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Abstract 

Microglia, resident macrophages of the CNS, execute various functions: they participate in 

oligodendrogenesis, neurogenesis, learning and behavior, phagocytose harmful material as 

well as tissue debris and mount crucial innate immune responses upon CNS infection and 

damage (Hanisch & Kettenmann, 2007). Ageing and associated neurodegenerative processes 

can impair these functions. In Alzheimer´s disease (AD), microglia are incapable to clear the 

toxic amyloid β peptide (Aβ). This may lead to a massive accumulation and deposition of the 

peptide. Additionally, in an AD environment, microglia seem to be activated, leading to 

excessive production of inflammatory mediators, such as pro-inflammatory cytokines and 

chemokines, which can further damage the vulnerable CNS circuitry. The main focus of this 

study was to investigate if these changes in microglia properties are reversible in a healthy 

environment. Furthermore, microglial priming (described as their exaggerated response to an 

inflammatory stimulus compared with stimulus-naïve microglia; Norden & Godbout, 2013) 

was studied in mouse models of AD. Using 3, 6 and 9 months old 5XFAD mice, as an animal 

model of AD we could mainly show that the activity of microglia to phagocytose or produce 

pro-inflammatory factors does not differ from microglia derived from wild-type (WT) mice ex 

vivo. However, we observed a dramatic age-dependent decrease in both of these activities 

independent of the genotype. These data demonstrate that microglial alteration in AD 

environments -described in former studies- are reversible, depending on the environment. In 

addition, we studied the hyper-sensitivity of microglia in the vicinity of Aβ plaques. 

Characterization of these microglia in APP23, APPswePS1dE9 and 5XFAD mice revealed 

expression of microglial activation/priming markers such as Mac-2, CD68 and MHC II. 

Isolation of MHC II positive and -negative microglia from whole brains of 9 months old 

5XFAD and WT mice also showed significant changes towards pro-inflammatory 

characterisitcs in MHC II positive microglia compared to the MHC II negatives. In addition, 

immunohistochemical analysis of systemic LPS-induced inflammation in 5XFAD mice led to 

overexpression of Mac-2, CD68, MHC II and IL-1β exclusively in the vicinity of Aβ plaques. 

In contrast, LPS-induced priming and inflammation was absent in plaque free regions. These 

data indicate that microglia in the vicinity of Aβ depositions are primed.  

In the third part we determined how the activation of beta 2 adrenergic receptors (β2ARs) in 

LPS-stimulated microglia influences the pro-inflammatory response of microglia. This 
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investigation was based on previously observed anti-inflammatory effects of the adrenergic 

system on macrophages including microglia and its positive effects on AD. In the 

investigations, ex vivo or in vivo, microglia were treated with LPS and salbutamol (β2AR 

agonist) simultaneously and the subsequent microglial production of pro-inflammatory cyto-/ 

chemokines and microglia-induced infiltration of immune cells from the periphery was 

analyzed. We observed that the production of some but not all pro-inflammatory proteins are 

inhibited by salbutamol. For instance, the production of TNFα is almost completely inhibited. 

In contrast, the production of CCL5 is almost not inhibited. Previous studies on microglia 

lacking the mediator protein TRIF suggested that TLR4 signalling through the TRIF pathway 

is a supporting path to escape from the inhibitory effects of salbutamol. Our current data 

concerning involvement of specific TRIF dependent genes and also data from mRNA 

sequencing experiments in microglia treated with LPS alone or combined with salbutamol 

proved involvement of the TRIF pathway as an escaping route. Moreover, flow cytometry 

analyses of mice treated with LPS alone or combined with salbutamol revealed significant 

decreases in infiltration of immune cells in the brain. Using immunohistochemistry we 

additionally showed that expression of Iba-1 and GFAP on microglia and astrocytes are not 

affected by salbutamol.  These data clearly show selective effects of the adrenergic system on 

pro-inflammatory factors in microglia. Reduced recruitment of immune cells from the 

periphery by activation of the adrenergic system is possibly an important factor in improving 

AD inflammation. 
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1 Introduction 

1.1 Microglia  

Microglia are myeloid glial cells in the central nervous system (CNS) making up 10-15% of 

all the CNS cells. Due to their similarities- in appearance and function- to tissue macrophages 

they are considered to be resident tissue macrophages in the brain and spinal cord (Banati, 

2003). Microglia are distributed heterogeneously in the CNS tissue and depending on their 

neighbouring environment they can have various specialized functions and densities (Banati, 

2003). A number of studies on microglia indicate that these cells are specialized mononuclear 

phagocytes and, accordingly, share many characteristics with other myeloid cells such as 

expression of Fc (fragment crystallisable) and complement receptor, CD11b and F4/80 

epitopes expression and also antigen presentation molecules (major histocompatibility 

complex class I & II (MHC I & II); Harry, 2013).  

1.1.1 Origin 

It is generally known that microglia cells originate from the yolk sac during the 

embryogenesis (around day 9 in rodents; Takahashi et al, 1996). Establishment of the 

microglia population is done by invading embryonic macrophages (erythromyeloid 

precursors) that are generated during an early ‘primitive’ wave of haematopoiesis in the yolk 

sac to the mesenchyme of the brain (Ginhoux et al., 2010). Transcription factors PU.1- and 

interferon regulatory factor 8 (IRF-8) play fundamental roles in this invasion and 

differentiation (Kierdorf et al., 2013). Therefore, the microglia compartment in the brain is 

established before birth. In spite of embryonic macrophage origin, under physiological 

conditions maintenance of adult microglia population is independent of adult haematopoiesis 

and primarily occurs by longevity and limited self-renewal (Bruttger et al., 2015).  

1.1.2 Homeostasis and defense function 

Microglia cell function is very plastic. In the ramified form- which has been called resting 

stage- they are constantly motile. Their long processes monitor the environment and interact 

closely with other cell types like neurons, astrocytes and oligodendrocytes in the CNS 

(reviewed by Hanisch & Kettenmann, 2007). It has been estimated that they are able to 

monitor the complete brain parenchyma every few hours (Davalos et al., 2005).   
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A number of studies has shown that microglial monitoring is important for brain homeostasis 

and surveillance (Nimmerjahn et al., 2005). Support of oligodendrogenesis and neurogenesis, 

learning and behaviour have been also suggested to be (at least partly) under microglial 

control (Butovsky et al., 2006; Chen et al., 2010; Ziv et al., 2006). Involvement of soluble 

growth factors released from microglia during developmental microglia–neuron crosstalk has 

been also suggested (Michell-Robinson et al., 2015). It has been shown that microglia in 

neurogenic areas behave differently than those in non-neurogenic regions (Goings et al., 

2006; Marshall et al., 2014). Paolicelli et al., (2011) illustrated that microglia support synaptic 

maturation by actively engulfing synapses during postnatal development. The authors 

suggested that synaptic abnormalities found in some neurodevelopmental disorders could be 

due to deficits in microglia function.  

1.1.3 Pattern-recognition receptors in microglia 

Since microglia cells are part of the innate immune system, they are first line of defence 

against pathogens which enter the brain and cause infectious diseases. They are able to 

phagocyte exogenous material like bacteria and other pathogens. Under physiological 

conditions microglia continuously phagocytose excessive endogenous material, for instance 

non-functional synapses, myelin and apoptotic debris. This leads to elimination of 

phagocytosed material and subsequent presentation of their antigens to other immune cells 

(Newton & Dixit, 2012).  

To perform clearance, microglia express sensors that recognize pathogens and other foreign 

molecules. For this surveillance microglia make use of pattern-recognition receptors (PRRs) 

(Akira et al., 2006). PRRs recognize pathogen-associated molecular patterns (PAMPs) and 

damage/danger associated molecular patterns (DAMPs). PAMPs and DAMPs involve 

infectious and non-infectious materials, respectively. PAMPs are for example various 

components of bacterial cell walls like lipopolysaccharide (LPS), lipopeptides, peptidoglycans 

(PGN) and flagellin, and nucleic acids derived from bacteria, viruses, fungi and parasites 

(Akira et al., 2006). DAMPs include intra- or extracellular proteins such as released heat 

shock proteins, protein fragments derived from the extracellular matrix, misfolded proteins 

and adenosine triphosphate (ATP) (Kono & Kenneth, 2008; Heneka et al., 2015). 

The two best known examples of PRRs are Toll-like receptors (TLRs) and Nod-like receptors 

(NLRs; Newton & Dixit, 2012).  

http://www.invivogen.com/tlr4-agonist
http://www.invivogen.com/tlr2-ligand-cw
http://www.invivogen.com/tlr2-ligand-cw
http://www.invivogen.com/tlr5-ligands
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 Toll-like receptors in microglia 1.1.3.1

Toll-like receptors (TLRs) consist of extracellular, transmembrane and cytoplasmic domains. 

The extracellular parts contain variable members of leucine-rich-repeat (LRR) motifs which 

mediate recognition of PAMPs and DAMPs. 

The cytoplasmic parts of TLRs are called Toll–interleukin 1 (IL-1) receptor (TIR) domains 

(Bowie & O’Neill, 2000) and are essential for downstream signal transduction (Figure 1). 

 

Figure 1: Drawing of mammalian TLR signalling pathways.  
The picture illustrates locations and ligands of TLRs. While TLR4, TLR5, combination of TLR1-2 
and TLR2-6 are located on the cell surface, TLR3, TLR7, TLR8 and TLR9 are localized in the 
endosomes. TLR4 have both possibilities to be located at the plasma membrane and the endosomes. 
Following binding of ligands to the respective TLRs, their Toll–IL-1-receptor (TIR) domains engage 
TIR domain-containing adaptor proteins (either myeloid differentiation primary-response protein 88 
(MYD88) in addition to MYD88-adaptor-like protein (MAL), or TIR domain-containing adaptor 
protein inducing IFNβ (TRIF) with TRIF-related adaptor molecule (TRAM)). Endocytosis of TLR4 is 
essential for switching signalling from MyD88 to TRIF pathways. Signalling molecules then interact 
with IL-1R-associated kinases (IRAKs) and the adaptor molecules TNF receptor-associated factors 
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(TRAFs) leading to the activation of the mitogen-activated protein kinases (MAPKs), JUN N-terminal 
kinase (JNK), p38 and, eventually, transcription factors such as nuclear factor-κB (NF-κB), the 
interferon-regulatory factors (IRFs), cyclic AMP-responsive element-binding protein (CREB) and 
activator protein 1 (AP1). TLRs signallings mainly lead to production of pro-inflammatory cytokines 
or the induction of type I interferons (IFN). Abbreviations: LPS, lipopolysaccharide; dsRNA, double-
stranded RNA; rRNA, ribosomal RNA; ssRNA, single-stranded RNA; IKK, inhibitor of NF-κB 
kinase; MKK, MAP kinase kinase; TAB, TAK1-binding protein; TAK, TGFβ-activated kinase; RIP1, 
receptor-interacting protein 1; TBK1, TANK-binding kinase 1 (taken from O’Neill et al., 2013). 

 

The TLR family consist of 10 members (TLR1–TLR10) in human and 12 members (TLR1–

TLR9, TLR11–TLR13) in mouse (Akira et al., 2006). Depending on their localization and 

ligands, TLRs are divided into two groups: the first group, composed of TLR1, TLR2, TLR4, 

TLR5, TLR6 and TLR11, is expressed on the cell surfaces and recognizes primarily microbial 

membrane components. The second group, which is composed of TLR3, TLR7, TLR8 and 

TLR9, is expressed solely in intracellular compartments such as the endoplasmic 

reticulum (ER), lysosomes, endosomes and endolysosomes and recognize microbial nucleic 

acids (Botos et al., 2011).  

Recognition of PAMPs and DAMPs by TLRs leads to recruitment of TIR domain-containing 

adaptor proteins such as myeloid differentiation primary response gene 88 (MyD88) and TIR-

domain-containing adapter-inducing interferon-β (TRIF). These adaptor proteins initiate 

signalling cascades, which eventually activate mitogen-activated protein kinases (MAPK) or 

transcription factors such as activator protein 1 (AP-1), nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) and interferon regulatory factors (IRFs). TLR 

signalling ultimately gives rise to a diverse cellular responses including production of pro- 

and anti-inflammatory cytokines and chemokines, effector molecules and interferons (INFs) 

(Kawasaki & Kawai, 2014).   

All the TLRs use either MyD88- or TRIF-mediated signal transduction pathways with 

exception of TLR4, which is capable of using both pathways. Moreover, TLR4 complex, 

containing myeloid differentiation factor-2 (MD-2) and its co-receptor CD14, is able to 

recognize both PAMPs and DAMPs (Regen et al., 2011).  

 Nod-like receptors in microglia 1.1.3.2

Apart from TLRs -which are mainly membrane bound-, cytoplasmic Nod-like receptors 

(NLRs) represent another type of PRRs. Upon NLR activation by PAMPs and DAMPs, 
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cytosolic protein complexes- named inflammasomes- assemble and subsequently mediate 

inflammasome signalling.  

In general, inflammasome complexes consist of three main components: a cytosolic PRR such 

as NLR family containing pyrin domain (NLRP), caspase-1 and an adaptor protein apoptosis-

associated speck like protein (ASC), which contains a caspase activation and recruitment 

domain (CRE). Activation of NLRPs leads to recruitment of ASC, which results in the 

interaction of ACS with pro-caspase-1 and facilities its conversion to caspase-1. Caspase-1 is 

necessary for maturation of pro forms of interleukin (IL)-1β, IL-18, and IL-33 into their active 

forms. These interleukins then initiate inflammatory responses. Therefore, inflammasomes 

play a crucial role in inflammation and inflammatory processes (reviewed by Singhal et al., 

2014). 

1.1.4 Microglial role in pathology 

Under healthy conditions, microglia show a ramified phenotype and produce anti-

inflammatory and neurotrophic factors (Streit, 2002). However, in response to pathogens or 

after tissue damage microglia switch to an activated phenotype, which promotes inflammation 

and recruitment of peripheral immune cells (Wyss-Coray & Mucke, 2002; Baik et al., 2014). 

In general, this reaction is self-limiting upon elimination of infection and tissue damage. 

Nevertheless, sustained stimuli (infectious or endogenous factors such as protein aggregates) 

can lead to a persistence of inflammation, resulting in continuous production of cytotoxic 

molecules (Akiyama et al., 2000) for instance pro-inflammatory cytokines and chemokines, 

reactive oxygen species (ROS) and nitric oxide (NO). Together with ongoing inflammasome 

activity these factors worsen the tissue damage as observed in neuroinflammatory and 

neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), 

multiple sclerosis and Hungtington’s disease (reviewed in Glass et al., 2010 and Singhal et al., 

2014b).  

Chronic low grade inflammation as observed upon ageing and neurodegenerative diseases 

leads to microglia priming (Norden & Godbout, 2013). Primed microglia are more susceptible 

to pro-inflammatory stimuli, which may result in an exaggerated inflammatory response. 

Secondary pro-inflammatory stimuli can rise either from the CNS or systemic inflammations. 

For example, in the result of microglia priming, in animals with age-related or 
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neurodegenerative pathology, LPS provokes a higher pro-inflammatory response in the brain 

(Sierra et al., 2007). Similarly, high baseline of the pro-inflammatory cytokine tumor necrosis 

factor alpha (TNFα) due to a systemic infection leads to four-fold increase in the rate of 

cognitive decline over a 6-month period among mildly to severely affected Alzheimer’s 

disease patients (Holmes et al., 2009). 

1.2 Alzheimer’s disease 

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder with a slow progression 

(Hampel et al., 2010). AD is the most frequent type of dementia and is the fourth common 

cause of death in the aged population. By estimation more than 35 million cases of AD exist 

worldwide (Goedert M, 2006; Querfurth HW, 2010). It has been estimated that after an age of 

65, the occurrence of age-related AD almost doubles every 5 years (Qiu et al., 2009). The 

early hallmarks of AD include loss of short-term memory, difficulties in performing daily life 

activities leading to withdrawal from social life. Besides, progressive deterioration in 

memory, attention and language are considered as behavioural symptoms (Zhao et al., 2014).  

Typically, AD initiates with a preclinical stage and progresses to three common clinical 

stages: mild (early stage), moderate (middle stage) and severe (late stage). Preclinical stage 

refers to the onset of brain changes before any symptom appears and can last for even 15 

years. In the mild stage of AD, the patient is still capable of performing daily activities in 

spite of having slight memory gaps, for instance, forgetting words or the locations of objects. 

With disease progression patients with moderate stage of AD require higher levels of care. 

The severe stage which is the final stage of the disease, includes incapability of proper 

responses to their environment due to worsening of memory and cognitive skills (Lyketsos et 

al., 2011). 

1.2.1 Pathology 

AD is described by a loss of neurons and synapses in both cortical and subcortical regions of 

the brain leading to an atrophy of the affected regions, eventually brain shrinkage and increase 

in ventricle sizes (Figure 2). The most degenerated regions in AD are frontal, temporal and 

parietal lobes, hippocampus (Wenk, 2003) and locus coeruleus (Heneka et al., 2010). 
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Figure 2: Schematic picture of brain atrophy 
in AD.  
The picture compares a normal brain with an 
atrophic brain at late stages of AD. Degenerated 
regions involve mainly memory and language 
skills (taken from http://www.forbes.com).  

 

 

1.2.2 Onset and risk factors 

Although AD mainly involves people over 65 years, it is not exclusively an age-related 

disease (Ritchie et al., 1992). Regarding the onset of the disease, AD is divided into two 

types: early- and late-onset, named familial and sporadic, respectively. Familial AD (FAD) 

consists of only about 5% of all AD cases. Genetically, FAD is an autosomal dominant 

disorder and occurs as the result of mutations in amyloid precursor protein (APP) or 

presenilin (PSEN1 or PSEN2) genes. 

In contrast, sporadic type of AD (SAD) consists of 90-95% of AD cases, which is not solely 

influenced by genetic contributions. So far, ageing, trisomy of chromosome 21 and allele ε4 

of apolipoprotein E4 (ApoE4-ε4) have been introduced as the main risk factors for SAD. 

Among other non-genetic SAD risk factors, severe head injuries, smoking, cerebrovascular 

diseases, diabetes and hypertension have been suggested (reviewed in Querfurth HW, 2010; 

Chen CS et al., 2011). Recent AD studies have identified novel risk factors. New techniques 

in genome sequencing and polymorphism studies have illustrated the contribution of the 

immune system in the disease progression. Thus, a number of genes which play a role in 

phagocytic activity of immune cells such as cluster of differentiation 33 (CD33), triggering 

receptor expressed on myeloid cells 2 (TREM2) and TYRO protein tyrosine kinase-binding 

protein (TYROBP; also known as DAP12) have been identified as new AD-associated factors 

(Karch & Goate, 2014; Zhang et al., 2013) 

1.2.3 Neuropathological hallmarks 

AD is characterized by two main neuropathological hallmarks: the extracellular amyloid 

plaque formed by aggregated and deposited amyloid β (Aβ) peptides and intracellular 

neurofibrillary tangles (NFTs), consisting of aggregated hyperphosphorylated microtubule-
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associated tau proteins. According to the distribution of NFTs in the brain of AD patients, 

Braak and Braak classified the AD pathology into six stages: at the stages I and II NFTs are 

mainly limited to transentorhinal areas, at the stages III and IV limbic regions such as the 

hippocampus are involved as well. The two last stages (V and VI) describe the most extensive 

state of the pathology where extensive involvement of neocortical regions can be observed 

(Braak and Braak, 1991). 

 Aβ production and contribution to AD pathology 1.2.3.1

Aβ peptide is generated from its precursor protein, APP. APP is a transmembrane 

glycoprotein containing 695, 751 or 770 amino acids (Figure 3). It is expressed in most tissues 

with exception of APP695 which is found mainly in neurons. Any mutation in the APP can 

affect its processing and, therefore, Aβ production (Zhang et al., 2011).  

 

Figure 3: Schematic picture of amyloid 
precursor protein (APP).  
Shown in the picture, APP is a transmembrane 
protein. Excision regions by the secretases 
enzymes on the APP and selection of its 
known mutations are illustrated (taken from 
Van Dam & De Deyn, 2006). NTF, N-terminal 
fragment; CTF, C-terminal fragment. 

 

 

 

 

 

 

APP can be physiologically processed, where APP is initially cleaved by α-secretase enzyme 

within the Aβ sequence to release soluble APPα (sAPPα). Remaining C83 within the 

membrane will be cleavaged by γ-secretase and P3 protein will be released. This type of 

processing is called the non-amyloidogenic pathway (Kojro & Fahrenholz, 2005). 
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To generate Aβ, APP has to undergo a pathogenic (so-called amyloidogenic) pathway. In this 

pathway APP is firstly cleaved at the extracellular domain (β-secretase cleavage) by β-

secretase enzyme leading to release of sAPPβ and a remaining 99 amino acid fragment (β-

CTF or C99) in the membrane. C99 will be subsequently cut within the transmembrane region 

by γ-secretase to release Aβ. Depending on the γ-secretase cleavage site, various Aβ 

sequences of different lengths (such as 40, 42 or 43 amino acids) will be generated (Figure 4; 

O’Brien & Wong, 2011). 

γ-secretase, which is a highly hydrophobic catalytic enzyme consists of four subunits: 

presenilin 1 or 2 (PSEN 1 or PSEN 2), Aph-1a or b, nicastrin and pen-2. While mutations in 

APP leads to more Aβ production, mutations in PSEN cause a higher ratio of Aβ42 to Aβ40 

which results in a increasing toxicity due to higher aggregating potentials of longer Aβ 

peptides (Wolfe, 2007).  

Monomeric forms of Aβ protein (more prominently Aβ1-42) tend to self-aggregate and 

undergo oligomerization: forming dimers, tetramers and higher molecular weight oligomers 

which are still soluble. Aβ oligomers lose their solubility with on-going aggregation and form 

β-sheet structures and fibrils. This process will be continued until Aβ assemblies deposit in 

form of plaques (Figure 4; O’Brien & Wong, 2011). 

 

Figure 4: Schematic representation of APP processing and Aβ oligomerization.  
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In the amyloidogenic pathway the transmembrane protein APP is cleaved by β- and γ-secretases 
leading to production of monomeric Aβ proteins. Unstable monomers self-aggregate to form 
oligomers and senile plaques, where, oligomers having the most toxicity effect among other 
aggregates (taken from www.bioscience.org). 

 

For many years it was believed that plaques are the main cause of AD. However, recent 

studies have not shown a correlation between number of plaque deposits and severity of the 

disease. In contrast, levels of soluble Aβ oligomers have a higher correlation to the AD course 

(reviewed by Wirths et al., 2004; Larson ME, 2012). It has been shown that pathological 

concentrations of Aβ oligomers trigger an overstimulation of extrasynaptic NMDA receptors 

leading to Ca2+ upregulation, mitochondrial dysfunction, synaptic disruption, dysregulation of 

synaptic neurotransmission, abnormal neuronal network activity and finally neuronal loss 

(reviwed by Palop & Mucke, 2010; Bayer & Wirths, 2011). 

 Tau phosphorylation and contribution to AD pathology 1.2.3.2

Tau protein is abundant in both the central and the peripheral nervous system. Generally, 

phosphorylated tau protein stabilizes axonal microtubules in the CNS, supporting neurite 

outgrowth and cytoplasmic transport. Under certain conditions, tau protein may become 

hyperphosphorylated, which reduces its binding affinity to microtubules, leading to its 

intraneuronal aggregation and accumulation. Hyperphosphorylated aggregated tau protein 

complexes form NFTs (Avila et al., 2004). Accumulation of tau protein in dendrites or 

dendritic spines affect neuronal cell communication, causing and worsening 

neurodegeneration (Hoover et al., 2010).  

1.2.4 Alzheimer’s disease transgenic mouse models 

So far various transgenic AD mouse models, based on mutations within the APP gene have 

been generated. One of the most used APP-based AD mouse models is 5XFAD. 

 5XFAD mouse model 1.2.4.1

The 5XFAD transgenic (tg) mouse contains five genetic mutations that have been associated 

with familial Alzheimer’s disease. 5XFAD mouse model, which was generated in 2006 by 

Oakley and colleagues (Oakley et al., 2006), co-expresses mutant human APP (hAPP) and 

human PSEN1 genes simultaneously under neuronal thymocyte differentiation antigen 1 

(Thy-1) promotor. hAPP and PSEN1 in this model carry three and two mutations, 
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respectively: Swedish (K670N/M671L), Florida (I716V) and London (V717I) in APP; 

M146L and L286V in PSEN1. 

Tg-5XFAD is a rapid transgenic AD amyloid mouse model and is one the most aggressive 

AD mouse models. In this model, as expected, the mutations in hAPP lead to additive 

production of Aβ- in general- whereas the mutations in PSEN1 result in higher Aβ1-42 

production. Showing amyloid plaques and gliosis already at 2 month of age, neuron loss, 

memory impairment and, more interestingly, accumulation of intraneuronal Aβ1-42 before 

plaque formations are the characteristics of this model. Further studies have shown age 

dependent motor deficits, reduced anxiety and axonal degeneration in this mouse model 

(Jawhar et al., 2012).  

 APP/PS1 (APPswePS1dE9) mouse model 1.2.4.2

APPswePS1dE9 transgenic mouse model has been described previously (Jankowsky et al., 

2004). In brief, it expresses a chimeric mouse/human APP695 gene carrying the Swedish 

double mutations, K670M/N671L (Mo/HuAPPswe) in addition to human presenilin-1 (PSEN-

1) gene with an exon-9 deletion mutation (PS1dE9).  

Overexpression of human APP protein leads to abundant Aβ deposition in this AD mouse 

model. Both mutations in APP and PSEN1 are associated with the early-onset of Alzheimer's 

disease. This mouse develops beta-amyloid deposits in the brain by 6-7 months of age and, 

subsequently, shows spatial learning deficits and reduced anxiety at 7 month of age (Reiserer 

et al., 2007). Other characteristics of this model include impaired contextual memory early as 

6 months of age (Kilgore et al., 2010), affected nest-building and burrowing as well as age-

dependent decline in cognitive behavioral (Janus et al., 2015). 

 APP 23 mouse model 1.2.4.3

The APP23 mouse model expresses the human APP751 gene containing the Swedish double 

mutations, associated with early-onset familial AD, under the Thy-1 promoter (Sturchler-

Pierrat et al., 1997). This mouse model develops extensive β-amyloid pathology. Aβ deposits 

are first observed at six months of age which increase in size and number with age of animals 

and eventually this transgenic mouse develops extensive β-amyloid pathology. Deficits in 

spatial memory have been observed in the Morris water maze at three months, becoming more 

severe with age (Van Dam et al., 2003). 
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These characteristics make these three mouse models very useful to investigate other features 

of AD such as the CNS inflammation. Specifically, the early formation of amyloid deposits in 

these mouse models separate AD pathology from ageing and allow for distinguishing the 

effect of ageing and amyloid beta on microglia.  

1.3 Adrenergic system 

The adrenergic system is a part of the autonomic nervous system's fight-or-flight response and 

consists of two neurotransmitters adrenaline and noradrenaline (NA). The main source of NA 

in the CNS is the locus coeruleus (LC) which is located in the brain stem. Long neural 

projections of the LC can innervate major brain regions as well as the spinal cord to provide 

them with NA (Swanson & Hartman, 1975).  

So far different roles for NA have been investigated, such as attention and focus, emotion and 

depression, learning, memory and cognition (Benarroch, 2009). Besides its role as a 

neurotransmitter, NA has anti-inflammatory properties.  

1.3.1 Effect of noradrenergic signalling on microglia 

NA has several strong effects on microglial functions. For example it suppresses the 

proliferation of microglia (Fujita et al., 1998) and the production of pro-inflammatory 

cytokines and molecules such as Tumor necrosis factor alpha (TNFα), NO, IL-1β, IL-6 (Dello 

Russo et al., 2004) and IL-12p40 (Prinz et al., 2001). It promotes migration of microglia and 

production of anti-inflammatory cytokines (Gyoneva & Traynelis, 2013). On the other hand, 

it seems that NA primes microglia and leads to higher cytokine production when it is used 

prior to the LPS stimulation (Johnson et al., 2013). 

It has also been shown that adrenergic receptor (AR) stimulation suppresses microglial 

activation and leads to attenuation of cognitive deficits in hippocampus after LPS induced 

systemic inflammation (http://www.neurology.org/content/82/10_Supplement/P1.248). 

1.3.2 Effect of noradrenergic system on cognition and AD symptoms  

Since 1975 it has been proposed that NA effects learning (Bias et al., 1975). Besides, 

alterations in NA have been linked to cognitive and neuropsychiatric symptoms seen in 

normal ageing, AD or other dementias. In particular, AD is not only about dementia but also 

about physiological and behavioural changes. Mood, attention and motivation which are- to 

https://en.wikipedia.org/wiki/Nucleus_(neuroanatomy)
http://www.neurology.org/content/82/10_Supplement/P1.248
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high extend- impaired in AD, could be the result of degenerated adrenergic neurons in LC 

(Sara, 2009). Other symptoms of AD such as psychotic phenomena, aggression and 

depression  correlate with NA reduction in brains of AD patients (Forstl et al., 1994; 

Weinshenker, 2008). 

In addition, increasing amyloid beta phagocytosis by microglia after β-AR activation has been 

indicated. This gives increasing importance to this receptors and their agonists. Since in 

neurodegenerative diseases such as AD, one of the features that exacerbates the disease 

progression is ongoing inflammation by overactivation of the innate immune system in the 

CNS, suppression of this system could be beneficial. By now, it is well proved that the LC 

region and amount of noradrenaline in the brain of AD patients and some of AD tg mice have 

been dramatically reduced. It is believed that this reduction occurs even before the disease 

symptoms. However, it is not well clarified if reduction of the noradrenergic system activity is 

initiating the AD but these studies suggested a potential role of the noradrenaline system in 

the disease treatment (Iversen et al., 1983; Bondareff et al., 1987; Matthews et al., 2002; 

Heneka et al., 2010).  

1.4 Adrenergic receptors 

It has already been known that a variety of neurotransmitters can regulate morphology and 

functions of macrophages including microglia. Neurotransmitters are released from synapses 

of neurons and bind to their receptors on the postsynaptic membrane and are used for cell-cell 

communication. Neurons are not the only cells which have neurotransmitter receptors. 

Immune cells such as microglia possess them as well. Microglia have receptors for most 

known neurotransmitters. In particular, they express plenty of adrenergic receptors (ARs) 

(Tanaka et al., 2002). 

The adrenergic receptors (or adrenoceptors) are a class of G protein-coupled receptors 

(GPCR). There are two main groups of adrenergic receptors: α (α1, α2) and β (β1, β2, β3). 

Both groups are linked to adenylate cyclases. Binding of agonists to the adrenergic receptors 

leads to intracellular production of the second messenger cyclic adenosine monophosphate 

(cAMP) from adenosine triphosphate (ATP) by adenylate cyclases.  

cAMP is a signal transductor which activates either protein kinase A (PKA, cAMP-dependent 

protein kinase) or Exchange proteins activated by cAMP (Epac). Activated PKA can directly 

https://en.wikipedia.org/wiki/CAMP-dependent_protein_kinase
https://en.wikipedia.org/wiki/CAMP-dependent_protein_kinase
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phosphorylate target proteins to increase or decrease their activities. Alternatively, it can 

directly activate the transcription factor cAMP response element-binding protein (CREB) 

which binds to certain DNA sequences called cAMP response element (CRE) being usually 

located upstream of genes, within the promoter or enhancer sites. Therefore, binding of CREB 

to CRE regions modifies transcription of downstream genes and, eventually, synthesis of the 

proteins (reviewed by Scanzano & Cosentino, 2015). 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/DNA
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1.5 Aims of the thesis 

Project 1 (Characterization of microglia in the 5XFAD mouse model) 

It has been known that inflammatory processes -due to the microglial overactivation- play 

important roles in Alzheimer’s disease (AD) progression. Besides, impairment of phagocytic 

activity of microglia leads to accumulation of Aβ peptides which in return, by binding to the 

microglial pathogen recognition receptors, initiate innate immune responses (reviewed by 

Heneka et al., 2015).    

To investigate whether these microglial alterations in an AD environment are permanent or 

temporary, the present PhD project aimed at investigating the tissue influences on microglial 

properties and to determine whether the cells still have the capacity to perform normal outside 

the diseased brain, suggesting that their functional impairment could be corrected. 

Therefore, the current study consisted of three main characterizations of microglia isolated 

from 3, 6 and 9 months old 5XFAD mice and aged-matched WT controls:  

 The phagocytic capacity of these microglia for myelin, E. coli and Aβ peptides. 

 The activity to produce cyto-/ chemokines after being treated with a battery of TLRs 

agonists. 

 Their proliferation rate with or without LPS treatment. 

 Their TLR4 activity in terms of effects on phagocytosis, production of pro-

inflammatory cyto-/ chemokines and recruitment of immune cells from the periphery. 

 

Project 2 (Amyloid beta (Aβ) plaque-associated microglia priming in transgenic mouse 

models of Alzheimer’s disease) 

Recent studies on microglia in a close distance to Aβ depositions have revealed 

overexpression of activation markers on these cells. Also, in both human and AD transgenic 

mice, exposure of these microglia to various secondary stimuli led to an enhanced 

inflammatory reaction described as being primed (reviewed by Perry & Holmes, 2014). To 

study the Aβ-associated microglia priming in mouse models of AD, the current project aimed 
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at investigating three well-established AD mouse models, APP23, APPswePS1dE9 and 

5XFAD compared to aged matched WT mice.  

Main questions in this project included: 

 Expression status of immune cells activation markers (Mac-2, CD68 and MHC II) on 

microglia close or far from the Aβ plaques. 

 Gene expression analysis of MHC II negative and positive microglia from the 5XFAD 

mouse model. 

 Effect of systemic LPS injection on microglial activation close or far from Aβ plaques. 

 

Project 3 (Noradrenergic control over innate immune cell activities in the CNS) 

Anti-inflammatory roles of the adrenergic system in neuroinflammatory diseases such as AD 

have been observed. In general, improvements in the AD pathology by activation of this 

system indicate a likely direct effect on the inflammation and immune cells which results in 

inhibition of pro-inflammatory factors production (reviewed by Scanzano & Cosentino, 

2015). Previous studies showed a selective effect of beta 2 adrenergic receptor (β2AR) 

signalling on inhibition of pro-inflammatory cyto-/ chemokines (master’s thesis of Stefanie 

Riesenberg; doctoral thesis of Tommy Regen). The present project aimed to further 

investigate the effect of β2AR activation on microglial activity and answer the question how 

some pro-inflammatory proteins or genes are able to escape from the inhibitory effect of 

β2AR signalling.  

The key questions consisted of: 

 Investigation of β2AR signalling on TRIF dependent genes. 

 In vivo investigation of β2AR activation on LPS stimulated microglia in terms of 

activation and immune cells recruitment from the periphery. 

 Analysing the activity of cAMP pathways (PKA and Epac). 

 Studying the gene expression analysis of β2AR signalling on LPS-stimulated 

microglia, ex vivo. 
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2 Materials and methods 

2.1 Animals 

Neonatal C57BL/6J wild type (WT) mice were provided by the central animal facility of the 

University Medical Center Göttingen. Neonatal NMRI mice were obtained from department 

of Physiology at the University Medical Center Göttingen. Adult C57BL/6J WT mice were 

either from the breeding of hemizygote 5XFAD and WT mice or purchased from Charles 

Rivers.  

2.1.1 5XFAD 

The 5XFAD mouse model has been previously described (Oakley et el., 2006). In summary, it 

is a double transgenic APP/PS1 model that co-expresses five familial AD mutations in 

human- (h) APP and hPSEN1 which are expressed under control of a neuron-specific murine 

Thy-1 promoter: APP695 carrying Swedish, Florida, and London mutations and PSEN1 

carrying the M14 6L and L28 6V mutations.  

Two Hemizygote 5XFAD male mice which were backcrossed on C57BL/6J for more than 10 

generations were kindly provided by Prof. Dr. Thomas A. Bayer to be routinely crossbred 

with WT females to establish the mouse line. All the mice were housed and handled 

according to guidelines for animal care at the central animal facility of University Medical 

Center of Göttingen, Germany. In vivo experiments were approved by the animal ethical 

committee of University of Göttingen (Ausnahmegenehmigung nach § 9 Abs. 1 Satz 4 

Tierschutzgesetz). For the experiments male and female 5XFAD and the WT littermates from 

three different ages (3, 6 and 9 month old) were used (N=5-6). 

2.1.2 APP23 

APP23 mice express the human APP751 gene containing the Swedish double mutations, 

associated with early-onset familial AD, under the Thy-1 promoter. The mice were 

backcrossed to C57/BL6 for more than 6 generations, and genotypes were identified by PCR. 

Experiments were carried out according to the European Council Directive (86/609/EEC) and 

were approved by the local Ethical Committee on Animal Experimentation. Male 

heterozygous APP23 and the WT littermates were recruited from different ages, 6 months old 

(APP23 N=20; WT N=20), 16 months old (APP23 N=9; WT N=10), 20 months old (APP23 

N=14; WT N=20), 24 months old (APP23 N=11; WT N=10). 
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2.1.3 APP/PS1 (APPswePS1dE9) 

APPswePS1dE9 transgenic mice express a chimeric mouse/human APP695 gene recruiting 

the Swedish double mutations, K670M/N671L, (Mo/HuAPPswe; line C3-3) and human 

presenilin-1 (PSEN-1) gene with an exon-9 deletion mutation (PS1dE9; line S-9; Jankowsky 

et al., 2004). Transgenic mice and WT littermate pairs were housed under standard conditions. 

Experimental procedures were approved by the animal ethical committee of the Royal 

Netherlands Academy of Arts and Sciences. For immunohistochemistry and 

immunofluorescence, transgenic and WT animals were studied at the age of 18 months old 

(APPswePS1dE9 N=3; WT N=3). 

2.2 Genotyping of 5XFAD mice 

2.2.1 Isolation of mouse tail DNA 

A small piece of mouse tail was immersed into 500 μl of lysis buffer (containing 100 µM Tris 

pH 8.5, 5 mM EDTA, 200 mM NaCl and 0.2% SDS) and incubated overnight at 55°C in a 

thermomixer (Eppendorf, Germany) with continuous agitation (500 g). It was centrifuged for 

10 min at 200 g at RT. Supernatant was collected and mixed well with 500 µl of ice-cold 2-

propanol, followed by 10 min centrifugation at 200 g. Afterwards, supernatant was discarded 

and the pellet was washed once with 750 μl 70% ethanol. Remaining pellet was dried using a 

vacuum (eppendorf) for 20 minutes and resuspended in 35 μl H2O. DNA concentration was 

assessed with a spectrophotometer (Nanodrop, Peqlab; Biotechnologie GmbH).  

2.2.2 Polymerase chain reaction (PCR)  

To screen for hemizygote animals, only hAPP sequence was amplified, since mutated hAPP 

and PSEN1 are co-expressed simultaneously in 5XFAD mice. Following hAPP primers used: 

Forward 5’-GTAGCAGAGGAGGAAGAAGTG-3’ and Reverse 5’-

CATGACCTGGGACATTCTC-3’. PCR was performed with conditions described in Table 1 

by Master cycler (epgradient S; eppendorf). 
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Table 1: PCR conditions 

 

 

 

 

 

 

2.3 Microglial primary culture and harvests 

All microglia cultivations were carried out in Dulbecco’s modified Eagle’s medium (DMEM, 

Life technologies/Gibco, Karlsruhe, Germany), including 10% fetal calf serum (FCS, 

Invitrogen/Gibco), 100 U/ml penicillin and 100 μg/ml streptomycin (both Biochrom, Berlin, 

Germany) as complete DMEM. 

2.3.1 Neonatal microglial culture 

P0/P1 WT C57BL/6J mice were quickly decapitated by scissors. The skulls were removed 

and the brains were kept in Hanks balanced salt solution (HBSS, Biochrom, Berlin, Germany) 

on ice. Subsequently, removal of meninges and blood vessels was performed under an 

inverted microscope, and brains were transferred to a clean HBBS. The brains were washed 

three times with 10 ml of fresh cold HBBS. After the last wash the salt was removed and 100 

µl of 2.5% Trypsin (Biochrom) per brain was added. Brains were shortly vortexed with half 

speed and incubated for 5 min in a water bath at 37°C twice. Trypsin digestion was stopped 

by adding 1 ml complete DMEM. To remove excessive DNA, 40 µl of 0.4 mg/ml DNAse 

(CellSystem, St.Katherine, Switzerland) per brain was added. Brains were thoroughly 

resuspended and incubated at 37°C for 2-3 min. Large pieces of tissue were mechanically 

separated using pipetting force and were centrifuged for 10 min at 200 g at 4 °C. After 

centrifugation, the medium was removed and the remaining pellet was resuspended in 1 ml 

complete DMEM per brain. To culture the cells in flasks, the flasks were previously coated 

with 10 ml Poly-L-Lysin (PLL, Invitrogen/Gibco) and incubated for 20 min at RT. Then, 

three times washed with sterile ddH2O and one time with complete DMEM. Cells 

resuspended in 15 ml DMEM were added to 75 cm2 flask. Flasks were incubated at 37°C, 5% 

CO2. Next day cells were washed thrice with pre-warmed phosphate-buffered saline (PBS; 

Temperature Duration Number of repeats 

94°C 3 min 1 x 

94°C 45 s 

29 x 61°C 1 min 

72°C 1min 

72°C 5 min 1 x 

4° C ∞ 
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Life Technologies/Gibco) and once with complete DMEM. 15 ml of fresh complete DMEM 

was added to the flask and incubated at 37°C with 5% CO2, an additional change of medium 

was performed on the following day. One week after brain preparation, cells received 5 ml 

conditional L929 medium mixed with 10 ml complete DMEM to stimulate microglial growth. 

For each Microglia harvest, flasks were gently shaken for about 30 min at 37°C to detach 

microglia from the surface. Freed microglia were washed with fresh DMEM and resuspended 

in a small volume of DMEM (depending on size of cell pellet). Cells were counted with a cell 

counting machine (cellomoterTM Auto T4; Nexcelom Bioscience) and plated in the desired 

densities. 

2.3.2  Adult microglial culture 

3, 6 or 9 months old WT C57BL/6J and 5XFAD mice were anesthetized with Isoflorane 

(100%; ObbvieR) and decapitated. Brains were isolated and divided into cerebral hemispheres, 

brain stem and cerebellum. Meninges and blood vessels were removed from each part and the 

parts were, subsequently, cut into small pieces (~1 mm3) and washed with HBSS. Enzymatic 

treatments and further washings were performed as described for preparation of neonatal 

microglia (refer to 2.3.1). To produce single cell suspensions, cells were additionally passed 

through cell strainers (Falcon®) with 40 μm pore size. Cells were seeded into 75 cm2 tissue 

culture flasks which contained a 100% confluent monolayer of astrocytes from neonatal 

NMRI mice, which was shown to be necessary for an appropriate growth supply of the 

cultured adult microglia. The adult microglia were harvested every 7 days following 

conditional L929 medium stimulation. 

2.4 Astrocyte culture 

To prepare pure astrocyte cultures, neonatal NMRI mice were used. Cells were prepared as 

described in neonatal microglia cultures (refer to 2.3.1), but in contrast, a week after the 

preparation, cells were incubated with complete DMEM containing 200 μg/ml 

dichloromethylenedisphosphonic acid disodium salt (Clodronate; Sigma-Aldrich, 

Taufkirchen, Germany) for 48 hours at 37°C, 5% CO2 to eliminate myeloid cells. Afterwards, 

cells were shaken at about 260 rpm for minimum of 12 hours to get rid of dead myeloid cells. 

Then, flasks were washed once with pre-warmed complete DMEM and incubated for less 

than 4 days to serve for adult microglia culture preparation. 

https://www.google.de/search?q=anesthetized&start=0&ion=1&espv=2&spell=1
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2.5 L929 mouse fibroblast culture 

L929 fibroblasts were cultured in complete DMEM and passaged every 2 weeks (1:5). 14 

days later supernatants were collected and stored at -20°C for further usage to stimulate 

microglial proliferation. After 30 passages, fresh L929 cultures were established. 

2.6 Bone marrow derived macrophages (BMDMs) preparation 

8-12 weeks old WT C57BL/6J mice were sacrificed by cervical dislocation. The bodies were 

disinfected with 70% ethanol and femurs were extracted by sterile scissors and forceps. The 

residual muscle tissue was removed by paper tissues soaked with 70 % ethanol and the femurs 

were flushed using syringe with Pluznik medium (DMEM with L-Glutamine; Invitrogen/Life 

Technologies) containing 10 % FCS (Invitrogen/Gibco), 5% horse serum (Sigma-Aldrich), 

1% sodium pyruvate (Sigma-Aldrich), 1% 5 mM β2-mercaptoethanol (Sigma), 100 U/ml 

penicillin and 100 μg/ml streptomycin. Bone marrow from two femurs were plated on one 10 

cm-petri dish (Sarstedt, Nümbrecht, Germany) with 10 ml Pluznik medium and incubated at 

37°C and 5% CO2. A day after, cells in medium were collected into 50 ml tubes, centrifuged 

10 min at 200 g at 4°C and resuspended in 40 ml of Pluznik medium. The resulting cell 

suspension was divided to four parts and each part was plated on 10-cm petri dish and 

medium was exchanged three days later. Differentiated BMDMs were harvested on day 7 by 

addition of 4 mM Trypsin/EDTA, followed by incubation at 37°C for 10 min. Cells were 

washed with complete DMEM, and plated in 96-well plates at a density of 1.5×104cells per 

well. Cells were incubated over night at 37°C, 5% CO2 and stimulated on the next day. 

2.7 Ex vivo microglia and BMDMs stimulation 

Various compounds (described in Table 2) were dissolved and diluted in complete DMEM 

and added to cells for respective experiments.  

 

Table 2: Constituents used for ex vivo stimulations 

Stimuli Function Catalogue No. Provider 

Smooth chemotype LPS, 

Escherichia coli, serotype 

O55:B5 (S-LPS) 

TLR4 agonists ALX-581-013 Enzo Life 

Sciences/Alexis  

Rough chemotype LPS, E. TLR4 agonists ALX-581-007 Enzo Life 
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coli, serotype R515 (Re-

LPS) 

Sciences/Alexis  

Bovine plasma Fibronectin TLR4 agonists F-1141 Sigma 

Mouse plasma Fibronectin TLR4 agonists MFBN Molecular Innovations  

Pam3CSK4 TLR1/2 agonist 165-066-M002 Enzo Life 

Sciences/Alexis 

Poly (I:C), TLRgrade™ TLR3 agonist ALX-746-021 Enzo Life 

Sciences/Alexis 

Poly (A:U) TLR3 agonist P1537 Sigma 

MALP-2 TLR6/2 agonist APO-54N-018 Enzo Life 

Sciences/Alexis 

CpG ODN, TLRgrade™ TLR9 agonist 764-020 Enzo Life 

Sciences/Alexis 

Recombinant mouse 

interferon-γ (IFNγ), 

carrier-free 

 485-MI/CF R&D Systems  

IL-4, carrier-free  404-ML/CF R&D Systems 

IL-10  417-ML/CF R&D Systems  

HJC0197 Epac 1&2 inhibitor C 136 Biolog 

ESI-09 Epac 1&2 inhibitor B 133 Biolog 

ESI-05 Epac 2 inhibitor M 092 Biolog 

8-pCPT-2'-O-Me-cAMP Epac activator C 041 Biolog 

N6-Benzoyl-cAMP PKA activator B 009 Biolog 

Forskolin Adenylyl cyclase 

activator 

F686 Sigma 

Salbutamol β2-adrenoceptor agonist S8260 Sigma 

ICI 118,551 hydrochloride β2-adrenoceptor 

antagonist 

I127-5MG Sigma 

LPS, lipopolysaccharide; TLR, toll-like receptor; IL-, interleukin-; Epac, exchange factor directly activated by 

cAMP; PKA, protein kinase A.   

IIR PKI (Cell-permeable PKA inhibitor) was kindly provided by Prof. Dr. Viacheslav 

Nikolaev (University Medical Center Göttingen, Germany).  

Depending on experiments incubation time varied. Regardless of the stimulation protocol, all 

cells were incubated at 37°C with 5% CO2. 
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2.8 Cyto- and chemokine measurement in the supernatants of cells 

Microglia and BMDMs were cultured with density of 1.5×104/well in 96 well-plate 

(CellstartR, Greiner bio-one) and were incubated with respective stimuli and kept for 18 h at 

37°C with 5% CO2. Then, supernatants were collected and stored at -20°C until assayed. The 

soluble factors in the supernatants were quantified by enzyme-linked immunosorbent assay 

(ELISA) test systems. CCL3 (macrophage inflammatory protein, MIP-1a), CCL5 (regulated 

upon activation normal T-cell expressed and presumably secreted, RANTES), CXCL1 

(keratinocyte-derived chemokine, KC), CXCL2 (macrophage inflammatory protein 2, MIP-2) 

and Interleukin (IL-) 6 were measured using DuoSet® ELISA Development Kits (R&D 

Systems). For CCL2 (monocyte chemoattractant protein, MCP-1) measurement, ELISA Kits 

from R&D Systems and BioLegend (San Diego, CA, USA) were used. Tumor necrosis factor 

α (TNFα) and interferon β (IFNβ) levels were measured using an ELISA kit from BioLegend 

(San Diego, CA, USA). Total IL-12p40 (including monomeric p40) amounts were defined by 

an ELISA kit from eBioscience (San Diego, CA, USA). All the assays were performed 

according to the manufacturer’s instructions. Absorbance was measured at 450 nm and also 

540 nm as reference wavelength by a microplate reader (Bio-Rad). Results were calculated by 

a Microsoft Excel program (macro) which was developed by Dr. Jörg Scheffel and optimized 

by Ulla Gertig at the Institute of Neuropathology, University Medical Center Göttingen.  

2.9 Cell harvest and preparation for flow cytometric analysis 

Microglia were cultured in 12 well-plates (Cellstart, Greiner bio-one). Regarding different 

experiments, cells were treated with stimuli or phagocytic compounds and incubated at 37°C 

and 5% CO2. Afterwards, microglia were harvested. To harvest the cells they were washed 

once with complete DMEM and once or twice with PBS. Then, they were incubated with 300 

µl of 0.05%/0.02% Trypsin/EDTA (Biochrom) for 3-5 min at 37°C and 5% CO2. Trypsin 

effect was stopped by adding 600 µl of complete DMEM and cells were scraped off the plate 

by cell scraper (Sarstedt). Cells were collected in 2 ml microcentrifuge tubes and kept on ice. 

Cells were centrifuged at 800 g at 4°C for 10 min and washed with FACS buffer (PBS 

containing 2% FCS, 0.1 % NaN3 and 0.01 M EDTA pH 8.0). Fc receptors on the cells were 

blocked by anti- CD16/CD32 antibody (BioLegend) for 10 min at 4°C. Complement receptor, 

CD11b, MHC I and intracellular cytokines were stained by specific antibodies for 20 and 45 

min in the dark, respectively (Table 3). Excessive antibodies were washed away by FACS 

buffer and cells were resuspended in 170 μl FACS buffer, transferred to FACS tubes and 
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recorded by a flow cytometer (FACS Canto II). The data were analysed by Flowjo V10 (Tree 

Star, Ashland, OR, USA). 

2.9.1 E. coli phagocytosis 

Adult microglia with a density of 2×105
 /well were incubated with 10 ng/ml Re-LPS for 24 h. 

Cells were washed and treated with 2×106 cfu/ml E. coli-DsRed (a pathogenic strain DH5α; 

kindly gifted by S. Hammerschmidt, Ernst Moritz Arndt University Greifswald, Germany; 

Sörensen et al., 2003) in DMEM with 10% FCS and 100 μg/ml ampicillin (Sigma-Aldrich) 

for 2 h at 37°C and 5% CO2. Afterwards, non-phagocytosed E. coli was eliminated by 

replacing the medium with DMEM containing 100 μg/ml gentamicin (Sigma) for 1 hour. 

Cells were harvested and stained for FACS analysis as explained in chapter 2.9. CD11b 

positive cells which contained DsRed fluorescent were considered as E. coli-phagocytic 

microglia.  

2.9.2 Myelin phagocytosis 
 

Adult microglia were plated with a density of 2×105
 cells/well. Cells were incubated with 10 

ng/ml Re-LPS for 24 h before 5 μg Rhodamine- or DyLight 550-conjugated mouse myelin 

was added to the cells for another 2 h of incubation. Afterwards, cells were washed, harvested 

and recorded as described in chapter 2.9. The percentage of myelin-phagocytosing microglia 

was calculated from CD11b positive cells.  

Myelin was purified from freshly isolated 8-12 weeks old WT mice brains, as previously 

described (Norton & Poduslo, 1973) and labelled by Antibody labelling kit (Thermo 

scientific). 

2.9.3 Amyloid beta phagocytosis 

Microglia isolated from adult WT and 5XFAD mice were plated with a density of 2×105
 

cells/well. Cells were incubated with monomeric forms of HiLyte FlourTM 647-labelled Aβ1-40 

or Aβ1-42 (250 nM) for two hours. Subsequently cells were washed, harvested and recorded as 

defined in chapter 2.9. The percentage of Aβ-phagocytosing microglia was calculated from 

CD11b positive cells. 
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2.9.4 MHC I expression 

Microglia (2×105
 per well) were treated with Re-LPS, Salbutamol or combination of both in 

complete DMEM for 24 h at 37°C and 5 % CO2. Then, the stimuli were removed, cells were 

washed and harvested. In addition to CD11b, microglia were stained simultaneously with 

anti-mouse MHC class I antibody (BioLegend). Cell staining and flow cytometric analysis 

was performed as explained in chapter 2.9. For data analysis, mean fluorescent intensity 

(MFI) of MHC I signal was calculated from CD11b positive population. 

2.9.5 Intracellular cyto- and chemokine staining for flow cytometry analysis 

Microglia with a density of 3×105
 per well were stimulated with indicated stimuli for 3 h at 

37°C and 5 % CO2. To block cyto- and chemokine release, a protein transport inhibitor, 

monensin, (BioLegend) was added to the cells for additional 5 h. Next, microglia were 

proceeded for extracellular CD11b staining as described in the section 2.9. Excessive CD11b 

antibody was washed away by 1 ml PBS. To fix and permeabilize the cells, they were 

resuspended in 200 µl Cytofix/CytopermTM solution (BD Biosciences) while slightly 

vortexing and kept for 20 min at 4°C in the dark and washed with 1 ml saponin buffer (0.1% 

Saponin (Sigma) in PBS). Intracellular Fc receptors were blocked using anti- CD16/CD32 

antibody (BioLegend) in saponin buffer for 5 min at RT and subsequently cells were 

incubated with Phycoerythrin- (PE-) conjugated anti-mouse CCL5 (RANTES) monoclonal 

antibody or Alexa Fluor® 488 conjugated anti-mouse TNFα monoclonal antibody (both 

BioLegend) for 45 min in the dark. After the incubation time cells were washed with 1 ml of 

saponin buffer, resuspended in 170 µl of FACS buffer and recorded and analyzed as 

mentioned in section 2.9. Percentage of CCL5 (RANTES) and TNFα producing microglia 

were calculated from CD11b positive population.  

 

Table 3: Antibodies used for flow cytometry analysis of cultured microglia 

Antibody Catalogue No./  
Clone Provider Final dilution  

(in FACS buffer) 
Final dilution  
(in Saponin buffer) 

Anti-mouse 
CD16/CD32 

101310/ 
93 BioLegend 1:100 - 

APC anti-mouse 
CD11b 

M1/70/ 
101212 BioLegend 1:200 - 

https://en.wikipedia.org/w/index.php?title=R-Phycoerythrin&action=edit&redlink=1
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2.10 Cells proliferation assessment 

Microglia from adult WT and 5XFAD mice were cultured with the density of 15×104 

cell/well in 96 well-plates and were stimulated with Re-LPS (0.1 ng/ml and 10 ng/ml) for 24 

hours (37°C, 5% CO2). The supernatants were discarded and the proliferation of the cells was 

evaluated by an ELISA-based cell proliferation kit (R&D) according to the manufacturer’s 

instructions.  

2.11 Cell viability assessment 

To check the toxicity of microglial stimuli, upon collecting the supernatants from cells, a 

solution of 10% water-soluble Tetrazolium salts (WST-1) reagent (Roche Applied Science) in 

complete medium was added to the cells, incubated for 3h at 37°C with 5% CO2 and, 

subsequently, the amount of produced formazan (result of Tetrazolium salts reduction) was 

measured at 450 nm with reference wavelength of 655 nm by a microplate reader (Bio-Rad).  

2.12 PKA activity assay 

To determine activity of PKA inside the cells, a PKA kinase activity kit (Enzo life science) 

was used according the manufacturer’s instructions. Neonatal microglia were plated in 6 well-

plate (CellstartR, Greiner bio-one) with a density of 8×105 cells per well. Cells were 

incubated with Re-LPS, Salbutamol, Forskolin, 6-Bnz-cAMP, IIR-PKI (for detailed 

information refer to Table 2) for 20 min at 37°C, 5% CO2. For IIR-PKI 30 min pre-incubation 

was applied. To prepare cell lysates, after the stimulation time, cells were washed once with 

pre-warmed PBS and incubated with 350 µl cell lysis buffer (20 mM Tris-HCL (pH 7.5), 150 

Pacific Blue anti-
mouse CD11b 

M1/70/ 
101224 BioLegend 1:200 - 

eFluor® 450 anti-
mouse CD11b 

M1/70/ 
48-0112-82 BioLegend 1:200 - 

Alexa Fluor® 647 
anti-mouse MHC I 

34-1-25/ 
114712 BioLegend 1:200 - 

PE anti-mouse 
CCL5 

2E9/ 
149104 BioLegend - 1:200 

Alexa Fluor® 488 
anti-mouse TNFα 

MP6-XT22/ 
506313 BioLegend - 1:200 

http://www.biolegend.com/index.php?page=pro_sub_cat&action=search_clone&criteria=MP6-XT22
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mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 

mM β-glycerolphosphate, 1 mM Na3VO4, 1 µg/ml leupeptin; Cell Signaling Technology) for 

5 min on ice. Cells were scraped and centrifuged at 14,000 g at 4°C for 10 min. Supernatants 

were collected and stored at -80°C till assayed. Total protein concentration in the lysates was 

determined using micro BCATM Protein Assay kit (Thermo scientific) following the 

manufacturer’s protocol. 

2.13 Immunocytochemistry 

5×104 microglia in complete medium (Gibco) were plated on PLL (Invitrogen/Gibco) pre-

coated cover slips (Thermo Scientific) and incubated at 37°C with 5% CO2. The next day, 

cells were washed once with pre-warmed PBS and fixed with ice-cold methanol (100%, 

Merck) for 5 min at -20°C. Cells then were washed three times with PBS, with gentle shaking 

for 5 min between each washing step. Cells were permeabilized and blocked with PBS-0.3% 

Triton-X100 (Thermo Scientific) containing 5% goat serum for 45 min at RT. Cells were 

incubated with 0.5% Beta 2 Adrenergic receptor (β2AR) antibody in PBS-0.03% Triton-X100 

containing 2.5% goat serum and 0.5% anti- CD16/CD32 antibody overnight at 4°C in the 

dark. The following day, cells were washed three times with PBS-0.03% Triton-X100 with 

gentle shaking for 5 min between the steps. 1% secondary antibody in PBS containing 2.5% 

goat serum and 0.03% Triton-X100 was added to the cells and incubated for 45 min at RT in 

the dark. Staining was continued with three times washings as mentioned above and cell 

nuclei were labelled with 0.1% DAPI in PBS for 2-3 min at RT. Cells were washed three 

times with PBS as above, dipped in deionized water and the cover slips were mounted on 

object slides (Thermo Scientific) by a fluorescent mounting medium (Dako). Pictures were 

taken by a fluorescent microscope (Olympus Bx51) using software cellSens Dimension 1.7 

(Olympus Life Science).  

 

Table 4: Antibodies used for Immunocytochemistry analysis 

Antibody Catalogue No. Provider 

Anti-mouse CD16/CD32 101310 
 

BioLegend 

Rabbit-anti-mouse Cy3-labelled β2AR bs-0947R-cy3  Bioss 

Anti-Rabbit Alexa Fluor® 488-labelled IgG 
antibody A11034 Life Technologies 
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2.14 Quantifying the number of cytokine secreting cells using ELISpot  

In order to study percentage of cells which produce CCL5 (RANTES), mouse CCL5 Enzyme-

Linked ImmunoSpot (ELISpot) kit (R&D Systems, USA) was used. The experiments were 

performed according to the manufacturer’s instructions. In brief neonatal were plated on 

capture antibody-pre-coated 96 well-plates at a density of 1,000 cells per well in complete 

medium containing indicated stimuli (Re-LPS, Salbutamol or both). Cells were incubated at 

37°C with 5% CO2 for 24 hours. Afterwards, supernatants were removed and cells were 

washed four times with a washing buffer (0.05% Tween® 20 in PBS). Detection antibody 

was added to the wells and incubated overnight at 4°C. Wells were washed as described 

above and then kept with Streptavidin-AP for 2 h at RT in the dark followed by washing. For 

color development BCIP/NBTR (R&D Systems) was added to wells and incubated for 15-30 

min at RT. The plate was rinsed once with deionized water, the flexible plastic underdrain 

was removed and the plate was dried at 37°C. The spot number and area were analyzed by an 

automated ELISpot reader (AELVIS). The data were further analyzed by GraphPad Prism® 6 

software. 

2.15 RNA sequencing gene analysis 

Microglia cells with a density of 8×105 were plated in a 6 well-plate (CELLSTAR, Greiner 

bio-one) in complete DMEM and incubated at 37°C with 5% CO2. The next day, cells 

received medium or indicated stimuli solutions at the respective concentrations (10 ng/ml Re-

LPS, 100 µM salbutamol, and a combination of both) and incubated for 3 h (37 °C and 5 % 

CO2). Afterwards, cells were washed once with 1 ml pre-warmed PBS. 1 ml Qiazol®Lysis 

reagent (QIAGEN) was added, cells were scraped, cell suspensions were collected and 

incubated for 5 min at RT and finally frozen at -20°C. The RNA sequencing gene analysis 

(Illumina) from frozen samples was performed in collaboration with Microarray and Deep-

Sequencing Facility (Transkriptomeanalyselabor, TAL, Göttingen; Dr. Gabriela Salinas-

Riester). In brief, total RNA was sequenced using the TruSeq RNA Sample Preparation Kit 

(Illumina, Cat. N°RS-122-2002) starting from 500 ng. Accurate quantization of cDNA 

libraries was performed by QuantiFluor dsDNA System (Promega). The size range of final 

cDNA libraries was 300-320 bp and was determined by application to the Fragment Analyzer 

(Advanced Analytical). cDNA libraries were amplified and sequenced by the cBot and 

HiSeq2000 from Illumina (SR; 1×50 bp; 5- 6 GB ca. 30-35 million reads per sample). 
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Sequence images were transformed with Illumina software BaseCaller to bcl files, which were 

demultiplexed to fastq files with CASAVA v1.8.2. Quality check was done via fastqc (v. 

0.10.0, Babraham Bioinformatics). 

Bioinformatics analysis was performed by Dr. Thomad Lingner as followed: Sequences were 

aligned to the genome reference sequence of Mus musculus (GRCm38/mm10). Alignment 

was performed using the STAR alignment software (Dobin et al., 2013; version 2.3.0e) 

allowing for 2 mismatches within 50 bases. Subsequently, conversion of resulting SAM files 

to sorted BAM files, filtering of unique hits and counting was conducted with SAMtools (Li 

et al., 2009; version 0.1.18) and HTSeq (Anders, et al., 2014; version 0.6.1p1). Data was pre-

processed and analyzed in the R/Bioconductor environment (http://www.bioconductor.org) 

using the DESeq2 package (Simon Anders & Huber, 2010; version 1.8). The data was 

normalized and tested for differentially expressed genes based on a generalized linear model 

likelihood ratio test assuming negative binomial data distribution. Candidate genes were 

filtered to a minimum of 2-fold change and FDR-corrected p-value < 0.05. Gene annotation 

was performed using Mus musculus entries from Ensembl (http://www.ensembl.org) via the 

biomaRt package (Durinck et al., 2005, version 2.18.0). GO and KEGG enrichment analysis 

on candidate genes was conducted with the Goseq package (Young, et al., 2010; version 1.2) 

using standard parameters. Identifiers of mouse genes relevant for cAMP and TLR pathways 

were extracted using the KEGG database. 

2.16 Perfusion of the mice 

To anesthetize adult mice they were injected intraperitoneally (i.p.) with 180 and 200 µl 14% 

chloralhydrate (Merck) for females and males, respectively. After loss of consciousness, the 

chest was opened and through the left ventricle transcardial perfusion was applied. When 

brains were prepared for FACS analysis, mice were perfused with 1x PBS. For 

immunohistochemistry analysis in addition to PBS, 4% Paraformaldehyde (PFA) in PBS (pH 

7.4) was used. To prepare brain lysates 0.09% NaCl (B. Braun) was used. 

2.17 Intracerebral single injections and infusions 

6 and 9 months old WT and 5XFAD mice from both genders were anesthetized i.p. by a 

combination of ketamin/xylazin (Medistar/Riemser) and following loss of consciousness 

heads were fixed on a stereotactic frame (model 900, David Kopf Instruments).  To avoid eye 

dryness, eyes were covered with an eye and nose crème (Bepanthen®; Bayer). A rostral-

http://www.bioconductor.org/
http://www.ensembl.org/
https://www.google.de/search?espv=2&biw=1527&bih=841&q=anesthetized&spell=1&sa=X&ved=0CBoQvwUoAGoVChMI2OvZkMe5xwIVQdYaCh1PcQEs
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caudal excision was applied, a hole in the skull was placed by a 0.5 mm round-headed drill 

(Hager & Meisinger GmbH) at the position of 0.5 mm rostral and 1.5 mm right from the 

bregma. For the single injection (stab wounds) 1µl of freshly prepared 1 mg/ml or 0.01 mg/ml 

S-LPS (ALX-581-013, Alexis Biochemicals) solution was placed in a syringe (1.0 µL Neuros 

Model 7001 KH SYR, Hamilton) which later got fixed on the stereotactic manipulator. The 

needle was inserted in the brain at depth of 3 mm from the skull surface and the stimuli was 

injected within 3 min. Upon removal of the syringe the skin was sutured or glued by 

Histoacryl® glue (B.Braun). 

For long term infusions (24 or 72 hours) 8-12 weeks old WT female mice were anesthetized 

and prepared for the surgery as mentioned above. Freshly prepared 1 mg/ml Re-LPS (ALX-

581-013, Alexis Biochemicals), 100 µM β2AR agonist Salbutamol (SB; Sigma-Aldrich), 100 

µM β2AR antagonist ICI 118,551 hydrochloride (ICI; Sigma), combinations of Re-LPS with 

SB or ICI were placed in the micro-osmotic pumps (model 1007D, 0.5 μl/h) and were 

connected to cannulas of the Brain Infusion Kit 3 (both Alzet). Cannulas were fixed to the 

skull by Loctite 454 Adhesive Gel (Alzet). The pumps were placed under the skin on the back 

side the mice and the excision was sutured. Mice were injected with a pain killer (Rimadyl, 5 

μg/10 g bodyweight; Pfizer, Germany) and placed in clean cages on heating plates with 37°C 

till the next day.  

In case of 72 hours deliveries, 2 days before the surgery mice were provided with the pain 

killer Novaminsulfon (Metamizol; Ratiopharm, Germany) in their drinking water.  

After the indicated period of time, mice were sacrificed and perfused, as described in chapter 

2.16 and used for flow cytometry analysis or immunohistochemistry.  

2.18 Intraperitoneal injections 

12 months old WT and 5XFAD, male and female, mice were injected by freshly prepared 

LPS (Lipopolysaccharides from Escherichia coli 0111:B4; Sigma-Aldrich) in PBS at amount 

of 1 mg/kg of the weight in 200 µl volume. 200 µl PBS was injected in control mice. 10 h 

later, mice were perfused with NaCl as mentioned in chapter 2.16. Brains were used for 

immunohistochemistry and gene expression analysis. 
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2.19 Preparation of brains for flow cytometry 

Following perfusion of mice with PBS (described in section 2.16) brains were isolated and 

kept in HBSS without Mg2+ and Ca2+ (Sigma-Aldrich) on ice. Further procedure was 

performed using the Neuronal Tissue Dissociation Kit (T) (Miltenyi Biotec, Germany) in 

combination with the gentleMACS™ Dissociator (Miltenyi Biotec) according to the 

manufacturer’s instructions. Using two different PercollTM (GE Healthcare Life Sciences, 

Germany) dilutions, 37% and 70%, in complete DMEM leukocytes were isolated as followed: 

single cell suspensions were resuspended in 37% Percoll and placed on the 70% percoll 

solution and centrifuged at 500 g at 4°C for 25 min without acceleration and brake forces. The 

interphase layer containing immune cells was carefully collected and washed with FACS 

buffer (centrifuged for 10 min at 300 g at 4°C). Fc receptors were blocked by anti-mouse 

CD16/CD32 antibody for 10 min at 4°C and stained with 50 µl antibody mixtures against 

CD11b, Ly-6C, Ly-6G, CD45 diluted in FACS buffer (Table 5). Subsequently, the cells were 

washed with FACS buffer and resuspended in 300 µl FACS buffer and recorded by a FACS 

CantoII (BD Bioscience). Data were analyzed by FlowJo (Tree Star, Ashland, OR, USA).  

 

Table 5: Antibodies used for flow cytometry analysis of brain 

Antibody Catalogue No./ 
Clone Provider Final dilution  

(in FACS buffer) 

Anti-mouse CD16/CD32 101310/ 
93 BioLegend 1:50 

Pacific Blue anti-mouse 
Ly-6G 

127612/ 
1A8 BioLegend 1:33 

PerCP anti-mouse CD45 103130/ 
30-F11 BioLegend 1:50 

APC anti-mouse Ly-6C 128016/ 
HK1.4 BioLegend 1:50 

PE anti-mouse CD3 100308/ 
145-2C11 BioLegend 1:50 

FITC anti-mouse/human 
CD11b 

101206/ 
M1/70 eBioscience 1:33 

 

2.20 Immunohistochemistry  

Two different approaches were performed for Immunohistochemistry. 

http://www.biolegend.com/index.php?page=pro_sub_cat&action=search_clone&criteria=145-2C11
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2.20.1 Immunohistochemistry of intracerebral infused brains 

Mice were perfused with PBS and paraformaldehyde (PFA; 4%), as described in section 2.16 

and decapitated. Skins were removed from the skull and the head was transferred into 4% 

PFA in PBS (pH 7.4) for post-fixation (2-3 days at 4°C). PFA was replaced by PBS and 

stored at 4°C until further preparation. Brains were carefully removed, and cut into two 

coronal parts at the position of infusing needle. Brain sections were dehydrated overnight 

through a series of graded alcohol/xylene/paraffin by an automated tissue processor 

(EXCELSIOR ES, Thermo Scientific) and then embedded in the paraffin. Dehydrations and 

embeddings were kindly performed by Uta Scheidt at the department of Neuropathology, 

UMG.  

Paraffin embedded sections were sliced at a thickness of 3 µm by a sliding microtome (SM 

2000R, Leica) and stained. For staining, dried sections on object slides were deparaffinized by 

incubating them for 5 min in 100%, 95% and 85% Xylol, and 70% alcohol and eventually 

distilled water. Sections were rinsed twice in PBS-Tween 20 (PBS-T, 0.02%) and incubated 

in Hydrogen peroxidase (2%, diluted in 60% methanol) for 60 min and rinsed once in PBS-T 

for 10 min. Unspecific binding was blocked by Blocker A (combination of  2% bovine 

albumin, 0.3% milk powder and 0.5% donkey normal serum in PBS-T) for 60 min. Primary 

antibodies, diluted in Blocker A were added to the sections and incubated overnight at RT 

followed by three washing steps by PBS-T (each 10 min). Subsequently, sections were 

incubated with secondary biotinylated antibodies (diluted in 2 parts PBS-T and 1 part Blocker 

A) for 60 min. Three washing steps were applied as described above. Following incubation 

with extravidin peroxidase (1:2000 in PBS-T) and three washings, sections were kept for 5 

min in Tris-HCL and DAB/Nickel (20 mg ammonium nickel (II) sulfate, 100 μl DAB [2mg 

DAB in 100μl distilled water] and 2.5 μl H2O2 in 5 ml Tris-HCl) was used for the color 

development. Sections were rinsed once in Tris-HCL for 5 min, twice in PBS-T and PBS, (10 

min each), and finally in distilled water. Tissue was dehydrated in graded alcohol series and 

mounted with Entellan® (Merck). Pictures were taken by Leica SM 2000R microscope and 

were analysed by ImageJ software.   

Slicing and staining of the sections were generously accomplished by Katja Reimann at the 

Paul-Flechsig-Institute for Brain Research (Medical faculty of Leipzig University). 

 

http://www.leicabiosystems.com/specimen-preparation/sectioning/sliding-microtomes/details/product/leica-sm2000-r/
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Table 6: Antibodies used for immunohistochemistry analysis of intracerebral infused mice 

Primary Antibody Catalogue No. Host Provider Final 
dilution 

Iba-1 019-19741 Rabbit Wako 1:800 

Mac-3 10850 Rat BioLegend 1:200 

GFAP Z0334 Rabbit Dako 1:600 

Secondary Antibody     

anti-Rabbit 711-065-152 Donkey Dianova 1:1000 

anti-Rat 712-065-150 Donkey Dianova 1:1000 

 
 
 
2.20.2 Immunohistochemistry of intraperitoneal injected mice 

Mice were perfused with NaCl as explained in the section 2.16. Brains were cut sagitally into 

two parts. One half was kept in 4% PFA, overnight at 4°C and was processed the next day as 

followed: tissue was transferred to 1% PFA for 2-3 days. The PFA was replaced by 25% 

sucrose in PBS for 1 day at 4°C. Subsequently, brains were frozen at -50°C in a cryostat, and 

sectioned at 14 μm or 40 μm thickness for immunohistochemical or immunofluorescence 

stainings, respectively. Sectioning and staining of the brain samples from intraperitoneal 

injected mice were performed by Zhuoran Yin (Department of Neuroscience, University 

medical center Groningen, the Netherlands). 

 Immunohistochemistry and Congo red staining 2.20.2.1

Sections were fixed by 4% paraformaldehyde in PBS for 10 min and three times rinsed by 

PBS. The sections were pre-incubated in 0.3% H2O2 for 30 min and blocked by 10% normal 

goat serum (NGS) in PBS+0.3% Triton-X100 (Merck, Darmstadt, Germany) for 30 min 

followed by primary antibodies incubation diluted in PBS+0.3% Triton-X100+1% NGS, 

overnight at 4°C. Biotinylated goat anti-rabbit (1:400, Vector BA1000), or biotinylated rabbit 

anti-rat (1:400, Vector BA4001) was used as the secondary antibody. To determine the 

protein expression the avidin-biotin-peroxidase method (Vectastain ABC kit, Vector 

Laboratories, PK-6100) or AEC substrate chromogen solution (DAKO, K4009) with DAB 

(105H3705, Sigma) were used. To visualize amyloid fibrils Cresyl violet or Congo red 

staining was performed on Iba1, Mac-2, MHC II, CD68, IL-1β or ASC immuno-stained 

sections according to a standard protocol (Puchtler et al., 1967). After Congo red staining, the 

apple green birefringence could be observed under polarized light microscopy.   
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Table 7: List of antibodies used for immunohistochemistry analysis of intact or intraperitoneal injected 
mice 

 

 

 

 

 

 

 

  

 

 

 

   

 Immunofluorescence and confocal imaging 2.20.2.2

For immunofluorescence staining, sections were rinsed shortly in PBS and blocked by 10% 

normal goat serum in PBS+0.3%Triton X-100 for 1h at RT. Sections were incubated 

overnight at 4°C with primary antibodies (refer to Table 7) diluted in 1% normal goat serum 

in PBS+0.3% Triton X-100. The next day, the free floating brain sections were rinsed by PBS 

thrice and incubated with the secondary antibodies for 2 hours. Three times washings with 

PBS were applied and the sections were incubated in Hoechst (1:1000, Fluka) for 10 min and 

eventually mounted on StarFrost® glass slides and embedded in Mowiol (Calbiochem, the 

Netherlands). 

Primary Antibody Catalogue 
No. Host Provider Final 

dilution 

Iba-1 019-19741 Rabbit Wako 1:1000 

IL-1β 500-P 51 Rabbit PeproTech 1:750 

Mac-2 CL8942AP Rat Cedarlane 1:1000 

MHC II 14-5321 Rat eBioscience 1:100 

CD68 MCA1957GA Rat AbD Serotec 1:200 

ASC AL177 Rabbit Adipogen 1:200 

4G8 800701 Mouse BioLegend 1:500 

CD11c 14-0114 Armenian 
Hamster eBioscience 1:100 

Dectin-1  MCA2289 Rat AbD Serotec 1:100 

Lamp2 ab37024 Rabbit Abcam 1:100 

Trem2b MAB17291 Rat R&D 1:100 

Secondary Antibody     

anti-rabbit BA1000 goat Vector 
Laboratories 1:400 

anti-rat BA4001 rabbit Vector 
Laboratories 1:400 

anti-mouse BA2000 horse Vector  
Laboratories 1:400 

anti-hamster 6060-02 goat Southern 
Biotechnology 1:100 



Materials and methods 

37 

 

Confocal images were acquired with a Leica Sp8 confocal microscope with LASAF software. 

The z-maximum-intensity projection function of ImageJ was used to optimize the appearance 

of microglia processes. 

 

Table 8: List of secondary antibodies used for immunofluorescence staining 

 

 

 

 Quantification of Mac-2, CD68 and MHC II stainings 2.20.2.3

Brain sections of 20 months old WT and APP23 mice i.p. injected with PBS or LPS were 

stained with Mac-2, CD68 and MHC II as mentioned in 2.20.2. For each staining the area 

covered by DAB positive cells was measured. To compare PBS- with LPS-treated mice, the 

whole cortical area (6.69±3.36 mm2) was defined as total area. To analyze PBS and LPS 

effect in ‘plaque-’ and ‘non-plaque’ regions in APP23 mice, the areas containing amyloid 

plaques were considered as ‘plaque area’ and set as total area (0.017± 0.001 mm2/area) and 

the regions without plaque depositions were defined as ‘non-plaque area’ and set as total area 

(0.017± 0.001 mm2/area). In each animal 6 ‘plaque areas’ and 3-4 ‘non-plaque regions’ were 

analyzed. The morphological analysis was performed by TissueFAXS microscope 

(TissueGnostics GmbH, Austria). 

2.21 Cell sorting from brains by flow cytometry for gene expression analysis 

The cell sorting method was slightly modified from Raj et al., 2014. In brief, 9 months old 

WT and 5XFAD (male and female) mice were perfused with NaCl as mentioned in section 

2.16 Brains were collected and kept in Medium A (HBSS containing 0.6 % glucose and 

15 mM HEPES buffer). Tissue was homogenized with the glass homogenizer (Glass potter, 

Braun Melsungen, Germany) until a cell suspension was obtained. The suspension was then 

filtered through a 70 µm cell strainer and centrifuged at 220 g for 10 min at 4°C. Supernatant 

was discarded and the residual pellet was resuspended thoroughly in 15 ml percoll gradient 

(22%, GE Healthcare), 77% myelin gradient buffer (5.6 mM NaH2PO4.2H2O, 20 mM 

Na2HPO4.2H2O, 140 mM NaCl, 5.4 mM KCl, 11 mM Glucose) and 40 mM NaCl. 3 ml of 

Secondary Antibody Catalogue No. Host Provider Final 
dilution 

anti-rabbit Alexa 488 A21070 chicken Molecular Probes 1:400 

anti-rat Cy3 712-165-150 donkey Jackson Immuno 
Research 1:700 
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PBS was added carefully on top of the suspension and centrifuged at 950 g for 20 min 

(acceleration of 4, brake of 0) at 4°C. The interface layer containing microglia and 

macrophages between Percoll and PBS was collected and washed with PBS. Fc receptors on 

the cells were blocked with anti-CD16/CD32 antibody for 15 min at 4°C. Cells were stained 

with respective cell surface antibodies (CD11b, CD45, Ly6C and MHC II) and incubated for 

30 min on ice. Cells were washed with Medium A and eventually resuspended in Medium A 

and transferred to FACS tubes with cell strainer. Using 1µl of Propidium Iodide (Sigma) 

staining, viable cells were sorted by BD FACSAria™ II (BD Biosciences) with 85 and 100 

µm nozzle diameter and collected in RLT lysis buffer (QIAGEN) followed by 30 s vortexing. 

Samples were stored at -80°C till RNA extraction. To extract RNA, RNeasy Plus kit 

(QIAGEN) was used following the provider’s instructions. RNA extraction was kindly 

performed by Zhuoran Yin (Department of Neuroscience, University medical center 

Groningen, the Netherlands).  

RNA was finally analyzed for over 800 specific microglial gene expression patterns in 

collaboration with Lundbeck Company (New York, United States). 

 

Table 9: Antibodies used for sorting brain cells 

Antibody Catalogue No./  
Clone Provider Final dilution 

(in Medium A) 

anti-moue 
CD16/CD32 

101310/ 
93 BioLegend 1:100 

BV421 anti- 
mouse/human 
CD11b 

101236/ 
M1/70 BioLegend 1:28 

FITC anti- 
CD45 

11-0451-85/ 
30-F11 eBioscience 1:250 

APC anti- 
Ly6C 

128016/ 
HK1.4 Biolegend 1:133 

PE/Cy7 anti- 
MHC II 

107630/ 
M5/114.15.2 Biolegend 1:200 
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2.22 Statistics 

Statistical differences were evaluated either by one- or two-way-Analysis of Variance 

(ANOVA) followed by Tukey’s or Bonferroni’s multiple comparison test as indicated. 

Statistical significances were defined as *: p<0.05, **: p<0.01, ***: p<0.001. All the data 

were presented as mean ± SEM. Statistical analysis were performed using the software 

GraphPad Prism® V6.01 (USA). The data obtained from ELISA experiments to characterize 

microglia of WT and 5XFAD mice were analysed using SPSS software. The General Linear 

Modeling (GLM) multivariate procedure was used to test null hypotheses about the effects of 

genotype and age on the means of various groupings of a joint distribution of dependent 

variables (TNFα, IL-6, IL-12p40, CCL2, CCL3, CCL5 and CXCL1). The analysis was 

performed for male and female mice separately. The multivariate analysis of variance using 

Hotelling's trace criterion was provided for combination of the dependent variables and the 

univariate analysis of variance was provided for each dependent variable. To test for 

difference of each dependent variable in different age groups, Tukey’s test was used. In 

addition to the testing hypotheses, GLM multivariate produced estimates of parameters, too. 

The Statistical tests using SPSS software were kindly performed by Nargess Saiepour 

(University of Queensland, Australia). 
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3 Results 

3.1 Characterization of microglia in the 5XFAD mouse model 

3.1.1 Impairment of microglial phagocytic activity in 5XFAD is reversible 

One of the known changes of the microglia phenotype associated with AD pathology is the 

reduced Aβ phagocytic activity (Hickman, et al., 2008).  

 To investigate whether this microglial impairment in phagocytosis is consistent in the healthy 

environment, phagocytic activity of microglia was assessed outside the brain in ex vivo cell 

cultures. Microglial phagocytic activity in vivo involves clearing myelin debris, pathogens or 

misfolded proteins such as Aβ peptides in the CNS. Accordingly, microglial cultures from 3, 

6 and 9 months old WT and 5XFAD male and female mice were prepared and the 

phagocytosis of myelin, E. coli and Aβ was investigated. The cultures received astrocytic 

support but were free of other cell types or additional stimulation (Scheffel et al., 2012). 

Microglia cultivated from the above mentioned groups received fluorescently labelled myelin 

for 2 hours and subsequently the percentage of microglia phagocytosing myelin was evaluated 

using FACS analysis (Figure 5B). Figure 5C compares cells from male WT with male 

5XFAD cells at the investigated ages. No differences were observed between WT and 

5XFAD microglia. However, comparing different ages irrespective of genotype shows a 

significant reduction of phagocytic activity of microglia at 9 months of age by the WT and 

5XFAD mice (p value WTs: 3 vs 9, 0.0004; 6 vs 9, ˂ 0.0001; 5XFADs 3 vs 9, 0.009; 6 vs 9, ˂ 

0.0001). Comparing WT and 5XFAD female mice (Figure 5D) shows a similar outcome (p 

value WTs: 3 vs 9, 0.003; 6 vs 9, ˂ 0.003; 5XFADs 3 vs 9, 0.0003; 6 vs 9, ˂ 0.003). 
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Figure 5: Ex vivo myelin phagocytosis assessment by adult microglia.   
(A) Experimental design for myelin phagocytosis. Microglia from 3, 6 and 9 months old male and 
female WT and 5XFAD mice were cultured (2×105 cells were plated in 12 well-plate). After their 
attachment to the surface, Rhodamine- or DyLight 550-labelled myelin (10 μg/ml) was added to the 
cells for 2 hours. (B) A representative example of flow cytometry data evaluation. The percentage of 
the myelin positive population was calculated from CD11b+ cells (microglia). (C) Percentage of 
microglia isolated from WT and 5XFAD male mice which phagocytosed myelin. (D) Microglia from 
female WT and 5XFAD mice that phagocytosed myelin. Data are mean ± SEM, N=5. (Two-way 
ANNOVA followed by Tukey’s post-hoc test; *: p<0.05, **: p<0.01, ***: p<0.001) 
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Microglia- as other macrophages- are professional phagocytic immune cells and are able to 

recognize entering pathogens to the CNS with a high sensitivity. Thus, in the next approach 

we studied phagocytosis of E. coli by microglia isolated from the same mice (Figure 6). 

Fluorescently labelled E. coli were added to the microglia cell cultures and incubated for 2 

hours. Evaluation of the microglia positive for E. coli by flow cytometry analysis is depicted 

in Figure 5B. Figure 6A shows no significant differences between male WT and 5XFAD E. 

coli-positive microglia at the three different ages. Nevertheless, comparing different ages in 

each genotype reveals a significant reduction of phagocytic microglia at 9 months of age 

compared to younger ages (p value WTs: 3 vs 9, 0.008; 6 vs 9, ˂ 0.02; 5XFADs 3 vs 9, 0.008; 

6 vs 9, ˂ 0.006). Figure 6B depicts the outcome for the female groups. As in males, there is no 

difference between the two genotypes but the percentage of phagocytosing microglia drops 

dramatically at 9 months of age compared to 3 and 6 months mice (p value WTs: 3 vs 9, 0.04; 

5XFADs 3 vs 9, 0.02; 6 vs 9, ˂ 0.03). 

 

Figure 6: E. coli phagocytosis assessment by adult cultured microglia.  
Microglia cultures (2×105 cells in 12 well-plate) were prepared from 3, 6 and 9 months old WT and 
5XFAD mice. E. coli phagocytosis was investigated by addition of Ds-Red labelled E. coli (2×106 
CFU) in complete DMEM with ampicillin instead of streptomycin and penicillin to the cells for 2 
hours. Percentage of E. coli positive population was calculated from CD11b+ cells (microglia). (A) 
Percentage of microglia cells isolated from WT and 5XFAD male mice which phagocytosed E. coli. 
(B) Microglia from female WT and 5XFAD mice phagocytosing E. coli. Data are mean ± SEM, N=5. 
(Two-way ANNOVA followed by Tukey’s post-hoc test; *: p<0.05, **: p<0.01, ***: p<0.001) 
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In AD pathology microglia are responsible for Aβ phagocytosis as well. Thus, we 

investigated phagocytic activity of microglia isolated from 3 and 6 month old female WT and 

5XFAD mice for monomeric forms of Aβ1-40 and Aβ1-42 peptides (Figure 7). Due to the 

limited number of mice, 9 months old mice could not be studied in this approach. 

Fluorescently labelled Aβ peptides were added to the cells for two hours and subsequently the 

percentage of cells that phagocytosed Aβ1-40 (Figure 7A) and Aβ1-42 (Figure 7B) was 

evaluated using flow cytometry analysis. As shown by the data, microglia isolated from 

5XFAD and WT mice have the same phagocytic activity for Aβ1-40 and Aβ1-42. No differences 

can be observed between 3 and 6 months old groups. 

 

Figure 7: Aβ phagocytosis assessment by adult cultured microglia.  
Adult microglial cultures (2×105 cells/well in a 12-well plate) were prepared from 3 and 6 months old 
female WT and 5XFAD mice. Cells received a monomeric form of HiLyte FlourTM 647-Labelled Aβ1-

40 or Aβ1-42 in complete DMEM (both 250 nM) for 2 hours. The percentage of microglia positive for 
Aβ1-40 (A) and Aβ1-42 (B) was assessed from CD11b+ cells (microglia). Data are mean ± SEM, N=5. 
(Two-way ANNOVA followed by Bonferroni’s post-hoc test; *: p<0.05, **: p<0.01, ***: p<0.001) 

 

3.1.2 LPS alters phagocytic activity of adult microglia isolated from 5XFAD mice 

Previous studies have shown that stimulation of microglia with LPS (TLR4 agonist, one of 

the TLRs involved in AD (reviewd by Walter et al., 2007) results in alterations of their 

phagocytic activity. These changes, however, vary for different phagocytic materials. For 

instance, microglia stimulated with LPS show decreased myelin phagocytosis (Regen et al., 

2011)  but increased E. coli phagocytosis (Ribes et al., 2009). Thus, to study the effect of LPS 
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on phagocytosis in 5XFAD mice compared to WTs we assessed the microglial response to 

LPS in terms of myelin and E. coli phagocytic activity (Figure 8).  

Microglia were isolated from three different ages of WT and 5XFAD mice as mentioned in 

1.1.1. Myelin (Figure 8B-C) and E. coli (Figure 8D-E) phagocytosis in microglia were 

evaluated after 24 hours after pre-incubation with LPS. The data were normalized to their 

respective groups without LPS stimulation (Figure 5 and Figure 6). As shown in Figure 8B 

and C, myelin phagocytosis decreased upon LPS pre-stimulation in both genotypes and 

genders. Moreover, there were no significant differences between WT and 5XFAD groups in 

the studied ages (Figure 8B). Female mice (Figure 8C) show a similar sensitivity to LPS 

compared to male mice.  

An increased E. coli phagocytic activity by adult microglia upon pre-stimulation of LPS was 

observed (Figure 8D-E: values were normalized to E. coli phagocytosis without pre-

stimulation). In the male groups, WT and 5XFAD microglia show no significant differences 

(Figure 8D). However, these data show a tendency of an age-dependent increase of E. coli 

phagocytosis in both genotypes upon LPS stimulation. Figure 8E compares WT and 5XFAD 

female mice. Both groups show similar responses to LPS and it seems that microglia isolated 

from 9 months old mice of both genotypes tend to be more responsive to LPS. 
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Figure 8: LPS pre-incubation effects on myelin and E. coli phagocytosis by adult microglia.  
Microglia cultures (2×105 cells/well) were prepared from 3, 6 and 9 months old WT and 5XFAD male 
and female mice. (A) Experimental design. Cells were incubated with LPS (rough type, 10 ng/ml) for 
24 hours. Cells were washed with the complete medium before addition of phagocytic compounds 
(myelin or E. coli). (B and C) Myelin (10 μg/ml) was added to the cells isolated from males and 
females, respectively. Myelin-positive microglia were detected by flow cytometry analysis. (D) Male 
and (E) female microglia received E. coli (2×106 CFU) for 2 hours. Dotted lines indicate 100% and 
refer to the myelin or E. coli phagocytosis without LPS pre-stimulation. Data from each age, genotype 
and gender are normalized to their respective groups without LPS stimulation (Figure 5 and Figure 6). 
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Data are mean ± SEM, N=5. (Two-way ANNOVA followed by Tukey’s post-hoc test; *: p<0.05, **: 
p<0.01, ***: p<0.001). h, hour. 

 

3.1.3 Higher reactivity of microglia in AD environment is reversible  

It has been shown that microglia in the brains of AD patients and mouse models harbour a 

hyperreactive phenotype which accompanies an enhanced cyto-/ chemokine production in 

these cells (reviewed by Heppner et al., 2015). To determine the activity of microglia to 

produce cyto-/ chemokines in an healthy environment, microglia were isolated from 3, 6 and 

9 months old 5XFAD and age matched WT control mice from both genders and were 

stimulated with a large battery of pro- and anti-inflammatory stimuli for 18 hours. The stimuli 

included LPS, Fibronectin, Pam3CSK4, Poly (I:C), Poly (A:U), MALP-2, CPG ODN, INFγ, 

IL-4, IL-10 and combination of LPS with IL-10 or INFγ. Control groups from both genotypes 

received only culture medium. Subsequently, the amount of a selection of secreted pro-

inflammatory cyto-/ chemokines (TNFα, IL-6, IL-12p40, CCL2, CCL3, CCL5 and CXCL1) 

was measured in the supernatant of the cells, using ELISA (Figure 9). 

The data obtained from all the groups were compared together as shown by a correlation 

heatmap (Figure 9A). The individual expressions of all the groups are depicted in a separated 

heatmap (Figure 9B). For a better understanding of possible differences between 5XFAD and 

WT groups, the data from all the stimuli were pooled together and compared for respective 

cyto-/ chemokines between age groups and between different genotypes. The analyses were 

performed separately for male and female mice. 

With the exception of CCL2 in female mice, the multiple comparison analyses reveal no 

significant differences between WT and 5XFAD groups. For female mice, CCL2 production 

upon microglial stimulation is reduced in 3, 6, and 9 months old 5XFAD female mice 

compared to WTs (p value 0.045). Although almost all the cytokines have the tendency for a 

reduced production in older ages, significant differences can be seen for IL-6 (p values: 3 vs 

6, 0.04; 3 vs 9, 0.01), CCL2 (p values: 3 vs 9, < 0.0001; 6 vs 9, 0.001), CCL3 (p values: 3 vs 

6, < 0.0001; 3 vs 9, < 0.0001) for female mice and IL-6 (p values: 3 vs 9, 0.04; 6 vs 9, 0.03) 

and CCL2 (p values: 3 vs 6, < 0.0001; 3 vs 9, 0.001) for males (Figure 9C).  All interactions 

between genotype and age were insignificant (p-values > 0.05). 
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Figure 9: Cyto-/ chemokine production by 5XFAD microglia compared with WTs. 
Microglia cultures (15×104 cells in 96 well-plate) were prepared from 3, 6 and 9 months old WT and 
5XFAD mice. Cells received Re-LPS (0.1 ng/ml and 10 ng/ml), Fibronectin (100 μg/ml), Pam3CSK4 
(10 ng/ml), Poly (I:C) (50 µg/ml), Poly (A:U) (50 µg/ml), MALP-2 (10 ng/ml), CPG ODN (5 µg/ml), 
INFγ (10 ng/ml), IL-4 (10 ng/ml), IL-10 (10 ng/ml) and combination of Re-LPS (10 ng/ml) with IL-10 
or INFγ (both 10 ng/ml) for 18 hours. Amounts of TNFα, IL-6, IL-12p40, CCL2, CCL3, CCL5 and 
CXCL1 were measured in the supernatants using ELISA. (A) A heatmap of the correlations between 
stimulated microglia from WT and 5XFAD mice. (B) A heatmap for the individual expressions of all 
the groups by respective stimuli. The data obtained from all the stimuli in female (C) and male (D) 
mice were pooled and analysed for different cyto-/ chemokines. The data from 3 and 6 months old are 
compared with 9 months old. N=5-6. (Multivariate tests Hotelling’s Trace followed by Tukey’s post-
hoc test; *: p<0.05, **: p<0.01, ***: p<0.001) 
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3.1.4 Cultured microglia from 5XFAD mice show a decreased proliferation activity 

compared to the age matched WT mice 

Microglia as one of the main cell types in touch with Aβ depositions are believed to have a 

higher proliferation activity in AD brains. In vivo studies have shown, that this enhanced 

proliferation occurs mainly in the vicinity of Aβ plaques (Orre et al., 2014; reviewed by 

Gomez-Nicola & Boche, 2015). To investigate this activity of microglia in the absence of Aβ 

peptides or other possible stimulations of an AD environment, we investigated proliferation of 

microglia isolated from 6 and 9 months old WT and 5XFAD male and female mice ex vivo. 

The proliferation activity was measured within 24 hours by using a BrdU proliferation assay. 

The proliferation rate was assessed in control medium or after stimulation with LPS (Figure 

10). The data show that microglia isolated from adult mice are capable of proliferation. In 

addition, the data reveal that microglia isolated from 6 and 9 months old male (Figure 10A) or 

female (Figure 10B) 5XFAD mice have a significantly lower proliferative activity compared 

to the WT controls (p value males: 6 month, WT vs 5XFAD, 0.001; 9 month WT vs 5XFAD, 

0.0007; females: 6 month, WT vs 5XFAD, 0.006; 9 month WT vs 5XFAD, 0.0008). 

Moreover, the proliferation rate of microglia from female mice decreases with age of animals 

independent of the genotype (Figure 10B; p value WTs: 6 vs 9, 0.001; 5XFADs 6 vs 9, 0.002). 

To investigate the effect of LPS on the proliferation, cells were stimulated with two different 

concentrations of LPS (low, 0.1 ng/ml and high, 10 ng/ml). LPS stimulation induced a 

reduction of proliferative activity in adult microglia (Figure 10C). The proliferation rate upon 

LPS stimulation was normalized to the proliferation under control conditions of each 

respective group. The data show that both concentrations of LPS lead to a decrease of 

proliferation to almost 50% of medium control. Nevertheless, no significant differences 

among the groups have been observed (Figure 10C). 
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Figure 10: Proliferation rate of cultured adult microglia.  
Microglia isolated from 6 and 9 months old male and female WT and 5XFAD mice were cultured and 
plated with a density of 1.5×104 cells/well. Complete medium containing BrdU compound alone was 
added to the cells isolated from male (A) or female (B) mice for 24 hours. Subsequently, incorporated 
BrdU in microglia was detected calorimetrically using a specific anti BrdU antibody. (C) Cells were 
additionally stimulated with two concentrations of LPS (rough type; low, 0.01 ng/ml and high, 10 
ng/ml). Data of each group were normalized to their respective values (medium control, A and B) as 
the percentages. N for 6 months old mice=12 from 2 mice, for 9-month old mice= 12-20 from 3-5 
mice. Data are means ± SEM. (Two-way ANNOVA followed by Bonferroni’s post-hoc test; *: 
p<0.05, **: p<0.01, ***: p<0.001) 

 

3.1.5 9 months old 5XFAD mice have no monocyte and neutrophil infiltrates in the 

brain 

Immune cell infiltration from the periphery to the CNS is one of the extensively discussed 

issues in the AD context. Infiltrating monocytes and neutrophils (phagocytic cells) are 

believed to be more functional to clear excessive Aβ proteins than resident microglia 

(reviewed by Lai & McLaurin, 2012). However, this hypothesis is under debate. In our study, 

microglia cultures were prepared from whole brains and the purity of the cultures was tested 
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by expression of the complement receptor CD11b (Scheffel et al., 2012). CD11b is also 

expressed on other immune cells including macrophages and neutrophils and therefore it 

cannot discriminate among these cell types. Thus, to exclude that other possible CD11b+ 

immune cells were added to the cultures, we investigated the putative presence of monocytes 

and neutrophils in the brains of 5XFAD mice compared to WTs using CD11b, CD45, Ly6C 

and Ly6G markers. Since 9 months was the oldest age we used for our ex vivo experiments, 

we have not used animals below 9 months for this experiment. Immune cell infiltrates were 

assessed using flow cytometry analysis. WT and 5XFAD mice from both genders were 

transcardially perfused to wash away the immune cells in the blood vessels and subsequently 

monocytes and neutrophils were detected by specific antibodies. The data demonstrate that 

the percentage of monocytes (Figure 11B) and neutrophils (Figure 11C) in the brains of 

5XFAD mice do not differ from age matched WTs. 

 

Figure 11: Number of monocytes and 
neutrophils in the brains of WT and 
5XFAD mice.  
Intact brains of 9 and 12 month old WT 
and 5XFAD mice were prepared for 
immune cells infiltrate assessment. (A) 
An example of sample evaluation by 
flow cytometry. Percentage of 
monocytes (CD45+, CD11b+, Ly6C+ 
and Ly6G-) (B) and neutrophils 
(CD45+, CD11b+, Ly6C+ and Ly6G+) 
(C) from CD45+ and CD11b+ 
population. Data from male and female 
mice are pooled. N=3. Data are mean ± 
SEM. (Mann-Whitney U test; *: 
p<0.05, **: p<0.01, ***:  p<0.001) 
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3.1.6 Microglia in the brains of 5XFAD mice respond to intracerebral injected LPS  

Under pathological conditions, microglia are continuously stimulated by Aβ exposure. 

Especially in the 5XFAD mouse model, which develops plaque depositions already at 2 

months of age (Jawhar et al., 2012), microglia are exposed to soluble Aβ stimulation from 

early on in life, which can affect their response to a secondary stimulation such as infectious 

materials. LPS (which represents bacterial infection) is one of the strongest PAMPs to 

activate immune cells including microglia. In particular, in the CNS any appearance of LPS 

has to be quickly eliminated. One of the reactions of microglia after this harsh in vivo 

stimulation is secreting chemoattractive proteins to recruit other immune cells from the 

periphery to the infectious site. To investigate how these microglia that were pre-stimulated 

with Aβ will respond to LPS in terms of recruiting immune cells from the periphery, two 

concentrations of LPS (0.01 mg/ml as low and 1 mg/ml as high) were injected in the striatum 

of 6 and 9 months old WT and 5XFAD mice from both genders. 24 hours after injections, 

mouse brains were analysed for infiltrating neutrophils and monocytes (Figure 12). 

Evaluation of neutrophil infiltrates (Figure 12C-D) shows a concentration-dependent increase 

of neutrophils by increasing LPS concentrations. As shown in Figure 12C there are no 

significant differences between infiltrating neutrophils in WT and 5XFAD male and female 

brains at 6 or 9 months of age, indicating that microglia of all groups respond similarly at a 

low concentration of LPS to recruit neutrophils. Shown in Figure 12D, all groups of WT and 

5XFAD mice show the same infiltration rate of neutrophils, except the 9 months old 5XFAD 

male mice which reveal significantly lower neutrophils compared to age matched controls (p 

value 0.01). Figure 12E-F compares the infiltration rate of monocytes. Similar to the 

neutrophil infiltration, LPS injection dose-dependently leads to infiltration of monocytes 

(Figure 12E to F). Upon injection of a low concentration of LPS, no differences among the 

groups of 6 and 9 months old WT and 5XFAD have been observed (Figure 12E). The data 

resulting from injection of high concentration of LPS (Figure 12F) show no significant 

differences between WT and 5XFAD. 9 months old 5XFAD male mice have significantly 

higher numbers of monocytes compared to age matched females (p value 5XFAD male vs 

WT female, 0.005; 5XFAD male vs 5XFAD female, 0.01).  
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Figure 12: LPS injection into the striatum leads to immune cell infiltration from the periphery 
to the brain in 5XFAD mice as in WT.  
(A) 6 and 9 months old WT and 5XFAD mice were injected with 0.01 mg/ml (10 ng) or 1 mg/ml (1 
µg) LPS (smooth type) in the striatum. 24 hours after the injection brains were isolated and single cell 
suspensions were prepared. 10,000 CD11b positive cells were recorded using flow cytometry to seek 
for neutrophils and monocytes infiltrates. (B) An example of brain sample evaluation by flow 
cytometry. Immune cells in the brain (CD45 and CD11b positive) were evaluated for neutrophils 
(CD45+, CD11b+, Ly6C+ and Ly6G+) and monocytes (CD45+, CD11b+, Ly6C+ and Ly6G-). (C) 
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CD11b+ and CD45+ population upon 0.01 mg/ml of LPS injection. (D) Percentage of neutrophils in 
CD11b and CD45 positive cells upon 1 mg/ml of LPS injection. (E) Percentage of Monocyte 
infiltrates upon 0.01 mg/ml of LPS. (F) Monocytes infiltrated in the brains upon 1 mg/ml of LPS 
injection. N=4-6. Data are mean ± SEM. (Two-way ANNOVA followed by Tukey’s post-hoc test; *: 
p<0.05, **: p<0.01, ***: p<0.001) 
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3.2 Amyloid beta (Aβ) plaque-associated microglia priming in transgenic mouse 

models of Alzheimer’s disease 

3.2.1 Aβ deposition increases in APP23 mice with ageing 

APP23 transgenic mice have been shown to form Aβ plaques after the age of 6 months and 

the Aβ plaques increase in size and number with the age of the animals (Sturchler-Pierrat et 

al., 1997). To detect the amount of dense-core plaques and Aβ depositions inside and outside 

the mature plaques at various ages, immunohistochemistry analysis was applied in 6, 16, 20 

and 24 months old APP23 mice using Congo red, Thioflavin S (both detecting mature 

plaques) and an anti-Aβ antibody (4G8, detecting Aβ17-24; Figure 13). Aβ depositions are not 

detectable at 6 months of age by any of the stainings (Figure 13A-C). 16, 20 and 24 months 

old APP23 mice show Aβ depositions in the cortex and the hippocampus using Congo red, 

Thioflavin S and 4G8 antibody which increases age dependently (Figure 13A-C). However, 

Aβ plaques in thalamus and olfactory nucleus are only detected at 24 months of age (Figure 

13A).  

 

Figure 13: Age-dependent increase of Aβ plaque depositions in APP23 mouse model.  
Age-dependent increase in Aβ plaque deposition in APP23 transgenic mice at 6, 16, 20 and 24 months 
old. Sagittal sections of APP23 mice were stained with (A) Congo red and (C) Thioflavin S. (B) 
Cortical sections of APP23 mice brains from different ages were stained with anti-Aβ antibody 4G8 
and Congo red. Scale bars: A= 500 μm; B- C= 50 μm. N=3-5. mo: months. 
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3.2.2 Signs of priming in Aβ plaque-associated microglia of APPswePS1dE9 and 

5XFAD mice 

It has been suggested that microglial priming features can be observed in Aβ plaque-

associated microglia of AD mouse models as well as post-mortem tissues from AD patients 

(reviewed by Norden & Godbout, 2013). To examine if this priming exists in the microglia in 

direct contact to the Aβ plaques, expression of priming markers (Mac-2, CD68 and MHC II) 

were studied in two well established APP-overexpressing mouse models, APPswePS1dE9 

(Figure 14) and 5XFAD (Figure 15). Brain sections of these mice were stained with Congo 

red (to visualize the plaque depositions) and antibodies against Mac-2, CD68 and MHC II.  

In the cortex and thalamus of 18 months old APPswePS1dE9 mice, immunoreactivity with 

Mac-2, CD68 and MHC II antibodies can be restrictedly seen in microglia in the vicinity of 

Aβ plaque depositions and not the plaque-free regions (Figure 14A-C). Moreover, Mac-2, 

CD68 and MHC II positive cells are co-stained with microglia marker, Iba1 (Figure 14D-F). 

Investigations of cortex, subiculum, thalamus and pons of 5XFAD mouse brains show Mac-2 

positive cells around the Aβ depositions already at the age of 7.5 months (Figure 15A). The 

immunoreactivity with Mac-2, CD68 and MHC II is more pronounced at the age of 12 

months (Figure 15B-D), however, non-plaque regions lack these positive cells. Co-staining of 

these cells with the microglia marker, Iba1, can be seen as well (Figure 15E-G). 
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Figure 14: Expression of priming markers on plaque-associated microglia of APPswePS1dE9 
mice. 
Sections of thalamus and cortex from 18 months old APPswePS1dE9 mice were stained with Congo 
red to label mature Aβ plaques and immuno-stained with the microglia priming markers (A) Mac-2, 
(B) CD68 and (C) MHC II. Immunofluorescence co-staining of microglia marker Iba1 and priming 
markers (D) Mac-2, (E) CD68 and (F) MHC II. Arrows indicate positive signal for Mac-2, CD68 and 
MHC II around Congo red positive stainings. Scale bars: A-C= 50 μm; insets and D-F= 15 μm. N=3. 
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Figure 15: Expression of priming markers on Aβ associated microglia in 5XFAD mice. 
Sections of cortex, subiculum, thalamus and pons from 7.5 (A) and 12 months old 5XFAD transgenic 
mice (B-D) were stained with Congo red and antibodies against the priming markers, (A-B) Mac-2, 
(C) CD68 and (D) MHC II. Immunofluorescence co-staining of cortical sections of 12 months old 
5XFAD mice for the microglia marker, Iba1 and priming markers Mac-2 (E), CD68 (F) and MHC II 
(G). Arrows indicate positive signal for Mac-2, CD68 and MHC II around Congo red positive 
stainings. Scale bars: A-D =50 μm; insets =15 μm; E-G = 20 μm. N=3-5. 
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3.2.3 The genes involved in the immune recognition and phagocytosis are highly 

expressed in APP23 and 5XFAD mice 

CD11c, Dectin1, Lysosomal-associated membrane protein 2 (Lamp2) and Triggering receptor 

expressed on myeloid cells 2 (Trem2) are involved in the immune recognition and 

phagocytosis of the immune cells. CD11c and Dectin1 have been described to belong to the 

gene profile of microglia priming (Holtman et al., 2015), Lamp2 is involved in phagosome 

maturation (Huynh et al., 2007) and Trem2 plays an essential role in the phagocytic activity of 

immune cells and its mutations have been introduced as risk factors of late onset Alzheimer’s 

disease (LOAD; Guerreiro et al., 2013). To investigate the expression pattern of these proteins 

in the plaque areas in APP23 and 5XFAD mice, cortical and hippocampal sections of 16 

months old APP23 and 12 months old 5XFAD mice were studied. The presence of these 

proteins in the transgenic mice were compared to the age matched WT controls. 

Overexpression of all of these proteins can be observed in 16 months old APP23 mice (Figure 

16B) compared to WT littermates (Figure 16A). Similar to APP23 mice, 12 months old 

5XFAD mice (Figure 16D) show high expression of CD11b, Dectin1, Lamp2 and Trem2 

which are lacking in control WT mice (Figure 16C). 
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Figure 16: Expression of CD11c, Dectin1, Lamp2 and Trem2 in Aβ plaque-associated microglia 
of APP23 and 5XFAD mice.  
Immunohistochemical analysis of  the cortex and hippocampus sections of 16 months old WT (A), 16 
months old APP23 (B), 12 months old WT (C) and 12 months old 5XFAD (D) mice for CD11c, 
Dectin1, Lamp2, Trem2 and counterstained with cresyl violet. Scale bar= 300 μm. N=3-5. M: months 

 

3.2.4 Aβ plaque-associated microglia priming and ageing-associated priming are two 

distinct processes 

In order to distinguish the expression of Mac-2, CD68 and MHC II markers (microglia 

priming markers) in microglia in the vicinity of Aβ plaques and to exclude it from the ageing 

effect, 16 months old APP23 and WT mice were studied. In addition, to investigate ageing-

associated microglia priming independent of Aβ-association, 24 month old WT and APP23 

mice were observed. Cortical sections of 16 months old APP23 mice show the expression of 

these markers by microglia in the vicinity of Aβ deposits and not in the plaque-free areas 

(Figure 17A). Appearance of these markers is not observed in 16 months old WT mice (data 

not shown). Expression of Mac-2 and CD68 but not MHC II is observed in the cortex of 24 
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months old WT mice (Figure 17B). In 24 months old APP23 mice Mac-2 and CD68 positive 

cells can be found in both Aβ-plaque areas as well as non-plaque regions (data not shown). 

The scheme in the Figure 17C shows that the Aβ plaque-associated microglia priming occurs 

prior to the age-associated priming. 

 

 

Figure 17: Aβ-associated microglia priming occurs prior to age-induced microglia priming. 
Cortical sections of 16 months old APP23 (A) and 24 months of WT (B) mice were stained with 
microglia priming markers: Mac-2, CD68 and MHC II. The Aβ plaques are labelled by cresyl violet. 
(C) In APP23 mice plaque-associated microglia priming is detected at the age of 16 months (16M) at 
which age-related microglia priming could not yet be detected in WT mice. Age-associated microglia 
priming was first detected in 24-month-old mice. Arrows indicate positive signal for Mac-2, CD68 and 
MHC II around dense cresyl violet stainings (senile plaques).  Scale bars: A-B= 50 μm; insets= 15 μm. 
N=3-5. M: months. 

 

3.2.5 MHC II+ microglia in 5XFAD mice reveal gene expression signature of priming 

In the previous experiments we showed that microglia in the vicinity of Aβ plaques express 

priming markers such as MHC II. In order to better understand the phenotype of these 
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microglia, MHC II positive (MHC II+) microglia were isolated from 5XFAD mice and age 

matched WT littermates using flow cytometry sorting. To exclude the ageing effect on the 

priming -which was shown in section 3.2.4- 9 months old mice were chosen. For the sorting, 

microglia were selected as CD11b+CD45intermediateLy6C- cells and further sub-gated into MHC 

II+ and MHC II- populations (Figure 18A). Subsequently, the expression of over 800 specific 

microglial genes of three selected pure populations (WT/MHC II-, 5XFAD/MHC II- and 

5XFAD/MHC II+) were analysed using an OpenArray and compared in a heatmap (Figure 

18B).  

The expression of many genes is mildly increased in 5XFAD/MHC II- microglia compared to 

WT/MHC II- (Figure 18C). A more pronounced upregulation/downregulation was observed in 

5XFAD/MHC II+ microglia in comparison to 5XFAD/MHC II- (Figure 18C). A previous 

study on the gene analysis of pure microglia isolated from accelerated ageing and 

neurodegenerative mouse models described “general activated” and “primed” modules 

(Holtman et al., 2015). In the current study, overexpressed genes belong to both “primed” and 

“activated” modules in MHC II+ microglia. The significantly upregulated genes in the MHC 

II+ population related to the “primed” module include apolipoprotein E (Apoe), C-type lectin 

domain family 7 member A (Clec7a, Dectin1), integrin alpha (Itgax, Mac-1, CD11c), lectin 

galactoside binding soluble 3 (Lgals3, Mac-2). Upregulated genes such as secreted 

phosphoprotein 1 (Spp1, immune modulator), encoding cystatin-F (Cst7, immune regulator) 

belong to the “activated” module. Other overexpressed genes which have been previously 

shown to be upregulated in AD mouse models (Orre et al., 2014) include cytochrome c 

oxidase subunit VIa polypeptide 2 (Cox6a2, mitochondrial respiratory chain), MAM domain 

containing 2 (Mamdc2, glycosaminoglycan binding), low density lipoprotein receptor (Ldlr, 

endocytosis, neurotrophin pathway), triggering receptor expressed on myeloid cells 178 

(Trem178, negative regulator of macrophage activation) and  Trem2, the variant of which was 

defined as a genetic risk for late onset Alzheimer’s disease (LOAD). TYRO protein tyrosine 

kinase-binding protein (TyroBp), is significantly upregulated in 5XFAD/MHC II- microglia 

compared to WT/MHC II- microglia but the difference between 5XFAD/MHC II+ and 

5XFAD/MHC II- is not significant. Downregulated genes include CD33 (inhibiting 

phagocytosis) and Myc box-dependent-interacting protein 1 (BIN1, role in endocytosis) 

(Figure 18D). 
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Figure 18: MHC II+ microglia from 5XFAD mice have an activated microglial phenotype. 
Microglia from 9 months old WT and 5XFAD mice were sorted and analysed for regulation of 842 
specific microglial genes related to the inflammatory responses using an OpenArray® qPCR platform 
in collaboration with Lundbeck company (New York, the United states). (A) A representative of flow 
cytometry plots for microglia sorting. Microglia (CD11b+CD45intermediateLy6C-) were gated and 
subsequently sub-gated into MHC II+ and MHC II- populations. (B) A heatmap of the correlation 
between every two groups within 5XFAD/MHC II+, 5XFAD/MHC II- and WT/MHC II- microglia 
populations. (C) A heatmap of gene expressions in 5XFAD/MHC II+, 5XFAD/MHC II- and WT/MHC 
II- microglia for 72 most differentially expressed genes. The significance threshold for the effect size 
was set at two fold change and false discovery rate (FDR) adjusted of p < 0.01. (D) Illustration of 
selected genes expressions in 5XFAD/MHC II+, 5XFAD/MHC II- and WT/MHC II- groups. N=5 from 
pooled male and female mice. (False discovery rate (FDR), *: p < 0.05, **: p < 0.01, ***: p < 0.001) 

 
 
3.2.6 Systemic LPS injection leads to morphological changes of microglia  

Previous studies have described a stronger pro-inflammatory response in the brain of animals 

with age-related or neurodegenerative pathology upon LPS injections (Gatti & Bartfai, 1993; 

Cunningham et al., 2005; Sierra et al., 2007; Ramaglia et al., 2012). To examine the effects of 

ageing, Aβ plaque deposition and systemic infection on microglia activation in APP23 and 

5XFAD mice, 6, 20 and 24 months old APP23 mice, 12 months old 5XFAD mice as well as 

aged matched WT mice were injected with LPS (i.p.; 1 mg/kg). 6 hours after LPS injection 

mice were transcardially perfused and the brains were analysed for morphological changes of 

the microglia. In the AD transgenic mice microglia far from or in the vicinity of Aβ plaque 

depositions were also compared. Control groups of transgenic and WT mice received PBS, 

instead (Figure 19).  

PBS-injected 6 months old WT and APP23 mice show ramified microglia with thin and long 

processes, whereas LPS injected mice reveal more densely stained microglia (Figure 19A). 

Microglia in the cortex of 20 months old WT mice or non-plaque regions of APP23 represent 

a ramified morphology after PBS injection, while microglia in the vicinity of Aβ plaque 

depositions have thicker processes and are less ramified. However, LPS injection leads to less 

ramifications even in WT or non-plaque regions of APP23 mice (Figure 19B). Intermediate 

loss of ramifications in microglia can be found in 24 months old PBS-injected WT mice and 

non-plaque areas of 24 months old APP23 mice, as well (Figure 19C). At the age of 20 and 24 

months, LPS injection leads to the amoeboid or rod-shaped microglia with short and thick 

processes in direct contact to the Aβ plaques (Figure 19B-C). Figure 19D represents microglia 

morphology in 5XFAD mice compared to WTs. Upon PBS injection, microglia of WT mice 

or non-Aβ plaque regions of 5XFAD mice are ramified whereas microglia in the 
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neighbourhood of Aβ depositions have thicker processes and show less ramifications. LPS 

injection results in the shortening and thickness of microglial processes in WT mice and to a 

further loss of ramifications in microglia surrounding the Aβ depositions in 5XFAD mice 

(Figure 19D). 
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Figure 19: Morphological changes in plaque-associated microglia in APP23 and 5XFAD mice 
upon LPS injections. 
Iba1 and cresyl violet staining of cortical sections of increasing age of WT and APP23 transgenic mice 
(6, 20 and 24 months old) (A-C) and 12 months old WT and 5XFAD mice (D). Mice were injected 
with PBS or LPS, i.p. (1 mg/kg of the weight in 200 µl volume) 6 hours prior to sacrifice. Enlarged 
images depict microglia in WT mice, non-plaque areas and in the neighbourhood of Aβ plaque 
depositions (labelled by cresyl violet, shown in brackets) in APP23 and 5XFAD mice as indicated. 
Scale bars: A-D: images = 30 μm, enlarged images = 10 μm. N= 3-5. 

 

3.2.7 Microglia in the vicinity of Aβ plaques have an enhanced inflammatory response 

to systemic LPS challenges  

After i.p. LPS injections stronger morphological changes were observed in microglia in the 

vicinity of Aβ plaque depositions compared with the microglia remote from the plaques. It 

has been described that morphological changes in microglia -to some extent- alter their 

functions. For instance, ramified microglia have been introduced as surveying cells in the 

CNS whereas amoeboid shapes represent their pro-inflammatory activities (reviewed by 

Wojtera et al., 2012). To determine the activation state of these less-ramified microglia upon 

LPS challenges, 20 months old APP23 and WT mice were injected with PBS or LPS, i.p. (1 

mg/kg) 6 hours prior to be sacrificed and the cortical regions of the brains were stained with 

microglial activation markers Mac-2, CD68 and MHC II.  

Figure 20A, D and G represent cortical sections of WT and APP23 mice stained with cresyl 

violet (labelling Aβ plaques) and Mac-2, CD68 and MHC II, respectively. Upon PBS or LPS 

injections, the expression of these markers is observed only in microglia surrounding the Aβ 

depositions. WT mice (PBS or LPS injected) and non-plaque regions of APP23 mice (PBS or 

LPS injected) lack Mac-2, CD68 and MHC II staining (Figure 20A, D, G). Since even PBS 

injected APP23 mice express these proteins (in the microglia surrounding the plaques), for a 

better understanding of how much expression of these markers are upregulated in microglia 

after an LPS injection, the stainings were quantified by calculating the ratio of DAB stained 

areas to the total cortical area. Expression of Mac-2 is very low in WT mice even upon LPS 

injection. However, PBS injected APP23 mice show a higher expression of Mac-2, which is 

strongly induced by an LPS challenge (p value 0.001; Figure 20B). For a more detailed study 

the data were divided into two groups obtained from non-plaque areas and plague regions 

(Figure 20C, F, I). Quantification of Mac-2 staining reveal that LPS does not lead to a higher 

Mac-2 expression on the cells from non-plaque regions, while a significant increase in Mac-2 
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staining is found in the cells from plaque areas (p value, < 0.0001; Figure 20C). Similar to 

Mac-2 immunoreactivity, upon LPS injection CD68 and MHC II show a higher expression in 

APP23 mice compared to LPS-injected WTs (p values 0.002 and 0.003) or PBS-injected 

transgenic mice (p values 0.03 and 0.009; Figure 20E, H). LPS injection leads to a higher 

expression of these factors in the areas with Aβ plaques compared to non-plaque areas (p 

values < 0.0001). Also, in the areas with plaques LPS has a strong effect on expression of 

these markers compared to PBS injection (p values < 0.0001 and 0.003; Figure 20F, I). 

To be sure that the cells expressing these markers are microglia and not astrocytes, 

immunofluorescent staining for GFAP (astrocyte marker), Iba1 co-stained with Mac-2, CD68 

and MHC II was applied on the brain sections. GFAP and Iba1 staining revealed expression 

of these activation markers only on microglia (data not shown) and not on astrocytes (Figure 

21A-C). 
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Figure 20: Increased expression of microglial activation markers after peripheral LPS 
injections. 
20 months old WT and APP23 transgenic mice were injected with PBS or LPS (i.p., 1 mg/kg) as 
indicated. Cortical sections from these mice were stained with (A) anti-Mac-2 (D) anti-CD68, (G) 
anti-MHC II and cresyl violet (labelling Aβ depositions). Quantification of Mac-2 (B-C), CD68 (E-F) 
and MHC II (H-I) expression by dividing the areas covered by DAB to the total area. Comparison 
between WT and APP23 mice (B, E, H)) or non-plaque areas and the plaque covered regions in 
APP23 mice (C, F, I). (One-way ANNOVA followed by Bonferroni’s post-hoc test; *: p<0.05, **: 
p<0.01, ***: p<0.001) Scale bars: A, D, G = 10 μm; insets = 10 μm. Number of plaque areas = 6/ 
mouse, number of non-plaque areas = 3-4/ mouse, N= 3-5 mice. M: months. 
 
 
 

 

Figure 21: No expression of microglial activation markers on astrocytes.  
Immunofluorescence staining of cortical sections of i.p. LPS injected (1 mg/kg) 20 months old APP23 
mice for GFAP and (A) Mac-2, (B) CD68 and (C) MHC II. Scale bar = 20 μm. N=3. 

 

3.2.8 LPS leads to the production of IL-1β by microglia surrounding Aβ plaques 

Secretion of pro-inflammatory cyto-/ chemokines is one the characteristics of activated 

immune cells including microglia (Hanisch & Kettenmann, 2007). We observed 
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morphological changes of microglia as well as expression of activation markers by these cells 

after i.p. LPS injection mainly in the vicinity of Aβ plaques. To investigate if these microglia 

also secrete pro-inflammatory cytokines, we examined production of IL-1β by these cells. 

Therefore, 20 and 24 months old APP23 mice and 12 months old 5XFAD mice were i.p. 

injected with PBS or LPS (1 mg/kg) and were sacrificed 6 hours later. Cortical sections were 

stained with IL-1β and Congo red (staining mature Aβ depositions; Figure 22). 

In the PBS injected 20 and 24 months old APP23 mice no microglia IL-1β expression is 

observed (Figure 22A, C), neither surrounding the plaques (Figure 22A′, C′), nor far from the 

plaques (Figure 22A″, C″). 20 months old APP23 mice injected with LPS show a high 

production of IL-1β in microglia around the Aβ depositions (Figure 22B, B′) but not at 

plaque-free areas (Figure 22B, B″). LPS injection in 24 months old APP23 mice leads to an 

abundant production of IL-1β by the cells in the close vicinity of the plaques (Figure 22D, D′) 

as well as at plaque-free regions (Figure 22D, D″). To confirm the production of IL-1β by 

microglia, the sections were stained with Iba1 and IL-1β. Immunofluorescence stainings of 

LPS-injected APP23 (20 and 24 months old) and 5XFAD mice reveal co-staining of IL-1β-

expressed cells only with microglia marker, Iba1 (Figure 23A-C).  

IL-1β is among the pro-inflammatory cytokines that requires activation of intracellular 

inflammasomes. Recruitment of the adaptor protein ASC and its interaction with pro-caspase 

1 is essential for this process (reviewed by Singhal et al., 2014). To investigate if the present 

IL-1β staining signal is truly the result of a pro-inflammatory response (to LPS), different 

regions of brain sections from 24 months old LPS-injected APP23 mice were stained with 

ASC and Congo red. Three tested brain regions of cortex, hippocampus and thalamus show 

ASC immunoreactivity on the cells which are surrounding the Aβ plaque depositions (Figure 

24A-B). 
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Figure 22: Production of IL-1β in APP23 mice after i.p. LPS injection. 
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Cortical sections of LPS injected APP23 mice. 20 and 24 months old APP23 mice were injected i.p. 
with PBS or LPS (1 mg/kg) 6 hours prior to be sacrificed. The cortical brain sections were stained 
with antibody against IL-1β and Congo red (labelling matured Aβ plaques). Lower magnification of 
the cortex from PBS injected 20 months old (A), LPS injected 20 months old (B), PBS injected 24 
months old (C) and LPS injected 24 months old (D) APP23 mice. Higher magnifications show Aβ 
plaque areas (A′, B′, C′, D′) and non-plaque region (A″, B″, C″, D″). Scale bars: A-D = 200 μm; A′-
D′, A″-D″ = 20 μm. N=3-5. 
 
 
 
 

 
 
 
Figure 23: Expression of LPS-induced IL-1β by plaque-associated microglia in APP23 and 
5XFAD transgenic mice. 
Immunofluorescence staining of Iba1 and IL-1β on cortical sections of (A) 20 months old, (B) 24 
months old APP23 and (C) pons region of 12 months old 5XFAD mice injected with LPS i.p. (1 
mg/kg). Scale bars: 20 μm. N=3-5. M: months. 
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Figure 24: LPS-induced ASC activation by plaque-associated microglia in APP23 and 5XFAD 
transgenic mice. 
Congo red and ASC (inflammasome adaptor protein) staining of cortex, hippocampus and thalamus 
regions of (A) 24 months old APP23 and (B) 12 months old 5XFAD mice injected with LPS i.p. (1 
mg/kg). Arrows indicate the ASC staining around the congophilic Aβ plaques. Scale bars: 50 μm, 
insets = 15 μm. N=3-5. M: months. 
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3.3 Noradrenergic control over innate immune cell activities in the CNS 

Earlier studies proposed anti-inflammatory effects of the noradrenergic system by activating  

the beta 2 adrenergic receptor (β2AR; reviewed by Scanzano & Cosentino, 2015). Previous 

own data have shown, that the β2AR agonist, salbutamol, selectively inhibits the expression 

of pro-inflammatory cyto- /chemokines, which are produced upon LPS stimulation. Clearly, 

treatment of LPS-stimulated microglia with salbutamol inhibits a subset of pro-inflammatory 

cytokines (Figure 25A) while, having no effect on another group of pro-inflammatory 

cytokines (Figure 25B; see master’s thesis of Stefanie Riesenberg; doctoral thesis of Tommy 

Regen). Among the studied proteins, TNFα and CCL5 are the strongest inhibited and non-

inhibited pro-inflammatory factors, respectively. Thus, for further studies we focussed mainly 

on these two genes. 

 

Figure 25: β2ARs regulate LPS-induced gene expression. 
Neonatal mouse microglia were stimulated with LPS (rough type; 10 ng/ml) alone or in combination 
with increasing concentrations of salbutamol (SB) as indicated. The released cyto- /chemokines were 
measured in the supernatant of the cells, subsequently. The Data are normalized to LPS stimulation 
without salbutamol (100%). Inhibited proteins (A) and non-inhibited proteins (B) are presented. The 
figure is modified according to Stefanie Riesenberg’s master thesis. SB: salbutamol. 

 

3.3.1 All the cultured microglia express β2AR 

Since induction of a group of genes is blocked by β2AR activation, it was necessary to check 

whether microglia express β2ARs. Recent research has shown that microglia behave 

heterogeneously in terms of the expression of cyto- /chemokines (Scheffel et al., 2012). Thus, 
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it would be possible that a cytokine-producing subpopulation of microglia lacks β2AR. We 

used immunocytochemistry analysis on microglia from neonatal WT mice to study their 

expression of β2AR. Figure 26 shows that all microglia show immunoreactivity for anti- 

β2AR, indicating that a β2AR-lacking microglia population does not exist. No signal was 

observed by anti-rabbit antibody alone (data not shown). 

 

Figure 26: Immunocytochemistry analysis for β2AR expression on microglia.  
Microglia from neonatal WT mice (5×104 cells per well in 4-well plate) were stained with (A) Cy3-
labelled rabbit anti-mouse anti-β2AR antibody (Red) and (B) Alexa Flour488-labelled anti-Rabbit 
antibody (green). The merged photo (C) shows β2AR expression on all the microglia. The nuclei were 
staining by Dapi (blue). Scale bar= 50 μm. β2AR: beta 2 adrenergic receptor; α: anti. 

 

3.3.2 Not all the TRIF-dependent genes are rescued from the inhibition upon β2AR 

activation. 

As described earlier (section 3.3, Figure 25), different pro-inflammatory genes behave 

differently on activation of β2AR. Gene induction by LPS (through TLR4) stimulation is 

accomplished through MyD88, TRIF or both adaptor proteins (Figure 1; reviewed by Takeda 

& Akira, 2004). For instance, TNFα is exclusively MyD88-dependent whereas expression of 

CCL5 is induced by both MyD88- and TRIF-mediated pathways (doctoral thesis of Tommy 

Regen). Dr. Tommy Regen in his PhD thesis also showed that CCL5 in microglia deficient in 

TRIF protein (TRIF-/-) is no longer a non-inhibited protein but becomes inhibited (data not 

shown). According to this finding we questioned whether the TRIF pathway is the non-

inhibitory path. If this is the case, all the genes which have the possibility to use this pathway 

would be non-inhibited. To answer this question, we assessed the induction of two exclusively 

TRIF dependent genes, MHC I and IFNβ upon β2AR activation using flow cytometry and 

ELISA, respectively. Data obtained from MHC I expression analysis (Figure 27B) reveal no 
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inhibition by salbutamol. However, activation of β2AR by salbutamol leads to a significant 

reduction of IFNβ production compared to its release upon LPS stimulation (p value 0.001; 

Figure 27C). 

  

 
Figure 27: MHC I and IFNβ expression analysis after TLR4 and β2AR stimulation. 
Microglia from neonatal WT mice (2×105 cells/well for MHC I or 1.5×104 cells/well for IFNβ 
measurements) were stimulated with LPS (rough type; 10 ng/ml) alone or combined with salbutamol 
(1 µM). MHC I expression was analysed after 24 hours and IFNβ secretion after 18 hours. Control 
groups received complete DMEM without a stimulus. (A) Gating strategy of MHC I expression from 
flow cytometry data. 10,000 CD11b+ cells were recorded and investigated for the positive MHC I 
signal. (B) Mean fluorescent intensity (MFI) of the signal was calculated from the data. Data are 
normalized to 100% medium control. (C) Expression of IFNβ upon TLR4 and β2AR activation. The 
amount of IFNβ was measured in the supernatant by using ELISA. Data are mean ± SEM. N=6 for 
MHC I and 8 for IFNβ from 3 independent experiments. (One-way ANNOVA followed by Tukey’s 
post-hoc test; *: p<0.05, **: p<0.01, ***: p<0.001) 
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3.3.3 Activation of β2AR in the CNS inhibits infiltration of immune cells from the 

periphery 

One of the consequences of an inflammatory response by immune cells is the production of 

cyto-/ chemokines which results in recruiting additional immune cells to the site of challenge 

such as infection (reviewed by Iwasaki & Medzhitov, 2004). Macrophages, including 

microglia are able to sense the immune challenges using their TLRs (reviewed by Akira et al., 

2006). Contribution of the noradrenergic system in suppressing the immune response from 

immune cells has been shown previously (reviewed by Scanzano & Cosentino, 2015). In the 

healthy brain noradrenaline is constantly produced and delivered from the locus coeruleus 

(reviewed by Aston-Jones & Cohen, 2005).  

To determine the effect of microglial β2AR activation on recruitment of immune cells from 

the periphery, we stimulated microglia with LPS (strong infectious stimulus) alone or 

combined with salbutamol as a specific β2AR agonist or ICI as a specific β2AR antagonist 

intracerebrally using osmotic pumps. In addition two control groups of salbutamol and ICI 

only were used. Previous experiments in the lab showed no immune cell infiltrates into the 

brains upon PBS infusion (data not shown) thus, in the study PBS infusion was not applied. 

An installation of osmotic pumps in the tissue ensured a constant infusion of the solutions. 

Here, we used the speed of 0.5 μl per hour and installed the cannula’s of the pumps for 24 

hours in the striatum of the brain. Afterwards, mice were perfused with PBS and by using 

flow cytometry brains were analysed for infiltrating neutrophils, monocytes and T cells as 

shown in Figure 28A. Infusion of salbutamol or ICI per se does not lead to infiltration of 

peripheral immune cells (Figure 28B-D). Clearly, LPS delivery leads to a massive increase of 

the infiltrated immune cells (Figure 28B-D; p value for neutrophils, 0.008; for monocytes 

0.0004; for T cells, 0.03). A combination of salbutamol with LPS significantly inhibits this 

strong effect of LPS on neutrophils and monocytes. The reduced T cell infiltration is not 

statistically significant, probably due to the low number of mice used for this experiment (p 

value for neutrophils, 0.03; for monocytes, 0.0005; for T cells, 0.06). The data from Figure 

28B-D also show that addition of ICI to LPS has no effect on LPS-induced infiltration (p 

value of LPS + salbutamol vs LPS + ICI for neutrophils, 0.001; for monocytes, 0.002; for T 

cells, 0.02).    
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Figure 28: Effect of β2AR activation in the CNS on immune cell infiltrates from the periphery.  
8-12 weeks old female WT mice were intracerebrally infused with LPS (rough type; 1 mg/ml) or a 
combination of LPS with salbutamol or ICI (both 100 µM) for 24 hours with a speed of 0.5 µl/hour. 
Control groups were infused with salbutamol or ICI only. Cell suspensions isolated from the brains of 
individual mice were analysed by flow cytometry. (A) Example of brain analysis for monocytes 
(CD11b+, CD45+, Ly6C+, Ly6G-), neutrophils (CD11b+, CD45+, Ly6C+, Ly6G+) and T-cells (CD45+, 
CD11b-, CD3+). 10,000 CD11b+ cells were recorded via flow cytometry and the percentage of 
neutrophils (B) and monocytes (C) from CD11b+ and CD45+ population were evaluated. (D) Brain 
samples were analysed for the amount of T-cells infiltrating from the periphery. Absolute numbers of 
T-cells were counted from CD45+, CD11b- cells. Data are mean ± SEM. N for monocyte and 
neutrophil= 3-4 for control groups, 10-12 for LPS, LPS + salbutamol and LPS + ICI. N for T cells= 2 
for control groups, 3-5 for treatment groups. (One-way ANNOVA followed by Tukey’s post-hoc test; 
*: p<0.05, **: p<0.01, ***: p<0.001) 
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3.3.4 Activation of β2AR in the CNS does not decrease gliosis 

As described in the section 3.3.3 activation of β2AR by salbutamol led to the reduction of the 

LPS effect on immune cell infiltrations (Figure 28B-D). We decided to further investigate this 

effect on activation of microglia/macrophages and astrocytes as well, since all these cell types 

express β2AR (Scanzano & Cosentino, 2015; Aoki, 1992). To perform this experiment we 

used the same osmotic pumps and stimuli as mentioned in 3.3.3. The delivery of stimuli (LPS 

alone or combined with salbutamol or ICI) lasted 72 hours and the brains were processed and 

analysed by immunohistochemistry. Control groups received only salbutamol or ICI. The 

immunoreactivity for macrophage-1 antigen (Mac-3, macrophage/microglia marker), ionized 

calcium-binding adapter molecule 1 (Iba-1, microglia marker) and glial fibrillary acidic 

protein (GFAP, astrocyte marker) are shown in the Figure 29A-D, E-H and I-J, respectively. 

Quantification of Mac-3 signal reveals increased expression of this marker upon LPS infusion 

compared with the control condition with salbutamol (Figure 29K). Combination of 

salbutamol with LPS significantly reduces this outcome (p value 0.03). Combining ICI with 

LPS does not affect the LPS effect (p value LPS + salbutamol vs LPS + ICI, 0.02). Expression 

of Iba-1 and GFAP show a high induction of the markers after LPS infusion compared to 

salbutamol (Figure 29L and M). In contrast, LPS-induced Iba-1 and GFAP expressions are 

not affected by salbutamol. ICI has no effect either.  
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Figure 29: Immunohistochemistry analysis of β2AR signalling effect on microglia and astrocyte 
activation. 
8-12 weeks old WT female mice were intracerebrally infused with LPS (rough type; 1 mg/ml), 
combination of LPS and salbutamol or ICI (both 100 µM) for 72 hours with speed of 0.5 µl/hour. 
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Control groups received salbutamol or ICI alone. Mice were sacrificed and perfused with PBS 
followed by 4% PFA and, eventually, paraffin embedded. 3 µm sections were stained by antibodies 
against Mac-3, Iba-1 and GFAP to indicate expression of these proteins in macrophages/ microglia 
and astrocytes, respectively. Mac-3 (A-D), Iba-1 (E-H) and GFAP (I-J) staining of two sections 
representing LPS (left) and LPS + Salbutamol (right) infused mice. Signal intensity of Mac-3, Iba-1 
and GFAP staining, calculated after subtraction of background and gauss filtering using ImageJ, is 
depicted in graphs (K-M). Data are mean ± SEM. N=4 for LPS, LPS + Salbutamol, LPS + ICI groups 
and 2 for control groups. From each brain 4 sections were evaluated. (One-way ANNOVA followed 
by Tukey’s post-hoc test; *: p<0.05, **: p<0.01, ***: p<0.001) Scale bars: A-B, E-F= 1 mm, C-D, G-
H, I-J= 500 μm. 

 

3.3.5 The population size of microglia producing TNFα and CCL5 is altered by β2AR 

activation 

As mentioned earlier, the production of some cytokines such as TNFα by microglia is 

dramatically inhibited after β2AR stimulation (Figure 25). These data were obtained by 

ELISA, which measures the concentration of the protein of interest and it cannot discriminate 

between producing and non-producing cells. To extend our study to the population size, 

which might be influenced by β2AR activation, we performed flow cytometry analysis. 

Microglia were stimulated with LPS alone or in combination with salbutamol for 8 hours. To 

trap the produced proteins inside the cells and to inhibit their secretion we blocked the Golgi 

transport by monensin (an intracellular traffic inhibitor; Mollenhauer et al., 1990). Cells were 

in total stimulated for 8 hours with the respective stimuli while monensin was added 3 hours 

after the stimulation began. No major toxicity of monensin to the cells for this period of time 

was seen (data not shown). Illustrated in Figure 30B-C, the percentages of cells that produce 

TNFα and CCL5 under the medium conditions increase upon LPS stimulation to a much 

larger population sizes: almost 65% produced TNFα (p value < 0.0001) and about 30% 

produced CCL5 (p value 0.003). The TNFα-producing subpopulation was significantly 

reduced by addition of salbutamol to about 20% (p value < 0.0001; Figure 30B).  The CCL5 

producing subpopulation had a slight but insignificant increase to about 40% (Figure 30C). 

These data indicate that not only the amount of TNFα is reduced by β2AR activation (data 

obtained from protein concentrations), but also the proportion of cells, which produce this 

cytokine is reduced. Similar to the unaffected amount of CCL5 by activation of β2AR, the 

CCL5 producing population size does not alter either. 

Some cells produce TNFα and CCL5 together. Therefore, to look closer, we divided the data 

to three groups of cells producing TNFα only, CCL5 only or both (Figure 30D). Here, we   
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observe that salbutamol dramatically decreases the number of cells which produce only TNFα 

upon LPS stimulation (p value < 0.0001), while increasing only-CCL5 positive population (p 

value < 0.001). The population size of the cells, which produce TNFα and CCL5 

simultaneously is not altered upon salbutamol treatment.  
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Figure 30: Evaluation of intracellular CCL5+ and TNFα+ production upon simultaneous TLR4 
and β2AR stimulations.  
Microglia from neonatal WT mice (3×105 cells/well) were stimulated with LPS (rough type; 1 ng/ml) 
or combination of LPS and salbutamol (10 ng/ml, 1 µM) for 8 hours. After 3 hours cells additionally 
received monensin to block cyto/ chemokine release and were subsequently analysed by flow 
cytometry. 10,000 CD11b+ cells were recorded and the percentage of microglia producing CCL5 or 
TNFα was calculated. (A) A schematic picture of intracellular CCL5 or TNFα evaluation by flow 
cytometry. TNFα positive (B) and CCL5 positive (C) microglia under LPS and combination of LPS 
with salbutamol. (D)  Compares the population size of the cells which produce only TNFα, only CCL5 
and both upon stimulation. Data are mean ± SEM. N=6-8 from 3 experiments. (One-way ANNOVA 
followed by Tukey’s post-hoc test; *: p<0.05, **: p<0.01, ***: p<0.001) 

 

3.3.6 The amount of CCL5 released from each cell but not the percentage of CCL5 

producing cells is decreasing by β2AR activation 

The previous data, shown in Figure 25 and Figure 30, revealed that β2AR activation by 

salbutamol has neither a considerable effect on the amount of produced CCL5, nor on the 

percentage of cells producing it. However, our data in Figure 30C showed that when 

stimulated with salbutamol a new cell population starts to produce CCL5. Hence, we aimed at 

a more detailed study on the cell functions regarding the CCL5 production. For this purpose, 

we used the ELISpot method in which the released CCL5 molecules from the cells are trapped 

by their specific capture antibodies on the surface of the wells (Figure 31). The bound CCL5 

molecules can be detected by their specific detection antibodies. To have sufficient space 

between cells and to avoid overlapping of the spots, only 1,000 cells/well were plated. Figure 

31A is a representing picture of an ELISpot well with CCL5 positive spots. The results 

demonstrate that some cells release CCL5 even without being stimulated (medium condition) 

and also β2AR activation by salbutamol does not decrease the percentage of cells that produce 

CCL5 upon LPS stimulation (Figure 31B). Since the developed spots varied in the size, we 

calculated the total area covered by the spots (Figure 31C). Comparing LPS-stimulated cells 

to cells which additionally received salbutamol, a significant smaller area after addition of 

salbutamol is observed (p value 0.01; Figure 31C).   
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Figure 31: ELISpot analysis of the cells producing CCL5.  
Microglia from neonatal WT mice were resuspended in complete medium containing LPS (rough 
type; 10 ng/ml) or a combination of LPS and salbutamol (1 μM) and plated at the density of 1,000 
cells/well on an ELISpot plate. The control group received medium only. Cells were incubated for 24 
hours and subsequently analysed for the number of spots and the area covered by them. (A) An 
example of one well after the spots development. CCL5 released from cells is trapped by the bound 
capture antibody on the surface of the well, which after the development can be seen as dark spots. (B) 
Percentage of microglia produced CCL5. The data have been obtained by calculating the proportion of 
spot numbers from the plated cell number. (C) Sum of the area covered by all spots. Data are mean ± 
SEM. N=16 for medium control and 8 for LPS and LPS+ Salbutamol, from 2 independent 
experiments. (One-way ANNOVA followed by Tukey’s post-hoc test; *: p<0.05, **: p<0.01, ***: 
p<0.001) 

 
 
3.3.7 PKA mediates the downstream signalling from β2AR to TLR4 

Activated β2AR activates the enzyme adenylyl cyclase, which leads to the production of 

cAMP. cAMP is a second messenger, which mainly activates the protein kinase A enzyme 

(PKA) through its classical pathway or exchange proteins activated by cAMP (Epac) through 

its non-classical pathway (reviewed by Gloerich & Bos, 2010). β2AR might impose its effect 

on the expression of various genes through activation of PKA (via the classical pathway). To 

see if the activity of PKA influences the effect of salbutamol on the production of pro-

inflammatory proteins, a cell-permeable PKA inhibitor (IIR-PKI) was applied to the cells to 

block its activity (Figure 32). Cells were stimulated with LPS alone or in combination with 

salbutamol and/or IIR-PKI. Released TNFα (Figure 32A), CCL5 (Figure 32B) and IFNβ 

(Figure 32C) were measured in the supernatants of the microglia by ELISA. Figure 32A 
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shows that TNFα is inhibited by salbutamol (p value ˂ 0.0001) which is partly rescued by 

IIR-PKI (p value ˂ 0.0001). However, the produced amount of TNFα is significantly lower 

than the cells that received only LPS (p value 0.001). Besides, IIR-PKI itself has an additive 

effect on LPS-induced TNFα production (p value ˂ 0.0001). CCL5 is not affected by 

salbutamol (Figure 32B, Figure 25) however, IIR-PKI significantly decreases the CCL5 

production when added to the combination of LPS and salbutamol (p value ˂ 0.0001). This 

reduced effect is also observed when IIR-PKI is combined with LPS only (p value 0.001). 

Figure 32C shows the effect of IIR-PKI on production of IFNβ. Although production of IFNβ 

is suppressed by salbutamol (p value 0.001; Figure 32C, Figure 27C; similar to TNFα and 

opposite to CCL5), IIR-PKI leads to a further reduction compared to the LPS stimulation (p 

value ˂ 0.0001; opposite to TNFα, similar to CCL5). In addition, less IFNβ is produced when 

IIR-PKI is added to LPS (p value ˂ 0.0001). 

 

 

Figure 32: Evaluation of PKA inhibition on β2AR activation.  
Microglia from neonatal WT mice (1.5×104 cells/well) were stimulated with LPS (rough type; 10 
ng/ml), combinations of LPS and salbutamol (1 µM) or LPS, salbutamol and IIR-PKI (PKA inhibitor, 
10 µM) or LPS and PKA inhibitor for 18 hours. The inhibitor alone was added to the cells 30 min 
prior to the other stimuli and TNFα (A), CCL5 (B) and IFNβ (C) were measured in the supernatants of 
the cells via ELISA. Data are mean ± SEM. N=12 from 3 independent experiments. (One-way 
ANNOVA followed by Tukey’s post-hoc test; *: p<0.05, **: p<0.01, ***: p<0.001) 
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3.3.8 Epac has no influence on β2AR-induced inhibition of TNFα production 

Through its non-classical pathway, cAMP activates Epac proteins (reviewed by Gloerich & 

Bos, 2010). Epac affects the activity of MAPKs (Gerits et al., 2008) which are also essential 

for TLR4 signalling (O’Neill et al., 2013). Thus, to determine the contribution of Epac 

activity in β2AR signalling towards TLR4, we blocked the activity of Epac proteins, using 

three different available Epac inhibitors:  HJC0197 and ESI-09 inhibiting Epac 1&2 

simultaneously and ESI-05 inhibiting only Epac 2. The inhibitors were added in addition to 

LPS and salbutamol. The inhibition of TNFα production by salbutamol cannot be rescued by 

any of the Epac inhibitors (Figure 33A). Furthermore, Epac inhibitors do not show any 

influence on the production of CCL5 (Figure 33B). Epac inhibitors added to LPS without 

salbutamol showed no effect on the gene production either (data are not shown). 

 

Figure 33: Effect of Epac inhibitors on β2AR activation.  
Microglia isolated from neonatal WT (1.5×104 cells/well) were stimulated simultaneously with LPS 
(rough type; 10 ng/ml), salbutamol (1 µM) and Epac inhibitors (HJC0197, inhibitor of Epac 1&2; ESI-
09, inhibitor for Epac 1&2; ESI-05, inhibiting Epac 2; all 25 µM) or combinations of them. Inhibitors 
were added to the cells 30 min prior to the stimuli. Secreted TNFα and CCL5 in the supernatants were 
assessed 18 hours later by ELISA. TNFα (A) and CCL5 (B) secretion upon LPS (TLR4) stimulation, 
β2AR activation and Epac inhibition. Data are mean ± SEM. N=16 from 4 independent experiments. 
(One-way ANNOVA followed by Tukey’s post-hoc test; *: p<0.05, **: p<0.01, ***: p<0.001) 

 

3.3.9 Activation of PKA after β2AR activation is increased by LPS 

To address the question of how salbutamol, LPS or their combination affect the PKA activity 

in microglia and also whether the PKA inhibitor, IIR-PKI, is truly inhibiting the PKA activity 
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or not, we stimulated microglia with LPS, salbutamol or their combination with/without IIR-

PKI for 15 min and determined the PKA activity in the cell lysates (Figure 34). LPS per se 

does not lead to PKA activity. Salbutamol significantly increases the PKA activity (p value 

0.04). This activation by salbutamol can be further increased when it is combined with LPS (p 

value ˂ 0.0001). The inhibitor slightly decreased the activity of PKA (Figure 34). 

 

Figure 34: PKA activity assessment upon β2AR 
activation. 
Microglia from neonatal WT mice (8×105 cells/well) 
were stimulated with LPS (rough type; 10 ng/ml), 
salbutamol (1 µM), a combination of LPS and 
salbutamol or a combination of LPS, salbutamol and 
IIR-PKA (PKA inhibitor, 10 µM) for 15 min. IIR-
PKI was added to the cells 20 min prior the 
stimulation. The PKA activity was assessed in the 
cell lysates. Data are presented as a ratio to the 
medium condition. Dotted line indicates the medium 
condition. Data are mean ± SEM. N= 8-9 from 3 
independent experiments. (One-way ANNOVA 
followed by Tukey’s post-hoc test; *: p<0.05, **: 
p<0.01, ***: p<0.001) 
 
 
 
 
 

 
3.3.10 Inhibition of TLR4-induced genes by β2AR is not microglia specific 

To investigate whether β2AR has the same effect- that is seen on microglia- on other 

macrophages such as bone marrow derived macrophages (BMDM’s), we stimulated BMDM’s 

with LPS, salbutamol or their combination. Subsequently, release of TNFα and CCL5 were 

measured in the supernatants of the cells. The results show a significant reduction in TNFα 

production by a combination of LPS and salbutamol compared to LPS treatment (p value ˂ 

0.0001; Figure 35A) whereas CCL5 production is not affected (Figure 35B). 
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Figure 35: Evaluation of BMDM's response to the β2AR activation. 
BMDM’s isolated from 8-12 weeks old WT mice were plated with a density of 1.5×104 cells/well and 
were stimulated with LPS (rough type; 10 ng/ml), salbutamol (1 μM), or a combination of both for 18 
hours. TNFα (A) and CCL5 (B) were measured in the supernatant of the cells using ELISA. Data are 
mean ± SEM. N=12 from 3 independent experiments. (One-way ANNOVA followed by Tukey’s post-
hoc test; *: p<0.05, **: p<0.01, ***: p<0.001) 
 
 
 
3.3.11 β2AR activation alters activation of STAT and IRF proteins 

β2AR activation by salbutamol stimulation specifically inhibits production of some pro-

inflammatory proteins such as TNFα (Figure 25). To be able to study a larger number of 

genes, which are differentially transcribed upon β2AR signalling, RNA sequencing analysis 

was performed. Microglia received LPS or a combination of LPS and salbutamol for 3 hours 

prior to the total mRNA sequencing. Control groups received medium alone. Apart from the 

known regulated genes (Figure 25) we focus on regulation of some transcription factors such 

as signal transducer and activator of transcription (STATs) and interferon regulatory factor 

(IRFs) genes (Figure 36). Comparing the data from control (medium) and LPS groups shows 

activation of most of STAT genes upon LPS stimulation (p value STAT1, 2 and 5a, ˂ 0.0001; 

STAT5b, 0.02). Transcription of STAT4 is not altered by LPS and STAT6 is downregulated 

(p value 0.03; Figure 36A). Combination of salbutamol with LPS leads to a significant 

upregulation of STAT4 (p value ˂ 0.0001) while having no effect on other STAT genes. 

Investigating regulation of IRF genes (Figure 36B) reveals that most of the IRF genes are 

upregulated by LPS stimulation (p value IRF1, 5, 7 and 9 ˂ 0.0001; IRF2, 0.005, IRF8, 

0.0008). In addition, IRF2 binding proteins (IRF2bp1 and 2) are significantly downregulated 
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(p value IRFbp1, 0.002; IRF2bp2 ˂ 0.0001). LPS has no effect on regulation of IRF4. In 

contrast, addition of salbutamol to LPS results in upregulation of IRF4 and IRF2bp2 and 

downregulation of IRF8 (p value IRF4, 0.009; IRF8, ˂ 0.0001; IRFbp2, 0.003). 

 

 

Figure 36: Regulation of STATs and IRFs genes upon β2AR signalling. 
Neonatal microglia (8×105 cells/well) were stimulated with LPS (rough type; 10 ng/ml) or 
combination of LPS and salbutamol (1 μM) for 3 hours. Control groups (medium) received no stimuli. 
Subsequently, cells were washed and lysed. Total mRNA was sequenced in collaboration with 
Microarray and Deep-Sequencing Facility (Transkriptomeanalyselabor, TAL, Göttingen; Dr. Gabriela 
Salinas-Riester). Regulation of STAT (A) and IRF (B) genes for two groups of medium vs LPS and 
LPS vs combination of LPS and salbutamol is shown. Candidate genes were filtered to a minimum of 
2-fold change and FDR-corrected p-value < 0.05. N=3 from 3 independent experiments. STAT: signal 
transducer and activator of transcription; IRF: interferon regulatory factor; IRFbp: IRF binding 
protein. 

 



  Discussion 

89 

 

4 Discussion 

4.1 Functional properties of microglia in 5XFAD mouse model  

Alzheimer’s disease (AD) is a neurodegenerative disorder and the most frequent form of 

dementia in the elderly population, with prevalence of about 10% of elderly people (Duthey, 

2013). AD is characterized by a massive neuronal loss. Two hallmarks of the disease are 

extracellular Aβ plaque depositions and intracellular NFTs (Zhao et al., 2014). Although a 

role of the immune system in the AD pathology has been suggested since the 1900s, the most 

extensive studies which have proven this contribution were mainly published in the last 

decade, targeting microglia as the main innate immune cells in the CNS (reviewed by Heneka 

et al., 2015). 

These studies showed microgliosis in the vicinity of Aβ plaque depositions in the brains of 

AD patients as well as various AD mouse models. Microgliosis is a sign of microglial 

activation, therefore, it has been proposed that the environment in an AD brain alters 

microglia to adapt to an increased reactive phenotype (reviewed by Perry et al., 2010). This 

increased reactive phenotype is characterized by a higher production of pro-inflammatory 

cyto-/ chemokines, NO and ROS, by deficits in Aβ phagocytosis and by overreaction to 

secondary stimuli. These results are supported by another publication where it was shown that 

the AD pathology can be improved by reducing this enhanced microglial reactivity (Heneka et 

al., 2013).  

In the present study we aimed to investigate how the AD environment affects microglia and 

their TLRs systems in vitro. To do so, we compared the properties of microglia from various 

ages of 5XFAD mice to aged matched WT littermates from both genders. 

4.1.1 Unaltered phagocytic activity of 5XFAD vs. WT microglia 

One crucial function of microglia is phagocytosis. This activity involves clearing of dead 

cells, myelin debris, pathogens or misfolded proteins such as Aβ assemblies in the CNS. 

Increasing evidence suggests that microglial phagocytic activity is impaired in AD (e.g. 

Krabbe et al., 2013). Using cerebral slices, Krabbe and colleagues showed microglial 

impairment to phagocytose microspheres in 9 months old APP/PS1 and 20 months old APP23 

mice compared to the age-matched WT littermates. Although phagocytosis of microbeads by 

microglia can be used to evaluate phagocytic activity, we consider physiological or 
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pathogenic materials such as Aβ and myelin as better tools for this investigation. To our 

knowledge, there have been no ex vivo studies to evaluate the phagocytic activity of AD-

derived microglia of myelin, Aβ or E. coli. We therefore investigated the phagocytic activity 

of cultured microglia isolated from 3, 6 and 9 months old 5XFAD and WT mice for myelin, 

E. coli, Aβ1-40 and Aβ1-42.  

The experiments addressing myelin and E. coli phagocytosis showed no genotype specific 

differences of age or gender. However, in both genotypes the percentage of phagocytosing 

microglia dropped significantly at 9 months of age compared to microglia isolated from 

younger mice. This indicates an age-dependent microglial alteration. Investigation of 

phagocytosis of Aβ (Aβ1-40 and Aβ1-42) by 3 and 6 months old female 5XFAD and WT 

microglia revealed also no differences between genotypes or ages. Unfortunately, due to the 

limited numbers of 9 months old mice, we could not study this group but we would expect to 

observe a reduction in the phagocytic rate as we saw for myelin and E. coli.  

Recent data from other groups have shown an age-dependent reduction in Aβ phagocytosis by 

microglia in AD transgenic mice (Hickman et al., 2009; Floden & Combs, 2006). Hickman 

and colleagues showed that microglia from 14 months old APP/PS1 mice have reduced 

expression of Aβ-binding receptors and Aβ-degrading enzymes. Floden and Combs 

demonstrated a reduction of fibrillar Aβ phagocytosis by acutely isolated microglia from 5-8 

months old WT mice compared to P1-P3 mice (Floden & Combs, 2006). They also reported 

that although opsonization by anti-Aβ antibodies increased Aβ phagocytosis by neonatal 

microglia, it failed to improve the phagocytic activity in adult microglia. The authors also 

argued that prolonged microglia culturing leads to phenotypic changes and is therefore not the 

optimal method to study microglial phenotypes. 

In the present study we did not observe any phagocytic deficits of microglia in 5XFAD mice 

ex vivo. This suggests that the impairment of microglia in vivo might be derived from the 

continuous stimulation in the AD brains (by Aβ) and seems to be reversible once the 

environment is changed. This finding is in line with a previous publication (Krabbe et al., 

2013). In this study, Krabbe and colleagues could show that impairment of microglial 

phagocytic capacity correlates with Aβ plaque deposition and this activity can be restored by 

decreasing amyloid burden.  
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We observed an age dependent phagocytic impairment in microglia isolated from WT and 

5XFAD mice. Ageing is a physiological process and occurs regardless of AD transgenes. 

Earlier studies have shown that some microglial functions diminish with ageing (Streit et al., 

2004; Streit & Xue, 2012). Also, microglia isolated from aged brains show lower phagocytic 

activity for Aβ fibrils compared to young mice (Floden, 2012). 

These findings indicate that, firstly, ageing has a strong effect on microglial performance and, 

secondly, this senescence is independent of the AD environment. As we showed earlier, our 

data suggests that age-dependent alterations in microglia are much more persistent than AD-

dependent changes, which seem to be reversible after isolation and time for possible recovery. 

We next aimed to investigate whether the environmental conditions of AD pathology in the 

5XFAD mouse model affect microglial TLR signalling.  Due to the importance of TLR4 and 

its co-receptor CD14 in AD pathology (Reed-Geaghan et al., 2009) and phagocytosis 

(Rajbhandari et al., 2014), we investigated a possible effect of AD environment on TRL4 

functionality in terms of phagocytosis. We applied LPS (a TLR4 agonist) to the microglia and 

assessed their phagocytic activity for myelin and E. coli upon the LPS pre-stimulation. We 

observed that there were no significant differences between 5XFAD and WT microglia at all 

ages and both genders. Although statistically not significant, 9 months old mice seemed to be 

more sensitive to LPS which led to higher E. coli phagocytosis than in younger groups.  

Different sensitivity to LPS could be caused by different levels of its receptor on the cells. 

Overexpression of TLRs (including TLR4) on microglia has been shown in normal ageing 

(Letiembre et al., 2007), AD mouse models (Fassbender et al., 2004; Letiembre et al., 2007; 

Walter et al., 2007) and AD patients (Liu et al., 2005; Letiembre et al., 2007; Walter et al., 

2007). Thus, further investigation of TLR4 expression level on microglia isolated from 

5XFAD mice compared with WTs at various ages is essential.  

4.1.2 Release activity of microglia isolated from 5XFAD and WT mice 

Activated microglia and in addition, enhanced expression of their antigens related to the 

immunity (such as CD45, MHC, CD68 and complement receptors) and their increased 

production of pro-inflammatory cyto-/ chemokines has been shown to be present in human 

AD brains (reviewed by Boche et al., 2013; Ransohoff & Perry, 2009; Dickson et al., 1993). 

In vitro studies have shown that binding of Aβ to CD36 or TLR4 leads to production of pro-
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inflammatory cyto-/ chemokines (Stewart et al., 2010; El Khoury et al., 2003). Moreover, in 

vivo investigations have revealed increased amounts of IL-1, IL-6, IL-12, IL-23 (Patel et al., 

2005; vom Berg et al., 2012), TNF (Fillit et al., 1991; Janelsins et al., 2005) and CCL2 

(Janelsins et al., 2005; Hillmann et al., 2012) in AD transgenic mice or in the brains and 

cerebrospinal fluid of patients with AD (reviewed by Prokop et al., 2013; Heppner et al., 

2015). Recent studies based on gene expression analyses from mouse models of AD also 

revealed a higher production of cyto-/ chemokines (Orre et al., 2014; Landel et al., 2014).  

TLRs such as TLR2, TLR4 and TL9 have been so far introduced to be the most important 

TLRs contributing to the AD pathology (Suh et al., 2013; Reed-Geaghan et al., 2009; 

Fassbender et al., 2004; Scholtzova et al., 2009). For instance, Sly and colleagues reported an 

enhanced production of pro-inflammatory cyto-/ cytokines in Tg2576 mice compared to WTs 

upon intravenous LPS injection (Sly et al., 2001). Therefore, in our study we investigated the 

activity of most of TLRs in microglia in terms of secretion of various cyto-/chemokines. We 

stimulated the cultured microglia from 5XFAD and WT brains of 3, 6 and 9 months old mice 

from both genders with a number of TLR agonists as well as anti-inflammatory cytokines 

such as IL-4 and IL-10. 

In contrast to previous findings, the data from the present study showed no differences in 

cyto-/ chemokine production by WT and 5XFAD microglia. The previous publications were 

mainly based on in vivo studies where continuous stimulation of microglia leads to a higher 

pro-inflammatory activity of these cells (reviewed by Lull & Block, 2010). This indicates that 

once the environment is changed to healthy conditions, even if only for some days, microglia 

may have the capacity to return to a resting state. This may explain why microglia from 

5XFAD mice in the culture even after being stimulated showed a similar reaction to WT 

mice/microglia.  

The studies on age-dependent microglia alterations in terms of production of cyto-/ 

chemokines also represented a higher production of these inflammatory factors (Sierra et al., 

2007; Sheng et al., 1998; Ye & Johnson, 1999). An ex vivo investigation of microglia cultures 

from young and adult mice revealed a higher production of pro-inflammatory cytokines (IL-6 

and TNFα) in aged mice under basal conditions as well as upon stimulation with TLR2 and 

TLR4 agonists (Njie et al., 2012). Our data are in contrast with this finding as we observed a 

reduced production of pro-inflammatory factors IL-6, CCL2 and CCL3 in older mice upon 
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stimulation. Njie and colleagues isolated microglia using a percoll gradient and incubated the 

cells only overnight prior to be stimulated. In our study the cells were incubated in the culture 

for 2-4 weeks prior to the experiments. Our data suggest that the effect of the inflammatory 

environment of an aged brain which -as mentioned above- leads to a higher inflammatory 

activity of microglia, is also reversible. And interestingly it reveals the decreased activity of 

aged microglia per se. 

4.1.3 Proliferation  

One of the common features of AD is extensive gliosis. Previous studies showed proliferation 

of microglia around Aβ plaques in brains of AD patients (Marlatt et al., 2014) and in mouse 

models of AD (Bolmont et al., 2008; Kamphuis et al., 2012; Gomez-Nicola et al., 2013). 

Higher microglia proliferation has also been observed in normal ageing (D. Gomez-Nicola et 

al., 2013). Studies on AD mouse models revealed that circulating progenitors do not 

contribute to the microglial population (Mildner et al., 2011) thus, the increase in their 

number is the result of their own proliferation. 

To explore if these proliferative changes are AD dependent, we investigated the proliferation 

rate of cultivated microglia isolated from 6 and 9 months old WT and 5XFAD mice from both 

genders. We show that in all groups the proliferation of 5XFAD microglia drops significantly 

in contrast to the WT controls. Moreover, we observed that microglial proliferation reduces 

by age in the female WTs as well as 5XFAD mice. Here, our data are in contrast with 

previous published results according to the increasing proliferation of microglia in AD 

environments (Marlatt et al., 2014; Bolmont et al., 2008; Kamphuis et al., 2012; Gomez-

Nicola et al., 2013). In these studies, the data were obtained either from in vivo experiments or 

immunohistochemistry analysis, which allow study of the direct effect of Aβ on microglial 

proliferation. In contrast, our work was based on ex vivo conditions in which microglia were 

kept in cultures for at least 2-4 weeks prior to the experiments without Aβ in the culture 

medium. This could explain the contradictory outcomes. However, our results confirm our 

hypothesis according to the reversibility of microglial changes upon AD environment. The 

decreased proliferative activity of microglia by age in female groups is, in line with previous 

studies (D. Gomez-Nicola et al., 2013), indicating that microglial alterations upon age is 

independent of AD environments. To obtain a better insight into the proliferation rate of 

microglia in 5XFAD mice at difference ages, performing in vivo studies is crucial.  
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The proliferation rate of microglia is also affected by external stimuli such as LPS. The 

inhibitory effect of LPS on macrophage proliferation is well known (Vairo et al., 1992; 

Vadiveloo et al., 1996). In view of the importance of TLR4 functionality in AD pathology 

(Walter et al., 2007), we studied a possible effect of AD environment on TRL4 activity in 

terms of proliferation. The isolated microglia from 5XFAD and WT mice, as mentioned 

above, were stimulated with two concentrations of LPS. We detected a decrease of the 

proliferation rate caused by LPS in all examined groups (about 50% reduction), indicating 

that the functionality of TLR4 in microglia derived from 5XFAD mice is not altered.  

4.1.4 Infiltration of immune cells to the brains of 5XFAD mice  

Infiltration of immune cells such as monocytes and neutrophils from the periphery to the 

brains of AD mouse models has already been shown (Simard et al., 2006; Lebson et al., 2010; 

Stalder et al., 2005; Baik et al., 2014). A recent gene profiling study on various ages of 

5XFAD mice has shown a major increase of expression of genes related to inflammation such 

as chemokines which may result in immune cells infiltrations (Landel et al., 2014). Another 

report has shown a significant increase in chemokine expression, blood brain barrier 

permeability and monocyte and neutrophil infiltrates in the brain of APP/PS1 mice compared 

to WTs (Minogue et al., 2014). Gonzalez-Velasquez and Moss also reported that soluble Aβ 

oligomers trigger recruitment of circulating monocytes to the brain paranchyma by 

stimulating the endothelium and enhancing their adhesion molecules (Gonzalez-Velasquez & 

Moss, 2007).  

In the current study, we investigated putative infiltration of peripheral immune cells in the 

brains of 5XFAD mice compared to controls by flow cytometry analysis. We observed that in 

both genotypes only 2-3% of the CD11b and CD45 positive cell populations were monocytes 

and neutrophils. This is in contrast to the studies mentioned above, which could be explained 

by differences in the sensitivity of the methods.  

Previous studies have shown microglial activation upon intracerebral LPS (TLR4 agonist) 

applications (Mouihate, 2014; Houdek et al., 2014; Dickens et al., 2014). Pro-inflammatory 

cytokines released from LPS-activated microglia can increase the permeability of the blood 

brain barrier, which facilitates the infiltration of macrophages from the periphery (Wispelwey 

et al., 1988; Gaillard et al., 2003). According to the importance of the functionality of TLR4’s 

in the AD pathology (reviewed by Downer, 2013), we studied a potential effect of AD 
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environment on TRL4 activity in terms of immune cells recruitment. Thus, we studied the 

infiltration of neutrophils and monocytes from the periphery to the brains of WT and 5XFAD 

mice upon LPS injection.  

We focused on 6 and 9 months old mice since earlier data did not show any differences 

between microglia isolated from 3 and 6 month old mice. Our results showed that the 

application of a low LPS concentration (10 μg/ml) led to similar numbers of infiltrated 

neutrophils and monocytes in all groups. After injection of a higher LPS concentration (1 

mg/ml) all groups had similar immune cells infiltrates in the brain except 9 months old males 

which had reduced neutrophil infiltrates.  

Since we have previously shown that there is no considerable number of neutrophils and 

monocytes in intact 5XFAD and WT brains, all the monocytes and neutrophils are assumed to 

be infiltrated upon the LPS injections which seems to be independent of an AD environment. 

The data indicate that -at least in the 5XFAD transgenic AD mouse model- the excessive 

amount of Aβ peptides in the brain is not altering the response of the TLR4 stimulation by 

LPS in terms of neutrophil and monocyte recruitment. As a driving force of immune cell 

infiltration, it would be essential to analyse the level of chemokines in such brains. 

To sum up, our data bring evidence that microglial alteration in an AD environment is 

reversible once the environment is changed. Even in WT controls, microglia isolated from 

older mice show reduced activities compared to younger mice ex vivo. Exposure to Aβ 

depositions in 5XFAD mice seems not to change the activity of TLR4 in microglia till 9 

months of age.  
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4.2 Amyloid beta (Aβ) plaque-associated microglia priming in transgenic mouse 

models of Alzheimer’s disease 

Activation of microglia around Aβ plaques has been demonstrated both in human post-

mortem AD brain tissues as well as in transgenic mouse models (Benzing et al., 1999; 

Bornemann et al., 2001). These plaque-associated microglia show impaired phagocytosis 

(Griciuc et al., 2013) and enhanced immune activity (Apelt & Schliebs, 2001; Benzing et al., 

1999; Bornemann et al., 2001; Jimenez et al., 2008). A wide range of surface molecules has 

been shown to be expressed by these plaque-associated microglia including MHC II (McGeer, 

Itagaki, & McGeer, 1988; Rogers, Luber-Narod, Styren, & Civin, 1988), CD68 (Bornemann 

et al., 2001; Sasaki et al., 2002) and Fcγ receptor (Bornemann et al., 2001). Ageing, similar to 

neurodegeneration, shifts the microglia from homeostatic balance to a pro-inflammatory state 

which is also marked by higher levels of inflammatory cytokines and signs of an activated or 

dysfunctional microglia (reviewed by Streit et al., 2008 and Norden & Godbout, 2013). 

As a result of low-grade inflammation -as seen in brain ageing and chronic neurodegenerative 

diseases such as AD- an enhanced type of microglia activation, known as microglia priming, 

has been described (reviewed by Norden & Godbout, 2013 and Perry & Holmes, 2014; Sierra 

et al., 2007; Raj et al., 2014). Perry and Holmes defined microglial priming as their 

exagerated response to a second inflammatory stimulus compared with stimulus-naïve 

microglia (Perry & Holmes, 2014). Albeit no clear characteristics of primed microglia have 

been described yet, alterations in morphology towards loss of ramification, a higher 

proliferaton rate and overexpression of cell surface antigens such as MHC II, scavenger 

receptor CD68 and complement receptors have been associated with microglia priming (Perry 

& Holmes, 2014).  

As mentioned earlier, primed microglia show magnified responses to secondary stimuli. It has 

been reported that in animals with age-related or neurodegenerative pathology, LPS leads to a 

higher pro-inflammatory response in the brain, most likely due to microglial priming (Gatti & 

Bartfai, 1993; Cunningham et al., 2005; Sierra et al., 2007; Ramaglia et al., 2012). For 

instance, increased transcription of pro-inflammatory cytokines in the cortex and 

hippocampus of Tg2576 APP-transgenic mice and the provoked CNS inflammation in 3XTg-

AD upon LPS challenges have been reported (Sly et al., 2001; Kitazawa et al., 2005). On the 

other hand, multiple peripheral infections may also increase the susceptibility to AD (Bu et 

al., 2014). 
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Although it has been hypothesized that microglia in the vicinity of Aβ depositions are primed, 

to this date it has not been proven. Therefore, in the current study, we investigated the 

phenotype of microglia in Aβ-plaque areas as well as non-plaque regions in three different 

AD mouse models. Besides, we studied how a second systemic stimulus affect the microglia 

of these two regions.  

4.2.1 Microglia surrounding Aβ plaques reveal signs of priming 

To investigate the primed phenotype of microglia in AD mouse models, we chose APP23, 

5XFAD and APPswePS1dE9 transgenic mice. In these animals, overexpression of human 

APP protein leads to production of abundant Aβ depositions. The early formation of amyloid 

deposits in these mice separate the AD pathology from ageing and allow for distinguishing 

the effect of ageing and amyloid beta on microglia. We quantified the extent of microglia 

priming in these mouse AD models and investigated whether the priming effects of ageing 

and amyloid burden are related. 

In the present study we show expression of these markers exclusively in the vicinity of Aβ 

plaques in APPswePS1dE9 (18 months old), 5XFAD (7.5 and 12 months old) and APP23 (20 

months old) mice which became more pronounced in older mice. 5XFAD mice generate Aβ 

plaques earlier and faster than APPswePS1dE9 (Oakley et al., 2006; Jankowsky et al., 2004) 

and presence of the activation markers around the plaques at early ages indicates that presence 

of the Aβ plaques rather than the age is the main factor to activate microglia. 

Furthermore, we observed a higher expression of genes related to phagocytosis and immune 

recognition such as CD11c, Dectin1, Lamp2 and Trem2 in APP23 and 5XFAD mice 

compared with WT controls. Activated microglia upregulate CD11c (Zilka et al., 2012), 

besides, CD11c and Dectin1 belong to the gene profile of microglia priming (Holtman et al., 

2015), Lamp2 plays a role in maturation of phagosomes (Huynh et al., 2007) and Trem2 is 

essential for phagocytic activity of immune cells (Thrash et al., 2009). Our data confirm 

previous publications: upregulation of Trem2 in the microglia from plaque-loaded regions of 

20-23 months old APP23 mice (Frank et al., 2008), upregulaed CD11c and Dectin-1 in 

5XFAD mice using a gene profiling study (Landel et al., 2014), upregulation of Lamp2 in 

5XFAD mice as found by deep sequencing analysis (Bouter et al., 2014). Our data as well as 

most of these studies were based on immunohistochemistry and mRNA expression, 

respectively and, therefore, lacked the information whether the cells expressing these genes 
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are located at the areas of Aβ depositions. Thus, for a better understanding of the phenotype 

of the microglia surrounding the Aβ plaques we sorted MHC II positive microglia from 

5XFAD and WT mice and the expression of 842 microglia-specific genes was compared to 

MHC II negative cells from 5XFAD and WT mice. 

A previous study defined two conserved gene expression networks in “general activated” and 

“primed” microglia in mouse models of accelerated ageing and neurodegenrative diseases 

(Holtman et al., 2015). The primed microglia gene network contained pro-inflmmatory genes 

and specific markers including Axl, Apoe, Clec7a (Dectin1), Itgax (Mac-1, CD11c), Lgals3 

(Mac-2) (Holtman et al., 2015) which were also upregulated in MHC II+ microglia in the 

present study. Other upregulated genes such as Spp1, Cst7, CD63 belong to the “general 

activated” module (Holtman et al., 2015). Apart from upregulated genes, few genes were 

downregulated such as CD33, which is a negative regulator of phagocytosis (Griciuc et al., 

2013). In addition to a significant differences between MHC II positive and negative 

microglia from 5XFAD mice, MHC II negative microglia from 5XFAD mice compared to the 

WT controls revealed a remarkable contrast. This indicates that also non-plaque associated 

microglia from AD mouse brains undergo immunological activation even if not that robust to 

express MHC II. Immunological activation of microglia in an AD environment has already 

been shown (Kim et al., 2012; Orre et al., 2014). Among the upregulated genes, TyroBp, the 

key regulator in phagocytosis and LOAD networks (Zhang et al., 2013) was significantly 

upregulated in 5XFAD/MHC II+ microglia compared with WT/MHC II- but not in 

comparison with 5XFAD/MHC II- cells. This suggests that the change of TyroBp is likely due 

to the effect of genotype than Aβ deposition. 

Ageing is the most important risk factor of AD and is shown to promote microglia priming as 

well (reviewed by Perry & Holmes, 2014). In this study we could also show that the 

expression of priming markers is present in 24 months old WT mice. Priming in plaque-

associated microglia is already observed in younger AD transgenic mice. This observation 

indicates that microglia priming due to ageing and Aβ plaque depositions are two independent 

processes.  
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4.2.2 Systemic inflammation increases the inflammatory response of primed microglia 

Higher sensitivity of AD patients to infectious diseases has often been reported: worsening of 

cognitive impairments upon systemic inflammation (Cunningham, 2011; Moon et al., 2011; 

Perry et al., 2007; Holmes et al., 2009) and a deleterious effect of increased serum 

inflammatory cytokines on the onset of dementia has been shown (Ravaglia et al., 2007; 

Schmidt et al., 2002). The cause of the severe cognitive deficits in AD patients upon 

peripheral inflammatory signals might be due to a higher response of primed microglia. 

Cunningham and colleagues showed that the secretory profile of primed microglia by prior 

neurodegeneration can be altered upon both systemic and central LPS challenges 

(Cunningham et al., 2005). Moreover, other studies suggested that clearance of Aβ can be 

boosted by an additional inflammatory stimulation (Akiyama & McGeer, 2004; DiCarlo et al., 

2001; Herber et al., 2004). For a better understanding of the direct effect of systemic LPS 

injection on the microglia surrounding the Aβ plaques compared to the microglia in plaque-

free regions, we injected PBS or LPS i.p. in APP23, 5XFAD and age matched WT mice. It 

has been shown that upon systemic LPS injection LPS can enter the brain through blood brain 

barrier which can directly stimulate the microglia (Banks & Robinson, 2010) and can lead to 

their morphological changes (Jeong et al., 2010). 

Morphological analysis of the microglia in the current study showed signs of activation upon 

LPS injection (loss of ramifications, shortening and thickening of the processes) which was 

more pronounced in the microglia in the close vicinity of plaques. This effect was stronger in 

24 months old APP23 mice and led to amoeboid shapes of microglia. A higher sensitivity of 

microglia around the plaques to a secondary stimulus (peripheral LPS injection) suggests that 

microglia around the plaques are primed. PBS-injected 24 months old WT mice as well as 

plaque-free areas of 24 months old APP23 mice also showed intermediate loss of ramification 

of the microglia which is another evidence of ageing effect on microglial activation. 

We also investigated the expression of Mac-2, CD68 and MHC II proteins (priming markers) 

on microglia after i.p. PBS or LPS injection using immunohistochemistry analysis. Since a 

strong effect of LPS on the morphology of microglia from 20 months old APP23 mice was 

seen, for this study, this age was chosen. We did not observe expression of Mac-2, CD68 or 

MHC II on the microglia from WT mice even after LPS injection. However, transgenic mice 

showed a slight expression of Mac-2, CD68 and MHC II in the microglia surrounding the 

plaques which was strongly enhanced by LPS injection. We observed clear differences 
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between the microglia in contact with and remote from plaques. Thus, the expression level of 

these priming markers was additionally quantified and compared between WT and APP23 

mice or plaque-associated microglia and microglia from non-plaque regions in APP23 mice. 

The quantification revealed that LPS did not have significant effects on microglia from WT 

mice or plaque-free areas of APP23 mice. Nevertheless, LPS had a considerable impact on the 

activation of plaque-associated microglia. This observation indicates the higher sensitivity and 

therefore stronger responses of plaque-associated microglia to a secondary stimulus (LPS).    

It has been reported that LPS has an additive effect on production of cyto-/ chemokines in AD 

transgenic mice compared to WT mice (Sly et al., 2001; reviewed by Prokop et al., 2013). IL-

1β is one the pro-inflammatory cytokines which is produced by microglia in AD brains 

(Griffin et al., 1989; Benzing et al., 1999; Hickman et al., 2008b; Hickman et al., 2009) and 

also upon LPS stimulation (Nakamura et al., 1999). Since we showed the activation of 

microglia by i.p. LPS injections more prominently in the vicinity of plaques, we determined 

the expression of IL-1β by the microglia surrounding the Aβ plaques or distant from them. 

LPS treatment led to the expression of IL-1β in 20 months old APP23 mice on the cells 

surrounding the plaques and not in plaque-free areas. 24 months old mice revealed strong 

expression of IL-1β on both cells adjacent to the plaques and far from them. This outcome 

once more indicates a higher sensitivity of plaque–associated microglia to a secondary 

stimulus (such as LPS). We already showed that microglia of 24 months old WT mice 

demonstrate signs of activation, likely due to the ageing. This explains why in these mice 

microglia in the plaque-free regions show a strong expression of IL-1β (probably due to their 

priming).  

Recruitment of the inflammasomes adaptor protein ASC and its interaction with pro-caspase 1 

is necessary for the maturation of IL-1β (reviewed by Singhal et al., 2014). Here, we could 

also show that indeed upon LPS treatment ASC was strongly present on the plaque-associated 

microglia in APP23 and 5XFAD mice, providing another evidence for priming of plaque-

associated microglia. 

Taken together, our data strongly propose that microglial priming in transgenic Alzheimer’s 

disease mouse models is caused by the close vicinity of the Aβ plaque. Understanding the 

pathophysiological processes which lead to Aβ plaque-associated microglia priming and the 

following enhanced response to a secondary stimuli (such as systemic inflammation) suggests 

new therapeutic opportunities to improve the AD pathology. 
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4.3 Noradrenergic control on the activity of innate immune cells in the CNS 

The adrenergic system is a part of the autonomic nervous system's fight-or-flight response and 

consists of the two neurotransmitters adrenaline and noradrenaline (NA) (Swanson & 

Hartman, 1975). Apart from its physiological role as neurotransmitters of the sympathetic 

nervous system, (nor-) adrenaline plays a crucial anti-inflammatory role both in the periphery 

and the CNS. In particular, neurodegenerative diseases such as AD show improvement by 

activation of the adrenergic system indicating a direct suppressive effect on inflammation and 

immune cell activity. Several studies have investigated the interactions between adrenergic 

and immune systems, focusing on various types of immune cells, which are affected by 

adrenaline and noradrenaline. For instance, it was shown that activation of β2AR on 

neutrophils by adrenaline inhibits the respiratory burst (Nielson, 1987; Brunskole Hummel et 

al., 2013) and suppresses expression of adhesion molecules (Wahle et al., 2005). Anti-

inflammatory and immunosuppressive effects of βAR activation on monocyte/macrophages 

have also been described. Inhibition of oxygen radical production (Schopf & Lemmel, 1983), 

inhibitory effects on production of TNFα, MIP-1α, IL-12 and IL-18 (Mizuno et al., 2005) are 

examples of such anti-inflammatory effects. LPS stimulated microglia also show decreased 

production of TNFα, IL-6 and MCP-1 upon exposure to both β1- and β2AR agonists (Markus 

et al., 2010). It has been also found that upon activation of microglial β2AR, migration of 

microglia to Aβ deposits and also uptake of Aβ peptides by these cells is increased (Kong et 

al., 2010; Heneka et al., 2010).  

Extensive studies from our group also revealed similar anti-inflammatory effects of the 

adrenergic system on microglia. These studies showed that LPS-stimulated microglia were 

inhibited to produce some of the pro-inflammatory cytokines (master’s thesis of Stefanie 

Riesenberg; doctoral thesis of Tommy Regen).  

4.3.1 Effect of β2AR signalling on TLR4 signalling 

Studies from our group showed that inhibition of cytokine production by salbutamol is 

selective. For instance, expression of TNFα, IL-6 and IL-12p40 genes was inhibited, whereas 

expression of other genes such as CCL2, CCL3 and CCL5 was not affected (master’s thesis of 

Stefanie Riesenberg; doctoral thesis of Tommy Regen).  

Responses to adrenergic system activation by diverse cell types requires stimulation of their 

adrenergic receptors (AR). Various studies have detected expression of β2AR on microglia at 
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the RNA level using techniques such as PCR (doctoral thesis of Tommy Regen) and RT-PCR 

(Ishii et al., 2015).  However, these methods are based on bulk measurements and do not 

allow an insight on single cell level. In the current study we used immunohistochemistry to 

examine on a single cell level if β2AR is really expressed on all microglia or if it is a ‘sub-

populational feature’. Using immunocytochemistry, we showed that all microglia express 

β2AR. These data indicate that all microglial cells are capable of responding to β2AR 

agonists. 

Gene induction by LPS (through TLR4) stimulation is accomplished through MyD88, TRIF 

or both adaptor proteins (Regen et al., 2011). For instance, TNFα is exclusively MyD88 

dependent whereas expression of CCL5 is regulated by both MyD88 and TRIF pathways 

(doctoral thesis of Tommy Regen). Previous data from our group have shown that microglia 

lacking TRIF signalling had a reduced CCL5 expression after receiving salbutamol. To study 

if the TRIF signalling serves as an escaping rout from inhibitory effects of salbutamol, we 

assessed the salbutamol effect on expression of two exclusively TRIF dependent genes; MHC 

I and IFNβ. We found that MHC I expression upon LPS stimulation was not inhibited by 

salbutamol. To our surprise, production of IFNβ was significantly inhibited. This behaviour 

was in contrast to MHC I induction and we concluded that the mediator protein TRIF is not 

the reason why genes such as CCL5 are able to escape from the inhibitory effect of β2AR 

activation.  

To study all the genes that were affected by salbutamol, we performed a deep sequencing 

analysis of microglia. Cells received LPS alone or combined with salbutamol. The sequencing 

data revealed that β2AR activation by salbutamol specifically increases the expression of 

STAT4, IRF4 and IRF2 binding protein 2 (IRF2bp2) genes and decreases the expression of 

IRF8 gene. TLR4 uses STAT and IRF proteins for its downstream signalling and subsequent 

production of cyto-/ chemokine and type 1 interferons, respectively (reviewed by Hanisch, 

2014 and Takeda & Akira, 2004). The effects of STATs and IRFs proteins in regulation of 

immunity have been extensively studied. Various studies have pointed at the role of IRFs in 

MyD88-dependent TLR signalling. Direct interactions of IRF4, 5, 7 and 8 with MyD88 leads 

to the regulation of pro-inflammatory cytokines and type I IFNs (IFNα and -β) production 

(Honda et al., 2004; Kawai et al., 2004; Takaoka et al., 2005; Honda et al., 2005; Negishi et 

al., 2005).  
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The expression of type 1 IFN genes is not dependent on MyD88 (doctoral thesis of Tommy 

Regen). However, it was described that IRF8 binds directly to the promoters of type 1 IFNs, 

leading to the sustained RNA polymerase II recruitment to this region and therefore, higher 

expression of type 1 IFNs (Tailor et al., 2007). Since IRF8 is produced upon activation of 

TLR4, this indicates the indirect effect of TLRs on type 1 IFNs production. Although the 

expression of IRF8 is increased by TLR4 activation (Mancino et al., 2015), its production is 

strongly downregulated by β2AR activation.  

In opposition to IRF5, 7 and 8, IRF4 has anti-inflammatory effects through the MyD88 

pathway (Rosenbauer et al., 1999; Mudter et al., 2009). Negishi and colleagues showed that 

IRF4 negatively regulates MyD88 signalling by competing with IRF5 to bind to it (Negishi et 

al., 2005).  

Our data show that salbutamol leads to, specifically, STAT4 and IRF4 upregulation in spite of 

downregulation of IFR8. These data explain why the expression of MyD88-dependent genes 

is inhibited by salbutamol and also why IFNβ (which is TRIF dependent) is inhibited as well 

(Salbutamol → ↑cAMP → ↓IRF8; ↑IRF4 → ↑STAT4, ↓pro-inflammatory proteins and ↓ 

IFNβ). These data do not provide any evidence of interaction of β2AR signalling with the 

TRIF pathway, thus suggesting that the TRIF pathway is the route to escape from the 

inhibition upon β2AR activation.  

4.3.2 In vivo studies of β2AR activation 

One of the consequences of an inflammatory response from immune cells is to recruit other 

immune cells to the site of challenge such as infection (Iwasaki & Medzhitov, 2004). To 

investigate how salbutamol alters the response of microglia to LPS stimulation in vivo, we 

focused on its effect on infiltration of peripheral immune cells and also on LPS-induced 

astrogliosis. LPS alone or combined with salbutamol was infused in the brains of mice and 

infiltration of neutrophils, monocytes and T cells from the periphery was investigated. 

Combination of salbutamol and LPS decreased infiltration of these cells, which could be 

caused by the anti-inflammatory effect of salbutamol (β2AR activation) on microglia.  

Infiltration of immune cells from the blood stream to tissues requires activation of their β2 

integrins upon exposure to cytokines and pro-inflammatory mediators (such as TNFα), which 

is followed by binding of activated β2 integrins to the vascular endothelial adhesion 
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molecules (d’Alessio et al., 1998; reviewed by Radi et al., 2001). Anti-inflammatory effects 

of noradrenaline on  the expression of adhesion molecules such as cell adhesion 

molecule  (CAM), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion 

molecule (ICAM-1) in vivo was described (O’Sullivan et al., 2010). Therefore, decreased 

production of pro-inflammatory cytokines and, possibly, reduced numbers of adhesion 

molecules by salbutamol explain the decreased infiltration of immune cells into the brain 

upon salbutamol application.  

It was shown that noradrenaline has anti-inflammatory effects on immune cells (reviewed by 

Ishii et al., 2015). In the healthy brain there is a constant production and delivery of 

noradrenaline from the locus coeruleus (Aston-Jones & Cohen, 2005) which results in a 

constant anti-inflammatory signal on microglia. Thus, we hypothesized that an elimination of 

this anti-inflammatory effect might lead to higher numbers of immune cell infiltrates upon 

LPS infusion. To exclude this possibility we used a β2AR antagonist, ICI, in combination 

with LPS to block β2ARs. We observed that ICI had no effect on the immune cell infiltration. 

The dose of ICI may not have been sufficient to completely block all β2ARs. Probably, even a 

residual level of β2AR activity may have been efficient to produce a chemokine level that was 

sufficient to attract immune cells from the periphery. Studying the dose response relationship 

of ICI would be necessary to exclude this possibility. 

We also observed that salbutamol or ICI without LPS did not cause infiltration of peripheral 

immune cells, revealing that both substances are not sufficient for immune cell recruitment.  

To study the effect of salbutamol on astrogliosis, immunohistochemistry analyses were 

performed. Brains of mice were infused with LPS alone or combined with salbutamol.  We 

showed that salbutamol did not influence the activation of microglia and astrocytes. However, 

salbutamol significantly reduced the Mac-3 immunoreactivity. Since Mac-3 is expressed on 

microglia and other macrophages (monocytes) and also activation of microglia is not affected 

by salbutamol, this finding indicates decreased numbers of infiltrated monocytes by 

salbutamol. 

4.3.3 Population size of TNFα and CCL5 producing cells 

The effect of β2AR activation on gene expression or protein production was shown by us and 

other groups mainly by the mRNA level or the amount of released proteins (reviewed by 

http://han.sub.uni-goettingen.de/han/GoogleScholar/www.sciencedirect.com/science/article/pii/S0165572809004901#200005415
http://han.sub.uni-goettingen.de/han/GoogleScholar/www.sciencedirect.com/science/article/pii/S0165572809004901#200005415
http://han.sub.uni-goettingen.de/han/GoogleScholar/www.sciencedirect.com/science/article/pii/S0165572809004901#200008335
http://han.sub.uni-goettingen.de/han/GoogleScholar/www.sciencedirect.com/science/article/pii/S0165572809004901#200016319
http://han.sub.uni-goettingen.de/han/GoogleScholar/www.sciencedirect.com/science/article/pii/S0165572809004901#200016319
http://han.sub.uni-goettingen.de/han/GoogleScholar/www.sciencedirect.com/science/article/pii/S0165572809004901#200005415
http://han.sub.uni-goettingen.de/han/GoogleScholar/www.sciencedirect.com/science/article/pii/S0165572809004901#200005415
http://han.sub.uni-goettingen.de/han/GoogleScholar/www.sciencedirect.com/science/article/pii/S0165572809004901#200005415
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Scanzano & Cosentino, 2015). Since these samples are collected from different cells, the 

information from specific cell types is lacking. To find out how the productions of TNFα and 

CCL5 in single cells are affected by salbutamol, we used flow cytometry and ELISpot 

analysis. 

The flow cytometry data revealed a decreased number of TNFα producing cells by addition of 

salbutamol. Looking at the cells that produce only TNFα, only CCL5 or both (double 

positive), we recognised that this reduction was conducted by the TNFα producing population 

and not from the double positive one. Surprisingly, addition of salbutamol to LPS led to an 

increase in the percentage of the cells that produce only CCL5.  

We have already shown that the concentration of TNFα protein is strongly reduced by 

salbutamol, thus, the cells that produce only TNFα might be able to produce much more 

TNFα than the group of cells which produce both TNFα and CCL5. On the other hands, 

CCL5 concentration is not changed by salbutamol and in the flow cytometry data we 

observed that the population size of only CCL5 producing cells is highly increased, therefore, 

we conclude that the cells which produce only CCL5 do not produce much of this protein 

while the double positive cells are the main source of CCL5.  

In the ELISpot approach we observed a reduced spot area, which indicates a reduced CCL5 

release from single cells. These data suggest that although the protein concentration and 

percentage of producing cells are not affected by β2AR activation, CCL5 released from each 

cell is slightly decreased. 

4.3.4 PKA mediates the downstream signalling from β2AR to TLR4 

Binding of agonists to the β2AR, leads to its activation which in return activates the 

transmembrane adenylyl cyclase. The activated transmembrane adenylyl cyclase generates the 

second messenger, cAMP (reviewed by Sassone-Corsi, 2012).  

In addition to the transmembrane adenylyl cyclase, cells express soluble adenylyl cyclase, 

which is distributed through the cytoplasm and in cellular organelles (Braun & Dods, 1975; 

reviewed by Tresguerres et al., 2011). Activity of soluble adenylyl cyclase to generate cAMP 

is independent of GPCRs (Braun et al., 1977) instead, it is shown to be regulated by both 

extra- and intracellular bicarbonate and calcium anions (Okamura et al., 1985; Garty & 

Salomon, 1987;  Jaiswal & Conti, 2003).  
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Generated cAMP transduces its signal through two main mediators: PKA as the classical 

pathway and Epac as the non-classical pathway (reviewed by Sassone-Corsi, 2012). Elevated 

cAMP in immune cells is associated with a reduced cytokine production which represents its 

anti-inflammatory properties (Bourne et al., 1974; Elenkov, 1995; Nijhuis et al., 2014). The 

anti-inflammatory effects of cAMP has been often shown to be mainly PKA-dependent 

(Kammer, 1988; Ishii et al., 2015). Previous studies of our group, also showed production of 

cAMP in microglia upon salbutamol stimulation. However, these studies failed to confirm the 

involvement of PKA in the inhibition of cytokine production (doctoral thesis of Tommy 

Regen and master’s thesis of Stefanie Riesenberg). Therefore, in the present study a new cell-

permeable PKA inhibitor (IIR-PKI) was used to examine the effect of PKA activity on TNFα, 

CCL5 and IFNβ protein secretion.  

Microglia were stimulated with LPS alone or combined with salbutamol and/or the PKA 

inhibitor and these cytokines were measured in the supernatants of the cells. The results 

demonstrated that the PKA inhibitor can rescue the inhibited TNFα production, indicating the 

role of PKA in TNFα inhibition by salbutamol which is in line with previous studies 

(Gebhardt et al., 2005; Avni et al., 2010; reviewed by Scanzano & Cosentino, 2015). In 

contrast, IIR-PKI had a negative effect on expression of CCL5 and IFNβ and led to their 

suppression.  

The reason to add only PKA inhibitor to LPS was to exclude endogenous PKA activity. 

Endogenous PKA activity is regulated by endogenous cAMP, which is generated by the 

soluble adenylyl cyclase, independent of β2AR signalling. Addition of PKA inhibitor to LPS 

led to an increase of TNFα production compared to the LPS. This reveals that under normal 

conditions, immune responses of microglia are suppressed by endogenously activated PKA, 

most likely representing a negative regulation of TLRs signalling. However, the effect of 

PKA inhibitor on LPS-mediated CCL5 and IFNβ production was inhibitory rather than 

stimulatory.  

Previous publications pointed at activation of phosphatidylinositol-4,5-bisphosphate 3-kinase 

(PI3K) by TLRs through the MyD88 adaptor protein (Arbibe et al., 2000; Laird et al., 2009). 

Activated PI3K results in production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3). The 

generated PIP3 facilitates recruitment of signalling proteins such as protein kinase B (PKB), 

also known as Akt (Laird et al., 2009). LPS was shown to induce phosphorylation of PI3K 
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and subsequently Akt (Monick et al., 2001). PI3K acting through Akt plays an anti-

inflammatory role in innate immune cells by reducing the activity of NF-κB (X. Li et al., 

2003). NF-κB is a major transcription factor which regulates expression of the genes which 

shape the immune responses (Hayden et al., 2006). Although both MyD88 and TRIF 

signalling pathways use NF-κB (reviewed by Kawasaki & Kawai, 2014), PI3K reduces TRIF-

dependent NF-κB activation, leading to the reduction of TRIF-dependent genes such as IFNβ 

(Aksoy et al., 2005).  

In the present study, we showed that PKA inhibition decreases the expression of LPS-

mediated CCL5 and IFNβ. The data from the deep sequencing experiments revealed 

significant reduction of PI3K by salbutamol (data not shown), indicating the negative effect of 

salbutamol (through PKA) on PI3K activation. As described above, PI3K activity leads to the 

reduction of IFNβ expression. Therefore, inhibition of PKA results in the higher expression of 

PI3K and consequently, stronger reduction of IFNβ. We also observed that CCL5 expression 

is reduced by the PKA inhibitor. CCL5 expression is partly TRIF-dependent (doctoral thesis 

of Tommy Regen). Thus, the same reduction as IFNβ could be observed for CCL5.  

Taken together, these data show that PKA uses different ways to affect expression of various 

genes.   

Using a PKA inhibitor, we showed the involvement of PKA in the regulation of TLR4 

signalling. To confirm this finding with a second method, we used a PKA activator (N6-

Benzoyl-cAMP) in addition to LPS. We hypothesized that activation of PKA should mimic 

the effect of salbutamol. However, we could not see this effect and this PKA activator failed 

to suppress TNFα production (data not shown). This could be due to the inefficiency of the 

activator to enter the cells or not being 100% PKA specific.   

Since the PKA activator could not confirm the PKA-dependent TNFα suppression, a PKA 

activity assay was performed to directly assess its activity in the cell lysates. Cells received 

salbutamol, LPS, combination of LPS and salbutamol or combination of LPS, salbutamol and 

the PKA inhibitor (IIR-PKI). We observed that LPS does not activate PKA. Salbutamol 

significantly activated PKA activity and combination of LPS and salbutamol yielded a 

stronger activation of PKA. Conversely, the PKA inhibitor decreased the activity of PKA to 

the level similar to the effect of salbutamol alone. This confirms the activity of PKA induced 

by exposure to salbutamol per se. 
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PKA is not the only protein activated by cAMP. In the non-classical pathway Epac proteins 

mediate cAMP signalling in numerous cells including microglia (Morioka et al., 2009; 

reviewed by Sassone-Corsi, 2012). Although we could show the PKA-mediated cytokine 

suppression, to exclude the contribution of Epac proteins, their activity was inhibited by 

specific Epac1 and 2 inhibitors. Three different Epac inhibitors failed to rescue TNFα 

suppression by salbutamol. In addition, an Epac activator (8-pCPT-2'-O-Me-cAMP) could not 

mimic the salbutamol effect (data not shown), indicating that Epac proteins are not involved 

in the anti-inflammatory effects of β2AR signalling. 

The anti-inflammatory influence of PKA has been described in various types of innate 

immune cells of different tissues (reviewed by Scanzano & Cosentino, 2015). To confirm the 

inhibitory effect of salbutamol on other macrophages as well, we studied bone marrow 

derived macrophages (BMDMs). In our approach, BMDMs received LPS alone or combined 

with salbutamol and subsequently the secretion of TNFα and CCL5 was measured in the 

supernatants. We could show that TNFα production is inhibited by salbutamol whereas CCL5 

was not altered. This finding is in line with the data obtained from microglia and also other 

studies (reviewed by Scanzano & Cosentino, 2015) and indicates that anti-inflammatory 

effects of β2AR signalling is a general immunological phenomenon rather than being immune 

cell types specific. Although BMDMs are significantly less responsive to stimuli compared to 

microglia (Janova et al., 2015), their immune reactions seems to be still controlled by the 

blood circulating adrenergic neurotransmitters. 

In conclusion, the current data indicate the strong anti-inflammatory effects of adrenergic 

system on immune cells which is selective for cyto-/ chemokines. Although β2AR signalling 

inhibits mainly signal transduction of the mediator protein MyD88, some of TRIF dependent 

genes are indirectly inhibited. Our data shows that this system does not reduced activation of 

microglia and astrocytes per se while reducing infiltration of immune cells as well as 

production of pro-inflammatory cytokines.  
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5 Summary and conclusions 

The present PhD thesis consisted of three main parts: (1) to characterize microglia either 

isolated from 5XFAD mouse model (ex vivo) or (2) in the context of an AD environment in 

APP23, APPswePS1dE9 and 5XFAD mouse models (in vivo);  and (3) to investigate the 

signalling pathways of adrenergic receptors on microglia and its effects on microglial 

activation. 

In the first project we show that microglia isolated from 5XFAD mice at 3, 6 and 9 months of 

age behave comparable to the aged matched WT littermates. In addition, we could show that 

dysfunctions of microglia in terms of phagocytic activity and production of cyto-/ chemokines 

at older ages. This indicates clear age-dependent microglial changes independent of the AD 

environment.  

In conclusion, microglia in an AD environment may still have healthy capacities and just 

behave abnormal as to the abnormal environment. This could offer therapeutic options. It 

might be still preferred to modulate the endogenous brain microglia accordingly rather than to 

build on bone marrow cell transfer. 

In the second project which studied priming characteristics of microglia in AD environments, 

we could show a number of differences (all related to the priming markers) between microglia 

of WT vs AD transgenic mice or microglia in the vicinity of the Aβ plaques vs the microglia 

in plaque free regions. MHC II positive microglia in 5XFAD mice revealed overexpression of 

many genes related in neuroinflammation compared to MHC II negative microglia. Also, 

microglia challenged by a secondary stimulation (with LPS) showed an increased activation 

status in close vicinity to Aβ plaques compared to the microglia far from the plaques.  

Taken together, our data clearly show that microglial priming in transgenic AD mouse models 

is driven by the close vicinity of the Aβ plaques which occurs before the age-associated 

priming. Understanding the pathophysiological processes of Aβ-plaque associated microglial 

priming and the subsequent hypersensitivity of these microglia to secondary systemic 

inflammation, suggests therapeutic opportunities to decrease neuroinflammation in AD. 

The third project of the thesis involved the β2AR signalling in microglia. We show that β2AR 

signalling interferes with the signal induction of TLR4, leading to the inhibition of some pro-
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inflammatory cyto-/ chemokines. This inhibition, however, did not include all proteins. We 

showed that β2AR signalling, through activation of PKA, inhibits the genes which are 

induced via the adaptor protein MyD88. For instance, CCL5 could escape from this inhibition 

due to having the advantage of using the adaptor protein TRIF. Our data also show that INFβ 

gene expression (exclusively TRIF dependent) is inhibited which is the result of a direct effect 

of β2AR signalling on the IRFs and not of the TRIF. LPS-stimulated microglia were inhibited 

to recruit immune cells from the periphery when treated with the β2AR agonist salbutamol.  

In conclusion, β2AR activation has anti-inflammatory effects on macrophages. β2AR induces 

these anti-inflammatory effects on TLR4 signalling through different mechanisms which 

involve mainly the signal transduction through MyD88. 
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