formed by glomeromycete fungi 
in land plants usually with arbuscules and often with 
vesicles 

 

Orchid mycorrhiza (OM) Associations where coils of hyphae (pelotons) penetrate 
within cells in the plant family Orchidaceae 

 

Orchid mycorrhizal fungi are mostly Basidiomycota like Rhizoctonia, Ceratobasidium, 

Sebacina, Thanatephorus, Tulasnella, Waitea, and Ypsilonidium (Smith and Read, 2008). 

However, Ascomycete orchid symbionts have also been identified (Těšitelová et al., 

2012). Within the Orchidaceae, associations with mycorrhizal fungi play a crucial role and 

represent the one family with more species with obligate requirements for mycorrhizal 

fungi than any other Angiosperm family (Rasmussen, 1995) (Figure 2.3-1). Orchids 

depend on fungi in the earliest stage of their development, when fungi support 

germination and growth of dust-like seeds that contain only minimal nutrient reserves 

(Figure 2.3-1) (Burgeff, 1959; Arditti and Ghani, 2000; Bidartondo et al., 2004). 
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Figure 2.3-1: Nutrient uptake modes and life cycle differences in orchid mycorrhizal 

associations. a) The nutritional modes of orchids from complete autotrophs to 

mycoheterotrophs. There is an increasing reliance on fungal derived nutrients such as P, 

C, N and micronutrients (brown triangle) towards non-photosynthetic mycoheterotrophs, 

conversely there is an increasing reliance on photosynthetically derived sources of C and 

fungal derived sources of P, N and micronutrients towards the autotrophic orchids (green 

triangle). b) The reliance of orchids on their fungal partners can change from 

mycoheterotrophic seedling to degrees of autotrophy in the adult stage. 

 

With estimates of up to 35 000 taxa, and comprising five subfamilies and 870 genera the 

Orchidaceae is the largest family in the plant kingdom, accounting for ca. 10% of 

angiosperm diversity (Atwood, 1986; Dressler, 2005). Orchids are ecologically highly 

successful and occur on all vegetated continents including sub-Antarctic islands (Dressler, 

1993; Chase et al., 2003; Cribb et al., 2003). Temperate and tropical species of terrestrial 

orchids often exhibit high levels of mycorrhizal colonization in comparison to epiphytic 

orchids that are relatively sparsely and sporadically colonized (Benzing and Friedman, 

1981).  
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Leafless epiphytic orchids (e.g. Taeniophyllum Blume) have a large investment in 

mycorrhiza, however these orchids instead invest in chlorophyllous roots as their primary 

means of C uptake (Benzing et al., 1983). For nutrient acquisition, epiphytes rely on 

dissolved nutrients trickling down the bark of host plants. This is a feature exploited by the 

vast commercial ‘non-mycorrhizal’ production of epiphytic Phalaenopsis Blume, 

Dendrobium SW. and vandaceous orchids, where plants are provided nutrients through 

fertilizer application of inorganic N, P and trace elements (Griesbach, 2002). A feature of 

terrestrial orchids is the presence of so-called ‘achlorophyllous’ species with 210 orchid 

species lacking a substantial capacity for autotrophy (Merckx and Freudenstein, 2010). 

This mycoheterotrophic mode of nutrition results in the plant remaining reliant upon a 

fungal symbiont or symbionts from germination to maturity (Figure 2.3-1) (Leake, 1994; 

Leake et al., 2004). 

Orchids, unlike most Angiosperms, are ‘coarse rooted’ forming only a few large roots 

compared to the fine root systems of more typical non-orchid herbaceous plants. For 

many orchids, root hairs are replaced by trichome extensions particularly in terrestrial 

species (Ramsay et al., 1986) or by the velamen radicum in epiphytic taxa (Benzing, 

1996). However, the majority of orchids are photosynthetic at maturity and may decrease 

or cease dependency on their mycorrhizal partners for C (Merckx and Freudenstein, 

2010). However, recent research indicates that some of the green orchids, originally 

considered to be completely autotrophic, also obtain substantial amounts of C and N from 

fungi in the adult stage (Figure 2.3-1) (Cameron et al., 2008; Sommer et al., 2012) through 

partial mycoheterotrophy (Leake, 1994). The fully and partially mycoheterotrophic green 

orchids with demonstrated fungal C and N (and possibly all other nutrients including P) 

acquisition often grow in dense forests under light-limited conditions (Figure 2.3-1), while 

mature autotrophic orchids prefer more open habitats (Liebel et al., 2010). For partially 

mycoheterotroph species of the orchid genus Cephalanthera Rich., a significant negative 

relationship was found between the degree of C gain from the fungal source and the 

micro-scale light availability (Figure 2.3-1) (Preiss et al., 2010). Only a few partially 

mycoheterotrophic species are found in open habitats (Liebel et al., 2010; Girlanda et al., 

2011). Like many other coarse-rooted plants, most adult terrestrial orchids are likely to 

remain dependent upon mycorrhiza for mineral nutrient uptake, particularly P (Baylis, 

1975; Cameron et al., 2007). Though research has revealed remarkable dependencies by 

the orchid on its fungal partner, comparatively little is understood about P uptake and 

transport (Cameron et al., 2007; Smith and Read, 2008). 

Here we review what is known about the P nutrition of mycorrhizal symbiosis, with 

particular emphasis on the gaps in knowledge with regards to orchid mycorrhiza. The 

distribution of P forms in soil, techniques used to determine P levels and the uptake and 
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storage of P in ECM, AM and OM, as well as the transport of P to and from the fungus are 

also discussed. P is one of the most difficult nutrients for plants to acquire and mycorrhizal 

symbiosis is the most important strategy of plants to fulfill that requirement. 

  



Phosphorus availability in soil    Study 3    

  107 

2.3.3 Phosphorus availability in soil 

 

The four P forms in soils: dissolved inorganic phosphate (Pi), sorbed Pi, organic P and 

mineral Pi will vary depending upon soil pH (Figure 2.3-2). The distribution of those forms 

of P depends on various factors which include soil type, vegetation form, microbial activity 

and human management (Dalal, 1977; Hedley et al., 1982; Lodge et al., 1994; Robinson, 

1994). The acquisition of P by mycorrhizal fungi or their accompanying microorganisms 

may improve soil P availability by solubilizing mineral P forms, exchanging adsorbed P or 

by mineralization of organic P (Hetrick et al., 1989; Turner, 2008) (Figure 2.3-2). 

Phosphorus availability in habitats of epiphytic plants differs strongly from that of soil and 

will be dealt with later. 

Very little P can be found in soil solution, either as free phosphate anions, soluble Ca–

phosphate complexes, or organically coordinated complexes. Plants cover most of their P 

requirements from the Pi in the soil solution (Bolan, 1991) (Figure 2.3-2). Bioturbation and 

preferential water flow can cause hotspots in availability of this preferred P source, which 

plants can access by root growth and root proliferation towards these hotspots. Plants 

forming a mycorrhizal symbiosis have the advantage of being thus able to increase the 

uptake of P by increasing the total surface area of the symbiotic system (Figure 2.3-2). 

Additional advantage is provided by the presence of both fungal and plant P acquisition 

and transport systems. (Zhu et al., 2001; Cameron et al., 2007; Nagy et al., 2009; 

Plassard and Dell, 2010).  

Mineral P occurs in different phosphate minerals. The anions of the phosphoric acid 

(H3PO4) have high affinity towards Ca2+, Al3+, Fe3+, Fe2+ as well as nearly all bivalent 

cations and bind with those to form insoluble phosphates. If the pH in soil decreases, 

solubility of P from Ca2+ phosphate increases and conversely, with Al3+- and Fe3+-

phosphate the solubility decreases with decreasing pH. The optimal pH for maximum 

solubility of P is 5-6.5 (Blume et al., 2010). 
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Figure 2.3-2: Phosphorus forms in soil and its pathways to the plant uptake 

 

Phosphates can also be sorbed to the surface of Fe- and Al-oxides or clay minerals. This 

sorption effect is enhanced if the respective surface is porous, as in highly weathered 

soils. Mobilization of P sorbed on Fe and Al oxides and other minerals may be caused by 

chelation of Fe and Al through complexing agents such as siderophores and organic acids 

including citrate or oxalate, which in turn will lead to P release in solution – a strategy 

used by mycorrhizal fungi to gain access to this P pool (Cumming and Weinstein, 1990; 

Gibson and Mitchell, 2004; Tawaraya et al., 2006).  

P dissolution by local pH change is employed by both plants and mycorrhizal fungi in 

alkaline and neutral soils, where fungal exudates such as oxalic acid decrease the local 

pH up to 2 units in the hyphal growth zone (Colotelo, 1978; Oberson and Joner, 2005; 

Plassard et al., 2011). Mycorrhiza have a higher affinity to phosphate ions and a lower P 

threshold value than nonmycorrhizal roots (Bolan, 1991). The small diameter of 

mycorrhizal hyphae also enables fungi to access smaller soil pores (Tinker, 1975; 

Gianinazzi-Pearson and Gianinazzi, 1983) and thus obtain minerals otherwise unavailable 

to plant root hairs. 
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Phosphorus is also a component of soil organic matter and microbial biomass, with the 

most important organic form of P found as inositol phosphates (phytates), phospholipids, 

nucleic acids, phosphodiesters, phosphomonoesters, and organic polyphosphates 

(Turner, 2008). Organic P is as such not plant available and has to be mineralized to 

inorganic P to become plant-available (Bolan, 1991; Oberson and Joner, 2005). Autolysis 

of microbial cells or enzymatic dephosphorylation leads to organic P mineralization 

(Cosgrove, 1977). Several microbes, including mycorrhizal fungi, are able to produce 

specialized phosphatases such as phosphomonoesterases, phosphodiesterases and 

phytases involved in the mineralization of organic P (Colotelo, 1978; Oberson and Joner, 

2005; Cairney, 2011), splitting the P-ester-bond and making the P plant available (Blume 

et al., 2010). While microbial action is generally considered the major driver of organic P 

mineralization (Spohn and Kuzyakov, 2013b), plants are able to release the mentioned 

enzymes as well (Spohn and Kuzyakov, 2013a), enhancing this process (Wasaki et al., 

2003; Richardson et al., 2005). Uptake of this mineralized, inorganic phosphate by 

organisms leads to an immobilization of P in the living biomass. The higher the turnover of 

the microbial biomass, the more frequently this temporarily immobilized P source may 

become available to the plant. This may be particularly important for plants that form 

associations with saprophytes (such as OM) as most OM occur in the upper soil profiles 

which are highly enriched with organic matter 
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2.3.4 Phosphorus uptake by fungus 

 

Nutrients can reach plants by three mechanisms: i) root interception; ii) mass flow and iii) 

diffusion (Barber, 1984). Diffusion is considered to supply most of the P absorbed by 

plants in the majority of soils (Barber, 1984). P is readily adsorbed by soils and so 

movement of P through soils is typically very slow in comparison to other nutrients such 

as N. As a result only the soluble inorganic phosphate in soil surrounding the roots 

reaches the plant (Bolan, 1991). The low mobility of phosphate in soils means that plant 

uptake rapidly leads to a zone of depletion surrounding the plant root system 

(Schachtman et al., 1998). In old, oligotrophic soil systems, the pool of available inorganic 

P can become increasingly impoverished through prolonged leaching and erosion 

(Lambers et al., 2008). The formation of mycorrhizal symbiosis allows plants to enhance 

the uptake of limiting nutrients such as P (Bolan, 1991; Marschner and Dell, 1994) (Table 

2.3-2). Mycorrhizal associations have been shown to increase plant growth and this is 

believed to occur primarily through an increased physical exploration of the soil and an 

increased surface area for absorption to take place (Bolan, 1991; Cairney, 2011). Orchid 

mycorrhizal systems are one of several important mycorrhyzal symbioses, and may even 

engage with other mycorrhizal systems. 

2.3.4.1 Phosphorus uptake in Ectomycorrhizal Fungi 

ECM fungi form a mantle of fungal material that ensheaths the root tip: 1) an inwardly 

growing network of mycelium (Hartig Net) that grows between the epidermal and cortical 

cells, and 2) an outwardly growing network of mycelium that forages in the soil (Smith and 

Read, 2008) (Table 2.3-1). In contrast to the structure of AM-plant symbiosis, the ECM 

mantle provides a significant physical barrier that is likely to outcompete any passive root 

uptake of P (Bücking et al., 2002; Taylor and Peterson, 2005). The mycelium growing out 

from the mantle into the surrounding soil is functionally crucial in acquiring nutrients and 

foraging well beyond the depletion zone (Bolan, 1991; Agerer, 2006). Comparative studies 

of non-mycorrhizal and ectomycorrhizal colonized plants have shown significant, up to 

four-fold increases in the uptake of P (Heinrich and Patrick, 1986; Jones et al., 1998). For 

the ECM fungus Hebeloma cylindrosporum Romagn., the phosphate transporters HcPT1 

and HcPT2, which are expressed in the Hartig net and the extramatrical mycelium and 

regulated by external Pi levels, were shown to be involved in mycorrhizal P uptake (Tatry 

et al., 2009; Garcia et al., 2013). 
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Along with a greatly increased surface area, ectomycorrhizal fungi are able to exploit soil 

microsites that are otherwise inaccessible to roots. While this is not unique to 

ectomycorrhizal fungi, ECM do have the ability to access otherwise unavailable sources of 

P (Landeweert et al., 2001). Ectomycorrhizal fungi actively mobilize, or ‘mine’, P from solid 

mineral substrates through the excretion of organic acids and chelators (Table 2.3-2). 

Small pores and spaces in weatherable materials allow fungal hyphae to reach the interior 

of minerals and access P from apatite (Wallander, 2000; Landeweert et al., 2001). Both 

the plant roots and the fungi can produce these P-mobilizing exudates and exudation by 

the roots is modified by the presence of ectomycorrhizal fungi and the type of mineral 

available (Bolan, 1991; Olsson and Wallander, 1998). There is also some evidence to 

suggest that ECM may be able to access pools of stored P in saprotrophic fungi, thus by-

passing uptake pathways of decomposition and mineralization (Lindahl et al., 1999).  

2.3.4.2 Phosphorus uptake in Arbuscular Mycorrhizal Fungi 

Arbuscular mycorrhiza are the most common mycorrhizal infection type, forming a 

symbiosis between a large number of host plants and fungi from the Glomeromycota 

(Schüßler et al., 2001; Smith and Read, 2008). There are important differences in the 

structure of roots infected by AM fungi as compared to other infection types, which have 

profound implications for nutrient uptake. Arbuscular mycorrhizal fungi form a 

hyphopodium on the host root surface from which fungal hyphae can penetrate the root, 

growing between root cells until reaching the cortex, proliferating along the root axis and 

penetrating the inner root cortical cells to form arbuscules (Arum-type infection) or hyphal 

coils that continue to spread from cell to cell (Paris-type infection) (Dickson, 2004; Smith 

and Read, 2008). This infection type leaves areas of the root surface free of hyphae and it 

was believed that the plant could use both the plant and fungal pathway for nutrient 

uptake. This had long been suggested to occur additively through direct uptake from the 

root and the AM fungi (Moyersoen et al., 1998). While this may occur in some cases, 

more recent studies using 32P or 33P show that the AM uptake pathway is likely to be the 

major route of P uptake (Smith et al., 2003; Smith and Smith, 2011). Arbuscular 

mycorrhizal plants have been shown to cause downregulation of P transporters (Chiou et 

al., 2001) and induce their mycorrhiza-specific transporters (Xu et al., 2007) to shift the 

derivation of P through the fungal pathway.  

The plant-fungus combination can also greatly contribute to the functionality of the 

mycorrhizal pathway in P uptake. Smith et al. (2003) found that plants colonized by 

Glomus intraradices N.C. Schenck & G.S. SM. (Glomeraceae) had all of their P supplied 

via the mycorrhizal pathway, whereas when plants were colonized by G. caledonium T.H. 
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Nicolson & Gerd, this was not true for Lycopersicon esculentum L. (tomato), which had 

only 70% of P supplied in this manner. Some fungal species have also been shown to 

suppress the expression of plant P transporters for the plant uptake pathway (Grunwald et 

al., 2009). This suggests that the contribution of the mycorrhizal pathway to P uptake is 

dependent on the compatibility of the symbiotic partners involved and the efficiency with 

which they can interact and exchange nutrients. It can be concluded that the main 

differences between ECM and AM in P uptake is that AM can only access inorganic P 

from the soil, whereas ECM are able to access both organic and inorganic P (Read, 1996; 

Smith and Read, 2008). 

2.3.4.3 Phosphorus uptake in orchid mycorrhiza 

Whereas orchids are one of the most diverse families in the plant kingdom, relatively little 

is known of their mineral nutrition in situ. Many orchids have a particularly poorly 

developed ‘coarse’ rather than fine root system, which has led to the long held, but rarely 

tested, assumption that orchids are highly dependent on their mycorrhiza for mineral 

nutrition, including P (e.g. Hadley and Williamson, 1972; Brundrett, 2007).  

As found in AM, ECM and ERM systems (e.g. Hammer et al., 2011), C is allocated to the 

external mycelium to support P scavenging. Thus where orchids grow in P deficient or P 

inaccessible soils it may be that C trading between the orchid and mycorrhiza will facilitate 

P uptake into the plant (Figure 2.3-1). It had been demonstrated that symbiotically grown 

seedlings of the orchid Goodyera repens (L.) R.Br. (Orchidaceae), absorbed significantly 

less P following treatment of the plantlets with fungicide in comparison to mycorrhizal 

plants (Alexander et al., 1984). However this remains one of the few studies of orchid P 

nutrition.  

 

Table 2.3-2: Phosphorus uptake in AM, ECM and OM 

 Sources Pathway Cost/benefit for 

plant/fungus 

AM Soluble inorganic P Hyphae absorb P  

transport to AM structures 

(intercellular hyphae, 

intracellular coils, intracellular 

arbuscules), released to 

interfacial apoplast adjacent to 

Plants provide the 

fungus with C in 

return assist in 

scavenging P for the 

plant. 
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root cortical cells (Smith et al 

2003) 

ECM Soluble inorganic P 

Inorganic P 

Organic P 

Hyphae absorb P, transport to 

apoplast and released in the 

inner cortical cells 

Host plant provides C 

in exchange for P. 

Greater uptake of 

inorganic P than AM  

and from a wider 

variety of soil 

sources. 

OM Soluble inorganic P Largely unknown Cameron et al.(2006) 

suggests P 

exchanged for C. 
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2.3.5 Storage of P in the fungus 

 

After P uptake from soil solution, fungi incorporate P into the cytosolic pool. The 

concentration is kept constant to maintain various cell functions, such as energy transfer 

and biosynthesis of phospholipids, nucleic acids and precursors of carbohydrate polymers 

such as UDP-glucose (Ezawa et al., 2002). Excess P is transported into the vacuoles, 

effectively buffering the cytosolic P concentration (Klionsky et al., 1990; Shirahama et al., 

1996). Up to 40% of total P is transferred into the vacuoles (Bolan, 1991) and stored there 

as osmotically inactive polyphosphate granules. Polyphosphates exist as mobile (n_< 

100) or immobile, long chained molecules (n > 100) (Gerlitz and Werk, 1994). Due to their 

rapid depletion under P limiting conditions, polyphosphates have been suggested to be 

the main source of fungal derived phosphate for host plants (Rasmussen et al., 2000; 

Pfeffer et al., 2001; Viereck et al., 2004). 31P-nuclear magnetic resonance (NMR) studies 

have enabled the differentiation and quantification of polyphosphates and various organic 

P forms (Martin et al., 1983; Martin et al., 1985; Grellier et al., 1989; Rasmussen et al., 

2000; Pfeffer et al., 2001; Viereck et al., 2004). Besides vacuoles, long chained, 

precepitated orthophosphate residues are also stored in fungal tubular cisterns (Bücking 

and Heyser, 1999) with vacuolar granules containing phosphate and Ca found in both 

ecto- and endomycorrhizas (White and Brown, 1974; Chilvers and Harley, 1980; Strullu et 

al., 1981; Strullu et al., 1982). 

Knowledge of P storage in OM is limited: there are few studies about the cellular location 

of stored P or the forms of P which are stored (Richardson et al., 1992), which suggest the 

presence of polyphosphate bodies. As P storage systems are evolutionarily well 

conserved within fungi (Beever and Burns, 1981; Terpitz and Kothe, 2012), OM are likely 

to parallel the syndromes found in ECM and AM . 

2.3.5.1 Phosphorus storage in ECM 

The transformation of accumulated inorganic phosphate into mobile polyphosphate with a 

medium chain length and the transformation of mobile into immobile polyphosphate either 

with long chain lengths or in granules occurs in ECM (Gerlitz and Werk, 1994). However, 

polyphosphates in ECM occur mainly in a dispersed soluble form in vacuoles of living, 

biochemically active hyphae (Cole et al., 1998). A high P concentration in the fungus is 

maintained by the hydrolysis of polyphosphate, which is then catabolised by 

polyphosphatases or by reversal of polyphosphatekinase (Cox et al., 1980; Capaccio and 

Callow, 1982). Large granules are infrequent or even absent in the vacuole of living 
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hyphae (Cole et al., 1998; Ashford et al., 1999) and Orlovich and Ashford (1993) showed 

these are mainly an artefact of specimen preparation. Very high cellular P contents, 

mostly balanced by potassium ions, occur in larger, spherical vacuoles, which can contain 

polyphosphate granules. Cole (1998) stated that those large vacuoles, are in a fixed 

position located in close association with the plasma membrane. If they move, they move 

along the membrane and can also function as a place of storage throughout the hyphae. 

Most of the vacuole system are tubular (Ashford, 1998; Cole et al., 1998), and have less 

contact with the plasma membrane and Allaway and Ashford (2001) proposed that the 

fixed storage vacuoles associated with the plasmalemma, are interconnected by tubules. 

The vacuole system in Pisolithus tinctorius (Pers) Coker & Couch (Sclerodermataceae) 

hyphae has been shown to be both motile and interconnected. The apical cells of its 

fungal tips and to a lesser extent the basal hyphal cells in more mature regions can 

increase their motile activity and interconnectedness in response to changing 

environmental conditons (Hyde and Ashford, 1997). Both tubules and fixed spherical 

vacuoles contain a number of elements including high levels of P and potassium (Orlovich 

and Ashford, 1993; Hyde and Ashford, 1997; Ashford, 1998; Cole et al., 1998). The 

distribution of P is similar in both spherical vacuoles and tubules, suggesting that both 

might play a role in the longitudinal long distance hyphal movement of P (Hyde and 

Ashford, 1997). Inorganic phosphate absorbed by hyphae can also be stored as soluble 

orthophosphate (Harley and Loughman, 1963) or soluble polyphosphate (Martin et al., 

1983; Loughman and Ratcliffe, 1984). In vivo transport of P can be observed in intact 

systems using radioactive tracers (32P and 33P)showing translocation throughout the 

fungal network and towards the roots of the host plants (Lindahl et al., 2001; Lindahl and 

Olsson, 2004; Cameron et al., 2007; Wu et al., 2012). In addition, it is also possible to 

generate elemental maps of mycorrhizal roots showing the distribution of P through the 

use of micro-particle-induced-X-ray emission (Bücking and Heyser, 1999; Bücking and 

Shachar-Hill, 2005; Orłowska et al., 2008). Ectomycorrhizal basidiomycetes growing in 

axenic culture can store P as orthophosphate or polyphosphate, depending on species or 

culture conditions (Martin et al., 1983; Martin et al., 1985; Mousain and Salsac, 1985; 

Cairney and Chambers, 1997; Gerlitz and Gerlitz, 1997). Those diverse storage forms the 

biochemical possibilities and the interconnected tubular vacuole system might be the 

reason for the high P concentration in the ECM. 

2.3.5.2 Phosphorus storage in AM 

Of the various cellular functions where fungi supply the plant with P (Kornberg et al., 

1999), the most important is the temporary storage of inorganic P in the vacuolar P pool of 

AM hyphae (Ezawa et al., 2002) (Table 2.3-3). Chain-length of polyphosphate in AM fungi 

http://en.wikipedia.org/wiki/Sclerodermataceae
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is variable (Ezawa et al., 1999), longer in extraradical than in intraradical hyphae but both 

soluble and long-chain granular forms occur in the intra- and extraradical hyphae 

(Solaiman et al., 1999). Many factors may affect the solubility of polyphosphate in vivo, 

including pH, chain-length, concentration of polyphosphate and counter ions such as 

metal cations and polyamines (Harold, 1966; Cramer and Davis, 1984). The efficiency of 

the AM mycorrhizal association in P nutrition of a host plant is highly geared to the ability 

of the AM to accumulate P when external supply is high and remobilise this stored pool of 

P under limiting conditions, thereby maintaining a continuous suppy of P to the plant 

(Bücking and Heyser, 2000).  
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2.3.6 Transport of P in the fungus-plant 

interface 

2.3.6.1 Transport of P in ECM 

The transfer of P in mycorrhiza occurs either as: 1) passive translocation in the hyphae; or 

2) passive and active transport of inorganic P into the root. Translocation of P within the 

hyphae occurs passively along a concentration gradient between the P source in the 

external hyphae and a P sink in the root supported by cytoplasmic streaming (Bolan, 

1991). Transport in the hyphae is influenced by the intracellular P concentration of the 

hyphae because it regulates the P absorption by the fungus (Thomson et al., 1990; 

Cairney and Smith, 1992). In addition, it has been proposed that motile tubular vacuoles 

may function in both intracellular and intercellular transport of mineral nutrients. 

Pleiomorphic vacuolar tubules found in extraradical hyphae and in the fungal sheath 

containing polyphosphate move rapidly, extend, retract, fuse, and even pass through 

dolipore septa and are present throughout the entire fungal system (Orlovich and Ashford, 

1994; Ashford, 1998; Shoji et al., 2006). These motile tubular vacuoles might be 

responsible for the rapid short and long distance transfer in the extraradical mycelium of 

ECM (Hyde and Ashford, 1997; Allaway and Ashford, 2001; Smith and Read, 2008).  

A rapid bidirectional transfer of P and carbohydrates occurs between the root and the 

hyphae at the fungus-root interface (Figure 2.3-1). This involves both the passive efflux of 

P and carbohydrates through the fungal and plant plasma membranes into the interfacial 

apoplast and active exchange of nutrients between both partners (Smith and Gianinazzi-

Pearson, 1988; Smith and Smith, 1989; Smith and Smith, 1990; Bücking and Heyser, 

2000). For passive uptake into the plant, it is known that the contrast between the high P 

concentration in the hyphae of the Hartig net and the low P concentrations in the 

interfacial apoplast and the cortical cells causes the passive efflux of P from the hyphae 

into the interfacial apoplast and host plant (Smith et al., 1994). This occurs mainly by 

maintaining the P concentration gradient due to allocation of P either into P storage pools 

such as vacuoles in the cortical cells or to rapid transfer to P sinks such as the 

meristematic tissue and the nuclei of root cells (Bücking and Heyser, 1997) or 

aboveground plant parts. A second mechanism may also exist: high –low affinity P 

transporters have been identified which might be involved in the active transfer of P at the 

symbiotic interface (Smith and Read, 2008). This supply of P for plants might be 

quantitatively linked to loss of sugars to the interfacial apoplast. The relevance of both 

mechanisms and their dependence on ecological conditions is an area of further work 

particularly relevant to OM (see below). Also interesting would be stoichiometric approach 
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for the exchange between P and sugars, e.g. the mole sugars that are necessary for plant 

to deliver and to obtain one mole of phosphate.  

2.3.6.2 Transport of P in AM 

In arbuscular mycorrhizal associations P is transferred from the fungus to the plant and C 

from the plant to the fungus (Ezawa et al., 2002). The long distance transfer of P from the 

external mycelium to the plant is probably achieved via transfer of vacuolar components 

into the fungal arbuscules and from there to the interfacial apoplast (Ezawa et al., 2002). 

The P-rich granules were shown to be the main form of P transport over long distances in 

AM fungi such as Glomus mosseae T.H. Nicolson & Gerd. (Callow et al., 1978; Cox et al., 

1980). Ezawa et al. (2002) suggests that the transport would take place either by 

protoplasmic streaming or the motile tubular vacuole-like system. It is likely also that 

organic P molecules are present and may be part of the P pool delivered to the plant. A 

constant, length-specific P uptake by hyphae within AM species and a consequent P 

accumulation in AM hyphae were shown but exhibited a poor capacity for P delivery to the 

plant (Ezawa et al., 2002; Munkvold et al., 2004). Even if, as Harrison (1999) suggests, 

the presence of ATPases at the symbiotic interface indicates a possible active nutrient 

transfer, the biochemical and biophysical processes of this transfer across this interface is 

still unknown for AM. 

2.3.6.3 Transport of P in OM 

Fungi provide C, N and P to partially and fully mycoheterotrophic orchids (Figure 2.3-1). 

However, little is known about plant-to-fungus transfer and subsequent benefits to the 

fungus (Cameron et al., 2006; Cameron et al., 2008). Cameron et al. (Cameron et al., 

2006; Cameron et al., 2008) demonstrated a mutualistic, bidirectional C transfer between 

the green orchid Goodyera repens (L.) R. Br. and the fungus Ceratobasidium D.P. Rogers 

(Ceratobasidiaceae). After the initially mycoheterotrophic phase of development, the 

symbiosis in green-leaved adults follows the conventional pattern of mycorrhizal 

mutualisms: C from the plant is exchanged for mineral nutrients accumulated by the 

fungus (Cameron et al., 2007) (Table 2.3-3). Smith (1967) showed the direct transfer of 

32P from fungus to protocorms and Alexander et al. (1984) the transfer of 32P into 

Goodyera repens (L.) R. Br.. Cameron et al. (2007) showed for the first time that the intact 

external mycelium of Ceratobasidium cornigerum (Bourdot) D.P. Rogers 

(Ceratobasidiaceae) could assimilate P (supplied as 33P) and facilitate its transfer to adult 

roots and shoots of G. repens (L.) (Table 2.3-3). This provides some evidence for 

reciprocal transfer of C and P in the Rhizoctonia-orchid symbiosis; the same has also 

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/Robert_Brown_(botanist)
http://en.wikipedia.org/wiki/Ceratobasidiaceae
http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/Robert_Brown_(botanist)
http://en.wikipedia.org/wiki/Hubert_Bourdot
http://en.wikipedia.org/w/index.php?title=Donald_P._Rogers&action=edit&redlink=1
http://en.wikipedia.org/wiki/Carl_Linnaeus
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been shown to occur in the case of N (Cameron et al., 2006). Thus the mycorrhizas of 

Rhizoctonia-colonized orchids appear to function in the same way as those of AM and 

ECM systems. However, until now all knowledge is based upon the analysis of a single 

European orchid species. There is also circumstantial evidence that orchids may derive P 

from both, intact pelotons as well as lysed pelotons (Rasmussen and Rasmussen, 2009). 

However, further work is required to delineate the exact means of P transport in orchids. 

There is clearly a need to extend such analyses to regions with a far greater diversity of 

orchid species and with a wider range of nutritional and ecological gradients to deepen 

our understanding of the effect of environmental factors on physiological process like P 

transport. 

  



Transport of P in the fungus-plant interface    Study 3    

  120 

Table 2.3-3: Phosphorus budget expressed as percentage of whole plant P 
allocated to various organs of mycorrhizal plants. The molybdite blue (Murphy 
and Riley, 1962) or adapted methods were used to estimate the percentage of P 
in the organs of mycorrhizal plants. 

  P percentage in various plant organs 

Host 
Species 

Mycorrhizal 
species and 
infection type 

myc
orrhi

za 

roots stem leaf Flowers Study 
system 

Reference 

Eucalyptus 
pilularis 

Unknown 
(ECM) 

- 38 16 44 - Microco
sm 

Mulligan 
and Patrick, 
1985 

Pinus 
sylvestris 

Thelephora 
terrestris (Tt-
0994-Lommel) 
(ECM) 

12 50 - 38 - Hydropo
nic  

Colpaert 
and 
Verstuyft, 
1999 

 Suillus luteus 
(SI-0994-Paal) 
(ECM) 

16 48 - 36 -   

Fragraria x 
ananassa 

Unknown (AM)  - 9.4 1.1 37.
9 

51.3* Field Dunne and 
Fitter, 1989 

Hyacinthoi
des non-
scripta 

Unknown 
Glomalean 
(AM) 

- 13 
(45 

bulb) 

- 13 9 (20 
seed) 

Microco
sm  and 
field 

Merryweath
er and 
Fitter, 1995 

Cucumis 
sativus 

Scutellospora 
callospora 
((WUM12(2)) 
(AM) 

- 15.2 - 84.
8 

- Microco
sm 

Pearson 
and 
Jakobsen, 
1993 

 Glomus 
caledonium 
(RIS 42) 

- 14.5 - 85.
4 

-   

 Glomus sp. 
(WUM 10(1)) 

- 16.1 - 83.
8 

-   

Medicago 
trunculata 

Glomus 
intraradices 
(AM) 

- 30 - 70 -  Lendenman
n et al., 
2011 

 Glomus 
claroideum 
(AM) 

- 28.6 - 71.
4 

-   

 Gigaspora 
margerita (AM) 

- 33.3 - 66.
7 

-   

Goodyera 
repens 

Ceratobasidiu
m cornigerum 
(OM) 

83.5 5.4 - 6.3 - Microco
sm 

Cameron et 
al., 2007 

*includes allocation to fruit also 
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2.3.7 Phosphorus deficient ecosystems 

 

P in soil, unlike N and C, is not replenishable from the atmosphere and as such is a finite 

resource mainly derived from weathering of parent material (Smeck, 1985; Lambers et al., 

2008; Selmants and Hart, 2010). In regions of geological stability and old age, there is a 

proliferation of soils that are highly deficient in nutrients (Lindsay, 1985; Orians and 

Milewski, 2007; Hopper, 2009b), especially in P (Figure 2.3-3). California Floristic 

Province, West Ecuador/ Tropical Andes, Mesoamerica, Mediterranean Basin, the 

southwest of Australia and the greater Cape region of Africa are regions of extreme 

nutrient deficiency and biodiversity hotspots for conservation priorities (Myers et al., 

2000), and have been classified as being very old, stable and climatically buffered 

landscapes which are P limited (Turkington et al., 2005; Lambers et al., 2008; Hopper, 

2009a; Reich, 2015) (Figure 2.3-3). The paucity of available nutrients in soils has pushed 

these regions to become biodiversity hotspots, with exceptionally high levels of plant 

endemism (Cowling et al., 1996; Lambers et al., 2008; Hopper, 2009b)  

 

 

Figure 2.3-3: Phosphorus retention map with selected biodiversity hotspots in P deficient 

regions (Myers et al., 2000; Reich, 2015) 

The flora of these regions has evolved a multitude of strategies to overcome the low 

nutrient levels, ranging from preventing nutrient loss from herbivory through intense 

sclerophylly, to being extremely efficient at remobilizing essential nutrients (Handreck, 
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1997; Lambers et al., 2008; Selmants and Hart, 2010). To overcome P deficiency in these 

soils, plants have developed not only physiological mechanisms, where they either modify 

root morphologies (cluster roots) or engage in mycorrhizal relationships to maximize P 

uptake (Pate, 1994; Lambers et al., 2002; Orians and Milewski, 2007; Lambers et al., 

2008; Selmants and Hart, 2010). 

Cluster roots are formed by both monocots and dicots, and are characterized by the 

formation of clusters of densely packed lateral rootlets (Lambers et al., 2008; Lambers et 

al., 2013). Due to the production and secretion of phosphatases and carboxylates into the 

surrounding soil, cluster roots are able to access both organic and inorganic forms of P 

(Alexander et al., 1984; Lambers et al., 2002; Shane et al., 2004; Lambers et al., 2008; 

Lambers et al., 2013). Cluster roots are a specialized adaptation evolved on extremely 

nutrient poor soils, with long periods of weathering. This extreme adaptation to nutrient 

poor soils observed in cluster root forming plants has resulted in an inability to down-

regulate their P uptake capacities, and they can display P toxicity even when exposed to 

slightly elevated P levels (Lambers et al., 2002; Shane et al., 2004; Lambers et al., 2008; 

Lambers et al., 2013). Arbuscular mycorrhizas can only access inorganic P from the soil, 

whereas ECM and ericoid mycorrhizas are able to access both organic and inorganic P 

(Read, 1996; Smith and Read, 2008) (Figure 2.3-2). However, in soils with high P levels, 

only ECM are able to uptake and store excess P in their hyphae, presumably as 

polyphosphates, releasing the stored P to the host if deficiency occurs (Smith and Read, 

2008). The formation of AM on the other hand is inhibited at elevated P concentrations 

(Handreck, 1997; Smith and Read, 2008). Nothing is known about the influence of 

available P on the formation or behavior of orchid mycorrhiza in these environments. 

However the hypothesis that low levels of P have encouraged diversification of terrestrial 

orchids (Brown et al., 2008) is confirmed by the fact that the Cape and southwestern 

Australia are particularly rich in orchid species and diversity (Liltved and Johnson, 2012). 
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2.3.8 Epiphytic orchids-a special case in P 

deficient survival 

 

Considerable research is now focused on ascribing the identities of mycorrhizal fungi to 

epiphytic orchids whereas a larger literature exists on describing the diversity of terrestrial 

taxa – most likely reflecting the temperate regions where most orchid scientists reside. It 

has been long assumed that orchids have a heavy reliance on a mycorrhizal partner for 

their mineral nutrition, due to their highly reduced and coarse root system (Brundrett, 

2007). However, there has been very little experimental evidence showing the degree to 

which orchids rely on their mycorrhizas outside of the dependency upon fungal infection to 

commence germination under field conditions. In terms of obtaining mineral nutrients, 

particularly P, terrestrial orchids have a distinct advantage over epiphytic species in being 

able to undertake direct ion exchange as they are in contact with the soil matrix. However, 

epiphytic orchids exist in perhaps one of the most P impoverished environments, where 

the window for nutrient acquisition may only be open for brief intervals when the plant is in 

contact with rainfall and leachates from the canopy or, in the case of lithophytic orchids, 

from the surrounding rock face (Benzing, 1973; Zotz and Richter, 2006; Cardelús and 

Mack, 2010). Typically, precipitation that is intercepted by the forest canopy and flows 

down trunks or passes through foliage will usually contain the highest quantities of 

nutrients. However nutrient levels in water percolating across bark or rock is 

extraordinarily low (McColl, 1970; Benzing, 1973). Nutrient composition of through fall 

relies on the composition of the rainfall and also the leachability of ions from bark or 

foliage (Benzing, 1973; Jordan et al., 1980). Consequently, trees with P-rich bark and 

foliage are often preferentially colonized by epiphytes (Benner, 2011; Wanek and Zotz, 

2011), though this issue has not been studied with orchids. P is the element with lowest 

concentration of all nutrients (< 0.1 ppm) as it is not readily leached from the canopy or 

from bark/rock inhabiting lichens and algae (Stenlid, 1958; Jordan et al., 1980; Li, 1998). 

Nutrient composition, through fall and stem flow studies have revealed a disconnection 

between canopy and ground nutrient pools and very tight cycling of P in the canopy of 

rainforest systems. This had led to the current notion that these systems are 

extraordinarily P-limited environments (Zotz and Hietz, 2001; Zotz and Richter, 2006; 

Cardelús and Mack, 2010). 

To overcome living in such a nutrient-poor environment, epiphytic orchids have developed 

a number of remarkable adaptations. They often have slow rates of growth as a counter to 

the longer accumulation times required for nutrient acquisition (Benzing, 1973), are 

commonly smaller in size with a larger investment in root structures (Schmidt et al., 2001; 
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Zotz and Hietz, 2001) and, exhibit the ability to recycle nutrients by retaining leaf, root and 

storage organs (leaf-based or specialized hypertrophic tissues known as pseudobulbs) for 

use in vegetative reproduction and as a pool of nutrients and water storage (Zotz, 1999). 

The velamen radicum, a spongy multiple-layered epidermis that covers the aerial roots 

provides a rapid adsorption and retention tissue for the first flush of nutrient rich water 

flowing down the bark or rock face and is thought to be a key adaptation to epiphytic life 

(Zotz and Winkler, 2013). Clearly these adaptations to life in the ‘air’ are highly 

advantageous as 60% of orchids are epiphytic with some genera having many hundreds 

to thousands of species (Pridgeon et al., 1999 ). Therefore there is a need to understand 

both the fungal diversity associated with epiphytic species and also the functional 

significance throughout the life cycle of the orchid. 
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2.3.9 Conclusions 

 

Mobility and availability of P in soils is typically low because of rapid absorption and or 

precipitation. The beneficial role of mycorrhiza to uptake dissolved, and mobilize sorbed, 

organic and mineral P forms from soil behind the P depletion zone of the root is clearly 

highly advantageous to the plant (Bolan, 1991). Mycorrhiza use i) biochemical, e.g. 

chelation and acidification, ii) biophysical strategies, e.g. protoplasmic streaming to 

increase the effectiveness and absorption surface for the P from the soil (Bolan, 1991; 

Cairney, 2011), as well as iii) by occupation much larger space compared to the roots.  

The mycorrhizal associations are efficient for the P nutrition not only by increased P 

absorption, but by the capability to accumulate P, when the external supply is high and to 

remobilize this stored pool in periods of P deficiency (Bücking and Heyser, 2000). There is 

an ongoing discussion about existence and dispersal of polyphosphate granules and the 

motile vacuole system and how it is interconnected with tubules in both AM and ECM 

(Orlovich and Ashford, 1993; Gerlitz and Werk, 1994; Cole et al., 1998; Ashford et al., 

1999). Further research is required to understand P storage pools, mobilization processes 

and responses to changing environmental conditons and the cellular location and type(s) 

of stored P, particularly in OM. 

In OM, the mutualistic, bidirectional C and N transfer and P uptake and transfer to roots 

have been shown only recently, and very little is known about the mechanisms of plant-to-

fungus transfer and benefits to the fungus (Cameron et al., 2006; Cameron et al., 2007; 

Cameron et al., 2008). It also unclear if orchids may derive their P from both, intact 

pelotons as well as lysed pelotons (Serrigny and Dexheimer, 1985)(cited in Smith and 

Read, 2008). 

Partially mycoheterotrophic orchids depend on ectomycorrhizal fungi for seedling and 

adult development and may specialize on more narrow groups of fungi during germination 

than in adulthood (Bidartondo and Read, 2008). Since ECM are more efficient in the 

uptake and transport of P, and are able to access a broader spectrum of P sources 

compared to AM there are clear advantages for orchids to link via ECM particularly in 

nutrient and even light-limiting environments. Gebauer and Meyer postulated (cited in 

Bidartondo et al. 2008) that photosynthetic forest orchids are connected both to typical 

OM and to ECM. So maybe there is not even a change but rather a regulation to obtain P 

from the soil in exchange for C from the plant depending on the photosynthetic activity or 

stage in the orchid’s lifecycle. However it remains to be known for the majority of orchids 
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exactly what is the role and function of mycorrhiza in P nutrition and this remains an 

exciting area for future research.  
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Abstract 

 

The effects of tree species on the N cycle in forest systems are still under debate. 

However, contradicting results of different 15N labeling techniques of trees and N tracers in 

the individual studies hamper a generalized mechanistic view. Therefore, we compared 

Ca(15NO3)2 and 15NH4Cl leaf-labeling method to investigate 1) N allocation patterns from 

aboveground to belowground, 2) the cycles of N in soil-plant systems and 3) to allow the 

production of highly 15N enriched litter for subsequent decomposition studies.  

20 beeches (Fagus sylvatica) and 20 ashes (Fraxinus excelsior) were 15N pulse labeled 

from aboveground with Ca(15NO3)2 and 40 beeches and 40 ashes were 15N pulse labeled 

from aboveground with 15NH4Cl. 15N was quantified in tree compartments (leaves, stem, 

roots) and in soil after eight days.  

Beech and ash incorporated generally more 15N from the applied 15NH4Cl compared to 

Ca(15NO3)2 in all measured compartments, except for ash leaves. Ash had highest 15N 

incorporation (45% of the applied with Ca(15NO3)2) in its leaves. Both tree species kept 

over 90% of all fixed 15N from Ca(15NO3) in their leaves, whereas only 50% of the 15N from 

the 15NH4Cl tracer remained in the leaves and 50% were allocated to stem, roots and soil. 

There was no damage of the leaves by both salts, and thus both 15N tracers enable long-

term labeling in situ field studies on N rhizodeposition and allocation in soils. Nonetheless 

the 15N incorporation by both salts was species specific: the leaf labeling with 15NH4Cl 

results in a more homogenous distribution between the tree compartments in both tree 

species and therefore, 15NH4Cl is more appropriate for allocation studies. The leaf labeling 

with Ca(15NO3)2 is a suitable tool to produce highly enriched 15N leaf litter for further long 

term in situ decomposition and turnover studies. 

 

Key-words: Ca(15NO3)2 labeling, 15NH4Cl labeling, nitrogen cycles, tree rhizodeposition, 

species effects, deciduous forest. 
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2.4.1 Introduction 

 

Plant-available N in soil originates from various sources: microbially fixed atmospheric N2, 

atmospheric N deposition, mineralization of plant litter and root exudates and 

mineralization of soil organic matter (Millard and Grelet, 2010). N cycling in forest 

ecosystems has been intensively studied during the past decades, especially regarding 

the expected climate change scenarios (Heinrich et al., 2015) and 15N labeling techniques 

are frequently used to study N transformations and allocation in agroecosystems, but 

seldom in forest ecosystems. Studies on N rhizodeposition in deciduous forest 

ecosystems are still scarce and deliver contrasting results (Brumme et al., 1992; 

Hertenberger and Wanek, 2004).  

Investigating N rhizodeposition requires 15N labeling of the tree from aboveground. One 

reason for the high variability in results on N allocation is the use of different 15N labeling 

methods of plants (Jones et al., 2009). Three labeling approaches are frequently used to 

investigate N rhizodeposition: 1) shoot labeling, 2) leaf labeling and 3) split root system. 

Ammonium nitrate or urea have been used for the shoot labeling (also called wick 

method) (Glaser et al., 2012; Mayer et al., 2003; Russell and Fillery, 1996; Wichern et al., 

2011; Yasmin et al., 2006). For example, Glaser et al. (2012) used 15N shoot labeling by 

drilling a hole through the stem and inserted a fiber glass wick, covered with a PVC tube 

at both sides of the hole. The cut surface between hole and wick was sealed with PVC 

glue and the glass fiber wicks were saturated with sterile water and connected with a 

reservoir containing the 15NH4
15NO3 tracer solution. The produced labeled plant material 

was then used to trace and quantify N from litter decomposition, such as in other studies 

(Benesch et al., 2015; Bimuller et al., 2013; Schmidt and Scrimgeour, 2001). Leguminous 

trees stem-labeled with K15NO3 solution showed limited 15N transfer to associated grass in 

an agroforestry system and indicated that transfer of the added 15N was limited in space 

(i.e., up to 1m from the trees) and delayed in time (i.e., 15N reached the tree roots more 

than 3 months after labeling), which prevented estimation based on the stem-15N labeling 

method (Sierra and Daudin, 2010). However injecting 15N directly into the vessel elements 

also requires special equipment and foliar fertilization delivers the nutrients directly to the 

leaves and increases N use efficiency. Therefore a 15N foliar application could be a useful 

tool for labeling tree leaf material (Ta et al., 1989) . Urea and NH4NO3 have frequently 

been used for leaf labeling to investigate the distribution and recycling of canopy N 

storage reserves (Ayala et al., 2014). Ayala et al. (2014) bagged cherry trees to isolate 

them from the rest of the soil and then sprayed a solution of 15N-urea onto the leaves. 

Their approach is similar to the method used by Zeller et al. (1998) and d’Annunzio et al. 
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(2008), who sprayed beech trees also with 15N urea to produce 15N-labeled litter. 15N litter 

labeling experiments conducted in two European forests revealed after a decade that 60% 

of the 15N tracer from the litter was retained in soil aggregates, while plant debris still 

contained 40% of the tracer (Hatton et al., 2012).  Varying concentrations of 15NH4
+

 and 

15NO3ˉ were also used for leaf labeling to study the preferential uptake of NH4
+ and NO3

ˉ 

by aboveground parts of beech trees and as simulated rain on red maple and white oak 

and revealed that the foliar uptake of 15NH4
+ from the tracer by deciduous tree leaves 

exceeded the uptake of NO3
ˉ (Brumme, Leimcke, Matzner, 1992; Garten and Hanson, 

1990).  

The N fluxes in the xylem of trees are regulated by three processes: remobilization from 

internal reserves, root uptake of N from the soil, and phloem–xylem recycling (Dambrine 

et al., 1995; Grassi et al., 2003). Species-specific patterns of C and N allocation in the tree 

compartments might be due to differences in remobilization and recycling processes and, 

therefore, differences in the amount of rhizodeposition into the soil (Sommer et al., 2016). 

However, the labeling of grey alder leaves following root fertilization and leaf fertilization 

with either 15NH4
+ or 15NO3- revealed that root fertilization gave better labeling efficiency, 

uniformity and repeatability than leaf labeling in both 15N labeling forms (GonzalezPrieto et 

al., 1995). (NH4)2SO4 and KNO3 have been used in the split root system, where the root 

systems of one seedling are split between two soil chambers. Labeling one soil chamber 

with a 15N-enriched N source enables observing the N loss from the portion of the root 

system growing in the unlabeled soil chamber (Jensen, 1996; Sawatsky and Soper, 1991; 

Schmidtke, 2005). It can be concluded that a tracer including NH4
+ will take up higher 

amount of N and might therefore have advantages in further leaf labeling experiments. 

Picea abies was labeled  with 15NO3ˉ and 15NH4
+ through soil application addressing the 

question of preferential N source uptake  and investigated 94% recovery for the applied  

15NH4
+ and 100% for the applied 15NO3ˉ for the entire stand  in the first year (Buchmann et 

al., 1995). The main sink for both N forms was the soil, where 87% of the 15NH4
+ and 79% 

of the 15NO3ˉ were found and surprisingly eight months after labeling, 9% of the 

ammonium and 15% of the nitrate label were found in the understory in shrubs and the 

perennial grass of Picea abies, whereas Picea retained only 3% of the 15NH4
+ and 7% of 

the 15NO3ˉ (Buchmann et al., 1996). Besides mineral N labeling of soils, dual isotope 

labeling (15N and 13C) of amino acids is a widely used approach quantifying the intact 

uptake of amino acids by plants (Hodge, 2004; Moran-Zuloaga et al., 2015; Näsholm et 

al., 1998). 

15NH4Cl has also only been chosen for belowground labeling up to day and alongside 

NO3
-. Trogisch (2012) and Zeugin et al. (2010) used three chemical N tracers dual-
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labelled glycine, K15NO3 and 15NH4Cl for 15N soil labeling under tropical broadleaf tree 

species to study N uptake patterns. Those 15N labeling experiments allow to study the 

preferences of species for different chemical N sources (Liu et al., 2016, Zeugin et al., 

2010) and clearly demonstrated that multidimensional N-use complementarity can 

facilitate species coexistence (Xu et al., 2011). However, 15N labeling experiments from 

belowground, if not constructed as split-root experiments, are not considering N sources 

of rhizodeposition, whereas leaf labeling might be an adequate tool for investigating 

differences in N allocation and exudation strategies (Wichern et al., 2008). However, leaf-

labeling with 15N-urea should not be considered a pure pulse-labeling method because 

Gasser et al. (2015) showed quantitative evidence of overestimated rhizodeposition on 

red clover. 

The aim of this study was to investigate whether Ca(15NO3)2 or 15NH4Cl can be used as 

tracers for the leaf labeling, providing an alternative to urea or ammonium nitrate to trace 

N allocation by trees. Beech and ash were chosen as model trees as their relevance in 

temperate broad leaf forests is high and a deviation N cycling induced by these trees was 

already observed ((Guckland et al., 2009; Langenbruch et al., 2014).  We hypothesized 

that leaf labeling with Ca(15NO3)2 and 
15NH4Cl results in 1) chemical species specific 

differences and 2) tree species specific differences. Furthermore, certain potential 

advantages over the classical labeling approaches, including a) no damage to the leaves 

by the tracer, b) fast 15N distribution of the N tracer due to high mobility of nitrate and c) 

possibility to produce highly 15N enriched litter for further decomposition studies will be 

investigated and discussed. 
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2.4.2 Material and Methods 

 

The study is based on two experiments: 1) 15N labeling with Ca(15NO3)2 and 2) 15N 

labeling with 15NH4Cl. 

2.4.2.1 15N labeling with Ca(15NO3)2 

The experimental site (10°05’ N, 10°30’ E, 300 AMSL) was located in the southwest of 

Weberstedt, which belongs to the province of Thuringia (Germany) in the northeastern 

part of the Hainich National Park. The mean annual temperature is 7.5 °C and the mean 

annual precipitation is 670 mm. The Hainich is the largest continuous broad-leaved forest 

of Germany and dominated by beech and grows on a Stagnic Luvisol (WRB 2006) 

developed from loess that is underlaid by Triassic limestone. The in situ 15N pulse labeling 

of 20 beeches (Fagus sylvatica) and 20 ashes (Fraxinus excelsior) was conducted in 

August 2011 on trees with 3-4 m height and were compared with ten reference trees of 

each species. All trees including the reference trees were chosen within an area of 

uniform light intensity under a closed beech canopy and scattered with a maximum 

distance of 300 m from the center of the site. 

2.4.2.2 15N labeling with 15NH4Cl 

The experimental site - Göttinger Wald (51°35' N, 9°58' E, 362 AMSL) was located in the 

southwest of Göttingen, within the province of Lower Saxony, Germany. The Göttinger 

Wald is a 130 - 145 year old beech forest scattered with ashes and maple also on a 

Triassic limestone plateau. The mean annual temperature is 7.7 °C and the mean annual 

precipitation 610 mm (Maraun et al., 2001). 40 ashes and 40 beeches were chosen by 

height of approximately 1 m and compared with 20 reference trees of each species. 

Ashes and beeches were taken from the forest with undisturbed soil and placed into pots 

with sufficient space for the entire rooting system (size: 23 x 23 cm; depth: 26 cm). The 

trees had a reestablishing time of two months and were kept under the canopy of mature 

beech trees in the Göttinger Wald and transferred to an outdoor greenhouse instantly 

before labeling. The seedlings were irrigated regularly and herbs were removed by cutting 

the shoots at soil surface. The 15N pulse labeling pot experiment of 20 beeches and 20 

ashes was conducted mainly in August 2012 i.e. at the same season. 

2.4.2.3 Labeling method 
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Glass vials were used as reservoir containing the 15N-labeled calcium nitrate solution 

(99.23 at% 15N, Campro Scientific GmbH, Berlin, Germany) or the 15N labeled ammonium 

chloride solution (98 at% 15N, Campro Scientific GmbH, Berlin, Germany). The 15N 

solutions were applied per gram above ground biomass with 3*10-5 mol in both 

experiments and stayed on the trees for 72 hours. The aboveground biomass is listed in 

Supplementary Table 2.4-1. Three leaves of each beech and three leaflets of each ash 

with a similar area were mechanically roughened to allow the uptake of the solution and 

then placed directly in the vials with the tracer solution. Three vials were fixed on the 

branches at different heights in each tree. The vials were closed with Parafilm and 

additionally covered with a transparent bag to avoid spilling on the ground. At the end of 

the labeling – on day three, the vials were removed with a cut behind the leaves to avoid 

contamination of the ground or other leaves. Leaf, stem, root and soil samples were 

analyzed to quantify the allocation of 15N. This experiment compares data of samples 

taken eight days after the start of the labeling. Therefore, four beeches and four ashes for 

the labeling with Ca(15NO3)2 and ten ashes and ten beeches for the labeling with 15NH4Cl 

were compared, respectively. The other trees samples were not compared in this study 

because they different in sampling time.  

All leaves were sampled and stems were cut 10 cm above the soil, in the middle of the 

tree and the top part. Root samples were taken 10-15 cm from the main root after the tree 

was entirely uprooted to make sure it belongs to the labeled tree and matches the soil 

samples. Soil sampling was also performed in up to 15 cm distance to the tree with a split 

tube in three replicates. The intact core was divided into two to three depth segments but 

only the top segment of 0 - 10 cm was used for comparison in this study. The soil was 

removed from the column, weighed, homogenized and the water content was determined 

in a subsample.  

For the analysis of N content and δ15N signature in plant tissue and soil, leaves, stem, root 

and bulk soil samples were freeze-dried, ground in a ball mill (Retsch Schwingmühle 

MM2, Haan, Germany) and an aliquot (approx. 2 mg for plant tissue and 12 mg for soil) 

was filled into tin capsules. Relative N isotope abundances in leaves, stems, roots and soil 

samples were measured using an elemental analyzer NA1500 (Fison-instruments, 

Rodano, Milano, Italy) coupled to a Delta plus isotope ratio mass spectrometer (Finnigan 

MAT, Bremen, Germany) through a ConFlo III interface (Thermo Electron Cooperation, 

Bremen, Germany). δ15N values were calibrated based on co-measured certified IAEA 

Standards (IAEA-600, USGS26, USGS40, USGS41, IAEA-N-1, IAEA-N-2 and IAEA-NO-

3). 
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2.4.2.4 Calculation of 15N uptake 

The 15N uptake by plants from sources of different isotopic composition alters their δ15N 

value, which follows a two-component mixing model between the 15N natural abundance 

isotopic signature and the signature of the incorporated tracer-derived 15N according to 

Gearing et al. (1991),as shown in Eq. (1): 

   
refTracerN

reflabelled

tcompartmenincTracer
atat

atat
NN

%%

%%

15 



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     (1) 

with: 

[N]compartment the nitrogen content of sample (mmol ∙ gfreeze-dried soil;leaf;stem;root
-1) 

[N]incTracer total amount of 15N incorporated into the plant in (mmol ∙ gfreeze-dried 

soil;leaf;stem;root
-1) 

atom %labelled 
15N values of the labeled sample of the tree (leaf, stem, root, soi) 

atom %ref  
15N values of the non-labeled reference sample of the tree (leaf, stem, root, 

soil) 

atom %15N-Tracer 
15N enrichment of the added Ca(15NO3)2 / 

15NH4Cl 

Allocation of the incorporated 15N was calculated by dividing the incorporation into a 

certain plant or soil compartment through the sum of total 15N recovered in all plant and 

soil pools. This value was displayed as % of 15N allocation by multiplying it with 100%. 

2.4.2.5 Statistics 

Field replications were corrected for outliers using the Nalimov outlier test. All plant 

compartments and soil data were tested with a factorial analysis of variance (ANOVA). A 

Tukey HSD (honest significant difference) tests for post hoc comparison were used to 

compare 15N incorporation or 15N allocation as dependent variables, while tree species, 

15N tracer and within-individual variation were used as independent variables (significance 

level of p < 0.05). The error bars show a standard error of the mean (SEM) in all graphs. 
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2.4.3 Results 

2.4.2.1 15N incorporation into plant tissues and soil 

Significant differences in 15N incorporation were shown between the chosen N compounds 

and the tree species in the leaves eight days after the start of the labeling (Supplementary 

Table 2.4-2). The 15N values in the field study had an average of 4.8 ± 2.3 at% in beech 

and 3.5 ± 0.4 at% in ash and the 15N values in the small trees reached in beech 2.0 ± 0.1 

at% and in ash 1.1 ± 0.2 at%. Whereas N form and tree species itself but also the 

interactions between these factors affected the 15N incorporation into leaves, only the 15N 

species affected the allocation to stem and soil, significantly (Supplementary Table 2.4-2).  

Beech and Ash recovered between 0.812% to 5.940% 15N from the applied 15NH4Cl into 

roots, stem and soil.  The pulse labeling experiment with Ca(15NO3)2 resulted only in 

0.001% to  0.316% 15N from the applied tracer in roots, stem and soil  (Figure 2.4-1). 

Beech incorporated 1.9% 15N from the applied 15NH4Cl in leaves and 9.6 % 15N from the 

applied Ca(15NO3)2 (Figure 2.4-1). Ash showed the highest incorporation with 45% of the 

15N applied as Ca(15NO3)2 in its leaves, but only 6% of the 15N applied in the labeling with 

15NH4Cl (Figure 2.4-1).  

 

Figure 2.4-1: 15N incorporation of applied Ca(15NO3)2 (black symbols; N = 4) and 15NH4Cl 

(grey symbols; N = 10) eight days after the start of the labeling for beech (left) and ash 

(right) in leaves (diamonds), stem (squares), roots (triangle) and soil (circles). Error bars 
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show SEM. Small letters show significant (p < 0.05) differences of 15N in leaves between 

the tree species and between the 15N forms. 

2.4.2.2 15N allocation into plant tissues and soil 

Beech and ash allocated with over 90% of all fixed 15N of the Ca(15NO3)2 almost 

everything into the leaves (Figure 2.4-2), i.e. did not allocate any relevant 15N portion 

belowground. Beech allocates ten times more 15N of the assimilated Ca(15NO3)2 in its stem 

in comparison to ash, where the applied 15N was nearly exclusively recovered in the 

leaves. In contrast, both tree species allocated only approximately 50% of the applied 

15NH4Cl in the leaves eight days after the start of the labeling, whereas the other half was 

incorporated in other plant compartments and soil. 25-35% of 15N were allocated to stem 

and 5-15% in the root. However, ash allocated three times more 15N in its roots than 

beech (Figure 2.4-2). A similar pattern was found for soil, where also ash released by 

factor two higher amounts of the incorporated 15N compared to beech. For any labeling 

study based on 15N tracing of rhizodeposits, it is important to consider, that beech 

allocated by the factor ten and ash with 15% even by the factor 500 more 15N in the soil in 

the 15NH4Cl approach in comparison to the labeling with Ca(15NO3)2. 

The ANOVA (Supplementary Table 2.4-3) demonstrates that this strong effect of the N 

tracer form on allocation pattern is not only highly significant in soil, but also for all other 

plant compartments. Comparing effects of tree species on 15N incorporation and 

allocations (Supplementary Table 2.4-2 and Supplementary Table 2.4-3) shows, that 

relative allocation in the compartments is similar between both tree species 

(Supplementary Table 2.4-3).  
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Figure 2.4-2: Relative 15N allocation of applied Ca(15NO3)2 (black symbols; N = 4) and 

15NH4Cl (grey symbols; N = 10) eight days after the start of the labeling for beech (left) 

and ash (right) in leaves (diamonds), stem (squares), roots (triangle) and soil (circles). 

Error bars show SEM. 
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2.4.3 Discussion 

 

The ability of plants to take up nutrients directly by leaf tissues is well known (Brumme et 

al., 1992, Tuckey et al., 1962). Nevertheless, we used for the first time the 15N leaf-

labeling method based on Ca(15NO3)2 on beech and ash trees in a field experiment and a 

15N leaf-labeling method based on 15NH4Cl on the same tree species in a pot experiment. 

Despite an identical labeling procedure and identical season for labeling, we are aware 

that the ecophysiological conditions for trees in field and – even if large sized – in pots are 

not identical and are likely to have an effect on the N allocation pattern presented in this 

study. Therefore, differences in 15N allocation cannot be solely interpreted by N species 

effect. However, the relative differences of beech and ash – observed in this study for the 

two N species suggest that there is a strong interaction between species specific 

allocation patterns and the 15N species and thus that N speciation plays a role for the 15N 

allocation pattern following labeling. 

 Previous studies preferentially used urea or NH4
+ for leaf labeling to investigate the 

distribution and recycling of canopy N storage reserves (Ayala et al., 2014), or to produce 

15N labeled plant material to trace and quantify the N stabilization and N released from 

litter decomposition (Bimuller et al., 2013; Schmidt and Scrimgeour, 2001). Importantly, 

urea foliar fertilization can cause leaf damage and negatively influence plant growth and 

allocation patterns. Both leaf labeling approaches did not show any damage to the 

unlabeled leaves. Therefore, N leaf-labeling with Ca(15NO3)2 and 15NH4Cl will enable long-

term labeling studies on N rhizodeposition, N turnover and stabilization in soils. This is 

particularly important for in situ experiments in forest stands, where long-term N balance 

is one of the future challenges for forest ecosystem research. 

The absolute 15N enrichments (at%) depend on the amount of biomass, the amount of 

tracer and the enrichment of the 15N tracer. Thus, to compare the efficiency of the 

approaches, especially for not identically sized trees, we focused on the relative uptake 

and incorporation of 15N (in % of applied label) by the trees in this experiment. Beech 

assimilates 10% and therefore five times more 15N from the applied 15NH4Cl in its leaves 

in comparison to the applied Ca(15NO3)2. Ash showed the highest uptake with 45% of the 

15N applied with Ca(15NO3)2 in its leaves which was eight times more 15N than in labeling 

experiment with 15NH4Cl. Glaser et al. (2012) labeled via stem injection with ammonium 

nitrate (99.25 at% 15N) various broad-leaved trees and the uptake also varied between 

14% in Croton macrostachys to 63% in Cupressus lusitanica in the leaves. This supports 

our results and demonstrates that absolute N uptake, also via leaf, is strongly species 
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dependent. However, the final 15N enrichment achieved in the litter in the experiment of 

Glaser et al. (2012) and in the two leaf labeling approaches presented here are sufficient 

for subsequent litter turnover studies. None of the two labeling methods (leaf versus stem) 

could be given a clear preference if the production of 15N labelled litter is the objective for 

15N tree labeling. Similarly, both N forms chosen for leaf labeling produced highly enriched 

litter and therefore, we suggest that the Ca(15NO3)2 labeling method as well as the 15NH4Cl 

labeling approach are suitable tools to gain highly 15N enriched litter. 

Brumme et al.(1992) labeled young beeches with 15NH4
15NO3 and 15NH4NO3 and stated 

that the NH4 uptake was 27% higher than the NO3
- uptake. Our results confirm this 

observation at least for beech, because beech showed a 12% higher NH4
+ than the NO3

ˉ 

uptake summing up all measured compartments. However, ash in contrast incorporated 

four times less NH4
+ than NO3

ˉ
 into all measured compartments. Therefore, we conclude 

that there is likely a strong species effect on N allocation and consequently, for each 15N 

leaf labeling a careful selection of the N species has to be done, as the absolute amount 

of uptake is affected by the N species and the tree species. Limited knowledge on these 

interactions for many not yet investigated tree species requires careful consideration of 

this aspect for all further investigations and potential pre-experiments with the 

undescribed tree species. 

The N distribution in higher plant results not only from the mineral N uptake by the roots 

and the reduction of oxidized N species (Gavrichkova and Kuzyakov, 2010) and but also 

from xylem translocation, phloem cycling and short and long term storages as amino acids 

or proteins (Clarkson et al., 1986; Laine et al., 1994). Rennenberg et al. (1998) discovered 

that the total soluble non-protein N content of xylem sap within beech trees is dominated 

by organic N rather than by inorganic N and that the assimilation of inorganic N in beech 

trees takes place mainly in the roots. Furthermore Rennenberg et al. (1998) mentioned 

that Arginine appears to be the main storage compound and accumulates in beech 

compartments in comparison to spruce, for example. Glutamine is present in beech trees 

in high amounts in all tissues and transport systems during the entire growing season  

(Rennenberg et al., 1998). The N storage in the stem depends highly on the season, is 

closely linked to tree phenology, and operates at temporal scales of months to years, with 

remobilization being source driven (Millard and Grelet, 2010). Although we found already 

a remarkable allocation of 15N from 15NH4Cl into stem, the production of highly enriched 

stem, e.g. for wood decomposition studies, would presumably be even more successful in 

case of multiple pulse labeling at various seasons.  

Glutamine was presented by Rennenberg et al. (1998) as N compound circulating 

between the shoot and the roots in beech but there are no comparable studies on ash. 
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However, ammonium and nitrate are not incorporated similarly into universal N 

transporters such as glutamine – mainly because nitrate should be reduced before it can 

be used for amination of an amino acid. The reduction of NO3
− to NH4

+ is catalyzed by 

nitrate and nitrite reductase enzymes and is among the most energy-intensive processes 

in the plants and can implicate additional respiration (Gavrichkova and Kuzyakov, 2010). 

Thus, it is likely, that the observed differences in the allocation of ammonium and nitrate-

derived 15N to belowground arise from their deviating applicability to be transferred on the 

organic N transporting molecules i.e. mainly amino acids.  

Beyer et al. (2013) showed in the National Park Hainich that the longevity of fine roots of 

ash is significantly higher than of beech, which is one of the reason explaining differences 

in the rhizodeposition of theses tree species. However, it is unclear whether fine roots re-

translocate significant N amounts to other plant compartments before root death and 

whether re-translocation from senescent fine roots varies with N availability (Nadelhoffer, 

2000). The strongly deviating 15N incorporation between soil and root in case of 

Ca(15NO3)2 labeling suggests that nitrate remains in a highly mobile N form. This N form 

might not be lost with the fine root turnover to the soil but kept – presumably by re-

allocation – in the tree biomass. However, higher 15N incorporation from 15NH4Cl into soil 

points towards an increased N loss via exudation or fine root turnover. 

Glaser et al. (2012) discovered in their in situ wick labeling approach with 15NH4
+

 that only 

a part of the labile N fraction in the leaves was 15N enriched. This was similarly observed 

in the comparison of 15N species of the present study: Beech and ash kept over 90% of 

the fixed 15N from Ca(15NO3)2 in their leaves but only 50% of the applied 15NH4Cl, whereas 

the other 50% were allocated to stem, roots and soil. We assume that the 15N from the 

Ca(15NO3)2 tracer stays in the leaves maybe stored as Arginine or even as non-reduced 

nitrate. The 15N of 15NH4Cl is much better transferred onto the classical N transport 

molecules in trees and thus 15N was much better distributed over the entire tree and 

allocated into soil. Therefore, we suggest to use Ca(15NO3)2 only for leaf litter 

decomposition studies. In contrast, we recommend 15N from ammonium to trace N flux in 

stem, roots or rhizodeposits.  

One great advantage of the leaf labeling approaches based on Ca(15NO3)2 and 15NH4Cl is 

the ability to understand and quantify the N cycles for adult trees in situ under less 

disturbed conditions than urea labeling – causing physiological damage to the leaf - or the 

wick method – causing mechanical damage of the stem transport systems. 
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2.4.4 Conclusions 

 

The two tree species investigated had a significant effect on the uptake of the N form 

(15Ca(NO3)2 / 15NH4Cl) applied via leaf labeling into the tree. Leaf 15N labeling has 

advantages over the stem labeling methods because it is possible to achieve high 15N 

enrichments of the litter, but it has also advantages for N allocation studies as a specified 

unidirectional transport of the label is given. Compared to the urea leaf labeling method, 

Ca(NO3)2 and 15NH4Cl do not damage the leaves, and therefore leaf labeling with 

Ca(15NO3)2 can be used as a long-term 15N labeling technique. Both leaf labeling forms 

allow 15N detection even in slow-responding pools such as bulk soil organic matter after 

eight days. Therefore, both labeling approaches are generally appropriate for targeted 

studies focused on the N allocation pattern of individual trees within a forest ecosystem. 

As the biochemistry of 15NH4
+ allocation is better understood, more 15N of the 15NH4Cl 

tracer gets allocated belowground and the distribution throughout the plant organs was 

more homogeneous than in case 15N from Ca(15NO3)2 application, the 
15NH4Cl tracer might 

be the more appropriate for labeling roots (e.g. for fine root turnover studies) or 

rhizodeposits (e.g. for rhizosphere microbial studies) in trees but further studies under 

100% identical conditions, i.e. on same sized trees and same environmental conditions 

need to verify those results. 

 .
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Table 2.4-1: Mean aboveground biomass 

Tree species / 

15
N tracer 

Leaf Biomass (g) 

Mean +/- SEM 

Stem Biomass (g) 

Mean +/- SEM 

Beech / Ca(
15

NO3)2 80 ± 6 400 ± 60 

Beech / 
15

NH4Cl 8.5 ± 0.6 37 ± 2  

Ash / Ca(
15

NO3)2 55 ± 7 180 ± 10 

Ash / 
15

NH4Cl 4.3 ± 0.4 24 ± 2 

 

 

Table 2.4-2: Factorial ANOVA table of results for the 15N incorporation of the 
applied tracer and their variance between tree species, between 15N forms and 
between tree species and 15N forms effects of 15N incorporation of different plant 
compartments / soil. 

Source of variation Sum of 
Squares 

(SS) 

Degrees of 
Freedom 

(df) 

Mean 
Square 

(MS) 

F value 

          
(F) 

Significance 
level 

(p) 

Leaves      

Between beech and ash 1708.37 1 1708.37 191.04 0.00 

Between 
15

N forms 1105.43 1 1105.43 123.61 0.00 

Interaction between tree 
species and 

15
N form 2450.82 1 2450.82 274.06 0.00 

Stem      

Between beech and ash 11.88 1 11.88 0.76 0.39 

Between 
15

N forms 77.56 1 77.56 4.98 0.04 

Interaction between tree 
species and 

15
N form 11.88 1 11.88 0.76 0.39 

Roots      

Between beech and ash 0.08 1 0.08 0.07 0.80 

Between 
15

N froms 4.43 1 4.43 3.67 0.07 

Interaction between tree 0.08 1 0.08 0.07 0.80 
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species and 
15

N form 

Soil       

Between beech and ash 1.15 1 1.15 0.80 0.38 

Between 
15

N forms 7.78 1 7.78 5.40 0.03 

Interaction between tree 
species and 

15
N form 1.15 1 1.15 0.80 0.38 

 

Table 2.4-3: Factorial ANOVA results of the relative 15N allocation of the 
assimilated tracer between tree species, between 15N forms and between tree 
species and 15N form effects of relative 15N allocation to plant compartments and 
soil. 

 

 

Source of variation SS df MS F p 

Leaves      

Between beech and ash 10.70 1 10.70 0.01 0.93 

Between 
15

N forms 7978.04 1 7978.04 5.72 0.03 

Between tree species and 
15

N forms 247.46 1 247.46 0.18 0.68 

Stem 
     

Between beech and ash 489.98 1 489.98 0.81 0.38 

Between 
15

N forms 2810.87 1 2810.87 4.66 0.04 

Between tree species and 
15

N forms 4.42 1 4.42 0.01 0.93 

Roots 
     

Between beech and ash 32.39 1 32.39 0.48 0.50 

Between 
15

N forms 300.62 1 300.62 4.41 0.05 

Between tree species and 
15

N forms 32.55 1 32.55 0.48 0.50 

Soil  
     

Between beech and ash 128.95 1 128.95 1.49 0.24 

Between 
15

N forms 453.40 1 453.40 5.25 0.03 

Between tree species and 
15

N forms 147.64 1 147.64 1.71 0.21 
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Abstract 

 

Root-derived resources are receiving increased attention as basal resources for soil 

animal food webs. They predominantly function as carbon (C) and energy resources for 

microbial metabolism in the rhizosphere, however, root-derived nitrogen (N) may also be 

important. We explored both the role of root-derived C and N for the nutrition of soil animal 

species. Using 13C and 15N labeling we followed in situ the flux of shoot-derived C and N 

into the soil animal food web of young beech (Fagus sylvatica) and ash (Fraxinus 

excelsior) trees, dominant species in European deciduous forests. Twenty days after 

labeling root-derived N was detected in each of the studied soil animal species whereas 

incorporation of root-derived C was only detected in the ash rhizosphere. More root-

derived N was incorporated into soil animals from the beech as compared to the ash 

rhizosphere, in spite of the higher 15N signatures in fine roots of ash as compared to 

beech. The results suggest that soil animal food webs not only rely on root C but also on 

root N with the contribution of root N to soil animal nutrition varies with tree species. This 

novel pathway of plant N highlights the importance of root-derived resources for soil 

animal food webs. 

 

 

Keywords: basal resources, mycorrhiza, pulse labeling, rhizodeposits, stable isotope 
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2.5.1 Introduction 

 

The close interrelationship between the decomposer system and plants is mediated by 

leaf litter input and rhizodeposition [1]. As up to 90 % of net primary plant production 

enters the soil as detritus [2], litter has long been assumed to function as the main food 

source for soil animals, however recent work has shown that other resources such as 

those derived from roots may be more important [3–5]. A variety of substances are 

released actively or passively from roots into the soil as rhizodeposits [6,7]. Rhizodeposits 

are divided into exudates, leakages, secretions, mucilages, mucigel and lysates [6,8], and 

include both C and N containing compounds with C compounds being most important. N 

containing compounds are assumed only to be of significant importance in N fixing plants 

such as legumes [9], but their role in other plants has received little attention [10]. In 

addition to fueling microorganisms and fostering microbial biomass in the rhizosphere, 

rhizodeposits affect mutualistic and antagonistic interactions between soil microorganisms 

and plants [11]. 

Soil animal communities of deciduous forests are remarkably diverse [12–14] and form 

complex food webs [15,16]. These food webs span a wide range of trophic levels 

including primary and secondary decomposers, and first, second and third order predators 

[17,18]. Soil animals are affected by soil properties [19], plant species [13,20] and soil 

microorganisms [21,22], with the latter two being mediated by rhizodeposits. Plant 

allocation of C to roots and into the rhizosphere received considerable attention in trees 

[23–25], but N allocation to roots and into the rhizosphere has been investigated for 

herbaceous plants in particular legumes [9,10], whereas information on trees is lacking. 

To investigate the flux of C and N from plants into the belowground system stable 

isotopes are increasingly used [23,26]. Adopting this approach we conducted a pulse 

labeling experiment in the field. By exposing trees to increased atmospheric 13CO2 

concentrations and by immersing leaves into Ca15NO3 solution we followed the flux of C 

and N into the soil animal food web. Using European beech (Fagus sylvatica) and 

common ash (Fraxinus excelsior) we examined if the effect of trees on the soil animal 

food web via rhizodeposits varies between tree species. Beech and ash were chosen as 

they differ in nutrient allocation patterns and mycorrhiza types. Beech roots are associated 

with ectomycorrhizal (EM) while ash roots with arbuscular mycorrhizal (AM) fungi. The 

following hypotheses were investigated: (1) incorporation of root-derived C into the soil 

animal food web varies between tree species and is more pronounced in EM beech than 
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AM ash trees, and (2) root-derived N is of minor importance for soil animal nutrition and 

therefore incorporation into the soil animal food web varies little with tree species. 
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2.5.2 Material and Methods 

2.5.2.1 Study site 

The experiment was conducted in a temperate deciduous beech forest in the Hainich 

National Park (Thüringen, Germany) near Weberstedt (51°05'N, 10°28'E) at 300 m asl. 

Mean annual precipitation is 670 mm and mean annual air temperature 7.5°C. With 

16,000 ha the Hainich National Park is the largest continuous deciduous forest in 

Germany and has been declared World Heritage Nature Site in June 2011. The forest 

predominantly consists of beech (F. sylvatica) stocking on Luvisol developed on loess 

underlain by Triassic Shell Limestone. The forest floor is classified as mull-like moder and 

the mean thickness of the litter layer is 2.8 ± 0.1 cm [27,28]. The topsoil (0-10 cm) is 

rather acidic with a pHKCl of 3.3 [29,30]. 

2.5.2.2 Labeling 

In August 2011 eight young trees, four beech and four ash, with 2.5 - 4.0 m in height and 

a minimum distance from each other of 5 m were selected for labeling; four trees, two 

beech and two ash, were identified as control. The young trees grew in the understory of a 

closed-canopy beech forest. Around each tree used for labeling an area of 1 × 1 m was 

trenched by inserting polyethylene panels of a thickness of 3 mm. The panels extended 

10 cm into the soil and 10 cm above the soil surface to avoid immigration of animals. 

For 15N labeling 36 g Ca15NO3 (99.23 atom% 15N, Campro Scientific GmbH, Berlin, 

Germany) was dissolved in 1200 ml sterile water resulting in a 0.18 M solution. Leaves 

were fed with this solution by installing three vials each with three leaves of beech or three 

leaflets of compound leaves of ash containing 12 ml Ca15NO3 solution and incubated for 

72 h. To increase the uptake of N, leaves were scratched prior to placement into the vials. 

To avoid leakage vials were covered with plastic film and enclosed into plastic bags. 

For 13C labeling trees were enclosed into plastic foil (thickness 0.08 mm) fixed to wooden 

poles erected around the trees. Enclosed trees were labeled with 13CO2 by adding 60 ml 5 

M H2SO4 to a solution containing 6.85 g Na2
13CO3 (99.0 atom% 13C; Cambridge Isotope 

Laboratories, Tewksbury, USA) dissolved in 100 ml distilled water. Air inside the 

enclosures was mixed using a ventilator. The labeling started at about 11 a.m. and lasted 

ca. 5 h. Thereafter, the plastic foil was removed. 

Twenty days after labeling the trees soil samples of a diameter of 20 cm to a depth of 10 

cm were taken. Two samples spaced at least 10 cm were taken per tree. Soil animals 
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were extracted by heat using a high-gradient canister method [31] and stored in 

concentrated salt water at -7°C. 

2.5.2.3 Stable isotope analysis 

Seven species of Oribatida (Chamobates sp. Hull, 1916, Damaeus gracilipes Kulczynski, 

1902, Damaeus riparius Nicolet, 1855, Damaeus onustus C.L. Koch, 1844, Phthiracarus 

sp, Perty, 1841, Steganacarus magnus Nicolet, 1855, Xenillus tegeocranus Hermann, 

1804), one Isopoda (Porcellium conspersum C.L. Koch, 1841) and two Chilopoda species 

(Lithobius mutabilis L. Koch, 1862, Strigamia acuminate Leach 1814) were prepared for 

stable isotope analysis. The species represent major taxa of detritivore soil mesofauna 

(Oribatida) and macrofauna (Isopoda) as well as macrofauna predators (Chilopoda). For 

dual C and N stable isotope ratio analysis 100 – 300 µg of animal tissue were transferred 

into tin capsules and dried at 40 °C for 24 h. Single individuals of large Oribatida were 

used, but for most Oribatida species several individuals had to be pooled. In Isopoda only 

the head was used to prevent including food material in the gut. Samples were analyzed 

with a system consisting of an elemental analyzer (NA 1500, Carlo Erba, Milan, Italy) and 

a mass spectrometer (MAT 251, Finnigan, Bremen, Germany). The computer controlled 

system allows on-line measurement of stable isotopes (13C and 15N). Their abundance (δx) 

is expressed using the δ notation as 

sample standard

standard

[ ] 1000‰x

R R

R



 

 

with Rsample and Rstandard representing 13C/12C and 15N/14N ratios of samples and standard, 

respectively. For 13C PD belemnite and for 15N atmospheric N served as the primary 

standard. Acetanilide (C8H9NO, Merck, Darmstadt, Germany) was used for internal 

calibration. 

2.5.2.4 Calculation of Δ13C and Δ15N values 

For analyzing the enrichment in 15N and 13C of soil animals and fine roots we calculated 

the difference in delta values between animals and fine roots from labeled and unlabeled 

trees as Δelement = δlabel - δcontrol with Δelement the Δ13C and Δ15N values. 

Samples with mean Δ13C and Δ15N in the range of two standard deviations of δ13C and 

δ15N of control samples were assumed not to be enriched and set to zero. 

 



Material and Methods    Study 5    

   

2.5.2.5 Statistical analysis 

Statistical analyses were performed using R v.3.1.3 (R Core Team 2015) and the ‘nlme’ 

package [32]. Stable isotope signatures of fine roots were used as covariate, but as 

variations in the signatures of the animals were not significantly related to isotope 

signatures of roots (C: F1,6 = 0.64, P = 0.455; N: F1,6 = 0.34, P = 0.579) of the respective 

tree, the covariate was removed from the final model. Δ13C and Δ15N values of fine roots 

were analyzed separately using one-factorial ANOVA to test for the effect of tree species 

on 13C and 15N enrichment in fine roots. To increase homogeneity of variances Δ15N and 

Δ13C values were log-transformed. 

Δ15N and Δ13C values of soil animals were analyzed separately using linear mixed effects 

models including a random effect of tree identity to allow testing for the effect of tree 

species and C and N incorporation into soil animal species avoiding pseudo-replication of 

soil animal species of the same tree. Δ15N and Δ13C values were log-transformed to 

improve homogeneity of variance. Means given in figures are based on back-transformed 

means. 
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2.5.3 Results 

 

Natural abundance 15N signatures in the five analyzed soil arthropod species increased in 

the order P. conspersum (-2.40 ± 0.35 δ‰) < S. magnus (-2.19 ± 0.51 δ‰) < X. 

tegeocranus (-2.18 ± 0.96 δ‰) < D. gracilipes (-0.69 ± 0.14 δ‰) < D. riparius (-0.57 ± 

0.67 δ‰). Respective values for δ13C were -25.39 ± 0.66, -20.8 ± 0.93, -24.26 ± 0.89, -

25.26 ± 0.49, -25.61 ± 1.06 δ‰. 

13C enrichment in soil animal species (D. gracilipes, D. riparius, P. conspersum, S. 

magnus, X. tegeocranus) generally did not differ significantly (F4,26 = 1.21, P = 0.33). Δ13C 

values of soil animals differed between tree species (F1,6 = 20.56, P = 0.004); soil animals 

under beech generally were not enriched in 13C, whereas under ash they were slightly 

enriched but the enrichment varied strongly (0.56 ± 6.21 ‰; Figure 2.5-1) between soil 

animal species. Δ13C values of fine roots of beech and ash did not differ significantly, 

although they were higher in ash (36.57 ± 35.15 ‰) as compared to beech (19.36 ± 25.43 

‰; F1,6 = 1.32, P = 0.295). 

In contrast to 13C, Δ15N values significantly differed between soil animals (F4,26 = 3.32, P = 

0.025) and declined in the order P. conspersum > X. tegeocranus > D. gracilipes > S. 

magnus > D. riparius (Figure 2.5-2). Again, in contrast to 13C, Δ15N values of soil animals 

varied markedly between tree species (F1,6 = 13.85, P = 0.010); on average soil animals 

under beech (74.65 ± 60.86 ‰) were more enriched than those under ash (43.77 ± 66.24 

‰). Δ15N values of fine roots of beech and ash also significantly differed, but contrary to 

animal signatures; Δ15N values in ash fine roots (727.56 ± 727.99 ‰) markedly exceeded 

those in beech fine roots (62.19 ± 40.37 ‰; F1,6 = 9.98, P = 0.020). The taxa (L. mutabilis, 

S. acuminata, Chamobates sp. D. onustus and Phthiracarus sp.) which were not 

replicated over the full design were also not enriched in 13C but highly enriched in 15N 

(Table 2.5-1). 
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Figure 2.5-1: Enrichment in Δ13C and Δ15N in soil animals (average of all species 

analyzed) under beech (dark grey) and ash (light grey) 20 days after labeling with 13CO2 

and Ca15NO3. Means and standard deviation are back-transformed values of log-

transformed data. 

 

 

Figure 2.5-2: Enrichment in Δ15N in soil animal species 20 days after labeling with 13CO2 

and Ca15NO3. Means and standard deviation are back-transformed values of log-

transformed data. 
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2.5.4 Discussion 

2.5.4.1 Incorporation of root carbon 

Contrary to our expectations soil animals incorporated little root-derived C. As it is well 

established that soil animals heavily rely on root-derived C [3–5], the experimental set-up 

and the amount of 13C for labeling may have been responsible for this result. Compared to 

most previous studies we used an in situ approach by labeling understory trees in the 

field. Under these conditions, a number of factors may have contributed to low uptake of 

13CO2 by the trees, most importantly shading by mature trees resulting in low 

photosynthetic activity. Further, the amount of label and the duration of the labeling period 

may not have been sufficient to allow tracing the signal in soil animals as typically only 2-4 

% of the C fixed by plants is transferred into the soil [33]. Also, heterogeneously 

distributed roots, typical for field growing trees, and a mismatch between the localities 

where rhizodeposits were released and where soil animals were captured may have 

contributed to the low incorporation of root C into soil animals. 

Incorporation of root C was very low but in the rhizosphere of ash exceeded that in beech 

where no incorporation was detectable suggesting that our first hypothesis has to be 

rejected. However, this conclusion presumably may be premature as incorporation of root 

C may have been too low to detect differences. Nevertheless, the results suggest that 

incorporation of root C in tree species differs depending on the type of mycorrhizal 

association. The low incorporation under beech trees is surprising as extramatrical 

hyphae of EM fungi associated with these trees enhance C translocation into soil 

[22,23,34] and the soil food web [35]. Also, seasonal effects might have contributed to the 

observed pattern as the experiment was conducted in late summer when ash trees 

enhance allocation of assimilates to roots (R. Thoms, unpubl. results). 

2.5.4.2 Incorporation of root nitrogen 

In contrast to our second hypothesis soil animals were markedly enriched in 15N 

demonstrating that root-derived N forms part of the resources fueling soil animal food 

webs. Presumably, via rhizodeposition N compounds entered the rhizosphere and the 

surrounding soil [6,11,36]. Except for legumes this has been shown mainly for grasses 

[10,26] but not for trees. Root-derived N compounds are likely to be taken up quickly by 

microorganisms, and via microbivorous soil animals they are incorporated into the soil 

animal food web. However, feeding on living or dead roots or rhizosphere microorganisms 

may also contribute to the flux of root N into soil animal food webs as some detritivores 
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occasionally also feed on roots [37]. In the present experiment N assimilated by leaves 

was transferred to the roots [38], which is in agreement with results of an earlier study on 

beech [39]. As indicated by the 15N incorporation into soil animals, part of the N 

transferred to roots was incorporated into the soil animal food web. 

Notably, incorporation of root-derived N into soil animals varied between species and 

decreased in the order P. conspersum > X. tegeocranus > D. gracilipes > S. magnus > D. 

riparius. According to natural variations in stable isotope signatures in the present 

experiment P. conspersum, X. tegeocranus and S. magnus function as primary 

decomposers while D. gracilipes and D. riparius function as secondary decomposers 

which conforms to previous studies [18,40,41]. Incorporation of root-derived N into these 

species was unlikely due to feeding on roots as 15N signatures of fine roots were not 

correlated with those of animals (see Material and Methods). Rather, root-derived N likely 

was taken up by microorganisms and thereby also transferred into leaf litter [42] and, via 

feeding on litter, it was incorporated into decomposer animals [43,44]. In secondary 

decomposers root-derived N likely was incorporated by feeding on microorganisms in 

particular fungal hyphae. Further, in certain soil mite species such as S. magnus root-

derived N may have been incorporated via feeding on microbivorous or root-feeding 

nematodes [45]. This suggests that root-derived N propagates quickly into soil 

decomposers with nematodes likely contributing to this process. 

Each of the studied soil animal species incorporated more 15N under beech as compared 

to ash and this contrasted the concentrations of 15N in fine roots of beech and ash. This 

suggests that rhizodeposition in beech including N compounds exceeds that in ash which 

conforms to recent findings [35,46]. Supporting this conclusion J. Sommer (unpubl. 

results) found the transfer of 15N into rhizosphere soil under beech to exceed that under 

ash trees. As shown for C, EM fungi may have contributed to higher transfer of root-

derived N into the soil under beech as compared to ash (colonized by AM fungi) [23,34]. 

Notably and in contrast to the view that N is transferred only from mycorrhiza to roots, in 

our experiment mycorrhized root tips of beech were enriched in 15N (M. Rath, unpubl. 

results) indicating that N is also transferred from roots to mycorrhiza. This supports our 

conclusion that EM fungi in part fostered the transfer of N into the soil animal food web via 

fungivorous species feeding on the extramatrical mycelium of EM fungi. 
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2.5.5 Conclusions 

 

Incorporation of root-derived C into soil animals was low in this experiment, but this likely 

was due to low uptake of 13CO2 by the trees and low transfer of 13C into the rhizosphere. 

Low 13C addition may have contributed to this findings. Surprisingly, root-derived N was 

incorporated into soil animals and this was more pronounced under beech associated with 

EM as compared to ash associated with AM. The results therefore support recent findings 

that the effect of EM beech on rhizosphere microorganisms exceeds that of AM ash [35]. 

Notably, all animal species studied incorporated root-derived N with the incorporation not 

varying significantly with animal species or trophic group, suggesting that their resources 

including EM fungi, saprotrophic microorganisms and nematodes, were labeled to a 

similar extent. 
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Table 2.5-1: Δ13C and Δ15N values of species of Acari: Oribatida and Myriapoda: 
Chilopoda of beech and ash trees 20 days after labelling.  

Animal species Taxa 
Tree 
species Tree no. 

Replicate 
no. 

Δ13C 
[δ‰] 

Δ15N 
[δ‰] 

Phthiracarus sp. Oribatida Beech 004B 1 0,00 41,53 

Damaeus onustus Oribatida Beech 004B 1 0,00 26,33 

Damaeus onustus Oribatida Beech 004B 2 0,00 49,63 

Damaeus onustus Oribatida Beech 004B 3 0,00 43,00 

Chamobates sp. Oribatida Beech 004B 1 0,51 27,03 

Lithobius mutabilis Chilopoda Ash 020E 1 0,00 0,00 

Lithobius mutabilis Chilopoda Ash 020E 2 0,00 90,61 

Lithobius mutabilis Chilopoda Beech 004B 1 0,00 44,09 

Lithobius mutabilis Chilopoda Beech 007B 1 0,00 0,00 

Lithobius mutabilis Chilopoda Beech 007B 2 0,00 11,17 

Strigamia acuminata Chilopoda Ash 020E 1 0,00 15,69 

Strigamia acuminata Chilopoda Ash 015E 1 0,00 5,30 

Strigamia acuminata Chilopoda Ash 008E 1 0,00 4,34 

Strigamia acuminata Chilopoda Beech 004B 1 0,00 36,55 

Strigamia acuminata Chilopoda Beech 004B 2 0,00 10,81 

Strigamia acuminata Chilopoda Beech 007B 1 0,82 0,00 

Strigamia acuminata Chilopoda Beech 007B 2 0,00 0,00 
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Abstract 

 

Short rotation coppices (SRCs) are a promising alternative for environmental-friendly 

biomass production. However, profound understanding of nitrogen (N) uptake and 

allocation dynamics and their interaction with biomass production of individual tree 

species is required for their sustainable management.  

In-situ 15N soil pulse labeling of the widely applied willow cv. Tordis and poplar cv. Max 1 

allowed tracing their uptake of Nmin and to evaluate the effect of N nutrition on their growth. 

A pulse of either 15NH4NO3 or NH4
15NO3 was applied to the soil of four replicate trees of 

each species in a pot experiment. Leaf, twigs, stem, root were analyzed to quantify the 

uptake and allocation of 15N after labeling.  

Summarizing all compartments of poplar, almost all of 15NO3ˉ (97%) from the N soil pool 

could be recovered, but only a third of the 15NH4
+ (34%). In contrast, willow incorporated 

exactly the same amount of 15N (49%) from both tracers i.e. showing no preference for a 

certain Nmin species. Poplar did not only have the higher Nmin uptake but also showed a 

higher total biomass (12.2 g·tree-1) production than willow (10.2 g·tree-1) in first 56 days, 

which goes along which its higher allocation of N into leaves.  

We conclude that the poplar cv. Max 1 might be a better choice for biomass production, 

especially at arable sites with high N contents as well as for protecting from all negative 

impacts of non-closed N cycles as typical for classical agricultural managed sites (e.g. 

nitrate leaching or N2O emissions).  

 

Key words: 15N labeling, short rotation coppices, willow, poplar, ammonium, nitrate 

leaching 
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2.6.1 Introduction 

 

Natural ecosystems such as deciduous forest are characterized by relatively closed 

nutrient cycles – a fact which is especially relevant for nitrogen (N) if N is limiting [1, 2]. In 

contrast, agricultural systems frequently receive high amounts of N via fertilization, on 

which anthropogenic N deposition from industrial and agricultural sources adds on top and 

therefore frequently display a high annual loss of N [3]. SRCs can be regarded as an 

intermediate system, which are hypothesized to bring the advantages of forests nutrient 

dynamics at least partially into agroecosystems. However, the degree to which 

advantageous, which means more closed nutrient cycling can be gained by SRC is hardly 

investigated up to now – and surely strongly dependent on the management. Classical 

SRC systems consist either of successfully selected clones of poplar and willow trees or 

combination of both, and aim the production of high amounts of woody biomass in a short 

period of time. This biomass yield should be achieved with low fertilizer requirements, 

which will be possible in case of high N-use efficiency and low N losses. Such closer N 

cycles compared to conventional annual crops imply many advantages [4]: Gaseous as 

well as leaching losses – e.g. the greenhouse gas N2O will be reduced as well as the 

groundwater contaminating nitrate leaching is likely to be reduced. However, both 

processes, denitrification releasing N2O and nitrate leaching, are strongly favored under 

high nitrate concentrations [5, 6] – and thus a maximal closure of the N cycle in SRC can 

be achieved by such species and clones reducing nitrate concentrations in soil solution 

strongest, i.e. having a strong preference for the nitrate uptake. 

Poplar (Populus spp.) and willows (Salix spp.) are known for their fast growth and frost 

hardiness and are therefore appropriate species for intensive forestry on arable land in 

temperate and boreal climates [7]. However, willow yield is highly dependent on clone and 

site and the willow cv. Tordis ranked consistently as best clones regarding high-yielding 

genotypes to achieve high yield and profitability in willow (Salix spp.) SRC on different 

sites [8, 9]. The poplar cv. Max 1 displayed higher biomass productivity and better initial 

growth in comparison to other clones in Germany [10-12]. Thus, these two widely applied 

genotypes were chosen for a pot experiments to achieve above- and belowground 

physiological traits of willow versus popular. The chosen pot experiment will not only allow 

for growth-physiological characterization of promising clones but also enable, based on 

isotope labeling to assess N dynamics and cycles in the respective systems prior to 

extensive field evaluation [9, 13]. Whereas nitrate versus ammonium nutrition is 

intensively studied for herbaceous plants and tree species like beech, spruce, ash and 

oak [14-16], very little is known about the in situ N uptake of willow and poplar. Neither 
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studies from forest nor from agroecosystems can be transferred to SRC as the tree – soil 

system is quite complex due to the differences to forests in leaf area index, transpiration 

rate, root distribution, root depth and effects on microclimate in the soil. Furthermore, 

especially for trees extreme species specific N and C allocation pattern have been 

identified [17, 18], suggesting that investigations of N uptake as well as allocation has to 

be performed species specific or even for each of the relevant clones used widely in 

SRCs. Consequently, the N dynamics during the initial growth period of two SRC genera – 

poplar and willow - have been investigated in this study. N uptake from various sources, N 

allocation within the plant as well as the avoidance of N limitation during the initial growth 

period are key objectives of this study focusing on the link between SRC N dynamics and 

the tree biomass production of willow and poplar. 
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2.6.2 Material and Methods 

2.6.2.1 Soil characteristics and soil sampling setup  

Pots (PVC-tubes) with a height of 30 cm and an inner diameter of 6.5 cm were filled with 

4.2 kg soil. The soil was taken from the site of a field experiment, which was established 

as short rotation coppice (SRC) in Reiffenhausen (51°39'83"N 9°98'75"E, 325 AMSL) 

located southeast of Göttingen, Lower Saxony, Germany. An area of 1.6 hectares was 

established with cuttings of the commercial poplar cv. Max 1 (Populus nigra L. x P. 

maximowiczii Henry) and the willow cv. Tordis ((Salix viminalis L. x Salix Schwerinii Wolf) 

x S. viminalis) in March 2011. The area of the field experiment, were soils was taken from, 

had been ploughed twice to a depth of 20 cm in autumn 2010 and once again in Feb. 

2011 resulting in a homogenized layer of 20 cm depth like in the pots of the presented 

experiment. The climate is maritime temperate (Cfb Köppen climate classification) with a 

mean annual precipitation of 642 mm and a mean annual temperature of 9.2 °C. The soil 

texture is a loamy sand (12% clay, 23% silt, 65% fine sand) developed from loess and 

was classified as stagnic Cambisol [19] [20]. The soil was taken from the upper ploughed 

20 cm between the area of willow and poplar just in front of the future SRC and identic for 

both tree species. 

The initial mineral nitrogen (Nmin) concentration was determined after K2SO4 extraction. 60 

ml 0.5 M K2SO4 solution was added to 15 g field moist soil, shaken (60 min., 130 

revs/minute) and filtrated. The extracts were analyzed by continuous flow injection 

colorimetry (Cenco/Skalar Instruments, Netherlands). The total soil nitrogen content, 

measured by a C-N-analyzer, (CHN-O-Rapide, VarioEL, Elementar, Hanau, Germany) 

was 0.6 mg g-1 (± 0.03). To determine the total cation exchange capacity a procedure 

described by Meiwes [21] was used and the pH of the soil was measured with a digital 

pH-meter (inolab, WTW, Weilheim, Germany) in water and KCl. 

The mean pH of the soil used in all treatments varied between 7.9, measured in water and 

7.2, measured in KCl (Table 2.6-1). The mean concentration of organic carbon (Corg) was 

4.5 ± 0.3 mg g-1 and the carbonate content (CaCO3) was 3.5 ± 0.2%. Total nitrogen (Nt) 

was 0.6 ± 0.02 mg g-1. The mean Corg/Nt ratio was 7.2 ± 0.4 (Table 2.6-1). Mean plant 

available NO3
- (K2SO4 extraction) was 5.2 ± 0.7 mg kg-1 whereas NH4

+ concentrations 

were below the detection limit. The total cation exchange capacity (CECt) was 131.5 ± 

1.0 mmolc kg-1. 
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Table 2.6-1: Chemical soil properties at the beginning of the experiment (N=3) ± 
SEM. 

 
pH pH Corg Nt Corg/Nt CaCO3 CECt NH4

+ NO3
- 

 
H2O KCl mg g-1 mg g-1 

 
% mmolc kg-1 mg kg-1 mg kg-1 

          
Mean 7.9 7.2 4.5 0.6 7.2 3.5 131.5 0.0 5.2 

SEM 0.1 0.1 0.3 0.02 0.4 0.2 1.0 0.0 0.7 

2.6.2.2 Experimental design and 15N labeling 

Each pot was prepared in the laboratory containing soil amounts resulting from the 

respective bulk densities quantified in the field (1.2 g cm-³). To obtain a uniform bulk 

density, each of the 5 cm layers was compacted separately by application of uniaxial 

pressure. The pots were placed in an outdoor area of the Georg - August University for 2 

month for reestablishment and then 12 Poplar cv. Max 1 (Populus nigra x Populus 

maximowiczii) and 12 willow cv Tordis (Salix viminalis x Salix schwerinii) x Salix viminalis) 

cuttings with an average diameter of 1.2 cm (± 0.1 cm) and height of 19.6 cm (± 0.3 cm) 

were immersed into the soil. Overall 24 plants, 12 willow cuttings and 12 poplar cuttings, 

were grown for 49 days plus seven days after the labeling and the water content was 

adjusted weekly by weighing and irrigating to be greater than 50% of field capacity. At day 

49 15NH4NO3, NH4
15NO3 (99.23 atom% 15N, Campro Scientific GmbH, Berlin, Germany) or 

non-15N-enriched NH4NO3 were applied as labeling or natural abundance reference 

solutions with 5 mg of ammonium nitrate in two 10 ml injections in 10 cm soil depth per 

pot using a needle syringe next to the stem. The reference treatment was performed by 

adding the non-15N-enriched NH4NO3 solution to maintain identical treatment.  

Seven days after the labeling all trees were cut down and all leaves, twigs and stems 

were separated. Then, the soil was sampled in 3 depth (0-10 cm, 10-20 cm and below 20 

cm) and sieved to 2 mm. Water content was determined in a subsample of the 3 depth 

levels. The trees were then entirely uprooted to make sure the roots belong to the labeled 

trees and roots were separated into different sizes. All leaves, stems, twigs and roots 

were washed after removal and dried at 60 °C to a constant mass and soil was dried at 40 

°C. All samples were weighed and grounded (plant compartments: Retsch ZM 1000, 

Retsch Haan Germany; soil: PM 4000, Retsch, Haan, Germany). The nutrients 

phosphorous, potassium, calcium and magnesium in plant compartments were analyzed 

by ICP-OES (Spectro Analytical Instruments, Kleve, Germany) after pressure digestion in 

65% concentrated HNO3 [22]. 3 to 5 mg of dried plant material were weighed into tin 

capsules and measured by elemental analyzer NA1500 (Fison-Instruments, Rodano, 

Milano, Italy) coupled to a Delta plus isotope ratio mass spectrometer (Finnigan MAT, 
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Bremen, Germany) through a ConFlo III interface (Thermo Electron Corporation, Bremen, 

Germany) at the Centre for Stable Isotope Research and Analysis, Georg – August 

University. 

2.6.2.3 Calculation of 15N uptake 

The 15N uptake by plants from sources of different isotopic composition alters their δ15N 

value, which follows a two-component mixing model between the 15N natural abundance 

isotopic signature and the signature of the incorporated tracer-derived 15N according to 

Gearing et al. [23], as shown in Eq. (1): 

   
refTracerN

reflabelled

tcompartmenrecTracer
atat

atat
NN

%%

%%

15 






     (1) 

with: 

[N]compartment the nitrogen content of sample (mmol ∙ g  leaf; twigs; stem; root
-1) 

[N]recTracer recovered amount of 15N incorporated into the plant (mmol ∙ g  leaf; twigs; stem 

;root
-1) 

atom %labelled 
15N values of the labeled sample of the tree (leaf, twigs, stem, root) 

atom %ref  
15N values of the non-labeled reference sample of the tree (leaf, twigs, 

stem, root) 

atom %15N-Tracer 
15N enrichment of the added Ca(15NO3)2 / 

15NH4Cl 

Dilution of the tracer with the respective soil-derived nitrogen source (only relevant for 

nitrate as ammonium was not detectable) was considered by calculating the at%15N-

Tracer value as the mixed pool of natural abundance nitrate in soil and enriched tracer 

added.  

Allocation of the recovered 15N was calculated by dividing the recovery into a certain plant 

compartment through the sum of total 15N recovered in all plant pools. This value was 

displayed as % of 15N allocation by multiplying it with 100%. 

2.6.2.4 Statistics 

Field replicates were tested for normal distribution using the Kolmogorov Smirnoff test, for 

homogeneous variances using Levene’s test. As the presented dataset fulfills these 

assumptions it was corrected for outliers using the Nalimov outlier test with significance 

levels of 95% [24]. A t-test using Statistica (version 7, Statsoft GmbH, Hamburg, 

Germany) with a significance level of p<0.05 was used to inspect the effects of tree 
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species and applied N form on plant compartments. The error bars in graphs show 

standard errors of the mean (SEM) of the four replicates. 
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2.6.3 Results 

2.6.3.1 Clone biomass and nutrient status 

The mean height of willow was 37.1 ± 3.6 cm after 56 days of initial growth. Poplar grew in 

the same time 36.1 ± 2.4 cm. Poplar had the higher total biomass (12.2 g·tree-1) 56 days 

after the cutting were placed in the soil than willow (10.2 g·tree-1) in its initial growth period 

(Figure 2.6-1). Dry matter yields of leaves of poplar (2.3 ± 0.1 g·tree-1) were significantly 

higher than the leaves of willow (1.2 ± 0.1 g·tree-1) (Figure 2.6-1). The foliar analyses 

revealed species-specific differences in the nutrient contents but for nearly each of the 

quantified nutrients (N, K, Mg, Ca and P) a sufficient-to-excellent supply compared to 

reference values could be found. The only exception was phosphorous (P) for willow 

being significantly lower than required for an optimal nutrient supply [25] (Table 2.6-2). 

 

Table 2.6-2: Mean (± SEM) nutrient content of poplar leaves and willow leaves 
(N=12) ± SEM, optimal nutrient supply according to Röhricht and Ruscher [25]. 

Tree N K Mg Ca P 

 mg g dry weight)-1 

      

Willow 29.1 (1.0) 18.6 (0.5) 2.5 (0.1) 18.3 (0.6) 2.8 (0.1) 

Optimal nutrient supply 26-32 16-18 1.8-2.3 11-14 3.5-5 

      

Poplar 26.4 (0.9) 17.5 (0.6) 1.9 (0.1) 13.5 (1.7) 2.9 (0.2) 

Optimal nutrient supply 18-25 12-18 2-3 3-15 1.8-3 
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Figure 2.6-1: Dry matter yield of poplar cv. Max 1 and willow cv. Tordis after 56 days of 

growth (N = 12); leaves (white), twigs (grey), stems (dark grey) and roots (black). Stars 

shows significant differences (p < 0.05) of dry matter content between the tree species. 

Error bars show SEM.  

2.6.3.2 15N recovery into plant compartments 

The overall 15N recovery from the soil-derived 15Nmin into poplar was higher for 15NO3ˉ 

(97%) than for 15NH4
+ (34%). In contrast, recovery of both Nmin-species was identical for 

the willow cv. Tordis (49%) (Figure 2.6-2). The highest 15N recovery from 15NO3ˉ was 

found in poplar leaves (70 ± 1%) and was almost three times higher than 15N-NO3
- 

recovery in willow leaves (25 ± 1%) (Figure 2.6-2). Irrespective of the Nmin-species, leaves 

recovered the most 15N in both tree species followed by twigs, stem and roots (Figure 

2.6-2). For twigs and stem, the 15N recovery from the 15NH4
+ was only half in poplar than in 

willow. 

Comparing the two Nmin-species reveals that poplar recovered more than twice of the 

15NO3ˉ than of the 15NH4
+ in leaves, twigs and stem (Figure 2.6-2, Supplementary Table 

2.6-3). Willow recovered also twice of the 15NO3ˉ than of the 15NH4
+ in its roots but less of 

the 15NO3ˉ than of the 15NH4
+ in the stem, slightly more in the twigs and identical amounts 
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in the leaves (Figure 2.6-2, Supplementary Table 2.6-3). In summary, total uptake of soil 

nitrate was twice as high in poplar (97%) than in willow (49%).  

 

 

Figure 2.6-2: 15N recovery in % of applied NH4
15NO3 (black symbols; N = 4) and 15NH4NO3 

(grey symbols; N = 4) seven days after the start of the labeling for poplar (left) and willow 

(right) in leaves (diamonds), twigs (squares), stem (triangle), roots (circles) and the all 

measured compartments of the tree (star). Error bars show SEM. Plus (+) shows 

significant differences (p < 0.05) of 15N in that plant compartment between the tree 

species. Lower case letters show significant differences (p < 0.05) of 15N in that plant 

compartment between the Nmin-species in poplar (a) and willow (b). 

2.6.3.3 15N allocation into tree compartments 

Poplar cv. Max 1 and willow cv. Tordis had the same allocation patterns seven days after 

the start of the labeling. The vast majority of the 15N from both tracer forms was allocated 

into the leaves, followed by the twigs, stem and roots (Figure 2.6-3).  

Poplar cv Max 1 allocated 73% of the assimilated 15NO3ˉ in the leaves which is 30% more 

15NO3ˉ in comparison to willow cv. Tordis (51%), which allocates instead twice as much of 
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the 15NO3
- in roots (10%) and twigs (30%) as poplar (Supplementary Table 2.6-4). The 

allocation of the 15NH4
+ had also its maximum in the leaves but with similar allocation of 

60% in poplar and in willow.  

Comparing the two Nmin-species reveals no significantly different allocation pattern for 

poplar (Supplementary Table 2.6-4). However, willow allocates twice as much 15NO3ˉ in its 

roots in comparison to 15NH4
+ and twice as much15NH4

+ in its stem compared to 15NO3ˉ 

(Figure 2.6-3, Supplementary Table 2.6-4). 

 

 

Figure 2.6-3: 15N allocation in % of assimilated 15NO3 (black symbols; N = 4) and 

15NH4NO3 (grey symbols; N = 4) seven days after the start of the labeling for poplar (left) 

and willow (right) in leaves (diamonds), twigs (squares), stem (triangle), roots (circles). 

Error bars show SEM. Plus (+) shows significant differences (p < 0.05) of 15N in that plant 

compartment between the tree species. Lower case letters show significant differences (p 

< 0.05) of 15N in that plant compartment between the Nmin-species in poplar (a) and willow 

(b). 
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2.6.3.4 15N incorporation of N pools 

Poplar and willow had different incorporation patterns seven days after the start of the 

labeling. Willow incorporated the most 15N from 15NO3ˉ per stem N (14.6 ± 1.3 %) and per 

twigs N (10.8 ± 0.4 %) whereas stem and leaves were the most important N pools in 

poplar where 15N was incorporated (6.9 ± 0.5 % and 6.2 ± 0.9 %, respectively). The willow 

incorporation of nitrate 15N was twice as much as poplar for stem twigs and root and only 

for leaves poplar incorporated more nitrate-derived 15N than poplar did (Supplementary 

Table 2.6-5).  

Incorporation of NH4
+-derived N into the twig and stem N pool of willow exceeded the one 

in poplar for more than twice (Figure 2.6-4, Supplementary Table 2.6-5). 15N incorporation 

of the pool differed in all plant compartments between the Nmin-species in poplar and 

willow, except the roots in willow (Supplementary Table 2.6-5 ). 

 

 

Figure 2.6-4: 15N incorporation in % of N pool, 15NO3 (black symbols; N = 4) and 15NH4NO3 

(grey symbols; N = 4) seven days after the start of the labeling for poplar (left) and willow 

(right) in leaves (diamonds), twigs (squares), stem (triangle), roots (circles). Error bars 

show SEM. Plus (+) shows significant differences (p < 0.05) of 15N in that plant 
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compartment between the tree species. Lower case letters show significant differences (p 

< 0.05) of 15N in that plant compartment between the Nmin-species in poplar (a) and willow 

(b). 
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2.6.4 Discussion 

2.6.4.1 Species-specific uptake of ammonium and nitrate 

Poplar clones and willow clones are well adapted to slightly acidic to neutral soils [25-27] 

despite nutrient speciation can be different under deviating conditions. Our results show 

that poplar cv. Max 1 and willow cv. Tordis have the ability to meet their N demand from 

both Nmin-species of the soil solution, NH4
+ as well as NO3

-. This observation may partly 

explain the distribution of the genera over a wide geographical and ecological range [28, 

29]  

High pH, ambient temperature and good oxygen supply support nitrifying microorganisms 

in soils, resulting in high rates of net nitrification [30-34]. In our study, neutral soil reaction 

(pH > 7) and intensively ploughed A horizon led to nitrification rates much higher than the 

ammonification rates resulting in ammonia concentrations below the detection limit. Under 

such conditions in the field it was shown that nitrate leaching is higher under willow than 

under poplar [35]. This might be explained by the results of this pot experiment 

demonstrating that willow takes up less nitrate than ammonium which may account for 

higher nitrate soil solution concentrations and higher leaching under willow [35, 36]. 

Summing up over the entire poplar plant almost all of 15NO3ˉ (97%) from the N soil pool 

and only a third of the 15N (34%) from 15NH4
+ was recovered. This supports the general 

notion that deciduous trees prefer nitrate in contrast to conifers which are well adapted to 

ammonium [16, 37, 38]. 15N recovery from NH4
+ varies in conifers from 10-65% 15N and is 

always greater than NO3
- in the initial growth period [39-41]. However, willow incorporated 

exactly the same amount (49%) of 15N from both tracers and was in the range of the 15N 

recovery of conifers. This suggests that willow might display similar properties than 

conifers, i.e. not showing a nitrate preference and being able to maintain a similar good N 

nutrition independent of the Nmin source. Such ecological ability can be advantageous for a 

broad distribution of a species as the dominant Nmin species or a certain site does not play 

any role for the respective species. In consequence, for the establishment of SRC it can 

be stated that willows N nutrition is site-independent whereas poplar may suffer on sites 

where Nmin is predominantly existing in the ammonium form. As willow was able to take up 

30% more of the applied NH4
+ than poplar, willow may be the better choice if low pH, low 

temperature and poor oxygen supply cause high soil solution NH4
+ values – a 

management suggestions which needs be proven by field experiments. 
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2.6.4.2 Species-specific N allocation and incorporation pattern 

Both tree species allocated more than half of the incorporated 15N of both Nmin species into 

the leaves and poplar allocated even 30% more of the assimilated 15NO3ˉ in the leaves. 

Leaves are highly active plant components and the high allocation of Nmin-derived nitrogen 

into the foliar is supported by recent findings of N allocation patterns in trembling, hybrid 

aspens, Douglas fir and Scots pine [42, 43]. The high Nmin uptake and efficient allocation 

into leaves of poplar might be one of the reasons for the twice as high dry matter yields of 

leaves in field experiments [20] confirmed by significantly higher leave dry biomass of 

poplar in this study (Figure 2.6-1). However this study did not include the competition 

caused by the differences tree stand density in willow and poplar plantations. This study 

was a subproject of the research program “BEST – Bioenergie-Regionen stärken” where 

poplar was planted with a density of  8.890 cuttings per ha and willow 11.850 cuttings per 

ha and this probably also relates on how the plant allocates their resources and might 

explain lower yield increments in individual plants in willow than in poplar [20]. For each of 

the two species the smallest amount of both Nmin-forms could be detected in the roots [44, 

45] with poplar allocating only half of the 15NO3 in the roots in comparison to willow. 

Although NH4
+ is frequently discussed as the less mobile N species not only in soil but 

also after plant uptake [46, 47] no clear evidence for that could be found in this study. 

Poplar shows a trend towards higher retention of NH4
+ in the roots but willow has 

significantly higher nitrate- than ammonium-derived N in its roots, despite total recovery 

i.e. uptake of the two N species was similar for willow. Immediate nitrate reduction in 

willow roots can also not account for the observed differences, as such an immediate 

reduction would cause a similar allocation pattern of nitrate and ammonium, which might 

be the case for poplar but not for willow. The root cortex was previously recognized as 

main place for the uptake of NO3ˉ [48] and some NO3ˉ transporters are expressed in the 

epidermis [47, 49]. Both ions NO3ˉ and NH4
+ get actively absorbed into root cells at low 

external concentrations and two high-affinity transport systems are present for NO3ˉ and 

one high-affinity transport system for NH4
+ and the influx of both ions is responsive to 

plant N status and subject to diurnal regulation [47]. However, willow does not only seem 

to have uptake mechanisms enabling equal nutrition on both Nmin species but likely has 

also ecophysiological adaptations for an elaborated allocation of both N species within the 

plant, in case a mixed Nmin-nutrition on ammonium and nitrate is possible in a certain 

ecosystem. Furthermore, might the higher dry matter allocation on roots in willow indicate 

larger yield increments in the following years relative to poplar and might be compensated 

along time, which may also be explanation for a partially lower N uptakes, as the leave 

system of willow seems to be less developed than the roots. Therefore experiment 
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observing growth strategy over longer periods of time would give more insights in 

ecophysiological processes. 

The overall high N allocation towards the leaves can be explained by the fact that canopy 

establishment takes precedence over root development in the first two month of the initial 

growth. However, the remobilization of resources seemed to be primarily a shift from 

leaves to stems in willow, with only a small amount being remobilized from above-ground 

biomass to below-ground biomass [50]. The resource investment shifts towards the stems 

and roots in autumn and the stem is the major N reserve during winter dormancy of SRC 

willow [50]. Our 15N pulse labeling experiment was carried out on young cuttings were the 

shoot to root ratios in comparison to adult trees might vary [51]. Nevertheless, poplar 

outgrows willow even in the first 2 month in regard to biomass production, caused by the 

higher N uptake but maybe also by its more efficient N allocation pattern towards the 

leaves. However, the lower absolute uptake rates and leave allocations of willow do not 

imply that willow suffers from N malnutrition (Table 2.6-1): Determining the relative 15N 

incorporation of the plant compartments’ N pool (Figure 2.6-4), willow even exceeds 

poplar for most of the compartments except leaves. This suggests a sufficient supply of all 

plant compartments with the newly incorporated Nmin-derived N and according to Table 

2.6-1 even no malnutrition in the less N-supplied leaves. 

Shoot biomass yields from short-rotation willow plantations commonly increase after the 

first cutting cycle and the amount of increase can vary among clones [52]. Therefore, our 

results cannot be transferred on the second growth of poplar or willow. Considering that N 

taken up by poplar and willow was allocated differently by both species to build up 

aboveground biomass, this will have consequences for N retention in the ecosystem after 

harvest. Long-term studies over entire growth periods should focus towards N allocation in 

roots or stem bases serving as permanent N sinks in such ecosystems versus N 

allocation in leaves, twigs and upper stem, which will get lost from the system after 

harvest.  

2.6.4.3 Criteria for selection of poplar versus willow for SRCs 

To maintain biodiversity and ecosystem functions in the face of climate change and 

increasing demand for wood products it is mandatory to ensure conservation and 

appropriate management for all wood orientated land use systems [53]. Forest are not 

only a major sink for atmospheric CO2 but tree species influence the storage of C and N 

and therefore ecosystem processes such as plant biomass production, decomposition and 

especially nutrient cycling [54-56]. During the last decades, the focus in forest productivity 

has shifted from tree and stand timber production to tree and stand biomass production, 
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differentiated for all tree compartments [57]. Hence the choice of tree species for land use 

systems, like SRCs, is not just important for the demanded biomass production but may 

also play an increasing role in facing ecological challenges like climate change, loss of 

biodiversity and enhanced nitrogen loads, especially in agro-ecosystems. Thereby a 

recent study already showed that SRC may providing a substantial capacity for renewable 

energy from economically competitive arable sites while generating ecological synergies 

[36].  

Not only in this pot experiment, but also in field studies balsam poplar (P. trichocarpa cv. 

Muhle Larsen) had higher production in comparison to willow spp. and did not need any 

fertilization or pesticide treatment for over 10 years [58]. Choosing poplar might have 

further advantages as poplar wood is lighter and more brittle than willow wood, but 

produces fewer and heavier stems when coppiced [59], which may have a considerable 

impact on harvesting performance [60]. The willow cv. Tordis is very sensitive to drought 

especially in the first two years [20, 58, 61, 62], and might thus not be the appropriate 

choice in regions facing an increased drought. This might especially have consequences 

for the N cycle considering that rewetting after drought causes a nitrification peak and 

willow has the lower preference for this N species compared to poplar. Thus, rewetting 

events with strong precipitation under suffering willow stands may be followed by intensive 

nitrate leaching – a phenomenon which might be reduced in poplar SRC. Nevertheless, it 

has to be considered that ecosystems with ammonium-dominance in the soil solution may 

cause N limitation in poplar-based SRC in the initial growth period, due to the intensive 

preference of poplar for nitrate nutrition and might be preferred in such cases. However, 

most newly established SRCs are converted from former agriculturally fields, managed by 

annual crops and intensive fertilization, and thus displaying high nitrate concentrations in 

soil solution. In such a case the poplar hybrid is not only the better choice for biomass 

production but also to fix an excess of nitrate from arable fields. So economical production 

consideration may go hand in hand with ecological considerations for immobilization of a 

Nmin surplus thereby reducing the risk of N leaching. This is of special importance in 

groundwater-endangered areas with intensive agriculture. However, differences in 

experimental conditions, plant nutrient status at the time of application, seedling age and 

stages of growth might alter the N cylce in SRC and requires further investigations.   
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2.6.5 Conclusion 

 

This pot experiment proved species-specific preferences of poplar cv. Max 1 and willow 

cv. Tordis for uptake but also allocation of the two Nmin species nitrate and ammonium – 

an observation which implies consequences for management practice of SRC. Soil 

properties and climatic conditions need to be taken into account deciding for poplar versus 

willow as preferred species. So soils with high nitrification intensity, leading to strong 

nitrate dominance over ammonium, are better feeding the N nutrition preferences of 

poplar cv. Max 1– and as shown in this experiment lead to higher biomass yields of poplar 

cv. Max 1. We conclude that the poplar cv. Max 1 might be a better choice for biomass 

production, especially at arable sites with high N contents. Simultaneously planting the 

poplar cv. Max 1 might be the more appropriate way to prevent from all negative impacts 

of high soil nitrate concentrations such as N losses due to leaching to the groundwater or 

N2O emissions. This is likely to be the case for the majority of limed (high pH), intensively 

fertilized (high N supply) and ploughed (high O2 supply) former agricultural fields, where 

SRCs are frequently established on. However, especially under the purpose of l reducing 

all ecological risks arising from non-closed N cycles as typical for classical agricultural 

managed sites with annual plants.,many additional ecophysiological preferences and 

adaptation of poplar and willow need to be taken into account and future field studies with 

more replicates have to demonstrate their interactions with the species-specific effects on 

the N cycle. 

Therefore, we need additional information about N demand and N cycling on different 

sites with various soil-climatic conditions to establish practical fertilization strategies for 

fast growing trees like poplar and willow. However, regarding climatic changes and 

increasing environmental problems SRC as alternative to the depletion of fossil resources 

are a promising perspective. 
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Table 2.6-3: T-test for independent samples of results for the 15N recovery of the 
applied tracer and their differences between tree species and between the Nmin-
species in poplar cv. Max 1 and willow cv. Tordis  of different plant compartments. 

Source of variation  

 (t-value) 

Degrees of 
Freedom 

(df) 

Significance 
level 

(p) 

Leaves    

Between poplar and willow, 15NO3ˉ -23.23 5 0.00 

Between poplar and willow, 15NH4
+ 0.86 6 0.42 

Between 15Nmin-species in poplar 8.76 5 0.00 

Between 15Nmin-species in willow -0.37 6 0.73 

Twigs    

Between poplar and willow, 15NO3ˉ 0.23 5 0.83 

Between poplar and willow, 15NH4
+ 3.11 6 0.02 

Between 15Nmin-species in poplar 3.73 6 0.01 

Between 15Nmin-species in willow 1.52 5 0.19 

Stem    

Between poplar and willow, 15NO3ˉ -2.41 5 0.06 

Between poplar and willow, 15NH4
+ 4.44 6 0.00 

Between 15Nmin-species in poplar 3.59 6 0.01 

Between 15Nmin-species in willow -2.60 5 0.05 

Root    

Between poplar and willow, 15NO3ˉ 0.56 6 0.60 

Between poplar and willow, 15NH4
+ -0.59 5 0.58 

Between 15Nmin-species in poplar 0.19 6 0.86 

Between 15Nmin-species in willow 2.65 5 0.05 
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Table 2.6-4: T-test for independent samples of results for the 15N allocation of 
assimilated tracer and their differences between tree species and between the 
Nmin-species in poplar cv. Max 1 and willow  cv. Tordis of different plant 
compartments. 

Source of variation  

 (t-value) 

Degrees of 
Freedom 

(df) 

Significance 
level 

(p) 

Leaves    

Between poplar and willow, 15NO3ˉ -5.97 5 0.00 

Between poplar and willow, 15NH4
+ -0.16 6 0.88 

Between 15Nmin-species in poplar 0.73 5 0.50 

Between 15Nmin-species in willow -0.37 6 0.73 

Twigs    

Between poplar and willow, 15NO3ˉ 6.71 5 0.00 

Between poplar and willow, 15NH4
+ 1.39 6 0.22 

Between 15Nmin-species in poplar -0.75 6 0.48 

Between 15Nmin-species in willow 1.52 5 0.19 

Stem    

Between poplar and willow, 15NO3ˉ 0.59 5 0.58 

Between poplar and willow, 15NH4
+ 1.52 6 0.18 

Between 15Nmin-species in poplar -0.149 6 0.19 

Between 15Nmin-species in willow -2.60 5 0.05 

Root    

Between poplar and willow, 15NO3ˉ 3.18 6 0.02 

Between poplar and willow, 15NH4
+ -1.07 5 0.33 

Between 15Nmin-species in poplar -1.48 6 0.19 

Between 15Nmin-species in willow 2.65 5 0.05 

 

 

 



Supplementary material    Study 6   

   

Table 2.6-5: T-test for independent samples of results for the 15N incorporation of 
the N pool and their differences between tree species and between the N min-
species in poplar cv. Max 1 and willow  cv. Tordis of different plant compartments. 

Source of variation  

 (t-value) 

Degrees of 
Freedom 

(df) 

Significance 
level 

(p) 

Leaves    

Between poplar and willow, 15NO3ˉ -1.93 6 0.10 

Between poplar and willow, 15NH4
+ 0.72 6 0.50 

Between 15Nmin-species in poplar -9.34 6 0.00 

Between 15Nmin-species in willow -6.16 6 0.00 

Twigs    

Between poplar and willow, 15NO3ˉ -9.03 5 0.00 

Between poplar and willow, 15NH4
+ 3.20 6 0.02 

Between 15Nmin-species in poplar -22.18 5 0.00 

Between 15Nmin-species in willow -5.88 6 0.00 

Stem    

Between poplar and willow, 15NO3ˉ 5.57 4 0.01 

Between poplar and willow, 15NH4
+ 4.88 6 0.00 

Between 15Nmin-species in poplar -10.00 5 0.00 

Between 15Nmin-species in willow -14.76 5 0.00 

Root    

Between poplar and willow, 15NO3ˉ 2.41 6 0.05 

Between poplar and willow, 15NH4
+ -0.32 5 0.76 

Between 15Nmin-species in poplar -2.90 5 0.03 

Between 15Nmin-species in willow -2.07 6 0.08 
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