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1 Introduction 
 

 

 

 

1.1 Associative learning and memory 

 

The mnemonic process of association has been described as early as ~ 300 B.C. by 

Aristotle in his Parva Naturalia. Often, it is referred to the law of contiguity, which 

Aristotle stated as a memorization of things and events that are contiguous in time 

and space (Aristotle, trans. 1910; Buckingham and Finger, 1997). It was Ivan Pavlolv, 

who later addressed the subject of associative learning from an experimental 

perspective in his famous studies on classical conditioning with salivating dogs (Pavlov, 

1906). In those experiments, the presentation of a food stimulus (the unconditioned 

stimulus, US) elicited an unconditioned response, that is, the dog started salivating. 

During training, the presentation of the food was repeatedly preceded by the ringing 

of a bell, the conditioned stimulus (CS). Subsequently, when subjected to only the 

sound of the bell, the dog also produced saliva, which is then called a conditioned 

response. In the following century, conditioned responses have been observed in a 

vast range of animal species and researchers have developed several model 

preparations in order to investigate associative learning in greater detail (reviewed in 

Schreurs, 1989). Well known model preparations are the siphon withdrawal reflex in 

Aplysia (Carew et al., 1981), the eyelid reflex in humans (Grant and Adams, 1944), 

spinal conditioning in the paralyzed cat (Patterson et al., 1973), and the nictitating 

membrane reflex in rabbits (Gormezano et al., 1962), just to mention a few. 

Phenomena of interest include memory acquisition, memory extinction, alpha response 

changes, and localization of memory in the central nervous system (Schreurs, 1989; 

Thompson, 1986), as well as operant learning (Thorndike, 1898). Nowadays, 

transgenic model organisms are widely used for the study of classical conditioning, 

and related phenomena, due to the many possibilities of labeling, and interfering with 

neurons (Kandel et al., 2014; Venken et al., 2011). Thus, the identification of a 

complete neural circuit behind associative memory has come within reach. 
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1.2 Learning and memory in Drosophila 

 

Drosophila has developed to an interesting model system in neuroscience because it 

combines a strong history of genetic research with an unexpectedly broad behavioral 

repertoire (reviewed for example in Anderson and Adolphs, 2014; Pitman et al., 2009; 

Sokolowski, 2001). Seymour Benzer and his students were pioneers in the field of 

Drosophila learning and memory in the 1970s. They could show that flies are able to 

associate an electric foot shock as an US with an odor stimulus as a CS, and further 

developed a paradigm to show that flies can discriminate between two colors when 

trained aversively with the bitter tastant quinine (Quinn et al., 1974). In subsequent 

experiments it was found that flies develop consolidated forms of olfactory memory, 

which are partly sensitive and partly resistant to cold shock anesthesia after training 

(Quinn and Dudai, 1976), and olfactory long-term memory traces were discovered, 

which last up to 24 hrs, and are dependent on novel protein synthesis (Tully et al., 

1994). In contrast to appetitive olfactory long-term memory that was formed after a 

single training session (Tempel et al., 1983), aversive olfactory long-term memory 

formation required multiple training trials that had to be spaced in time (Tully et al., 

1994). With the establishment of an efficient and well controlled training paradigm 

(Tully and Quinn, 1985), olfactory conditioning in Drosophila has become a major field 

of research for the study of the neural circuitry underlying associative memory. In this 

paradigm, groups of flies are trained aversively, using electric shocks as a punishment, 

to distinguish one reinforced odor (the CS+) against a non-reinforced odor (the CS-), 

and are subsequently tested in a T-maze choice assay. 

Drosophilae are further able to perform in a great variety of visual learning tasks. They 

can learn to associate optic patterns with various aversive stimuli (Dill et al., 1993; 

Guo and Götz, 1997), to discriminate colors, shapes, and light intensities 

(Schnaitmann et al., 2013; Tang and Guo, 2001), and as for olfactory conditioning, 

they can form consolidated forms of visual memory (Xia et al., 1997). Most strikingly, 

flies can learn to navigate through a virtual maze based on landmarks (Ofstad et al., 

2011). Apart from learning visual and olfactory cues, flies can be conditioned to alter 

the proboscis extension reflex (Brigui et al., 1990; Chabaud et al., 2006; Médioni and 

Vaysse, 1975), to avoid punished flavors (Masek and Scott, 2010), and to reduce 

courtship attempts towards females when they have experienced rejection before 

(Siegel and Hall, 1979). A good overview of Drosophila’s abilities to perform in a total 

of 18 different visual learning, tactile, and motor learning tasks using different kinds 

of reinforcers is given in Wolf et al. (1998). Interestingly, flies are also able to 
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generalize learned avoidance to stimuli that are perceived similarly (Barth et al., 2014; 

Ejima et al., 2005). 

 

1.3 Genetic tools for the study of learning and memory in 

Drosophila 

 

1.3.1 Binary expression systems  

 

Binary expression systems have become the most commonly used tools in Drosophila 

neurogenetics, especially the Gal4/UAS system (Brand and Perrimon, 1993). The yeast 

transcription system allows for separation of the transcriptional activator (the 

transcription factor Gal4) and the effector protein (under control of the Gal4 specific 

upstream activating sequence [UAS]). Gal4 can be controlled directly by a cloned 

promoter region of interest or by the use of P-element insertions (O’Kane and Gehring, 

1987). P-element insertions link Gal4 expression randomly to a genomic promoter or 

enhancer, whose activity can then be visualized by an effector protein of choice – a 

technique known as enhancer trap. The target gene and the Gal4 driver are separated 

in two distinct transgenic fly lines. Any Gal4 driver line of interest can be crossed with 

a fly line carrying a UAS-controlled effector gene to generate flies in the F1 generation, 

in which the effector gene is expressed. Commonly used effector genes encode 

proteins for visualization of neurons such as GFP (Tsien, 1998) or RFP (Campbell et 

al., 2002), visualization of Ca2+ activity (Fiala et al., 2002; Tian et al., 2009), or 

transmitter release (Miesenböck et al., 1998), manipulation of neuronal activity by 

blockage of vesicle recycling (Kitamoto, 2001), light-gated depolarization (Nagel et 

al., 2003), or temperature induced activation (Hamada et al., 2008).  

The Gal4/UAS system was further improved by the introduction of the Gal4 suppressor 

protein Gal80 (Lee and Luo, 1999; Ma and Ptashne, 1987) and its temperature 

sensitive version for spatiotemporal control of Gal4 expression (McGuire et al., 2003). 

Also the development of the split-Gal4 system, in which two parts of the Gal4 

transcription factor are under control of separate promoters enabled researchers to 

target Gal4 expression to even smaller and more specific subsets of cells (Jenett et 

al., 2012; Luan et al., 2006). Other binary expression systems that can be used in 

combination with Gal4/UAS are QF/QUAS (Potter et al., 2010), LexA/lexAop (Lai and 

Lee, 2006), and Flp/FRT (Golic and Lindquist, 1989). For review see del Valle Rodríguez 

et al. (2012). 
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1.3.2 Mosaic expression systems 

 

In order to analyze subsets of cell types that cannot be labeled by binary expression 

systems or to label cell lineages, a number of mosaic expression systems have been 

developed. The Flp-out system (Golic and Lindquist, 1989; Harrison and Perrimon, 

1993; Struhl and Basler, 1993) relies on excision of a stop cassette that is flanked by 

Flp recognition target (FRT) sequences. The stop cassette is located in front of a gene 

encoding a marker protein like lacZ or GFP, which is expressed after the excision event. 

Subsequent cell clones are likewise affected from the recombination and thus labeled 

as well. However, labeling of maturated cells is also possible. Induction of 

recombination by expression of Flp is usually achieved by heat shocking when Flp is 

under control of the hsp70 promoter (Ashburner and Bonner, 1979). An extension of 

the Flp-out system is the mosaic analysis with a repressible cell marker (MARCM, figure 

1.1) (Lee and Luo, 1999). In MARCM, FRT sites are located at the same position in 

homologous chromosomes so that they potentially recombine during mitosis upon Flp 

activity. The ubiquitously expressed Gal4 repressor protein Gal80 is located on the 

same chromosome downstream of the FRT site. Animals are heterozygous for the 

Gal80 gene, wherefore following mitosis, one of the daughter cells will be homozygous 

for the repressor while in the other daughter cell and in its progeny Gal80 is absent. 

Combined with the Gal4/UAS system, this technique allows for the generation of single 

cell clones, in which Gal4 activity in a tissue of interest (dependent on the promoter 

that controls Gal4) is not suppressed by the Gal80 repressor leading to expression of 

the effector protein under UAS control. MARCM has widely replaced Golgi staining 

(Cajal and Sánchez, 1915) as a method for single cell labeling, and the efficiency of 

MARCM has even led to projects aiming to reconstruct the Drosophila brain at the 

single cell level (Chiang et al., 2011). Improvement of MARCM was achieved by twin-

spot MARCM, in which both daughter cells after mitosis and Flp induced recombination 

can be labeled in two different colors (Yu et al., 2009). 

 

1.4 The Drosophila olfactory system 

 

To understand the neural basis of olfactory associative memory an introduction to the 

Drosophila olfactory system is essential. Fruit flies have evolved a complex olfactory 

system that enables them to navigate through an odor-rich environment. They are 

able to localize food sources, to find mating partners, and to avoid dangers on the 
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Figure 1.1. Mosaic analysis with a repressible cell marker (MARCM) illustrated on 

mushroom body Kenyon cells. 

MARCM is a widely used genetic mosaic system for the analysis or labeling of single cell clones. It is 

based on induced recombination among homologous chromosomes during mitosis. In the present 

case, mCherry serves as a marker protein to visualize cell morphology. 

A) Presumably during interphase after duplication of DNA strands has occurred, recombination can 

take place among homologous chromosomes induced by the activity of Flp recombinase at specific 

FRT sites. Flp is under control of a heatshock promoter, so that expression can be regulated by 

outside conditions. Cells are heterozygous in respect to the gene of interest, which is located distal 

to the recombination site. In MARCM, this gene, ubiquitously expressed via the tubulin promoter, 

codes for Gal80, a repressor of Gal4, which in turn can be driven in a tissue of choice. Upon 

recombination, successor cells can become homozygous for the Gal80 repressor, or completely lack 

the repressor. In the latter case, all successor cells will drive Gal4 expression and thus express the 

mCherry reporter. The UAS should be located on a different chromosome than the repressor in order 

not to be affected by the recombination event. 

Figure 1.1 continued on next page.  
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basis of olfactory cues. An overview of the Drosophila olfactory system is shown in 

figure 1.2. 

The detection of odors is achieved by olfactory receptors on the flies’ antennae and 

maxillary palps. One to four different olfactory receptors are expressed within an 

olfactory receptor neuron, which in turn is localized to specialized sensillae belonging 

to four morphological classes: basiconic, coeloconic, trichoid, and palp basiconic (De 

Bruyne et al., 2001; Shanbhag et al., 1999). Canonical Drosophila olfactory receptors 

belong to an ancient diverse family of seven transmembrane proteins (Buck and Axel, 

1991) and are encoded out of a set of 62 receptor genes (Robertson et al., 2003). For 

receptor functioning, co-expression of Or83b (also named olfactory co-receptor 

[Orco]) is essential (Larsson et al., 2004; Vosshall et al., 2000). The total amount of 

~ 1,300 olfactory receptor neurons per hemisphere are widely distributed over the 

antennae and palps. Interestingly, olfactory receptor neurons expressing the same 

kind of receptor converge in their projections to mostly one single glomerulus in the 

antennal lobe (Couto et al., 2005; Shanbhag et al., 1999; Vosshall et al., 2000). The 

antennal lobe consists of ~ 54 differently sized glomeruli arranged as spherical 

structures (Couto et al., 2005; Grabe et al., 2015). Each odor evokes spatiotemporal 

activity patterns of a set of olfactory receptor neurons that can be measured 

electrophysiologically, or using two-photon calcium imaging (Barth et al., 2014; 

Hallem and Carlson, 2006; Martelli et al., 2013; Wang et al., 2003). In addition, the 

antennal lobes are innervated by local interneurons of different morphologies ranging 

from unilateral uniglomerular to bilateral multiglomerular (Stocker et al., 1990). Those 

interneurons can be inhibitory or excitatory, and have been implicated in gain control, 

spatiotemporal shaping of odor identity, and in odor fine discrimination (Barth et al., 

2014; Olsen and Wilson, 2008; Root et al., 2008; Shang et al., 2007; Wilson and 

Laurent, 2005). 

Odor induced activity in the antennal lobe glomeruli is conveyed by about 200 olfactory 

projection neurons (PNs) to higher order brain centers via three different cerebral 

tracts (Marin et al., 2002; Stocker et al., 1990; Wong et al., 2002). The inner 

antennocerebral tract contains the largest number of PNs and is of particular interest 

Figure 1.1 continued. 

B) In the case of mushroom body development, four neuroblasts generate ~ 95% of Kenyon cells 

that dependent on the neuroblast (N1-N4) occupy distinct zones within in the mushroom body 

calyx.     

C, D) Dividing mushroom body neuroblasts generate ganglion mother cells, each of which 

differentiates into two Kenyon cells. In dependence on when the Flp recombinase is active, and 

whether or not the daughter cell inherits the repressor, a single cell, or two cells (C), or the whole 

cell lineage (D) gets labeled by mCherry expression. Surely, all of the events can happen in 

parallel in different neuroblasts. Modified after Lee and Luo (1999). 
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Figure 1.2. The Drosophila olfactory system. 

Odor detection takes place on the flies antennae and maxillary palps, where odor molecules bind 

to olfactory receptors that are expressed in olfactory receptor neurons. Olfactory receptor neurons 

that express the same kind of receptor send axonal fibers to mostly one invariant glomerulus in 

the antennal lobe. Activity in glomeruli is regulated by inhibitory and excitatory local interneurons 

(not illustrated), and is taken up by dendrites of projection neurons that convey the signal mainly 

via the inner antennocerebral tract to higher order olfactory centers, namely the mushroom 

bodies and the lateral horn. Whereas the lateral horn is believed to mediate innate olfactory 

responses, Kenyon cells of the mushroom body have been shown to be necessary and sufficient 

for the support of associative memories. The cell bodies of Kenyon cells are located in a cup like 

shape around the calyx of the mushroom bodies, where Kenyon cell dendritic claws form 

connections to projection neuron boutons. Axonal Kenyon cell arbors project through the peduncle 

into the lobes of the mushroom body. Here, α/β and α′/β′ neurons bifurcate to build the vertical 

α/α′ and the horizontal β/β′ lobes. The depicted γ neurons project only into the horizontal γ lobe. 

LH: lateral horn, MB: mushroom body, γ KC: γ Kenyon cell, iACT: inner antennocerebral tract, 

AL: antennal lobe, ORNs: olfactory receptor neurons. Modified after Heisenberg (2003). 
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because the neurons form en passent synapses with dendritic arbors of Kenyon cells 

(KCs) in the mushroom body (MB) calyx before extending into the lateral horn (LH). 

The outer and medial antennocerebral tract are of smaller magnitude than the inner 

antennocerebral tract and constitute a direct connection from the antennal lobe to the 

lateral horn, while some fibers of the medial antennocerebral tract also send 

extensions to the MBs (Stocker et al., 1990). In contrast to the MBs that are involved 

in experience-dependent odor processing, the lateral horn is believed to mediate 

innate odor preferences (Gupta and Stopfer, 2012; Heimbeck et al., 2001; Heisenberg, 

1998). It has been shown by mosaic studies that PNs projections are prespecified, in 

that they always innervate the same antennal lobe glomeruli and send stereotyped 

axonal fibers to the lateral horn and the MB calyx (Jefferis et al., 2001; Marin et al., 

2002; Wong et al., 2002). Analysis of the output areas of olfactory PNs in the lateral 

horn using an image registration based technique showed that pheromone responsive 

PNs are spatially separated from fruit odor responsive PNs (Jefferis et al., 2007). In 

further experiments, the whole pheromone responsive circuitry could be dissected, 

from sensory input down to the ventral nerve cord and motor output areas (Datta et 

al., 2008; Ruta et al., 2010). Hard-wired behavioral programs were also found to be 

triggered by fruit odors like apple cider vinegar or by optogenetic activation of  selected 

antennal lobe glomeruli (Bell and Wilson, 2016; Semmelhack and Wang, 2009). 

In the calyx of the MBs, the acetylcholine producing PNs form connections to MB 

intrinsic KCs, and other extrinsic neurons that are partly GABA positive. Together, they 

compose the calycal microglomeruli, which are defined by one PN bouton and its 

postsynaptic partners (Leiss et al., 2009; Yasuyama et al., 2002). Stereotypy of PN – 

KC connectivity, as it seems the case for hard-wired connections in the lateral horn, is 

subject of debate. On the one hand, it was found that the topography of identified PNs 

in the MB calyx is invariant across individuals, and that KCs of a particular type have 

stereotypic dendritic fields, which makes them likely to be connected to certain PN 

types (Jefferis et al., 2007; Lin et al., 2007). Furthermore, PNs that evoked responses 

in postsynaptic KCs were shown to be anatomically connected to more dendritic claws 

of these KCs than expected by chance (Gruntman and Turner, 2013). On the other 

hand, it could be shown by back-tracing the anatomical and functional input of single 

KCs to the respective PNs that neither PN nor KC identity was a reliable predictor for 

the potential synaptic partners (Caron et al., 2013).  

Whereas PNs have a likelihood of ~ 60 % to respond to a given odor stimulus (Turner 

et al., 2008; Wilson et al., 2004), KCs show very low response rates lying around 5-

10 % in electrophysiological measurements (Murthy et al., 2008; Perez-Orive, 2002; 
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Stopfer et al., 2003; Turner et al., 2008), and in Ca2+ imaging (Honegger et al., 2011). 

Thus, each odor is represented in terms of activity by 100-200 KCs of the overall 

population of ~ 2,000 KCs (Aso et al., 2009, 2014a) that comprise the Drosophila MB. 

The sparseness of the response is achieved by the high activation thresholds of KCs, 

which integrate PN input across their dendritic claw population (Gruntman and Turner, 

2013) and by feed-forward inhibition (Perez-Orive, 2002). Sparse coding is not a 

feature exclusively found in the insect MBs, but has also been described for neurons 

of the mammalian piriform cortex, which, interestingly, have likewise been implicated 

in learning and memory (Choi et al., 2011; Poo and Isaacson, 2009; Stettler and Axel, 

2009). The advantage of sparse representations lies in the minimization of overlap 

between stimuli and thus reduced synaptic interference (Lin et al., 2014a; Masse et 

al., 2009; Turner et al., 2008).  

Postsynaptic to KCs is a population of ~ 35 MB output neurons that are likely to convey 

KC responses to motor output areas. MB output neurons no longer represent odor 

identity but instead odor valence in order to guide appropriate behavioral responses. 

They have been shown to broadly respond to a given odor stimulus (Aso et al., 2014b; 

Hige et al., 2015a).  

In summary, the Drosophila olfactory system has an interesting organization of 

convergence and divergence. At the first level of olfactory processing in the antennal 

lobe, the input of ~ 1,300 olfactory receptor neurons converges onto ~ 54 glomeruli 

or ~ 200 PNs, enabling odor reception to be converted into an odortopic map, in which 

similar odors have similar topographics (Barth et al., 2014). At the next level, odor 

representations are again de-correlated within the set of ~ 2,000 KCs, presumably to 

make each odor unique in its population activity pattern, thus maximizing information 

storage capacity, while saving energy (Olshausen and Field, 2004). In a last step, the 

~ 2,000 KCs converge onto ~ 35 MB output neurons, which no longer encode the type 

of odor but its behavioral significance (Aso et al., 2014b).  

 

1.5 The molecular basis of olfactory associative memory in 

Drosophila 

 

The first studies on Drosophila learning mutants that fail to perform in olfactory 

conditioning enabled researchers to identify genes involved in memory formation. 

Research in Aplysia had already shown that the cAMP-PKA pathway is involved in short- 

and long-term sensitization of the gill-withdrawal reflex, and in the long-term form via 
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the transcription factor CREB-1 (reviewed in Kandel, 2001). Interestingly, when 

forward genetics were used in Drosophila, the same pathway was found to be 

responsible for proper memory formation. The first described learning mutant selected 

from a screen of ~ 500 mutated fly lines and found to be defective in olfactory 

associative learning was named dunce (Dudai et al., 1976), which encodes for a cAMP 

phosphodiesterase (Byers et al., 1981). Accordingly, dunce mutants were found to 

contain high levels of cAMP (Byers et al., 1981; Chen et al., 1986; Davis and Kiger, 

1981). Another mutant fly line, named rutabaga, was found to have similar learning 

deficits as dunce. It encodes for a Ca2+/calmodulin responsive adenylyl cyclase, and is 

thus required for the generation of cAMP (Levin et al., 1992; Livingstone et al., 1984), 

concluding that shortage as well as surplus of cAMP affects molecular memory 

formation pathways. Further experiments confirmed the role of the cAMP-PKA pathway 

in learning and memory in Drosophila. Flies mutated in DC0, the gene encoding for 

the catalytic subunit of PKA, or mutation of the gene encoding the regulatory PKA 

subunit dPKA-RI, showed reduced learning scores (Foster et al., 1988; Goodwin et al., 

1997; Skoulakis et al., 1993). Using transgenes under the control of the heat shock 

inducible hsp70 promoter (Ashburner and Bonner, 1979) Drain et al (1991) inhibited 

PKA activity to interfere with the flies’ learning ability and Griffith et al (1993) proved 

the necessity of Ca2+/calmodulin-dependent kinase (CaMKII) in mnemonic processes. 

Another signaling pathway via the Ras-specific GTPase activating protein encoded by 

Neurofibromatosis-1 was identified to affect fly learning abilities presumably by 

disruption of the rutabaga mediated cAMP pathway (Guo et al., 2000).  

cAMP seems to have various effects on memory formation. It was shown in Aplysia to 

activate the transcription factor cAMP response element-binding protein (CREB), which 

in turn regulates expression of proteins required for long-term facilitation of the gill-

withdrawal reflex (Dash et al., 1990). Likewise in Drosophila, heat shock induced 

expression of a dominant negative form of dCREB2 specifically inhibited long-term 

memory formation but not protein synthesis independent amnesia resistant memory 

(Yin et al., 1994). Short-term effects of cAMP-PKA include the phosphorylation of 

synaptic proteins (Diegelmann et al., 2006), and the manipulation of cyclic nucleotide 

gated ion-channels (Cheung et al., 2006; Pavot et al., 2015; Zhong et al., 1992). 

In sum, memory formation in Drosohila olfactory conditioning relies strongly on the 

cAMP-PKA pathway for alteration of gene expression and local synapse functioning. In 

accordance with the findings on synapse tagging and synaptic homeostasis (Redondo 

and Morris, 2011; Tononi and Cirelli, 2014), the identified molecular machinery might 
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serve as a regulator for functional and structural plasticity of memory-relevant 

neurons. 

 

1.6 The role of the mushroom bodies in Drosophila olfactory 

associative learning and memory 

 

Analysis of Drosophila learning mutants not only led to the identification of genes that 

are necessary for memory formation, but also revealed several fly lines defective in 

olfactory learning with abnormally formed MBs (Heisenberg et al., 1985). The MBs are 

a central arthropod brain structure first described by Félix Dujardin (1850), who 

already proposed a role of the MBs in more complex behaviors (for review see 

Strausfeld et al., 1998). One learning mutant, named mushroom body deranged, lack 

the MB lobe structure, and is unable to perform in olfactory conditioning. Likewise do 

females of the mushroom body miniature mutant that completely lack the MBs. The 

males, in contrast, have normally developed MBs and show normal learning scores in 

olfactory associative learning (Heisenberg et al., 1985). More direct evidence for a role 

of the MBs in learning and memory came from honey bees in conditioning experiments, 

in which MB functionality was temporarily disturbed by local cooling (Erber et al., 1980; 

and see Hammer and Menzel [1995] for review). In Drosophila, it was further shown 

that feeding L1 larvae with hydroxyurea led to a selective deletion of the four 

neuroblasts that generate the MB intrinsic neurons (Ito and Hotta, 1992). Those flies 

showed normal odor and shock responsiveness but were unable to form a memory. 

Interestingly, in experiments, in which only partial ablation was observed, learning 

scores were significantly higher (de Belle and Heisenberg, 1994).  

In the review article from 2004, Gerber and colleagues formulated several criteria for 

the identification of a memory trace in order to prove that olfactory memory is indeed 

localized to the MBs. They stated that neural plasticity has to occur in the cells of the 

alleged memory, that neural plasticity in these cells is necessary and sufficient for 

memory, that output from these cells is necessary for memory readout, and that input 

to these cells is necessary for memory acquisition (Gerber et al., 2004). Additionally, 

it should be possible to show that activity of the memory cells under observation is 

actually sufficient to elicit a behavioral response acquired by learning (Choi et al., 

2011; Vasmer et al., 2014).  

Evidence that neural plasticity occurs in the MBs due to learning is indicated by the 

investigated learning mutants: the phosphodiesterase encoded by dunce, the catalytic 
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subunits of PKA encoded by DC0, and the adenylyl cyclase encoded by rutabaga are 

preferentially expressed in the MBs (Han et al., 1992; Nighorn et al., 1991; Skoulakis 

et al., 1993). It could further be shown, that genetic rescue of rutabaga in the MBs 

was sufficient to restore the memory deficits seen in the rutabaga mutant (Zars, 

2000). Temporal control of the rutabaga rescue to adulthood substantiated the idea 

that the adenylyl cyclase encoded by rutabaga is directly required for learning and not 

just for proper MB development (Mao et al., 2004; McGuire et al., 2003). Thus, if it is 

agreed upon the role of cAMP in mediating neuronal plasticity (Kandel, 2001; Lee, 

2015), the necessity and sufficiency of neural plasticity in the MBs is given.  

The direct observation of neural plasticity in KCs has become possible with the 

development of new transgenic tools to image Ca2+ fluxes (Akerboom et al., 2012; 

Fiala et al., 2002; Pech et al., 2013a; Tian et al., 2009), PKA dynamics (Gervasi et al., 

2010), or cAMP activity (Lissandron et al., 2007; Nikolaev et al., 2004; Shafer et al., 

2008). Thereafter, a number of memory traces were identified as changes in post/pre 

training responses after paired olfactory conditioning in spatially restricted MB 

subregions and dependent on the time of test (Akalal et al., 2010, 2011; Barth et al., 

2014; Boto et al., 2014; Tomchik and Davis, 2009; Wang et al., 2008; Yu et al., 2006). 

The requirement of KC activity for memory retrieval was shown using the temperature 

sensitive dominant allele of shibire (van der Bliek and Meyerowitz, 1991; Kitamoto, 

2001) coding for the GTPase dynamin that is involved in endocytosis of synaptic 

vesicles. Temperature sensitive shibire becomes inactive at higher temperatures, 

thereby inhibiting synaptic transmission. Selectively inhibiting synaptic transmission 

of KCs by testing olfactory conditioned flies at restrictive temperatures, abolished 

memory retention (Dubnau et al., 2001; McGuire, 2001). Furthermore, extinction of 

the memory trace by repeated odor (CS+) exposures after training was not affected 

by inhibition of synaptic output (Schwaerzel et al., 2002). Blocking KC input during 

learning is until now not feasible due to the lack of appropriate tools that allow to 

specifically block PN output to the MBs but leave PN output to the lateral horn intact. 

However, me and my colleagues could show in previous experiments that sensory 

input to the MBs is not necessary for the formation of an associative memory (Vasmer 

et al., 2014). In these experiments, an mCherry tagged version of the heat inducible 

cation channel dTRPA1 (Pooryasin, 2014) was expressed in random subsets of about 

100 KCs using a Flp-out approach. Flies were trained aversively with electric foot 

shocks while dTRPA1 expressing KCs were activated by raising the ambient 

temperature above 25 °C. Subsequently, when tested on a temperature gradient, flies 
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avoided the KCs reactivation by changing their temperature preference towards lower 

temperatures.  

It has to be mentioned however, that some MB extrinsic neurons are required for the 

consolidation of olfactory memories in Drosophila. The dorsal paired medial (DPM) 

neurons that innervate the whole MBs, respond to olfactory stimulation and show 

increased responses and synaptic output after learning (Yu et al., 2005). They have 

been shown to release the memory relevant amnesiac gene product onto the MBs, and 

rescue of amnesiac in DPM neurons, in an amnesiac mutant background, is sufficient 

to restore appetitive and aversive olfactory associative memories (Keene et al., 2006; 

Waddell et al., 2000). Output from the DPM neurons is, however, only required during 

the memory consolidation phase, and it was shown that connectivity to the α’/β’ KCs 

is sufficient for proper memory consolidation (Keene et al., 2004, 2006).  

Moreover, changes in odor responses were observed in the MB associated GABAergic 

anterior paired lateral (APL) neurons, and dopaminergic neurons after pairing odor and 

electric shock punishment (Liu and Davis, 2009; Liu et al., 2007; Riemensperger et 

al., 2005).  

In conclusion, the collected evidences give overwhelming support for the localization 

of the olfactory memory trace in the KCs of the MBs. In conjunction with a MB extrinsic 

neuronal network, the memory in the KCs becomes consolidated. It will be interesting 

to find out, how communication and connectivity between KCs and memory-relevant 

MB output neurons are affected by the consolidation process. 

 

1.7 Reinforcement signaling  

 

The pathway of the neurons that perceive and convey the aversive or appetitive 

unconditioned stimuli in olfactory learning is until today not fully resolved. 

Nevertheless, it could be shown that dopaminergic or octopaminergic signaling is 

required during aversive or appetitive memory formation. Blocking output of TH-Gal4 

positive neurons, in which Gal4 is expressed under control of the regulatory sequences 

of tyrosine hydroxylase, a key enzyme in the pathway for dopamine synthesis (Friggi-

Grelin et al., 2003), abolishes aversive memory formation (Schwaerzel et al., 2003). 

Appetitive learning is absent in flies mutated in the gene encoding tyramine beta-

hydroxylase (Monastirioti et al., 1996), the enzyme catalyzing the last step in 

octopamine biosynthesis. Rescue of the gene by ectopic expression of tyramine beta-

hydroxylase restores normal appetitive learning (Schwaerzel et al., 2003). 

Additionally, replacing the US by artificial activation of dopaminergic or octopaminergic 
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neurons in larval Drosophila led to the formation of either an aversive or an appetitive 

memory (Schroll et al., 2006). In adult flies, the relevance of dopamine signaling for 

aversive memory formation could be confirmed in several studies by artificial activation 

of dopaminergic neurons as a replacement for an aversive electric shock (Aso et al., 

 
 

Figure 1.3. The model of olfactory associative learning in the Drosophila mushroom 

bodies. 

Odors are conveyed by olfactory projection neurons (green) from the antennal lobes to the 

mushroom body and the lateral horn. Within the mushroom body calyx, projection neuron boutons 

connect to Kenyon cell (red) dendritic claws that carry the signal to the mushroom body lobes. 

Here, Kenyon cells form synaptic connections with dopaminergic (purple), and mushroom body 

output neurons (blue). Dopaminergic neurons were shown to convey reinforcement signals of 

nociception and reward to the mushroom bodies, while octopaminergic neurons, which are only 

required for certain types of appetitive memory formation, as induced by sweet taste, mediate 

their effect via dopaminergic neurons.  

Inset: it is believed that the coincidence of odor-induced Kenyon cell activity and reinforcement-

induced dopaminergic input is detected by a rutabaga-like adenylyl cyclase. This adenylyl cyclase 

produces cAMP upon simultaneous activation by calcium, deriving from depolarization, and G-

protein signaling, deriving from dopamine receptor binding. cAMP has various effects on the cell 

to regulate the communication to the mushroom body output neuron: for example via activation 

of protein kinase A, binding to cyclic nucleotide gated calcium-channels, or regulation of 

transcription by binding to cAMP response element-binding protein (CREB). The activity of cAMP 

can among others be modified by dunce-like phosphodiesterases that lead to the degradation of 

cAMP. Modified after Schwaerzel et al. (2002) and Waddell (2016) 
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2010, 2012; Claridge-Chang et al., 2009). Furthermore, genetic rescue of the 

dopamine dDA1 receptor in the MBs, was sufficient to restore aversive memory 

formation (Kim et al., 2007; Qin et al., 2012). Although the nociceptive input by 

electric shock exposure is not clear, it could be shown that different aversive stimuli, 

which can induce an aversive memory, converge onto the same reinforcing 

dopaminergic neurons (Galili et al., 2014).  

The role of octopamine in appetitive memory formation, however, had to be 

reclassified. At least in adult flies, appetitive memory inducing octopaminergic neurons 

were found to mediate their function via octopamine receptor expressing dopaminergic 

neurons (Burke et al., 2012). Indeed, it was shown that activation of a set of 

dopaminergic neurons was sufficient for the induction of an appetitive olfactory 

memory trace (Burke et al., 2012; Liu et al., 2012). Taken together, 

compartmentalized dopamine signaling has been recognized to be the main 

neuromodulation for reinforced memories, while its effect is dependent on the 

receiving KCs and the output network, in which they are embedded (Perisse et al., 

2013a; Waddell, 2013).  

In the model of olfactory associative learning, it is believed that coincidence detection 

of CS/US activity is achieved by an adenylyl cyclase (rutabaga-like) that via cAMP 

production activates signaling cascades leading to the modulation of KC output (figure 

1.3). The adenylyl cyclase becomes activated by simultaneous stimulation by 

Ca2+/calmodulin (CS pathway) and G-protein signaling (US pathway) (Fiala, 2007; 

Heisenberg, 2003). Indeed, disruption of G-protein signaling by ectopic expression of 

a dominant negative G-protein in KCs completely abolished memory formation 

(Connolly et al., 1996), and cAMP levels in the KCs were shown to be significantly 

increased after pairing KC activation with dopamine application (Tomchik and Davis, 

2009). The necessity of cAMP-PKA signaling for neural plasticity is described in the 

previous chapter.  

 

1.8 Anatomy of the Drosophila mushroom bodies 

 

1.8.1 Morphological organization of the Drosophila mushroom bodies 

 

Since the MBs are very prominent structures of the arthropod central nervous system 

their gross morphology was already well known in the 19th century. At that time, 

though, the terminology as well as the language of publication was diverse and, for 
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Figure 1.4. Types of Kenyon cells. Continued on next page. 
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example, it was referred to them as “lobes à convolutions” in French, “Lappen mit 

Windungen”, “Rind Körper”, or “Pilzhutförmiger Körper” in German, while in English 

they were already known as the “mushroom bodies” (see Kenyon, 1896). The MBs can 

be subdivided into the calyx, where olfactory PNs synapse onto MB intrinsic Kenyon 

cells (Kenyon, 1896; Yasuyama et al., 2002), and which is surrounded by the cup-

shaped cell body layer, the peduncle, a stalk-like structure that extends through the 

mid-brain to connect the calyx to the lobes that lie in the anterior brain dorsal to the 

antennal lobes (figure 1.2). Across arthropod species the MBs are very remarkable 

structures due to their spatial orientation with the postero-dorsal localized calices and 

the anteriorly localized lobes, and the often observed division of the lobes into a medial 

part and a vertical part (Heisenberg, 1998; Strausfeld et al., 1998; Wolff and 

Strausfeld, 2015).  

With the development of the Gal4/UAS system the analysis of MB anatomy in 

Drosophila was highly facilitated. First analyses of enhancer trap lines revealed a 

subdivision of the MB lobes into independent medially oriented γ and β lobes and 

vertically oriented α and α’ lobes (Yang et al., 1995). However, in an elegant study 

using antibody markers against MB enriched proteins it could be shown that the medial 

lobes consist of an additional β’ lobe that is connected to the vertical α’ lobe, and that 

the medial β lobe is interconnected to the vertical α lobe. For the γ lobe no vertical 

counterpart could be identified (Crittenden et al., 1998). Golgi stainings of individual 

KCs had indicated that the MBs consist of bifurcating cells that extend one branch into 

the vertical lobes and another into the medial lobes, and KCs that project only to the 

medial lobes (Mobbs, 1982; Yang et al., 1995). Thus, the MB lobes are comprised of 

bifurcating α/β and α’/β’ KCs and non-bifurcating γ KCs (Crittenden et al., 1998).  

Figure 1.4 continued. 

Types of Kenyon cells that are differentiated by gene expression via different Gal4 driver lines, 

project to distinct areas within the mushroom body lobes. Axonal projections of Kenyon cells are 

illustrated by Gal4 driven expression of mcd8-GFP. Neuropil background is visualized by antibody 

labeling of presynaptic Nc82.  

A) Expression pattern of γ dorsal cells driven by GMR93G04-Gal4, shown as illustration (A1), and 

as fluorescence images (A2-4). 

B) Expression pattern of γ main and γ dorsal cells driven by 5HT1B-Gal4, shown as illustration 

(B1), and as fluorescence images (B2-4).  

C) Expression pattern of α′/β′ cells driven by GMR35B12-Gal4, shown as illustration (C1), and as 

fluorescence images (C2-4).  

D) Expression pattern of α/β posterior cells driven by GMR71F03-Gal4, shown as illustration (D1), 

and as fluorescence images (D2-4).  

E) Expression pattern of α/β surface cells driven by GMR14G01-Gal4, shown as illustration (E1), 

and as fluorescence images (E2-4).  

F) Expression pattern of α/β core cells driven by GMR65A01-Gal4, shown as illustration (F1), and 

as fluorescence images (F2-4). 
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Further studies, analyzing a vast range of enhancer-trap and promoter Gal4 expression 

patterns, could show that each of the mentioned KC types could be subdivided into at 

least two additional subtypes which are not only distinguished based on gene 

expression patterns but also morphologically (Aso et al., 2009, 2014a; Butcher et al., 

2012; Strausfeld et al., 2003; Tanaka et al., 2008; figure 1.4). Those subtypes are 

the γ main (~ 600 cells) and γ dorsal (~ 75 cells) KCs, the α’/β’ middle (~140 cells) 

and α’/β’ anterior-posterior (~ 210 cells) KCs, and the α/β posterior (~ 90 cells), α/β 

surface (~ 500 cells), and α/β core (~ 400 cells) KCs. The α/β posterior and the γ 

dorsal KCs are special in the sense that their dendrites arborize outside the main calyx. 

Two accessory calices lie dorsal and ventral of the main calyx. The dorsal accessory 

calyx is exclusively innervated by α/β posterior KCs and the ventral accessory calyx is 

exclusively innervated by γ dorsal KCs (the term dorsal used in γ dorsal KCs indeed 

refers to their relative position within the lobes not to their calycal arborizations) (Aso 

et al., 2009, 2014a; Butcher et al., 2012; Tanaka et al., 2008).  

 

1.8.2 Organization of mushroom body extrinsic neurons 

 

The MBs are innervated by a large number of extrinsic neurons that contribute to 

approximately one quarter of the overall MB structure and morphology (Aso et al., 

2014a). Two sets of MB extrinsic neurons are outstanding because they are each 

represented by only one cell per hemisphere but are still strongly interconnected with 

the MB neuropil. The anterior paired lateral (APL) neurons were shown to be GABAergic 

(Liu and Davis, 2009) and can be seen in fluorescence microscopy to innervate all MB 

substructures including the peduncle and the accessory calyx (Tanaka et al., 2008). 

The dorsal paired medial (DPM) neurons do not innervate the MB calyx and neither 

most of the peduncle. Their processes are found in the inferior part of the peduncle, 

and in all of the MB lobes (Ito et al., 1998; Tanaka et al., 2008). They have been 

shown to release a neuropeptide that is the product of the amnesiac gene (Waddell et 

al., 2000), serotonin (Lee et al., 2011), and potentially GABA (Haynes et al., 2015).  

The majority of MB associated extrinsic neurons are aminergic neurons that often 

appear in the brain as clusters of cell bodies. A recent study made use of the GFP 

reconstitution across synaptic partners (GRASP) technique (Feinberg et al., 2008) to 

detect and quantify contacts between different aminergic Gal4 lines and KCs. Signals 

of reconstituted GFP were detected throughout the MBs, though the most abundant 

contacts were made by dopaminergic neurons, whereas octopaminergic neurons 
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sparsely innervated the MBs. Also a variety of non-DPM serotoninergic neurons were 

found to form contacts to KCs in subregions of the lobes (Pech et al., 2013b).  

The innervation patterns of dopaminergic neurons have been subject to extensive 

research because of their role in associative memory formation (Liu et al., 2012; 

Schwaerzel et al., 2003) and the specificity of their arborizations (Aso et al., 2014a; 

Ito et al., 1998; Tanaka et al., 2008). The MB lobes can be subdivided into 15 

compartments based on the innervations of dopaminergic and MB output neurons 

(figure 1.5). Each of the three main MB lobes (γ, α’/β’, α/β) consists of five 

compartments. From central to distal the compartments have been named with 

increasing numbers: γ1-5, α’1-3, β’1-2, α1-3, and β1-2. All of the 15 compartments 

are innervated by axonal terminals of dopaminergic neurons that are distinguished in 

20 different types, from which 17 exclusively arborize within a single compartment. 

Out of this set of dopaminergic neurons one type is special in the way that it has 

 

Figure 1.5. Compartmentalized organization of the mushroom body lobes. 

The mushroom body lobes can be subdivided into 15 compartments based on the innervation 

patterns of extrinsic dopaminergic and mushroom body output neurons. A total of 20 

dopaminergic neuron types and 21 mushroom body output neuron types innervate primarily one 

single compartment. Thus, each compartment is defined by the axonal terminals of at least one 

dopaminergic neuron type, and the dendritic innervations of at least one mushroom body output 

neuron type.  

A) The organization of extrinsic innervations to the mushroom body lobes is illustrated with the 

γ lobe. Kenyon cells that comprise the γ lobe receive sensory input in the calyx, and project 

through the peduncle into the lobes, where they are densely innervated by modulatory 

dopaminergic neurons and mushroom body output neurons that likely link the mushroom body 

to motor output areas. The arbors of the two cell types are restricted to compartments γ1-5. 

B) Illustration of the α’1-3 compartments and the β’1-2 compartments. 

C) Illustration of the α1-3 compartments and the β1-2 compartments. 

Modified after Cohn et al. (2015). 
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dendritic processes within the γ1 and γ2 compartments and axon termini in the γ4 

compartment. In total, there are ~ 100 dopaminergic neurons that have their cell 

bodies in the PAM cluster, and which innervate compartments γ3, γ4, γ5, β’1, β’2, α1, 

β1, and β2, 6-7, dopaminergic neurons of the PPL1 cluster that innervate 

compartments γ1, γ2, α’1, α’2, α’3, α2, and α3, and around 6 cells of the PPL2ab 

cluster, which extend their neurites into the calyx (Aso et al., 2014a; Mao and Davis, 

2009; Riemensperger et al., 2005; Tanaka et al., 2008).  

MB output neurons were found to innervate exactly the same lobular compartments 

as the dopaminergic neurons. They consists of 21 different cell types. Except for the 

MB output neuron type that extends dendritic arbors to the β’1 and consists of up to 

nine cells, other MB output neuron types consists of one to two cells. Interestingly, 

there is one MB output neuron with axon termini in the γ1 and γ2 compartment and 

dendrites in the γ4 compartment. Thus, considering the dopaminergic neuron 

described above with complementary projections, there seems to be a microcircuit 

formed between γ compartments 1, 2, and 4.  

In terms of neurotransmitter expression MB output neurons fall into three classes: 

glutamatergic, GABAergic, and cholinergic. The dendritic arborizations of MB output 

neurons lie in the different MB compartments, where they synapse onto MB intrinsic 

KCs in close proximity to the respective dopaminergic neuron type. Interestingly, 

axonal termini of MB output neurons and dendritic processes of dopaminergic neurons 

partly arborize within the same brain regions, i.e. the crepine (located around the 

medial lobes), the superior medial protocerebrum, the superior intermediate 

protocerebrum, and the superior lateral protocerebrum, suggesting the presence of a 

recurrent network between the two cell types (Aso et al., 2014a).  

In conclusion, the anatomically identified network between KCs, MB output neurons, 

and dopaminergic neurons represents a memory circuit assisted by the APL and DPM 

neuron that is predetermined to process multimodal sensory input in spatially defined 

computational units, the 15 compartments of the γ, α’/β’, and α/β lobes (Aso et al., 

2014a). Thus, modifications of the connectivity between KCs and MB output neurons 

that underlie behavioral adaptation are likely to occur in a compartment specific 

manner, dependent mainly on modulatory dopaminergic input.    

 

1.9 Development of the mushroom bodies 

 

Clonal analysis of KCs using Bromodeoxyuridine labeling of proliferating neuroblasts 

revealed that the MBs are generated out of four neuroblasts (Ito and Hotta, 1992), 
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which were shown by genetic mosaic analysis to contribute equally to all known KC 

types of the MBs (Ito et al., 1997). Each of the MB neuroblasts sequentially produces 

γ main KCs during L1 and L2 larval stage, α’/β’ KCs during L3 larval stage, and α/β 

KCs during pupal stage (Kurusu et al., 2002; Lee et al., 1999; Zhu et al., 2003), while 

γ dorsal KCs are already generated in the embryo (de Belle and Heisenberg, 1994; 

Butcher et al., 2012; Kunz et al., 2012; Yu et al., 2013). The subdivisions of the α/β 

lobes, namely the α/β posterior, the α/β surface, and the α/β core neurons are 

generated sequentially during pupal stage in the order as mentioned (Zhu et al., 

2003). Newly born KCs extend their projections through the core of the peduncle, 

thereby pushing the already generated KC neurites towards the periphery so that 

different KC types are arranged in the peduncle as concentric circles (Kurusu et al., 

2002; figure 1.6). Transitions from the generation of one cell type to the next happen 

abruptly (Kunz et al., 2012; Lee et al., 1999). However, they depend on external cues 

and the developmental stage of the animal. Blockage of transition between 

developmental stages, and thereby extending the time of the animals’ development, 

by starvation of larvae, led to an increased number of the KC type generated at the 

respective time (Lin et al., 2013). Cells generated by different neuroblasts are 

separated in their dendritic arborizations within the calyx, in the way that they occupy 

 

 

Figure 1.6. Projections of Kenyon cell types in the peduncle. 

Different types of Kenyon cells occupy distinct areas within the mushroom body peduncle. Kenyon 

cells are differentiated by birth order and later born cells extend their axon into the middle of the 

peduncle, thereby pushing earlier born cells towards the periphery. 

A) Illustration of the areas in the peduncle that are innervated by projections of distinct types of 

Kenyon cells. 

B) Confocal images of Gal4 driven mcd8-GFP expression in γ dorsal cells (B1) γ main and γ dorsal 

cells (B2), α′/β′ cells (B3), α/β posterior cells (B4), α/β surface cells (B5), and α/β core cells (B6). 

Neuropil background is visualized by Nc82 antibody labeling. Scale bars = 10 µm.  
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separated vertical columns with minimal overlap (figure 1.1). The α/β posterior cells 

are excepted because they were found to intermingle within the area of the dorsal 

accessory calyx (Aso et al., 2014a; Ito et al., 1997; Lin et al., 2007). MB neuroblasts 

become inactive from the 9th day after larval hatching or approximately 4 days after 

pupae formation. Neurogenesis of KCs in adult Drosophila does not happen (Ito and 

Hotta, 1992; Lee et al., 1999).  

Interestingly, KCs of the γ type undergo restructuring during pupal stage. Their 

dendritic and axonal processes are pruned and degraded and regrow again into the 

MB medial lobes only (in contrast, γ neurons grown during larval life project into the 

vertical and medial lobes) (Technau and Heisenberg, 1982). This especial remodeling 

has indeed become a research field on its own for the study of pruning processes in 

dendrites and axons (Yu and Schuldiner, 2014).   

In sum, KC subtypes are distinguished by their birth order, while γ neurons are special 

because they undergo remodeling during pupal stage. Thus, identity of KCs is so far 

determined as an interplay of genetic, morphological, and developmental 

characteristics.   

 

1.10 Functional anatomy of mushroom body subdivisions  

 

1.10.1 Functional anatomy of Kenyon cell classes  

 

Classically, the functional subdivision of the MBs was simple. γ neurons are required 

for short-term memory formation (Blum et al., 2009; Zars, 2000), the α’/β’ neurons 

in conjunction with the DPM neurons are responsible for memory consolidation 

(Cervantes-Sandoval and Davis, 2012; Keene et al., 2006; Krashes et al., 2007; 

Waddell et al., 2000), and the α/β neurons are needed for memory retrieval (Dubnau 

et al., 2001; Krashes et al., 2007; McGuire, 2001). Strikingly, conditioning flies of the 

alpha-lobes-absent mutant, which lack either the vertical α/α’ lobes or the medial β/β’ 

lobes revealed that none of the four lobes is required for short-term memory 

formation, leaving the γ lobes as the most likely mediator. Additionally, it was found 

that flies missing the vertical α/α’ lobes were defective in long-term memory formation 

(Pascual and Preat, 2001). In more detailed analyses of the requirements of proper 

rutabaga functioning for memory, Blum et al (2009) and Scheunemann et al (2012) 

showed that the α/β and γ lobes have synergistic effects on the formation of short-, 

and long-term memories, and that cAMP signaling in α’/β’ neurons was dispensable. 
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Cervantes-Sandoval et al (2013) examined the precise need of output from different 

MB lobes in a very comprehensive study of short- and long-term aversive and 

appetitive memories making use of the temperature sensitive shibire mutant of 

dynamin (Kitamoto, 2001). In sum, output from all lobes is required for aversive and 

appetitive short-term memory, especially the prime lobes for appetitive short-term 

memory, and the α/β lobes for the retrieval of aversive and appetitive long-term 

memory (Cervantes-Sandoval et al., 2013). Complete blockage of long-term memory 

retrieval, however, is only achieved by inhibiting transmission from both α/β and γ KCs 

(Xie et al., 2013). Functional calcium imaging revealed higher relative activity of α’/β’ 

neurons in early memory and increased CS+ responses in α/β neurons in late memory 

for both appetitive and aversive memories (Cervantes-Sandoval et al., 2013). Looking 

at the subsets of α/β neurons, it was found out that α/β surface and core neurons are 

required for retrieval of 3 hr appetitive memory but only α/β surface neurons for 

retrieval of 3 hr aversive memory (Perisse et al., 2013b).    

There are two subsets of KCs that are special in the way that they build dendritic 

processes outside the main calyx: γ dorsal and α/β posterior KCs that also have a 

stereotyped projection pattern in the MB lobes. The KCs of the γ dorsal subset have 

their dendritic arborizations in the ventral accessory calyx (Butcher et al., 2012), and 

project to defined areas in the lobes, mainly in γ2, γ3, and to a dorsal tip in γ5 (see 

figure 1.4). A recent study has shown that visual PNs from the optic lobes provide 

input to the γ dorsal KCs, and that indeed, γ dorsal KCs are necessary for visual 

associative learning but not for olfactory learning (Vogt et al., 2016). Additionally, γ 

dorsal KCs have been implicated in sleep homeostasis (Sitaraman et al., 2015).  

α/β posterior neurons were found to extend their dendritic neurites into the dorsal 

accessory calyx and project their axonal fibers to unique areas in the lobes, thereby 

forming several peculiar nodes (Tanaka et al., 2008; and figure 1.4). Their role in 

behavior has so far not been resolved. It has been reported that they are involved in 

aversive olfactory long-term memory retrieval (Chen et al., 2012), however, this 

hypothesis was not supported in another study that even showed that they are 

inhibited by olfactory input (Perisse et al., 2013b). Furthermore, no anatomical 

connections were found between olfactory PNs and α/β posterior KCs (Tanaka et al., 

2008). 

KCs have been analyzed for the kind of neurotransmitter they produce and release. 

For a long time this question could not be answered in a satisfactory manner. 

Glutamate, taurine, acetylcholine, and aspartate have been suggested as transmitters 

present in subsets of KCs (Sinakevitch et al., 2001; Strausfeld et al., 2003). However, 
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it was not until recently that acetylcholine could be proven by RNA interference (Fire 

et al., 1998), pharmacology, and physiology to be the major transmitter released from 

KCs onto MB output neurons (Barnstedt et al., 2016). Short neuropeptide F (sNPF), 

the insect homolog of mammalian neuropeptide Y (Brown et al., 1999), is expressed 

in all but α’/β’ KCs as a co-transmitter (Crocker et al., 2016; Johard et al., 2008; Lee 

et al., 2004). It could be shown that sNPF, when released onto olfactory receptor 

neurons, is involved in regulating food responses of starved flies (Root et al., 2011). 

Moreover, sNPF release by KCs is necessary for appetitive olfactory memory formation, 

establishing a role of sNPF in the MBs as a functional neuromodulator for appetitive 

behavior (Knapek et al., 2013). 

 

1.10.2 Functional anatomy of mushroom body compartments 

 

The most interesting feature of the MBs is the described anatomical subdivision into 

compartments based on the innervation patterns of dopaminergic and MB output 

neurons (Aso et al., 2014a). This structural organization implicates a corresponding 

functional organization, i.e. the processing of different forms of memory in 

independent computational units. The synapses between KCs and MB output neurons 

would be modified in a compartment specific way. Indeed, it could be shown that input 

to the γ1 compartment is accounted for aversive short-term memory, while parallel 

traces of aversive memory could be formed in α’1, α2, α’2, and  β2 with different 

stabilities (Aso et al., 2012). Surprisingly, Perisse et al (2013b) reported that activation 

of dopaminergic neurons projecting to β1, and β2 was sufficient to induce an appetitive 

memory trace. A possible solution is that the β1 appetitive memory is 

overcompensated by the aversive β2 memory. A detailed analysis of appetitive 

memories by Yamagata et al (2015) based on the findings of Liu et al (2012), who 

found PAM cluster dopaminergic neurons to be responsible for appetitive memory 

formation, revealed PAM-α1 dopaminergic neurons to be accountable for long-term 

appetitive memory and γ5, γ4, and β’2 innervations to be accountable for appetitive 

short-term memory. Similarly, induced activity in γ4 and γ3 was sufficient for the 

formation of an appetitive memory trace (Aso et al., 2012). In an interesting case 

about competing memories with different qualities it was shown that training with 

DEET supplied sugar reward induced two opposing memories in parallel. One aversive 

short-term memory due to the aversive effects of DEET and another middle-/long-

term appetitive memory due to the sugar reward (Das et al., 2014). A comprehensive 
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overview of the abilities of different dopaminergic neurons for the induction of different 

memories in different compartments, analyzed for their training requirements for 

memory formation, memory capacities, extinction dynamics, and flexibility to form 

new associations is given in Aso and Rubin (2016). In their assay they used identified 

rewarding dopaminergic neurons that project to α1, β1, β2, β’2, and γ5 and punitive 

dopaminergic neurons projecting to γ1, γ2, α’1, α2, α’2, and α3 (Aso and Rubin, 2016).  

Investigation of dopaminergic output to KCs of the γ lobe revealed a functional 

subdivision into reward activated γ4, and 5, and punishment activated γ2, and 3 

compartments. The responses of KCs were specific to the respective compartmental 

input as shown by volumetric Ca2+ imaging. Interestingly, the internal state of the fly, 

i.e. being calm or active (flailing) under the microscope, was represented as 

dopaminergic activity in the same compartmental order (Cohn et al., 2015). In 

concordance to that, input from γ4 dopaminergic neurons is necessary in water 

deprived flies for appetitive memory formation (Lin et al., 2014b), and inputs from γ5 

dopaminergic neurons are necessary for signaling of sucrose reward in food deprived 

flies (Huetteroth et al., 2015). Thus, dopaminergic neurons not only signal the valence 

of external conditions but also the relevance of internal states, like thirst or hunger, in 

order to gate associative learning.  

In the model of olfactory associative learning it is the synapses between KCs as the 

mediators of the odor stimulus on the one hand and MB output neurons as the relay 

system to motor output areas on the other hand that are prone to reinforcement 

induced changes (Fiala, 2007; Heisenberg, 2003). A comprehensive analysis carried 

out by (Aso et al., 2014b) included all 21 so far identified output neurons. The 

activation of some neurons was avoided by the flies, whereas the activation of other 

neurons was approached, or had no effect at all. Significant aversive short-term 

memory defect was found when output from the γ1 output neuron was blocked, and 

an aversive long-term memory defect when output from α2, α’1, and α’3 output 

neurons was blocked during memory retrieval. α1, α3, β’2, α’1, α’2, γ2, and γ5 output 

neurons were shown to be involved in appetitive short- and β’2, α’1, α’2, α’3, γ2, γ4, 

and γ5 output neurons in appetitive long-term memory. The output neurons necessary 

for visual memory retrieval were mostly the same as for olfactory memory retrieval, 

while others showed specialized involvement in visual memory, e.g. one output neuron 

that arborizes only in the α2 posterior KCs. Interestingly, activity of output neurons 

that was aversive for the flies was also wake promoting, and activity of output neurons 

that was attractive for the flies was also sleep promoting indicating that MB output 
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might express a general motivational state, e.g. feeling comfortable or stressed (Aso 

et al., 2014b).  

Several output neurons have been analyzed in some detail. It was found that output 

from α2 and α’3 was required for aversive short- and long-term memory retrieval, and 

that the learning induced odor response of the output neuron was reduced (Séjourné 

et al., 2011). This finding implicates that the corresponding dopamine signal of 

punishment (Aso et al., 2012) in α2 paired with an odor stimulus leads to a weakening 

of the synapses between the KCs and the output neuron; an observation also 

supported for appetitive learning by imaging of the γ4 output neuron (Cohn et al., 

2015), and in another study measuring aversive learning responses in γ1 (Hige et al., 

2015b). In all cases, the odor evoked response in the respective output neuron was 

lower after learning. In contrast, the output neuron described by Pai et al (2013) that 

has dendritic arborizations in α3, showed increased activity after aversive training in 

response to stimulation with the CS+ (Pai et al., 2013), but decreased odor responses 

to the CS+ after appetitive memory formation (Plaçais et al., 2013). Likewise, in a 

group of glutamatergic output neurons residing in γ5, β’2, and β2 appetitive 

conditioning evokes a depression, while aversive conditioning leads to an increase of 

the output neurons responses of the same compartments (Owald et al., 2015). 

Therefore, bi-directional modification of KC-output neuron synapses dependent on the 

type of learning seems to be a principle used for valence specific information storage 

at least in some of the compartments. 

In a normal situation, the activity of cells having a negative valence is balanced out 

against the activity of cells having a positive valence. Learning can mediate approach 

or avoidance via compartment specific modulation of KC-MB output neuron synapses 

to skew the overall MB output neuron population response (for review see Owald and 

Waddell, 2015) The (counter-) balancing of MB output neurons is highly individualized. 

Measuring odor evoked responses of the same output neuron in different individuals 

demonstrated a surprising variability, which, however, is not found between 

hemispheres in the same fly. The variability between flies seems to be experience 

dependent, since it was lost in rutabaga mutants that are defective in the cAMP 

pathway (Hige et al., 2015a).  

Although changes in KC responses after learning have been observed in various 

experiments, a direct evidence for neural plasticity is still missing. In a series of elegant 

experiments, taking the γ1 compartment as a model system, Hige et al (2015b) 

demonstrated that first, odor-dopamine pairing induced a reduction in the 

corresponding MB output neurons firing rate, second, the excitability of single KCs or 
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the KC population response was not changed after pairing, and third, that odor-

dopamine pairing induced severe depression of excitatory postsynaptic currents, which 

is independent of postsynaptic spiking in contrast to findings in the locusts’ MBs 

(Cassenaer and Laurent, 2007, 2012). Interestingly, measurements in another 

compartment, i.e. α2, using the same training regime revealed no postsynaptic 

changes. Only KC-dopamine pairing for a longer period induced postsynaptic 

depression in the α2 MB output neuron, fitting to the role of α2 in long-term memory 

retrieval (Séjourné et al., 2011). In sum, neural plasticity at the KC-MB output neuron 

synapse seems to be localized to the postsynaptic cell, however, local changes at the 

KC presynapses cannot be excluded.  

Furthermore, MB volume changes were observed as a result of housing conditions of 

adult flies (Heisenberg et al., 1995). In the honey bee, Apis mellifera, the MB volumes 

were shown to increase with experience when they undergo transition from workers 

to foragers (Durst et al., 1994; Withers et al., 1993). Volume changes are strictly 

experience-dependent and are accompanied by the outgrowth of dendritic arbors 

(Farris et al., 2001). Structural plasticity of individual Drosophila KCs remains to be 

demonstrated.  

 

1.11 Scope of the thesis 

 

The requirement of KCs in various, mainly learning related, behaviors has been 

described in detail. Much emphasis was laid on the underlying molecular machinery 

(reviewed for example in Davis, 1996, 2004; Margulies et al., 2005; Roman and Davis, 

2001; Waddell and Quinn, 2001) and the investigation of identified KC subclasses and 

KC compartments in the context of their functional contribution to the MB circuitry 

(reviewed for example in Davis, 2011; Fiala, 2007; Heisenberg, 2003; Owald and 

Waddell, 2015; Pitman et al., 2009). The MB morphology has been described in detail 

with an emphasis on network components (Aso et al., 2014a; Tanaka et al., 2008). 

However, the description of single KCs, the supposed carriers of memory, has been 

neglected so far, except for studies of development and disease (Furukubo-Tokunaga 

et al., 2016; Lee and Luo, 2001; Lee et al., 2000; Tessier and Broadie, 2008; Yu and 

Schuldiner, 2014). The investigation of single KC functional anatomy has the chance 

to complement our understanding of how neuronal systems manage to form and 

retrieve memories. Here, I aim to lay the foundation for this work by taking the γ lobe 

as a model system and to anatomically describe the contributing KCs in a quantitative 

comprehensive manner. To this end, a set of 75 single γ KC images was collected using 



 
32 

 

mosaic analysis with a repressible cell marker (Lee and Luo, 1999). KC morphologies 

were digitalized in order to quantify their structure. This was done in respect to MB 

subregions, i.e. the calyces, and the lobes with their compartments that were identified 

by background marker expression. The quantified parameters were used to compare 

and classify single KCs using standard statistical procedures as well as cluster analysis 

and principle component analysis.  

Finally, it was investigated how exactly KCs might contribute to the formation of 

memories in terms of structural transformations. Thus, using a similar approach as 

described above, the flexibility of KCs, deriving from all major MB subclasses, to adapt 

structurally to different environmental conditions was tested. To this end, Drosophila 

imagos were exposed to different feeding regimes, which were shown to affect KC-

dopaminergic neuron connectivity and KC-MB output neuron connectivity (T. 

Riemensperger, personal communication).  

The acquired information is discussed in the context of the MB model system for 

olfactory associative learning and memory. Understanding mnemonic processes at the 

single cell level is the next step on the way to a functional understanding of an insect 

central nervous system.    
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2 Materials and Methods 
 

 

 

 

2.1 Materials 

 

2.1.1 Fly strains 

 

The following fly strains were used in this thesis. New fly strains were generated by 

crossbreeding as described in section 2.2.1 based on the strains found in this list. 

 Genotype Donor Reference 

w-;; GMR35B12-Gal4 Bloomington 

(# 49822) 

Jenett et al., 2012 

w-;; GMR14G01-Gal4 Bloomington 

(# 48655) 

Jenett et al., 2012 

w-;; GMR65A01-Gal4 Bloomington 

(# 39328) 

Jenett et al., 2012 

w-;; GMR71F03-Gal4 Bloomington 

(# 39595) 

Jenett et al., 2012 

w-;; GMR93G04-Gal4 Bloomington 

(# 40661) 

Jenett et al., 2012 

y, w-, FRT19A;; Bloomington  

(# 1744) 

Xu and Rubin, 1993 

hsFlp, tubP-Gal80, w-, FRT19A;; Bloomington 

(# 5132) 

Golic, 1991; Lee and 

Luo, 1999; Xu and 

Rubin, 1993 

w-;; 10xUAS:mcd8::GFP Bloomington 

(# 32184) 

Pfeiffer et al., 2010 

w-; MB247-DsRed; MB247-DsRed André Fiala Riemensperger et al., 

2005 
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y, w-; UAS>stop>mcd8-GFP/CyO; Bloomington 

(#30125) 

Yu et al., 2010 

w-;; brpshort::GFP Stephan Sigrist Fouquet et al., 2009 

y, w-; 20XUAS-6XmCherry-HA /CyO, 

Wee-P; Dr/TM6C, Sb, Tb 

Bloomington 

(# 52267) 

Shearin et al., 2014 

y, w-; Sp/CyO, Wee-P; 20XUAS-

6XmCherry 

Bloomington 

(# 52268) 

Shearin et al., 2014 

w-;;; OK107-Gal4 Robert Kittel Connolly et al., 1996 

w-;;; OK107-Gal4/ciD Bloomington 

(# 854) 

Connolly et al., 1996; 

Von Ohlen and Hooper, 

1999 

w-;; MB247-Gal4 André Fiala Schulz et al., 1996 

w-;; 5HT1B-Gal4 Bloomington 

(# 27637) 

Yuan et al., 2005 

w-; MB247-GCaMP 3.0 (4M); André Fiala Pech et al., 2013b 

 

 

2.1.2 Fly food 

 

2.1.2.1 Standard cornmeal food 

 

The following ingredients were used to make 10 L of standard cornmeal food: 

Name and quantity Company Address 

102.5 g agar Gourvita GmbH Adam-Opel-Str. 19 

DEU-63322 Rödermark 

100 g soy flour Pflanzensaftwerk 

GmbH & Co. KG 

Hutwiesenstraße 14 

DEU-71106 Magstadt 

180 g yeast Gourvita GmbH Adam-Opel-Str. 19 

DEU-63322 Rödermark 

800 g cornmeal ZIELER & CO. 

GmbH 

Liebigstraße 101 

DEU-22113 Hamburg 

220 g treacle Obermühle Rosdorf Obere Mühlenstraße 3 

DEU-37124 Rosdorf 

800 g malt  MeisterMarken - 

Ulmer Spatz 

Mainzer Straße 152–160 

DEU-55411 Bingen am Rhein 
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63 mL propionic 

acid 

Carl Roth GmbH + 

Co. KG 

Schoemperlenstr. 1-5 

DEU-76185 Karlsruhe 

15 mL nipagin Sigma-Aldrich 

Chemie GmbH 

Eschenstraße 5 

DEU-82024 Taufkirchen 

50 mL ethanol VWR International 

GmbH 

Hilpertstraße 20a 

DEU-64295 Darmstadt 

 

Before cooking, the agar has to be watered overnight in order to dissolve. The following 

day, soy flour, yeast, cornmeal, treacle, and malt are added while heating the food to 

99.5 °C. After cooling down to 55 °C, propionic acid, and nipagin dissolved in ethanol 

are added. Subsequently, the food is filled into food vials and stored on 4 °C. 

 

2.1.2.2 Low-, medium-, and high-calorie food 

 

The following ingredients are used to make low-, medium-, and high calorie food. 

Ingredient Calorie-value 

per 100 g [kcal] 

Low-calorie Medium-calorie High-calorie 

Cornmeal 356 8 % 8 % 8 % 

Agar 340 0.5 % 0.5 % 0.5 % 

Sucrose * 387 2 % 5 % 15 % 

Yeast ** 127 0.25 % 2 % 2 % 

Lard *** 898 - - 1 % 

Propionic acid 7 6.3 mL/L 6.3 mL/L 6.3 mL/L 

Kilocalories 

per 100 g 

 38 52 100 

* produced by Carl Roth GmbH + Co. KG, Schoemperlenstr. 1-5, DEU-76185 Karlsruhe. ** 

produced by Deutsche Hefewerke GmbH, Bucher Hauptstr. 53-55, 90427 Nürnberg. *** produced 

by LARU GmbH, Weusterstraße 25, 46240 Bottrop 

After cooking, the food is filled into food vials and stored on 4 °C until usage. 

2.1.3 Buffers and solutions 

 

Name Ingredients Remarks 

PBS (phosphate buffered 

saline) 

15 mM NaH2PO4 

100 mM NaCl 

85 mM Na2HPO4 

HCl or NaOH are 

added to adjust the pH 

to 7.4 

PBST (PBS + Triton X 100) 50 mL PBS 

300 µL Triton X 100 

Stored in the fridge at 

5-8 °C 
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Blocking solution 1 mL PBST 

20 mg albumin 

Stored in the fridge at 

5-8 °C 

Ringer’s solution 5 mM Hepes 

130 mM NaCl 

5 mM KCl 

2 mM CaCl2 

2 mM MgCl2*2H2O 

36 mM sucrose 

pH is adjusted to 7.4 

with NaOH and the 

solution stored at -20 

°C. 

4 % PFA 

(Paraformaldehyde) 

25 mL PBS 

1 g paraformaldehyde 

2.5 µL NaOH 

PBS and 

paraformaldehyde are 

mixed at 60 °C. 

The solution is stored 

at -20 °C. 

 

2.1.4 Antibodies 

 

Antigen Raised 

in 

Concentration Fluorophor Source, catalogue number 

 

Primary antibodies 

Nc82 mouse 1:10 - E. Buchner 

GFP rabbit 1:1000 - Invitrogen *, A6455 

GFP chicken 1:1000 - Invitrogen *, A11120 

 

Secondary antibodies 

mouse goat 1:300 Alexa 568 Invitrogen *, A11004 

rabbit goat 1:500 Alexa 488 Invitrogen *, A1104 

chicken goat 1:500 Alexa 488 Invitrogen *, A11039 

* Thermo Fisher Scientific GmbH, Im Steingrund 4-6, 63303 Dreieich 

 

2.1.5 Chemicals & Consumables 

 

Name Company Address 

Triton X 100 Carl Roth GmbH + 

Co. KG 

Schoemperlenstr. 1-5 

DEU-76185 Karlsruhe 
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Albumin Fraction V Carl Roth GmbH + 

Co. KG 

Schoemperlenstr. 1-5  

DEU-76185 Karlsruhe 

Pipette tips Sarstedt AG & Co Sarstedtstraße 1 

DEU-51588 Nümbrecht 

Cover glasses  

18 mm x 18 mm 

Thermo Fisher 

Scientific GmbH 

Im Steingrund 4-6 

DEU-63303 Dreieich 

Cover glasses  

24 mm x 60 mm 

Th. Geyer GmbH & 

Co. KG 

Dornierstr. 4–6 

DEU-71272 Renningen 

Microscope slides Carl Roth GmbH + 

Co. KG 

Schoemperlenstr. 1-5  

DEU-76185 Karlsruhe 

Insect pins Pin Service - Lucie 

Hrabovská 

Čsl. Červeného kříže 967 

CZE-68401 Slavkov u Brna 

Forceps Fine Science Tools 

GmbH 

Vangerowstraße 14 

DEU-69115 Heidelberg 

Food vials Sarstedt AG & Co Sarstedtstraße 1 

DEU-51588 Nümbrecht 

 

2.1.6 Laboratory equipment 

 

Name Company Address 

Waterbath Memmert GmbH + 

Co. KG 

Aeussere Rittersbacher Straße 38 

DEU-91126 Schwabach 

Precision scale Sartorius AG Weender Landstrasse 94-108 

DEU-37075 Göttingen 

Pipettes Eppendorf AG Barkhausenweg 1 

DEU-22339 Hamburg 

Incubator BINDER GmbH Im Mittleren Ösch 5 

DEU-78532 Tuttlingen 

Shaker GFL Gesellschaft 

für Labortechnik 

GmbH 

Schulze-Delitzsch-Straße 4  

DEU-30938 Burgwedel 

Stereo microscope  Carl Zeiss AG Carl-Zeiss-Straße 22 

DEU-73447 Oberkochen 

Confocal microscope Leica Microsystems 

GmbH 

Ernst-Leitz-Strasse 17-37 

DEU-35578 Wetzlar 
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Objectives Leica Microsystems 

GmbH 

Ernst-Leitz-Strasse 17-37 

DEU-35578 Wetzlar 

Mercury lamp  Leica Microsystems 

GmbH 

Ernst-Leitz-Strasse 17-37 

DEU-35578 Wetzlar 

 

Confocal microscope. 

All images were acquired using a Leica TCS SP8 confocal microscope equipped with 

two photomultipliers and two Leica hybrid detectors. Objectives used were a Leica 10x 

air PL FLUOTAR objective with a numerical aperture of 0.3 and a Leica 20x 

glycerol/water PL APO objective with a numerical aperture of 0.75. For excitation, a 

488 nm argon and a 561 nm DPSS laser were used.  

2.1.7 Software 

 

Name Company Address 

Microsoft Office 

(Word, Excel, 

Powerpoint) 

Microsoft 

Corporation 

One Microsoft Way  

USA WA-98052-6399 Redmond 

OriginPro OriginLab 

Corporation 

One Roundhouse Plaza, Suite 303 

USA MA-01060 Northhampton 

Adobe Illustrator Adobe Systems 

Software Ireland 

Limited 

4-6 Riverwalk 

Citywest Business Campus 

IRL-24 Dublin 

R The R Foundation Welthandelsplatz 1 

AUT-1020 Vienna 

Fiji GitHub 88 Colin P Kelly Jr St 

USA CA-94107 San Francisco 

Neurolucida MBF Bioscience 185 Allen Brook Lane, Suite 101 

USA VT-05495 Williston 

Leica Application 

Suite (LAS) 

Leica Microsystems 

GmbH 

Ernst-Leitz-Strasse 17-37 

DEU-35578 Wetzlar 
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2.2 Methods 

 

2.2.1 Generation of new transgenic strains 

 

2.2.1.1 Generation of new balancer fly strains 

 

New balancer lines were generated in order to be able to combine the X-chromosomal 

inserts of the MARCM system with transgenes on the 2nd, and 3rd chromosome. The 

completed balancer fly strain is highlighted by a frame. 

(A) 

I ☿ 
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴
; ;      X  ♂ 

𝑤−

𝑌
;

𝐶𝑦𝑂

𝐺𝑙𝑎
;

𝑇𝑀3

𝑇𝑀6
 

 

II ♂ 
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
;

𝐶𝑦𝑂

+
;

𝑇𝑀3

+
  X  ☿ 

ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴
; ; 

 

III ☿  
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴
;

𝐶𝑦𝑂

+
;

𝑇𝑀3

+
  

X   ♂ 
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
;

𝐺𝑙𝑎

+
;

𝑇𝑀6

+
 (I)   

 

 
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴
;

𝐶𝑦𝑂

𝐺𝑙𝑎
;

𝑇𝑀3

𝑇𝑀6
 

(B) 

I ☿ 
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
; ;         X   ♂ 

𝑤−

𝑌
;

𝐶𝑦𝑂

𝐺𝑙𝑎
;

𝑇𝑀3

𝑇𝑀6
 

 

II ♂ 
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
;

𝐶𝑦𝑂

+
;

𝑇𝑀3

+
    X   ☿ 

𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
; ; 

 

III ☿  
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
;

𝐶𝑦𝑂

+
;

𝑇𝑀3

+
  X    ♂  

𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
;

𝐺𝑙𝑎

+
;

𝑇𝑀6

+
  (I) 

 
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
;

𝐶𝑦𝑂

𝐺𝑙𝑎
;

𝑇𝑀3

𝑇𝑀6
 

 

2.2.1.2 Generation of new transgenic fly strains for MARCM studies 

 

Different Gal4 driver lines were used to generate MARCM clones in different subsets of 

KCs. Therefore, the Gal4 driver lines 5HT1B-Gal4 for the γ lobes, GMR35B12-Gal4 for 

the α’/β’ lobes, and OK107-Gal4 for the α/β lobes were combined with FRT19A (Xu and 

Rubin, 1993) on the X-chromosome using the newly generated balancer fly strains 
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(see previous section). In cases when homozygous strains were stable balancer 

insertions were crossed out. The completed fly strain is highlighted by a frame. 

(A) 

I ☿ 
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
;

CyO

Gla
;

TM3

TM6
           X   ♂ 

𝑤−

𝑌
; ;

5𝐻𝑇1𝐵−𝐺𝑎𝑙4

5𝐻𝑇1𝐵−𝐺𝑎𝑙4
 

 

II ♂ 
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
;

𝐶𝑦𝑂

+
;

𝑇𝑀3

5𝐻𝑇1𝐵−𝐺𝑎𝑙4
  X   ☿ 

𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
;

CyO

Gla
;

TM3

TM6
 

 

III ☿  
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
;

𝐶𝑦𝑂

+
;

𝑇𝑀6

5𝐻𝑇1𝐵−𝐺𝑎𝑙4
 X   ♂ 

𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
;

𝐶𝑦𝑂

+
;

𝑇𝑀3

5𝐻𝑇1𝐵−𝐺𝑎𝑙4
  (I) 

 
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
;

+

+
;

5𝐻𝑇1𝐵−𝐺𝑎𝑙4

5𝐻𝑇1𝐵−𝐺𝑎𝑙4
 

The 3rd chromosomal driver line GMR35B12-Gal4 (Jenett et al., 2012) was crossed the 

same way as shown above, leading to: 

 
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
;

+

+
;

GMR35B12−Gal4

GMR35B12−Gal4
 

Further, OK107-Gal4 (Connolly et al., 1996) located on the 4th chromosome was 

combined to FRT19A (Xu and Rubin, 1993) on the X-chromosome using the ciD 

mutation (Von Ohlen and Hooper, 1999), which is also located on the 4th chromosome: 

(B) 

I ☿  
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
       X   ♂  

𝑤−

𝑌
; ; ;

𝑂𝐾107−𝐺𝑎𝑙4

𝑐𝑖𝐷
 

 

II ♂ 
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
; ; ;

+

𝑐𝑖𝐷
   X   ☿  

𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
 

 

III ☿  
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
; ; ;

+

𝑐𝑖𝐷
   X  ♂  

𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
; ; ;

+

𝑂𝐾107−𝐺𝑎𝑙4
  (I) 

 
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
; ; ;

𝑂𝐾107−𝐺𝑎𝑙4

𝑂𝐾107−𝐺𝑎𝑙4
 

 

The UAS reporter line 6XmCherry (Shearin et al., 2014) and the green calcium sensor 

GCaMP 3.0 (Tian et al., 2009) targeted to the MBs via the MB247 promoter (Pech et 

al., 2013a; Riemensperger et al., 2005), both used in this study as MB background 

markers, were combined with hsFlp, FRT19A, tubP-Gal80 (Golic, 1991; Lee et al., 

1999; Xu and Rubin, 1993) the following way: 
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Ia ☿  
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴
;

CyO

Gla
;

TM3

TM6
  X  ♂ 

𝑤−

𝑌
;

𝑀𝐵247−𝐺𝐶𝑎𝑀𝑃3.0

𝐺𝑙𝑎
; 

Ib ☿  
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴
;

CyO

Gla
;

TM3

TM6
  

X   ♂ 
𝑤−

𝑌
;

𝑆𝑝

𝐶𝑦𝑂,𝑊𝑒𝑒−𝑃
;

20XUAS−6XmCherry

20XUAS−6XmCherry
  

IIa ♂  
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
;

𝑀𝐵247−𝐺𝐶𝑎𝑀𝑃3.0

𝐺𝑙𝑎
;

𝑇𝑀3

+
   

X   ☿   
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴
;

CyO

Gla
;

TM3

TM6
 

 

III ☿  
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴
;

𝑀𝐵247−𝐺𝐶𝑎𝑀𝑃3.0

𝐶𝑦𝑂
;

𝑇𝑀3

𝑇𝑀6
  

X   ♂  
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
;

𝐺𝑙𝑎

𝐶𝑦𝑂,𝑊𝑒𝑒−𝑃+
;

20XUAS−6XmCherry

𝑇𝑀3
  (Ib) 

 
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴
;

𝑀𝐵247−𝐺𝐶𝑎𝑀𝑃3.0

𝐶𝑦𝑂,𝑊𝑒𝑒−𝑃
;

20XUAS−6XmCherry

20XUAS−6XmCherry
 

To combine UAS:brpshort::GFP (Fouquet et al., 2009) on the 3rd chromosome and 

20XUAS-6XmCherry on the 2nd chromosome with hsFlp, tubP-Gal80, w-, FRT19A on 

the X-chromosome, the same crossing strategy was used, leading to: 

 
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴
;

20XUAS−6XmCherry

𝐺𝑙𝑎
;

UAS:brp^short∷GFP

TM3
 

 

2.2.2 Fly husbandry 

 

All flies were reared in incubators in constant 12h/12h light-dark cycles on 25 °C and 

60% humidity on standard cornmeal food. In experiments investigating structural 

plasticity of KCs in flies raised on different calorie foods, the flies were aged 7-9 days 

when used for analysis. In those experiments flies aged up to 1 day were placed on 

either low-calorie, medium-calorie, or high-calorie food for 7-8 days before being 

dissected for confocal imaging. In all other experiments, flies were aged 4-7 days. 

Female flies were used throughout. All flies used, were age controlled by allowing 

parental lines to lie eggs in a short time window of 2-8 hours.   

The following fly lines were crossed to generate transgenic lines for MARCM: 

1)  ♂   
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
;

𝐶𝑦𝑂

𝑚𝑏247−𝐺𝐶𝑎𝑀𝑃3.0
;

20 𝑥 𝑈𝐴𝑆:6 𝑥 𝑚𝐶ℎ𝑒𝑟𝑟𝑦

20𝑥 𝑈𝐴𝑆:6 𝑥 𝑚𝐶ℎ𝑒𝑟𝑟𝑦
 

      X 

☿    
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
; ;

5𝐻𝑇1𝐵−𝐺𝑎𝑙4

5𝐻𝑇1𝐵−𝐺𝑎𝑙4
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Leading to flies of the F1 generation that potentially express 6XmCherry in single γ 

lobe Kenyon cells: 

♀   
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
;

+

𝑚𝑏247−𝐺𝐶𝑎𝑀𝑃3.0
;

5𝐻𝑇1𝐵−𝐺𝑎𝑙4

20𝑥 𝑈𝐴𝑆:6 𝑥 𝑚𝐶ℎ𝑒𝑟𝑟𝑦
 

 

2)     ♂   
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
;

𝐶𝑦𝑂

𝑚𝑏247−𝐺𝐶𝑎𝑀𝑃3.0
;

20 𝑥 𝑈𝐴𝑆:6 𝑥 𝑚𝐶ℎ𝑒𝑟𝑟𝑦

20𝑥 𝑈𝐴𝑆:6 𝑥 𝑚𝐶ℎ𝑒𝑟𝑟𝑦
 

   X 

☿    
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
; ;

𝐺𝑀𝑅35𝐵12−𝐺𝑎𝑙4

𝐺𝑀𝑅35𝐵12−𝐺𝑎𝑙4
 

Leading to flies of the F1 generation that potentially express 6XmCherry in single α′/β′ 

lobe Kenyon cells: 

♀   
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
;

+

𝑚𝑏247−𝐺𝐶𝑎𝑀𝑃3.0
;

𝐺𝑀𝑅35𝐵12−𝐺𝑎𝑙4

20𝑥 𝑈𝐴𝑆:6 𝑥 𝑚𝐶ℎ𝑒𝑟𝑟𝑦
 

 

3)   ♂   
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

𝑌
;

𝐶𝑦𝑂

𝑚𝑏247−𝐺𝐶𝑎𝑀𝑃3.0
;

20 𝑥 𝑈𝐴𝑆:6 𝑥 𝑚𝐶ℎ𝑒𝑟𝑟𝑦

20𝑥 𝑈𝐴𝑆:6 𝑥 𝑚𝐶ℎ𝑒𝑟𝑟𝑦
 

     X 

☿    
𝑦,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
; ; ;

𝑂𝐾107−𝐺𝑎𝑙4

𝑂𝐾107−𝐺𝑎𝑙4
 

Leading to flies of the F1 generation that potentially express 6XmCherry in single α/β 

lobe Kenyon cells: 

♀  
ℎ𝑠𝐹𝑙𝑝,𝑡𝑢𝑏𝑃−𝐺𝑎𝑙80,𝑤−,𝐹𝑅𝑇19𝐴

𝑦,𝑤−,𝐹𝑅𝑇19𝐴
;

+

𝑚𝑏247−𝐺𝐶𝑎𝑀𝑃3.0
;

+

20𝑥 𝑈𝐴𝑆:6 𝑥 𝑚𝐶ℎ𝑒𝑟𝑟𝑦
;

+

𝑂𝐾107−𝐺𝑎𝑙4
 

 

2.2.3 MARCM dependent single cell clone generation by heat shock 

In order to induce heat-shock promoter dependent flippase (flp) expression (Golic, 

1991), the food vials containing the respective larvae were placed in a water bath 

heated to 37 °C using a custom build device to keep the vials below the surface. The 

heat-shock was applied for 2-4 hours interrupted by several breaks of 15-30 minutes 

on room temperature to avoid overheating of the larvae. Dependent on the type of KC 

clone that was to be induced by MARCM the larvae were heat shocked at different time 

points after hatching. The publication of Lee et al., 1999 was taken as a reference to 

decide when to apply the heat shock for labeling of the respective cell type (see 

illustration in figure 3.4 for overview of MB development in respect to the organisms 

development).    
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2.2.4 Immunohistochemistry 

Fly brains were dissected in ice cold Ringer’s solution using fine forceps. After the 

dissection, the brains were kept in Ringer’s solution until all brains of the set of flies 

were dissected. Subsequently, the brains were placed in 4 % PFA for 1.5 hours on the 

shaker in 4 °C. Brains were then rinsed three times for 20 minutes in 0.6 % PBST, 

incubated for 2 hours at room temperature in blocking solution, and then incubated 

for 2 days on 4 °C in the first antibodies solved in blocking solution. After washing, 

three times 20 minutes in 0.6 % PBST, the brains were incubated in the second 

antibodies solved in PBST for 3 hours at room temperature. Then, brains were rinsed 

again two times for 20 minutes in 0.6 % PBST and one time 30 minutes in PBS. In the 

last step, the brains were mounted in Vectorshield™ on cover slips that were placed 

on object holders, and subsequently imaged using confocal microscopy. In case 

antibody staining was not required, brains were washed after fixation for two times 30 

minutes in 0.6 % PBST and one time 30 minutes in PBS before being mounted cover 

slips. 

 

2.2.5 Confocal microscopy 

Image acquisition was performed using a Leica SP8 microscope controlled by the Leica 

produced software LCA. Samples were focused using a 10x air objective and 

subsequently scanned using a 20x glycerol/water (with the ratio 80/20 in the 

immersion medium used) objective. For fluorophore excitation, the argon laser at 488 

nm and the DPSS laser at 561 nm wavelength were used in parallel. The equipped 

Leica hybrid detectors (HyDs) were employed for light detection. Laser power, gain, 

and scanning speed were adjusted to the samples fluorescence intensity leading to a 

pixel dwell time of 400-600 ns at a resolution of 1024x1024. The pinhole size was kept 

constant at 1 airy unit. 

 

2.2.6 Image processing 

Confocal acquired images were processed using the open source software Fiji 

(Schindelin et al., 2012). If not stated otherwise, maximum projections were made 

from confocal stacks focusing on the cell regions of interest. The resulting maximum 

projections were improved by adjusting brightness and contrast. Scale bars were 

added using the standard Fiji plugin. To count the number of labeled cell bodies, the 

stack counter plugin of Fiji was used that allows to manually set markers on visually 

identified cell bodies, while scrolling through the z stack using the mouse wheel. 
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2.2.7 Kenyon cell reconstructions 

Kenyon cell morphologies were reconstructed manually using the software 

Neurolucida®. The reconstruction was performed using the simple click tracing 

function. Skeletons of Kenyon cells were traced only, ignoring different volumes along 

the neurites. Using the background marker expression (MB247-GCaMP3.0) for 

orientation, MB sub-structures were identified. Accordingly, different parts of single 

KCs were assigned to the calyx, the peduncle, and the lobes, which in turn were further 

subdivided in the different compartments described in (Aso et al., 2014a; Tanaka et 

al., 2008); and illustrated in figure 

2.1 for the γ lobes. γ neurons fall 

into compartments γ1-5, α/β 

neurons into α1-3 and β1-2, and 

α′/β′ neurons into α′1-3 and β′1-2. 

The length of the arborizations and 

the number of nodes were 

measured within the different cell 

subdivisions. Moreover, dendritic 

claws within the calyx were marked 

and quantified. In case the image 

quality of a KC was considered to 

be very good, all bouton-like 

varicosities along the KC axons in 

the lobes were quantified. The 

primary node of a γ lobe Kenyon 

cell was defined within one of the 

five γ lobe compartments according 

to the following criteria taking into 

account the complexity of the 

arborizations. If after a bifurcation 

both branches will cross at least 

two compartment borders the node 

at the bifurcation is considered to 

be a primary node. In the case of a 

bifurcation in the γ4 compartment, 

the node at the bifurcation is 

considered to be a primary node if 

 

Figure 2.1. Morphological identification of γ lobe 

compartments. 

To distinguish different γ lobe compartments, it is 

necessary to recognize the borders between the 

compartments. Here, the emergence of the five γ lobe 

compartments, while going through the image stack 

from the posterior side of the mushroom body lobes 

to the anterior side. MB247-GCaMP is used as a 

mushroom body marker. 
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both branches crossed the border to the γ5 compartment and were of the same 

magnitude.  

In case of the analysis of α/β in the context of different calorie food conditions, α/β 

surface neurons were reconstructed only, in order to avoid bias within the data set. 

2.2.8 Cluster analysis and principal component analysis 

Hierarchical cluster analysis was performed using the function hclust in R (R project, 

version 3.2.0). As input data Euclidean distances between all pairs of KCs within the 

respective data set were used based on the variables chosen for the particular analysis. 

All data were scaled by dividing each entry by the standard deviation of the respective 

variable. As a criterion for grouping cells into clusters a modified variant of Ward’s 

method of minimum variance (Ward, 1963) implemented as ward.D2 (Murtagh and 

Legendre, 2014) in R was applied. Ward’s method of minimum variance pairs those 

kind of data points or clusters that lead to the least increase of within cluster variance 

after merging. Dendrograms were plotted using the package ggdendro. 

Principle component analysis was performed using the prcomp function in R. Data were 

scaled by dividing each entry by the standard deviation of the respective variable. In 

order to plot KCs in principal component space, the adjusted values were copied to 

OriginPro 8.5 and a 3D dot plot was generated based on the first three principal 

components. Coloration was added in OriginPro 8.5 according to the time of MARCM 

induction or dependent on the cluster affiliation.   

2.2.9 Kenyon cell silhouettes 

Silhouette values are used to describe how well the elements of a cluster fit into it. If 

KC A is an element of cluster C1 and C2 is the neighboring cluster to C1, then the 

silhouette value gives a measure of the cells relative distance to C1 in comparison to 

C2. More precisely, if c1(a) is the average Euclidean distance of KC A to all other cells 

in cluster C1 and c2(a) is the average Euclidean distance of KC A to all cells in cluster 

C2 then the silhouette value s(a) of cell A is defined as  

𝑠(𝑎)  =
c2(a)−c1(a)

max{𝑐1(𝑎),𝑐2(𝑎)}
 . 

The difference between c1(a) and c2(a) is normalized to the maximum of the two 

values, so that the silhouette values lies between 1 and -1. 1 meaning an exact fit to 

the own cluster, -1 an exact fit to the neighboring cluster. In figure 3.13, 3.14, and 

3.19 no negative values are shown but the direction of the bar indicates the relative 

location of the cell between the two neighboring clusters illustrated by color.  
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2.2.10 Weight measurements 

Weights of flies were measured using a precision scale. To this end, groups of 4 to 17 

flies that had spent 7-8 days on special food conditions were transferred into 

microtubes that were weighed with and without the flies. The difference was then 

divided by the number of flies to determine the flies’ average weight. The average 

weight was determined before and after the flies have been set on special food 

conditions and the gain in weight calculated.  

2.2.11 Statistics 

Data comparisons were performed using statistical software OriginPro 8.5 and R. 

Independent pairs of data were compared using Student's t-test if data were normally 

distributed and Mann–Whitney U test if data were not normally distributed. Normality 

distribution was determined by the Shapiro-Wilk test. If multiple pairs were compared 

within the same experiment the p-values were corrected according to Bonferroni’s 

principle. In case that more than two distributions were compared, significance was 

tested using an analysis of variance (ANOVA) if data were normally distributed or a 

Kruskal-Wallis test if date were not normally distributed. P-values were corrected for 

multiple comparisons. Linear regressions were calculated in OriginPro 8.5 using 

minimum chi-square estimations. To indicate significant differences in figures, * is 

defined as p < 0.05, ** as p < 0.01, and *** as p < 0.001.  
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3 Results 
 

 

 

 

3.1 Establishing single cell anatomy of mushroom body Kenyon 

cells 

 

Single cell analysis of KCs offers the opportunity to resolve the question how exactly 

they contribute to adaptive behavioral responses, mainly including learning and 

memory tasks. The memory trace of olfactory associative learning could be pinpointed 

to KCs using behavioral genetics. Different roles in memory formation, consolidation, 

and retrieval could be assigned to different subtypes of KCs that are defined based on 

their gene expression patterns using distinct Gal4 driver lines. However, it remains 

poorly understood how information is stored at the single KC level and if there are 

different morphological or functional types of lobe-specific KCs within identified KC 

subsets that are specialized to certain behavioral tasks. Therefore, a high number of 

single KCs shall be stained and analyzed to answer the question of uniformity versus 

diversity in terms of morphology, and lay the foundation for future functional research.  

To begin with, three Gal4 driver lines were chosen that express Gal4 in one of the 

three main KC lobes, and tested for their suitability to be used in genetic mosaic 

techniques. The Gal4 driver lines chosen were 5HT1B-Gal4 (Yuan et al., 2005), 

expressing Gal4 in γ KCs of the MB, MB247-Gal4 (Schulz et al., 1996), expressing Gal4 

in γ KCs and α/β KCs, and GMR35B12-Gal4 (Jenett et al., 2012), expressing Gal4 in 

α′/β′ KCs (figure 3.1A-C).  

3.1.1 A Flp-out technique to label individual Kenyon cells 

In order to reduce the Gal4 mediated expression of fluorescent proteins down to the 

single cell level, the Flp-out technique (Harrison and Perrimon, 1993; Struhl and 

Basler, 1993) was employed. The genetic construct UAS>stop>mcd8-GFP (Wong et 

al., 2002; Yu et al., 2010; Zhu et al., 2003) includes a transcriptional stop that is 

flanked by two FRT sites. Only upon excision of the stop cassette by Flp activity mcd8-

GFP is expressed. In the Flp-out system the Flp is expressed under the control of a 

heat shock promoter (Golic, 1991). Here, however, no heat shock was applied to 
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Figure 3.1. Sparse labeling of Kenyon cells using Flp-out.  

In order to label single mushroom body Kenyon cells, the Flp-out approach was used to reduce 

expression of mCD8-GFP by excision of the FRT flanked transcription stop by Flp recombinase 

activity. Tissue or cell type specific marker expression was achieved by the use of different Gal4 

driver lines. 

Figure 3.1 continued on next page. 
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induce heat shock promoter activity, because Flp-mediated GFP expression was 

observed even without heat shock. 

To evaluate the effectiveness of the Flp-out system in generating single cell clones, 

UAS>stop>mcd8-GFP was crossed to three different Gal4 driver lines, 5HT1B-Gal4 (γ 

lobe), MB247-Gal4 (γ and α/β lobes), and GMR35B12-Gal4 (α′/β′ lobes; figure 3.1D-

F). The number of GFP positive cell bodies with Flp-out and with UAS:mcd8-GFP as a 

control was counted using the stack counter plugin in FIJI (Schindelin et al., 2012; 

figure 3.1G). A significant reduction in cell number was observed in GMR35B12-Gal4 

> UAS>stop>mcd8-GFP compared to the non Flp-out control, but not in 5HT1B-Gal4 

> UAS>stop>mcd8-GFP, and MB247-Gal4 > UAS>stop>mcd8-GFP compared to the 

respective control (figure 3.1H). The cell number in GMR35B12-Gal4 > 

UAS>stop>mcd8-GFP was reduced by roughly 80 % compared to the UAS:mcd8-GFP 

control. However, restricted GFP expression in an average of ~ 30 cells was not 

sufficient to distinguish single cell arborizations. Thus, the Flp-out technique in this 

case, is not suited to reduce marker expression to the single cell level in the MBs. 

3.1.2 Generation of genetic mosaics through MARCM 

Mosaic analysis with a repressible cell marker (MARCM; Lee and Luo, 1999) has been 

proven in several studies to successfully generate single cell clones in various cell types 

of the Drosophila nervous system including KCs (Bushey et al., 2011; Furukubo-

Tokunaga et al., 2016; Jefferis et al., 2001; Lee et al., 1999; Scott et al., 2002; Tessier 

and Broadie, 2008; Zhu et al., 2003). The genetic mosaic method MARCM is based on 

the flp/FRT induced recombination between homologous chromosomes heterozygous 

for the Gal4 repressor protein Gal80 (Lee and Luo, 1999; Ma and Ptashne, 1987) 

during mitotic cell division. If recombination happens during mitosis, subsequent cell 

lineages will be partly homozygous with and partly homozygous without the repressor. 

A-C) Expression patterns of 5HT1B-Gal4 (A), MB247-Gal4 (B), and GMR35B12-Gal4 (C) 

visualized by mcd8-GFP. In A1 to C1 the calical arborizations and in A2 to C2 the lobal 

arborizations are shown. 5HT1B-Gal4 drives in the γ-lobes, MB247-Gal4 in the γ- and α/β-lobes, 

and GMR35B12-Gal4 in the α′/β′-lobes.  

D-F) Gal4 driver lines are combined to UAS>stop>mcd8-GFP, and hs-Flp. No heatshock was 

applied, flies were raised on 18 °C. Expression patterns of 5HT1B-Gal4 (D), MB247-Gal4 (E), and 

GMR35B12-Gal4 (F) are shown in the calyx (D1-F1) and lobes (D2-F2). 

G) Example of quantification of cell number in #5HT1b-Gal4 using the stack counter plugin of 

FIJI. 

H) Quantification of cell number in 5HT1B-Gal4, MB247-Gal4, and GMR35B12-Gal4 crossed to 

UAS:mcd8-GFP (yellow) or to the flp cassette UAS>stop>mcd8-GFP (blue). The mean (columns) 

and SEM (whiskers) is shown. N = 2-6. *** indicate significance p < 0.001, Student's t test, 

followed by post hoc Bonferroni correction for multiple comparisons.  
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Cells missing the repressor will express the reporter, e.g. mCherry, via Gal4/UAS. KCs 

are generated from four neuroblasts that all produce the same number of KCs from all 

KC subtypes (Ito et al., 1997; Lee et al., 1999; Zhu et al., 2003). Single KC labeling 

will occur if Flp-induced recombination affects a dividing ganglion mother cell, the 

progenitor cell of two KCs, and no other recombination is induced elsewhere. Flp 

expression is regulated by hsp70 (Ashburner and Bonner, 1979) and hence inducible 

by heat shock. Dependent on the cell type that is supposed to be labeled, a short heat 

shock of around 2 hours on 37 °C is applied around the time of development of the 

respective cell type (for protocol see section 2.2.3 and Wu and Luo [2006]).  

 

Figure 3.2. Establishing MARCM in Kenyon cells. 

In order to label single Kenyon cells using MARCM different cell marker/background marker 

combinations were tried. mCherry in Kenyon cells and MB247-GCaMP in the mushroom bodies 

show a more precise labeling profile than mcd8-GFP in Kenyon cells and MB247-DsRed in the 

mushroom bodies.   

A) Sparse expression of mcd8-GFP in three α/β posterior KCs by MARCM with OK107 to drive 

Gal4 and MB-DsRed used as a background marker. Fluorescence was amplified by anti-GFP and 

anti-RFP antibody staining. 

B) Expression of mcd8-GFP in a single α′/β′ KC using the same genotype as in A in the absence 

of additional antibody staining. The sample was fixed in PFA. 

C) Expression of hexameric mCherry in a single γ lobe KC with 5HT1B to drive Gal4 and MB247-

GCaMP as a background marker. The cell is slightly damaged. As in B the sample was fixed in 

PFA but no additional antibody staining was performed. 

A1) to C1) expression pattern in the calices, scale bar = 30 µm. 

A2) to C2) expression patern in the lobes, scale bar = 30 µm. 

To induce MARCM dependent fluorescence expression a heat shock was applied to all lines during 

development. Experiments were performed in parallel.  



 
51 

 

FRT sites for Flp-mediated mitotic recombination were introduced on the X, 2nd, and 

3rd chromosome (Xu and Rubin, 1993). Here, the X-chromosomal FRT19A (Xu and 

Rubin, 1993) recombination site was used, and combined with either MB247-DsRed 

(Riemensperger et al., 2005) or MB247-GCaMP (Pech et al., 2013a) as a background 

marker that can be used to identify MB subdivisions and the compartmental structure 

of the lobes. To report MARCM events, mcd8-GFP under control of 10 copies of UAS 

(Pfeiffer et al., 2010) or a hexameric mCherry protein under control of 20 copies of 

UAS (Shearin et al., 2014) were used. Hexameric mCherry was combined with MB-

GCaMP as a background, and mcd8-GFP with MB-DsRed as background. Indeed, single 

KC labeling could be detected with both combinations. Detection levels of mcd8-GFP 

in KCs and DsRed in the MBs were appropriately strong if natural fluorescence was 

amplified using anti-GFP and anti-RFP antibody staining (figure 3.2A). However, in the 

absence of antibody-mediated signal amplification visibility of cell compartments and 

single cell arborizations was strongly reduced (figure 3.2B). When hexameric mCherry 

was expressed in KCs and GCaMP in the MBs the fluorescence signal was robust, 

allowing analysis and identification of MB compartments and KC arborizations without 

 

Figure 3.3. Examples of MARCM clones in the γ lobe. 

The number of clones labeled using MARCM is dependent on Flp expression and mitotic activity 

of the MB neuroblasts and ganglion mother cells. Therefore, several outcomes regarding the 

number of labeled cells by MARCM had been observed. Hexameric mCherry was used as a 

reporter and 5HT1B-Gal4 as a driver line. 

A) Labeling of multi cell clones due to absence of repressor protein expression in a MB neuroblast 

shown in the calyx (A1) and lobes (A2). 

B) Labeling of a two cell clone due to absence of repressor protein expression in a ganglion 

mother cell after MB neuroblast division shown in the calyx (B1) and the lobes (B2). 

C) Labeling of a single cell clone due to absence of repressor protein expression in a single KC 

after division of the ganglion mother cell shown in the calyx (C1) and the lobes (C2). 

Scale bars = 20 µm. 
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further antibody amplification (figure 3.2C). Thus, the combination mCherry/GCaMP 

was preferred over GFP/DsRed to study KC single cell morphologies because it allows 

for a high experimental throughput while providing a good optical resolution. In 

addition, the extensive staining procedure and unspecific binding of antibodies might 

distort the original cell morphology.  

γ KCs have been shown to be a highly interesting KC subset due to their complex role 

in appetitive and aversive behaviors (e.g. Cohn et al., 2015; Perisse et al., 2016). To 

describe γ KC morphologies in detail MARCM was used to generate a set of 75 γ KCs 

 

Figure 3.4. Experimental design and time of heat shock of labeled Kenyon cells. 

A) Development of the MBs and timeline of the experiment are illustrated over 17 days. In parallel 

to the timeline of the experiment the developmental status of the mushroom body is illustrated 

above. Accordingly, the developmental status of the animal is shown below. Color coded text 

refers to the type of mushroom body Kenyon cells that are generated during that time. 

B) 75 single γ cell clones were generated using MARCM in combination with 5HT1B-Gal4. It was 

tried to label γ cell clones originating from all time points of γ cell development. Each bar 

represents the number of γ cells deriving from flies heat shocked at the respective time after 

larval hatching. It is likely that γ cells are born during the time of heat shock, because cell labeling 

depends on recombination that is induced by heat-shock promoter dependent Flp expression.  
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using hexameric mCherry as a reporter and 5HT1B-Gal4 as a driver. Success rates of 

single clone generation lay around 10-20%, hence, ~ 500 brains were scanned to 

image 75 single KCs. Examples of multiple KC clone labeling are shown in figure 3.3. 

In figure 3.4A, the time course of the experiment is depicted in parallel to the 

development of the MB lobes. Adult females were used at 4-7 days after imago 

hatching for experimental analysis (dissection, fixation, confocal imaging). Larvae 

were age controlled by restricting the egg laying period to a time window of 2-8 hours. 

Heat shock, to induce Flp expression, was applied in the water bath on 37 °C for 2-4 

 

Figure 3.5. Bouton-like structures in γ Kenyon cells co-localize with endogenous 
brpshort-GFP expression. 

To test if the observed bouton-like structures in the mCherry signal are sites of synaptic contact, 

the presynaptic active zone marker brp was co-expressed with hexameric mCherry and examined 

for co-localization. 

A1-3) Hexameric mCherry was co-expressed with brpshort-GFP under UAS control in γ KCs using 

the driver line 5HT1B-Gal4. The merge of both channels is shown in A1, whereas in A2 the brpshort-

GFP signal and in A3 the mCherry signal can be seen. Arrows highlight bouton-like structures of 

the mCherry signal that nicely co-localize with brpshort-GFP expression. The arrowhead indicates 

a bouton-like varicosity of the mCherry signal that hardly shows expression of brpshort-GFP and is 

located towards the end of the cell. Most of the bouton-like structure, however, are located at 

the same sites as the brp-GFP signal. MARCM dependent expression in a single cell was achieved 

by heat shocking during development. Scale bar = 30 µm.  
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hrs between 0 and 84 hrs after larval hatching, i.e. during first and second instar stage, 

the development period of most of the MB γ KCs. Birth order might be an important 

factor determining KC fate and hence morphology. All major classes of KCs are born 

sequentially (Lee et al., 1999). Therefore, it was tried to generate γ KC clones 

originating from all times of γ cell development. Though sample sizes were kept 

similarly, less γ cell clones were generated when heat shock was applied more than 

60 hrs after larval hatching (figure 3.4B). The reason most likely lies in the fact that 

MB neuroblasts start switching from γ cell to α′β′ cell production around that time (Lee 

et al., 1999). The ~ 75 embryonic born γ dorsal KCs were excluded from this analysis 

because they have been shown to be involved in visual, not olfactory behavior (Aso et 

al., 2009, 2014a; Butcher et al., 2012; Kunz et al., 2012; Vogt et al., 2016).  

It was noticed, that along the neurites the KCs showed a regular pattern of bouton-

like structures (e.g. figure 3.3). In similarity with the larval neuromuscular junctions 

(Vasin et al., 2014), these bouton-like structures potentially represent areas of 

increased synaptic occurrence. If indeed, the synapses between KCs and MB output 

neurons are found here, then the bouton-like structures are supposedly sites of neural 

plastic changes in olfactory memory formation. An essential protein for the 

functionality of Drosophila synaptic active zones is Bruchpilot (brp; Wagh et al., 2006). 

To test if the bouton-like structures are sites of increased synaptic density brpshort-GFP 

(Fouquet et al., 2009) was co-expressed together with hexameric mCherry in γ KC 

clones (figure 3.5). Confocal images showed a strong accumulation of brpshort-GFP at 

exactly the regions of the bouton-like varicosities seen in the mCherry signal. However, 

further physiological and anatomical experiments are required to proof that these 

bouton-like structures contain functional synapses between KCs and MB output 

neurons.  

3.1.3 Digital reconstruction of individual Kenyon cells  

In order to describe γ KC morphologies in a quantitative manner each cell was digitally 

reconstructed using the software Neurolucida® (figure 3.6). Reconstruction was 

performed manually using the simple click tracing function. All parts of the cell were 

reconstructed and subdivided into cell body, calycal region, peduncle, and lobular 

region. Dendritic claws within the calyx were counted by setting markers. 

Quantification included the dendrite length (arborizations in the calyx), the axon length 

(arborizations in the lobes), as well as the length of the peduncle, the number of 

dendritic, and axonal nodes and the number of dendritic claws. If the staining quality 

of the cell was found not to be sufficient for a correct reconstruction it was omitted 
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Figure 3.6. Digital reconstruction of γ Kenyon cells using Neurolucida. 

Quantification of single cell morphologies was achieved by tracing of individual cell shapes using 

the software Neurolucida®. Cellular substructures were recognized by inspection of the 

mushroom body background staining. 

A) A single cell MARCM γ cell clone is shown within different structures of the MB, the calyx (A1), 

the peduncle (A2), and the lobes (A3). The KC is labeled by expression of hexameric mCherry, 

the MB background by expression of GCaMP3.0.   

B) The same cell is shown in red as a Neurolucida reconstruction in the calyx (B1), peduncle 

(B2), and lobes (B3). Yellow crosses mark dendritic claws. The lobes were subdivided into 

compartments γ1 – γ5 that were marked by setting green contours which enable morphological 

quantification within their borders. Scale bar in A1, 3 and B1, 3 = 50 µm. Scale bar in A2 and B2 

= 30 µm. 
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from the analysis. If only the staining quality in the calyx was insufficient for a correct 

reconstruction, but staining of axonal arborizations was sufficient to be reconstructed, 

then these cells were exclusively used in statistical analyses of the MB lobes. The MB 

background expression of GCaMP was used to compartmentalize KCs into dendrites, 

peduncle, and axon, as well as to distinguish different MB compartments within the 

lobes that are innervated by MB extrinsic neurons, like MB output neurons and 

dopaminergic neurons. The γ lobe compartments γ1-5 were identified (figure 2.1), 

labeled, and KC arborizations and the number of nodes within each compartment 

quantified. Cells that were chosen to be of very good staining quality, i.e. it was 

possible to reliably identify bouton-like structures, the number of bouton-like 

varicosities was quantified within γ1. In sum, the quantified parameters represent all 

parts of KC morphology and shall be used for description of the γ main KC population 

based on individual KCs. 

3.2 Anatomical characterization of γ-type Kenyon cells 

Two approaches were taken for the characterization of the measured γ main KC 

population. First, using only parameters that apply to the overall Kenyon cell 

morphology, i.e. dendrite length, number of dendritic claws, number of axonal nodes, 

and axon length. Second, using parameters that apply specifically to the lobular 

arborizations, i.e. the length of arborizations within γ1-5, because the memory trace 

is believed to be localized within the lobes, at the synapses between KCs and MB output 

neurons that are modulated by reinforcement signals (Fiala, 2007; Heisenberg, 2003; 

Owald and Waddell, 2015).  

3.2.1 Quantitative description of γ cell morphology 

The main subdivisions of a KC are the dendritic arbors in the calyx, where olfactory 

input is conveyed from PNs to KC dendritic claws, and the axonal arbors in the lobes, 

where KCs synapse onto MBONs (Fahrbach, 2006). If the morphological identity of a 

neuron is interconnected with its functionality, then the morphological analysis of KCs 

input and output pathways should contribute to their classification (Connors and 

Regehr, 1996). Several KC subtypes have been identified mainly based on their gene 

expression patterns (e.g. Aso et al., 2009). Interestingly, all described subtypes have 

unique axonal projection profiles and can be characterized solely by their lobular 

arborizations (Aso et al., 2014a; Tanaka et al., 2008). Although less defined, dendritic 

arbors of described KC subtypes also innervate discrete zones within the MB calyx (Lin 

et al., 2007). PNs have successfully been classified using data about their axonal 

arborizations in the calyx, which correlated to the respective dendritic innervations of 
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distinct glomeruli of the antennal lobes (Jefferis et al., 2007; Wong et al., 2002). 

Among the four parameters that were sufficient to define PN calycal arborizations were 

the number of calycal boutons, and the length of axonal arborizations (Wong et al., 

2002). In the present study, two calycal and two axonal parameters were selected for 

the detailed analysis of gross γ cell morphology. For the calyx, the number of dendritic 

claws, and the length of dendritic arborizations, for the lobes, the length of axonal 

arborizations, and the number of axonal nodes. The distributions of all four parameters 

are shown as dot plots in figures 3.7-3.10 together with selected confocal images that 

were chosen in order to represent the whole characteristic range of the respective 

parameter. An overview of the distribution of all the quantified parameters is given in 

table 3.1. 

KC dendritic claws are specialized dendritic arborizations recognized by their 

characteristic shape (Butcher et al., 2012; Leiss et al., 2009; Strausfeld et al., 2003; 

Yasuyama et al., 2002). They receive olfactory input from PN boutons (Fiala et al., 

2002; Gruntman and Turner, 2013). Claws from one KC form contacts to multiple 

boutons, while each claw contacts normally a single PN bouton, though complex claws 

that contact more than one PN bouton have been described (Gruntman and Turner, 

2013; and inset in figure 3.7B). It was suggested, to separate claws into simple 

(consisting of 2 branches) and complex (consisting of more than two branches; 

 

Figure 3.7. Quantification of the number of γ Kenyon cells’ dendritic claws. 

Dendritic claws are specialized Kenyon cell input structures. They are formed within the calyx, 

and usually one claw is connected to one presynaptic projection neuron bouton. The more claws 

respond to a given odor stimulus, the more likely the Kenyon cells shows a spiking response. 

A) The number of dendritic claws in the analyzed γ KC population is shown as a dot plot. 1st 

quartile = 7, median = 8, 3rd quartile = 9 claws, average number of claws = 7.58, N = 65.  

B) Example image of the arborizations of a γ KC in the MB calyx. Magnification shows an area of 

increased claw occurrence. Scale bar = 10 µm, inset = 2 µm.  
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Butcher et al., 2012). This distinction, however, could not be observed in the present 

study.  

The entity of one PN bouton and its synaptic partners constitute a microglomerulus. It 

has been estimated that the Drosophila MB calyx consists of ~ 1,000 microglomeruli, 

hence 1,000 PN presynaptic boutons, which are opposed by ~ 12,500 KC dendritic 

claws; according to this, there are 12.5 claws per PN bouton (Butcher et al., 2012; 

Leiss et al., 2009). Interestingly, γ KCs are believed to contribute to 70-90 % of all 

calycal microglomeruli (Leiss et al., 2009). The average number of dendritic claws of 

one γ KC was measured to lie around 7.3 (Butcher et al., 2012). In the present study, 

the number was found to be slightly higher, with an average around 7.6 and a median 

number of 8 claws per γ KC (figure 3.7A and table3.1). The difference might be 

explained by a better optical resolution, and thus more successful claw identification, 

achieved by using a confocal Leica SP8 equipped with hybrid detectors against a Leica 

SP2 and photomultipliers. The range of dendritic claws was found in the present study 

to be between 2 and 10 claws per KC, though higher numbers of up to 12 claws per γ 

KC have been reported (Butcher et al., 2012).  

As a second calycal variable, the length of dendritic arborizations was measured. In 

comparison to the dendritic claws that reflect olfactory input to KCs from presynaptic 

PNs (Gruntman and Turner, 2013), the dendrite length is a measure that reflects the 

general size of the cell, and the area it occupies within the calyx. Moreover, the cell’s 

size might also reflect the cell’s electrical activity. A model of the firing properties of 

neocortical neurons, could explain differences in cellular spiking by solely different 

dendritic geometries (Mainen and Sejnowski, 1996).  

Table 3.1. Descriptive statistical analysis of γ Kenyon cell morphological parameters 

 

 min median max mean SEM N test on 

normality*[p-
value] 

figure 

dendrite 
length [µm] 

92.6 
 

226.8 338.8 
 

223.65 5.95 65 1.0 
 

3.8 

dendrite  
nodes 
[count] 

5 15 30 15.40 0.60 65 0.333 
 

not 
shown 

dendritic 
claws 
[count] 

2 8 10 7.58 0.19 65 0.0004 
 

3.7 

peduncle 
length [µm] 

56.7 80.7 169.1 82.70 1.79 73 < 0.001 
 

not 
shown 

axon length 
[µm] 

129.9 294.6 407.2 292.75 6.62 65 1.0 
 

3.9 

axon nodes 
[count] 

5 12 28 13.78 0.61 65 0.061 
 

3.10 
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Here, the dendrite length was defined as the length of the neurite between the cell 

body and the exit point of the calyx, which was identified via visual inspection of the 

MB background staining. Except for γ dorsal and α/β posterior KCs no KCs build 

dendritic claws outside the main calyx (Aso et al., 2014a). In this study, a vast range 

of magnitudes of dendritic arborizations was observed (figure 3.8, and table 3.1). The 

shortest KC found, has a dendrite length of 92.6 µm, while the longest KC has a 

 

 

Figure 3.8. Quantification of γ Kenyon cells’ dendrite length. 

Although in insect unipolar neurons a differentiation between dendrites and axons is not trivial, 

it is widely accepted that Kenyon cell calycal arborizations are dendritic. The dendrite length was 

quantified as one of the main parameters describing Kenyon cell morphology. 

A) Example images of the dendrites of γ KCs of various sizes covering the whole range of 

magnitudes. Image frames are color coded according to the KCs highlighted by circles in B. Scale 

bars = 30 µm. 

B) The length of the dendrites in the analyzed γ KC population is shown as a dot plot. Circles 

indicate example KCs shown in A. 1st quartile = 196.1 µm, median = 226.8 µm, 3rd quartile = 

249 µm, average length = 223.6 µm, N = 65.  
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dendrite length of 338.8 µm. The median dendrite length is at 226.8 µm with 52.9 µm 

interquartile range. It was observed that KCs usually build a main neurite trunk, from 

which thinner arbors branch off. At the end of such a thinner branch often one or 

several dendritic claws are located. Although various sizes of side branches were found 

their lengths’ were not quantified.    

The lobes are the most prominent structures of the MBs due to their characteristic split 

into the vertical α and α’ lobes and the horizontal β, β’, and γ lobes (Crittenden et al., 

1998). Here, only γ KCs were analyzed that enter the γ lobe laterally via the heel, also 

called γ1, and extend medially into compartments γ2-5. An important feature of KCs 

is the connectivity to extrinsic neurons. It has been shown that γ KCs are closely 

connected to aminergic neurons, including serotoninergic, octopaminergic, and 

dopaminergic ones (Pech et al., 2013b), and were reported to activate subsequent MB 

output neurons (Barnstedt et al., 2016; Hige et al., 2015b). Bouton-like structures are 

distributed regularly along axonal processes of γ KCs (see figure 3.5), however, 

 

Figure 3.9. Quantification of γ Kenyon cells’ axonal length. 

γ Kenyon cell axons are here considered to be the arborizations within the γ lobe, where Kenyon 

cells form synaptic connections with extrinsic dopaminergic and mushroom body output neurons.  

A) Example images of the axons of γ KCs of various sizes covering the whole range of magnitudes. 

Image frames are color coded according to the KCs highlighted by circles in B. Scale bars = 30 

µm. 

B) The axon length in the analyzed γ KC population is shown as a dot plot. Circles indicate 

example KCs shown in A. 1st quartile = 250.5 µm, median = 294.6 µm, 3rd quartile = 330.8 µm, 

average length = 292.7 µm, N = 65.  
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counting of the number of boutons was not possible in most of the KCs of this study 

because of insufficient staining quality. Thus, the lengths of axonal arborizations were 

quantified as an approximation for connectivity. The length was measured from the 

KCs entry point into the heel, and included all subsequent branches within the γ lobes. 

Identification of the heel region was achieved by visual inspection of the MB 

background staining. As for the dendritic arbors, the range of lengths of axonal arbors 

was broader than expected (figure 3.9 and table 3.1). Usually, all γ lobe KCs extended 

their arbors until the γ5 compartment. However, one cell was found that only extends 

until γ2. This was the shortest cell with an axonal length of 129.9 µm. The second 

shortest cell, which has arborizations until γ5, was found to be 189.8 µm long. The cell 

with the longest axonal arbors has a magnitude of 407.2 µm. The median length of 

the axonal arborizations is at 294.6 µm with 80.3 µm interquartile range.  

 

Figure 3.10. Quantification of the number of γ Kenyon cells’ axonal nodes. 

Each point of bifurcation, here, within the lobe structure, is considered to be an axon node. The 

number of axon nodes can be considered to be a measure of the axons arborizations complexity.  

A) Example images of axons of γ KCs with a various number of nodes covering the whole range 

of magnitudes. Image frames are color coded according to the KCs highlighted by circles in B. 

Scale bars = 30 µm. 

B) The number of axon nodes in the analyzed γ KC population is shown as a dot plot. Circles 

indicate example KCs shown in A. 1st quartile = 11, median = 12, 3rd quartile = 16 nodes, average 

number of nodes = 13.8, N = 65.  
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As a second axonal parameter, the number of axonal nodes were taken, as a measure 

of complexity of axonal geometry. In a recent study overexpression of the scaffold 

protein DISC1, that has been associated with mental disorders in humans, was found 

to suppress axonal length and the number of axon nodes of γ KCs (Furukubo-Tokunaga 

et al., 2016). Furthermore, the number of axonal nodes in γ KCs was reduced after 

ChR2 induced activation of KCs (Tessier and Broadie, 2008). Quantification of the 

number of axonal nodes in control animals revealed numbers between ~ 5 (Furukubo-

Tokunaga et al., 2016) and ~ 10 (Tessier and Broadie, 2008). In the present study, 

the total count of nodes within the γ lobes were found to be even higher, with a median 

number of 12 (interquartile range of 5), ranging from 5 to 28 nodes per cell. 

A closer look at the distributions of the four parameters, i.e. the claw number, the 

dendrite length, the axon length, and the number of axon nodes, can help to identify 

novel γ KC subtypes. Irregular patterns within the distributions can be a hint for 

 

Figure 3.11. Correlations between parameters describing γ Kenyon cell morphology. 

The matrix plot shows the pairwise correlations among all four parameters described in figure 

3.7-3.10. i.e. the number of dendritic claws, the length of axonal and calycal arborizations, and 

the number of axon nodes. The correlation between any pair of parameters has been estimated 

using a simple linear regression model implemented in Origin 8.5. All regression models 

significantly fit the data. The percentage of variance in the data covered by the linear model is 

given as the r2 value that lies between 0 and 1.  
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distinct γ KC types that are specifically different in the development of certain cell 

characteristics. Although, for each of the four parameters different γ KCs can adopt a 

wide range of values, there is no clear indication for a subdivision. When tested with 

the Shapiro-Wilk test, the hypothesis of normal distribution for the distributions of the 

peduncle lengths and the number of dendritic claws had to be rejected (see table 3.1). 

Differences in peduncle length likely arise from differences in the size of the brains, 

which was not controlled in this study. To substantiate the idea of additional γ KC 

subdivisions due to, for example, differences in the number of claws, has to be shown 

by further analyses. 

In a next approach, the four parameters, dendritic claws, dendrite length, axon length, 

and axon nodes, were tested for dependencies among each other. Linear regression 

was employed to analyze pairwise correlations. It was found that linear models 

appropriately fit the data. However, the analyses revealed only weak correlations, the 

strongest being between the number of dendritic claws and the dendrite length (figure 

3.11). Since dendritic claws also contribute to the overall length of the dendrites a 

correlation between the two parameters can be expected. Thus, there is a general 

trend of KC morphology, in the sense that the larger is one part of the cell, the larger 

are the other parts too. However, only a small fraction of the variance was covered by 

linear regression. 

3.2.2 Descriptive statistical analysis of γ Kenyon cells’ morphology 

3.2.2.1 Subdivision of γ Kenyon cells based on bifurcation  

Quantitative data analysis could demonstrate that γ KCs are highly versatile in their 

morphology in regard to four parameters that were chosen to describe gross γ cell 

appearance (figures 3.7-3.10). In a next step, qualitative analysis was employed to 

classify the stained set of 75 single γ KCs. All classes of α′/β′ and α/β KCs bifurcate at 

the base of the α′1 or α1 compartment to form the vertical α′ and α lobes and the 

horizontal β′ and β lobes respectively (Crittenden et al., 1998). Likewise, γ KCs before 

being remodeled during pupal stage, bifurcate in the larval MBs to innervate both the 

vertical and the medial lobe (Technau and Heisenberg, 1982). The adult γ KCs are 

known to branch only within the horizontal lobes (Aso et al., 2014a). Here, it was 

noticed that γ cell axons often build two major branches of similar magnitude, that 

appear quite similar to the bifurcation seen in the other cell types. In order to define 

a bifurcation the primary node of each γ KC was determined. A node was counted a 

primary node if both subsequent branches crossed at least two compartment borders 

or, in the case of a node in the γ4 compartment, if both branches were of similar 
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Figure 3.12. Subdivision of γ Kenyon cells by point of bifurcation. 

In contrast to α′/β′ and α/β KCs γ KCs do not bifurcate to extend one branch in the vertical and 

another branch in the horizontal lobes. However, γ KCs often split within the γ lobes to extend 

two branches that run in parallel till the end of the lobe. The criteria to determine the primary 

node that constitutes a bifurcation of the cell were that both subsequent branches cross at least 

two compartment borders or in the case of a primary node in γ4 build two branches that extend 

into γ5 and are of similar magnitude.  

A) The number of cells belonging to each of the four groups: primary node in γ2, 3, or 4, and not 

bifurcating. KCs with a primary node in γ1 were not found.  

B) Comparison of the axon lengths between the four bifurcation groups, which are indicated by 

the colors used in A. Significance was found only between the non bifurcating and the group with 

the primary node in γ2. 

C) Comparison of the number of axon nodes between the four bifurcation-groups, which are 

indicated by the colors used in A. No significant difference was found. 

D) Comparison of the dendrite lengths between the four bifurcation-groups, which are indicated 

by the colors used in A. No significant difference was found. 

E) Comparison of the number of dendritic claws between the four bifurcation-groups, which are 

indicated by the colors used in A. No significant difference was found. 

Boxes indicate 1st quartile, median, and 3rd quartile, notches the 95 % confidence interval. The 

small rectangle within the box represents the mean. Whiskers indicate 5 and 95 percentiles.  

* indicates significance p < 0.05, # test   

F-I) Example KC images representing each of the respective bifurcation groups, which are 

indicated by color coded image frames that fit the colors used in A. Scale bars = 30 µm. 
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magnitude, and both crossed the border to the γ5 compartment. According to the 

location of the primary node the cells were divided into four groups. One group with 

cells that are not bifurcating, and three groups with a primary node in γ2, γ3, or γ4. 

Future research has to show, if the observed bifurcations serve a functional purpose, 

or if there are specific three dimensional innervation patterns of bifurcating cells as 

has been found for the α′/β′ anterior-posterior versus the α′/β′ middle neurons (Aso 

et al., 2014a). 

To test if the observed anatomical subdivision of γ KCs based on bifurcation is related 

to the basic parameters used to describe gross γ KC morphology, the four ‘bifurcation’ 

groups were compared statistically in respect to the claw number, the dendrite length, 

the axon length, and the number of axon nodes (figure 3.12). A significant difference 

between groups was found in the axon length between the non-bifurcating group and 

the group with a primary node in γ2. This difference, however, is likely due to the 

nature of the bifurcation, which contributes to the length of KC lobular arborizations. 

Comparisons to the other groups as well as comparisons of the other parameters 

revealed no differences. Thus, there is no clear relationship between within γ lobe 

bifurcation and parameters describing gross γ KC morphology. 

3.2.2.2 Subdivision of γ Kenyon cells by hierarchical clustering 

Unsupervised clustering algorithms have been used in in a large variety of fields in 

order to identify elements of a group that are distinguished from other elements of the 

group by similarity (Jain et al., 1999). Here, hierarchical agglomerative clustering was 

applied to the set of γ lobe KCs described by gross morphological parameters. 

Dissimilarities between data points were calculated as Euclidean distances in a 4-

dimensional space. Equal contribution of each parameter to the clustering was ensured 

by scaling of all entries of a respective parameter to its standard deviation. 

Agglomerative clustering is a ‘bottom-up’ approach; starting from each data point as 

one single cluster, clusters are merged into larger ones to finally build one single 

cluster. The resultant hierarchical distance tree is typically depicted as a dendrogram. 

As a criterion to merge pairs of clusters Ward’s method (also known as Ward’s 

minimum variance method) was chosen, which is based on the minimization of the 

within-cluster sum of squares (Ward, 1963). Ward’s method has been proven in 

several test studies to be more successful in retrieving original clusters of natural data 

sets in comparison to other commonly used methods (Blashfield, 1976; Hands and 

Everitt, 1987). In order to analyze neuromorphology and neurophysiology, Ward’s 

method has been applied to distinguish for example neocortical interneurons (Cauli et 
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al., 2000; Karagiannis et al., 2009), and Drosophila olfactory PNs (Jefferis et al., 2007; 

Wong et al., 2002). 

In the present analysis, γ KCs were grouped into two ‘main’ clusters (figure 3.13A), 

and four ‘sub’ clusters (figure 3.14A). The two ‘main’ clusters contain 36 and 29 cells 

respectively that are significantly different in all four parameters (figure 3.13B). The 

larger of the two clusters in terms of cell number has more dendritic claws, longer 

dendrites, and axons, and more axonal nodes than the smaller cluster. Thus, there is 

a general subdivision of γ KCs into large and small cells. To give an impression of a 

typical cell of either of the two clusters, a representative KC was chosen for both of 

them. To this end, an imaginary center cell, the centroid, for each cluster was 

determined by calculating the median for each of the parameters (table 3.2). The KC 

closest to the centroid is shown as a representative for the respective cluster (figure 

3.13C).   

To evaluate a cluster’s homogeneity, silhouette values can be calculated for each data 

point and plotted in de-, or increasing order as a so-called silhouette plot (Rousseeuw, 

1987). The silhouette value is a measure of how well a member of a cluster fits to its 

own cluster in comparison to how well it fits to the neighboring cluster in terms of 

Euclidean distance. It can take values between 1 and -1, with 1 being a perfect fit to 

the own and -1 a perfect fit to the neighboring cluster. Values around zero indicate an 

Figure 3.13. Subdivision of γ Kenyon cells by hierarchical cluster analysis into two 

‘main’clusters. 

A) Euclidean distances between cells or clusters of cells are shown as a dendrogram that was 

created based on Ward’s method of minimum variance using the hclust function of R with ward.D2 

as a clustering method and Euclidean distances as an input matrix. Input variables were the axon 

length, the number of axon nodes, the dendrite length, and the number of dendritic claws. All 

variables were scaled to the respective standard variation to ensure equal contribution of each 

variable to the clustering. The dendrogram was subdivided into two ‘main’ clusters that are 

indicated by color. Indices of individual cells are shown below the dendrogram, color coded to a 

min/max scale that is seen on the left.  

B) Statistical comparison of the four input variables used for the cluster analysis, i.e. the axon 

length, the number of axon nodes, the dendrite length, and the number of dendritic claws 

between the two clusters highlighted in the dendrogram. The boxes are colored accordingly. They 

indicate 1st quartile, median, and 3rd quartile, notches the 95 % confidence intervals of the 

median. The small rectangle within the box represents the mean. Whiskers indicate 5 and 95 

percentiles. * indicates significance p < 0.05, *** p < 0.001, Mann–Whitney U test or Student's t 

test were used dependent on whether that data were normally distributed (Shapiro-Wilk test), 

followed by post hoc Bonferroni correction for multiple comparisons. 

C) Images show calices and lobes of the two cells that are closest to the median centers of the 

respective cluster, which is indicated by the color of the scale bars. Scale = 30 µm. 

D) Silhouette plot of the cells belonging to the two clusters colored according to A. The silhouette 

value indicates how well a cell fits to its respective cluster in terms of Euclidean distance in 

comparison to the neighboring cluster. A value of 1 meaning a 100 % fit to the cluster. If the bar 

is pointed upwards the cell is closer to the orange cluster, if it is pointed downward the cell is 

closer to the cyan cluster.   



 
68 

 

Figure 3.14. Subdivision of γ Kenyon cells by hierarchical cluster analysis into four 

‘sub’ clusters. Continued on next page. 
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insufficient clustering. Evaluation by silhouettes of the two cluster obtained by 

hierarchical cluster analysis could show that most of the KCs fit well into their own 

cluster, with only a few cells taking low or negative values (figure 3.13D). Most of the 

silhouette values are between 0.2 and 0.5. 

 

Further analysis of the clustering tree indicated that the two ‘main’ clusters are 

composed of two ‘sub’ clusters each (figure 3.14). Indeed, investigation of the four 

‘sub’ clusters revealed significant differences in respect to the input parameters. The 

larger of the two ‘main’ clusters, consisting of bigger neurons, can be subdivided into 

 

Figure 3.14. Subdivision of γ Kenyon cells by hierarchical cluster analysis into four 

‘sub’ clusters. 

A) Euclidean distances between cells or clusters of cells are shown as a dendrogram that was 

created based on Ward’s method of minimum variance using the hclust function of R with ward.D2 

as a clustering method and Euclidean distances as an input matrix. Input variables were the axon 

length, the number of axon nodes, the dendrite length, and the number of dendritic claws. All 

variables were scaled to the respective standard variation to ensure equal contribution of each 

variable to the clustering. The dendrogram was subdivided into four ‘sub’ clusters that are 

indicated by color (compare figure 3.13#). Indices of individual cells are shown below the 

dendrogram, color coded to a min/max scale that is seen on the left.  

B) Statistical comparison of the four input variables used for the cluster analysis, i.e. the axon 

length, the number of axon nodes, the dendrite length, and the number of dendritic claws 

between the four clusters highlighted in the dendrogram. The boxes are colored accordingly. 

They indicate 1st quartile, median, and 3rd quartile, notches the 95 % confidence intervals of 

the median. The small rectangle within the box represents the mean. Whiskers indicate 5 and 95 

percentiles. * indicates significance p < 0.05, *** p < 0.001, Kruskal-Wallis test or ANOVA were 

used dependent on whether the data were normally distributed (Shapiro-Wilk test), followed by 

post hoc Bonferroni correction for multiple comparisons. 

C) Silhouette plot of the cells belonging to the four clusters colored according to A. The silhouette 

value indicates how well a cell fits to its respective cluster in terms of Euclidean distance in 

comparison to the neighboring cluster. In this case the red colored and the yellow colored cluster, 

and the green colored and the blue colored cluster are neighboring clusters. A value of 1 meaning 

a 100 % fit to the cluster. If the bar is pointed upwards the cell is closer to the red colored or 

green colored cluster respectively, if it is pointed downward the cell is closer to the yellow colored 

or blue colored cluster respectively.   
D) Images show calyces and lobes of the four cells that are closest to the median centers of the 

respective cluster, which is indicated by the color of the scale bars. Scale = ## 
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two ‘sub’ clusters that are significantly different in the number of axonal nodes, 

though, the two clusters are equal regarding the number of dendritic claws, the 

dendrite length, and the axon length (figure 3.14B). Accordingly, examination of the 

silhouette values indicated many KCs with values below 0.2 (figure 3.14C).  

Investigation of the smaller of the two ‘main’ clusters revealed another two ‘sub’ 

clusters that are significantly different in two parameters; that is the axon length and 

the number of axon nodes (figure 3.14B). There is one ‘sub’ cluster that is short in 

respect to all four parameters, and another ‘sub’ cluster that is equal in respect to the 

calycal parameters quantified, but more similar to the big cluster regarding axonal 

parameters. Accordingly, the two ‘sub’ clusters of the smaller ‘main’ cluster appear 

well separated looking at the silhouette values, with only a few cells having silhouette 

values below 0.2 (figure 3.14C). 

As for the two ‘main’ clusters, median centroids cells were calculated for each of the 

four ‘sub’ clusters (table 3.2). The KC of a respective cluster that is closest to the 

centroid, was chosen as a representative cell. All four representative cells are shown 

in figure 3.14D. 

Table 3.2. Indices of all cluster centroids and the respective closest Kenyon cell in terms 

of Euclidean distance (nearest neighbor) 

 ‘main’-

cluster 

“orange” 

‘main’-

cluster 

“cyan” 

‘sub’-

cluster 

“red” 

‘sub’-

cluster 

“yellow” 

‘sub’-

cluster 

“green” 

‘sub’-

cluster 

“blue” 

 centroid centroid centroid centroid centroid centroid 

median axon 

length [µm] 

247.9 
 

314.6 
 

235.7 
 

311.9 
 

316.4 
 

292.6 
 

median axon 

nodes [count] 

11.0 
 

15.0 
 

8.0 
 

14.0 
 

12.0 
 

19.5 
 

median 

dendrite length 

[µm] 

182.6 
 

244.2 
 

175.1 
 

200.1 
 

248.8 
 

241.7 
 

median 

dendritic claws 

[count] 

6.0 
 

8.0 
 

6.0 
 

6.0 
 

9.0 
 

8.0 
 

 nearest 

neighbor 

nearest 

neighbor 

nearest 

neighbor 

nearest 

neighbor 

nearest 

neighbor 

nearest 

neighbor 

median axon 

length [µm] 

227 333.8 246.3 341.4 315.1 286.1 

median axon 

nodes [count] 

10 14 8 14 12 18 

median 

dendrite length 

[µm] 

202.4 227.5 181 212.1 249 233.3 

median 

dendritic claws 

[count] 

6 8 6 6 9 8 
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Figure 3.15. Visualization of clusters in three dimensions by principle component 

analysis. 

The clusters attained by hierarchical cluster analysis are shown in principle component space. 

Axes indicate the first three principle components and the respective percentage of covered 

variance. Analyzed parameters describing gross γ cell morphology were the number of dendritic 

claws, the dendrite and axon length, and the number of axon nodes. 

A) Kenyon cells in principle component space are color coded according to the two ‘main’ clusters 

(see figure 3.13) 

B) Kenyon cells in principle component space are color coded according to the four ‘sub’ clusters 

(see figure 3.14) 
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In order to visualize the two ‘main’ and the four ‘sub’ clusters, principle component 

analysis was employed. To this end, the first three principle components were plotted 

in three dimensional space and color coded according to their cluster affiliation (figure 

3.15). Overall, the KCs are equally distributed within principle component space. 

However, regarding the two ‘main’ clusters a clear separation between could be seen 

(figure 3.15A). Though not as strong, the four ‘sub’ cluster also appear separated in 

principle component space (figure 3.15B). Thus, principle component analysis 

confirmed the results obtained by cluster analysis. γ KCs can be clustered into up to 

four groups that are different in respect to the chosen morphological parameters, i.e. 

the number of dendritic claws, the dendrite length, the axon length, and the number 

of axon nodes.    

3.2.2.3 Analysis of Kenyon cell gross morphological identity in respect to time of 

development 

It has been shown that genetically different KC types are produced sequentially by 

four different MB neuroblasts (Ito et al., 1997; Lee et al., 1999). Therefore, it is 

possible that also the morphologically different γ KC clusters found in this study differ 

in respect to their time of development. Due to the use of MARCM the time of 

development of each KC can be traced back to the time when the animal was heat 

shocked during larval stage (Lee et al., 1999). The ‘main’ as well as the four ‘sub’ 

clusters were compared statistically according to the average time point of heat shock 

(figure 3.16A). However, no significant difference between neither the two ‘main’ 

clusters nor between the four ‘sub’ clusters could be detected. It was noticed though, 

that the ‘sub’ cluster biggest in respect to all four parameters contains many cells of 

animals that were heat shocked around 48 hrs after larval hatching.  

In addition to the statistical comparison, KCs were compared visually in principle 

component space by being color coded according to when the animals the KCs derived 

from were heat shocked (figure 3.16B). In accordance to the statistical finding KCs 

originating from all heat shock time points are equally distributed within principle 

component space. In conclusion, γ KC morphology is independent of the time of the 

KCs development.   

3.2.3 Quantitative description of Kenyon cell axonal arborizations 

The lobes of the MBs constitute the main output region of the KCs, and are presumably 

the site of associative olfactory learning (Fiala, 2007; Heisenberg, 2003; Perisse et al., 

2013a). Furthermore, the MB γ lobes are differently innervated by MB output neurons 

and by groups of neurons releasing different types of biogenic amines in a 
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compartment specific manner (Aso et al., 2014a; Pech et al., 2013b; Tanaka et al., 

2008). Depending on the site of innervation a different valence might be conveyed to 

KCs and MB output neurons, biasing behavior towards approach or avoidance (Aso et 

 

Figure 3.16. Analysis of γ Kenyon cell morphology in respect to time of development. 

The different γ cell types attained by hierarchical cluster analysis were compared according to 

their time of development. Each Kenyon cells birth time was determined as the average time 

point of heat shock to the respective larva. There is no correlation between the time when a cell 

was born and its morphology. 

A) Statistical comparison of cell clusters attained by cluster analysis according to the time point 

of heat shocking after larval hatching. Neither the two ‘main’ clusters, nor the four ‘sub’ clusters 

are significantly different (Students t-test or ANOVA with posthoc Bonferroni correction). 

B) Kenyon cells visualized in three dimensional principle component space (see figure 3.15) are 

color coded dependent on when larvae were heat shocked for MARCM induction. 
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al., 2014b; Hige et al., 2015a; Perisse et al., 2016). In total, the MBs are composed 

of 15 different compartments, including five compartments in the γ lobes, γ1-5 (Aso 

et al., 2014a). It might be that different types of γ neurons differently innervate 

different γ lobe compartments in order to facilitate for example approach or avoidance 

behavior in different conditions. To test this hypothesis, KC innervation patterns were 

quantified by measuring the KCs’ arborization length within each of the five γ lobe 

 

Figure 3.17. Quantification of the axonal arborizations within γ compartments 1-5. 

The length of arborizations of an axon within a specific γ lobe compartment represents to a great 

deal the connectivity of that cell to extrinsic neurons, i.e. dopaminergic neurons, and mushroom 

body output neurons, which were shown to innervate the mushroom body lobes in a 

compartment-specific manner.  

A) Illustration of the arrangement of γ cell compartments within the γ lobe. 

B) Each dot represents the arborizations length of one γ Kenyon cell within the indicated 

compartment. Between compartment differences regarding the whole population arise from 

different volumes of the compartments.N = 75 cells. 



 
75 

 

compartments (figure 3.17), which were identified based on the MB background 

staining. With the exception of one cell that terminated in γ2 (figure 3.9A), each γ KC 

developed arborizations in all five γ lobe compartments. Differences were found to 

which extent each compartment is innervated. The average length of arborizations 

within γ1, 3, and 5 (44.9 µm, 48.8 µm, and 51.7 µm respectively) were shorter than 

in γ2, and γ4 (69.0 µm, and 74.0 µm respectively).  

Moreover, it was tested if there are simple relationships between compartments. It 

might be that KCs that arborize relatively strong in one compartment would arborize 

also relatively strong, or if negatively coupled, relatively weak, in another 

compartment. This kind of relationship might, for example, correlate with MB extrinsic 

neurons that interconnect γ lobe compartments, like one dopaminergic neuron with 

dendritic arbors in γ1, and 2 and output termini in γ4, and the complementary MB 

 

Figure 3.18. Correlations between γ Kenyon cell arborizations within γ lobe 

compartments. 

The matrix plot shows the pairwise correlations between γ lobe arborizations within γ 

compartments 1-5 (see figure 3.17 for single parameter distributions). The correlation between 

any pair of compartments has been estimated using a simple linear regression model 

implemented in Origin 8.5. The strength of the correlation is given as the r2 value that lies 

between 0 and 1. Only linear models between compartments γ2-4 represent a sufficient fit. 
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output neuron with dendritic arbors in γ4 and axonal termini in γ1, and 2 (Aso et al., 

2014a). To answer this question, the compartment specific lengths of KC γ lobe 

arborizations were compared using linear regressions (figure 3.18). Although positive 

linear fits were identified between γ compartments 2-4, overall correlation values 

(indicated as r2) are low. Cluster analysis will represent an adequate tool to test if 

there are specific cell types that rely on multi-compartment-specific arborization 

patterns. 

Table 3.3: Descriptive statistical analysis of γ Kenyon cell compartment-specific 
arborizations 

 min median max mean SEM N 

γ1 arborizations 

[µm] 

17.5 44.8 92.1 44.9 1.5 75 

γ2 arborizations 

[µm] 

28 63.4 127.4 69.0 2.6 75 

γ3 arborizations 

[µm] 

0 49.3 116 48.8 2.0 75 

γ4 arborizations 

[µm] 

0 78.7 133.6 74.0 2.8 75 

γ5 arborizations 

[µm] 

0 52.3 105.3 51.7 2.2 75 

 

3.2.4 Descriptive statistical analysis of γ Kenyon cells’ axonal 

arborizations 

3.2.4.1 Subdivision of γ Kenyon cells’ axonal arborizations by hierarchical clustering 

To analyze arborization patterns of KCs in different γ lobe compartments, and to 

identify possible γ KC types that are defined by differently innervating the γ lobe, 

hierarchical cluster analysis was performed in accordance to the analysis of gross γ KC 

morphology (see section 3.2.2.2). Input parameters were each cells arborization 

length within γ lobe compartments 1-5. Two clusters were identified as indicated in 

the dendrogram (figure 3.19A). 

The larger cluster, consisting of 48 cells, shows significant shorter arborizations in 

compartments γ2, γ3, and γ4, in comparison to the smaller cluster, consisting of 27 

cells. The arborization length in γ1, and γ5 of the KCs of both clusters is 

indistinguishable (figure 3.19B). To visualize the differences between the two clusters 

the median centroid of each cluster was calculated. The KC closest to the respective 

centroid was chosen as a representative for the cluster and is depicted in figure 3.19C. 

In order to investigate homogeneity of both clusters respectively and to 
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Figure 3.19. Subdivision of γ Kenyon cells by hierarchical cluster analysis based on γ 

compartment innervations. Continued on next page. 
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analyze how well the elements of both clusters are separated, a silhouette value for 

each KC was calculated as described before (section 3.2.2.2 and materials and 

methods). The silhouette plot shows that the separation of both clusters is not very 

strict, and many KCs are found with low or negative values (figure 3.19D). Thus, 

although two different clusters were identified by hierarchical cluster analysis, the 

difference between the two is rather gradual.  

Comparison of the two clusters identified by hierarchical cluster analysis in principle 

component space showed that relatively many elements of the two clusters intermingle 

at the border between the two clusters (figure 3.20). However, most of the KCs appear 

well separated in principle component space. Thus, there is a weak but defined 

difference between γ KCs in respect to their γ lobe innervation patterns that is 

manifested in distinct lengths of arborizations in γ2, 3, and 4. 

3.2.4.2 Analysis of Kenyon cell lobular morphological identity in respect to time of 

development  

Similarly to section 3.2.2.3, the two KC clusters identified by clustering of the lengths 

of γ lobe arborizations were analyzed in respect to their time of development. If the 

KCs lobular morphological identity corresponds to their time of development, then the 

time when animals were heat shocked to generate the respective KC clones, should 

differ among the two γ lobe clusters. However, statistical comparison revealed no 

significant differences between the clusters regarding the average time of heat shock 

Figure 3.19 continued. 

A) Euclidean distances between cells or clusters of cells are shown as a dendrogram that was 

created based on Ward’s method of minimum variance using the hclust function of R with ward.D2 

as a clustering method and Euclidean distances as an input matrix. Input variables were the 

axonal arborizations of single γ cells within γ compartments 1-5. All variables were scaled to the 

respective standard variation to ensure equal contribution of each variable to the clustering. The 

dendrogram was subdivided into two clusters that are indicated by color. Indices of individual 

cells are shown below the dendrogram, color coded to a min/max scale that is seen on the left.  

B) Statistical comparison of the arborizations lengths within γ compartments 1-5 between the 

two identified clusters highlighted in the dendrogram. The boxes are colored accordingly. They 

indicate 1st quartile, median, and 3rd quartile, notches the 95 % confidence intervals of the 

median. The small rectangle within the box represents the mean. Whiskers indicate 5 and 95 

percentiles. *** indicates significance p < 0.001, ***, Mann–Whitney U test or Student's t test 

were used dependent on whether that data were normally distributed (Shapiro-Wilk test), 

followed by post hoc Bonferroni correction for multiple comparisons. 

C) Images show axonal arborizations of those cells that are closest to the median centers of the 

respective cluster, which is indicated by the color of the scale bars. Scale = 30 µm. 

D) Silhouette plot of the cells belonging to the two clusters colored according to A. The silhouette 

value indicates how well a cell fits to its respective cluster in terms of Euclidean distance in 

comparison to the neighboring cluster. A value of 1 meaning a 100 % fit to the cluster. If the bar 

is pointed upwards the cell is closer to the red colored cluster, if it is pointed downward the cell 

is closer to the blue colored cluster respectively.   
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(figure 3.21A). Additionally, the KCs were plotted in principal component space 

according to the length or arborizations in γ1-5. KCs were color coded dependent on 

the average time of heat shock applied to the animals that carried the respective cell. 

In accordance to the statistical comparison, KCs of animals that received heat shock 

to a similar point of time were not clustered, but appeared randomly distributed in 

principle component space (figure 3.21B). 

In summary, KCs of the γ lobe main type develop a great diversity of morphologies. 

It could be shown that γ KCs in similarity to α/β and α’/β’ KCs bifurcate within the lobe 

structure and that this point of bifurcation can be taken as a reference to group γ KCs 

into four clusters. Analysis of γ cell morphology revealed that γ KCs can be clustered 

into large and small cells that are different in the magnitude of calycal, and axonal 

arborizations, dendritic claws, and axonal nodes. At last, investigation of the γ KCs 

compartment specific arborizations, revealed two γ cell clusters that differently 

innervate γ lobe compartments γ2-4. None of the identified γ cell clusters is correlated 

to the time of the cells’ development. Future research can provide answers, however, 

 

Figure 3.20. Visualization of clusters in three dimensions by principle component 

analysis. 

The clusters attained by hierarchical cluster analysis are shown in principle component space. 

Axes indicate the first three principle components and the respective percentage of covered 

variance. Analyzed parameters were the length of arborizations within γ compartments 1-5. 

Single cells are color coded according to their cluster affiliation. 
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to whether the identified cell clusters not only share morphological characteristics, but 

also molecular and/or physiological properties. Nevertheless, morphological analysis 

of single KCs not only provides a framework for cell type identification but also offers 

the possibility to investigate the role of structural plasticity of KCs in the context of 

behavioral adaptation. 

 

3.3 Analysis of structural plasticity of individual Kenyon cells 

 

Although KCs of the Drosophila MBs have for long been implicated in learning and 

memory processes evidences for plasticity in KCs are still scarce. The comprehensive 

analysis of γ KCs in the previous chapters provides a basis for future research on single 

γ KCs physiological properties and how they contribute to memory formation and 

retrieval. In the next chapters, the morphology of not only γ KCs, but also of α/β and 

α’/β’ KCs shall be analyzed in respect to structural plasticity. Structural plasticity was 

shown in various model systems to underlie long-term behavioral changes (Bailey and 

 

Figure 3.21. Analysis of the arborizations of γ Kenyon cells within γ compartments 1-5 

in respect to time of development. 

The two γ cell types attained by hierarchical cluster analysis (see figure 3.19) were compared 

according to their time of development. Each Kenyon cells birth time was determined as the 

average time point of heat shock to the respective larva. No dependency between the within 

compartment arborizations and time of birth of a respective γ Kenyon cell could be detected. 

A) Statistical comparison of cell clusters attained by cluster analysis according to the time point 

of heat shocking after larval hatching. No significant difference was found (Students t-test). 

B) Kenyon cells visualized in three dimensional principle component space (compare to figure 3.20) 

are color coded dependent on when larvae were heat shocked for MARCM induction. 
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Chen, 1989; Budnik, 1996; Kozorovitskiy et al., 2005; Xu et al., 2009). The observed 

neuronal modifications are various and include the outgrowth, or retraction of neurite 

branches, changes in the number of synapses, changes in synaptic effectiveness, the 

stabilization of synapses, and alterations in the structure of postsynaptic dendritic 

spines (for review see for example Bailey and Kandel, 1993, 2008; Bourne and Harris, 

2008; Caroni et al., 2012; Greenough and Bailey, 1988; Lamprecht and LeDoux, 2004; 

Mayford et al., 2012; Sigrist and Schmitz, 2011). In Drosophila, structural plasticity 

was shown to occur in several neuropils or cell types in response to sleep deprivation, 

conditions of social enrichment or social isolation, visual or olfactory deprivation in the 

ventral lateral neurons, the lobula plate, the MBs, and the central complex (Barth and 

Heisenberg, 1997; Bushey et al., 2011; Donlea et al., 2009, 2014; Heisenberg et al., 

1995; Technau, 1984; Yuan et al., 2011). 

Moreover, it was found in honey bees that foraging experience had an effect on MB 

volume and KC fine structure (Farris et al., 2001; Withers et al., 1993), and food 

deprivation led to the outgrowth of larval Drosophila octopaminergic neurons (Koon et 

al., 2011). Preliminary results have indicated that keeping flies on different caloric food 

conditions alters the connectivity between KCs and dopaminergic neurons, as well as 

 

Figure 3.22. Composition of different calorie fly food. 

Three different calorie cornmeal diets were prepared for flies for experiments on the structural 

plasticity of Kenyon cells. All food diets contain the same concentration of cornmeal and agar but 

differ in water, lard, sucrose, and yeast content. The energy content of each food diet was 

calculated based on the nutrient value of the ingredients. Low calorie food has 38 kcal/100 g, 

medium calorie food has 52 kcal/100 g, and high calorie food has 100 kcal/100 g.  
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the connectivity between KCs and MB output neurons in a compartment specific 

manner (T. Riemensperger, personal communication). Connectivity was measured 

using GFP reconstitution across synaptic partners (Feinberg et al., 2008). It seems 

likely that changes in connectivity are accompanied by KC structural changes. To 

investigate general mechanisms of structural plasticity in KCs the same feeding 

conditions as by T. Riemensperger were used to compare single KCs deriving from all 

major MB lobes. To this end, MARCM flies that expressed hexameric mCherry in single 

KCs of different MB lobes via distinct MB driver lines, 5HT1B-Gal4 for the γ lobe, 

GMR35B12-Gal4 for the α’/β’ lobes, and OK107-Gal4 for the α/β lobes, were kept on 

either low-calorie, medium-calorie, or high-calorie food (figure 3.22) for 7-8 days from 

1 day after imago hatching. All flies were raised on standard cornmeal food. 

Surprisingly, when the weight of the flies was measured before and after they were 

put on different calorie diet, the flies kept on medium-calorie diet gained significantly 

more weight than flies kept on low-, and high-calorie diet (figure 3.23). However, 

differences in body fat content were not measured.  

To compare KCs morphologically, the same cell characteristics were quantified as 

described in section 3.2 for the analysis of γ neurons. Included parameters were the 

number of dendritic claws, the dendrite, and axon length, and the number of axon 

 

Figure 3.23. Weight measurements of flies kept on different calorie food.  

MARCM flies potentially expressing hexameric mCherry in single γ Kenyon cells were weighed 

before and after they were kept for 7-8 days on either low-, medium-, or high-, calorie diet. 

Group sizes varied between 4 to 17 flies per vial. Flies kept on medium-calorie food gained the 

most weight. 

A) Before being put on different food conditions, 0-1 day old flies had an average weight of ~ 1.2 

mg independent of the later diet-class affiliation. After being kept on different nutritious diets, 

those flies kept on medium-calorie food were significantly heavier than flies kept on low-calorie 

food. 

B)  The gain in weight was calculated for each group of flies by division of the post-diet weight 

by the pre-diet weight. Flies kept on medium-calorie food gained significantly more weight than 

flies kept on either low-, or high-calorie food. 
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Figure 3.24. Effect of different calorie diets on γ cell morphology. Continued on next 

page. 
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nodes. Additionally, the length of arborizations and the number of nodes within the 

compartments of the respective lobe structure were quantified. The γ lobe was 

subdivided in γ compartments 1-5, the α’/β’ lobes in α’ compartments 1-3, and β’ 

compartments 1-2, and the α/β lobes in α compartments 1-3, and β compartments 1-

2 (Aso et al., 2014a; Tanaka et al., 2008). Furthermore, if KC confocal images were 

judged to be of very good quality the number of bouton-like structures per unit length 

within the different compartments was counted. 

Regarding γ KCs, no differences in the cells dendrite length, number of dendritic claws, 

axon length, and the number of axon nodes (figure 3.24D-G), nor in the arborizations 

length within γ compartments 1-5 (figure 3.24I) were observed between cells deriving 

from animals kept on different calorie diets. Moreover, the density of bouton-like 

structures within γ1-5 were not different between flies kept on different calorie diets 

(figure 3.24J). However, in regard to the number of nodes, a significant higher number 

was found in the γ5 compartment in KCs derived from flies kept on medium calorie 

food in comparison to cells derived from flies kept on low-, and high calorie food (figure 

3.24H).  

Figure 3.24 continued. 

Flies expressing hexameric mCherry in individual γ Kenyon cells via the Gal4 driver 5HT1B were 

kept on different calorie diets for 7-8 days during adulthood. Single cells were compared 

statistically dependent on the flies’ diet and in regard to γ cell morphological parameters. From 

the 19 compared parameters a significant difference was detected only in the number of nodes 

within the γ5 compartment. 

A) Illustration of a γ cell and its arborizations within different parts of the mushroom body that 

were quantified for the statistical analysis of different food diets and their effect on γ Kenyon cell 

morphology. 

B, C) The quantified parameters are highlighted in confocal images of the mushroom body calyx 

(B) and the mushroom body lobes (C). 

D-G) γ Kenyon cells deriving from animals kept on different calorie diets during imago stage were 

compared statistically in regard to their morphological characteristics within the cells’ input and 

output regions. No significant differences between γ cells deriving from flies kept on different 

calorie diets was detected in the number of dendritic claws (D), the dendrite length (E), the axon 

length (F), and the number of axon nodes (G). 

H-J) γ Kenyon cells deriving from animals kept on different calorie diets during imago stage were 

compared statistically in regard to their compartment-specific arborizations. A significant 

difference was detected in the number of nodes within the γ5 compartment of γ cells derived 

from flies kept on medium-calorie food in comparison to γ cells derived from flies kept on low-, 

or high-calorie food. In compartments γ1-4 no significant difference was detected (H). Regarding 

the length of arborizations within γ1-5 (I) and the “bouton”-density within γ1-5 (J) no significant 

difference between γ cells deriving from flies kept on different calorie diets was detected. 

Data were compared statistically using ANOVA if data were normally distributed or a Kruskal-

Wallis test if date were not normally distributed. Normality of the distributions was determined 

by the Shapiro-Wilk test. p-values were corrected for multiple comparisons according to 

Bonferroni’s principle. * is defined as p < 0.05. 

 



 
85 

 

 

Figure 3.25. Effect of different calorie diets on α’/β’ cell morphology. Continued on next 

page. 
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Analysis of α’/β’ KCs revealed that different calorie food diets did not alter the number 

of dendritic claws (figure 3.25D), the axon length (figure 3.25F), or the number of 

axon nodes (figure 3.25G). However, dendrites of α’/β’ KCs of flies kept on medium-

calorie food were longer than of flies kept on high-calorie food (figure 3.25E). In regard 

to compartmental arborizations length and the number of axon nodes within the α’/β’ 

lobes, KCs derived from flies kept on different food diets showed no significant 

differences (figure 3.25H, I). However, comparison of “bouton”-densities within 

different α’/β’ compartments, indicated a significantly higher density of bouton-like 

structures in the β’2 compartment in KCs derived from flies kept on low-calorie food 

(3.25J) compared to KCs derived from flies kept on medium-calorie food. 

α/β KCs did not develop significant structural changes independent whether they 

derived from flies kept on low-, medium-, or high-calorie diet. Parameters analyzed 

were the number of dendritic claws, the dendrite, and axon length, and the number of 

axon nodes (figure 3.26D-G). Furthermore, the arborizations length within the α/β 

lobe compartments, the density of bouton-like structures within α/β lobe 

Figure 3.25 continued. 

Flies expressing hexameric mCherry in individual α’/β’ Kenyon cells via the Gal4 driver GMR35B12 

were kept on different calorie diets for 7-8 days during adulthood. Single cells were compared 

statistically dependent on the flies’ diet and in regard to α’/β’ cell morphological parameters. 

From the 19 compared parameters a significant difference was detected only in the dendrite 

length and the bouton density within the β’2 compartment. 

A) Illustration of a α’/β’ cell and its arborizations within different parts of the mushroom body 

that were quantified for the statistical analysis of different food diets and their effect on α’/β’ 

Kenyon cell morphology. 

B, C) The quantified parameters are highlighted in confocal images of the mushroom body calyx 

(B) and the mushroom body lobes (C).  

D-G) α’/β’ Kenyon cells deriving from animals kept on different calorie diets during imago stage 

were compared statistically in regard to their morphological characteristics within the cells’ input 

and output regions. A significant difference was detected in the dendrite length of α’/β’ cells 

derived from flies kept on medium-calorie food in comparison to α’/β’ cells derived from flies kept 

on high-calorie food (E). No significant differences between α’/β’ cells deriving from flies kept on 

different calorie diets were detected in the number of dendritic claws (D), the axon length (F), 

and the number of axon nodes (G).  

H-J) α’/β’ Kenyon cells deriving from animals kept on different calorie diets during imago stage 

were compared statistically in regard to their compartment-specific arborizations. A significant 

difference was detected in “bouton”-density within the β’2 compartment of α’/β’ cells derived 

from flies kept on low-calorie food in comparison to α’/β’ cells derived from flies kept on medium-

calorie food. In compartments α’1-3 and β’1 no significant difference was detected (J). Regarding 

the number of nodes within α’1-3 and β’1-2 and the arborizations length within α’1-3 and β’1-2 

no significant difference between α’/β’ cells deriving from flies kept on different calorie diets was 

detected. 

Data were compared statistically using ANOVA if data were normally distributed or a Kruskal-

Wallis test if date were not normally distributed. Normality of the distributions was determined 

by the Shapiro-Wilk test. p-values were corrected for multiple comparisons according to 

Bonferroni’s principle. * is defined as p < 0.05. 
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Figure 3.26. Effect of different calorie diets on α/β cell morphology. Continued on next 

page. 
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compartments, and the number of nodes within α/β lobe compartments (figure 3.26H-

J) 

In sum, the morphologies of γ, α’/β’, and α/β neurons were hardly affected by keeping 

the flies the cells derived from on different calorie diets for about one week during 

adult life. Thus, conditions of under-, or oversupply mainly concern the MB extrinsic 

network but not the MB intrinsic KCs.  

  

Figure 3.26. Effect of different calorie diets on α/β cell morphology.  

Flies expressing hexameric mCherry in individual α/β Kenyon cells via the Gal4 driver OK107 

were kept on different calorie diets for 7-8 days during adulthood. Single cells were compared 

statistically dependent on the flies’ diet and in regard to α/β cell morphological parameters. From 

the 19 compared parameters no significant differences were detected between any of the groups. 

A) Illustration of a α/β cell and its arborizations within different parts of the mushroom body that 

were quantified for the statistical analysis of different food diets and their effect on α/β Kenyon 

cell morphology. 

B, C) The quantified parameters are highlighted in confocal images of the mushroom body calyx 

(B) and the mushroom body lobes (C).  

D-G) α/β Kenyon cells deriving from animals kept on different calorie diets during imago stage 

were compared statistically in regard to their morphological characteristics within the cells’ input 

and output regions. No significant differences between α/β cells deriving from flies kept on 

different calorie diets were detected in the number of dendritic claws (D), the dendrite length 

(E), the axon length (F), and the number of axon nodes (G).  

H-J) α/β Kenyon cells deriving from animals kept on different calorie diets during imago stage 

were compared statistically in regard to their compartment-specific arborizations. No significant 

differences were detected regarding the number of nodes within α1-3 and β1-2, the arborizations 

length within α1-3 and β1-2, and the “bouton”-density within α1-3 and β1-2 between α/β cells 

deriving from flies kept on different calorie diets. 

Data were compared statistically using ANOVA if data were normally distributed or a Kruskal-

Wallis test if date were not normally distributed. Normality of the distributions was determined 

by the Shapiro-Wilk test. p-values were corrected for multiple comparisons according to 

Bonferroni’s principle.  
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4 Discussion 
 

 

 

 

4.1 Single γ lobe Kenyon cells are morphologically diverse 

 

It is of general interest to understand how behavior is mediated by neural circuits and 

how single units contribute to the integration process between sensory input to 

behavioral output (Luo et al., 2008). One popular model system, the Drosophila MBs, 

consisting of ~ 2,000 KCs each, have been studied in detail (Aso et al., 2014a; Fiala, 

2007; Masse et al., 2009). Seven KC subtypes have been described that differ in terms 

of gene expression, birth order, axonal arborizations patterns, and their functional role 

in different behaviors (Aso et al., 2009, 2014a, 2014b; Krashes et al., 2007; Lee et 

al., 1999; Lin et al., 2007; Perisse et al., 2013a, 2013b; Tanaka et al., 2008; and 

figures 1.4, 1.6). KCs of the γ main subtype constitute the largest KC subset in respect 

to volume and cell number (Aso et al., 2009, 2014a). Functional analyses have 

revealed that γ main KCs play a role in olfactory associative appetitive, and aversive 

short- and long-term memory formation and retrieval (Blum et al., 2009; Cervantes-

Sandoval et al., 2013; Das et al., 2014; Dubnau et al., 2001; Pascual and Preat, 2001; 

Scheunemann et al., 2012; Zars, 2000), motivational control of thirst (Lin et al., 

2014b) and hunger (Huetteroth et al., 2015; Perisse et al., 2016), courtship 

conditioning (Manoli et al., 2005), and sleep regulation (Aso et al., 2014b; Joiner et 

al., 2006; Pitman et al., 2006; Sitaraman et al., 2015).  

Here, the morphological diversity of γ main KCs was studied in order to understand 

how single cells contribute to functional diversity of the cell population. γ main KCs 

have so far not been subdivided into functional or morphological subclasses. In the 

present study, it was found that γ main KCs exhibit a large variety of different sizes 

and morphologies. The set of 75 γ main KCs was compared statistically in respect to 

parameters that describe gross cell morphology, and parameters that describe 

compartment specific innervations in the MB lobes. The compartments are of special 

interest because they have been show to constitute rather independent computational 

units for multimodal signal integration (Aso and Rubin, 2016; Aso et al., 2014a, 2014b; 

Hige et al., 2015a; Owald and Waddell, 2015). In each of the quantified parameters γ 
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main KCs exhibit a vast range of sizes. For example, the axon length ranged between 

129.9 µm and 407.2 µm, and the claw number between 2 and 10 (see table 3.1 and 

figures 3.7-3.10). Similarly, within compartment arborizations varied strongly, as for 

example in γ2 from 28 µm to 127.4 µm, and in γ5 from 0 µm to 105.3 µm. Former 

studies confirm the observed variability in KC morphometrics: the number of dendritic 

claws was reported to lie between 4 and 12 (Gruntman and Turner, 2013), or 0 and 

12 (Butcher et al., 2012); the number of axonal branches between 3 and 17 (here 

between 6 and 29); the cumulative axon branch length between ~ 20 and 120 µm 

(Tessier and Broadie, 2008). In sum, it was shown for the first time that γ main KCs, 

a cell type required for various behaviors including learning and memory, is composed 

of cells that are not uniform in their morphology, but exhibit a large variety of different 

shapes and sizes. 

Heterogeneity of neurons is a problem also encountered in the analysis of vertebrate 

nervous systems, especially since Golgi staining was introduced to label single cells 

(reviewed in Agnati et al., 2007). Nowadays, cell types are typically identified by a 

combination of methods including the quantification of morphological, molecular, and 

physiological features (Petilla Interneuron Nomenclature Group et al., 2008). Are KCs 

similarly diverse in their physiological and biochemical properties as they are 

morphologically? Due to the small size of invertebrate neurons, KC soma diameter 

sizes lie around 4-5 µm (data not shown), electrophysiological recordings are rare. In 

a few studies though, KC patch-clamp recordings were performed, showing that KCs 

have very low baseline firing rates. Baseline firing rates in α/β and γ KCs were 

essentially absent, whereas α’/β’ showed stable activity around 0.2 spikes per second. 

In fact, out of the 71 cells measured in one study, 14 did not show any spontaneous 

activity at all, even though current injections verified their spiking ability (Turner et 

al., 2008). Gruntman and Turner (2013) did not distinguish between KC types, 

however, they found that most of the cells they measured, and were shown to be 

functional, did not have any baseline firing rate. However, it is not clear to which 

extend soma recordings reflect axonal activity (Gouwens and Wilson, 2009). 

As described in section 1.4, KCs are sparse not only in spontaneous activity but also 

in terms of odor responsiveness. Independent of cell type though, some individual KCs 

were seen that responded broadly to a wide range of odors, while others showed highly 

specialized responses (Honegger et al., 2011; Turner et al., 2008). In average, KCs 

responded to 6 % of odors presented, while response likelihood increased from γ KCs 

to α/β KCs to α’/β’ KCs (Turner et al., 2008). It has not been resolved, whether or not 

the observed differences are due to intrinsic properties of the cells or due to KC-PN 
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connectivity by dendritic claws, since the number of odor responsive claws were shown 

to correlate with spiking probability after PN stimulation (Gruntman and Turner, 2013), 

and the average number of claws is different between KC types (Butcher et al., 2012; 

and figures 3.24-3.26). Moreover, as mentioned above, KC soma voltage at axonal 

spiking might only partly be correlated, as it is the case for PNs (Gouwens and Wilson, 

2009).  

Differences in molecular features of neurons like the expression of transcription 

factors, neurotransmitters, neuropeptides, transporters, cell surface proteins, ion 

channels, receptors, and many more, have been used to classify vertebrate neurons 

(Petilla Interneuron Nomenclature Group et al., 2008). In Drosophila, initial studies 

have used the enhancer trap technique (Wilson et al., 1989) to target specific KC 

subtypes that are hence distinct in promoter activity patterns (e.g. Aso et al., 2009; 

Yang et al., 1995) or are different in respect to antigen expression (Crittenden et al., 

1998). Moreover, different proteins have been shown to be required in distinct KC 

types, like the rutabaga encoded adenylyl cyclase in α/β and γ KCs (Blum et al., 2009; 

Scheunemann et al., 2012), Neurofibramatosis 1 in only α/β KCs (Buchanan and Davis, 

2010; Guo et al., 2000), and the D1-like dopamine receptor DopR in γ cells (Qin et 

al., 2012), just to name a few (for review see Kahsai and Zars, 2011; Margulies et al., 

2005). In a comprehensive analysis of KC gene expression, the genomic enhancer 

fragments located upstream of genes encoding neuron specific promoters have been 

cloned in order to drive Gal4 expression in transgenic flies. Using the split-Gal4 system 

(Luan et al., 2006) it was possible to identify cell types that overlap in the activity of 

different promoters. This approach led to the definition of all known KC subtypes (Aso 

et al., 2014a; Jenett et al., 2012). However, cell types are certainly defined by the 

expression of more than two genes. Crocker et al (2016) employed single cell type 

RNA sequencing of cells harvested via patch pipets to examine the transcriptome of 

KCs. Thus, they were able to show distinct expression profiles of α/β and γ KCs (α’/β’ 

were not analyzed) in regard to neurotransmitter receptors, peptides, and peptide 

receptors among others. Nevertheless, a comprehensive analysis at the single cell 

level to judge individual diversity of gene expression has not been performed so far.  

Furthermore, the architecture of calycal microglomeruli has been described in detail 

and was shown to be of a complex and molecular diverse organization (Butcher et al., 

2012; Leiss et al., 2009; Yasuyama et al., 2002). Various elements contribute to the 

polymorphic shapes of calycal microglomeruli, which are composed of one projection 

neuron bouton and its postsynaptic partners (Yasuyama et al., 2002). Projection 

neurons were shown in electron mircrographs to contain clear core vesicles as well as 
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dense core vesicles. Thus, KCs likely receive not only cholinergic but also peptidergic 

input from PNs (Butcher et al., 2012; Yasuyama et al., 2002). Furthermore, it was 

shown that dense core vesicle containing PN boutons are smaller in size than other PN 

boutons (Butcher et al., 2012). In general, presynaptic terminals in projection neuron 

boutons are widely distributed, and were classified as T-bar ribbon and non-ribbon 

synapses that occur in equal measure (Leiss et al., 2009). The organization of T-bar 

ribbon synapses adds another layer of complexity that shall not be discussed here and 

has been described elsewhere (Sigrist and Schmitz, 2011; Wichmann and Sigrist, 

2010). The number of synapses in presynaptic PN boutons range between 24-69, 

which are each opposed by an average number of 4.5-6.3 postsynaptic densities in 

KCs depending on the type of PN (Butcher et al., 2012). Other components of the 

microglomerular network are GABAergic neurites, contributed by the anterior paired 

lateral neuron (Tanaka et al., 2008), serotoninergic neurites, contributed by the dorsal 

paired medial neuron (Waddell et al., 2000), SIFamidergic neurites (Tanaka et al., 

2008; Verleyen et al., 2004), dopaminergic neurites from the PPL2ab cluster (Mao and 

Davis, 2009), and octopaminergic neurites (Busch et al., 2009). In addition, KCs also 

provide output within the calyx area as was shown by antibody labeling of presynaptic 

terminals (Christiansen et al., 2011). For overview and discussion of the MB calyx 

network also see Aso et al (2014a) and Pech et al (2013b). In sum, the analysis of the 

calycal network of KCs and MB extrinsic neurons reveals a complex structure that has 

the potential to strongly influence the excitability of individual KCs. If there is a pattern 

of connectivity between KCs and other cells of the network or if KCs are randomly 

connected to extrinsic neurons is under debate and has not even been answered for 

PN-KC connections (Caron et al., 2013; Gruntman and Turner, 2013). 

To sum up, single cell data of KCs as they were acquired in the present study for 

morphological parameters are not available in such details for other cellular 

characteristics like physiology and biochemistry. It will be interesting, to find out about 

how the described morphological diversity of single γ KCs is related to other cellular 

parameters in order to get a complete picture of the cells’ identity. In fact, it has been 

achieved to measure Ca2+ fluxes of single γ cells that will be related to the cells’ 

morphology (F. Bilz, personal communication). This approach gives the opportunity to 

investigate how morphology and physiology interact to facilitate the hypothesized 

functional plasticity of single cells, which are required for learning and memory.  
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4.2 Description of Kenyon cell subtypes 

 

4.2.1 γ Kenyon cell subtypes can be defined by axonal bifurcation  

 

KCs can, furthermore, be described from a qualitative perspective. Here, it was found 

that γ main KCs can be separated into four groups based on axonal bifurcations in the 

γ lobes. Four different γ cell classes were identified that have the primary node in γ2, 

γ3, or γ4, or are not bifurcating. Classically, α’/β’ and α/β KCs are considered the only 

bifurcating KC types. They extend one vertical branch into the α/α’ lobes and one 

horizontal branch into the β/β’ lobes (Crittenden et al., 1998). According to a previous 

report, there is one type of adult γ KCs that extend a side branch into the vertical lobes 

(Strausfeld et al., 2003). Those cells, however, were not found here. It seems likely, 

that they are remnants of larval γ KCs, which escaped restructuring during pupal stage. 

Though, in this study, one γ KC was found that does not extend through the complete 

γ lobe, but terminates in the γ2 compartment. Probably, this cell is also not a 

representative of another γ cell type, but rather constitutes an individual case of a cell 

that failed proper outgrowth after pruning, because no more cells of this type were 

found. In the present study, the exact topography of bifurcating γ cell branches was 

not determined. Future research has to show if branches from bifurcating γ cells 

occupy specific, three dimensionally defined, regions of the γ lobes. It is known of the 

γ dorsal subset of the γ lobe that they arborize in specific parts of the γ lobe 

compartments, most prominently may be in the dorsal tip of the γ5 compartment (Aso 

et al., 2014a; and figure 1.4).  

Compartments of the α/β and the α’/β’ KCs are defined by the innervation patterns of 

MB extrinsic dopaminergic and MB output neurons, which were found to sometimes 

target KC subclasses like the α’/β’ anterior-posterior, and the α’/β’ middle neurons, 

and the α/β posterior, surface, and core neurons. However, cell type specific 

innervations by MB extrinsic neurons are, for the γ lobe, not even observed in the case 

of the γ dorsal subset (Aso et al., 2014a). Thus, if there are γ main KC arborizations 

specific to subcompartmental structures in the γ lobe, those fibers might interact not 

with dopaminergic neurons, but with other neuron types. γ KCs were found to be in 

close proximity to octopaminergic/tyraminergic, and serotoninergic neurons (Pech et 

al., 2013b), and various peptide receptors, including the pdf receptor, the SIFamide 

receptor, and insulin receptor, as well as receptors for biogenic amines, including the 

octopamine OAMB and serotonin 5HT1A, and 5HT1B receptors are expressed in γ KCs 

(Crocker et al., 2016), indicating the presence of more synaptic partners that give 
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input to γ KCs. Additionally, NMDA receptors, shown to be necessary for olfactory long-

term memory formation (Xia et al., 2005), are expressed in γ KCs (Crocker et al., 

2016). Conclusively, if the here described anatomical γ KC classes have a functional 

role in the MB network, this role has to be proven in future studies.    

  

4.2.2 γ Kenyon cell subtypes are identified by hierarchical cluster 

analysis 

 

The present study provides the first comprehensive morphological analysis of KCs at 

the single cell level. Thus, it was possible to describe novel γ KC subtypes using cluster 

analysis. Hierarchical clustering using Ward’s method (Murtagh and Legendre, 2014; 

Ward, 1963) as a criterion for cluster fusion has been proven in several studies to 

successfully find clusters of test data sets (Blashfield, 1976; Hands and Everitt, 1987), 

or to identify cell types of vertebrate and invertebrate nervous systems (Cauli et al., 

2000; Jefferis et al., 2007; Karagiannis et al., 2009; Murtagh and Contreras, 2012; 

Wong et al., 2002). In the present study, the same method was used in order to find 

types of KCs based on morphological data. Two cell types that are each composed of 

two subtypes were found when analyzing gross γ main KC morphology. The two types 

can be described as one type consisting of ‘big’ cells, and the other of ‘small’ cells. In 

respect to all four input parameters the ‘big’ cluster cells exhibit significantly higher 

values than the ‘small’ cluster cells. Furthermore, it was found in a second cluster 

analysis that KCs form two cluster regarding their axonal arborizations within γ 

compartments 1-5. The two clusters are distinguished by their arborizations within γ2-

4. One type of cells had significantly longer arbors in all of the three mentioned 

compartments. The ‘big’ and ‘small’ clusters of the first analysis are not correlated to 

the compartment clusters of the second analysis.  

It has become increasingly common to generate anatomical standard brain models 

that can be used to map individual cells deriving from different animals onto one 

template (e.g. Aso et al., 2014a; Chiang et al., 2011; Jefferis et al., 2007; Lin et al., 

2007; Peng et al., 2011). This method has been applied to analyze a set of 1,664 KCs 

out of the FlyCircuit data base (Chiang et al., 2011) in regard to their three dimensional 

arborizations pattern. Using hierarchical clustering it was possible to determine all 

known KC subtypes as well as two novel γ KC subtypes that are a subset of γ main 

(Costa et al., 2016). However, the novel types were not described in detail, so that it 

remains to be shown how they are morphologically different. 
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As mentioned before cell type identification usually relies on the inclusion of not only 

morphological but also physiological and molecular cell features (Petilla Interneuron 

Nomenclature Group et al., 2008). Since KCs are not sufficiently studied in respect to 

those features, KC subtype classification until now has to depend on morphological 

characteristics of KCs. 

 

4.3 Nutritional value and structural plasticity of Kenyon cells  

 

Although, there is a vast literature background about the Drosophila MBs and their 

role in associative learning and memory, studies on structural plasticity of KCs, the 

cells that supposedly carry the memory, are scarce. Here, structural plasticity of KCs 

was investigated by exposing flies with labeled single KCs to different environmental 

conditions. The kind of conditions chosen have been shown to strongly shape the 

innervation pattern of dopaminergic and MB output neurons in the MB lobes in a 

compartment specific manner (T. Riemensperger, personal communication). 

Therefore, adult flies were kept on food with different caloric values for 7-8 days. The 

morphologies of KCs of the γ, α’/β’, and α/β type deriving from flies raised on these 

food conditions were compared statistically. However, no major changes in KC 

morphologies could be observed, although more axonal nodes in the γ5 compartment 

of flies raised on medium calorie food than in flies raised on low or high calorie food, 

were found. Additionally, the dendrites of α’/β’ cells were longer of flies kept on 

medium calorie food than of flies kept on high calorie food, and the “bouton” density 

in the β’2 compartment was higher in KCs of flies kept on low calorie food than of flies 

kept on medium calorie food. Overall though, a clear pattern of neural structural 

changes as a consequence of differences in diet could not be detected. There are 

several possible explanations for the absence of such a plasticity. (1) Changes are too 

marginal to be detected by the number of comparisons in this study. (2) KC structural 

changes happen on a smaller scale, e.g. in the molecular architecture of synapses. (3) 

Network adaptation to food conditions is achieved mainly by changes in MB extrinsic 

neurons.  

According to (1) the sample size of the acquired neurons is too low to show structural 

effects because between neuron variability is high. This is true, as can be seen by the 

range of sizes of individual cells, however a normalized measure, the “bouton” density, 

was taken to control for size-differences of KCs. The observation that honey bee KC 

dendrite length was correlated with foraging experience (Farris et al., 2001), could not 

be shown here for Drosophila. However, foraging experience of honey bees is far more 
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complex than just food intake, but includes a range of behavioral skills as, for example, 

navigation and food source identification (Robinson, 1992). As for (2), evidences of 

small scale changes in synaptic architecture and physiology are numerous across phyla 

(reviewed for example in Mayford et al., 2012). In Drosophila, changes in synaptic 

marker expression were found for example in sleep deprived flies (Gilestro et al., 

2009), and ultrastructural elaborations of presynaptic active zones were observed in 

aged flies (Gupta et al., 2016). Genes relevant for long-term memory formation and 

synaptic remodeling have been shown to be especially required in KCs (e.g. Akalal et 

al., 2010). It seems likely that according to (3) MB extrinsic networks respond stronger 

in terms of structural plasticity to environmental conditions. First, because of the 

findings in GRASP signal changes by T. Riemensperger, and second, because KCs have 

been found to be relatively resistant to structural changes even by developmental 

overexpression of memory affecting DISC1 (Furukubo-Tokunaga et al., 2016), 

extended periods of ChR2 induced activity (Tessier and Broadie, 2008), or sleep 

deprivation (Bushey et al., 2011).  

 

4.4 Outlook 

 

In the present study, a population of single γ KCs was described morphologically and 

classified using several approaches. Although it is agreed upon the role of KCs in 

learning and memory, direct evidence of plasticity occurring in KCs is still missing. The 

analysis of structural plasticity of single KCs deriving from all major KC classes has 

revealed only slight changes happening in KCs in response to different feeding 

conditions. Thus, approaches that target the functional anatomy of individual KCs will 

be promising. Until now, most studies focused on KC population responses (reviewed 

in Guven-Ozkan and Davis, 2014). Novel Ca2+ imaging techniques have enabled 

researchers to observe odor evoked activity in single KCs at the calyx level (Gruntman 

and Turner, 2013). Single KCs’ physiological responses and learning-induced 

functional plasticity of single KCs are currently under investigation (F. Bilz, personal 

communication). This intriguingly simple approach offers the possibility to not only 

correlate function and morphology of single KCs, but also to resolve the question of 

how individual KCs store and retrieve associative memory.   
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5 Summary 
 

 

Learning and memory is an adaptive behavioral trait that allows animals to make 

predictions about their environment based on previous experiences. Fruit flies that 

commonly use olfactory cues to locate food sources or mating partners, are able to 

assign value to odors after classical conditioning. The trace of the olfactory associative 

memory could successfully be localized to the Drosophila mushroom bodies, a central 

arthropod brain structure. Here, the mushroom body intrinsic Kenyon cells are believed 

to store the memory in the synaptic connection to mushroom body output neurons. 

So far, seven different Kenyon cell types have been described that can be distinguished 

based on gene expression patterns, reactivity to antibodies, birth order, and 

morphology. Furthermore, different Kenyon cell types have been implicated in distinct 

functional tasks. However, most of the studies were focused on populations of Kenyon 

cells. A comprehensive analysis of single Kenyon cells has not been performed.      

In the present study, the morphology of single Kenyon cells of the γ type was 

compared quantitatively in order to describe the variability of individual cell shapes, 

and to establish a basis for functional analyses. To this end, a set of 75 single γ Kenyon 

cells was collected using mosaic analysis with a repressible cell marker. The cell 

structures were digitalized by the manual skeleton tracing function implemented in the 

commercial software Neurolucida. To compare cell morphologies, four parameters 

were chosen. Two that describe the input region of the mushroom bodies, i.e. the 

dendrite length and the number of dendritic claws, and two that describe the output 

region, i.e. the axon length and the number of axon nodes. Furthermore, Kenyon cell 

arborizations within the output region, the mushroom body lobes, were analyzed in 

respect to the five γ lobe compartments, which are defined by the innervations of 

dopaminergic and mushroom body output neurons. 

It was found that γ Kenyon cells exhibit a vast range of morphologies, as seen by the 

variability in each of the quantified parameters. To find patterns within the set of cells, 

qualitative and quantitative approaches were taken. First, bifurcations of γ cells within 

the γ lobes were identified and used to group γ-type Kenyon cells into four classes. γ 

cells are normally considered to be non-bifurcating cells, and future research has to 

show if bifurcation and functionality are correlated. Second, the quantified parameters 
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were used as input variables for hierarchical clustering. Thus, several cell types were 

identified that rely on combinations of either the parameters, which describe input to, 

and output from the mushroom bodies, or the innervations of γ Kenyon cells within γ 

compartments 1-5. 

The role of Kenyon cells in learning and memory makes it likely that Kenyon cells are 

able to change in shape or functionality as a result of experience. Extrinsic conditions 

such as food supply and the social environment were shown to affect mushroom body 

volume and the innervations of mushroom body extrinsic neurons. Indeed, raising flies 

on different calorie food strongly affected Kenyon cell contacts to extrinsic neurons 

within specific compartments of the γ, α’/β’, and α/β lobes. Thus, in the present study 

flies were exposed to the same calorie food conditions at imago stage and the cell 

morphologies of γ, α’/β’, and α/β cells were compared quantitatively. However, in none 

of the cell types major morphological changes were observed. It seems likely that in 

the case of food intake mushroom body extrinsic neurons undergo adaptive changes, 

while Kenyon cells do not change morphologically. Changes in the physiology of 

Kenyon cells though, cannot be excluded.       
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8 Abbreviations 
 

AL ----------------------------------------- antennal lobe 

APL ----------------------------------------- anterior paired lateral (neuron) 

APO ----------------------------------------- apochromat 

Ca2+ ----------------------------------------- calcium 

CaCl2 ----------------------------------------- calcium chloride 

cAMP ----------------------------------------- cyclic adenosine monophosphate 

CREB -----------------------------------------   cAMP response element-binding protein 

CS ----------------------------------------- conditioned stimulus 

DEET ----------------------------------------- diethyltoluamide  

DPM -----------------------------------------  dorsal paired medial (neuron) 

DPSS ----------------------------------------- diode pumped solid state (laser) 

dTRPA1 --------------------------------------- Drosophila transient receptor potential 
       A1 (channel) 

Flp ----------------------------------------- flippase 

FRT ----------------------------------------- flippase recognition target 

GABA ----------------------------------------- γ-aminobutyric acid 

GFP ----------------------------------------- green fluorescent protein 

GTP ----------------------------------------- guanosine triphosphate 

HCl ----------------------------------------- hydrogen chloride 

KC ----------------------------------------- Kenyon cell 

MARCM --------------------------------------- mosaic analysis with a repressible cell 

marker  

MB ----------------------------------------- mushroom body 

MgCl2 ----------------------------------------- magnesium chloride 

Na2HPO4    ------------------------------------ sodium hydrogen phosphate 

NaCl ----------------------------------------- sodium chloride 

NaH2PO4   ------------------------------------- sodium dihydrogen phosphate 

NaOH ----------------------------------------- sodium hydroxide 

ORN ----------------------------------------- olfactory receptor neuron 

PBS    ----------------------------------------- phosphate buffered saline 

PFA    ----------------------------------------- paraformaldehyde 
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PKA ----------------------------------------- protein kinase A 

PL ----------------------------------------- plan 

PN ----------------------------------------- projection neuron 

RFP ----------------------------------------- red fluorescent protein 

rut ----------------------------------------- rutabaga 

SEM ----------------------------------------- standard error of the mean 

TH ----------------------------------------- tyrosine hydroxylase 

UAS ----------------------------------------- Upstream Activating Sequence 

US ----------------------------------------- unconditioned stimulus 
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APPENDIX I: R scripts 

Different R scripts have been programmed in order to perform (I) cluster analysis, (II) 

centroid and nearest neighbor calculations, (III) silhouette value calculations, and (IV) 

principle component analysis. 

(I) Cluster analysis 

# start libraries  

library(ggfortify)  #plotting 

library (ggplot2)  #plotting 

library(ggdendro)  #plotting 

library(xlsx)   #writes excel files 

 # set working directory   

setwd("E:/MB Project/MBfix/Data")  

 # read data (in csv formate) 

cluster <- read.csv("MBfix cluster basic parameters.csv",header=TRUE,sep=";") 

 # declare column one as rownames 

row.names(cluster) <- cluster[,1]  

 # select columns for cluster analysis 

cluster.sub <- subset(cluster, select = c(axon.length,axon.nodes, 

dendrite.length,claw.number)) 

 # center and scale columns by their standard deviation 

cluster.sub.scaled <- scale(cluster.sub) 

 # create euclidean distance matrix 

d <- dist(cluster.sub.scaled, method = "euclidean") 

 # perform cluster analysis based on wards method 

d.cluster <- hclust(d, method="ward.D2") 

 # plot the clustering result as a dendrogramm 

ggdendrogram(d.cluster,rotate=F,size = 2,type="unrooted")+ 

theme(panel.background = element_rect(fill = 'yellow')) 

 # arrange order of cells according to the clustering result 

order<-c(1: (nrow(cluster.sub)))  

cluster.sort<-as.data.frame(cluster.sub.scaled) 

cluster.sort$order <- order 

cluster.sort$heat.shock <- cluster$mean.heatshock.timepoint 

cluster.sort<-cluster.sort[match(d.cluster$order, cluster.sort$order),] 

 # save the ordered data file in excel format 

write.xlsx(cluster.sort, "e:/clustering/example1.xlsx") 
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(II) Centroid and nearest neighbor 

# start libraries 

library(xlsx) 

 # set working directory 

setwd("e:/MB project/MBfix/Clustering & PCA in R/cluster analysis basic 

parameters") 

# read data (in csv formate) 

cluster <- read.csv("MBfix bp cluster sorted scaled cluster 

2.2.csv",header=TRUE,sep=";") 

 # declare column one as rownames 

row.names(cluster) <- cluster[,1]  

 # select columns for centroid analysis 

cluster <- subset(cluster, select = c(axon.length,axon.nodes, 

dendrite.length,claw.number)) 

 # calculate median center of the respective cluster 

center.median <- c(median(cluster[,1]),median(cluster[,2]), 

median(cluster[,3]),median(cluster[,4])) 

 # add the median center to the cluster and give it the name "center" 

combo <- rbind(cluster,center.median) 

rownames(combo)[nrow(cluster)+1] <- "center" 

 # create euclidean distance matrix, save "center" column as extra variable 

d.combo <- as.matrix(as.matrix(dist(combo))[nrow(cluster)+1,]) 

d.combo2 <- d.combo[-(nrow(cluster)+1),] 

 # find nearest neighbor 

NN <- as.matrix(which(d.combo2 == min(d.combo2), arr.ind=TRUE)) 

NN[1,] <- min(d.combo2) 

 # save median center in excel format 

write.xlsx(center.median,"e:/clustering/MBfix bp cluster 2.2 median center.xlsx") 

 

(III) Silhouette values 

# start libraries 

library(xlsx) 

 # set working directory 

setwd("E:/MB Project/MBfix/Clustering & PCA in R/cluster analysis basic 

parameters")  

 # read data of cluster 1 (in csv formate) 

cluster1.1 <- read.csv("MBfix bp cluster sorted scaled cluster 

1.1.csv",header=TRUE,sep=";")  



 
128 

 

 # read data of cluster 2 (in csv formate) 

cluster2.1 <- read.csv("MBfix bp cluster sorted scaled cluster 

1.2.csv",header=TRUE,sep=";") 

 # declare column one as rownames and delete the first column 

row.names(cluster1.1) <- cluster1.1[,1]  

cluster1.2 <- cluster1.1[,-c(1)] 

row.names(cluster2.1) <- cluster2.1[,1]  

cluster2.2 <- cluster2.1[,-c(1)] 

 # create euclidean distance matrices 

cluster1.3<-as.matrix(dist(cluster1.2)) 

cluster2.3<-as.matrix(dist(cluster2.2)) 

 # create matrix for silhouette values of cluster 1 

all.silhouettes <- matrix(nrow=ncol(cluster1.3),ncol=1) 

rownames(all.silhouettes) <- rownames(cluster1.3) 

colnames(all.silhouettes) <- "silhouette value" 

 # loop to calculate silhouette values 

for (i in 1:ncol(cluster1.3)) 

{ 

 # a1.3 saves distances of cell i to other cells within its cluster 

 # and excludes distance to itself 

a1.1 <- cluster1.3 [,c(i)] 

a1.2 <- as.matrix(a1.1) 

a1.3 <- as.matrix(a1.2[-c(i),]) 

 # in combo1.1 to combo1.6 the cell i is added to the neighboring cluster  

 # the distance matrix is calculated to show distance of cell i to all other  

 # cells in that cluster 

combo1.1<-rbind(cluster2.2,cluster1.2[i,]) 

combo1.2<-dist(combo1.1) 

combo1.3<-as.matrix(combo1.2) 

combo1.4<-combo1.3[nrow(combo1.1),] 

combo1.5<-as.matrix(combo1.4) 

combo1.6<-as.matrix(combo1.5[-nrow(combo1.1),]) 

 # calculates the silhouette of cell i 

silhouette <- (mean(combo1.6)-mean(a1.3))/max(mean(a1.3),mean(combo1.6)) 

 # saves the silhouette of cell i in row i of the silhouette matrix 

all.silhouettes[i,] <- silhouette 

} 

 # save silhouette values of cluster 1 in excel format 

write.xlsx(all.silhouettes,"e:/clustering/example silhouette values.xlsx") 
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(IV) Principle component analysis 

# start libraries 

library(ggdendro) 

library(ggfortify) 

library (ggplot2) 

library(xlsx) 

 # set working directory 

setwd("E:/MB Project/MBfix/data") 

 # read data 

pca <- read.csv("MBfix cluster basic parameters.csv",header=TRUE,sep=";") 

 # declare column one as rownames 

row.names(pca) <- pca[,1] #declare column one as rownames 

 # select columns for principle component analysis 

pca.sub <- subset (pca, select=c(axon.length,axon.nodes, 

dendrite.length,claw.number)) 

 # alternative variables for PCA 

#pca.sub <- subset (pca, select = 

c(gamma.1.length,gamma.2.length,gamma.3.length, 

#gamma.4.length,gamma.5.length)) 

 # run PCA with scaled data 

pca1 <- prcomp(pca.sub,scale.=TRUE) 

 # perform cluster analysis the same way as in the script "Cluster analysis template" 

cluster<- pca.sub 

cluster.scaled<-scale(cluster) 

d <- dist(cluster.scaled, method = "euclidean") 

d.cluster <- hclust(d, method="ward.D2") 

 # show dendrogram to control the correctness of the clustering 

ggdendrogram(d.cluster,rotate=F,size = 2,type="unrooted")+ 

theme(panel.background = element_rect(fill = 'yellow')) 

 # order PCA the same as the cluster analysis and add heatshock timepoint 

order<-c(1: (nrow(cluster)))  

cluster.sort<-as.data.frame(pca1$x) 

cluster.sort$heatshock <- pca$mean.heatshock.timepoint 

cluster.sort$order <- order 

cluster.sort<-cluster.sort[match(d.cluster$order, cluster.sort$order),] 

 # save the ordered PCA as excel file 

write.xlsx(cluster.sort, "E:/clustering/PCA + heat.xlsx") 
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