
Reliability Assessment for Cloud
Applications

Dissertation
zur Erlangung des Doktorgrades

Dr. rer. nat.
der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen

im PhD Programme in Computer Science (PCS)
der Georg-August University School of Science (GAUSS)

vorgelegt von

Xiaowei Wang
aus Shandong, China

Göttingen, im 2016

Betreuungsausschuss: Prof. Dr. Jens Grabowski,
Georg-August-Universität Göttingen

Prof. Dr. Xiaoming Fu,
Georg-August-Universität Göttingen

Prüfungskommission:
Referent: Prof. Dr. Jens Grabowski,

Georg-August-Universität Göttingen

Korreferenten: Prof. Dr. Ramin Yahyapour,
Georg-August-Universität Göttingen

Weitere Mitglieder Jun.-Prof. Dr. Marcus Baum
der Prüfungskommission: Georg-August-Universität Göttingen

Prof. Dr. Carsten Damm,
Georg-August-Universität Göttingen

Prof. Dr. Xiaoming Fu,
Georg-August-Universität Göttingen

Prof. Dr. Dieter Hogrefe,
Georg-August-Universität Göttingen

Tag der mündlichen Prüfung: 11. Januar 2017

Abstract

Reliability is a significant quality measurement for computer systems and applications.
When cloud computing is becoming mature and pervasive, a variety of applications are
deployed on cloud platforms. Influenced by the characteristics of cloud computing, such as
server consolidation and virtualization, and reliability requirements, such as redundancies,
the deployment structure of cloud applications are complex. A deployment structure usually
involves components like services, Virtual Machines (VMs), Physical Servers (PSs), etc.
Dependencies of these components make the reliability assessment of cloud applications
challenging.

In this thesis, we intend to model cloud applications based on their deployment structures
and give an accurate reliability assessment method. To this aim, we propose a DEpendency-
Based Reliability Assessment (DEBRA) and accordingly design a framework composed of
three functional components: a dependency analyzer for analyzing dependencies between
components used by applications and modeling cloud applications with Layered Depen-
dency Graphs (LDGs), a monitor for deriving states of application components, and a re-
liability analyzer based on DEBRA for assessing the reliability of components as well as
applications. Furthermore, we implement the three components and two extra functional
components for usage-based testing, which are a fault injector for injecting failures to ap-
plication components and a tester for testing applications.

We apply our framework to a real-world application and cloud platforms, and conduct
case studies. In these case studies, we verify if our framework can assess the cloud ap-
plication reliability accurately and precisely. We deploy the application with several dif-
ferent structures to a cloud and test the application with usage-based requests. We then
use DEBRA and several existing methods to assess the application reliability. The assess-
ment results are compared according to a proposed comparison process. The comparison
results show that DEBRA can obtain results of high quality and has several merits regarding
modeling cloud applications for reliability assessment.

Acknowledgements

I have been fortunate to work with many persons. Without their kind help, this thesis
would never have been possible. First of all, I deeply thank my supervisor Prof. Dr. Jens
Grabowski. I feel lucky to have such a nice supervisor as him during the time of pursuing a
doctoral degree. It was his constant encouragement, guidance, and support that allowed me
to conduct my research under excellent conditions. His valuable suggestions and feedback
made this thesis possible.

In addition, I am indebted to my second supervisor Prof. Dr. Xiaoming Fu. He gave me
many good advices. I would also like to thank Prof. Ramin Yahyapour for agreeing to be
a referee for this thesis. I also thank the remaining defense committee members: Jun.-Prof.
Dr. Marcus Baum, Prof. Dr. Carsten Damm, and Prof. Dr. Dieter Hogrefe.

Furthermore, I want to thank all my former and current colleagues at our research group.
The discussions and collaborations with them helped me to make this thesis better. I’m
especially grateful to Thomas Rings for helping me both in research and in life during the
first two years after I joined our group. I also greatly thank Fabian Glaser, Michael Göttsche,
Patrick Harms, and Steffen Herbold for proof reading this thesis. Their comments were
always helpful to improve this thesis.

Last but not least, I want to thank my family and friends. Their unconditional and con-
siderate support was the biggest motivation for me to finish this work.

Contents

Abstract III

Acknowledgements V

Table of Contents VII

1 Introduction 1
1.1 Motivation . 2
1.2 Goals and Contributions . 3
1.3 Structure of the Thesis . 4

2 Background 7
2.1 Reliability Engineering . 7

2.1.1 Failure Distributions . 9
2.1.2 Reliability Modeling . 12

2.2 Cloud Computing . 13
2.2.1 OpenStack . 15
2.2.2 Cloudify . 16

3 Related Work 17
3.1 Cloud Hardware Reliability . 17
3.2 Cloud Computing System Reliability . 18
3.3 Cloud Application Reliability . 20

3.3.1 Reliability Improvement . 20
3.3.2 Reliability Assessment and Prediction 22

4 A Reliability Assessment Framework for Cloud Applications 25
4.1 Overview . 25
4.2 Dependency Analyzer . 26
4.3 Monitor . 28
4.4 Reliability Analyzer . 29

4.4.1 Assumptions . 29

Contents VIII

4.4.2 Non-service Component Reliability 32
4.4.3 Service Inner Reliability . 33
4.4.4 Service Reliability . 38
4.4.5 Application Reliability . 48

5 Implementation 49
5.1 Implementation of Dependency Analyzer 49
5.2 Implementation of Monitor . 52
5.3 Implementation of Fault Injector . 54
5.4 Implementation of Tester . 54
5.5 Implementation of Reliability Analyzer 56

6 Case Studies 57
6.1 Setup . 57

6.1.1 Hypotheses and Metrics . 57
6.1.2 Parameters and Comparison Process 58
6.1.3 Existing Methods for Comparison 60

6.2 Platform and Application . 62
6.3 Results . 65

6.3.1 Baselines . 65
6.3.2 Assessment Results . 70
6.3.3 Comparison . 77

6.4 Discussion . 82

7 Discussion 85
7.1 Answers to Research Questions . 85
7.2 Strengths and Limitations . 86

7.2.1 Strengths of DEBRA . 86
7.2.2 Limitations of the Framework and Implementation 88
7.2.3 Threats to Validity . 89

8 Conclusion 91
8.1 Summary . 91
8.2 Outlook . 92

IX Contents

Bibliography 93

List of Figures 101

List of Tables 103

List of Acronyms 105

A Appendices 109
A.1 Correctness of the Adapted Algorithm for Calculating the Standard Vari-

ance of Monte Carlo Simulation Results 109
A.2 Examples of Log Files . 111

A.2.1 An Example of Injection Logs . 111
A.2.2 An Example of Monitoring Logs of PSs 112
A.2.3 An Example of Monitoring Logs of VMs 113
A.2.4 An Example of Monitoring Logs of Services 115
A.2.5 An Example of Testing Result Logs 116
A.2.6 An Example of the Analysis Report 118

Chapter1
Introduction

Reliability is one of the crucial non-functional requirements for measuring quality of com-
puter systems quantitatively. With the advance of Information Technology (IT), computer
systems become increasingly more complex and suffer more possible failures consequently.
Failures may lead to severe losses, e.g., failures of commercial computer systems may cause
data loss, reputation loss, revenue loss, etc.; failures of aircrafts may even lead to mortal dan-
gers [1, p. 5]. Failures need to be prevented, identified, corrected, and handled to achieve
high reliability. However, higher is not always better, because higher reliability usually
means higher cost. The level of reliability must be determined according to cost-benefit
analyses, which need reliability to be assessed before systems are provided to users.

Reliability is always one of the major concerns of developers and consumers along with
the rapid evolution of distributed computing systems in recent decades. Following cluster
computing, peer-to-peer computing, grid computing, and utility computing, cloud comput-
ing has been attracting much attention and exerting influences over our daily lives. After
several years of development, cloud computing now basically lives up to the promise of
providing computing resources and services as utilities [2, 3]. Clouds can provide seem-
ingly infinite resources to consumers by means of resource pooling and rapid elasticity [4].
While employing cloud computing to reduce the purchase and maintenance cost of hardware
in traditional IT industry, consumers also expect at least as reliable services as provided by
in-house systems. Actually, reliability-related issues are among the top obstacles for cloud
computing’s adoption [2].

One typical use case scenario of cloud computing is that consumers deploy applica-
tions on clouds (i.e., data centers including hardware and software [2]) and provide ser-
vices to end users. In this scenario, the multiple failure causes, such as hardware (Physical
Servers (PSs), network devices, etc.), software (management software, hypervisors, Virtual
Machines (VMs), applications, etc.), infrastructure of data centers (e.g., public networks,
power supplies, cooling systems, etc.), and different deployment structures make it chal-
lenging to accurately assess the reliability of cloud applications.

Chapter 1 Introduction 2

1.1 Motivation

Rigid failure containment of software failures at the VM level provided by virtualization [5,
p. 93] and the service-oriented architecture of cloud computing make it intuitive to model
cloud applications with component-based architectures [6, 7], more specifically, in a hier-
archical manner [8–10]. Typically, a cloud application is divided into services which are
deployed to VMs hosted by PSs. Services, VMs, PSs, and other hardware and software
components, e.g., routers and hypervisors, comprise the deployment stack of an applica-
tion. Ideally, all components of the deployment stack should be considered for reliability
analysis. However, with different emphases, many works involve only a part of compo-
nents, such as only hardware [11], only PSs and VMs [12], only services [13], etc., which
are not enough for synthetically assessing the reliability of cloud applications. Therefore,
we endeavor to design a reliability assessment method for cloud applications by modeling
the whole deployment stack in order to determine if it is sufficient to model specific parts
of the deployment stack for reliability assessment or if the whole deployment stack must be
considered.

There are also works [10, 14] that consider relatively comprehensive components while
overlooking some dependencies between components. Similar to other combined software-
hardware systems, components in the deployment stack are also subject to failure prop-
agation, and characteristics of cloud computing aggravate it . For instance, to use PSs
efficiently so as to reduce the number of servers required by an organization [15], VMs
are often consolidated into one PS whose failures may lead to common cause failures [16]
of all VMs on it. Failure propagation caused by the dependency between VMs and PSs
is evident and well researched [12]. However, the dependency between services and PSs
is nontransparent and often not considered for reliability assessment [17]. "Hardware can
fail, and reliability should come from the software" [18] has nearly been a consensus in
the context of cloud computing. This requires the tolerance of hardware failures in upper
layers of the deployment stack. The most widely used fault tolerance technique is redun-
dancy [19] and in a typical usage scenario of cloud computing, a service is usually deployed
with several identical instances as redundancies. But due to server consolidation or limited
control of the deployment process, instances of the same service may be deployed on the
same PS. In this case, failures of a PS may crash services and then the whole applica-
tion. Furthermore, redundant instances can be organized in different manners, e.g., one
service may require at least one available instance to work and another service may require
at least k, k > 1, available instances to ensure a certain level of performance, which needs
the instances to be configured as k-out-of-n redundancies to each other. Different configura-
tions of Service Instances (SIs) lead to different dependencies between the service and PSs
and also different service reliability. The normal redundancy requiring at least one avail-
able instance is very often considered in the context of reliability assessment for services
and cloud applications [12, 20], while the k-out-of-n redundancy is not. Hence, we pro-
pose DEpendency-Based Reliability Assessment (DEBRA) considering the influences of

3 1.2 Goals and Contributions

dependencies between components and configurations of redundant SIs to the application’s
reliability.

DEBRA is intended to be appropriate for both before and after the deployment of cloud
applications. Before the deployment, the reliability of components in the deployment stack
can be gathered from the cloud provider and DEBRA can be directly utilized to assess
the application reliability based on artificial settings. After the deployment, the reliability
of components may vary with different settings in different systems. In this case, field
reliability needs to be obtained by monitoring and dependencies between components need
to be analyzed according to the deployment stack. Therefore, based on DEBRA, we intend
to develop a framework which can assess the cloud application reliability not only with
artificial information but also by gathering field data and dependencies.

Reliability assessment methods for cloud applications usually have different assumptions
and usage scenarios. For example, as aforementioned, methods may model an application
with different set of components, and redundancies and dependencies may be considered or
not. Therefore, it is challenging to evaluate and compare the quality of different reliability
assessment methods. The challenge is twofold. On one hand, proper baselines and metrics
are required to determine the quality of methods. On the other hand, methods need to be
compared with both the baselines and other methods after the adaption based on unified
assumptions. To tackle this problem, we intend to develop a comparison process which
provides an approach of getting baselines and a method to determine the quality of reliability
assessment methods and compare different methods based on quality metrics.

1.2 Goals and Contributions

Motivated by the above challenges of the reliability assessment for cloud applications, we
answer the following research questions in this thesis:

• RQ1: What aspects should be considered when modeling cloud applications for reli-
ability assessment?
• RQ2: How do dependencies affect the accuracy of a reliability assessment?
• RQ3: How can the quality of reliability assessment methods be compared?

Based on the above research questions, the goals of this thesis are as follows: 1) to design
a model of cloud applications and assess the reliability of cloud applications considering
components in the deployment stack and the dependencies between them, 2) to develop a
framework to support the reliability assessment method, and 3) to define criteria and devise
a process to evaluate the quality of reliability assessment methods and compare the quality
of different reliability assessment methods.

The main contributions of this thesis are:

Chapter 1 Introduction 4

• DEBRA for component-based cloud applications (Section 4.4). DEBRA combines
the reliability of individual components, dependencies, and the configurations of re-
dundant SIs to assess the reliability of services as well as applications.
• A reliability assessment framework (Chapter 4) that includes three components. A de-

pendency analyzer extracts the dependencies between cloud components. A monitor
collects state data of cloud components. A reliability analyzer assesses the reliability
based on the dependencies and state data.
• An instantiation of the proposed framework and a usage-based reliability testing tool

for web-based applications on real-world clouds (Chapter 5). The three components
of the framework are implemented for real-world cloud platforms. Besides, a usage-
testing reliability tool includes a fault injector to inject failures to components and a
tester to create usage-based test cases, send test cases to the application and collect
testing results are implemented for web-based applications.
• A case study for evaluating and comparing the quality (accuracies and precisions) of

reliability assessment methods for cloud applications (Chapter 6). The comparison
process includes three steps: 1) get required accurate baselines for comparison by
simulation, 2) assess the reliability based on field data, and 3) evaluate and compare
the quality of different methods.

1.3 Structure of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we introduce basic terms used
in this thesis. At first, we present definitions related to reliability engineering (Section
2.1). And then, we introduce the definition, service models, and deployment models of
cloud computing, and two open source cloud platform software employed in this thesis
(Section 2.2). In Chapter 3, we discuss related work about reliability assessment in the
context of cloud computing. Thereby, we consider works about the reliability of cloud
hardware (Section 3.1), systems (Section 3.2), and applications (Section 3.3), respectively.
In Chapter 4, we introduce a DEBRA-based framework for reliability assessment of cloud
applications and details of its components. We describe the dependency analyzer (Section
4.2), the monitor (Section 4.3), and the reliability analyzer based on DEBRA (Section 4.4),
respectively. In Chapter 5, we illustrate the implementation of the framework proposed
in Chapter 4. Beside the implementation of the components of the framework (Section
5.1, 5.2, and 5.5), we illustrate the implementation of two more components for reliability
testing: the fault injector (Section 5.3) and the tester (Section 5.4), respectively. In Chapter
6, we state the case studies conducted for verifying the proposed framework and comparing
DEBRA with related methods. At first, we state the setup, the platform, and the application
utilized in the case studies (Section 6.1 and 6.2). Then, we state the comparison results
(Section 6.3) and discuss them (Section 6.4). In Chapter 7, we answer the research questions
listed in Section 1.2 (Section 7.1) and discuss strengths, limitations, and threats to validity

5 1.3 Structure of the Thesis

of the work proposed in this thesis (Section 7.2). In Chapter 8, we summarize the thesis,
and give conclusions (Section 8.1) and possible directions for the future work (Section 8.2).

Chapter2
Background

In this chapter, we introduce the background knowledge required for this work. In Section
2.1, we provide concepts and definitions about reliability engineering. Afterwards, in Sec-
tion 2.2, we define cloud computing and its service models and deployment models, and
describe the employed cloud platforms in this thesis.

2.1 Reliability Engineering

Reliability engineering was scientifically established in the mid-1950s driven by military
efforts [21] and is now indispensable to the quality assurance of products during their life-
cycles. It has a broad connotation, but no unified definition. In this thesis, we employ
the definition from Fuqua [22, p. 7] that reliability engineering is "the technical discipline
of estimating, controlling, and managing the probability of failure in devices, equipment,
and systems". More specifically, as stated by Kececioglu [23, p. 2], "reliability engineer-
ing provides the theoretical and practical tools whereby the probability and capability of
parts, components, equipment, products, and systems to perform their required functions
for desired periods of time without failure, in specified environments and with a desired
confidence, can be specified, predicted, designed in, tested, demonstrated, packaged, trans-
ported, stored, installed, and started up, and their performance monitored and fed back to
all concerned organizations". Currently, the widely accepted objectives of reliability engi-
neering are:

• to utilize engineering knowledge and techniques to reduce the probability of failures;
• to determine and eliminate the causes of failures;
• to tolerate unhandled failures; and
• to evaluate and predict the reliability [24, p. 2].

To achieve the four objectives, four corresponding methods can be used: fault preven-
tion, fault removal, fault tolerance, and fault forecasting [1, p. 19]. Fault prevention is used
to prevent faults from being introduced into the system by using, e.g., mature design and

Chapter 2 Background 8

development techniques. Fault removal is used to detect and remove faults during devel-
opment and maintenance by verification and validation. Fault tolerance is used to tolerate
faults when occurring by, e.g., redundancy. Fault forecasting is used to estimate and predict
the probability of occurrences of faults by evaluation.

Fundamentals of reliability engineering, which focuses on reliability, have been well de-
veloped based on the probability and statistical theory. Reliability, as defined by the IEEE,
is “the ability of a system or component to perform its required functions under stated con-
ditions for a specified period of time” [25]. In the following, we illustrate the mathematical
fundamentals of reliability based on the definitions and equations proposed by Lyu [1].

Using probability theory, the reliability at a point of time t can be described as the prob-
ability that the time to failure T is larger than t. Given an event that an item is reliable till
a point of time T ∈ [t, t +∆t], where ∆t means a period of time, the probability of the event
P(t ≤ T ≤ t +∆t) can be expressed as:

P(t ≤ T ≤ t +∆t) = f (t)∆t = F(t +∆t)−F(t) (2.1.1)

where f (t) is the Probability Density Function (PDF) and F(t) is the Cumulative Distribu-
tion Function (CDF) of T . Since T ≥ 0 and f (t) = dF(t)/dt, we can derive:

F(t) = P(0≤ T ≤ t) =
∫ t

0
f (x)dx (2.1.2)

From (2.1.2), we can calculate the reliability at time t by:

R(t) = P(T > t) = 1−F(t) =
∫

∞

t
f (x)dx (2.1.3)

Except for itself, reliability can also be measured by:

• Failure rate. As defined by the IEEE, failure rate is "the ratio of the number of
failures of a given category to a given unit of measure; for example, failures per unit of
time, failures per number of transactions, failures per number of computer runs" [25].
If we take time as the measure, mathematically, the failure rate can be defined as "the
probability that a failure per unit time occurs in the interval, say, [t, t +∆t], given that
a failure has not occurred before t" [1, p. 752]. Then, the failure rate, h(t), can be
calculated by:

h(t) =
P(t ≤ T ≤ t +∆t|T ≥ t)

∆t
=

P((t ≤ T ≤ t +∆t)∩ (T ≥ t))
∆tP(T ≥ t)

=
P(t ≤ T ≤ t +∆t)

∆tP(T ≥ t)
=

F(t +∆t)−F(t)
∆tR(t)

=
f (t)
R(t)

=
f (t)

1−F(t)
(2.1.4)

• Mean Time To Failures (MTTF). MTTF is usually used for measuring the reliability
of non-repairable systems or components and defined as "the expected life, or the ex-

9 2.1 Reliability Engineering

pected time during which the system will function successfully without maintenance
or repair" [1, p. 756]. For reparable systems or components, their reliability can be
measured by Mean Time Between Failures (MTBF) which is defined as "the expected
or observed time between consecutive failures in a system or component" [25]. Based
on the definition, the MTTF can be calculated with [1, p. 757]:

MT T F = E(T) =
∫

∞

0
t f (t)dt (2.1.5)

where E(T) is the expected time to failure.

2.1.1 Failure Distributions

In reliability engineering, it’s useful to study failure data of an item or component and
determine the distribution of the time to failure by providing a PDF. With the PDF, we can
then derive the CDF of failures and calculate the reliability, the failure rate, and the MTTF
with formulas introduced in Section 2.1. In the following, we introduce two frequently used
distributions in the context of reliability engineering using equations proposed by Trivedi
[26].

One widely-used distribution is the exponential distribution where the occurrence of fail-
ures (time to failure) is modeled by an one-parameter exponential distribution. The PDF
and CDF of the one-parameter exponential distribution are:

f (t) = λe−λ t (2.1.6)

F(t) = 1− e−λ t (2.1.7)

where λ is a constant. Correspondingly, the failure rate, the MTTF, and the reliability are:

h(t) =
f (t)

1−F(t)
=

λe−λ t

1− (1− e−λ t)
=

λe−λ t

e−λ t = λ (2.1.8)

MT T F =
∫

∞

0
t f (t)dt =

∫
∞

0
tλe−λ tdt =

1
λ

(2.1.9)

R(t) = 1−F(t) = 1− (1− e−λ t) = e−λ t (2.1.10)

Equation (2.1.8) shows that the failure rate is constant. As failures of software and com-
bined software-hardware systems are often considered random and with constant failure
rates, they are often modeled by exponential distributions. The trends over time of the PDF,
the CDF, the failure rate, and the reliability of an exponential distribution with λ = 0.9 are
shown in Figure 2.1.

Another significant distribution is the two-parameter Weibull distribution which is the
most popular distribution for modeling failures of an individual hardware item [27]. The

Chapter 2 Background 10

Figure 2.1: An example of the exponential distribution.

PDF and CDF of the two-parameter Weibull distribution are:

f (t) =
β

η
(

t
η
)β−1e−(

t
η
)β

(2.1.11)

F(t) = 1− e−(
t
η
)β

(2.1.12)

where β is the shape parameter and η is the scale parameter. By adjusting β and η , relia-
bility engineers can model the reliability of hardware items in different phases of lifetime.

Under the assumption of the Weibull reliability model, the failure rate, the MTTF, and
the reliability of a hardware item are:

h(t) =
f (t)

1−F(t)
=

β

η
(t

η
)β−1e−(

t
η
)β

1−1+ e−(
t
η
)β

=
β

η
(

t
η
)β−1 (2.1.13)

MT T F =
∫

∞

0
t f (t)dt = ηΓ(

1
β
+1) (2.1.14)

R(t) = 1−F(t) = e−(
t
η
)β

(2.1.15)

where Γ(n) =
∫

∞

0 e−xxn−1dx. The trends over time of PDFs, CDFs, failure rates, and re-
liability of Weibull distributions with η=4 and β=0.5, 1, and 3 respectively are shown in
Figure 2.2. Figure 2.2 and (2.1.11) to (2.1.15) show that, when β=1, the Weibull distribution
reduces to an exponential distribution with λ = 1/η .

Hardware reliability is time-varying because of infant mortality, random faults, and wear-
out during the lifetime. The failure rate of a population of hardware items in different phases

11 2.1 Reliability Engineering

(a) PDFs (b) CDFs

(c) Failure rate (d) Reliability

Figure 2.2: PDFs, CDFs, failure rates, and reliability of Weibull distributions.

of the lifetime can also be modeled by Weibull distributions with different parameters. Com-
prehensively, the lifetime of hardware can be described by a bathtub curve [28], as shown
in Figure 2.3.

As Figure 2.3 shows, the hardware lifetime can be divided into three phases from the
beginning to the end:

1. Infant mortality. Failures are mostly burn-in, therefore, the failure rate is decreasing
with time and 0 < β < 1.

2. Useful life. Failures are mostly arbitrary, therefore, the failure rate is relatively stable
and β = 1. As aforementioned, failures in this phase can be modeled by the exponen-
tial distribution with λ = 1/η .

3. Wear-out. Failures are mostly due to wear-out, therefore, the failure rate is increasing
with time and β > 1.

Chapter 2 Background 12

Figure 2.3: An example of bathtub curve [28].

2.1.2 Reliability Modeling

If system components are independent and their reliability are given, system reliability can
be assessed using Reliability Block Diagram (RBD) [24] according to the component reli-
ability and the system structure. In the following, we give the modeling and reliability of
systems with different structures based on the description from O’Connor and Kleyner [24].

2.1.2.1 Series System

A series system will fail when any one of its components fails. An example of a series
system with two components is shown in Figure 2.4.

Figure 2.4: An example of series system.

Assuming that the reliability of the two components are R1 and R2, respectively, the
system reliability (R) can be calculated with R = R1R2. Similarly, the reliability of a series
system with n independent components can be calculated with:

R =
n

∏
i=1

Ri (2.1.16)

where Ri is the reliability of the ith component.

13 2.2 Cloud Computing

2.1.2.2 Parallel System

A parallel system succeeds when at least one of its components succeeds. An example of a
parallel system with two components is shown in Figure 2.5.

Figure 2.5: An example of parallel system.

Assuming that the reliability of the two components are R1 and R2, respectively, the
system reliability (R) can be assessed with R = 1− (1−R1)(1−R2), and the reliability of a
parallel system with n independent components can be assessed with:

R = 1−
n

∏
i=1

(1−Ri) (2.1.17)

where Ri is the reliability of the ith component.

2.1.2.3 K-out-of-n System

A k-out-of-n redundant system (1≤ k ≤ n) is a system composed of n components, each of
which is redundant to others, and the system succeeds only if at least k components succeed.
Assume that all components of a k-out-of-n system are independent and identical (with the
reliability of R), then the system reliability Rsys can be calculated with:

Rsys =
n

∑
i=k

Ci
nRi(1−R)n−i (2.1.18)

where Ci
n is the number of i-combinations from a set of n elements 1.

2.2 Cloud Computing

In this section, we introduce the basic definition and characteristics of cloud computing and
cloud platforms used in this thesis.

Cloud computing has been increasingly more popular in recent years and wildly used as a
daily utility. Public clouds provide seemingly infinite virtualized resources (e.g., computing
capacity, network bandwidth, storage, etc.) as services via the Internet to users. Different
from traditional computing systems, public clouds do not require users to maintain their

1The i-combinations from a set of n elements is often denoted by other forms, like C(n, i),
(n

i
)
, etc.

Chapter 2 Background 14

own in-house hardware [4]. Besides, organizations and businesses can also build private or
community clouds or cloud platforms using open source cloud software (e.g., OpenStack
[29], Helion [30], OpenShift [31], Cloudify [32]). A survey report from RightScale in 2016
[33] shows that, 95 percent of their respondents from various organizations are utilizing
cloud infrastructure for deploying and maintaining applications. And the market size of
cloud computing, as discussed in a report from the U.S. Department of Commerce in 2016
[34], is from dozens to hundreds of billions over the next years. Nearly all big IT companies
are providing cloud services, such as Amazon Web Services (AWS) [35], Google Compute
Engine [36], Microsoft Azure [37], etc. In the meantime, cloud computing affects our daily
life in many ways. For instance, iCloud [38] is used by most iPhone users to manage files.

Cloud computing, as a term in the context of utility computing, was firstly put forward
by Eric Schmidt from Google in 2006 [39]. At nearly the same time, Amazon announced
its Elastic Compute Cloud (EC2) service [40]. Till now, there are several definitions of
cloud computing rather than a unanimous one. In this thesis, we use the definition from the
National Institute of Standards and Technology (NIST) of America, which defines cloud
computing as “a model for enabling ubiquitous, convenient, on demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction” [4].

From the definition, the five essential attributes of cloud computing are:

• On-demand self-service. Users can utilize cloud capabilities on their own according
to individual requirements, without professional assistance of service providers.
• Broad network access. Capabilities can be used via the network and be accessed by

various client devices, such as laptops, mobile phones, servers, etc.
• Resource pooling. Computing resources, e.g., storage, processing and network band-

width, are transformed into pools, which make underlying resources transparent for
users. Resource pools are assigned and reassigned dynamically by cloud systems
based on the user demand.
• Rapid elasticity. Capabilities can be scaled by provisioning and recycling elastically

according to the consumer’s demand, and are seemingly infinite to the consumer.
• Measured service. Resources are managed and used in a manner of pay-per-use at

an abstraction level [4].

With the support of hardware (PSs, power systems, cooling systems, etc.) and kernel
software, cloud computing systems can be deployed to provide three kinds of service:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Ser-
vice (SaaS) [4] from bottom to top, as shown in Figure 2.6. IaaS provides fundamental
computing resources, e.g., compute cores, memories, storage spaces, and network band-
width, as services to consumers. Consumers can utilize these resources to install operating
systems, store data and deploy applications. PaaS provides the runtime environment and

15 2.2 Cloud Computing

tools, e.g., programming languages, monitoring tools, scaling tools, and security tools, as
services for consumers to deploy and manage applications. Consumers have the author-
ity for the environment and tools, but neither for fundamental resources nor for operating
systems. And SaaS provides various applications, e.g., data processing applications, busi-
ness management applications, and application management applications, as web services
to consumers. Consumers can only use the services without control of applications or the
underlying platform and infrastructure [4].

Figure 2.6: Cloud ontology structure, adapted from [41].

Cloud computing systems can be deployed in four deployment models: private cloud,
community cloud, public cloud, and hybrid cloud. A private cloud is used by a specific
organization and may be possessed and managed by the organization and/or other parties.
A community cloud is used only by a group of users who have the same requirement, for
instance, real-time jobs, data intensive applications, scientific research, etc. It is possibly
owned and managed by the community or other providers; A public cloud is used by public
users via the Internet. It is usually owned and managed by a company, and can also be
administrated by other kinds of organizations; A hybrid cloud is a combination of at least
two interoperable clouds of different types. It can be owned and managed by the providers
of the integrated clouds or the provider of the unified interface [4].

2.2.1 OpenStack

OpenStack [29] is one of the most popular open source cloud operating systems for de-
ploying and managing cloud platforms. Users of OpenStack include several large IT en-
terprises and organizations in different areas (mainly IT, telecommunications and academic
research [42]) and countries, like Yahoo, Cisco, PayPal, and Purdue University in Amer-
ica, Suning Cloud Commerce in China, Cybera in Canada, etc. The usage of OpenStack
ranges from private clouds to public clouds and also hybrid clouds. Using OpenStack, users

Chapter 2 Background 16

can easily build their own cloud platforms and can customize functions based on the open
source code.

OpenStack consists of six core components: Nova, Neutron, Swift, Cinder, Keystone,
and Glance. Nova is the compute service that is responsible for the lifecycle management
of VMs, such as spawning, migrating, terminating VMs, etc. Users can access the VMs
via Secure SHell (SSH) commands using key files. OpenStack supports several types of
hypervisors of VMs, such as Kernel-based Virtual Machine (KVM), Hyper-V, etc. [43].
Neutron provides network services to other components and enables users to configure net-
work topologies and devices for their applications. Swift is the object storage service that
can be used to reliably store unstructured data, such as pictures, videos, and documents,
etc. Cinder is the block storage service that can be used to create and manage blocks (vol-
umes). Keystone is the identity service for managing user information and service end-
points. Glance is the image service providing registration, query, and retrieval of images’
metadata. The core components provide typical services of a IaaS cloud, i.e., computing,
storage, and networking. Besides, OpenStack provides abundant REpresentational State
Transfer (REST) Application Program Interfaces (APIs) for users to access components,
which “have become the standard for enterprise IaaS” [42].

2.2.2 Cloudify

Cloudify [32] is an open source cloud orchestration (PaaS) software which is, since ver-
sion 3.0, based on the Topology and Orchestration Specification for Cloud Applications
(TOSCA) [44] standard. It helps users to deploy, monitor, and scale applications on private
clouds, such as OpenStack clouds, as well as on public clouds, such as AWS, Microsoft
Azure, etc., and even on a bare metal environment.

Cloudify divides an application into services. In versions 2.x, Cloudify uses Groovy
files to describe applications, services, and dependencies between services. In versions
3.x, attributes of the services of an application and the relationships between these services
are defined in a blueprint file which is based on the YAML [45] Domain Specific Lan-
guage (DSL). Services, VMs, floating IPs, security groups [46], etc., can all be defined as
nodes with properties. By characterizing nodes, Cloudify is able to control deployment de-
tails of the underlying cloud infrastructure. Besides, lifecycle operations of services, such
as installing, starting, and stopping, can also be defined by several kinds of plug-ins in
blueprints. Similar to OpenStack, Cloudify also provides REST APIs for above elements
and functions, such as the blueprints API, the deployments API, the node instances API.

Chapter3
Related Work

Reliability assessment, in the context of cloud computing, contains several aspects: hard-
ware reliability, cloud system reliability, service/application reliability, etc. In this chapter,
we introduce existing works in above areas.

3.1 Cloud Hardware Reliability

Many studies analyzed hardware failure characteristics of Cloud Computing Sys-
tems (CCSs) and high performance computing systems [47–50]. The reliability of hard-
ware, e.g., PS, Central Processing Unit (CPU), memory, router, Hard Disk Drive (HDD),
were analyzed according to the failure and repair logs of PSs. Works in this area focus on
the hardware layer (refer to Figure 2.6) while our work in this thesis focus on the whole
deployment stack of cloud applications. These works can provide the simulation with
practical parameters for PS failures.

About failures of PSs, Garraghan et al. [50] presented an analysis of the Google trace log
of 12,532 PSs in 29 days. They found that PS failures fit a Weibull distribution which is the
same as the finding by Schroeder and Gibson [48]. They also observed that a small part of all
PSs suffered much more failures than others, which is consistent with other works [47, 48].

Schroeder and Gibson [48] gave an analysis of the monitoring data for about ten-year
of a high performance computing site (Los Alamos National Laboratory) with 4,750 nodes
and another one-year node outage data set of a supercomputing system. They found that
the time between failures can be well modeled by a Weibull distribution with a decreasing
hazard rate and repair times can be well modeled by a lognormal distribution and, however,
mean repair times are quite different for different systems.

Regarding failures of network devices, Gill et al. [49] gave an analysis of the network
error logs for over one year of tens of different data centers. They found that data center
network reliability is high when about 80% of the links and 60% of the devices, such as
switches and routers, have an availability higher than four nines.

About the reliability of the whole data center including several PSs, Wei et al. [51] pro-
posed an RBD-based reliability model for Virtual Data Centers (VDCs). A VDC is defined

Chapter 3 Related Work 18

as a set of clusters connected by network modules. Each cluster contains several PSs, each
of which is a backup to others and composed of a number of VMs, a Virtual Machine Mon-
itor (VMM), and a PS. VMs hosted by the same PS are deemed as backups to each other.
The VDC and the PS are respectively modeled by an RBD. With the RBD model, the re-
liability of a PS is evaluated as the probability that the PS and the VMM are reliable and
at least one VM hosted by the PS is reliable. And the cluster reliability is assessed as the
probability that at least one PS in the cluster succeeds. Finally, the VDC reliability is cal-
culated as the probability that all clusters and network modules succeed. Compared with
our reliability model, their model studies the reliability of VDCs built on PSs and does not
include services and applications. Besides, they do not consider the case that VMs hosted
by different PSs are backups to each other.

3.2 Cloud Computing System Reliability

Many researchers tried to evaluate the reliability of a CCS by modeling and analyzing the
process of the CCS of fulfilling users’ requests. In this context, the CCS is usually modeled
as a set or a network of physical resources (PSs, switches, routers, etc.). Some works [52,
53] also combined the physical resources reliability with the cloud management software
reliability to evaluate the CCS reliability. These works focus on the hardware layer and the
software kernel layer, sometimes also the IaaS layer, but not the PaaS or SaaS layer (refer
to Figure 2.6).

Studies in this area start from Dai et al.’s work [54]. Dai et al. tried to assess the reliability
of cloud services, e.g., Amazon EC2 [55], in a way similar to the reliability assessment for
Grid systems [56]. They divide the lifetime of a cloud service into two stages: request stage
and execution stage, and assess the cloud service reliability as the product of the reliability
of the two stages. During the request stage, like in Grid and cluster computing systems,
they assume that there is a scheduler in the CCS to serve user requests. Then, considering
overflow failures and timeout failures, they calculate the request stage reliability as the
probability of satisfying user requests in time and model it with a Markov model as well as
the queue theory. During the execution stage, they model a cloud service as a set of subtasks,
and a cloud service succeeds only when all subtasks are successful. The execution stage
reliability is calculated as the probability that at least one possible set of elements required
by the service are available. Elements can be hardware, database, software, and network
links, whose failure rates are all assumed constant. Dai et al.’s work focuses on the reliability
of the IaaS cloud service itself, and it does not consider the structure and reliability of
applications deployed on clouds. In our work, the reliability of cloud components and the
CCS is considered known. Dai et al.’s work can be used as a complementary method to
provide the reliability of the CCS, which is then considered to be a part of the PS reliability.

Based on Dai et al.’s work [54], Cui et al. [57] proposed a low complexity method for
evaluating the cloud service reliability. Different from dividing cloud services into two

19 3.2 Cloud Computing System Reliability

stages, they simply model a cloud service as a set of subtasks. And they calculate the cloud
service reliability as the sum of weighted reliability of all subtasks. They model the relia-
bility of the cloud service in two cases: when node failures are independent, they model the
cloud service with an undirected graph; when nodes have correlated failures, they model the
cloud service with a Directed Acyclic Graph (DAG). They transform undirected graphs into
directed graphs by replacing an undirected edge with two corresponding opposing directed
edges and assigning the new edges with the failure probability of the original edge. How-
ever, they reduce the complexity of reliability evaluation at the cost of accuracy (in some
cases, the absolute error can be more than 2%), which is one of the main concerns of our
work. Besides, no application aspects are considered either.

Faragardi et al. [11] proposed Analytical Reliability Model for Reliability Assessment
(ARMRA) for CCSs which are modeled as a set of linked PSs with resources of memory,
storage space, computation power, and network bandwidth. They divide a cloud service
into tasks like in Dai et al.’s work [54], while both the service and tasks are assumed fully
reliable. They calculate the CCS reliability by combining the (exponential) reliability of
PSs and links. And they calculate the server reliability as the product of the reliability of
memory, hard disk, RAID controller and processor. Under several constraints, including
memory, Quality of Service (QoS), task precedence, communication load and task redun-
dancy, the maximum reliability of the CCS is evaluated. Similar to Dai et al.’s work [54] and
Cui et al.’s work [57], Faragardi et al. do not consider applications that use cloud services
as our work does.

Different from dividing services into subtasks, Lin and Chang [52] model the CCS as
a capacitated-flow network of PSs, switches, physical lines, etc., between the cloud and
clients. They assume that the capacity of nodes and edges have multiple states due to failures
and maintenances. They define the reliability of a CCS as the probability that the CCS can
send a number of data units to clients under constraints of data size, transmission time
and maintenance cost. Then, they formalize the reliability assessment as the calculation
of the probabilities of capacity vectors (paths) that fulfill the above constraints. However,
compared with our work, a cloud in Lin and Chang’s work is considered as a node providing
services without internal details and no services or applications are considered.

A recent work is from Snyder et al. [53] who evaluate the reliability of a cloud with
a set of (physical) resources as the probability of hosting a group of VMs. The CCS in
this work is modeled as a set of PSs, each of which is abstracted as a 4-bit field, where
each bit represents the state of a resource (including CPU, memory, HDD, and network
bandwidth). A server is considered to be failed if any one resource fails (with the probability
of its Annualized Failure Rate (AFR)). They define the reliability as the probability of the
functional state of the CCS. They evaluate the reliability by calculating the probability that
the CCS has more (physical) resources than requested for VMs using the non-sequential
Monte Carlo Simulation (MCS). Compared to our work, this work has no consideration of
cloud management softwares, services or applications.

Chapter 3 Related Work 20

3.3 Cloud Application Reliability

Many works have been proposed to improve and assess cloud application reliability. Cloud
applications in this context are applications deployed on IaaS or PaaS clouds. In this section,
we divide works in this area into works for reliability improvement and works for reliability
evaluation and prediction, and describe the details.

3.3.1 Reliability Improvement

Works to improve reliability can be systematic or dedicated to specific methods. Specific
methods are mainly about fault tolerance, whose two widely used mechanisms are check-
pointing and replication/redundancy.

Works about systematic methods focus on system-level frameworks or tools for improv-
ing application reliability in a view of the combination of cloud applications and CCSs. Wu
et al. [58] proposed a system accounting framework called S5 based on Maslow’s hierar-
chy of needs [59] for the Quality of Reliability (QoR). In Wu et al.’s work, they introduce
generalized service reliability requirements, including existence, availability, capability and
usability, and self-healing. S5 examines the first three attributes of services and provides
self-healing functions. The service reliability is improved by recognizing event patterns
and predicting the most possible irregular events based on monitoring logs, and then adopt-
ing corresponding healing methods. Wu et al. predict the occurrence probability of serious
events by analyzing log files of the application, which can be seen as a reliability assessment
method, while in our work, we use the reliability of all components to assess and predict
the application reliability.

Dudouet et al. [60] proposed a service orchestration framework, to manage dependencies
and lifecycles of services used by an application. An orchestrator is proposed to improve
reliability by handling "alarms" of violating performance thresholds detected by a monitor-
ing service and enabling rolling upgrades of applications without scheduled maintenance.
The design and functions of the service orchestration framework is similar to Cloudify. An
alarm in Dudouet et al.’s work is related to the application type, so, the reliability assess-
ment method in their work only focuses on the application and does not consider the whole
deployment stack as we do.

Fault tolerance is an important technique to improve reliability and the characteristics
of cloud computing, like virtualization and server consolidation, make it more convenient
to perform fault tolerance. Zheng et al. [7, 61] proposed a component ranking framework
called FTCloud to select significant components and apply different fault tolerance strate-
gies to components according to their rankings. The selection is according to the invo-
cation frequencies of components. And the alternative fault tolerance strategies include
recovery block (standby redundancy), N-Version Programming (NVP) (n/2-out-of-n sys-
tem) and parallel (active redundancy). Based on Zheng et al.’s work, Qiu et al. [62] pro-
posed a reliability-based optimization framework called ROCloud to improve the reliability

21 3.3 Cloud Application Reliability

of legacy applications during their migration to clouds. The framework selects significant
components according to the reliability impact which is considered as the number of fail-
ures where the application and the component failed simultaneously divided by the number
of the component failures. Then, the optimal fault tolerance strategy is selected among the
three strategies and the strategy of VM restart for the most significant components. The
selection is constrained by failure rate, response time, and resource cost. These two works
focus on reducing the cost of fault tolerance by applying it to only a part of chosen compo-
nents. The reliability of components organized in different structures are assessed, however,
they only consider service components, such as Amazon EC2 and Amazon Simple Storage
Service (S3), rather than specific PSs, VMs and services as we do in our work. Another
advance in our work is that we consider the k-out-of-n redundancy as a fault tolerance tech-
nique.

Another conceptual framework named Fault Tolerance Manager (FTM) for delivering
fault tolerance as a service was proposed by Jhawar et al. [19]. The framework is designed
to be a service layer working together with VMs on top of the VMM. FTM collects de-
tailed information of PSs and provides the VM-level fault tolerance to cloud applications
according to users’ requirements. Jhawar et al. take PSs, hypervisors, VMs, redundancies
and checkpointing into consideration, however, they do not separate an application and its
hosting VM and they do not consider k-out-of-n redundancies. Besides, FTM is not imple-
mented to the best of our knowledge.

Regarding specific methods for fault tolerance, many works study how to improve the
reliability by checkpointing and replication/redundancy, and how to improve the effective-
ness of the methods themselves. A recent representative work about checkpointing of cloud
service is from Zhou et al. [63]. Zhou et al. proposed a method to reduce the network usage
and storage resource consumption for checkpoint images of VMs. Their method chooses
the checkpointing storage node based on its reliability, which is modeled by Weibull distri-
butions. Therefore, the reliability assessment method in Zhou et al.’s work is only for PSs
which is different from our work which can assess the reliability of not only PSs, but also
VMs, services, and applications.

Many other works are about replication/redundancy. Zhao et al. [64] proposed a Low
Latency Fault Tolerance (LLFT) middleware for managing the communication and mem-
bership of replicated application processes. Replicas of a process form a process group with
one primary process and several backups. The LLFT middleware is composed of a low la-
tency messaging protocol, which multicasts messages from the primary to the backups, and
a leader-determined membership protocol, which handles the change of the primary and
the backups. Similarly, Zhang et al. [65] proposed a Byzantine fault tolerance framework
(BFTCloud) as a middleware for voluntary-resource clouds to manage the membership of
cloud nodes [66], i.e., PSs. The primary and the replicas for executing a request from cloud
modules form a Byzantine Fault Tolerance (BFT) group. BFTCloud selects and updates pri-
maries and backups of BFT groups according to QoS values and priorities of cloud nodes.
The two works respectively consider the primary-backup redundancy for application pro-

Chapter 3 Related Work 22

cesses and Byzantine fault tolerance for PSs. Both of them do not consider the k-out-of-n
redundancy, the reliability of VMs or the application structure while we do.

Recently, Zhou et al. [67] proposed a method to reduce the network resource consumption
and the data transfer delay while guaranteeing the cloud service reliability, named OPtimal
redundant Virtual Machine Placement (OPVMP). Zhou et al. first try to choose just enough
PSs in as less subnets of PSs in a data center as possible for required VMs. Then, they place
required VMs in the chosen PSs according to a heuristic algorithm. At last, they recover
failed VMs by a recovery strategy minimizing the total network resource consumption.
Different from our work, they assume that any two backup VMs are not on the same PS,
which may happen in practice and is considered in our work.

Besides, Malik et al. [68, 69] proposed a model for tolerating failures of real time cloud
applications based on the reliability of VMs. They assess the VM reliability in a reputation-
based manner. The reliability increases if the compute instance, i.e., a VM or a physical
processor, returns a correct result, otherwise, the reliability decreases. The increase and
decrease are controlled by a designed reliability assessment algorithm. Different from the
traditional definition of the reliability employed in our work, reliability in their works is
allowed to be larger than one. In addition, they do not separate applications from VMs or
PSs while we consider the components in the whole deployment stack of the application
separately.

3.3.2 Reliability Assessment and Prediction

Lots of works research the evaluation/assessment and prediction of reliability of cloud ser-
vices and applications, and are most related to our work in this thesis.

Padmapriya and Rajmohan [70] proposed a conceptual reliability evaluation method for
web services. Similar to Wu et al.’s work [58], they also consider the reliability as a gener-
alized property of services, and calculate it as the sum of the availability, the fault tolerance
coverage probability, the fault recovery probability, and the service accuracy, i.e., the prob-
ability of returning right responses. They assign each of the above metrics with a weight, al-
though it is unclear how to determine these weights. One difficulty of using Padmapriya and
Rajmohan’s method is to determine the quantitative numbers of above metrics. Padmapriya
and Rajmohan’s work is different from ours because it uses no service structure or reliability
model, but measures reliability vaguely in an abstract way.

Concentrating on the service layer, Banerjee et al. [71,72] proposed LOg-Based Reliabil-
ity Assessment (LOBRA) for analyzing a commercial SaaS application’s reliability based
on access logs. The same as Tian et al.’s work [73], they use Nelson’s model [74], which
defines the reliability as R = 1− f/n, where f was the number of failed entries/sessions and
n is the total number of entries/sessions, to assess the application reliability. They evaluate
the application reliability based on the filtered data. They proposed two kinds of data fil-
tration methods: to distinguish the requests whether they are from registered users or from
unregistered users and to classify entries according to the effects of its failures. Using these

23 3.3 Cloud Application Reliability

two methods, they measure the log entry-based reliability with Rentry = 1− fe/ne, where fe

and ne are the number of failed entries and total number of entries, respectively. And they
measure session-based reliability with Rsession = 1− fs/ns, where fs and ns are the num-
ber of failed sessions and total number of sessions, respectively. Afterwards, they further
divide log files into access logs, server logs, business process logs and customer problem
report logs, but only access logs are used for reliability analysis [72]. Banerjee et al.’s work
focuses on SaaS reliability and considers only service failures but no underlying failures,
such as VM failures. Their method can also be applied to evaluate the reliability of common
cloud applications as long as access logs are available.

Further considering the composite structure of services, Zheng and Lyu [13] proposed
a collaborative reliability prediction method for service-oriented systems in the users’ per-
spective. They predict the service reliability based on failure data of similar service users.
First, similarities between users and between services are calculated based on failure proba-
bilities of services observed by users. Secondly, users similar to the target user and services
similar to the target service are chosen by identifying a number of most similar users and
services. Thirdly, the service failure probability observed by the user is predicted by com-
bining results predicted by using only failure probabilities observed by similar users’ and
by using only failure probabilities of similar services. At last, the failure probabilities of
services are aggregated according to the compositional structure to calculate the reliability
of the composite service. Comparing with our work, this work makes a different assump-
tion that failure probabilities of services are possibly unknown before assessing reliability
and focuses on the prediction of unknown failure probabilities. Besides, this work assesses
service reliability in the users’ perspective, which is different from the cloud providers’ and
consumers’ perspective of our work. In the end, the fourth step of predicting the reliability
of the composite service can be used to assess the reliability of cloud services/applications
under the assumption that reliability of services are known, but without regard to redundan-
cies or underlying structures of the system.

Taking redundancies and data into consideration besides above considerations, Wang et
al. [20] proposed SErvice-Based Reliability Assessment (SEBRA), which is a hierarchi-
cal reliability model for modeling and evaluating the reliability of service-based software
systems. They assess the software reliability by combining the reliability of the workflow,
service pools, services, and data. Comparing with Zheng et al.’s work [13], Wang et al.’s
work considers more aspects when assessing service reliability, such as service pools. The
model can be adapted to evaluate the reliability of cloud applications as composite services,
but regardless of VMs or PSs failures which are considered in our work.

Focusing on Common Cause Failures (CCFs), Qiu et al. [12] proposed Hierarchical Cor-
relation Model for Reliability Assessment (HCMRA) for cloud services. HCMRA can also
evaluate performance and power consumption of cloud services. A CCF indicates that a PS
failure would bring down all VMs on the PS. In their model, the reliability of large online
services, e.g., social networking services, is assessed. Meanwhile, to connect the service
reliability with performance and power consumption, they define the service reliability as

Chapter 3 Related Work 24

the probability that at least one VM used by the service is available. And the reliability of
the service itself is not considered, instead, they consider only VM and PS failures. Both
VM and PS failures are assumed to follow Poisson processes with different constant failure
rates and the Markov process is utilized to model the available amount of VMs. The cause
of CCF in their work is similar to the deep dependency defined in our work. The difference
to our work is that they do not consider the impact of the k-out-of-n redundancy, service
reliability or the application structure.

Based on the whole deployment structure of applications, Thanakornworakij et al. [10]
proposed High Performance Computing Reliability Assessment (HPCRA) for calculating
the PDF and the reliability of high performance applications, specifically, Message Passing
Interface (MPI) applications, deployed on cloud systems. They consider the reliability of
application-related components, such as SIs, VMs, hypervisors, and PSs, and relationships
of these components during the reliability assessment process. They focus on exploring
the impact of correlations of failures to cloud application reliability. However, they do not
consider any redundancies as we do.

In the context of deploying applications to VDCs, Zhang et al. [14] proposed a method
and a framework to assess the availability of the VDC provisioned for services considering
hardware failures and dependencies between virtual components. Zhang et al. define the
service availability of a 3-tier web application, which consists of web servers, application
servers and database servers, as the probability that "there exists a path from the web server
to the database server where every component (physical nodes and links) along the path is
available" [14]. The service availability is estimated using the importance sampling tech-
nique [75]. Different from our work, on one hand, they do not consider the failures of VMs
or the failures of the application itself, on the other hand, the service availability is estimated
rather than accurately calculated in their work.

Chapter4
A Reliability Assessment Framework for
Cloud Applications

In this chapter, we introduce a DEBRA-based framework for monitoring, analyzing, and
assessing the reliability of cloud applications with DEBRA. An initial version of DEBRA
and the framework is proposed in a paper [76]. At first, we introduce the overview of our
framework. Afterwards, we describe details of its components and DEBRA.

4.1 Overview

The framework is designed to assess the reliability of cloud applications during both the
development and the maintenance phases. To this aim, we develop three functional compo-
nents for the framework: a dependency analyzer, a monitor, and a reliability analyzer. The
dependency analyzer analyzes dependencies between components in the deployment stack
of applications and creates a graph named Layered Dependency Graph (LDG) to represent
the application deployment structure. The monitor gathers states, particularly failures, of
the components included in the LDG. The reliability analyzer assesses the reliability of the
components and the application based on both the LDG and the reliability of components
with DEBRA. During the development phase of an application, the reliability of compo-
nents obtained by testing or manually setting, and assumed dependencies can be used by
the reliability analyzer to predict the reliability of the application with certain deployment
structures. In this case, the reliability analyzer can work solely without the dependency
analyzer or the monitor. And, during the maintenance phase, the application is deployed on
clouds. The field failure data can be obtained by the monitor and the LDG can be built by
the dependency analyzer. In this case, the reliability analyzer works collaboratively with the
dependency analyzer and the monitor and uses field data to assess the application reliabil-
ity. The framework structure in this scenario is shown in Figure 4.1, where the deployment
stack of cloud applications is divided into three layers: the application layer consisting of
services, the VM layer, and the PS layer.

Chapter 4 A Reliability Assessment Framework for Cloud Applications 26

Figure 4.1: Deployment stack of cloud applications and overview of the framework.

4.2 Dependency Analyzer

The dependency analyzer is designed to collect components and the dependencies among
them from the cloud where the application is deployed and to generate an LDG. A depen-
dency is defined as the relationship between two components that one component requires
another one to fulfill its function. The component that needs another one to fulfill its func-
tion is defined as the predecessor and the needed component is defined as the successor. The
application components include services, SIs, VMs, and PSs. In the following, we introduce
how the dependency analyzer models the relationships between the above components.

The dependency analyzer models a cloud application as a composition of several services,
each of which has n (n ≥ 1) SIs and every SI is deployed on one VM. SIs of a service are
generally organized as a k-out-of-n system (Section 2.1.2.3). When k = 1, which means that
the service needs at least one SI to succeed, SIs are organized as a normal parallel system
(Section 2.1.2.2). When k > 1, which usually means that the service needs more than one
SIs to ensure its performance, SIs are organized as a k-out-of-n system (Section 2.1.2.3).
Therefore, a service is seen as an abstract component, which is instantiated, exists in the
form of a k-out-of-n system of SIs. The dependency between two services are defined as a
function dependency which means that a service needs another service for its full function.
For example, a website needs a database to store user information. Furthermore, function
dependencies are divided into two types: sequence function dependency and choice function
dependency. A sequence function dependency is a function dependency with a weight of
w = 1 and a choice function dependency is a function dependency with a weight of 0 < w <
1, and the weights of all choice function dependencies with the same predecessor sum up to
1. Besides, we assume that there are no cycles or triangles of function dependencies in the
application structure.

27 4.2 Dependency Analyzer

In cloud systems, we assume that SIs are deployed in VMs which are deployed on PSs.
Meanwhile, a service can also be seen as deployed through its SIs. Therefore, we define the
dependencies between services and SIs, between SIs and VMs, and between VMs and PSs
as deployment dependencies. In this thesis, a deployment dependency is formally defined
as the dependency between two components when one component is deployed on another
one. A PS can host more than one VM and a VM can host more than one SIs. In this thesis,
for simplicity, we assume that a PS can host several VMs while one VM can hold only one
SI. Under this assumption, VMs hosting SIs of the same service may be deployed on the
same PS, which makes the PS a possible Single Point of Failure (SPoF) of the application.
In this case, we define the dependency between the SIs as a deep dependency. The deep
dependency is similar to the reason of common cause failures introduced by Qiu et al. [12],
which are simultaneous failures of all VMs on the same PSs induced by failures of the PS.

Based on function dependencies and deployment dependencies, the dependency analyzer
uses an LDG to model components and their dependencies. In this thesis, an LDG is for-
mally defined as a triangle-free DAG G(V,E), where V is the set of components and E is
the set of dependencies between components. A component is defined as v(t,m,k,n), where
t is the type of the component, which can be one of PS, VM, SI and service, m is the name
of the component, and k and n are for services which have n SIs and need at least k of them
to succeed. A dependency is defined as e(p,s,d,w), where p and s are the predecessor and
successor, respectively, d is the type, and w is the weight of the dependency. Dependencies
are transitive, i.e., the successor of a component’s successor is also the component’s succes-
sor and the same for predecessors. The type d can be function or deployment denoting the
function dependency or the deployment dependency, respectively. The sum of weights of
function dependencies with the same predecessor is 1 and the weight of every deployment
dependency is 1. An example of the LDG is shown in Figure 4.2, where solid arrows rep-
resent function dependencies, dashed arrows represent deployment dependencies, and all
arrows without weights represent dependencies with a weight of 1.

An LDG is composed of four layers from bottom to top: the PS layer, the VM layer, the
SI layer, and the service layer. The four types of components: PSs, VMs, SIs, and services,
are included in the corresponding layer. As shown in Figure 4.2, there are two choice
function dependencies with weights w1 and w2, and one sequence function dependency in
the services layer.

Base on the LDG model, we define the sub-LDG (sLDG) of a service se, G(se), as the
subgraph of the LDG induced by the vertex set containing the service and its successors.
For example, for the rightmost service in Figure 4.2, the vertex set contains the service
itself, its two SIs, the two VMs hosting the SIs and the two PSs hosting the two VMs. The
sLDG of the service is shown in Figure 4.3 as the right bold part. Furthermore, we define
the sLDG of a set of PSs {ps1, ps2, ..., psn}, G({ps1, ps2, ..., psn}) where psi (i = 1,2, ...,n)
is the ith PS, as the subgraph of the LDG induced by the vertex set containing all PSs in
{ps1, ps2, ..., psn} and their predecessors. The sLDG of the leftmost two PSs is shown in
Figure 4.3 as the left bold part.

Chapter 4 A Reliability Assessment Framework for Cloud Applications 28

Figure 4.2: An example LDG.

Figure 4.3: The sLDGs of a service and a set of PSs.

4.3 Monitor

The monitor is designed for monitoring and logging states of PSs, VMs, and SIs after the
deployment of an application. State information of these components are gathered and
logged in log files once per time unit. A time unit can be a minute, an hour or a day, etc.
We assume that a component has only one state during a time unit, either success or failure.

29 4.4 Reliability Analyzer

The success state means that the component functions without failures during the time unit
and the failure state means that the component suffers at least one failure. In this thesis,
a component succeeds or is successful represents that the component is in its success state
and correspondingly, a component fails represents that the component is in its failure state.
To distinguish the two states, we define failure scopes of above components as follows:

• for a PS, possible failures are that the PS crashes, network failures that make a PS
unreachable, and cloud management software failures, especially hypervisor failures,
that make a PS unable to host VMs;
• for a VM, possible failures are that the VM crashes, (virtualized) network failures

that make a VM unreachable or unable to host SIs; and
• for an SI, possible failures are the corresponding service process crashes or Operating

System (OS) failures that make an SI inactive.

As service components are abstract and instantiated to SIs, possible failures of a service
are that the number of its successful SIs is less than required. Therefore, the state of a
service during a time unit is determined by both the states and the organization of its SIs.
For example, suppose a service has four SIs organized as a 2-out-of-4 system, then if more
than two SIs are in a failure state, the service is in failure state. The states of services are
determined by the reliability analyzer based on the SI states obtained by the monitor and
the LDG generated by the dependency analyzer.

4.4 Reliability Analyzer

The reliability analyzer is responsible for assessing the reliability of the application and all
components in the LDG according to the dependencies obtained from the dependency ana-
lyzer and the field failure data obtained from the monitor. In this section, we first introduce
the assumptions made for the reliability assessment. Afterwards, we describe DEBRA for
components and the application.

4.4.1 Assumptions

First of all, because of the reliability assessment methods for different components are dis-
tinct, we divide components in LDGs into two types: service components and non-service
components including PSs, VMs and SIs. Then, before making assumptions, we need to
clarify the following terms:

• Inner reliability (r): for a non-service component, similar to the definition of reliabil-
ity (Section 2.1), the inner reliability is defined as the ability to perform its required
functions without need of other components under stated conditions for a specified
period of time; for a service, the inner reliability is defined as the ability to perform its

Chapter 4 A Reliability Assessment Framework for Cloud Applications 30

required functions without need of its service successors, i.e., only SIs, VMs, and PSs
are considered when assessing the inner reliability of services, under stated conditions
for a specified period of time.
• Inner failure: the failure of a component that is caused by itself rather than its succes-

sors. For services, inner failures are the failures which are caused by its non-service
successors. Corresponding to the inner reliability, the rate of inner failures is defined
as the inner failure rate.

The following assumptions are made for reliability assessment methods in this thesis:

• A1: component failures are fail-stop, which means that a component suffering a fail-
ure will stop working and the failure can be detected;
• A2: inner failures of non-service components are independent;
• A3: the same type of non-service components have the same inner reliability;
• A4: the reliability of a component is determined by both its inner reliability and the

reliability of its successors;
• A5: inner reliability and reliability are assessed for one time unit, during which the

state of every component and the application can only be success or failure while the
probability of a component’s success state equals its inner reliability; and
• A6: SIs and VMs are mapped one-to-one which indicates that only one SI can be

deployed on one VM.

Regarding the assumption A5, VMs and SIs are software components, and the occurrence
of their failures are assumed to follow exponential distributions (Section 2.1.1), therefore,
their inner reliability in a time unit can be calculated by formula (2.1.10) by with t = 1, i.e.:

r = e−λ (4.4.1)

As introduced in Section 4.3, a PS may fail because of several kinds of hardware and soft-
ware failures. When software failures are in the majority, failures of a PS can be approx-
imated by an exponential distribution and the inner reliability of the PS can be calculated
with (4.4.1). When hardware failures are as many as software failures, failures of a PS can
be seen as aggregated failures and the occurrence of them can be modeled with a Poisson
process [77], which leads to a constant failure rate and the calculation of the inner reliability
of the PS with (4.4.1). When hardware failures dominate, as introduced in Section 2.1.1,
failures of a PS can be modeled by a Weibull distribution and the inner reliability of PSs in
a time unit can be calculated by (2.1.15) with t = 1, i.e.:

r = e−(
1
η
)β

(4.4.2)

where β and η can be adjusted to control the failure rate. In the rest of this thesis, similar
to some existing works [12, 54, 77], we assume that failure of a PS follows an exponential

31 4.4 Reliability Analyzer

distribution and use (4.4.1) to calculate the PS inner reliability.
Regarding the assumption A6, in practice, SIs of two or more services are possibly de-

ployed on one VM, in this case, SIs and services can be integrated by reducing the appli-
cation structure and updating the (inner) reliability according to the reduced structure. In
this thesis, we only consider the reduction of sequence function dependencies, since the
reduction of choice function dependencies may lead to triangles or significantly change the
application structure. We assume that if two different SIs, i.e., two SIs of two different
services, are deployed on one VM, the corresponding two services should meet three con-
ditions for a reduction: a) one service is directly dependent on another with a sequence
function dependency, b) the two services have the same amount, e.g., n, of SIs and c) the
2n SIs of the two services are deployed on n VMs with each VM hosting two different SIs.
The condition a means that one service is a direct successor of another. For the condition
c, suppose two services both have three SIs and one service is dependent on another with a
sequence function dependency, some possible deployments of their SIs are shown in Figure
4.4. The deployment in Figure 4.4(a) satisfies the condition c while the deployments in
Figure 4.4(b) to 4.4(d) violates because either the number of VMs is wrong (Figure 4.4(c)
and Figure 4.4(d)) or SIs of the same service are deployed on the same VM (Figure 4.4(b)
and Figure 4.4(c)).

(a) (b) (c) (d)

Figure 4.4: Deployment examples of two sequential services.

Conditions a to c guarantee that two services meeting them can be reduced to one service.
For example, the deployment in Figure 4.4(a) can be reduced into the deployment in Figure
4.5. SIs on the same VM are integrated into a composition instance and the two services are
integrated into a composition service. Suppose the inner reliability of SIs of the two services
in Figure 4.4(a) is r1 and r2, respectively. Then, the inner reliability r of the composition
instance is calculated by r = r1r2 according to the sequence function dependency between
the two services.

Chapter 4 A Reliability Assessment Framework for Cloud Applications 32

Figure 4.5: The reduction of two sequential services.

4.4.2 Non-service Component Reliability

In this section, we describe the reliability assessment methods for non-service components,
i.e., PSs, VMs and SIs.

In an LDG, PSs are in the bottom layer and not dependent on any further components.
And as assumed in Section 4.4.1, the reliability of a component is determined by its inner
reliability and the reliability of its successors. As PSs do not have successors, the reliability
of a PS, Rps, is fully determined by its inner reliability rps whose calculation is described in
Section 4.4.

As introduced in Section 4.4, VMs and SIs are software components, and their inner
reliability rvm and rsi are calculated with (4.4.1). Let λvm and λsi be the inner failure rate of
VMs and SIs, respectively, then we have:

rvm = e−λvm (4.4.3)

rsi = e−λsi (4.4.4)

(4.4.5)

Meanwhile, a VM has only one successor which is the PS hosting it. Therefore, a VM
and the hosting PS form a two-component series system (Section 2.1.2.1), and the reliability
of a VM Rvm is calculated by:

Rvm = rvmrps = e−(λvm+λps) (4.4.6)

where rps is the (inner) reliability of the PS hosting the VM and λps is the failure rate of the
PS.

Regarding SIs, each of them is hosted by a VM which is hosted by a PS. An SI, the
hosting VM and the hosting PS form a three-component series system, and the reliability of

33 4.4 Reliability Analyzer

an SI Rsi is calculated by:

Rsi = rsirvmrps = e−(λsi+λvm+λps) (4.4.7)

where rsi is the inner reliability of the SI.
Given the one-to-one mapping between SIs and VMs, we define the composition of an SI

and the VM hosting it as a composite component named SI-VM (SV) to represent the series
system of the SI and the VM. Consequently, the inner reliability of an SV rsv is calculated
by:

rsv = rsirvm = e−(λsi+λvm) (4.4.8)

Furthermore, an SV and the PS hosting the corresponding VM form a series system and
the reliability of an SV Rsv can be calculated with:

Rsv = rsvrps = rsirvmrps = Rsi (4.4.9)

4.4.3 Service Inner Reliability

In this section, we introduce the assessment method for the inner reliability of services.
A service is usually deployed with several SVs for fault tolerance, each of which is de-

ployed on a PS. As introduced in Section 4.2, n redundant SVs of a service can be generally
modeled as a k-out-of-n system where k is the least number of SVs required by the service
to succeed. And, as defined in Section 4.3, the inner reliability of a service is the probability
that at least k SVs succeed. If all SVs of a service are independent with each other, the inner
reliability of the service can be calculated using formula (2.1.18):

rse =
n

∑
i=k

Ci
n(Rsv)

i(1−Rsv)
n−i (4.4.10)

where Rsv is the reliability of the SV, 1 ≤ k ≤ n, and Ci
n is the number of i-combinations

from a set of n elements.
However, the assumption that all SVs of a service are independent does not hold when

two or more SVs of the same service are deployed on the same PS, because failures of these
SVs are dependent on the same PS’s failures. In this case, deep dependencies must be taken
into consideration to calculate the service inner reliability.

For a service whose n SVs are hosted by m PSs and configured as a k-out-of-n system,
we assume that nl (l = 1,2, ...,m) SVs are hosted by the lth PS. In this case, (4.4.10) can be
adapted to:

rse =
n

∑
i=k

Pvi (4.4.11)

where Pvi is the probability of the event that i out of n SVs succeed which is represented
by vi. For example, suppose a service has six SVs deployed on three PSs and one, three,

Chapter 4 A Reliability Assessment Framework for Cloud Applications 34

and two SVs are deployed on the first, second, and third PS, as shown in Figure 4.6, where
dashed arrows are deployment dependencies. If the service requires at least four SVs to
succeed, i.e., the six SVs are configured as a 4-out-of-6 system, we have k = 4, n = 6,
m = 3, n1 = 1, n2 = 3, and n3 = 2. For this service, when i = 4,5,6, there are respectively
Ci

6 possibilities that i out of six SVs succeed.

Figure 4.6: An example deployment structure of a service.

If we assume that there are di scenarios that i (i = k,k+1, ...,n) SVs succeed, Pvi can be
calculated by summing up the probability of each scenario:

Pvi =
di

∑
j=1

Pc j (4.4.12)

where Pc j is the probability that the jth scenario, c j, occurs. For the service shown in Figure
4.6, one scenario where four out of six SVs succeed is shown in Figure 4.7.

Figure 4.7: A scenario that four out of six SVs succeed.

For the jth scenario that i SVs succeed, suppose the number of successful SVs on the lth

35 4.4 Reliability Analyzer

PS is s jl (l = 1,2, ...,m). Then, s jl should meet:

0≤ s jl ≤ nl (4.4.13)
m

∑
l=1

s jl = i (4.4.14)

where (4.4.13) means that the number of successful SVs on a PS, s jl , can range from zero
to the number of total hosted SVs, nl , and (4.4.14) means that the number of successful SVs
on each PS sums up to the number of total successful SVs.

Before calculating the probability of the jth scenario Pc j , we need to find out all the di

scenarios that i out of n SVs succeed. If we define a scenario as a sequence (s1,s2, ...,sm),
the problem of how to find out the di scenarios can be formally described as how to dis-
tribute i SVs to m PSs or how to find out the restricted weak compositions of the integer i
into m parts, with every part sl restricted by (4.4.13). As defined by Bona [78, p. 89], a weak
composition of an integer n is “a sequence (a1,a2, ...,ak) of integers fulfilling ai ≥ 0 for all
i, and (a1 + a2 + ...+ ak) = n”, and when “the ai are positive for all i ∈ [k], the sequence
(a1,a2, ...,ak) is a composition of n”. And as defined by Page [79], a restricted weak compo-
sition is a subset of the set of weak compositions. “Restricted” means that there is a limited
(restricted) range of values for each ai. For our problem, when i out of n SVs succeed, the
integer is i, and a restricted weak composition of i is of the form (s1,s2, ...,sm) where sl is
restricted by (4.4.13) with l = 1,2, ...,m. To solve the problem, we employ the generalized
algorithm for restricted weak composition generation proposed by Page [79]. The inputs of
the algorithm are the restricted set of values for each element in the sequence representing
weak compositions, the integer and the number of parts of restricted weak compositions,
and the output is a queue which contains all restricted weak compositions of the integer. In
our case, the restricted set of sl is {0,1, ...,nl}, the integer is the number of successful SVs,
i, and the number of parts of the restricted weak composition is the number of PSs, m. Let’s
take the service in Figure 4.6 as an example. The restricted sets are {0,1}, {0,1,2,3}, and
{0,1,2}, the integer i is 4, 5 or 6, and the number of parts is 3. When i=4, the output of
the algorithm would be ((1,1,2),(1,2,1),(1,3,0),(0,2,2),(0,3,1)), which indicates that
the number of possible scenarios of four successful SVs is 5, i.e., d4 = 5. The scenario c3
corresponding to the weak composition (1,3,0) is shown in Figure 4.8, where successful
SVs are connected with the service and PSs with dashed bold arrows.

By the above algorithm, we can get the number of successful SVs s jl (l = 1,2, ...,m) on
the lth PS in the jth scenario and calculate Pc j with:

Pc j =
m

∏
l=1

Pu jl (4.4.15)

where Pu jl is the probability that s jl SVs on the lth PS succeed in the j scenario. As the
probability of the success state of a component is its inner reliability, Pu jl can be calculated

Chapter 4 A Reliability Assessment Framework for Cloud Applications 36

Figure 4.8: The scenario corresponding to the weak composition (1,3,0).

according to the inner reliability of SVs and PSs. When s jl = 0 representing that no SVs on
the lth PS succeeds, Pu jl is the sum of two probabilities which are the probability that the
PS fails, 1− rps, and the probability that the PS succeeds while all nl SVs hosted by it fail,
rps(1− rsv)

nl , therefore, we have:

Pu jl = (1− rps)+ rps(1− rsv)
nl , s jl = 0 (4.4.16)

When s jl > 0 representing that s jl SVs on the lth PS succeed, Pu jl is the probability that the
lth PS succeeds, rps, s jl out of nl SVs hosted by the PS succeed, (rsv)

s jl , and nl − s jl SVs
hosted by the PS fail, (1− rsv)

nl−s jl , therefore, we have:

Pu jl = rps(rsv)
s jl (1− rsv)

nl−s jl , s jl > 0 (4.4.17)

In total, we get:

Pu jl =

(1− rps)+ rps(1− rsv)
nl , if s jl = 0

rps(rsv)
s jl (1− rsv)

nl−s jl , if s jl > 0
(4.4.18)

Taking the third scenario c3 in Figure 4.8 as an example, we have s31 = 1, s32 = 3, and
s33 = 0, then:

Pu31 =rpsrsv

Pu32 =rps(rsv)
3

Pu33 =1− rps + rps(1− rsv)
2

(4.4.19)

At last, combining (4.4.11), (4.4.12), and (4.4.15), we calculate the inner reliability of a

37 4.4 Reliability Analyzer

service with:

rse =
n

∑
i=k

di

∑
j=1

m

∏
l=1

Pu jl (4.4.20)

In the following, we employ the service in Figure 4.6 to show how the inner reliability
of a service can be calculated. Suppose the inner reliability of PSs and SVs are rps = 0.9
and rsv = 0.8, respectively. As the six SVs are configured as a 4-out-of-6 system, inputs
of the algorithm proposed by Page [79] are the integers 4, 5, and 6, the number of parts
is 3, and the restricted sets are {0,1}, {0,1,2,3}, and {0,1,2}. The generated restricted
compositions are shown in Table 4.1, where each column shows the list of scenarios when
i SVs succeed with c j (j = 1,2,3,4,5) representing the jth scenario.

Table 4.1: Generated compositions.

i = 4 i = 5 i = 6

c1 = (1,1,2) c1 = (1,2,2) c1 = (1,3,2)

c2 = (1,2,1) c2 = (1,3,1)

c3 = (1,3,0) c3 = (0,3,2)

c4 = (0,2,2)

c5 = (0,3,1)

For the scenario c3 = (1,3,0), by substituting rps = 0.9 and rsv = 0.8 into (4.4.19), we
get:

Pu31 =rpsrsv = 0.72

Pu32 =rps(rsv)
3 = 0.4608

Pu33 =1− rps + rps(1− rsv)
2 = 0.136

then, according to (4.4.15), we get Pc3 by:

Pc3 =
3

∏
l=1

Pu3l

=Pu31Pu32Pu33

=0.72∗0.4608∗0.136

=0.045121536

Chapter 4 A Reliability Assessment Framework for Cloud Applications 38

Similarly, for the other scenarios, we can get:

Pc1 =0.035831808

Pc2 =0.071663616

Pc4 =0.055738368

Pc5 =0.037158912

Then, substituting d4 = 5 and values of Pc j (j = 1,2,3,4,5) into (4.4.12), we get:

Pv4 =
5

∑
j=1

Pc j

=Pc1 +Pc2 +Pc3 +Pc4 +Pc5

=0.24551424

Via the same process, we can get Pv5 = 0.313196544 and Pv6 = 0.191102976, and finally
get the inner reliability of the service according to (4.4.11):

rse =
6

∑
i=4

Pvi

=Pv4 +Pv5 +Pv6

=0.24551424+0.313196544+0.191102976

=0.74981376

4.4.4 Service Reliability

In this section, we introduce the reliability assessment method of services. To this aim, we
need to consider function dependencies and possibly existing deep dependencies between
SIs, beside its inner reliability.

Regarding the function dependencies, Wang et al. [80] proposed four basic architectural
styles for modeling software architecture: batch-sequential or sequence, parallel or pipe-
filter, fault tolerance, and call-and-return or loop, which are widely used to model com-
positional software [13, 20, 81]. An extra style, choice, is usually used as an supplement
to the above styles. Suppose service successors of a service are independent and form one
of the above styles, the above styles and the calculation of their reliability are introduced
according to the definition of Wang et al. [80]:

• Sequence: service successors are executed in sequence. If two services are executed
in sequence, then the first executed one is the predecessor and the later one is the

39 4.4 Reliability Analyzer

successor. The sequence style fails if any one successor fails. According to formula
(2.1.16), the sequence style’s reliability Rseq is:

Rseq =
n

∏
i=1

Rsuci (4.4.21)

where Rsuci is the reliability of the ith successor and n is the number of successors.
• Pipe-filter: service successors are identical and executed simultaneously to improve

performance. In this case, identical services can be considered as SIs of the same
service. Therefore, the reliability of a pipe-filter style equals the inner reliability of
a service whose SIs are configured as a n-out-of-n system where n is the number of
SIs.
• Fault tolerance: service successors are identical and at least one succeeds while oth-

ers are backups. The same as for the pipe-filter style, identical services can also be
considered as SIs of the same service, but the difference is that the reliability of a
fault tolerance style equals the inner reliability of a service whose SIs are configured
as a 1-out-of-n system where n is the number of SIs.
• Loop: a service successor is executed several times to fulfill another service’s func-

tion. The fulfilled service is the predecessor and the looped service is the successor.
The loop style fails if the successor fails at least once during its execution. If we
assume that the service is expected to execute n times during a time unit, then the
reliability Rloo of a loop style is:

Rloo = (Rsuc)
n (4.4.22)

where Rsuc is the looped successor’s reliability.
• Choice: each service successor is chosen to execute with a probability. The service

calling other services is the predecessor and the called services are successors. The
choice style fails if the chosen successor fails. Assuming that the ith service out of
n successors is chosen with a probability of wi and ∑

n
i=1 wi = 1 where n is the total

number of successors, the reliability of a choice style Rcho is:

Rcho =
n

∑
i=1

wiRsuci (4.4.23)

where Rsuci is the reliability of the ith successor

As introduced above, sequence and choice styles are enough to model function dependen-
cies because other styles are either modeled in lower layers of LDGs or reduced to the two
styles. The two kinds of function dependencies defined in Section 4.2: sequence function
dependency and choice function dependency correspond to the sequence and choice style,
respectively.

Chapter 4 A Reliability Assessment Framework for Cloud Applications 40

Based on the reliability assessment method of the choice and sequence style, the reli-
ability of a style consisting of several styles can be calculated by reducing the style into
a sequence style. Similar to the failure probability composition proposed by Zheng and
Lyu [13], the reduction is achieved by replacing every style with a virtual service with the
same reliability. And according to (4.4.21), the reliability of the original style can be ex-
pressed as R = ∏ri, where ri is the inner reliability of the ith service successor in the final
sequence style. An example of the reduction is shown in Figure 4.9.

Figure 4.9: An example of style reduction.

In the first step, the choice style formed by se5 and se6 is reduced and replaced by a
virtual service se9 and the sequence style of se7 and se8 is replaced by se10. Afterwards, the
sequence style of se3, se4, and se9 is replaced by se11. In the last step, the choice style of
se10 and se11 is replaced by se12. Let the inner reliability of sei be ri (i = 1,2, ...,12) and
suppose r1 to r8 are known. According to (4.4.21) and (4.4.23), we have:

r9 = w3r5 +w4r6

r10 = r7r8

r11 = r3r4r9

r12 = w1r11 +w2r10

41 4.4 Reliability Analyzer

And the reliability of the style Rsty is:

Rsty = r1r2r12 (4.4.24)

If services are independent from each other, i.e., irrespective of PSs or deep dependencies,
the service’s reliability R′se can be calculated according to the style of its successors:

R′se = r′seRsty (4.4.25)

where r′se is the inner reliability of the service without regard to PSs and Rsty is the reliability
of the style formed by the service successors of the service. For example, suppose a service
se1 depends on two services se2 and se3 which form a choice style, as shown in Figure 4.10.

Figure 4.10: An example of choice style.

Services se1, se2, and se3 have respectively one, two, and three SVs and are respectively
configured as a 1-out-of-1 system, a 1-out-of-2 system, and a 2-out-of-3 system. Let the
inner reliability of SVs be rsv and weights of the two choice function dependencies be
respectively w1 and w2, then, r′se1

, r′se2
, and r′se3

can be assessed by:

r′se1
= rsv (4.4.26)

r′se2
=

2

∑
i=1

Ci
2(rsv)

i(1− rsv)
2−i (4.4.27)

r′se3
=

3

∑
i=2

Ci
3(rsv)

i(1− rsv)
3−i (4.4.28)

and according to (4.4.23), the reliability of the choice style formed by se2 and se3, Rsty, is:

Rsty = w1r′se2
+w2r′se3

(4.4.29)

Chapter 4 A Reliability Assessment Framework for Cloud Applications 42

then, according to (4.4.25), the reliability of se1, R′se1
, is:

R′se1
= r′se1

(w1r′se2
+w2r′se3

) (4.4.30)

However, taking the whole LDG including PSs into consideration, we can not substitute
the service inner reliability obtained in Section 4.4.3 into (4.4.25) to calculate the service
reliability, since deep dependencies may exist between SVs of different services while only
deep dependencies among SVs of the same service are considered in Section 4.4.3.

In addition, whenever a service succeeds, there must be a non-empty set of successful
PSs, i.e., all PSs in a non-empty subset of the set of PSs in the sLDG (Section 4.2) of the
service succeed, but not vice versa, i.e., when all PSs in a non-empty subset of the set of
PSs in the sLDG of the service succeed, the service does not necessarily succeed even if
all SVs hosted by the subset of PSs succeed. The services in Figure 4.10 can serve as an
example. Suppose the sLDG of se1, which includes all types of components, is shown in
Figure 4.11. Then, the set of PSs in the sLDG is {ps1, ps2, ps3}. We choose one of its
non-empty subsets, e.g., {ps1}, whose sLDG is marked in bold in Figure 4.11, and assume
that all SVs hosted by the PSs in the subset succeed. Then, we can see in Figure 4.11 that,
only one SV of se3 succeeds while se3 requires at least two SVs to succeed and no SV of
se2 succeeds. Hence, both se2 and se3 fail and consequently, se1 fails.

Figure 4.11: An example sLDG of service se1.

Therefore, we separate all scenarios where a service possibly succeeds according to the
subsets of the set of PSs in the service’s sLDG. In each scenario, the service succeeds
with a certain probability when the corresponding subset of PSs are considered successful.
The probability can be 0, as the above example shows. Then, the service reliability can be

43 4.4 Reliability Analyzer

represented as the sum of all probabilities, i.e.:

Rse =
n

∑
i=1

PpsiR
′
sei

(4.4.31)

where n is the number of non-empty subsets of the set of PSs included in the service’s
sLDG, Ppsi is the probability that all PSs in the ith subset succeed, and R′sei

is the probability
that sei succeeds under the condition that all PSs in the ith subset succeed. Since PSs are
independent with each other, Ppsi can be calculated as the product of the reliability of PSs in
the ith subset and the “unreliability”, i.e., 1− reliability, of the remaining PSs in the set of
PSs. And R′sei

can be calculated by (4.4.25) where r′se is calculated by adapting the service
inner reliability assessment process proposed in Section 4.4.3.

With the sLDG in Figure 4.11 as an example, the reliability assessment process for a
service is as follows:

1. get the sLDG G(se) of the service, e.g., the sLDG of se1 in Figure 4.11;

2. if only one service is included in G(se), use the service inner reliability assessment
method proposed in Section 4.4.3 to calculate the service reliability because the reli-
ability of a service equals its inner reliability when the service has no service succes-
sors, and finish. Otherwise, perform the following steps;

3. get the set U of PSs included in G(se). In the example, U = {ps1, ps2, ps3};

4. get all the non-empty subsets of U . Suppose totally b PSs are in U . As a set with n
elements has 2n subsets, there are totally 2b−1 non-empty subsets of U ;

5. for each non-empty subset Uh, 1≤ h≤ 2b−1, perform the following steps:

a) calculate the probability Ppsh that PSs in Uh succeed while all other PSs in U
fail, with:

Ppsh = ∏
ps∈Uh

Rps ∏
ps∈U/Uh

(1−Rps) (4.4.32)

where Rps is the reliability of PSs;

b) get the sLDG of Uh, G(Uh), from G(se), e.g., G({ps1}) is the bold part in Figure
4.11;

c) calculate the probability R′seh
that the service succeeds when only PSs in Uh

succeed by (4.4.25):
R′seh

= r′hRstyh (4.4.33)

where r′h is the inner reliability of the service when PSs in Uh succeed and
Rstyh is the reliability of the style in G(Uh). Rstyh can be obtained by the style
reduction introduced before. For example, suppose U1 = {ps1}, then Rsty1 =

Chapter 4 A Reliability Assessment Framework for Cloud Applications 44

w1r′se2
+ w2r′se3

= 0, where r′se2
= 0 because ps2 and ps3 are not in Uh, and

r′se3
= 0 because at most one SV of se3 possibly succeed while se3 needs at

least two SVs to succeed. For each service in G(Uh), the inner reliability can
be calculated by adapting the inner reliability assessment process introduced
in Section 4.4.3, specifically, adapting (4.4.20). The adapted part here is the
calculation of Pu jl in (4.4.18), because PSs in G(Uh) are assumed successful,
i.e., with inner reliability of 1. Suppose P′u jl

is the probability that s jl SVs on the
lth PS included in Uh succeed in the jth scenario that i SVs succeed. Then, the
inner reliability r′se f

of the f th service, se f , in G(Uh), is:

r′se f
=

n′f

∑
i=k f

di

∑
j=1

mh

∏
l=1

P′u jl
(4.4.34)

where k f is the least number of required successful SVs and n′f is the total
number of SVs of se f in G(Uh), mh is the number of PSs in Uh, di is the number
of scenarios where i SVs of se f hosted by the mh PSs succeed. Provided the
inner reliability of PSs in Uh is 1, (4.4.18) is adapted, by replacing rps with 1,
into:

P′u jl
=

(1− rsv)
nhl , if s jl = 0

(rsv)
s jl (1− rsv)

nhl−s jl , if s jl > 0
(4.4.35)

where rsv is the inner reliability of SVs, nhl is total the number of SVs hosted
by the lth PS in Uh and s jl is the number of succeeded SVs on the lth PS in Uh.
The same as in Section 4.4.3, s jl (l = 1,2, ...,mh) is obtained via the generalized
algorithm for restricted weak composition generation proposed by Page [79],
but with different inputs. For example, for the service se3 in G({ps1}) shown
in Figure 4.11, the integers are 2 and 3 as its SVs are configured as a 2-out-of-3
system, the number of parts is 1 as there is only one PS, and the restricted set is
{0,1} as there is only one SV of service se3 on the PS; and

6. calculate the service reliability by (4.4.31):

Rse =
2b−1

∑
h=1

PpshR′seh
(4.4.36)

In the following, we go through the whole process for service se1 with the sLDG shown
in Figure 4.11 to describe how to assess the reliability of a service. Suppose se1, se2, and
se3 are respectively configured as a 1-out-of-1 system, a 1-out-of-2 system, and a 2-out-of-3
system, the inner reliability of PSs and SVs are rps = 0.9 and rsv = 0.8, and w1 = w2 = 0.5.

1. The sLDG G(se1) of se1 is shown in Figure 4.11;

45 4.4 Reliability Analyzer

2. Three services se1, se2, and se3 are included in G(se1), continue;

3. We can get the set of PSs from Figure 4.11, U = {ps1, ps2, ps3};

4. U contains three PSs, correspondingly, the 23− 1 non-empty subsets of U are U1 =
{ps1}, U2 = {ps2}, U3 = {ps3}, U4 = {ps1, ps2}, U5 = {ps1, ps3}, U6 = {ps2, ps3},
and U7 = {ps1, ps2, ps3};

5. For the above non-empty subsets, we employ U4 = {ps1, ps2} as an example to go
through the steps 5a to 5c.

a) According to (4.4.32):

Pps4 = ∏
ps∈U4

Rps ∏
ps∈U/Uh

(1−Rps)

=rps1rps2(1− rps3)

=0.9∗0.9∗ (1−0.9)

=0.081

b) The G(U4) obtained from G(se1) is shown in Figure 4.12 as the bold part.

Figure 4.12: The sLDG of U4.

c) For U4, we have:
R′se4

= r′4Rsty4 (4.4.37)

where r′4 and Rsty4 are calculated respectively by (4.4.34) and the style reduction.

At first, we calculate r′se2
, r′se3

, and r′4, i.e., r′se1
, by (4.4.34). As shown in Figure

4.12, the number of SVs for se1, se2, and se3 are respectively one, one, and

Chapter 4 A Reliability Assessment Framework for Cloud Applications 46

two, and they are respectively configured as a 1-out-of-1 system, a 1-out-of-2
system, and a 2-out-of-3 system. So, the inputs and outputs of the generalized
algorithm for restricted weak composition generation (Section 4.4.3) for above
services are as shown in Table 4.2.

Table 4.2: Inputs and outputs of the generalized algorithm for restricted weak composition
generation for services in G(U4).

se1 se2 se3

inputs

integer 1 1 2

number of parts 1 1 2

restricted sets {0,1} {0,1} {0,1}, {0,1}

output weak compositions (1) (1) (1,1)

The column for se3 shows that se3 has one weak composition (1,1) which cor-
responds to the scenario that one SV on each of the two PSs succeeds, so, the
number of scenarios is d2 = 1, the number of all SVs on each PS is respectively
n41 = 1 and n42 = 1, and the number of successful SVs on each PS is respec-
tively s11 = 1 and s12 = 1. Besides, the number of PSs is m4 = 2. Therefore,
according to (4.4.35), P′u11

and P′u12
for se2 are:

P′u11
= P′u12

=(rsv)
s11(1− rsv)

n41−s11

=rsv = 0.8

Since the SVs of the service se3 are configured as a 2-out-of-3 system, i.e.,
k3 = 2, and there are totally two SVs of se3 included in G(U4), i.e., n′3 = 2,
according to (4.4.34), we have:

r′se3
=

n′3

∑
i=k3

d2

∑
j=1

m4

∏
l=1

P′u1l

=
2

∑
i=2

1

∑
j=1

2

∏
l=1

P′u1l

=P′u11
P′u12

=0.8∗0.8 = 0.64

47 4.4 Reliability Analyzer

Similarly, for se1, we have d1 = 1 and:

P′u11
=rsv

r′4 =r′se1

=
1

∑
i=1

d1

∑
j=1

1

∏
l=1

P′u1l

=rsv = 0.8

And for se2, we have d1 = 1, and:

P′u11
=rsv

r′se2
=

1

∑
i=1

d1

∑
j=1

1

∏
l=1

P′u1l

=rsv = 0.8

Afterwards, we calculate Rsty4 by reducing the style in Figure 4.12. According
to the proposed style reduction process, this style can be reduced as shown in
Figure 4.13, where the choice style formed by se2 and se3 is replaced by a virtual
service se4.

Figure 4.13: The reduction of the style in Figure 4.12.

Therefore, Rsty4 is calculated by:

Rsty4 =rse4

=w1r′se2
+w2r′se3

=0.5∗0.64+0.5∗0.8

=0.72

Chapter 4 A Reliability Assessment Framework for Cloud Applications 48

Finally, we calculate R′se4
by (4.4.33):

R′se4
=r′4Rsty4

=0.8∗0.72

=0.576

6. By repeating the steps 5a to 5c for the other subsets, we get Pps1 = 0.009, Pps2 = 0.009,
Pps3 = 0.009, Pps5 = 0.081, Pps6 = 0.081, and Pps7 = 0.729, and R′se1

= 0, R′se2
= 0,

R′se3
= 0, R′se5

= 0.576, R′se6
= 0, and R′se7

= 0.7424. According to (4.4.36), we can
get Rse1 by:

Rse1 =
7

∑
h=1

PpshR′seh

=0.6345216

4.4.5 Application Reliability

Assuming the application has only one service that has no predecessors, given the inner re-
liability of each component and the deployment structure, the application reliability equals
the reliability of the service without predecessors and can be assessed by the process pro-
posed in Section 4.4.4.

Chapter5
Implementation

To verify our framework, we implemented a prototype of the framework proposed in Chap-
ter 4, including the three basic components. Furthermore, we implemented two more com-
ponents which are necessary for testing applications. The prototype was implemented in
Java for web-based applications deployed with Cloudify [32] on OpenStack [29] clouds.

5.1 Implementation of Dependency Analyzer

The dependency analyzer was implemented as an LDG generator to create the LDG of the
application.

To obtain information of components and dependencies, the dependency analyzer calls
three analyzers one after another, which are a Function Dependency Analyzer (FDA) and
two Deployment Dependency Analyzers (DDAs). The process of generating the LDG of
an application is shown in Figure 5.1. In the first step, the dependency analyzer creates an
empty DAG as the LDG and calls the FDA to add service vertices and function dependency
edges to the LDG. Afterwards, the dependency analyzer calls the first DDA to add SI
vertices, VM vertices, edges of deployment dependencies between services and SIs and
between SIs and VMs to the LDG. In the last step, the dependency analyzer calls the
second DDA to add the PS vertices and edges of deployment dependencies between VMs
and PSs to the LDG.

Figure 5.1: The process of generating an LDG.

Chapter 5 Implementation 50

Figure 5.2: The overview of the implementation of the dependency analyzer.

An overview of the implementation architecture of the dependency analyzer is shown in
Figure 5.2.

The FDA analyzes services and function dependencies between services according to
the user defined application descriptor file [82]. The application descriptor file is written
in Groovy [83] and used by Cloudify 2.6 and 2.7 for describing applications. The appli-
cation descriptor file contains the name of the application and describes each service with
two properties: a name and a dependsOn representing its interdependencies with other ser-
vices. However, YAML-based blueprints instead of Groovy-based descriptor files are used
by Cloudify to describe applications since version 3.0. Compared to Groovy-based files,
it’s not so intuitive or flexible for users to assign weights in YAML-based blueprints. So,
we still use Groovy-based files for describing the structure of applications in our imple-
mentation and add two more properties, redundancy and weight, to service properties. The
redundancy property represents the configuration of a service’s SIs and the weight property
indicates the weights of function dependencies between the services and its successors. The
name property and the redundancy property are requisite and the dependsOn property and
the weight property are optional since a service possibly has no successors. The four service
properties are utilized by the function dependency analyzer to create vertices of services and
edges of function dependencies. An example of the structure of an application and the cor-
responding descriptor file are shown in Figure 5.3. As Figure 5.3(a) shows, the application
consists of three services: se1, se2 and se3, who have respectively two, three and two SVs.
The descriptor file of the application is shown in Figure 5.3(b), where we can see that, the
SVs of the services are respectively configured as a 1-out-of-2 system, a 1-out-of-2 system,
and a 2-out-of-3 system. Based on the descriptor file, for example, the created vertex of se1
is v(service,se1,1,2) and the created edge between se1 and se2 is e(se1,se2, f unction,0.3).

The first DDA collects information of vertices and edges from Cloudify via the REST

51 5.1 Implementation of Dependency Analyzer

(a) The structure of App

application {
name="App"
service {

name = "se1"
dependsOn = ["se2", "se3"]
weight = ["0.3", "0.7"]
redundancy = ["1", "2"]

}
service {

name = "se2"
redundancy = ["1", "2"]

}
service {

name = "se3"
redundancy = ["2", "3"]

}
}

(b) The groovy-based descriptor file of App

Figure 5.3: An application and its descriptor file.

API, as shown in Figure 5.2. In Cloudify 3.1, an application is described by an YAML-
based blueprint, which illustrates an application as a set of nodes and their relationships.
Nodes are divided into several types, e.g., services, VMs, floating Internet Protocols (IPs),
etc. And relationships are used to describe dependencies between nodes and determine the
sequence of the creation of nodes when deploying an application. Nodes and relationships
are instantiated into concrete instances during the deployment of the application. Based
on the blueprint, an application can be deployed with a unique deployment ID, which is
essential for identifying the application when collecting components used by the applica-
tion. Among the REST APIs provided by Cloudify, we utilize the node instances API to get
names of service, SIs, and VMs, as well as the deployment dependences between them. The
analyzing process is shown in Algorithm 5.1. The algorithm takes the LDG updated by the
FDA, the deployment IDentifier (ID) of the application, the list of services included in the
LDG, and the IP and port of the Cloudify manager as inputs and outputs the updated LDG.
In the first step, a node instances client is initialized by the IP and the port of the Cloudify
manager. Afterwards, the DDA gets names of SIs of services in the LDG. Then, for each SI
of a service, the DDA gets the corresponding VM. And, the DDA adds the vertices of SIs
and VMs, and edges between services and their SIs as well as between SIs and their hosting
VMs, to the LDG. In the last step, the updated LDG is returned to the dependency analyzer.

Based on the application deployment information and the VMs obtained by the first DDA,
the second DDA updates the LDG with the details of PS vertices and the dependencies
between VMs and PSs derived via the OpenStack REST API, as shown in Figure 5.2. The
OpenStack REST API is utilized with the help of Apache jclouds [84]. For each VM, the
name of its hosting PS is obtained according to its name.

Chapter 5 Implementation 52

Algorithm 5.1: Algorithm for analyzing deployment dependencies between services,
SIs, and VMs
Input: the LDG ldg, deployment ID of the application depId, list of services seList,

Cloudify manager IP ip and port port
Output: The updated LDG
// initialize the node instances client by ip and port

1 nic← new NodeInstancesClient(ip, port)
2 foreach se in seList do

// get the list of service instances
3 siList← nic.getNodeInstances(se,depId)
4 foreach si in siList do

// get the successor VM
5 vm← nic.getV M(si)
6 ldg.add(new Vertex(SI,si))
7 ldg.add(new Vertex(V M,vm))
8 ldg.add(new Edge(si,vm))
9 ldg.add(new Edge(se,si))

10 end
11 end
12 return ldg

5.2 Implementation of Monitor

As described in Section 4.3, the monitor is responsible for monitoring PSs, VMs, and SIs
and logging their states into log files every time unit. Figure 5.4 shows the implementation
of the monitor, where states of PSs including the hypervisor state and the heartbeat are
obtained via Ganglia, states of VMs are obtained via OpenStack REST API, and states of
SIs are obtained via SSH commands.

To obtain the component states, the monitor needs metrics to tell the difference between
success and failure states. According to the failures defined in Section 4.3, the monitoring
methods and measures are implemented as follows.

PSs have two kinds of failures effects: unreachable and unable to host VMs. Based on
this, PSs are monitored with two metrics: heartbeat and hypervisor state. Both metrics are
obtained every time unit from Ganglia via an API [85]. Heartbeats are sent by Ganglia
daemons on PSs to the Ganglia meta daemon in a time interval whose default value is 20
seconds. If no heartbeat from a PS is received in a multiple of the time interval, the PS is
considered unreachable. The multiple of the time interval is the metric or threshold for the
heartbeat. We use twice time intervals, i.e., 40 seconds, as the threshold, since the cloud
system utilized by our implementation is small and not very complicated. For a specific

53 5.2 Implementation of Monitor

Figure 5.4: Implementation of the Monitor.

cloud platform, the threshold can be customized according to certain requirements. As
introduced by Massie et al. [86], using four time intervals as the threshold to determine
whether a PS is reachable can report the crashes in time without too many false positives.
The monitor gets the time after the last heartbeat of each PS and compares it with the
threshold. If the time is larger than the threshold, the PS is considered unreachable. The
hypervisor in our implementation is KVM which is only running on compute nodes of the
OpenStack cloud. The state of KVM is collected from each PS included in the LDG by a
bash script and submitted to Ganglia in a time interval. If KVM is running, the hypervisor
is considered alive and the PS is considered able to host VMs. When a PS is reachable and
the hypervisor is running, it’s in the success state, otherwise, it’s in the failure state.

For VMs, possible failure effects are unreachable and unable to host SIs, based on which,
VMs are determined to be failed or not by their states in OpenStack. The VM state can be
one of building, active, stopped, resized, deleted, error, suspended, paused, etc. A VM with
all above states except active is seen as failed. VM states are obtained with Apache jclouds
via the REST APIs provided by OpenStack.

For SIs, the possible failure effect is that the corresponding process is inactive, based on
which, SIs are monitored according to the process state. If the process is running and the
running state can be obtained, i.e., the OS is working, the SI is in a success state, otherwise,
the SI is failed. The SI state is obtained via SSH commands with the key file provided by
OpenStack for the VM hosting the SI. States of SIs of the same service are logged in the
same log file.

Chapter 5 Implementation 54

5.3 Implementation of Fault Injector

The fault injector is used in our case studies for simulating component failures at the be-
ginning of every time unit before the start of the monitor. It is responsible for injecting
failures to and recovering PSs, VMs and SIs according to the failure effects of components
and the implementation of the monitor. The probability of injecting failures to a component
is determined by the inner reliability of the component and all injections and recoveries are
logged in log files. For a component, the fault injection means to set the component into the
failure state if the component is determined to be failed in a time unit, otherwise, recover it
from the failure state if necessary. Afterwards, the fault injector informs the monitor about
the state of the component. The fault injector implementation for each kind of components
is introduced below.

The failure effect of a PS is unreachable or unable to host VMs. Based on the fail-stop
assumption in Section 4.4.1, the failure state has only one consequence that both the PS and
VMs on it crash. An intuitive way to inject failures to a PS is to directly suspend it by remote
commands which requires root privileges and the support of Wake-on-LANs (WoLs) for
recovering physical machines. However, it is problematic when other users are also using
the cloud, which is a typical usage scenario of IaaS clouds. As a result, we implement the
fault injector in a simulative way which crashes PS by suspending VMs that are hosted by
the PS and also used by the application. Afterwards, the fault injector informs the monitor to
mark the PS as failed. The suspension and recovery of VMs, corresponding to the suspend
and resume operation in the OpenStack cloud, are implemented via Apache jclouds.

VMs are monitored by their states in the OpenStack cloud introduced in Section 5.2. VMs
are hosted by PSs, so, the failure injection and recovery of a VM work only if the hosting
PS is in the success state. The failure injection and recovery of VMs are implemented in the
same way as above.

The only failure effect of an SI is the inactiveness of its process. Similar to VMs, the
failure injection and recovery of an SI also work only if the hosting VM is in the success
state. The failure injection and recovery of an SI are corresponding to the kill and restart
operation of the process of the SI, which are both implemented via SSH remote commands
with the key file provided by OpenStack for the hosting VM.

5.4 Implementation of Tester

The tester is designed to test the application in each time unit after the fault injection. It
first generates requests, and then sends the requests to the application, and at last, records
the responses from the application. The tester in our framework is implemented only for
web-based applications, specifically, websites.

Requests in our implementation are generated and sent to the application by Selenium
(version 2.44) [87]. Selenium is an open source testing framework for web applications.

55 5.4 Implementation of Tester

It automates the testing of web applications against different web browsers. Selenium pro-
vides an Integrated Development Environment (IDE) for Firefox [88] to record and replay
user actions. The recorded actions can also be exported as test cases. A test case in the Se-
lenium IDE involves several steps which are organized as an eXtensible HyperText Markup
Language (XHTML) [89] table of three columns and several rows, which is written in a
HyperText Markup Language (HTML) file. The Selenium IDE is only for Firefox, so, for
generality, we use recorded session-based usage data of the application by AutoQUEST [90]
rather than the Selenium IDE to generate test cases in the same format with test cases for
the Selenium IDE. To translate sessions to Selenium test cases, we implement a command
as a HTML plug-in of AutoQUEST. An example of the generated Selenium test cases is
shown in Table 5.1. The first row shows the test case name and the following rows describe
the steps/events of the test case including the command, target, and value from left to right.
The command represents the event type, such as click means clicking a link in a website.
Every test case starts from an open command to ensure that every test case can be executed
alone. The open command opens a web page in the browser. The target represents a partial
Uniform Resource Locator (URL) of the web page to be opened or the location of the target
of the event which is represented by means of XML Path Language (XPath) [91]. For ex-
ample, the target of the command open in Table 5.1 is "/lectures/software-testing-ws2012"
which is the partial URL of the website without the IP address or port, both of which are in
the head of the HTML file. And the location of the target of the command type in Table 5.1
is a part of the XPath of the target, ”//div/input[@id=’edit-search-block-form–2’]”, which
means that a user inputs contents into a search box. The value means the content of the
event, such as the value of the command type means that the user inputs "software testing"
into the search box.

Table 5.1: An example test case of Selenium.

session-690
open /lectures/software-testing-ws2012
waitForElementPresent //div/input[@id=’edit-search-block-form–2’]
click //div/input[@id=’edit-search-block-form–2’]
type //div/input[@id=’edit-search-block-form–2’] software testing
waitForElementPresent //div[@id=’edit-actions’]/input[@id=’edit-submit’]
click //div[@id=’edit-actions’]/input[@id=’edit-submit’]

A request in our implementation can be an event or a test case for the Selenium IDE
including several events. Generated test cases are sent by Selenium to the website according
to its URL and the responses are then logged into files.

Chapter 5 Implementation 56

5.5 Implementation of Reliability Analyzer

The reliability analyzer is designed to calculate the inner reliability and the reliability of
components and applications according to the monitoring log files.

The monitoring log files of PSs, VMs, and SIs record the inner failures of components
as well as the failures that are caused by the component’s successors. For instance, the
monitoring log file of a VM records the failures of the VM itself and also the failures of the
VM that caused by the PS hosting it. To tackle this problem, we extract the inner failures of
a VM or SI by comparing the failures of the component and its direct successor in each time
unit. For example, suppose a failure of a VM is recorded in a time unit. If the hosting PS of
the VM does not fail in this time unit, this failure is an inner failure of the VM, otherwise,
this failure is not an inner failure of the VM. After the extraction, the inner reliability of
PSs, VMs, and SIs is calculated respectively by:

r = 1−
N f

NT
(5.5.1)

where N f and NT are the number of the inner failures of the component and the number of
entries of the monitoring log file of the component, which is also the number of time units
for testing.

Afterwards, the reliability of services and application is calculated according to the inner
reliability of PSs, VMs, and SIs by the method proposed in Section 4.4, where the general-
ized algorithm for restricted weak composition generation is implemented in Java according
to the source code provided by Page [79]. All extracted failure data and assessed (inner)
reliability are logged into report files (an example is shown in Appendix A.2.6).

Chapter6
Case Studies

We conducted experiments to validate our framework and compare DEBRA with the exist-
ing representative methods. First, we introduce the basic setup of the experiments, including
hypotheses, metrics, parameters, and the comparison process. Secondly, we describe the
employed cloud platform, application and the deployment structures of the application. Af-
terwards, we show how we use our framework to test the application and use both DEBRA
and other methods to evaluate the reliability of the application, and how we compare the
results of all methods. At last, we discuss the results.

6.1 Setup

In this section, we introduce the setup of the case studies.

6.1.1 Hypotheses and Metrics

To verify our framework, we are going to test the following hypotheses:

• H1: The framework can assess the reliability of services and the application.
• H2: DEBRA can assess the application reliability when deployment structures in-

clude deep dependencies or not.
• H3: DEBRA gets more accurate results than existing methods.
• H4: DEBRA gets more precise results than existing methods with a small size of

data.

For the hypothesis H1, we will accept it if quantitative reliability results of services and
the application can be obtained by our framework. As to the hypothesis H2, we design or
adapt several different deployment structures considering different types of redundancies
and deep dependencies. Then, we check if DEBRA can get the reliability of the application
deployed with these deployments. To test H3, at first, we choose five existing reliability as-
sessment methods from related works and use them to assess the application reliability with
different deployments. Afterwards, we test if the results of existing methods for different

Chapter 6 Case Studies 58

deployments are significantly different from DEBRA. If a method is significantly different
from DEBRA, we compare their accuracies, otherwise, we test H4 to compare their preci-
sions. The accuracy is measured by the Mean Absolute Error (MAE). For the hypothesis
H4, if a method is not significantly different from DEBRA, we use the assessment results
of the methods for a number of rounds to compare their precisions, otherwise, we don’t
test it. The precision is evaluated by the Standard Deviation (SD) (seva). The smaller the
MAE or the seva is, the better the accuracy or the precision is. MAE and seva are calculated,
respectively, by:

MAE =
1
n

n

∑
i=1
|Revai−Rre f | (6.1.1)

seva =

√
1

n−1

n

∑
i=1

(Revai−Reva)2 (6.1.2)

with:

Reva =
1
n

n

∑
i=1

Revai (6.1.3)

where n is the number of test rounds, Revai is the ith round’s evaluated application reliability
and Reva is the mean of all rounds’ results; Rre f is the baseline as the referential reliability
of the application obtained by simulation. Details about Rre f will be introduced in Section
6.3.1.

6.1.2 Parameters and Comparison Process

We assume that the inner failure rate of all components are known and components of the
same type have an identical inner failure rate. According to a Google report [92], a new
cluster of 1,800 PSs can suffer from as many as 1,000 failures in the first year, which means
an Annualized Failure Rate (AFR) of about 55.56%. And Vishwanath et al. observed an
AFR of around 8% for data center machines [47]. As discussed in related works [47, 93],
the infant mortality phase of PSs usually lasts for about one year, afterwards, PSs are in
their useful life with lower and relatively constant failure rates which corresponds to an
exponential reliability model. Therefore, it’s reasonable to assume an AFR between 8% and
55.56%, corresponding to a daily failure rate between around 0.0002 and 0.0022. And we
assume that the daily (inner) failure rate of a PS is 0.001. The inner failure rate of software
components can be significantly different in practice [50] because of different developers
or companies, so, we assume that all VMs and SIs have the same daily inner failure rate of
0.03 which can be easily adjusted in our case studies.

Based on the numeric parameters, assessment results of different methods can be com-
pared quantitatively. The comparison process involves three steps, which are shown in

59 6.1 Setup

Figure 6.1: The comparison process.

Figure 6.1:

1. In the first step, we design several deployment structures of an application and, for
each deployment, we obtain the baseline for comparison by the Monte Carlo Sim-
ulation (MCS) with certain stop rules which can be adjusted according to accuracy
requirements.

2. In the second step, we deploy the application to a real-world cloud platform with dif-
ferent structures, test the application with each deployment and assess the reliability
of the application. The assessment consists of a number of rounds, each of which is
divided into several time units which corresponds to one day in practice. A time unit
starts with the determination of states of PSs, VMs, and SIs. Each component must
be in only one state during a time unit, which is either success or failure, as intro-
duced in Section 4.4.1. The probability of the success state of a component equals its
inner reliability. After the determination, the time unit continues with the change of
the states of components. If a component is determined to be successful according to
its inner reliability, it will stay in the success state, or be recovered from the failure
state to the success state. Otherwise, if a component is decided to be failed, it will
keep the failure state or be injected with a failure if it is in the success state. When
a component is in its failure state, all its predecessors (except service components)
will also be injected with failures. After the change of states, the time unit proceeds
with testing the application with usage-based requests. On one hand, the tester sends
ten requests to the application (for eliminating random errors) and logs the responses.
On the other hand, the monitor logs the states of all components in log files. When
all time units finish, the reliability of services and the application for this round is
calculated by the reliability analyzer and other methods. When all rounds finish, the
evaluated reliability is calculated by formula (6.1.3).

3. In the third step, based on baselines and evaluated reliability of each deployment, we
compare different methods according to metrics proposed in Section 6.1.1.

Chapter 6 Case Studies 60

6.1.3 Existing Methods for Comparison

Most of the existing methods for assessing cloud service/application reliability use only par-
tial information of the whole deployment stack, such as only the application failures or PS
failures. To the best of our knowledge, there is only one method (HPCRA [10]) that uses the
whole deployment stack including services, VMs, PSs, and their relationships to evaluate
the cloud application reliability (denoted by Rapp). Based on the classification in Chapter 3
and layers of components in the LDG (from top to bottom) a method considers, we choose
and adapt the following representative methods from existing methods to compare them
with DEBRA:

• LOBRA, is a log-based reliability assessment method proposed by Banerjee et al.
[71, 72]. LOBRA assesses the application reliability based on the application failure
rate without regard to its deployment structure or components failure rates. LOBRA
is proposed to assess the reliability of SaaS applications using their access logs, and
the application reliability is calculated by:

Rapp = 1− fe

ne
(6.1.4)

where fe and ne are the number of failed and total log entries, respectively. In our
framework, we use the log files generated by the monitor as access log files to as-
sess every component’s reliability, at the same time, the testing results (application
failures) are also logged. As a result, LOBRA can directly be used to assess the
application reliability using the testing log files from our framework.

• SEBRA, is a service-based reliability assessment method adapted based on the
method proposed by Wang et al. [20]. SEBRA evaluates the application reliability
based on service component failure rates and the application structure irrespective
of VMs or PSs. Wang et al. [20] evaluated the reliability of an N-redundant service
(Rse) and a composite service (application) consisting of a series of K services (Rapp),
respectively, by:

Rse = 1−
N

∏
i=1

(1−Rsii) (6.1.5)

Rapp =
K

∏
i=1

e−wiλi (6.1.6)

where λi is the failure rate of the ith service and wi is the probability that the ith
service is required by the application. If wi = 1 for every i = 0,1, ...,N − 1, then
(6.1.6) turns into Rapp = ∏

K
i=1 Rsei . With our framework, the reliability of services

61 6.1 Setup

can be evaluated by formula (5.5.1) from monitoring data, and then can be used by
SEBRA in (6.1.5) and use (6.1.6) to calculate the application reliability.

• HCMRA, is a hierarchical correlation model proposed by Qiu et al. [12]. HCMRA
assesses the cloud service reliability based on the reliability of VMs and PSs. Qiu
et al. define the service reliability as the probability that at least one VM used by
the service is available. When a service uses K (K ≥ 1) PSs, each of which hosts
Nm (m = 1, ...,K) VMs, the states of every PS and its hosted VMs are modeled by a
Markov process, using the VMs inner failure rates (λvm) and the PS inner failure rate
(λps) as well as their repair rates. They assume that VMs on the same PS have the
same inner failure rate and repair rate. In this thesis, as introduced in Section 6.1.2,
failed components will be repaired in the next time unit if it’s determined successful.
Therefore, the repair rates of VMs and the PS can be represented by 1− λvm and
1−λps, respectively, and the service reliability is evaluated by:

Rse = 1−
K

∏
m=1

pm(0) (6.1.7)

with:

pm(0) = (
λvm

1−λvm
)NmπNm +(1+

λvm

1−λvm
)Nm

λps

1−λps
πNm (6.1.8)

πNm = [
Nm

∑
n=0

Cn
Nm
(

λvm

1−λvm
)n(1+

λps

1−λps
)]−1 (6.1.9)

where pm(0) is the probability that no VM on the mth PS is available, and πNm is the
steady probability that all Nm VMs on the mth PS are available. For example, the
reliability of a service using two VMs on one PS will be 1− [λ 2

vm(1− λps)+ λps)]
according to (6.1.7), (6.1.8), and (6.1.9), with K = 1 and N1 = 2. HCMRA was
designed only for the cloud service reliability rather than the application reliability
(i.e., no application structure was considered). For comparison, we use the service
reliability obtained by HCMRA as the input to DEBRA for calculating the application
reliability.

• ARMRA, is an analytical reliability model for CCSs proposed by Faragardi et al. [11].
ARMRA evaluates cloud service reliability based on only PSs failure rates. Faragardi
et al. assume that services are perfect, i.e., fully reliable. The cloud service reliability
is calculated as the product of the reliability of every PS and the physical network
link included in the system. Besides, the PS failure rate is the sum of failure rates of
the memory, hard disks, the RAID controller and processors. As assumed in Section
4.3, we include physical network failures in PS failures, and the PS failure rate is
considered given. Thus, the application reliability can be calculated with ARMRA

Chapter 6 Case Studies 62

by:

Rapp =
n

∏
i=1

Rpsi (6.1.10)

where Rpsi is the reliability of the ith PS and n is the number of PSs used by the
application.

• HPCRA, is adapted according to the assumptions in Section 4.4 based on a high per-
formance computing application reliability assessment method proposed by Thanako-
rnworakij et al. [10]. HPCRA assesses the cloud application reliability based on all
components’ reliability while it focuses on the correlation of failures among soft-
ware and/or hardware components and does not consider redundancies. However,
correlated failures of PSs are rare and only obvious due to network failures [48], and
correlated failures of services without load sharing are not as significant for normal
cloud applications as for high performance applications. As a result, HPCRA can be
used to calculate the application reliability by:

Rapp =
n

∏
i=1

ri (6.1.11)

which means that the application reliability is the product of the inner reliability (ri)
of all n components. As mentioned by Thanakornworakij et al. [10], their method
was not for applications with redundancies. But we try to utilize HPCRA for all
scenarios for comparison, as redundancy is a normal fault tolerance method for cloud
applications.

6.2 Platform and Application

The cloud platform for deploying, managing, and testing applications is a Cloudify (Version
3.1) PaaS platform on top of an OpenStack (Juno) IaaS cloud. The platform structure is
shown in Figure 6.2. The OpenStack cloud consists of a controller node, a network node
and five identical compute nodes. Physical specifications of all nodes, including OS, CPU,
memory, and storage capacity, are listed in Table 6.1.

Table 6.1: Physical specifications of OpenStack cloud nodes.
Role OS CPU Memory Storage

Controller Ubuntu 14.04 64 bit Intel Core 2 Duo, 3 GHZ 3.4 GB 38 GB HDD
Network Ubuntu 14.04 64 bit Intel Core 2 Duo, 3 GHZ 3.4 GB 38 GB HDD

Compute Ubuntu 14.04, 64 bit Intel Core i7, 3.4 GHZ 32 GB 500 GB HDD
512 GB SSD

63 6.2 Platform and Application

Figure 6.2: The structure of the cloud platform.

The application under test in this case study is the website of the Software Engineering
for Distributed Systems group at the Institute of Compute Science, University of Goettingen
[94]. The website is composed of three components: an Apache [95] load balancer, an
Apache HTTP server hosting a Drupal [96] website, and a MySQL [97] database.

With the component-based application, we test if DEBRA can assess the application reli-
ability with different deployment structures and explore the impact of deployment structures
to the application reliability. To this aim, six deployment structures are designed consider-
ing resource limits, dependency, redundancy, and practical significances: Minimal, Simple,
Average-1, Average-2, Medium, Complex and K-out-of-n. The deployment structures are
shown in Figure 6.3, and details of the deployments are as follows:

• The Minimal deployment has all three components hosted in one VM to evaluate the
reliability that can be achieved with minimal resources, as Figure 6.3(a) shows.
• The Simple deployment assigns one VM to each website component to evaluate the

reliability of the most intuitive deployment structure. To eliminate the impact of
dependencies, three VMs are hosted by three different PSs, as Figure 6.3(b) shows.
• The Average-1 deployment is adapted from the application structure proposed by

Thanakornworakij et al. [10]. The structure is originally for typical MPI applications.
The application proposed by Thanakornworakij et al. was deployed to nine VMs
evenly hosted by three PSs. The authors assumed that the application fails if more
than one component (including PSs, hypervisors, VMs, and application instances)
fails. Average-1 can also be seen as an application working under heavy workload.
To adopt this structure, we view the website as a service and deploy it as a 9-out-of-9
system, as Figure 6.3(c) shows. Average-1 is also used to check if our framework can
assess the reliability of a n-out-of-n service.
• The Average-2 deployment is adapted from a structure proposed by Qiu et al. [12],

where a service uses six VMs evenly distributed on three PSs. The service fails if all

Chapter 6 Case Studies 64

(a) Minimal (b) Simple

(c) Average-1 (d) Average-2

(e) Medium (f) Complex

(g) K-out-of-n

Figure 6.3: Application deployment structures.

65 6.3 Results

SIs fail. The same to Average-1, we treat our application as a service and deploy it to
six VMs, as Figure 6.3(d) shows.
• The Medium deployment is employed to improve the reliability of the Simple deploy-

ment by redundancy. To this aim, we deploy each website component with two SIs
which are configured as 1-out-of-2 systems. Practically, redundant SIs of the same
service could possibly be deployed on the same PS, when, e.g., not enough PSs are
available. Meanwhile, the two instances on the same PS in this case are used to verify
the impact of deep dependencies between SIs of the same service, as Figure 6.3(e)
shows.
• The Complex deployment has exactly the same amount of SIs as the Medium but with

a different distribution of the VMs, where SIs of the same service are on different PS.
Complex is a common deployment in practice. We use it to evaluate the impact of
deep dependencies between SIs of different services, as Figure 6.3(f) shows.
• The K-out-of-n deployment is also based on Medium. The difference is that two more

MySQL instances are added, and the four MySQL instances are organized as a 2-out-
of-4 system, as Figure 6.3(g) shows. Practically, this deployment is used for websites
with massive throughput of data. This deployment is employed to verify the impact of
the k-out-of-n redundancy to the application reliability, and also to check if DEBRA
can assess the reliability of an application with k-out-of-n services.

6.3 Results

In this section, we introduce the results of baselines, the assessment, and the comparison.

6.3.1 Baselines

To compare results of different reliability assessment methods, we need an accurate enough
baseline for each deployment. In this section, we utilize the MCS to get the baselines of
deployments. The MCS of each deployment involves a number of rounds, and within each
round, the application state is either success or f ailure, corresponding to the reliability of 1
or 0, respectively. For an n-round MCS, according to (6.1.3), the simulated reliability (Rsim)
of the application is the mean (µ̄n) of all rounds’ simulated reliability:

Rsim = µ̄n =
1
n

n

∑
i=1

Rsimi (6.3.1)

where Rsimi is the simulated application reliability of the ith round and can only be 0 or 1.
The number of rounds is determined by the stop rule of the MCS. As “accurate enough”

cannot be used as a mathematical constraint, we define an “accurate enough” baseline math-

Chapter 6 Case Studies 66

ematically as a baseline meets conditions a) within the 99% confidence interval of the ap-
plication reliability and b) with at least five significant figures after the decimal point.

For the condition a, the 99% confidence interval of n-round MCS results is of the form
[98, p. 19]:

Rsim±2.58ssim/
√

n (6.3.2)

where ssim is the SD of simulation results, with:

ssim =

√
1

n−1

n

∑
i=1

(Rsimi−Rsim)2 (6.3.3)

Equation (6.3.2) indicates that, with a 99% confidence level, Rsim and the real application
reliability Rrea meet:

|Rrea−Rsim|<= 2.58ssim/
√

n (6.3.4)

Regarding the condition b, to get a five-significant-figure estimate (we assume that every
deployment’s reliability ranges from 0.1 to 1.0), Rsim and Rrea should meet [99, p. 4]:

|Rrea−Rsim|< 5×10−6 (6.3.5)

Combining (6.3.4) and (6.3.5), the baseline will be accurate enough when:

2.58ssim/
√

n < 5×10−6 (6.3.6)

which is used as the stop rule of the MCS for baselines.
For calculating ssim, Owen [98, p. 21] gives a one-pass algorithm, which defines Sn =

∑
n
i=1 (Rsimi−Rsim)

2 and s2
sim = Sn/(n−1), and starts with Rsim = Rsim1 and S1 = 0. Using δi

and µ̄i for intermediate results, the algorithm makes the following updates:

δi = Rsimi− µ̄i−1

µ̄i = µ̄i−1 +
1
i
δi

Si = Si−1 +
i−1

i
δ

2
i

(6.3.7)

where i = 2,3, ...,n and n is the number of rounds. As Rsimi can only be 0 or 1, we simplify
the update of µ̄i in the original algorithm according to (6.3.1):

µ̄i =
∑

i
j=1 Rsim j

i
(6.3.8)

The proof of the correctness of the adapted algorithm is in Appendix A.1. Then, based
on the adapted algorithm and the stop rule, we design the MCS algorithm for baselines as
shown in Algorithm 6.1. For each deployment, we initialize variables in the first round. In

67 6.3 Results

the following rounds, we use the MCS to simulate the state of the application and update
δ , Rsim and S according to the simplified algorithm and check if ssim satisfies the stop rule.
The algorithm of simulating the application state in each round is shown in Algorithm 6.2.
At the beginning, the algorithm determines the state of non-service components, i.e., PSs,
VMs, and SIs, according to their inner reliability. Then, the algorithm determines the states
of VMs according to their hosting PSs. Afterwards, the algorithm determines the states of
SIs and according to the deployment structure, determines the states of services. At the end,
the algorithm returns the state of the application.

Using Algorithm 6.1 and Algorithm 6.2, we get that baselines of the Minimal, Sim-
ple, Average-1, Average-2, Medium, Complex, and K-out-of-n deployments: 0.886037,
0.832768, 0.338578, 0.999999, 0.988659, 0.989542, 0.992138, respectively. To visually
show the convergence of the algorithm, 100 data points from the first 100,000 simulation
rounds for each deployment are sampled and plotted in Figure 6.4.

Figure 6.4: Simulated application reliability for all deployments.

Baselines and Figure 6.4 suggest that:

1. The Average-2 deployment is most reliable, with a reliability of six nines, and the
Average-1 deployment is least reliable with a reliability of 0.338578. However,
Average-2 deploys all services together in every VM, which requires larger (i.e.,
more expensive) VMs than other deployments, like Simple. If the three services are
deployed separately on smaller VMs like the Complex deployment, the application

Chapter 6 Case Studies 68

Algorithm 6.1: MCS algorithm for baselines
Input: deployment dep, the target error errtgt as the stop rule
Output: Baseline for the deployment
// initialization

1 round← 1
2 mcsb← new MCSBaseline(dep)
3 error← 1
4 δ ← 0
5 nsuc← 0
// the first round

6 success← mcsb.simulate() // see Algorithm 6.2
7 Rsim← success
8 nsuc← nsuc + success
9 S← 0

10 ssim← 0
11 round← round +1

// round 2,3,...
12 while error > errtgt do
13 success← mcsb.simulate()
14 nsuc← nsuc + success

// update δ, Rsim, and S
15 δ ← success−Rsim

16 Rsim← nsuc/round
17 S← S+((round−1)/round)∗δ 2

// calculate ssim and error
18 ssim←

√
S/(round−1)

19 if S 6= 0 then
20 error← 2.58∗ ssim/

√
round

21 end
22 round← round +1
23 end
24 return Rsim

69 6.3 Results

Algorithm 6.2: Simulation algorithm for application states
Input: deployment dep, list of non-service components comList, the LDG ldg, VM list

vmList, services list seList, inner reliability of non-service components rMap
Output: state/reliability of the application, 0 or 1
// initialize the application state

1 succeeded← true
// determine the state stcom of all PSs, VMs, and SIs
// stcom can be one of stps, stvmorstsi

2 foreach component com in comList do
3 create a random double dcom ∈ [0,1)
4 rcom← rMap.get(com)
5 if dcom > rcom then
6 stcom← f alse
7 else
8 stcom← true
9 end

10 end
// renew the state of every VM stvm

// according to the corresponding PS state stps

11 foreach vm in vmList do
12 get the corresponding PS ps from ldg
13 if stps = f alse then
14 stvm← f alse
15 end
16 end
17 foreach se in seList do

// initialize the number of failed SIs
18 n f si← 0
19 get the corresponding instance list siList
20 foreach si in siList do
21 get the corresponding VM vm from ldg

// renew the service instance state stsi

// according to its corresponding VMs state
22 if stvm = f alse then stsi← f alse

// count the number of failed instances n f si

23 if stsi = f alse then
24 n f si← n f si +1
25 end
26 end

// simplified process of determining the application state
27 if se is a k-out-of-n-ed service then
28 if n f si > (n− k) then succeeded← f alse
29 else if n f si = siList.size() then
30 succeeded← f alse
31 end
32 end
33 return succeeded ? 1 : 0

Chapter 6 Case Studies 70

reliability will decrease by 0.999999− 0.989542 = 0.010457, at the same time, the
cost of VMs will also be reduced in the light of VM prices.

2. The Minimal deployment is more reliable than the Simple deployment, even though
the later uses more VMs and PSs. It indicates that increasing the amount of compo-
nents without regard to redundancies will decrease the system reliability, if no perfor-
mance issues are considered.

3. Comparing to the Simple deployment, both the Medium and Complex deployments
have two VMs for every service and have higher reliability. It indicates that redun-
dancy can improve the application reliability even with the same amount of physical
resources. The degree of improvement is different because of the different allocation
of redundant VMs on PSs.

4. The reliability of the Medium deployment is lower than the Complex deployment,
which is lower than the K-out-of-n deployment. It suggests that 1) deep dependency
decreases the application reliability, i.e., optimizing the deployment structure can im-
prove the application reliability, and 2) assigning more VMs on different PSs to a
service will increase its reliability and hence the application reliability.

5. If we use the Rre f of the Medium, Complex, and K-out-of-n deployments for com-
paring, by removing deep dependencies between instances of the same service, the
Complex deployment is about 0.09% more reliable than the Medium deployment.
The improvement may be insignificant, but no further resources are required and,
above all, the SPoF is eliminated in the Complex deployment.

6.3.2 Assessment Results

In Section 6.3.1, we showed how we determined the Rre f for each deployment by using the
MCS. In this section, we will introduce the process of reliability assessment and the results
of all methods for all deployments.

For each deployment, we test the application for 30 25-hour rounds with every minute
as a time unit (1,500 time units in each round) and collect the monitoring data with our
framework. Fault injections, state information of all components, and testing results are
recorded in files. Based on the log files, the reliability analyzer assesses the reliability of all
components as well as the application and creates report files. The report file of the first test
round of the Simple deployment is shown in Figure 6.5 (more examples of log files can be
found in Appendix A.2). A report file is constituted by four parts:

• Setup: includes inner failure rates (denoted by IFR) and corresponding inner reliabil-
ity (denoted by IRE) of components, based on which the reliability (denoted by RE)
of the components as well as the application is assessed by the reliability analyzer;
• Fault injector: includes the total amount of injections, the injected inner failure rate

and the corresponding injected inner reliability of each component. Furthermore, the

71 6.3 Results

Setup
--
 IFR IRE Assessed RE
--
ps_1 0.00100000 0.99900050 0.99900050
ps_2 0.00100000 0.99900050 0.99900050
ps_3 0.00100000 0.99900050 0.99900050
apache_vm_1 0.03000000 0.97044553 0.96947557
drupal_vm_1 0.03000000 0.97044553 0.96947557
mysql_vm_1 0.03000000 0.97044553 0.96947557
----apache_1 0.03000000 0.97044553 0.94082324
apache 0.06100000 0.94082324 0.83276816
----drupal_1 0.03000000 0.97044553 0.94082324
drupal 0.06100000 0.94082324 0.88514837
----mysql_1 0.03000000 0.97044553 0.94082324
mysql 0.06100000 0.94082324 0.94082324
Application 0.83276816

Fault Injector: 1500 injections
--
 Injected IFR Injected IRE Assessed RE
--
ps_1 0.00133422 0.99866667 0.99866667
ps_2 0.00000000 1.00000000 1.00000000
ps_3 0.00066689 0.99933333 0.99933333
apache_vm_1 0.03252319 0.96800000 0.96670933
drupal_vm_1 0.03528181 0.96533333 0.96533333
mysql_vm_1 0.02977216 0.97066667 0.97001956
----apache_1 0.03183472 0.96866667 0.93641911
apache 0.06569214 0.93641911 0.83298745
----drupal_1 0.02771384 0.97266667 0.93894756
drupal 0.06299565 0.93894756 0.88954555
----mysql_1 0.02360987 0.97666667 0.94738577
mysql 0.05404891 0.94738577 0.94738577
Application 0.83298745

Monitor: 1500 logs
--
 Monitored RE Assessed RE
--
ps_1 1-2/1500=0.99866667 0.99866667
ps_2 1-0/1500=1.00000000 1.00000000
ps_3 1-1/1500=0.99933333 0.99933333
apache_vm_1 1-50/1500=0.96666667 0.96670933
drupal_vm_1 1-52/1500=0.96533333 0.96533333
mysql_vm_1 1-45/1500=0.97000000 0.97001956
----apache_1 1-95/1500=0.93666667 0.93641911
apache 1-95/1500=0.93666667 (IRE) 0.83298745
----drupal_1 1-91/1500=0.93933333 0.93894756
drupal 1-91/1500=0.93933333 (IRE) 0.88954555
----mysql_1 1-77/1500=0.94866667 0.94738577
mysql 1-77/1500=0.94866667 (IRE) 0.94738577

Test: 15000 requests
--
 Tested RE Assessed RE
--
Application 1-2510/15000=0.83266667 0.83298745

Figure 6.5: The analysis report of the first test round of the Simple deployment.

Chapter 6 Case Studies 72

reliability is assessed by DEBRA based on the injected inner failure rate and the inner
reliability;
• Monitor: includes the total amount of monitoring log entries and the amount of mon-

itored failures and the assessed reliability of components; and
• Test: includes the total amount of requests sent by the tester, the amount of failed

tests and the tested reliability of the application.

The reliability of each round of each deployment is evaluated by all other methods based
on the report files. The assessment results for each deployment are shown in table 6.2 and
the results for all rounds are shown in Figure 6.6 to 6.12 (REFER denotes the baseline).
Table 6.2 and Figure 6.6 to 6.12 show that:

• For the Minimal deployment, ARMRA gets results very close to 1.0 (with Reva =
0.99880000), HCMRA gets higher results and SEBRA gets lower results than the
baseline while DEBRA and HPCRA get the same results which are very close to
LOBRA’s results and fluctuate around the baseline.
• For the Simple deployment, similar to the Minimal deployment, ARMRA gets results

very close to 1.0 (with Reva = 0.99722500), HCMRA gets higher results than the
baseline while DEBRA and HPCRA get the same results which are close to LOBRA’s
and SEBRA’s results and fluctuate around the baseline.
• For the Average-1 deployment, SEBRA, ARMRA, and HCMRA get close results to

each other which are 1.0 or close to 1.0 and much higher than the baseline while
DEBRA gets the same results as HPCRA which are close to LOBRA’s results and
fluctuate around the baseline.
• For the Average-2 deployment, HPCRA gets much lower results than the baseline,

ARMRA gets results slightly lower than the baseline and slightly higher than the
HCMRA’s results while DEBRA (Reva = 0.99999751), LOBRA (Reva = 1.00000000)
and SEBRA (Reva = 1.00000000) get nearly the same results to each other and as the
baseline (0.999999).
• For the Medium deployment, HPCRA gets much lower results than all other methods

and the baseline, ARMRA and HCMRA get close results which are higher than the
baseline, DEBRA, LOBRA, SEBRA, and HCMRA get close results which are also
close to the baseline.
• For the Complex deployment, HPCRA gets much lower results than all other meth-

ods and the baseline, ARMRA and HCMRA get close results which are higher than
the baseline while DEBRA, LOBRA, and SEBRA get close results which fluctuate
around the baseline.
• For the K-out-of-n deployment, HPCRA gets much lower results than all other meth-

ods and the baseline, ARMRA and HCMRA get close results which are higher than
the baseline while SEBRA gets slightly higher results than the baseline and DEBRA
and LOBRA get close results which fluctuate around the baseline.

73 6.3 Results

Table 6.2: Assessment results for deployments.

Deployment Rre f
Reva

DEBRA LOBRA SEBRA HCMRA ARMRA HPCRA

Minimal 0.886037 0.88473215 0.88440000 0.82954334 0.96801919 0.99880000 0.88473215

Simple 0.832768 0.83376388 0.83322222 0.83364761 0.90966612 0.99722500 0.83376388

Average-1 0.338578 0.33660991 0.33606667 1.00000000 0.99675905 0.99684805 0.33660991

Average-2 0.999999 0.99999751 1.00000000 1.00000000 0.99463018 0.99729121 0.48677148

Medium 0.988659 0.98949129 0.98895556 0.98946678 0.99622572 0.99702557 0.69480509

Complex 0.989542 0.98979754 0.98995556 0.98978590 0.99719622 0.99698074 0.69896738

K-out-of-n 0.992138 0.99241110 0.99202222 0.99324609 0.99732751 0.99753518 0.62231928

Figure 6.6: Comparison results for the Minimal deployment.

Chapter 6 Case Studies 74

Figure 6.7: Comparison results for the Simple deployment.

Figure 6.8: Comparison results for the Average-1 deployment.

75 6.3 Results

Figure 6.9: Comparison results for the Average-2 deployment.

Figure 6.10: Comparison results for the Medium deployment.

Chapter 6 Case Studies 76

Figure 6.11: Comparison results for the Complex deployment.

Figure 6.12: Comparison results for the K-out-of-n deployment.

77 6.3 Results

6.3.3 Comparison

In this section, based on the baselines and the assessment results of each method for each
deployment, we compare the results of DEBRA with the aforementioned methods in Section
6.1.3.

For all methods corresponding to each deployment, we employ the two-tailed Wilcoxon
signed-rank test [100] to test if the results of other methods are significantly different from
the results of DEBRA. The Wilcoxon signed-rank test is a non-parametric statistical hy-
pothesis test method that applies to situations where the data cannot be assumed to follow
the normal distribution. For n pairs of values, the Wilcoxon signed-rank test arranges the
absolute differences of the two values in all pairs in ascending order and assigns ranks to
these differences. At the beginning, the ranks ranges from 1 to n. When a number of dif-
ferences equal to each other, their ranks form a group of ties [101]. Then, the ranks in the
same tie group will be updated. Suppose a tie group corresponds to m differences with ranks
rk1,rk2, ...,rkm, all the differences will be assigned with the same rank ∑

m
i=1 rki

m . For example,
if a tie group corresponds to three ranks, e.g., 1, 2, and 3, the corresponding three differ-
ences will be assigned with the same rank of (1+2+3)/3= 2. To these ranks, the Wilcoxon
signed-rank test gives them differences signs, i.e., negative signs to negative differences and
positive signs to positive differences. The Wilcoxon signed-rank test assumes that "the sum
of all positive ranks and the sum of all negative ranks should not differ greatly" [101, p.
43]. In our case, for each method, this assumption corresponds to the null hypothesis H0:
"results are not significantly different from results of DEBRA", i.e.:

H0: µd = 0

where µd is the mean difference between results of the method under test and DEBRA, e.g.,
for LOBRA:

µd =
1
n

n

∑
i=1

(RLOBi−RDEBi) (6.3.9)

where n is the number of rounds, i.e., 30, and RLOBi and RDEBi are the evaluated reliability
with LOBRA and DEBRA for the ith round, respectively.

According to the method described by Montgomery and Runger [100, p. 583], we calcu-
late the test statistic w-value of each test by:

w = min(w+,w−) (6.3.10)

where w+ and w− are the sum of the positive ranks and the absolute values of negative
ranks, respectively. And when the sample size is larger than 20, w+ (or w−) can be assumed
to approximately follow a normal distribution whose mean µw and SD δw can be calculated,

Chapter 6 Case Studies 78

according to [100, p. 583] and [102, p. 42], by:

µw =
n(n+1)

4
(6.3.11)

δw =

√
n(n+1)(2n+1)−∑

m
i=1 ti(ti−1)(ti +1)/2

24
(6.3.12)

where m is the number of group of ties and ti is the number of ranks in the ith tie group.
Then, the test of the null hypothesis H0 can be based on the statistic:

z =
w−µw

δw
(6.3.13)

where z is called z-score. Calculated w-values and z-scores are shown in Table 6.3.

Table 6.3: w-values and z-scores of Wilcoxon tests.

Deployment LOBRA SEBRA HCMRA ARMRA HPCRA

Minimal
w-value 173 0 0 0

–
†

z-score -1.2238 -4.7821 -4.7821 -4.7821

Simple
w-value 176 207 0 0

–
z-score -1.1621 -0.5245 -4.7821 -4.7821

Average-1
w-value 227 0 0 0

–
z-score -0.1131 -4.7821 -4.7821 -4.7821

Average-2
w-value 0 0 0 0 0

z-score -4.7825 -4.7825 0.6174 -4.7821 -4.7821

Medium
w-value 217 28 0 0 0

z-score -0.3188 -4.2062 -4.7821 -4.7821 -4.7821

Complex
w-value 219 204 0 0 0

z-score -0.2777 -0.5862 -4.7821 -4.7821 -4.7821

K-out-of-n
w-value 194 0 0 0 0

z-score -0.7919 -4.7821 -4.7821 -4.7821 -4.7821
† DEBRA gets the same results with HPCRA for Minimal, Simple, and Average-

1, so, there are no w-values or z-scores for HPCRA.

79 6.3 Results

Based on z-scores, the p-value and effect size (correlation coefficient e) of each test are
calculated by:

p = 2∗Φ(−|z|) (6.3.14)

e =
z√
2n

(6.3.15)

where Φ is the CDF of the standard normal distribution. Results are shown in Table 6.4.

Table 6.4: p-values and effect sizes.

Deployment LOBRA SEBRA HCMRA ARMRA HPCRA

Minimal
p-value 0.2210 < 0.0001 < 0.0001 < 0.0001

–
effect size 0.1580 0.6174 0.6174 0.6174

Simple
p-value 0.2452 0.6071 < 0.0001 < 0.0001

–
effect size 0.1500 0.0677 0.6174 0.6174

Average-1
p-value 0.9099 < 0.0001 < 0.0001 < 0.0001

–
effect size 0.0146 0.6174 0.6174 0.6174

Average-2
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

effect size 0.6174 0.6174 0.6174 0.6174 0.6174

Medium
p-value 0.7499 < 0.0001 < 0.0001 < 0.0001 < 0.0001

effect size 0.0412 0.5430 0.6174 0.6174 0.6174

Complex
p-value 0.7813 0.5577 < 0.0001 < 0.0001 < 0.0001

effect size 0.0358 0.0757 0.6174 0.6174 0.6174

K-out-of-n
p-value 0.4284 < 0.0001 < 0.0001 < 0.0001 < 0.0001

effect size 0.1022 0.6174 0.6174 0.6174 0.6174

Chapter 6 Case Studies 80

According to Cohen’s standard [103], small, medium, and large values of the correlation
coefficient are 0.1, 0.3, and 0.5, respectively. With a 0.05 significance level, we can see
from Table 6.4 that:

1. Results of LOBRA for all deployments except Average-2 are not significantly differ-
ent from DEBRA, with p = 0.2210, 0.2452, 0.9099, 0.5716, 0.7813, and 0.4284
for the Minimal, Simple, Average-1, Medium, Complex, and K-out-of-n deploy-
ments, respectively. Besides, Section 6.3.1 shows that, the baseline for Average-2
is 0.999999, which suggests an extremely reliable deployment and it’s too short time
for rounds with 1,500 time units to see an application failure. And results in Section
6.3.2 show that LOBRA gets the reliability of 1.000000 for all rounds while DEBRA
does not. In addition, the assessment results and Reva (0.99999751) of DEBRA for
Average-2 is also very close to 1.0, we believe that LOBRA and DEBRA will not
be significantly different with a larger data size. As a result, we do not reject H0 for
LOBRA.

2. Results of SEBRA for the Minimal, Average-1, Medium, and K-out-of-n deploy-
ments are significantly different from DEBRA, with p < 0.0001, and large effect
sizes of 0.6174, 0.6174, 0.5430, and 0.6174, respectively, so, we can reject H0 for
above deployments. Besides, results of SEBRA for the Simple and Complex de-
ployments are not significantly different from DEBRA, with p = 0.6071 and 0.5577,
respectively, we cannot reject H0 for Simple or Complex. And due to the same reason
as LOBRA, we do not reject H0 for Average-2.

3. For HCMRA and ARMRA, we can reject H0 for all deployments because results of
them are significantly different from DEBRA, with p < 0.0001 and a large effect size
of 0.6174.

4. As to HPCRA, on one hand, we cannot reject H0 for the Minimal, Simple, and
Average-1 deployments, because DEBRA can be simplified to HPCRA for these de-
ployments and gets the same results as HPCRA. On the other hand, we can reject H0
for the Average-2, Medium, Complex, and K-out-of-n deployments because HPCRA
gets significantly different results from DEBRA, with p < 0.0001 and a large effect
size of 0.6174.

We have tested whether a method is significantly different from DEBRA, however, dif-
ferent or not can not help us determine which method is more accurate or precise. To further
compare the accuracy and precision of different methods for different deployments, we cal-
culate the MAEs and SDs of all methods with (6.1.1) and (6.1.2), which are shown in Table
6.5 with all non-significantly different results in bold.

81 6.3 Results

Ta
bl

e
6.

5:
M

A
E

an
d

SD
of

re
su

lts
.

D
ep

lo
ym

en
t

R
re

f
m

et
ri

cs
D

E
B

R
A

L
O

B
R

A
SE

B
R

A
H

C
M

R
A

A
R

M
R

A
H

PC
R

A

M
in

im
al

0.
88

60
37

M
A

E
0.

00
13

05
0.

00
16

37
0.

05
64

94
0.

08
19

82
0.

11
27

63
0.

00
13

05

SD
0.

00
75

44
0.

00
82

30
0.

01
37

88
0.

00
51

70
0.

00
07

09
0.

00
75

44

Si
m

pl
e

0.
83

27
68

M
A

E
0.

00
09

96
0.

00
04

54
0.

00
08

80
0.

07
68

98
0.

16
44

57
0.

00
09

96

SD
0.

00
96

18
0.

01
05

79
0.

01
01

33
0.

00
82

68
0.

00
15

93
0.

00
96

18

A
ve

ra
ge

-1
0.

33
85

78
M

A
E

0.
00

19
68

0.
00

25
11

0.
66

14
22

0.
65

81
81

0.
65

82
70

0.
00

19
68

SD
0.

00
96

65
0.

01
46

63
<

0.
00

00
01

0.
00

16
96

0.
00

16
93

0.
00

96
65

A
ve

ra
ge

-2
0.

99
99

99
M

A
E

0.
00

00
01

0.
00

00
01

0.
00

00
01

0.
00

53
69

0.
00

27
08

0.
51

32
28

SD
<

0.
00

00
01

<
0.

00
00

01
<

0.
00

00
01

0.
00

12
04

0.
00

11
45

0.
01

00
85

M
ed

iu
m

0.
98

86
59

M
A

E
0.

00
00

47
0.

00
02

97
0.

00
08

08
0.

00
75

67
0.

00
83

67
0.

29
38

54

SD
0.

00
11

14
0.

00
24

43
0.

00
10

07
0.

00
07

46
0.

00
16

63
0.

01
25

75

C
om

pl
ex

0.
98

95
42

M
A

E
0.

00
02

56
0.

00
04

14
0.

00
02

44
0.

00
76

54
0.

00
74

39
0.

29
05

75

SD
0.

00
08

58
0.

00
23

29
0.

00
08

44
0.

00
03

61
0.

00
13

28
0.

01
05

27

K
-o

ut
-o

f-
n

0.
99

21
38

M
A

E
0.

00
02

73
0.

00
01

16
0.

00
11

08
0.

00
51

90
0.

00
53

97
0.

36
98

19

SD
0.

00
07

55
0.

00
26

41
0.

00
26

41
0.

00
03

71
0.

00
10

51
0.

01
20

58

Chapter 6 Case Studies 82

Combining Table 6.4 and 6.5, for 30 rounds of 1,500 time units of simulation, we can
conclude that:

1. Results of LOBRA for Average-2 are not significantly different DEBRA while MAEs
of both DEBRA and LOBRA are 0.000001, based on which we cannot tell which
method is more accurate. Besides, the results of LOBRA for deployments except for
Average-2 are not significantly different from DEBRA, while the SDs of LOBRA are
larger than that of DEBRA, especially for Medium, Complex, and K-out-of-n, which
manifests that DEBRA is more precise than LOBRA for these deployments.

2. Results of SEBRA for Minimal, Average-1, Medium, and K-out-of-n are significantly
different from DEBRA, while MAEs are larger than that of DEBRA. So, DEBRA
is more accurate than SEBRA for Minimal, Average-1, Medium, and K-out-of-n.
Besides, results of SEBRA for Simple, Average-2, and Complex are not significantly
different from DEBRA, however, as to SDs, the differences are too small (around 5%,
the same and around 2% for Simple, Average-2, and Complex, respectively) to make
conclusions.

3. For HCMRA and ARMRA, results are significantly different from DEBRA for all
deployments and MAEs are always larger than DEBRA, which indicates that DEBRA
are more accurate than HCMRA and ARMRA for all deployments.

4. As to HPCRA, results are the same as results of DEBRA for the Minimal, Sim-
ple, and Average-1 deployments, so, HPCRA is the same accurate and precise as
DEBRA for these deployments. Besides, results of HPCRA for Average-2, Medium,
Complex, and K-out-of-n are significantly different from DEBRA with much larger
MAEs, which means that DEBRA is more accurate than HPCRA for these deploy-
ments.

6.4 Discussion

In this section, we discuss the results of the case study shown in Section 6.3.2 and determine
if we accept or reject the hypotheses presented in Section 6.1.1.

The determination of hypotheses proposed in Section 6.1.1 is as following:

• H1: The framework can assess the reliability of services and the application. Based
on fault injection, we simulated the application state for 30 25-hour rounds with each
minute as a time unit. The report files created by our framework show the (inner)
reliability of components including services and the application reliability, i.e., the
reliability of the Apache load balancer service, assessed based on both the setup pa-
rameters and monitoring logs. Therefore, we accept this hypothesis.

83 6.4 Discussion

• H2: DEBRA can assess the application reliability when deployment structures in-
clude deep dependencies or not. We designed different deployment structures for the
chosen application. Some deployment structures include deep dependencies between
SIs of the same service, e.g., the Average-1, Average-2, Medium, and K-out-of-n de-
ployments and some deployment structures include deep dependencies between SIs
of different services, e.g., the Medium, Complex, K-out-of-n deployments. For de-
ployments with both types of deep dependencies, DEBRA can assess the reliability of
the application which are shown in Table 6.2 and Figure 6.6 to Figure 6.12. Therefore,
we accept this hypothesis.
• H3: DEBRA gets more accurate results than existing methods. According to Section

6.3.2, with a 0.05 significance level, DEBRA results are: not significantly different
from results of LOBRA for all deployments; significantly different from and more
accurate than SEBRA results for Minimal, Average-1, Medium and K-out-of-n, and
not significantly different for Simple, Average-2, and Complex; significantly different
from and more accurate than results of HCMRA and ARMRA for all deployments;
significantly different from and more accurate than HPCRA results for Average-2,
Medium, Complex and K-out-of-n, and not significantly different for Minimal, Sim-
ple, and Average-1. Therefore, we reject this hypothesis because it holds only under
above conditions for different methods.
• H4: DEBRA gets more precise results than existing methods with a small size of data.

According to Section 6.3.2, DEBRA results are: more precise for Minimal, Simple,
Medium, Complex, and K-out-of-n, and not less precise for Average-2 than the re-
sults of LOBRA; more accurate for Minimal, Average-1, Medium, and K-out-of-n,
not less precise for Average-2, Simple and Complex than the results of SEBRA; the
same for Minimal, Simple and Average-1 as HPCRA and more precise for Average-2,
Medium, Complex, and K-out-of-n than the results of HPCRA. Therefore, we reject
this hypothesis because it holds only under above conditions for different methods.

According to the determination of H3 and H4, we can conclude that, DEBRA is the same
accurate as LOBRA and more precise than it for 30 rounds of 1,500 time units of simulation,
and more accurate and precise than other methods in most cases.

Chapter7
Discussion

In this chapter, we discuss the answers to the research questions posed in Section 1.2 and
strengths and limitations of DEBRA, the framework and its implementation based on the
case studies.

7.1 Answers to Research Questions

RQ1: What aspects should be considered when modeling cloud applications for reliability
assessment? We addressed this question in case studies by comparing the results of dif-
ferent methods that consider different sets of components in the deployment stack of cloud
applications. The results show that, by considering all components in the deployment stack
and dependencies between them, DEBRA obtained non-significantly different results from
a method, which considers only the failures of the application that emerge in the access
log files, for all the tested deployment structures with a 0.05 significance level, while the
results of DEBRA and the above method are more accurate than the results of other meth-
ods. Therefore, the answer to this question is that, considering an application as a whole
and assessing its reliability according to application failures without regard to underlying
structure details is sufficient for the reliability assessment of cloud applications.

RQ2: How do dependencies affect the accuracy of a reliability assessment? To address
this question, we explored the influences of dependencies introduced by the layered struc-
ture of cloud applications and different kinds of redundancies to the accuracies of reliability
assessment methods in our case studies. The answer to this question is twofold. On one
hand, the answer to the first research question partially applies to this question. If the only
goal of a reliability assessment method is to obtain the application reliability, dependencies
have no significant influences to the accuracy because methods considering no dependen-
cies can also obtain the same accurate results. On the other hand, if a reliability assessment
method is used as the basis to improve the application reliability, which requires the abil-
ity of predicting the reliability when the application deployment structure varies, involving
dependencies in the model will improve the accuracy. Methods that do not consider the
underlying structures of the deployment stack will cover up the failures of underlying com-

Chapter 7 Discussion 86

ponents, which is not appropriate for improving the application reliability.
RQ3: How can the quality of reliability assessment methods be compared? To tackle

this question, we proposed a process to compare the accuracy and the precision of different
methods in our case studies. Before the comparison, we generated baselines of certain
accuracies. In practice, accurate baselines are difficult to obtain because too much data
will be required. For example, to get a baseline with at least five significant figures after
the decimal point for the Complex deployment in Section 6.3.1, the MCS performs more
than 2.7 billion rounds of simulation. If one simulation round corresponds to one day as a
time unit, the practical data would need much more time than acceptable. But for testing,
when failure rates of components are assumed, the MCS performs well for getting accurate
baselines, e.g., 81 minutes for the above 2.7 billion rounds. When baselines are available,
based on whether results of two different methods are significantly different or not, we
utilized MAE to compare the accuracy and the SD to compare the precision. And the
difference between methods are tested by the Wilcoxon signed-rank test. Judging from
the comparison results, one possible answer to this question is: using the MCS to obtain
baselines, using the Wilcoxon signed-rank test to determine if results of different methods
are significantly different and using the MAEs and the SDs as metrics to compare the quality
of different methods.

7.2 Strengths and Limitations

DEBRA has several strengths comparing with existing methods while our framework and
the implementation have inevitable limitations.

7.2.1 Strengths of DEBRA

Based on the introduction in Chapter 3 and Section 6.1.3 and the comparison in Section 6.3,
we compare DEBRA with the chosen existing methods regarding merits during the reliabil-
ity assessment to show the strengths of DEBRA. We compared the following features:

• Normal redundancy: whether a method considers 1-out-of-n redundancies when as-
sessing the service/application reliability. DEBRA models cloud applications with
LDGs which generalize normal redundancies into k-out-of-n (k = 1) redundancies.
LOBRA uses the access logs to assess the application reliability, regardless of any
structure of the application including any kind of redundancies. SEBRA considers
services providing the same functionalities as redundancies to each other with prior-
ities. HCMRA considers the scenario that redundant service instances are deployed
on a number of PSs. ARMRA calculates the system (application) reliability with
the production of hardware and network links regardless of any kind of redundan-
cies. HPCRA is for high performance applications (specifically, MPI applications)

87 7.2 Strengths and Limitations

deployed with several processes which are organized as a n-out-of-n redundant sys-
tem, so, HPCRA does not consider normal redundancies.
• K-out-of-n redundancy: whether a method considers k-out-of-n (1≤ k≤ n) redundan-

cies when assessing the service/application reliability. DEBRA uses LDGs to gener-
alize all redundancies including k-out-of-n (1 < k ≤ n) into k-out-of-n (1 ≤ k ≤ n)
redundancies. LOBRA, as aforementioned, does not consider k-out-of-n redundancy.
SEBRA considers that all redundant services are organized as a normal 1-out-of-n
redundancy system. HCMRA considers the service reliability as the probability that
at least one VM used by the service is available, which limits the method to k = 1.
ARMRA, as discussed above, does not consider any kind of redundancies. HPCRA,
as discussed above, considers only n-out-of-n redundancies rather than k-out-of-n re-
dundancies with ∀k ∈ (1,n].
• Deep dependency: whether a method considers deep dependencies when assessing

the service/application reliability. DEBRA considers deep dependencies between SIs
of the same service and of different services. LOBRA, as aforementioned, does not
consider deep dependency. SEBRA is designed for SaaS applications without con-
sidering VMs, PSs or deep dependencies. HCMRA explores one case of deep depen-
dency that VMs used by a service are deployed on the same PS, and as HCMRA is
proposed for one single service, it does not consider the deep dependencies between
different services. ARMRA considers only the hardware reliability (such as reliabil-
ity of hard disks, processors, etc.) and assumes that PSs are independent, as a result,
no dependency is considered. HPCRA considers dependencies between software or
between hardware, and assumes no dependencies between software and hardware,
which indicates that no deep dependencies are considered.
• Service reliability: whether a method is able to assess service (as a part of an ap-

plication) reliability. DEBRA assesses the service reliability based on the sLDG of
the service. LOBRA only assesses the application reliability. SEBRA assumes that
service reliability is published by providers and can assess the service reliability per-
ceived by consumers. HCMRA is designed for large online services in IaaS clouds.
ARMRA assumes that services are fully reliable and assesses service reliability with
only hardware reliability. HPCRA assesses reliability of MPI applications with sev-
eral processes (organized as a n-out-of-n redundant system) on several VMs, so, an
application in this context equals a service in our model and HPCRA is able to assess
service reliability when service instances are organized as a n-out-of-n system.
• Application reliability: whether a method is able to assess the application (as a com-

posite service or a set of different services) reliability. DEBRA considers the appli-
cation reliability as the reliability of the service that has no predecessors and assesses
the application reliability in the same way as assessing the service reliability. the
LOBRA is able to assess the application reliability via access logs. SEBRA can be
used to assess SaaS application reliability. HCMRA is for one single service which

Chapter 7 Discussion 88

can be an application, but if we consider an application as a set of services, then
HCMRA is not for applications. ARMRA treats a CCS as a set of services each of
which is composed of several tasks, so, the assessed CCS reliability can be seen as
the application reliability. HPCRA, as discussed above, can assess the reliability of
services with n-out-of-n instances rather than applications.

Regarding the above features, the comparison results are shown in Table 7.1 (“X” means
“with the merit” and blank means “without the merit”). Generally speaking, the most signif-
icant strength of DEBRA is the applicability for diverse deployment structures that includes
different types of redundancies, especially the k-out-of-n redundancy, and deep dependen-
cies. To the best of our knowledge, DEBRA is the only one that considers the k-out-of-n
(k > 1) redundancy for the reliability assessment of cloud applications. Besides, DEBRA
models deep dependencies between SIs of the same service and different services, which
are not considered adequately in existing works.

Table 7.1: Comparison of DEBRA with existing methods.
Feature DEBRA LOBRA SEBRA HCMRA ARMRA HPCRA
Normal

redundancy X X X

K-out-of-n
redundancy X

Deep
dependency X X

Service
reliability X X X X X

Application
reliability X X X X

7.2.2 Limitations of the Framework and Implementation

Our framework and its implementation have some limitations. At first, our framework
works ideally when the application structure and reliability information of components in-
cluded in the deployment stack of cloud applications are available. This means that our
framework works best for private IaaS cloud customers, since reliability information of PSs,
cloud management software, etc., are usually not accessible for public cloud customers.
Nonetheless, our framework can also work with only the reliability of components in upper
layers, such as only service instances. In this case, the reliability assessment method in our
framework degenerates to other methods, e.g., the method proposed by Wang et al. [20] if
the reliability of PSs is not available. Secondly, the implementation of our framework is

89 7.2 Strengths and Limitations

only for web-based cloud applications, more specifically, websites deployed with Cloudify
on top of OpenStack clouds. Testing methods of other types of applications, such as storage
applications without need of browsers, are not implemented. However, we believe that the
support of other cloud platforms and other types of applications can be easily added.

In the proposed reliability assessment method, we assume that failures of PSs, VMs, and
SIs are independent in consideration of the trivial influence of the correlation of failures to
the application reliability. Besides, some deployment scenarios of cloud applications, such
as with containers, are not considered in the proposed framework and method.

7.2.3 Threats to Validity

We compare different reliability assessment methods with testing data obtained by manually
setting reliability information of components rather than real-world monitoring data. This
is because the failure rate of PSs and VMs are much lower than usual applications and the
same size of data as one round of the testing data we used in our case study will take about
four years (1,500 time units) to obtain.

In our case studies, we do not consider the cloud applications with choice function de-
pendencies which are modeled in our framework, we used some educated guesses for the
failure rates of VMs and SIs, and we compared chosen methods with DEBRA based on the
monitoring field data from our framework, which is problematic if the monitor did not get
the states of components correctly.

Chapter8
Conclusion

In the last chapter, we summarize the thesis and its contributions and then state possible
directions of extending DEBRA and the framework proposed in this thesis.

8.1 Summary

In this thesis, we aim to model cloud applications and assess their reliability. To achieve
this purpose, we proposed DEBRA and accordingly design a framework including a depen-
dency analyzer for analyzing dependencies between components, a monitor for obtaining
failure data of components and a reliability analyzer based on DEBRA. In the framework,
components of cloud applications including PSs, VMs, SIs, and services are modeled with
LDGs considering different kinds of redundancies and dependencies. Compared to exist-
ing methods, we considered k-out-of-n redundancies which have not been well considered
to the best of our knowledge, and we also considered deep dependencies which have only
partially considered in existing works.

We implemented not only the above three components of our framework but also two
components for testing web-based cloud applications deployed with Cloudify on Open-
Stack IaaS clouds. The two additional components are a fault injector and a tester. We
designed the fault injector to inject failures to components of cloud applications. And we
implemented the tester to test web-based cloud applications with usage data.

To verify our framework and compare DEBRA with existing methods, we proposed a
process for comparing accuracies and precisions of different methods and conducted case
studies with different kinds of deployments of cloud applications. In the case studies, we
explored the influences of redundancies and deep dependencies to the application reliability
and compared the accuracies and precisions of DEBRAs with existing methods. The results
show that, regarding the accuracy, DEBRA performs better than other model-based meth-
ods. And DEBRA can get more precise results than existing methods when only a small
size of data are available. The results also show that, if no requirement of improving the
application reliability, the underlying deployment structures including, e.g., different kinds
of redundancy configurations of SIs and the deep dependencies, are not necessary to be

Chapter 8 Conclusion 92

considered for obtaining the accurate reliability of cloud applications.

8.2 Outlook

Our work in this thesis can be extended in the following directions.
The LDG model of cloud applications can be extended by involving more components

and more complex structures. One possible component is the hypervisor that can be sepa-
rated from the integrated component PS in our model and can be further divided into differ-
ent types. In this case, more than one type of hypervisors can be installed and modeled on
a single PS. Another possible kind of components are network devices. In our model, they
are also integrated into PSs. If separated, network devices and PSs can then be modeled by
an extra correlation model. However, this may lead to a much more complex model. An
example structure that can be added to the LDG is the triangle of function dependencies
which can be used to model more complex applications. Furthermore, the LDG can also be
improved by supporting dynamic changes of the deployment of applications. Elasticity is
one of the significant characteristics of cloud computing which enable the scaling of cloud
applications. When instances of a service or an application are scaled, the LDG will also
be changed. In the current implementation of our framework, the LDG must be fixed be-
fore the application is deployed and unable to be changed during the running process of the
framework because, we think, the support of elasticity may also be achieved by restarting
our framework.

The dependency analyzer can also be updated. Currently, the dependencies between ser-
vices are gathered from user-defined Groovy files. On one hand, more file formats can be
added to the dependency analyzer, such as XML and YAML. On the other hand, automati-
cally analyzing the blueprints used to describe applications in Cloudify to get deployments
of applications will make our framework more user-friendly.

The fault injector currently does not support service-level fault injection. Though this
function is not necessary currently and can be achieved by injecting failures to instances of
a service, it would be convenient if the framework can automatically kill a service according
to the redundancy configuration, e.g., k-out-of-n, of its instances.

The current implementation of our framework supports only websites. Supports of other
types of applications, such as applications with Graphical User Interfaces (GUIs) are also
interesting for monitoring and usage-based testing.

The correlations of failures of the same type of components, such as PSs, VMs, and SIs,
can be further considered in DEBRA.

Bibliography

[1] M. R. Lyu et al., Handbook of software reliability engineering. IEEE computer
society press CA, 1996, vol. 222.

[2] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, “Above the clouds: A berke-
ley view of cloud computing,” Communications of the ACM, vol. 53, no. 4, p. 50, apr
2010.

[3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as the
5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, jun
2009.

[4] P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011. [Online].
Available: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
145.pdf

[5] E. Bauer and R. Adams, Reliability and availability of cloud computing. John Wiley
& Sons, 2012.

[6] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-oriented federation of
cloud computing environments for scaling of application services,” in International
Conference on Algorithms and Architectures for Parallel Processing. Springer,
2010, pp. 13–31.

[7] Zheng, Zibin and Zhou, Tom Chao and Lyu, Michael R and King, Irwin, “Compo-
nent ranking for fault-tolerant cloud applications,” Services Computing, IEEE Trans-
actions on, vol. 5, no. 4, pp. 540–550, 2012.

[8] R. Wang, Y. Zhang, S. Liu, L. Wu, and X. Meng, “A dependency-aware hierarchical
service model for SaaS and cloud services,” in 2011 IEEE International Conference
on Services Computing. IEEE, Jul 2011, pp. 480–487.

[9] S. Malkowski, Y. Kanemasa, H. Chen, M. Yamamoto, Q. Wang, D. Jayasinghe,
C. Pu, and M. Kawaba, “Challenges and opportunities in consolidation at high re-
source utilization: Non-monotonic response time variations in n-tier applications,” in

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

Bibliography 94

Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on. IEEE,
2012, pp. 162–169.

[10] T. Thanakornworakij, R. F. Nassar, C. Leangsuksun, and M. Păun, “A reliability
model for cloud computing for high performance computing applications,” in Euro-
Par 2012: Parallel Processing Workshops. Springer, 2012, pp. 474–483.

[11] H. R. Faragardi, R. Shojaee, H. Tabani, and A. Rajabi, “An analytical model to eval-
uate reliability of cloud computing systems in the presence of QoS requirements,”
2013 IEEE/ACIS 12th International Conference on Computer and Information Sci-
ence (ICIS), pp. 315–321, jun 2013.

[12] X. Qiu, Y. Dai, Y. Xiang, and L. Xing, “A hierarchical correlation model for eval-
uating reliability, performance, and power consumption of a cloud service,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2015.

[13] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of service-oriented sys-
tems,” in Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - ICSE ’10, vol. 1. New York, New York, USA: ACM Press, 2010,
p. 35.

[14] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba, “Venice: Reliable virtual data cen-
ter embedding in clouds,” in IEEE INFOCOM 2014-IEEE Conference on Computer
Communications. IEEE, 2014, pp. 289–297.

[15] B. Speitkamp and M. Bichler, “A mathematical programming approach for server
consolidation problems in virtualized data centers,” IEEE Transactions on services
computing, vol. 3, no. 4, pp. 266–278, 2010.

[16] A. Birolini, Reliability engineering. Springer, 2007, vol. 5.

[17] B. Ford, “Icebergs in the clouds: the other risks of cloud computing,” in 4th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud ’12), mar 2012, p. 6.

[18] Y. Sharma, B. Javadi, W. Si, and D. Sun, “Reliability and energy efficiency in cloud
computing systems: Survey and taxonomy,” Journal of Network and Computer Ap-
plications, vol. 74, pp. 66–85, 2016.

[19] R. Jhawar, V. Piuri, and M. Santambrogio, “Fault tolerance management in cloud
computing: A system-level perspective,” IEEE Systems Journal, vol. 7, no. 2, pp.
288–297, 2013.

[20] L. Wang, X. Bai, L. Zhou, and Y. Chen, “A hierarchical reliability model of service-
based software system,” in 2009 33rd Annual IEEE International Computer Software
and Applications Conference. IEEE, 2009, pp. 199–208.

95 Bibliography

[21] E. Zio, “Reliability engineering: Old problems and new challenges,” Reliability En-
gineering & System Safety, vol. 94, no. 2, pp. 125–141, 2009.

[22] N. Fuqua, Reliability engineering for electronic design. CRC Press, 1987, vol. 34.

[23] D. Kececioglu, Reliability engineering handbook (vol. 1). Prentice-Hall, Inc., 1991.

[24] P. O’Connor and A. Kleyner, Practical reliability engineering. John Wiley & Sons,
2011.

[25] IEEE Standards Board, “Systems and software engineering – vocabulary,”
ISO/IEC/IEEE 24765:2010(E), pp. 1–418, Dec 2010.

[26] K. S. Trivedi, Probability & statistics with reliability, queuing and computer science
applications. John Wiley & Sons, 2008.

[27] J. I. McCool, Using the Weibull distribution: reliability, modeling and inference.
John Wiley & Sons, 2012, vol. 950.

[28] G.-A. Klutke, P. C. Kiessler, and M. Wortman, “A critical look at the bathtub curve,”
IEEE Transactions on Reliability, vol. 52, no. 1, pp. 125–129, 2003.

[29] OpenStack. Retrieved 12/2016. [Online]. Available: https://www.openstack.org/

[30] HP Helion. Retrieved 12/2016. [Online]. Available: http://www8.hp.com/us/en/
cloud/helion-overview.html

[31] OpenShift. Retrieved 12/2016. [Online]. Available: https://www.openshift.com/

[32] Cloudify. Retrieved 12/2016. [Online]. Available: http://www.getcloudify.org/

[33] State of the cloud report. Retrieved 03/2016. [Online]. Available: http://assets.
rightscale.com/uploads/pdfs/RightScale-2016-State-of-the-Cloud-Report.pdf

[34] B. Larkin and M. Rose, “2015 top markets report cloud computing,” retrieved
09/2016. [Online]. Available: http://trade.gov/topmarkets/pdf/Cloud_Computing_
Top_Markets_Report.pdf

[35] Amazon AWS. Retrieved 12/2016. [Online]. Available: https://aws.amazon.com/

[36] Google Compute Engine. Retrieved 12/2016. [Online]. Available: https://cloud.
google.com/compute/

[37] Microsoft Azure. Retrieved 12/2016. [Online]. Available: https://azure.microsoft.
com/en-gb/

[38] iCloud. Retrieved 03/2016. [Online]. Available: https://www.icloud.com/

https://www.openstack.org/
http://www8.hp.com/us/en/cloud/helion-overview.html
http://www8.hp.com/us/en/cloud/helion-overview.html
https://www.openshift.com/
http://www.getcloudify.org/
http://assets.rightscale.com/uploads/pdfs/RightScale-2016-State-of-the-Cloud-Report.pdf
http://assets.rightscale.com/uploads/pdfs/RightScale-2016-State-of-the-Cloud-Report.pdf
http://trade.gov/topmarkets/pdf/Cloud_Computing_Top_Markets_Report.pdf
http://trade.gov/topmarkets/pdf/Cloud_Computing_Top_Markets_Report.pdf
https://aws.amazon.com/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://azure.microsoft.com/en-gb/
https://azure.microsoft.com/en-gb/
https://www.icloud.com/

Bibliography 96

[39] Conversation with eric schmidt hosted by danny sullivan. Retrieved 03/2016.
[Online]. Available: http://www.google.com/press/podium/ses2006.html

[40] Amazon EC2 beta announcement. Retrieved 06/2016. [Online]. Avail-
able: https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-
amazon-elastic-compute-cloud-amazon-ec2---beta/

[41] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified ontology of cloud com-
puting,” in Grid Computing Environments Workshop, 2008. GCE’08. IEEE, 2008,
pp. 1–10.

[42] OpenStack User Survey. Retrieved 09/2016. [Online]. Available: https://www.
openstack.org/assets/survey/April-2016-User-Survey-Report.pdf

[43] OpenStack Hypervisors. Retrieved 12/2016. [Online]. Available: http://docs.
openstack.org/newton/config-reference/compute/hypervisors.html

[44] TOSCA. Retrieved 09/2016. [Online]. Available: http://docs.oasis-open.org/tosca/
TOSCA/v1.0/os/TOSCA-v1.0-os.pdf

[45] YAML. Retrieved 12/2016. [Online]. Available: http://www.yaml.org/

[46] Security group. Retrieved 09/2016. [Online]. Available: http://docs.openstack.org/
user-guide/cli-nova-configure-access-security-for-instances.html

[47] K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing hardware re-
liability,” in Proceedings of the 1st ACM symposium on Cloud computing. ACM,
2010, pp. 193–204.

[48] B. Schroeder and G. A. Gibson, “A large-scale study of failures in high-performance
computing systems,” Dependable and Secure Computing, IEEE Transactions on,
vol. 7, no. 4, pp. 337–350, 2010.

[49] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data centers,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, p. 350, oct 2011.

[50] P. Garraghan, P. Townend, and J. Xu, “An empirical failure-analysis of a large-scale
cloud computing environment,” in High-Assurance Systems Engineering (HASE),
2014 IEEE 15th International Symposium on. IEEE, 2014, pp. 113–120.

[51] B. Wei, C. Lin, and X. Kong, “Dependability modeling and analysis for the virtual
data center of cloud computing,” in 2011 IEEE International Conference on High
Performance Computing and Communications. IEEE, Sep 2011, pp. 784–789.

[52] Y.-K. Lin and P.-C. Chang, “Evaluation of system reliability for a cloud computing
system with imperfect nodes,” Systems Engineering, vol. 15, no. 1, pp. 83–94, 2012.

http://www.google.com/press/podium/ses2006.html
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://www.openstack.org/assets/survey/April-2016-User-Survey-Report.pdf
https://www.openstack.org/assets/survey/April-2016-User-Survey-Report.pdf
http://docs.openstack.org/newton/config-reference/compute/hypervisors.html
http://docs.openstack.org/newton/config-reference/compute/hypervisors.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://www.yaml.org/
http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html
http://docs.openstack.org/user-guide/cli-nova-configure-access-security-for-instances.html

97 Bibliography

[53] B. Snyder, J. Ringenberg, R. Green, V. Devabhaktuni, and M. Alam, “Evaluation and
design of highly reliable and highly utilized cloud computing systems,” Journal of
Cloud Computing, vol. 4, no. 1, pp. 1–16, 2015.

[54] Y.-s. Dai, B. Yang, J. Dongarra, and G. Zhang, “Cloud service reliability: Modeling
and analysis,” in 15th IEEE Pacific Rim International Symposium on Dependable
Computing, 2009, pp. 1–17.

[55] Amazon EC2. Retrieved 12/2016. [Online]. Available: https://aws.amazon.com/ec2

[56] Y.-s. Dai, Y. Pan, and X. Zou, “A hierarchical modeling and analysis for grid service
reliability,” IEEE Transactions on Computers, vol. 56, no. 5, pp. 681–691, may 2007.

[57] H. Cui, Y. Li, J. Chen, and Y. Liu, “Methods with low complexity for evaluating cloud
service reliability,” in Wireless Personal Multimedia Communications (WPMC), 2013
16th International Symposium on. IEEE, 2013, pp. 1–5.

[58] Z. Wu, N. Chu, and P. Su, “Improving cloud service reliability–a system accounting
approach,” in Services Computing (SCC), 2012 IEEE Ninth International Conference
on. IEEE, 2012, pp. 90–97.

[59] A. H. Maslow, “A theory of human motivation.” Psychological review, vol. 50, no. 4,
p. 370, 1943.

[60] F. Dudouet, A. Edmonds, and M. Erne, “Reliable cloud-applications: an implementa-
tion through service orchestration,” in Proceedings of the 1st International Workshop
on Automated Incident Management in Cloud. ACM, 2015, pp. 1–6.

[61] Z. Zheng, T. C. Zhou, M. R. Lyu, and I. King, “FTCloud: A component ranking
framework for fault-tolerant cloud applications,” in 2010 IEEE 21st International
Symposium on Software Reliability Engineering. IEEE, nov 2010, pp. 398–407.

[62] W. Qiu, Z. Zheng, X. Wang, X. Yang, and M. R. Lyu, “Reliability-based design op-
timization for cloud migration,” Services Computing, IEEE Transactions on, vol. 7,
no. 2, pp. 223–236, 2014.

[63] A. Zhou, S. Wang, Z. Zheng, C.-H. Hsu, M. Lyu, and F. Yang, “On cloud service
reliability enhancement with optimal resource usage,” IEEE Transactions on Cloud
Computing, vol. 7161, 2014.

[64] W. Zhao, P. Melliar-Smith, and L. E. Moser, “Fault tolerance middleware for cloud
computing,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International Confer-
ence on. IEEE, 2010, pp. 67–74.

[65] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI, vol. 99,
1999, pp. 173–186.

https://aws.amazon.com/ec2

Bibliography 98

[66] Y. Zhang, Z. Zheng, and M. R. Lyu, “BFTCloud: A byzantine fault tolerance frame-
work for voluntary-resource cloud computing,” in Cloud Computing (CLOUD), 2011
IEEE International Conference on. IEEE, 2011, pp. 444–451.

[67] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. Chang, M. Lyu, and R. Buyya,
“Cloud service reliability enhancement via virtual machine placement optimization,”
IEEE Transactions on Service Computing, 2016.

[68] S. Malik and F. Huet, “Adaptive fault tolerance in real time cloud computing,” in
Services (SERVICES), 2011 IEEE World Congress on. IEEE, 2011, pp. 280–287.

[69] S. Malik, F. Huet, and D. Caromel, “Reliability aware scheduling in cloud comput-
ing,” in Internet Technology And Secured Transactions, 2012 International Confer-
ence for. IEEE, 2012, pp. 194–200.

[70] N. Padmapriya and R. Rajmohan, “Reliability evaluation suite for cloud services,”
in Computing Communication & Networking Technologies (ICCCNT), 2012 Third
International Conference on. IEEE, 2012, pp. 1–6.

[71] S. Banerjee, H. Srikanth, and B. Cukic, “Log-based reliability analysis of
Software as a Service (SaaS),” 2010 IEEE 21st International Symposium on
Software Reliability Engineering, pp. 239–248, nov 2010. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5635046

[72] Banerjee, Sean and Srikanth, Hema and Cukic, Bojan, “Challenges for creating
highly dependable service based systems,” in 2011 14th IEEE International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops. IEEE, Mar 2011, pp. 264–273.

[73] J. Tian, S. Rudraraju, and Z. Li, “Evaluating web software reliability based on work-
load and failure data extracted from server logs,” Software Engineering, IEEE Trans-
actions on, vol. 30, no. 11, pp. 754–769, 2004.

[74] E. Nelson, “Estimating software reliability from test data,” Microelectronics Relia-
bility, vol. 17, no. 1, pp. 67–73, 1978.

[75] S. Au and J. L. Beck, “A new adaptive importance sampling scheme for reliability
calculations,” Structural safety, vol. 21, no. 2, pp. 135–158, 1999.

[76] X. Wang and J. Grabowski, “A reliability assessment framework for cloud applica-
tions,” CLOUD COMPUTING 2015, p. 142, 2015.

[77] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi, “Scalable analytics for
iaas cloud availability,” Cloud Computing, IEEE Transactions on, vol. 2, no. 1, pp.
57–70, 2014.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5635046

99 Bibliography

[78] M. Bóna, A walk through combinatorics: an introduction to enumeration and graph
theory. World scientific, 2011.

[79] D. R. Page, “Generalized algorithm for restricted weak composition generation,”
Journal of Mathematical Modelling and Algorithms in Operations Research, vol. 12,
no. 4, pp. 345–372, 2013.

[80] W.-L. Wang, D. Pan, and M.-H. Chen, “Architecture-based software reliability mod-
eling,” Journal of Systems and Software, vol. 79, no. 1, pp. 132–146, 2006.

[81] T.-T. Pham and X. Defago, “Reliability prediction for component-based software
systems with architectural-level fault tolerance mechanisms,” in Availability, Relia-
bility and Security (ARES), 2013 Eighth International Conference on. IEEE, 2013,
pp. 11–20.

[82] Recipe. Retrieved 09/2016. [Online]. Available: http://getcloudify.org/guide/2.7/
developing/application_recipe.html

[83] Groovy. Retrieved 09/2016. [Online]. Available: http://groovy-lang.org/

[84] Apache jclouds. Retrieved 12/2016. [Online]. Available: https://jclouds.apache.org/

[85] Ganglia API. Retrieved 12/2016. [Online]. Available: https://github.com/guardian/
ganglia-api

[86] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed monitoring
system: design, implementation, and experience,” Parallel Computing, vol. 30, no. 7,
pp. 817–840, 2004.

[87] Selenium. Retrieved 12/2016. [Online]. Available: http://www.seleniumhq.org/

[88] Firefox. Retrieved 12/2016. [Online]. Available: https://www.mozilla.org/en-
US/firefox/new/

[89] XHTML. Retrieved 09/2016. [Online]. Available: https://www.w3.org/TR/xhtml1/

[90] S. Herbold and P. Harms, “Autoquest–automated quality engineering of event-driven
software,” in Software Testing, Verification and Validation Workshops (ICSTW), 2013
IEEE Sixth International Conference on. IEEE, 2013, pp. 134–139.

[91] XPath. Retrieved 09/2016. [Online]. Available: https://www.w3.org/TR/xpath/

[92] J. Dean, “Software engineering advice from building large-scale distributed sys-
tems,” CS295 Lecture at Stanford University, July, 2007.

[93] W. E. Smith, K. S. Trivedi, L. A. Tomek, and J. Ackaret, “Availability analysis of
blade server systems,” IBM Systems Journal, vol. 47, no. 4, pp. 621–640, 2008.

http://getcloudify.org/guide/2.7/developing/application_recipe.html
http://getcloudify.org/guide/2.7/developing/application_recipe.html
http://groovy-lang.org/
https://jclouds.apache.org/
https://github.com/guardian/ganglia-api
https://github.com/guardian/ganglia-api
http://www.seleniumhq.org/
https://www.mozilla.org/en-US/firefox/new/
https://www.mozilla.org/en-US/firefox/new/
https://www.w3.org/TR/xhtml1/
https://www.w3.org/TR/xpath/

Bibliography 100

[94] Software Engineering for Distributed Systems Group. Retrieved 12/2016. [Online].
Available: https://www.swe.informatik.uni-goettingen.de/

[95] Apache HTTP Server. Retrieved 12/2016. [Online]. Available: https://httpd.apache.
org/

[96] Drupal. Retrieved 12/2016. [Online]. Available: https://www.drupal.org/

[97] MySQL. Retrieved 12/2016. [Online]. Available: https://www.mysql.com/

[98] A. B. Owen, Monte Carlo theory, methods and examples, 2013.

[99] N. J. Higham, Accuracy and stability of numerical algorithms. Siam, 2002.

[100] D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers.
John Wiley & Sons, 2010.

[101] P. Sprent and N. C. Smeeton, Applied nonparametric statistical methods, 3rd edition.
CRC Press, 2001.

[102] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical methods.
John Wiley & Sons, 2013.

[103] J. Cohen, “A power primer.” Psychological bulletin, vol. 112, no. 1, p. 155, 1992.

https://www.swe.informatik.uni-goettingen.de/
https://httpd.apache.org/
https://httpd.apache.org/
https://www.drupal.org/
https://www.mysql.com/

List of Figures

2.1 An example of the exponential distribution 10
2.2 PDFs, CDFs, failure rates, and reliability of Weibull distributions 11
2.3 An example of bathtub curve [28] . 12
2.4 An example of series system . 12
2.5 An example of parallel system . 13
2.6 Cloud ontology structure, adapted from [41] 15

4.1 Deployment stack of cloud applications and overview of the framework . . 26
4.2 An example LDG . 28
4.3 The sLDGs of a service and a set of PSs 28
4.4 Deployment examples of two sequential services 31
4.5 The reduction of two sequential services 32
4.6 An example deployment structure of a service 34
4.7 A scenario that four out of six SVs succeed 34
4.8 The scenario corresponding to the weak composition (1,3,0) 36
4.9 An example of style reduction . 40
4.10 An example of choice style . 41
4.11 An example sLDG of service se1 . 42
4.12 The sLDG of U4 . 45
4.13 The reduction of the style in Figure 4.12 47

5.1 The process of generating an LDG . 49
5.2 The overview of the implementation of the dependency analyzer 50
5.3 An application and its descriptor file . 51
5.4 Implementation of the Monitor . 53

6.1 The comparison process . 59
6.2 The structure of the cloud platform . 63
6.3 Application deployment structures . 64
6.4 Simulated application reliability for all deployments 67
6.5 The analysis report of the first test round of the Simple deployment 71
6.6 Comparison results for the Minimal deployment 73
6.7 Comparison results for the Simple deployment 74

List of Figures 102

6.8 Comparison results for the Average-1 deployment 74
6.9 Comparison results for the Average-2 deployment 75
6.10 Comparison results for the Medium deployment 75
6.11 Comparison results for the Complex deployment 76
6.12 Comparison results for the K-out-of-n deployment 76

List of Tables

4.1 Generated compositions . 37
4.2 Inputs and outputs of the generalized algorithm for restricted weak compo-

sition generation for services in G(U4) . 46

5.1 An example test case of Selenium . 55

6.1 Physical specifications of OpenStack cloud nodes 62
6.2 Assessment results for deployments . 73
6.3 w-values and z-scores of Wilcoxon tests 78
6.4 p-values and effect sizes . 79
6.5 MAE and SD of results . 81

7.1 Comparison of DEBRA with existing methods 88

Acronyms

AFR Annualized Failure Rate

API Application Program Interface

ARMRA Analytical Reliability Model for Reliability Assessment

AWS Amazon Web Services

BFT Byzantine Fault Tolerance

CCF Common Cause Failure

CCS Cloud Computing System

CDF Cumulative Distribution Function

CPU Central Processing Unit

DAG Directed Acyclic Graph

DDA Deployment Dependency Analyzer

DEBRA DEpendency-Based Reliability Assessment

DSL Domain Specific Language

EC2 Elastic Compute Cloud

FDA Function Dependency Analyzer

FTM Fault Tolerance Manager

GUI Graphical User Interface

HCMRA Hierarchical Correlation Model for Reliability Assessment

HDD Hard Disk Drive

HPCRA High Performance Computing Reliability Assessment

HTML HyperText Markup Language

Acronyms 106

HTTP HyperText Transfer Protocol

IaaS Infrastructure as a Service

ID IDentifier

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IT Information Technology

KVM Kernel-based Virtual Machine

LDG Layered Dependency Graph

LLFT Low Latency Fault Tolerance

LOBRA LOg-Based Reliability Assessment

MAE Mean Absolute Error

MCS Monte Carlo Simulation

MPI Message Passing Interface

MTBF Mean Time Between Failures

MTTF Mean Time To Failures

NIST National Institute of Standards and Technology

NVP N-Version Programming

OPVMP OPtimal redundant Virtual Machine Placement

OS Operating System

PaaS Platform as a Service

PDF Probability Density Function

PS Physical Server

QoR Quality of Reliability

QoS Quality of Service

107

RBD Reliability Block Diagram

REST REpresentational State Transfer

S3 Simple Storage Service

SaaS Software as a Service

SD Standard Deviation

SEBRA SErvice-Based Reliability Assessment

SI Service Instance

sLDG sub-LDG

SPoF Single Point of Failure

SSH Secure SHell

SV SI-VM

TOSCA Topology and Orchestration Specification for Cloud Applications

URL Uniform Resource Locator

VDC Virtual Data Centers

VM Virtual Machine

VMM Virtual Machine Monitor

WoL Wake-on-LAN

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

XPath XML Path Language

ChapterA
Appendices

A.1 Correctness of the Adapted Algorithm for Calculating the
Standard Variance of Monte Carlo Simulation Results

Given:

δi = Rsimi− µ̄i−1

µ̄i =
i

∑
j=1

Rsim j/i

Si = Si−1 +
i−1

i
δ

2
i

prove that:

µ̄n =
1
n

n

∑
i=1

Rsimi

Sn =
n

∑
i=1

(Rsimi−Rsim)
2

Proof 1: Apparently, we have:

µ̄i =
i

∑
j=1

Rsim j/i

⇒ µ̄n =
1
n

n

∑
i=1

Rsimi

�

Appendices 110

Proof 2: First, we can prove that:

n

∑
i=1

(Rsimi− µ̄n)
2−

n−1

∑
i=1

(Rsimi− µ̄n−1)
2

=(Rsimn− µ̄n)
2 +

n−1

∑
i=1

((Rsimi− µ̄n)
2− (Rsimi− µ̄n−1)

2)

=(Rsimn− µ̄n)
2 +

n−1

∑
i=1

(Rsimi− µ̄n +Rsimi− µ̄n−1)(Rsimi− µ̄n−Rsimi + µ̄n−1)

=(Rsimn− µ̄n)
2 +

n−1

∑
i=1

(2Rsimi− µ̄n−1− µ̄n)(µ̄n−1− µ̄n)

=(Rsimn− µ̄n)
2 +(2

n−1

∑
i=1

Rsimi− (n−1)µ̄n−1− (n−1)µ̄n)(µ̄n−1− µ̄n)

=(Rsimn− µ̄n)
2 +(2

n−1

∑
i=1

Rsimi−
n−1

∑
i=1

Rsimi−
n−1

n

n

∑
i=1

Rsimi)(µ̄n−1− µ̄n)

=(Rsimn− µ̄n)
2 +(

n−1

∑
i=1

Rsimi−
n−1

n

n

∑
i=1

Rsimi)(µ̄n−1− µ̄n)

=(Rsimn− µ̄n)
2 +(

n−1

∑
i=1

Rsimi−
n−1

n

n−1

∑
i=1

Rsimi−
n−1

n
Rsimn)(µ̄n−1− µ̄n)

=(Rsimn− µ̄n)
2 +(

1
n

n−1

∑
i=1

Rsimi +
1
n

Rsimn−Rsimn)(µ̄n−1− µ̄n)

=(Rsimn− µ̄n)
2 +(µ̄n−Rsimn)(µ̄n−1− µ̄n)

=(Rsimn− µ̄n)(Rsimn− µ̄n− µ̄n−1 + µ̄n)

=(Rsimn− µ̄n)(Rsimn− µ̄n−1)

then, we have:

111 A.2 Examples of Log Files

δi = Rsimi− µ̄i−1

Si = Si−1 +
i−1

i δ 2
i

}
⇒Sn−Sn−1 =

n−1
n

δ
2
n

=
n−1

n
(Rsimn− µ̄n−1)

2

=(
n−1

n
Rsimn−

n−1
n

µ̄n−1)(Rsimn− µ̄n−1)

=(
n−1

n
Rsimn−

1
n

n−1

∑
i=1

Rsimi)(Rsimn− µ̄n−1)

=(Rsimn− (
1
n

n−1

∑
i=1

Rsimi +
1
n

Rsimn))(Rsimn− µ̄n−1)

=(Rsimn− µ̄n)(Rsimn− µ̄n−1)

Therefore, we have:

Sn−Sn−1 =
n

∑
i=1

(Rsimi− µ̄n)
2−

n−1

∑
i=1

(Rsimi− µ̄n−1)
2

⇒ Sn =
n

∑
i=1

(Rsimi− µ̄n)
2

�

A.2 Examples of Log Files

For each test round of each deployment, fault injections information from the fault injector,
state information of PSs, VMs and services from the monitor, testing results from the test
case generator, analysis reports created by the reliability analyzer are logged in separate
files. In the following sections, we give examples of all kinds of log files of the first test
round of the Medium deployment. In all example files, component names are modified and
timestamps are removed.

A.2.1 An Example of Injection Logs

The following is an example of injection logs, which shows the header and the first 20
injections of the injection log file. The header includes three parts: the LDG, the list of
components in the LDG and the failure rate of each component. For each injection, the
injection number, the target components and actions are logged.
INFO: Graph is: Graph[apache_vm_1=ps_1, drupal_vm_1=ps_2, mysql_vm_1=ps_1, apache_vm_2=ps_3, drupal_vm_2=ps_2, mysql_vm_2=ps_3,
apache_1=apache_vm_1, drupal_1=drupal_vm_1, mysql_1=mysql_vm_1, apache_2=apache_vm_2, drupal_2=drupal_vm_2, mysql_2=mysql_vm_2,

Appendices 112

apache=(apache_1; apache_2; drupal), drupal=(drupal_1; drupal_2; mysql), mysql=(mysql_1; mysql_2)]

INFO: Objects are:
[ps_1, ps_2, ps_3, apache_vm_1, drupal_vm_1, mysql_vm_1, apache_vm_2, drupal_vm_2, mysql_vm_2, apache_1, drupal_1, mysql_1,
apache_2, drupal_2, mysql_2]

INFO: Failure Rate Map is:
[drupal_vm_1=0.03, drupal_vm_2=0.03, apache_1=0.03, ps_1=0.001, apache_2=0.03, mysql_1=0.03, mysql_2=0.03, drupal_1=0.03,
drupal_2=0.03, mysql_vm_2=0.03, mysql_vm_1=0.03, apache_vm_2=0.03, apache_vm_1=0.03, ps_2=0.001, ps_3=0.001]

INFO: Injection-0
INFO: Injection-1
INFO: Injection-2
INFO: Injection-3
INFO: Injection-4
INFO: Injected failure to SI: drupal_1 KILLED.
INFO: Injected failure to SI: drupal_2 KILLED.
INFO: Injection-5
INFO: Injection-6
INFO: Injection-7
INFO: Injection-8
INFO: Injection-9
INFO: Injected failure to VM: apache_vm_2 SUSPENDED.
INFO: Suspended SI : apache_2
INFO: Injection-10
INFO: Injection-11
INFO: Injected failure to VM: drupal_vm_1 SUSPENDED.
INFO: Suspended SI : drupal_1
INFO: Injection-12
INFO: Injected failure to SI: drupal_2 KILLED.
INFO: Injection-13
INFO: Injection-14
INFO: Injection-15
INFO: Injected failure to SI: mysql_1 KILLED.
INFO: Injection-16
INFO: Injected failure to VM: mysql_vm_1 SUSPENDED.
INFO: SI : mysql_1 ALREADY FAILED.
INFO: Injection-17
INFO: Injected failure to VM: apache_vm_1 SUSPENDED.
INFO: Suspended SI : apache_1
INFO: Injection-18
INFO: Injection-19
INFO: Injection-20

A.2.2 An Example of Monitoring Logs of PSs

A PS has two states: alive and not alive. The following is the monitoring information of
PSs during the first 20 injections:
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true

113 A.2 Examples of Log Files

INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true
INFO: Server ps_1 is alive.true
INFO: Server ps_2 is alive.true
INFO: Server ps_3 is alive.true

A.2.3 An Example of Monitoring Logs of VMs

A VM also has two states: alive and not alive. The following is the monitoring information
of VMs during the first 20 injections:
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.

Appendices 114

INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
SEVERE: VM apache_vm_2 is NOT alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
SEVERE: VM drupal_vm_1 is NOT alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
SEVERE: VM mysql_vm_1 is NOT alive.
INFO: VM mysql_vm_2 is alive.
SEVERE: VM apache_vm_1 is NOT alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.

115 A.2 Examples of Log Files

INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.
INFO: VM apache_vm_1 is alive.
INFO: VM apache_vm_2 is alive.
INFO: VM drupal_vm_1 is alive.
INFO: VM drupal_vm_2 is alive.
INFO: VM mysql_vm_1 is alive.
INFO: VM mysql_vm_2 is alive.

A.2.4 An Example of Monitoring Logs of Services

The same to PSs and VMs, SIs and services have two states: alive and not alive. The
following is the monitoring information of the Apache service during the first 20 injections,
which firstly shows the states of all SIs of the service and then the state of the service for
each injection.

INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
SEVERE: INSTANCE apache_2 is NOT alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
SEVERE: INSTANCE apache_1 is NOT alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.

Appendices 116

INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.
INFO: INSTANCE apache_1 is alive.
INFO: INSTANCE apache_2 is alive.
INFO: SERVICE apache is alive.

A.2.5 An Example of Testing Result Logs

A testing result may be succeeded or failed. Beside of the testing result, the command,
target and value of the testing action are also logged. In the following example, commands
are all “open”, targets are all the home page of the website and values are all void. The
following is the testing results during the first 20 injections.

INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
SEVERE: Event failed. Command: open-Target: /-Value:
SEVERE: Event failed. Command: open-Target: /-Value:
SEVERE: Event failed. Command: open-Target: /-Value:
SEVERE: Event failed. Command: open-Target: /-Value:
SEVERE: Event failed. Command: open-Target: /-Value:
SEVERE: Event failed. Command: open-Target: /-Value:
SEVERE: Event failed. Command: open-Target: /-Value:
SEVERE: Event failed. Command: open-Target: /-Value:
SEVERE: Event failed. Command: open-Target: /-Value:
SEVERE: Event failed. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:

117 A.2 Examples of Log Files

INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:

Appendices 118

INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:
INFO: Event succeeded. Command: open-Target: /-Value:

A.2.6 An Example of the Analysis Report

The following is the analysis report for the first test round of the Medium deployment.

Setup

Inner Failure Inner Reli- Assessed Reli-
Rate (IFR) ability (IRE) ability (RE)

ps_1 0.00100000 0.99900050 0.99900050
ps_2 0.00100000 0.99900050 0.99900050

119 A.2 Examples of Log Files

ps_3 0.00100000 0.99900050 0.99900050
apache_vm_1 0.03000000 0.97044553 0.96947557
apache_vm_2 0.03000000 0.97044553 0.96947557
drupal_vm_1 0.03000000 0.97044553 0.96947557
drupal_vm_2 0.03000000 0.97044553 0.96947557
mysql_vm_1 0.03000000 0.97044553 0.96947557
mysql_vm_2 0.03000000 0.97044553 0.96947557
----apache_1 0.03000000 0.97044553 0.94082324
----apache_2 0.03000000 0.97044553 0.94082324
apache 0.00350803 0.99649811 0.98953804
----drupal_1 0.03000000 0.97044553 0.94082324
----drupal_2 0.03000000 0.97044553 0.94082324
drupal 0.00439713 0.99561252 0.99300849
----mysql_1 0.03000000 0.97044553 0.94082324
----mysql_2 0.03000000 0.97044553 0.94082324
mysql 0.00350803 0.99649811 0.99649811
Application 0.98953804

Fault Injector: 1500 injections

Injected IFR Injected IRE Assessed RE

ps_1 0.00000000 1.00000000 1.00000000
ps_2 0.00000000 1.00000000 1.00000000
ps_3 0.00066689 0.99933333 0.99933333
apache_vm_1 0.03390155 0.96666667 0.96666667
apache_vm_2 0.03597266 0.96466667 0.96402356
drupal_vm_1 0.03114673 0.96933333 0.96933333
drupal_vm_2 0.03183472 0.96866667 0.96866667
mysql_vm_1 0.03252319 0.96800000 0.96800000
mysql_vm_2 0.03459144 0.96600000 0.96535600
----apache_1 0.02429269 0.97600000 0.94346667
----apache_2 0.03114673 0.96933333 0.93446017
apache 0.00371207 0.99629481 0.98793148
----drupal_1 0.03874083 0.96200000 0.93249867
----drupal_2 0.03943407 0.96133333 0.93121156
drupal 0.00465413 0.99535669 0.99157049
----mysql_1 0.03045921 0.97000000 0.93896000
----mysql_2 0.02908558 0.97133333 0.93768246
mysql 0.00381112 0.99619614 0.99619614
Application 0.98793148

Monitor: 1500 logs

Monitored RE Assessed RE

ps_1 1-0/1500=1.00000000 1.00000000
ps_2 1-0/1500=1.00000000 1.00000000
ps_3 1-1/1500=0.99933333 0.99933333
apache_vm_1 1-50/1500=0.96666667 0.96666667
apache_vm_2 1-54/1500=0.96400000 0.96402356
drupal_vm_1 1-46/1500=0.96933333 0.96933333
drupal_vm_2 1-47/1500=0.96866667 0.96866667
mysql_vm_1 1-48/1500=0.96800000 0.96800000
mysql_vm_2 1-52/1500=0.96533333 0.96535600
----apache_1 1-84/1500=0.94400000 0.94346667
----apache_2 1-98/1500=0.93466667 0.93446017
apache 1-6/1500=0.99600000 (IRE) 0.98793148
----drupal_1 1-102/1500=0.93200000 0.93249867
----drupal_2 1-101/1500=0.93266667 0.93121156
drupal 1-5/1500=0.99666667 (IRE) 0.99157049
----mysql_1 1-92/1500=0.93866667 0.93896000
----mysql_2 1-92/1500=0.93866667 0.93768246
mysql 1-4/1500=0.99733333 (IRE) 0.99619614
Application 0.98793148

Test: 15000 requests

Tested RE Assessed RE

Application 1-150/15000=0.99000000 0.98793148

	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Motivation
	Goals and Contributions
	Structure of the Thesis

	Background
	Reliability Engineering
	Failure Distributions
	Reliability Modeling

	Cloud Computing
	OpenStack
	Cloudify

	Related Work
	Cloud Hardware Reliability
	Cloud Computing System Reliability
	Cloud Application Reliability
	Reliability Improvement
	Reliability Assessment and Prediction

	A Reliability Assessment Framework for Cloud Applications
	Overview
	Dependency Analyzer
	Monitor
	Reliability Analyzer
	Assumptions
	Non-service Component Reliability
	Service Inner Reliability
	Service Reliability
	Application Reliability

	Implementation
	Implementation of Dependency Analyzer
	Implementation of Monitor
	Implementation of Fault Injector
	Implementation of Tester
	Implementation of Reliability Analyzer

	Case Studies
	Setup
	Hypotheses and Metrics
	Parameters and Comparison Process
	Existing Methods for Comparison

	Platform and Application
	Results
	Baselines
	Assessment Results
	Comparison

	Discussion

	Discussion
	Answers to Research Questions
	Strengths and Limitations
	Strengths of DEBRA
	Limitations of the Framework and Implementation
	Threats to Validity

	Conclusion
	Summary
	Outlook

	Bibliography
	List of Figures
	List of Tables
	List of Acronyms
	Appendices
	Correctness of the Adapted Algorithm for Calculating the Standard Variance of Monte Carlo Simulation Results
	Examples of Log Files
	An Example of Injection Logs
	An Example of Monitoring Logs of PSs
	An Example of Monitoring Logs of VMs
	An Example of Monitoring Logs of Services
	An Example of Testing Result Logs
	An Example of the Analysis Report

