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1. Introduction 

1.1 Lipids and oxilipins are vital biomolecules 

Lipids are important biomolecules that fulfill a variety of biological functions in living cells. They 

are for instance the building block of biological membranes to separate cell compartments from 

each other and are used for energy storage (Berg et al., 2004). In addition, lipids are vital 

signaling molecules in eukaryotes (Martin, 1998; Wang et al., 2006; Xue et al., 2007). One major 

class of lipid mediators are the so-called oxylipins which comprise oxidized fatty acids and their 

derivatives. In aerobic environments these oxidized fatty acids can be formed by specific 

enzymes or in a non-enzymatic process called autoxidation. Especially polyunsaturated fatty 

acids (PUFAs) are prone to oxidation. These PUFAs are in general abbreviated by indicating their 

number of carbon atoms (X) and the number of double bonds (Y) as well as the distance of the 

last double bond from the methyl end (n-Z) in the form of X:Y(n-Z). Common PUFAs in biological 

systems include linoleic acid (18:2(n-6)), α-linolenic acid (18:3(n-3)) or arachidonic acid (20:4(n-

6)) (Figure 1). 

 

Figure 1. Common PUFAs in living cells. 

1.2 Lipid autoxidation occurs in a non-enzymatic reaction 

The process of lipid autoxidation is initiated by the formation of a carbon-centered lipid radical 

L· (Figure 2). The radical is propagated by addition of molecular oxygen and generation of a 

peroxyl radical (L-OO·) which in turn abstracts a hydrogen atom from another lipid molecule  

(L-H) to produce a new lipid radical (L·) and a fatty acid hydroperoxide (L-OOH). The result of this 

process is a chain reaction which can only be terminated by fusion with another radical or by the 

action of an antioxidant (ArO-H) (Yin and Porter, 2005).  

Since radicals are highly reactive compounds, it is conceivable that lipid peroxidation is not only 

related to the formation of important lipid mediators, but can have deleterious effects on living 

cells. In mammals, lipid oxidation may lead to numerous diseases, such as cancer, diabetes, 

arteriosclerosis, chronic rheumatoid arthritis, inflammatory bowel disease and 

neurodegenerative disorders such as Alzheimer disease and Parkinson’s disease (Porter et al., 

1995). The benefits of antioxidants in the diet has largely been advertised. These antioxidants 
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are assumed to play a role in counteracting lipid oxidation by trapping fatty acid peroxyl radicals 

(Yin and Porter, 2005) (Figure 2, Step 4). 

 

Figure 2. Process of lipid autoxidation. After formation of a lipid radical (L·) by an initiator (In·), oxygen is added and a 
peroxyl radical (L-OO·) is formed. This radical can react with new lipid molecules to produce new carbon centered 
radicals. The chain reaction is terminated by fusion of two radicals or by radical trapping with an antioxidant (ArO-H) 
(Yin and Porter, 2005). 

1.3 Enzymatic lipid oxidation leads to a variety of signaling molecules 

The process of lipid oxidation can also occur in a regulated biological reaction catalyzed by 

enzymes. The initial step of lipid peroxidation is either catalyzed by cyclooxygenases (COXs), α-

dioxygenases (α-DOXs) or by lipoxygenases (LOXs). All of these enzymes generate a lipid radical 

(L·) which subsequently allows the addition of dioxygen. After initial peroxidation of the lipid 

substrate, cascades of different enzymatic reactions can follow and lead to a variety of oxidized 

fatty acid derivatives. These oxylipins have important functions in intra- and intermolecular 

signaling in animals, plants and fungi (Andreou et al., 2009; Kühn et al., 2015). In mammals for 

example, prostaglandins and leukotrienes which belong to the group of eicosanoids present the 

most important group of oxylipins. These lipid mediators are produced to regulate immune 

responses such as inflammation and fever (Funk, 2001). In plants, oxylipins include fatty acid 

hydroperoxides and hydroxides as well as oxo-, keto- and epoxy fatty acid derivatives. The most 

important hormone produced in the oxylipin pathway of plants is jasmonic acid including its 

derivatives. This plant hormone is involved in defense to pathogens, development of 

reproductive organs and plant growth (Andreou et al., 2009). The biological roles of oxylipins 

have also been studied in fungi. Here, they function for example in the regulation of the life cycle 

and mycotoxin production (Noverr et al., 2002; Tsitsigiannis and Keller, 2007). Although LOX 

genes were also found in some mosses, algae and bacteria, suggesting that oxidized lipids are 

also enzymatically produced in these organisms, their functions remain largely elusive (Horn et 

al., 2015). 

The focus of this study will be on LOXs and their oxygenation specificity. Similar to autoxidation, 

they insert molecular oxygen into PUFAs with one or more cis,cis-1,4-pentadiene system. This 

reaction is, however, catalyzed in a highly regio- and stereospecific way to yield a single fatty 

acid hydroperoxide product (Figure 3). 
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Figure 3. LOX reaction. LOXs catalyze the insertion of molecular oxygen into PUFAs to yield a specific fatty acid 
hydroperoxide. 

 

It should be noted that different LOX specificities result in distinct oxylipins with different 

biological functions. For instance, only the 13S-hydroperoxide of α-linolenic acid is a precursor 

for jasmonic acid synthesis, while other isomers are not used as substrate for this pathway 

(Andreou et al., 2009). The effect is even more evident in mammals, where different LOX 

specificities may even have opposite functions. While the activity of 5-LOX leads to the formation 

of proinflammatory leukotrienes, a combination of 15- and 5-LOX or 12- and 5-LOX activity 

results in the synthesis of anti-inflammatory lipoxines (Kühn and O'Donnell, 2006; Steinhilber, 

1999). It is therefore conceivable that numerous studies have focused on the enzymology of 

these important enzymes. 

1.4 The LOX reaction proceeds as a catalytic cycle 

The LOX reaction always proceeds at one of the pentadiene systems of the substrate. During the 

LOX reaction cycle, the catalytic non-heme iron in the active site alternates between the ferric 

Fe(III) and ferrous Fe(II) state. The cycle includes four steps: (1) hydrogen abstraction from the 

middle position of the pentadiene, (2) radical rearrangement within the pentadiene system, (3) 

dioxygen insertion at either end of the five carbon moiety and (4) final reduction of the peroxyl 

radical to yield a hydroperoxide (Ivanov et al., 2010) (Figure 4). 

  

Figure 4. The reaction cycle of the LOX reaction. LOX catalysis is assumed to include four steps: hydrogen abstraction, 
radical rearrangement, oxygen insertion and radical reduction (Ivanov et al., 2010). The numbering of the substrate 
in this model corresponds to linoleic acid used as example. 
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1.4.1 LOX activation 

In the as-isolated state of LOXs, Fe(II) is in general found in the active site. But due to the fact 

that Fe(III) is required for the active state, the enzyme has to be activated first. This activation 

process is catalyzed by reaction products, i.e. fatty acid hydroperoxides, which oxidize the 

inactive Fe(II) to the active Fe(III) cofactor. Thereafter, Fe(III) can catalyze the hydrogen 

abstraction and initiate the catalytic cycle. This activation phase is related to a lag phase usually 

observed at the beginning of the LOX reaction (Aharony and Stein, 1986; Jones et al., 1996; Smith 

and Lands, 1972). 

1.4.2 Hydrogen abstraction and radical rearrangement 

Once the catalytic iron is in its active Fe(III) state, it will abstract a hydrogen atom from the bis-

allylic methylene group of the cis,cis-1,4-pentadiene system (Figure 4, Step 1). This subsequently 

leads to the formation of a carbon-centered radical. Experiments with deuterated substrates 

suggested that the pro-S hydrogen is abstracted in most LOXs (Moiseyev et al., 1997; Rickert and 

Klinman, 1999). It should be noted that this step, which is accompanied by a large kinetic isotope 

effect, is the rate limiting step of this reaction. In fact, the LOX reaction exhibits one of the largest 

isotope effects ever measured. Since the kinetic isotope effect of the pro-S deuterium is larger 

than what can be explained by the classical theory, the effects were interpreted by quantum 

mechanics and hydrogen tunneling was proposed to be the primary mechanism of hydrogen 

transfer (Lewis et al., 1999; Moiseyev et al., 1997; Rickert and Klinman, 1999). During this 

process, hydrogen tunnels first from the substrate to the enzyme and subsequently the electron 

of the hydrogen is transferred to the catalytic iron, thereby reducing it from Fe(III) to Fe(II). The 

sixth ligand of the iron, which is assumed to be a hydroxide (LOX-Fe(III)-OH-), may receive the 

hydrogen from the substrate to form water (LOX-Fe(II)-H2O) (Tomchick et al., 2001). The carbon-

centered radical formed on the middle position of the pentadiene system will rapidly delocalize 

over the pentadiene moiety, due to the conjugation with the double bonds. It will thus be found 

at C1, C3 or C5 of the five carbon structure (Figure 4, Step 2). 

1.4.3 Oxygen insertion and peroxyl radical reduction 

The radical itself is subsequently reactive enough to drive the addition of dioxygen (Figure 4, 

Step 3). A peroxyl radical is formed, similar to the propagation step of the autoxidation (Chapter 

1.2). In general, oxygen is inserted at the n+2 or n-2 position relative to the hydrogen abstraction 

in an antarafacial way (opposite of the hydrogen abstraction) (Figure 5). Although both products 

are formed by addition of oxygen to the same side of the substrate, the R-enantiomer is 

produced in the n-2 position, whereas the S-enantiomer is formed at the n+2 position according 

to the Cahn-Ingold-Prelog priority rules (Figure 5). During dioxygen insertion at the n+2 or n-2 

position, conjugated double bonds are formed. 
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Figure 5. Antarafacial relationship of hydrogen abstraction and dioxygen insertion. Hydrogen abstraction and 
dioxygen insertion occur from different sides of the substrate molecule. 

 

The LOX reaction is assumed to be terminated by proton coupled electron transfer to the peroxyl 

radical (Figure 4, Step 4). The reaction cycle would be complete by transfer of the initially 

abstracted hydrogen from Fe(II)-H2O to the peroxyl radical, thereby recovering the catalytically 

active form Fe(III)-OH- that can abstract a new hydrogen atom from another PUFA molecule 

(Tomchick et al., 2001). 

1.5 The LOX structure is in general composed of two domains 

The first LOX structure being solved was the one of the soybean LOX1 in 1993 (Boyington et al., 

1993) which was later refined to 1.4 Å (Minor et al., 1996). Since then, crystal structures of 12 

different LOX enzymes have been deposited in the Protein Data Bank (PDB). They comprise four 

plant and seven animal enzymes (Supplemental Tables 1-4). The only bacterial structure has 

recently been solved for the Pseudomonas aeruginosa LOX (Garreta et al., 2013). 

LOX enzymes share a common fold and belong to the same gene family, even though the 

sequence homology with only 25-40 % identity is rather low. Plant LOXs have molecular weights 

of 94-104 kDa (Brash, 1999) and are thus remarkably larger than animal LOXs which show 

molecular weights of 75-80 kDa (Funk, 1996). This difference in size can be explained by some 

plant LOX specific loop regions missing in animal LOX enzymes (Newcomer and Brash, 2015). 

LOXs generally consist of two domains: a larger C-terminal catalytic domain and a smaller N-

terminal β-barrel domain (Figure 6A). While the catalytic LOX domain is present in all LOXs, some 

bacterial LOXs exhibit a reduction of the N-terminal domain. The crystal structure of the P. 

aeruginosa LOX for example revealed a lack of the β-barrel domain. Instead, an α-helical 

insertion covers the protein surface that is otherwise shielded by the β-barrel domain (Garreta 

et al., 2013) (Figure 6B). Other fully functional bacterial LOXs from Cyanothece sp. (Andreou et 

al., 2010), Nostoc puntiforme (Koeduka et al., 2007) and Burkholderia thailandensis (An et al., 

2015) were also characterized as so-called mini-LOX lacking the β-barrel domain. Moreover, 

some LOXs from corals or bacteria were described as fusion proteins that carry an N-terminal 

domain with an additional enzymatic activity (Boutaud and Brash, 1999; Gao et al., 2010; Lang 

et al., 2008; Lõhelaid et al., 2008; Zhang et al., 2012; Zheng et al., 2008). 
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Figure 6. LOX structure. (A) Typical two-domain structure of coral 8R-LOX. The C-terminal catalytic domain consisting 
of mainly α-helices is depicted in grey and the N-terminal β-barrel domain in red. The non-heme iron cofactor (orange 
sphere) is buried in the core of the catalytic domain. Ca2+ (green) is bound to the β-barrel domain. (B) Instead of the 
β-barrel domain, a long helical insertion (black) is found in the P. aeruginosa 15-LOX structure. 

1.5.1 The catalytic LOX domain comprises the non-heme iron  

The large catalytic domain is structurally conserved in all LOXs. It consists of ~17 α-helices and 

comprises the active site (Newcomer and Brash, 2015). In the active site of the catalytic domain, 

the 2-His-1-carboxylate facial triade is found as a common structural motif. This motif is 

characteristic for mononuclear non-heme iron enzymes as it is involved in the coordination of 

the metal. Five amino acids including three histidines, an asparagine and the carboxyl group of 

a C-terminal isoleucine are involved in the pseudo octahedral coordination of the catalytic iron 

(Figure 7). In some LOX structures the sixth position is occupied by a water or hydroxide (Minor 

et al., 1996; Segraves et al., 2006; Xu et al., 2012). Only in few mammalian LOXs a forth histidine 

or a serine is found at the position of the asparagine (Supplemental Figure 4). 

 

Figure 7. Coordination of the metal cofactor. The coordination sphere is exemplified on 8R-LOX. (A) The two long 
helices α7 (purple) and α14 (blue) contribute the histidine and asparagine residues of the coordination sphere. (B) 
Iron (orange sphere) is pseudo octahedrally coordinated by three histidines, an asparagine and the carboxyl group of 
the C-terminal isoleucine. The sixth position is assumed to be occupied by a water or hydroxide molecule (small red 
sphere). 
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The conserved histidine and asparagine residues of the coordination sphere are contributed by 

two long helices (α7 and α14) of the catalytic domain (Figure 7A). The carboxyl group of the 

isoleucine at the C-terminus of the peptide chain inserts into the active site to position itself 

properly to the iron (Figure 7B, yellow). Predominantly main-chain to main-chain hydrogen 

bonds are involved in holding the C-terminus in place. In addition, an asparagine residue located 

four amino acids upstream of the C-terminus forms main-chain to main-chain, main-chain to 

side-chain, and side-chain to main-chain hydrogen bonds which explains its high degree of 

conservation. In comparison, the hydrophobic interactions of the isoleucine side chain itself are 

limited and it remains unknown why this residue is almost invariant (Newcomer and Brash, 

2015). 

1.5.2 The N-terminal β-barrel domain probably mediates membrane binding 

Although the fold of the N-terminal domain with about 25-30 kDa rather presents a β-sandwich, 

it is generally referred to as β-barrel domain or PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) 

domain (Chen and Funk, 2001; Hammel et al., 2004; May et al., 2000; Newcomer and Brash, 

2015). This domain exhibits a high similarity to the C2 module of many kinases and 

phospholipases (Corbin et al., 2007) which functions as Ca2+-dependent membrane-targeting 

domain in these enzymes. Due to this similarity, a membrane binding function was also 

proposed for the β-barrel domain of LOXs. Studies on cucumber 13-LOX (May et al., 2000), 

soybean LOX1 (Tatulian et al., 1998) and human LOXs (Kulkarni et al., 2002; Walther et al., 2011) 

supported this idea. Several peripheral tryptophans located at the outer loops of this domain 

were identified to be involved in the membrane interaction in human 5-LOX (Kulkarni et al., 

2002). Furthermore, the crystal structures of coral 8R-LOX (Oldham et al., 2005), 11R-LOX (Eek 

et al., 2012) and 15-LOX2 (Kobe et al., 2014) revealed the Ca2+ binding sites within the β-barrel 

domain (Figure 6A, green spheres). Binding of Ca2+ probably stabilizes loop regions within the β-

barrel domain that may insert into the membrane. Interestingly, the Ca2+-coordinating amino 

acids exhibit only a low degree of conservation and also the putative membrane insertion loops 

differ between LOXs from different organisms (Newcomer and Brash, 2015). Although it was 

shown that this domain mediates membrane binding in 5-LOX and that truncations of this 

domain result in a reduced stability and catalytic activity (Ivanov et al., 2011; Walther et al., 

2011), it is still a matter of debate whether the β-barrel domain has a role in substrate acquisition 

directly from membranes (Hammarberg et al., 2000; Ivanov et al., 2011; Kulkarni et al., 2002; 

Walther et al., 2011). Despite the fact that the P. aeruginosa 15-LOX lacks the β-barrel domain, 

it is nevertheless able to bind to membranes, suggesting that also other parts of the enzyme 

might mediate membrane binding (Garreta et al., 2013). 

  



Introduction 
 

 

8 

1.5.3 Substrate binding channels of LOXs are boot-shaped to U-shaped 

Even though soybean LOX1 was the first enzyme to be crystallized, it did not reveal a well-

defined substrate binding channel to the catalytic iron (Minor et al., 1996). The structure of the 

15-LOX in complex with an inhibitor was subsequently solved in 1998 and led to the model of a 

boot-shaped channel (Gillmor et al., 1998), which was also found in the soybean LOX3 structure 

with the hydroperoxide product (Skrzypczak-Jankun et al., 2001). 

During the last three years, the model of how LOX substrates bind to the active site channel has 

largely been extended due to four crystal structures: the P. aeruginosa LOX in complex with a 

phospholipid (Garreta et al., 2013), the 12-LOX catalytic domain with an inhibitor (Xu et al., 

2012), the human 15-LOX2 with a substrate-like detergent (Kobe et al., 2014) and especially the 

8R-LOX with arachidonic acid obtained under anaerobic conditions (Neau et al., 2014). All of 

these structures reveal a U-shaped channel that is open at one end, which most likely represents 

the entrance to the channel, and closed at the other end, where the bottom of the pocket is 

formed. The catalytic iron is positioned at the base of the U-shaped channel (Figure 8). The 

channel is surrounded by a four-helix bundle (Newcomer and Brash, 2015). The bundle is 

composed of the two long helices that contribute the iron-coordinating residues to the active 

site and to the other side of the penultimate helix and helix α8 (Figure 8A). Of these, helix α8 

exhibits an unusual curvature and is therefore referred to as “arched helix” (Gilbert et al., 2011; 

Ivanov et al., 2010; Neau et al., 2009). In addition to the iron-coordinating residues, a leucine 

and an isoleucine residue were found to be invariant in the LOX active site (Leu431 and Ile437 

in the coral 8R-LOX) and were proposed to position the pentadiene for catalysis (Neau et al., 

2014) (Figure 8B). The side chain of Arg182 located at the entrance to the channel is interacting 

with the fatty acid carboxylate in the 8R-LOX structure (Figure 8B). Although it plays an 

important role in positioning of the substrate and the Arg182Ala exchange causes a strong 

substrate inhibition (Neau et al., 2014), this residue is not conserved in other LOX orthologs 

(Newcomer and Brash, 2015). 
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Figure 8. Substrate binding channel and putative oxygen channel in 8R-LOX. (A) Four helices of the catalytic core 
surround the active site: helix α7 (red), α14 (blue), the penultimate helix (light green) and the so-called arched helix 
(dark green). The arched helix separates the substrate channel from the putative oxygen channel. (B) Position of 
important amino acid residues in the 8R-LOX active site. Their role for catalysis is explained in the text. 

1.5.4 Dioxygen transport to the active site may involve a separate oxygen channel 

Since molecular oxygen is the second substrate of LOX enzymes, structural studies have also 

focused on putative oxygen transport pathways to the active site. A putative oxygen channel 

was first described for the soybean LOX1 (Knapp et al., 2001; Knapp and Klinman, 2003; Minor 

et al., 1996). Furthermore, a leucine residue was identified for regulating the oxygen transport 

to the active site in 15-LOX using a computational approach (Saam et al., 2007). This residue 

(Leu390 in 8R-LOX) is invariant and was proposed to help define the oxygen channel together 

with Leu385 of 8R-LOX (Figure 8B). In plants, a Trp-Ala pair was found at these two positions, 

which may also play a role in defining the oxygen channel (Newcomer and Brash, 2015). 

Although the putative oxygen channel found in 8R-LOX (Figure 8) is also present in other LOXs, 

it not always reaches the surface of the protein (Newcomer and Brash, 2015). Direct 

experimental evidence for the existence of such an oxygen channel is still missing. However, the 

positional relationship of the iron cofactor and oxygen channel which are located on opposite 

sides of the substrate would nicely explain the antarafacial character of the LOX reaction (Neau 

et al., 2014). 

1.6 Control of oxygenation specificity by LOXs is based on three models 

As pointed out before, the LOX reaction initiates, controls and terminates the free radical 

reaction also observed for autoxidation (Chapter 1.2 and 1.4). But while autoxidation results in 

a mixture of different products, a single product with high regio- and stereospecificity is formed 

by LOXs. There are LOX enzymes known that catalyze the specific insertion of molecular oxygen 

at three of the four possible positions on linoleic acid (9R, 9S, 13S) (Andreou et al., 2009) and on 
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10 of the 12 possible positions on arachidonic acid (5R, 5S, 8R, 8S, 9R, 11R, 11S, 12R, 12S and 

15S) (Hada et al., 1997; Ivanov et al., 2010; Mortimer et al., 2006) (Figure 9). 

 

Figure 9. Products of arachidonic acid oxidation. Arachidonic acid contains three pentadiene systems. On each 
pentadiene system, four different products can be formed by autoxidation (grouped by colors). LOXs which are 
specific for each of the theoretical positions have been identified, except for 12S and 15R (Newcomer and Brash, 
2015). 

 

The specificity for a single chiral product is also reflected in the nomenclature of the enzymes. 

Mammalian 8R-LOXs for example insert molecular oxygen at position 8 of arachidonic acid in an 

R-conformation, while plant 13S-LOXs insert oxygen at position 13 of linoleic acid in an S-

conformation. Based on structural data and mutational studies, different concepts were 

proposed that explain the LOX specificity. They include (A) the alignment of one selected 

pentadiene system to the catalytic iron, (B) selection of the side of the fatty acid for reaction by 

altering the orientation of the substrate and (C) accessibility of oxygen to the ends of the 

pentadiene system (Figure 10). 

1.6.1 Selection of a specific pentadiene is achieved by frame shift of the substrate 

In substrates containing more than one pentadiene system, like α-linolenic acid (18:3(n-3)) or 

arachidonic acid (20:4(n-3)) (Figure 1), hydrogen can be abstracted from more than one 

pentadiene system. The selection of a specific hydrogen atom for abstraction is assumed to be 

a result of the depth of the substrate binding channel. Depending on how deep the substrate 

can slide into the channel, a specific pentadiene will be exposed to the iron for attack (Kühn et 

al., 1990). This “frame-shift” of the fatty acid substrate can for example explain the difference 

of 12S and 15S-lipoxygenation on arachidonic acid (Sloane et al., 1991) (Figure 10A). The model 

is strongly supported by experiments with artificial fatty acids that contain frame-shifted double 

bonds (Kühn et al., 1990). Furthermore, exchanging conserved differences between arachidonic 

acid 15S-LOX (Ile-Met) and 12S-LOX (Val-Ala) also exchanged the specificity (Sloane et al., 1991). 

It was later confirmed that these critical amino acids are located at the bottom of the substrate 

binding pocket, thereby defining the depth of the channel (Kühn, 2000). 
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Figure 10. Conceptual basis of LOX specificity. (A) Frame-shift of the fatty acid substrate. Depending on the depth of 
the substrate binding channel a certain pentadiene system is exposed to the catalytic iron for hydrogen abstraction. 
The depth is influenced by the size of two residues (blue) at the bottom of the pocket (Sloane et al., 1991). (B) 
Orientation of the substrate. If the substrate enters the channel methyl end first (tail-first), the pro-S hydrogen is 
abstracted, whereas the pro-R hydrogen is abstracted if the carboxyl group of the substrate enters first (Egmond et 
al., 1972). (C) Determination of the oxygen insertion at one end of the pentadiene. A glycine at the conserved position 
(green) in the active site is associated with R-specific LOXs, while an alanine is assumed to shield this position and is 
thus associated with S-specific LOXs. This position functions as a “switch” to direct oxygen to one or the other end on 
the pentadiene system, thereby switching the R/S specificity (Coffa and Brash, 2004). 
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1.6.2 The substrate orientation determines the stereospecificity of the hydrogen 

abstraction 

While substrate binding with the nonpolar methyl end first (“tail-first”) has always been well 

accepted, the reversed orientation in which the carboxyl end enters the channel first (“head-

first”) appeared more challenging due to the charge of the head group that would need to move 

through the long hydrophobic channel (Browner et al., 1998; Coffa et al., 2005a). Such a reversed 

substrate orientation was first concluded from the finding that 9S-LOXs and 13S-LOXs abstract 

hydrogen from different faces of the substrate: while 13S-LOXs abstract the pro-S hydrogen, 9S-

LOXs abstract the pro-R hydrogen from C11 of linoleic acid (Egmond et al., 1972). Since the 

positions for 9S and 13S-hydroperoxides are also on different faces of the substrate, the 

antarafacial rule still holds true (Figure 10B). In fact, the positional relation between the 

hydrogen abstraction on the one side and the oxygen insertion at a deeper point in the channel 

on the other side is equivalent in both cases (Figure 10B). While this model was initially 

established for plant LOXs, the reversed binding of the substrate is also the only logical 

explanation for animal 5S, 8S and 12R oxygenation specificities (Coffa et al., 2005a). A positively 

charged amino acid residue at the bottom of the substrate pocket in plant LOXs was discussed 

to be involved in the stabilization of the carboxyl group at the bottom of the substrate binding 

channel (Hornung et al., 1999). However, it was argued that free fatty acids which usually have 

a pKa of pH 7-8 (Glickman and Klinman, 1995) would be uncharged at the optimal pH (~pH 6) of 

many LOXs with proposed carboxyl-end first binding (Butovich et al., 1998; Coffa et al., 2005b; 

Schneider et al., 2001). 

1.6.3 The Gly/Ala switch controls the oxygen access to one end of the pentadiene 

The two previously described concepts focus on the proper positioning of the pentadiene 

towards the iron. The positional relation of hydrogen abstraction and oxygen insertion remains 

unchanged in these models (Figure 10A and B). The concept developed by Coffa and colleagues 

(Coffa and Brash, 2004) directly addresses the question how oxygen is specifically inserted at 

one end or the other of the reacting pentadiene. Whether oxygen is inserted at the n+2 or the 

n-2 position relative to the hydrogen abstraction also determines the stereospecificity of the 

product (Figure 5). Thus, abstraction of the same stereospecific pro-S hydrogen of linoleic acid 

leads to 9R- and 13S-specific oxygen insertion, while abstraction of the pro-R hydrogen in a 

reversed orientation results in 9S- or 13R-specific products. A conserved residue in the active 

site which is occupied by an alanine in S-specific LOXs and a glycine in R-specific LOXs was 

identified. Exchanging this residue for the respective counterpart also switched the R/S 

specificity by insertion of oxygen at the other end of the pentadiene system (Coffa and Brash, 

2004) (Figure 10). Structural analysis later revealed that this position might sterically shield one 

end of the pentadiene system in case of an alanine, thus directing dioxygen to the other end 

(Knapp et al., 2001; Knapp and Klinman, 2003; Saam et al., 2007; Schneider et al., 2007). 
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1.7 Manganese LOXs produce bis-allylic hydroperoxides 

In addition to iron-containing LOXs, some fungal enzymes were characterized as manganese-

containing LOXs (MnLOXs). These MnLOXs include the 13R-MnLOX from Gaeumannomyces 

graminis (Su and Oliw, 1998), 9S-MnLOX from Magnaporte salvinii (Wennman and Oliw, 2013), 

Fo-MnLOX from Fusarium oxysporum and Cg-MnLOX from Colletotrichum gleosporioides 

(Wennman et al., 2015). Of all characterized MnLOXs, 13R-MnLOX is clearly the best studied 

enzyme. The manganese cofactor is assumed to catalyze the abstraction of the hydrogen atom 

similar to iron. Electron paramagnetic resonance (EPR) spectropscopy on MnLOXs further 

revealed that the manganese cofactor cycles between Mn(II) and Mn(III), in analogy to Fe(II) and 

Fe(III) in FeLOXs (Su et al., 2000). Although a crystal structure is not available yet, an octahedral 

coordination was also proposed for the manganese cofactor, since the amino acid residues of 

the coordination sphere are largely conserved. Only the C-terminal isoleucine is replaced by a 

valine residue in some MnLOXs (Supplemental Figure 4). However, not only the cofactor differs 

in MnLOXs, but also the specificity of the reaction. Most importantly, the antarafacial rule does 

not apply to MnLOXs. Instead, a suprafacial reaction was proposed in which the hydrogen 

abstraction and oxygen insertion must occur at the same side of the substrate (Hamberg et al., 

1998). Mutational studies later suggested that Phe337 might be a determinant for the 

suprafacial reaction. Accordingly, replacement of this residue by an isoleucine resulted in a 

substantial decrease of catalytic activity, but also in an antarafacial hydrogen abstraction and 

oxygen insertion (Wennman et al., 2012). Additionally, Mn-LOXs can catalyze the oxygen 

insertion at the middle position of the pentadiene system, thus producing bis-allylic 

hydroperoxides that do not contain conjugated double bonds (Figure 11). On linoleic acid for 

instance, molecular oxygen is inserted at C11 to produce the bis-allylic 11S-hydroperoxy 

octadecadienoic acid (11S-HPODE). The formed 11S-HPODE is further isomerized to 13R-HPODE 

by MnLOX (Figure 11). This isomerization reaction is proposed to be catalyzed via deoxygenation 

and subsequent reoxygenation (Hamberg et al., 1998; Oliw et al., 2011). 

1.8 Bis-allylic hydroperoxides are also formed by an iron-containing LOX 

Although the formation of the bis-allylic product initially seemed to be restricted to MnLOXs, 

this assumption was disproved when CspLOX2 was characterized in 2010 (Andreou et al., 2010). 

This enzyme originates from the diazotrophic and unicellular bacterium Cyanothece sp. 

PCC8801, which harbors two LOX encoding genes, csplox1 and csplox2. Of these, csplox2 

encodes for a LOX that was shown to produce the bis-allylic 11-HPODE as a major product of 

linoleic acid (Andreou et al., 2010). But in contrast to manganese-containing LOXs, the enzyme 

contains iron in the active site like prototypical LOXs from animals and plants. Furthermore, the 

reaction occurs in an antarafacial way and thus the R-isomer of 11-HPODE is formed after 

abstraction of the pro-S hydrogen (Figure 11). In fact, also the iron-containing 8R-LOX from P. 

homomalla has been shown to produce minor amounts (~5 %) of the bis-allylic 10-hydroperoxy 
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eicosatetraenoic acid (10-HETE) from arachidonic acid (Boutaud and Brash, 1999). Therefore, 

the metal cofactor is probably not the crucial determinant for the formation of the bis-allylic 

product, but rather unknown steric factors were suggested to direct oxygen to the middle 

position of the pentadiene moiety (Andreou et al., 2010). 

 

Figure 11. Scheme of the formation and isomerization of the bis-allylic 11-HPODE by MnLOXs and CspLOX2. While 
Mn-LOXs catalyze the hydrogen abstraction and oxygen insertion at the same side of the substrate (suprafacial), 
CspLOX2 inserts dioxygen on the opposite side (antarafacial). In this scheme, only the reacting pentadiene system of 
linoleic acid is shown. 
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1.9 Theoretical concepts for specific oxygenation on one pentadiene 

As pointed out before, the proposed frame-shift and orientation models (Figure 10A and B) 

explain how a certain stereospecific hydrogen is targeted for abstraction (Egmond et al., 1972; 

Sloane et al., 1991). Nevertheless, information is still scarce for explaining how dioxygen can be 

inserted at different positions after abstraction of the same hydrogen atom. So far only the 

Gly/Ala switch (Figure 10C) provides a conceptual basis for directing the oxygen to different ends 

of the pentadiene after abstraction of the same hydrogen atom (Coffa and Brash, 2004). In the 

described model the switch only occurs between two positions on the pentadiene, while there 

are theoretically six reactive positions available for oxygen insertion if the bis-allylic ones are 

included. How the selection of one stereospecific product is achieved is still a matter of 

discussion. 

Different theoretical mechanisms were considered for COX and LOX enzymes (Schneider et al., 

2007). Both types of enzymes face similar challenges after hydrogen abstraction and use a 

similar chemistry in the dioxygenation of the fatty acid which is comparable to lipid autoxidation 

(Chapter 1.2). It should be noted that there is no evidence that oxygen binds covalently to the 

enzyme for example as Fe-O2 or Fe-OOH in LOXs. However, since free radical chemistry is 

involved, oxygen binding or activation is probably not necessary. Once the pentadienyl radical is 

formed, there is basically no energy barrier for the addition of molecular oxygen (Porter et al., 

1995). This leaves the question open how such a specific oxygenation can be achieved. 

When a carbon radical freely reacts with molecular oxygen, a peroxyl radical is formed. From 

free radical chemistry it is known that such peroxyl radicals can flip off and on the activated fatty 

acid. This reversible process is called “β-fragmentation” since the bond which is prone to break 

is found in the β-position to the radical center (Figure 12). The off reaction can be very fast, 

depending on the position of the oxygen addition. Peroxyl radicals at the end positions are 

considered to be rather stable with half-lives of milliseconds to seconds (Marnett, 1987; Roschek 

et al., 2006), whereas the off rate is about 4000 times faster at the bis-allylic position (>2 x  

106 s-1) (Brash, 2000; Kitaguchi et al., 2005; Tallman et al., 2001). Hence, it is very difficult to trap 

the peroxyl radical at the middle position to form a bis-allylic hydroperoxide end-product. The 

reduction of the peroxyl radical by an appropriate hydrogen atom donor or an electron donor 

finally terminates the radical reaction. The availability and proper positioning of such a 

hydrogen/electron donor could thus influence the specificity of LOXs. 

 

Figure 12. Reversibility of fatty acid peroxidation. Oxygen can flip off the activated fatty acid in a process called β-
fragmentation. Addition of dioxygen to fatty acid radicals is therefore assumed to be reversible (Brash, 2000; 
Tallman et al., 2001). 



Introduction 
 

 

16 

Based on these considerations, four potential mechanisms for oxygenation control were 

suggested by Schneider and colleagues which include (A) steric shielding, (B) oxygen channeling, 

(C) selective peroxyl radical trapping and (D) radical localization (Schneider et al., 2007) (Figure 

13). Although these models present different concepts of oxygenation control, they may actually 

operate together and are not exclusive. 

 

 

Figure 13. Four concepts of oxygenation control (Schneider et al., 2007). (A) Steric shielding by the surrounding amino 
acids might limit the oxygen access to the pentadiene, leaving only one position available. (B) An oxygen channel 
might transport oxygen directly to one specific position on the pentadiene. (C) A suitable hydrogen donor of the amino 
acid environment might trap the peroxyl radical, thereby preventing β-fragmentation at this position. (D) Torsions of 
the pentadienyl radical might lead to localization of the radical at one end of the pentadiene. This may result in oxygen 
insertion at this position. 

 

A) Steric shielding can control the oxygen access to the reacting pentadiene by a tight 

binding in the active site (Figure 13A). Only one possible position of the pentadiene 

would be accessible to oxygen while all other positions would need to be blocked by the 

environment of the active site. Pockets in which oxygen may preferentially reside due 

to sufficient space or an increased solubility in hydrophobic environments may also play 

a role. It is almost certain that steric shielding is involved in controlling oxygenation, but 

it is not clear whether it is the sole mechanism (Schneider et al., 2007). 

B) The existence of an oxygen channel that directs molecular oxygen precisely to one 

position and side of the activated fatty acid would be another option (Figure 13B). 

Although direct evidence is still missing, oxygen channels were proposed from the 

crystal structures of some LOXs as shown before (Figure 8). However, small oxygen 
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molecules could in principle also enter through the substrate binding channel which also 

provides a hydrophobic environment (Schneider 2007). 

C) The concept of selective peroxyl radical trapping is based on the assumption that the 

oxygenation specificity of the enzyme is not dependent on the oxygen addition, but 

trapping of the peroxyl radical (Figure 13C). Due to the reversibility of the oxygen 

addition (β-fragmentation, Figure 12), trapping could prevent further on-off reactions 

of dioxygen. This would require a favorable positioning of a hydrogen atom donor to 

selectively trap peroxyl radicals at one position (Schneider et al., 2007). 

D) The fourth model explains the specificity of the oxygen insertion through radical 

localization (Figure 13D). During autoxidation, the pentadienyl radical would adopt a 

planar structure since this displays the conformation of lowest energy. In a planar 

system, the radical can delocalize over all five carbon atoms. However, if the pentadiene 

is twisted out of plane by external forces, the unpaired electron becomes localized. 

Radical localization is well known from free radical chemistry, in which the pentadiene 

can be twisted out of plane by bulky substituents (Regenstein and Berndt, 1974; 

Schreiner and Berndt, 1974). This concept could in principle affect both, the regio- and 

stereospecificity of the oxygenation (Schneider et al., 2007). 

1.10 Cyanothece sp. harbors two LOX genes 

The two LOXs from Cyanothece sp., CspLOX1 and CspLOX2, were identified by sequence 

alignments and have been heterologously expressed in E. coli by Dr. Alexandra Andreou 

(Andreou et al., 2010; Newie et al., 2015). The only endogenous PUFA of Cyanothece sp. that 

could serve as potential LOX substrate is linoleic acid. Other PUFAs like α-linolenic acid or 

arachidonic acid were not found in the fatty acid profile of Cyanothece sp. (Andreou et al., 2010). 

An initial biochemical characterization of both LOXs by Dr. Andreou revealed that CspLOX1 

converts linoleic acid to 9R-HPODE and is therefore a 9R-LOX (Newie et al., 2015) while CspLOX2 

is able to form the bis-allylic 11-HPODE and isomerize it to conjugated HPODEs (Andreou et al., 

2010) (Figure 11). Both enzymes can insert dioxygen into phospholipids with bulky head groups. 

Therefore, a tail-first substrate orientation was proposed (Andreou et al., 2010; Newie et al., 

2015). The crystal structures of both enzymes were solved by Dr. Piotr Neumann (Department 

of Molecular Structural Biology, University of Göttingen, Germany) before the beginning of this 

study. CspLOX1 was crystallized by Dr. Andreou and CspLOX2 was crystalized in own work. 

Despite a general biochemical characterization, both enzymes left open questions. The N-

terminal part of CspLOX1 for example exhibits a novel domain structure, but it was not clear 

whether it may fulfill a biological function. Furthermore, the question how a bis-allylic product 

can be formed by CspLOX2, while other iron-containing LOXs do not produce this product was 

still open. 
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1.11 Aim of this study 

The aim of this study was the detailed functional and structural characterization of both LOXs 

from Cyanothece sp. PCC8801, named CspLOX1 and CspLOX2. On the basis of the recently solved 

crystal structures of both enzymes, the contribution of different domains to a membrane 

binding function was analyzed in liposome assays with truncated versions of CspLOX1. 

Membrane binding domains of LOXs are particularly interesting as they might be involved in 

substrate acquisition directly from membranes. 

Additionally, the CspLOX2 specificity for bis-allylic hydroperoxides was studied. First of all, the 

CspLOX2 reaction was analyzed in comparison to MnLOXs, as bis-allylic hydroperoxides have 

only been characterized as major products of MnLOXs and the iron-containing CspLOX2. It was 

therefore interesting to investigate the role of the metal cofactor in the active site by 

substitution of the iron cofactor of CspLOX2 with manganese and by EPR spectroscopy. Besides 

that, the main focus was to find a molecular basis for the formation of the bis-allylic 11-HPODE. 

The CspLOX2 crystal structure which is the first of a LOX with bis-allylic products allowed to 

address this question. Therefore, amino acids in the environment of the active site were 

exchanged and the effects on the oxygenation specificity were analyzed. To identify a conceptual 

basis, four different hypotheses were considered which are based on the models of Schneider 

and colleagues (Schneider et al., 2007). They include steric shielding, a specific oxygen channel, 

radical localization and peroxyl radical trapping as explanations for the formation of a bis-allylic 

product. In addition to biochemical data, a computational approach was applied to evaluate the 

relevance of these concepts for 11-HPODE formation by CspLOX2. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Chemicals 

All chemicals and solvents were obtained from Sigma-Aldrich (Munich, Germany) and Carl Roth 

& Co. (Karlsruhe, Germany) unless stated otherwise. Agarose was from Biozym Scientific GmbH 

(Hessisch Oldendorf, Germany). Fatty acids were purchased from Sigma-Aldrich (Munich, 

Germany), Cayman (Ann Harbor, Great Britain) or Larodan (Linhamn, Sweden). HPLC-grade 

methanol, hexane and acetonitrile were from Acros Organics (Fisher Scientific, Waltham, MA, 

USA). 

2.1.2 Equipment 

Table 1. Machines and systems used in this study. 
 

Machine or system Manufacturer 

1100 Series HPLC System Agilent Technologies, Santa Clara, CA, USA 
ÄKTA-FPLC GE Healthcare, Chalfont St Giles, UK 
ÄKTAprime plus GE Healthcare, Chalfont St Giles, UK 
CARY 100 Bio UV‐vis Spectrophotometer Varian Inc., Paolo Alto, CA, USA 
Centrifuge 5417 R Eppendorf, Hamburg, Germany 
Centrifuge 5810 R Eppendorf, Hamburg, Germany 
Diana documentation system Raytest, Straubenhardt, Germany 
Elexsys E500 CW-EPR spectrometer Bruker Biospin, Rheinstetten, Germany 
Fluidizer Microfluidics, Newton, MA, USA 
Helium cryostat Oxford Instruments, Abington, UK 
IDA gel documentation system Raytest, Straubenhardt, Germany 
Lyophilizer Leybold-Heraeus GmbH, Cologne, Germany 
MAR345 image plate detector Mar Research GmbH, Norderstedt, Germany 
Mastercycler gradient Eppendorf, Hamburg, Germany 
Mastercycler personal Eppendorf, Hamburg, Germany 
MicroMax 007 Rigaku, Tokio, Japan 
Mini‐PROTEAN3 Electrophoresis System Bio‐Rad, Hercules, CA, USA 
Nanodrop 2000c Thermo Fisher Scientific, Waltham, MA, USA 
Optima 5500 DV Perkin Elmer Precisely, Waltham, MA, USA 
Oxygraph Plus System Hansatech Instruments, Norfolk, UK 
Sonifier Cell Disruptor B15 Branson, Danbury, CT, USA 
Sterile bench Prettl Telstar Bio II A Telstar, Woerden, Netherlands 
UHPLC 1290 Infinity Agilent Technologies, Santa Clara, CA, USA 
UV‐table 312 nm Raytest, Straubenhardt, Germany 
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2.1.1 Kits, enzymes and commercial reagents 

Table 2. Commercial kits and reagents used in this study. 
 

Kit, enzyme or marker Manufacturer 

CloneJET PCR cloning kit Thermo Fisher Scientific, Waltham, MA, USA 
GeneRuler 1kb DNA ladder Thermo Fisher Scientific, Waltham, MA, USA 
Nucleospin extraction kit Macherey Nagel, Düren, Germany 
Nucleospin plasmid kit Macherey Nagel, Düren, Germany 
Pfu polymerase Thermo Fisher Scientific, Waltham, MA, USA 
Phusion polymerase NEB, Ipswich, MA, USA 
Protein molecular weight marker Thermo Fisher Scientific, Waltham, MA, USA 
Quick-Change mutagenesis Kit Agilent Technologies, Santa Clara, CA, USA 
Restriction endonucleases Thermo Fisher Scientific, Waltham, MA, USA 
T4 DNA ligase Thermo Fisher Scientific, Waltham, MA, USA 

2.1.2 Data analysis and presentation 

For data analysis, statistics and visualization, different programs and tools were used which are 

listed in Table 3. 

Table 3. Programs used in this study. 
 

Name Purpose Reference/Manufacturer 

APBS 
Generation of surface potential 
maps 

Baker et al., 2001 

Caver plugin for 
PyMOL 

Analysis of protein tunnels CaverSoft s.r.o., Czech Republic 

CCP4 suite Analysis of 3D-structures Winn et al., 2011 

Chemdraw 
Preparation of 2D images of small 
molecules 

CambridgeSoft, Waltham, MA, 
USA 

Chemstation Analysis of HPLC data 
Agilent Technologies, Santa Clara, 
CA, USA 

Coot 
3D-modeling, overlays of protein 
structures 

Emsley et al., 2010 

Excel Data analysis, statistics Microsoft, Redmond, WA, USA 

Geneious 
Preparation of cloning strategies 
and phylogenetic trees 

Kearse et al., 2012 

Illustrator Preparation of all illustrations Adobe, San José, CA, USA 

Mass Hunter 
B05.01 

Acquisition and evaluation of 
UHPLC QTOF MS data 

Agilent Technologies, Santa Clara, 
CA, USA 

OriginPro 
Data analysis, preparation of 
diagrams 

OriginLab, Northampton, MA 
USA 

Phaser Molecular Replacement McCoy et al., 2007 

Phenix  Structure refinement Adams et al., 2010 

Photoshop Preparation of images Adobe, San José, CA, USA 
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ProtParam 
Determination of protein 
parameters 

Walker, 2005 

PyMOL Visualization of protein structures 
DeLano Scientific LLC, 
(Schrödinger) 

Xcalibur Analysis of GC-MS data 
Thermo Scientific, Wilmington, 
DE, USA 

XDS 
Indexing and integration of X-ray 
diffraction data 

Kabsch, 2010 

   

2.1.3 Media 

The media used for cultivation of Escherichia coli are listed below: 

Lysogeny Broth (LB) medium (Bertani, 1951) 

Trypone 10 g 
Yeast extract 5 g 
NaCl 5 g 

 Add H2O to 1 l 
  

The medium was autoclaved at 120 °C for 20 min. For LB agar plates, 1.5% (w/v) agar was added 

before autoclaving and the medium was chilled to about 60 °C, before adding the appropriate 

antibiotic and preparation of the plates. 

 

ZYP-5052 rich medium for auto-induction (Studier, 2005) 

ZY ~928 ml 
1M MgSO4 1 ml 
1000x metals mix 1 ml 
50x 5052 20 ml 
20x NPS 50 ml 

 1 l final volume 
  
  

PA-5052 defined medium for auto-induction (Studier, 2005) 

Sterile water ~900 ml 
1M MgSO4 1 ml 
50x 5052 20 ml 
20x NPS 50 ml 
Methionine (25 mg/ml) 8 ml 
17 amino acids (each 10 mg/ml) 20 ml 

 1 l final volume 
  

The PA-5052 defined medium was supplemented with 50 µM FeCl2 or MnCl2 in order to obtain 

an iron- or manganese-containing version of CspLOX2. 

For the auto-induction media these stock solutions had to be prepared individually and 

autoclaved for 20 min at 120 °C: 
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ZY 

N-Z-amine AS 10 g 
Yeast extract 5 g 

 Add 925 ml H2O  
20x NPS 

(NH4)2SO4 66 g  
KH2PO4 136 g  
Na2HPO4 142 g  

 Add 900 ml H2O   
   

50x 5052 

Glycerol 250 g 
Glucose 25 g 
α-lactose 100 g 

 Add 730 ml H2O 
  

1000x metals mix 

The stock solutions of the individual metals were autoclaved individually, except for 0.1 M FeCl3 

which was dissolved in 0.1 M HCl. 

Sterile H2O 36 ml 

0.1 M FeCl3·6H2O (in 0.1 M HCl) 50 ml 
1 M CaCl2 2 ml 
1 M MnCl2·4H2O 1 ml 
1 M ZnSO4·7H2O 1 ml 
0.2 M CoCl2·6H2O 1 ml 
0.1 M CuCl2·2H2O 2 ml 
0.2 M NiCl2·6H2O 1 ml 
0.1 M Na2MoO4·5H2O 2 ml 
0.1 M Na2SeO3·5H2O 2 ml 
0.1 M H3BO3 2 ml 
  

17 amino acids (10 ml/ml) 

To 90 ml water in a beaker on a magnetic stirrer, 1 g each of the following 17 amino acids was 

added in this order: Na-Glu, Asp, Lys-HCl, Arg-HCl, His-HCl, Ala, Pro, Gly, Thr, Ser, Gln, Asn, Val, 

Leu, Ile, Phe, Trp. The solution was sterilized by filtration (40 µm pore size) and stored at 4 °C. 

Antibiotics 

Depending on the antibiotic resistance of the bacteria, the media were supplemented with 

different antibiotics for selection. The final concentrations were as follows: 

Carbenicillin 100 µg/ml 
Kanamycin 25 µg/ml 
Chloramphenicol 34 µg/ml 
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2.1.4 Strains and vectors 

Vectors and E. coli strains are shown with their relevant features in Table 4 and Table 5. 

Table 4. Strains used in this study. 

 

Table 5. Vectors used in this study. 

LOX genes were cloned into pET28a in a way that the hexahistidine Tag (6xHis-Tag) is fused to 

the N-terminal part of the protein. 

2.2 Molecular biology methods 

If not mentioned otherwise, all molecular and microbiological methods were performed as 

described by Ausubel et al., 1993 or Sambrook et al., 1989. 

2.2.1 Plasmid DNA isolation 

Plasmid DNA was isolated with the commercially available NucleoSpin Plasmid-Kit (Macherey-

Nagel, Düren, Germany) following the provided protocol. Overnight cultures of the cells 

containing the target plasmid were cultivated at 37 °C in 4 ml LB medium. The isolation process 

is based on alkaline lysis (Bimboim and Doly, 1979) which causes denaturation of both 

chromosomal and plasmid DNA. After acidification, plasmid DNA is renatured, but not 

chromosomal DNA which is subsequently precipitated by centrifugation. The target plasmid is 

bound to the silica matrix and can finally be eluted after washing. The isolated plasmid DNA was 

used for sequencing, site-directed mutagenesis, DNA restriction or transformation. 

2.2.2 Preparation of chemically competent E. coli cells and transformation of 

plasmid DNA 

For the preparation of chemically competent E. coli cells (Inoue et al., 1990), 500 ml LB medium 

were inoculated with 5-10 colonies from a LB plate and distributed to four 1 l flasks. The cultures 

Organism 
and strain 

Genotype Supplier 

E. coli 
XL1-Blue 

endA1 gyrA96(nalR) thi‐1 recA1 relA1 lac glnV44     
F'[ ::Tn10 proAB+ lacIq Δ(lacZ)M15] hsdR17(rK‐ mK+) 

Agilent (Santa Clara, CA, 
USA)  

E. coli 
BL21 Star 
(DE3) 

F- ompT hsdSB (rB-mB-) gal dcm rne131 (DE3) Thermo Fisher Scientific 
(Waltham, MA, USA) 

Vector Purpose Important features Supplier 

pJET2.1/blunt Cloning vector Ampicillin resistance 
Thermo Fisher Scientific 
(Waltham, MA, USA) 

pET28a Expression vector 
Kanamycin resistance,  
T7 promoter 

Novagen (Darmstadt, 
Deutschland) 
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were incubated at 37 °C for 2 h under shaking and subsequently transferred to 20-25 °C. When 

an OD600 of 0.45-0.75 was reached, the cells were transferred to sterile 50 ml tubes and 

incubated on ice for 10 min. After sedimentation of the cells by centrifugation at 4° C for 10 min 

at 1000 g, the medium was discarded completely and the cell pellet was resuspended in 16 ml 

ice cold TFB buffer (10 mM PIPES, 15 mM CaCl2, 250 mM KCl, 55 mM MnCl2, pH 6.7) per 50 ml 

tube. The incubation on ice and centrifugation was repeated. Finally, all sedimented cells were 

carefully resuspended in a total volume of 20 ml TFB buffer. A volume of 3 ml dimethyl sulfoxide 

was added as cryoprotectant. After another incubation for 10 min on ice, the chemically 

competent cells were distributed to aliquots (200-500 µl), frozen in liquid nitrogen and stored 

at -80 °C. 

For transformation of plasmid DNA, the competent cells were carefully thawed on ice and mixed 

with 1-10 µl DNA per 100 µl of cells. After an incubation for 20 min on ice, a heat shock was 

performed at 42 °C for 1 min (Mandel and Higa, 1970). After brief chilling of the transformed 

cells on ice, 900 µl LB was added and the cells were allowed to recover for 1 h at 37 °C while 

shaking. The cells were collected by centrifugation for 1 min at 4000 g and the supernatant was 

discarded. The cells were resuspended in the residual drop and spread on selective LB agar 

plates containing the appropriate antibiotic. 

2.2.3 Amplification of DNA fragments by polymerase chain reaction 

Polymerase chain reaction (PCR) is an efficient technique to selectively amplify a specific part of 

a double stranded DNA in vitro (Mullis et al., 1992). First, the double stranded DNA is denatured 

into single strands at temperatures around 95 °C. Sequence specific single stranded primers then 

bind to their complementary sequences in the denatured DNA at lower temperatures (~55 °C). 

Elongation of the primers is then catalyzed in 5’ to 3’ direction by a DNA-polymerase. Using 

thermostable enzymes allows a cycling of this reaction and hence an exponential amplification 

of the DNA fragment located between both primers. 

Colony PCR 

This PCR technique allows a quick analysis of recombinant clones grown on selective agar plates 

(Woodman, 2008). A very small amount of cell material is transferred from a single colony to a 

PCR vial. The selected colonies were marked and transferred to a fresh selective agar plate. 

During the initial denaturation, cells are disrupted and the DNA becomes accessible for 

amplification. A PCR mix was prepared on ice as follows and added to the cells. 

1 µl forward primer (10 µM) 
1 µl reverse primer (10 µM) 
1 µl dNTPs (10 µM each) 
4 µl GoTaq polymerase buffer 

0.1 µl GoTaq polymerase (Promega, Fitchburg, USA) 
18 µl H2O 

25 µl Final volume 



Materials and Methods 
 

 

25 

For amplification of the DNA fragment, a thermal cycler (Mastercycler Personal, Eppendorf, 

Hamburg, Germany) was used with the following program, whereby cycling was performed from 

the denaturation to the elongation step: 

Initial denaturation 5 min 95 °C  

Denaturation 30 s 95 °C  
Primer annealing 30 s 55 °C 30 cycles 
Elongation 1 min/kb 72 °C  

Final Elongation 10 min 72 °C  

Truncation of genes 

In order to create truncated versions of LOX genes, primers were designed to bind to the edges 

of the desired fragment. In addition to the complementary sequence, short overhangs with 

suitable restriction sites were added to the 3’ and 5’ end to allow a cloning into pET28a later on. 

The PCR reaction was prepared as follows: 

1 µl plasmid DNA 
1 µl forward primer (10 µM) 
1 µl reverse primer (10 µM) 
1 µl dNTPs (10 µM each) 

10 µl 5x HF buffer 
0.5 µl Phusion polymerase (NEB, Ipswich, MA, USA) 

35.5 µl H2O 

50 µl Final volume 
  

The DNA fragment was amplified with the following PCR program: 

Initial denaturation 30 s 98 °C  

Denaturation 30 s 98 °C  
Primer annealing 1 min 55 °C 25 cycles 
Elongation 30 s/kb 72 °C  

Final Elongation 10 min 72 °C  
    

The fragment was then ligated into pJET 1.2/blunt according to the CloneJET™ PCR Cloning Kit 

manual (Thermo Fisher Scientific, Waltham, MA, USA). Using the inserted restriction sites, the 

fragment could be cloned into the final expression vector pET28a. 

QuikChange PCR for site directed mutagenesis of single base pairs 

Single or multiple base pairs can be efficiently substituted by a PCR method that is based on the 

commercially available QuikChange II Site-Directed Mutagenesis Kit from Agilent Technologies 

(Santa Clara, CA, USA). Primers were designed to be complementary to each other and cover the 

sequence that is targeted for the mutation. These nucleotides were exchanged in the primers. 

Additionally, the primers should contain a 3’-overhang of at least 8 base pairs to minimize the 

formation of primer dimers. If possible, a silent mutation was introduced in proximity to the 

desired mutation in order to insert or delete restriction sites for an easy selection process of the 

clones. 
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The PCR reaction contained the following components: 

20-50 ng plasmid DNA 
1 µl forward primer (10 µM) 
1 µl reverse primer (10 µM) 
1 µl dNTPs (10 µM each) 
10 µl 5x HF buffer 
0.5 µl Phusion Polymerase (NEB, Ipswich, MA, USA) 

 Add H2O to 50 µl 
  

The conditions during the thermal cycling were as follows: 

Initial denaturation 30 s 98 °C  

Denaturation 30 s 98 °C  
Primer annealing 1 min 55 °C 18 cycles 
Elongation 30 s/kb 72 °C  

Final Elongation 10 min 72 °C  
    

The methylated template DNA was subsequently digested by addition of 1 µl of the restriction 

enzyme DpnI and incubation for 1 h at 37 °C. Finally, 10 µl of the reaction were directly 

transformed into E. coli XL1-Blue. Positive clones could be selected by testing for the additional 

or deleted restriction site and DNA sequencing. 

2.2.4 DNA sequence analysis 

The accuracy of the constructed plasmids was confirmed by DNA sequencing. The samples were 

prepared by mixing 5 µl of isolated plasmid DNA (80-100 ng/µl) with 5 µl of a suitable primer 

(5 µM). Analysis was performed by the company GATC (Cologne, Germany). The applied 

technique is based on Sanger sequencing (Sanger et al., 1977). 

2.2.5 DNA precipitation 

DNA precipitation is a method to purify and concentrate nucleic acids. The solubility of the polar 

DNA was decreased by addition of 1/10 volume of sodium acetate and 2.5 volumes of pure ice 

cold ethanol to the aqueous DNA solution. The mixture was incubated for at least 1 h at -20 °C 

and centrifuged at 22,000 g for 30 min at 4 °C. The sometimes barely visible DNA pellet was 

carefully rinsed with 70 % Ethanol and centrifuged for another 10 min. After complete removal 

of the supernatant, the DNA pellet was dried and resuspended in the desired amount of water. 

2.2.6 Ligation of compatible DNA fragments 

In order to ligate DNA fragments with compatible overhangs created by DNA restriction 

digestion, a T4 DNA ligase was used (Thermo Fisher Scientific, Waltham, MA, USA). After 

attachment of the cohesive overhangs due to Watson-Crick base pairing, the T4 DNA ligase 

catalyzes the formation of phospodiester bonds between junxtaposed 5’-phosphate and 3’-

hydroxyl termini in double-stranded DNA (Weiss and Richardson, 1967). The enzyme can also 

ligate blunt DNA fragments without overhangs. The reaction was set up as follows: 
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1 µl T4 DNA Ligase buffer 
0.5 µl T4 DNA Ligase (5U/µl) 

6 µl Insert 
3 µl Vector 

  
For ligation of PCR fragments into the pJET2.1/blunt cloning vector, the commercial kit was used 

as indicated by the manufacturer (Thermo Fisher Scientific, Waltham, MA, USA). 

2.2.7 Agarose gel electrophoresis 

DNA fragments were separated according to their size by agarose gel electrophoresis (Aaij and 

Borst, 1972). An agarose solution of 1 % (w/v) was prepared in 1x Tris-acetate-EDTA (TAE) buffer 

and solved by heating in a microwave oven. The solution was poured into a gel caster and a 

comb of suitable size was used to form the sample pockets. The samples were mixed with 0.25 

volumes of DNA loading dye and loaded onto the solidified agarose gel. A marker (1 kb gene 

ruler, Thermo Fisher Scientific, Waltham, MA, USA) was loaded in parallel to determine the size 

of individual DNA fragments. Separation of the negatively charged DNA fragments by size was 

achieved by applying an electric potential of 120 V in a chamber filled with TAE buffer. After 

separation, the gel was stained for 15 min in an ethidium bromide solution (2 µg/ml). Since the 

fluorescent dye ethidium bromide intercalates with DNA, its fluorescence signal can be used to 

visualize DNA bands in a UV transilluminator (IDA Raytest, Straubenhardt, Germany). 

TAE buffer (50x) 2 M Tris, 1 M acetic acid, 0.05 M ethylendiaminetetraacetic acid (EDTA) 

DNA loading dye 100 mM EDTA, 0.1 % (w/v) sodium dodecyl sulfate (SDS), 40 % (w/v) 
glycerol, 0.025 (w/v) bromphenol blue, 0.025 (w/v) xylencyanol blue 

2.2.1 Restriction of DNA 

Double stranded DNA can specifically be cut at target sequences by restriction enzymes (Boyer, 

1971). Reactions were set up in volumes of 20-30 µl with conventional restriction enzymes from 

Thermo Fisher Scientific (Waltham, MA, USA) according to the manufacturer’s instructions. The 

DNA fragments could subsequently be analyzed by agarose gel electrophoresis. 

2.2.2 Isolation of DNA from agarose gels 

In order to purify DNA fragments resulting from PCR or restriction digestion, samples were first 

separated by agarose gel electrophoresis and stained with ethidium bromide as described 

above. The DNA fragment was checked for its size and cut quickly out of the gel. UV-light with a 

relatively low intensity was used to avoid mutations. For the isolation of the DNA fragments 

from the gel, the Nucleospin Purification Kit (Macherey-Nagel, Düren, Germany) was used 

according to the manufacturer’s instructions. The DNA was finally eluted in 20 µl H2O and stored 

at -20 °C. 
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2.3 Protein expression and purification 

2.3.1 Cultivation of E. coli for protein expression 

For high yields of a heterologously expressed protein, larger amounts of cell material had to be 

produced. Precultures were prepared in LB medium and inoculated with 5-10 E. coli colonies 

containing the pET28a expression plasmid. After overnight incubation at 37 °C on a shaker, high 

cell densities of OD600 of 5-7 were reached. The protein expression was then performed in ZYP-

5052 rich medium for auto-induction (Studier, 2005) that was supplemented with 25 µg/ml 

kanamycin to ensure that only cells containing the pET28a plasmid will grow. For sufficient 

aeration of the cultures, 1 or 2 l Erlenmeyer flasks were filled to approximately 1/4 of their 

maximal capacity. The medium was inoculated with 1/100 volume of the preculture, resulting in 

a starting OD600 of about 0.05. Main cultures were cultivated at 28 °C and 200 rpm for 16 h. Since 

the medium contains both, glucose and lactose, the cells first metabolize glucose as a preferred 

carbon source. As long as glucose is present in the medium, the lac promoter is switched off, as 

glucose inhibits the import of lactose. During that phase, cells grow and proliferate, but do not 

express protein. When glucose is used up (after about 6 h), lactose is taken up which induces 

the lac promoter and in turn the expression of the T7 RNA-polymerase. This polymerase causes 

the expression of the target protein for about 10 h. Finally, cells were harvested at 2,900 g for 

20 min (Beckman Coulter centrifuge, Brea, CA, USA), transferred to 50 ml tubes, frozen in liquid 

nitrogen and stored at -20 °C. 

2.3.2 Cell lysis 

Frozen cell pellets were resuspended to a cell density of 1 g cells per 3-4 ml buffer A (see below) 

supplemented with 0.1 mg/ml lysozyme to break the cell walls and 0.2 mM 

phenylmethylsulfonyl fluoride to inhibit proteases. The homogeneity of the solution was 

ensured by filtering the suspension through a syringe. After 30 min incubation on ice, the cells 

were disrupted at 80 Psi for 3 cycles with a fluidizer (Microfluidics, Newton, MA, USA). For 

smaller amounts of less than 30 ml, cells were disrupted by sonication (Sonifier Cell Disruptor 

B15, Branson, Danbury, CT, USA) in 3 cycles of 1 min with 50 % intensity and pulsed signal. To 

prevent heating and thus degradation of proteins, cells were always kept on ice. After cell 

disruption, insoluble particles and cell debris were precipitated by centrifugation at 27,000 g at 

4 °C for 20 min (Beckman Coulter centrifuge, Brea, CA, USA). The supernatant which is also 

referred to as cleared lysate was then applied to an affinity chromatography column. 
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2.3.3 Protein purification by immobilized metal ion affinity chromatography 

An easy method to purify tagged proteins from a mixture is the immobilized metal ion 

chromatography (IMAC). It utilizes the ability of complex-forming amino acid residues, especially 

histidine, to coordinate metal ions. Therefore, a protein with a polyhistidine-tag (His-Tag) will 

specifically interact with nickel, cobalt or copper ions immobilized on a column and will be 

retained. As most naturally occurring proteins do not have such a high affinity for metal ions, 

they will not bind to the column and can be washed off. 

The proteins purified in this study carry a His-Tag on the N-terminus accessible at the protein 

surface. The cleared lysate was loaded on a pre-packed 5 ml His-Trap HP column containing Ni2+-

sepharose (GE Healthcare Life Science, Chalfont St Giles, Great Britain) that was previously 

equilibrated with buffer A. The flow rate of 0.5-1 ml/min was controlled using an ÄKTAprime 

plus system (GE Healthcare Life Science, Chalfont St Giles, Great Britain). Unspecifically bound 

proteins were washed from the column with butter A and also with a mixture of 97 % buffer A 

and 3 % buffer B. The specifically retained proteins were finally eluted from the column during 

a 50 ml gradient when the concentration of buffer B was increased from 3 % to 100 %. Buffer B 

contains imidazole that competes with the His-Tag for binding to the metal ions and hence 

liberates the target protein. The eluate could be concentrated by centrifugation in Spin-X UF 

concentrators (Corning, Corning, NY, USA) at 4 °C and 4000 rpm (Centrifuge 5810 R, Eppendorf, 

Hamburg, Germany). 

Buffer A 50 mM Tris-HCl pH 8, 100 mM NaCl 
Buffer B 50 mM Tris-HCl pH 8, 100 mM NaCl, 500 mM imidazole 

2.3.4 Size-exclusion chromatography 

To further purify proteins and remove undesirable protein aggregates, size-exclusion 

chromatography (SEC) was applied. This method, also referred to as gel filtration, 

simultaneously allows a buffer exchange and removal of imidazole from previous purification 

steps. The column is packed with a porous matrix that allows molecules to diffuse in and out 

depending on their size. Smaller molecules can diffuse into smaller pores and will thus stay 

longer on the column, while larger molecules are unable to move into the pores. They will 

therefore elute first as the buffer continuously passes through the column. 

The concentrated protein solution of less than 4 ml was injected to a pre-equilibrated HiLoad 

26/60 Superdex 200 pg column with a total volume of 300 ml (GE Healthcare Life Science, 

Chalfont St Giles, Great Britain) containing sepharose material. The flow rate of the SEC buffer 

(50 mM Tris-HCl pH 8, 100 mM NaCl) was adjusted to 1-2 ml/min with an ÄKTA-FPLC system (GE 

Healthcare Life Science, Chalfont St Giles, Great Britain). Fractions of 5-8 ml were collected after 

the void volume of 100 ml had passed through the column. 
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2.3.5 Metal cofactor substitution by expression in minimal medium 

For the exchange of the metal cofactor, CspLOX2 was expressed in PA-5052 defined auto-

induction medium (Studier, 2005). The preculture, which was prepared in the complex LB 

medium, was used to inoculate the expression culture with 1/100 of the final volume. The 

medium contains a defined mix of amino acids instead of yeast extract and NZ-amines to 

minimize a contamination with manganese or iron. The medium was supplemented with 

kanamycin and either 50 µM MnCl2 or 50 µM FeCl2, depending on the metal center that should 

be incorporated. Traces of LB medium that were transferred during inoculation should cover the 

needs for further trace elements. After growing the cultures at 28 °C for 16 h, the cells were 

harvested, lysed using the fluidizer and cleared from the cell debris as described above. For the 

purification via IMAC and SEC, the buffers were treated with Chelex 100 (Bio Rad, Hercules, CA, 

USA) before use to eliminate additional transition metals from the solution. As far as possible, 

the usage of plastic ware was preferred over glass ware during purification, since iron can also 

be released from glass materials. 

2.4  Protein analysis and biochemical characterization 

2.4.1 Quantification of purified protein 

The amount of protein in solution was determined by two different techniques depending on 

the purity and presence of additional components in the protein solution. While the colorimetric 

Bradford assay (Bradford, 1976) tolerates imidazole and detects different kinds of proteins, the 

protein determination at 280 nm (Gill and Von Hippel, 1989) is more reproducible, but only 

suitable for pure protein solutions without compounds that absorb at 280 nm. 

Bradford protein analysis 

The Bradford protein assay is a colorimetric method that is based on the absorbance shift of 

Coomassie Brilliant Blue G-250 from 465 nm to 595 nm upon binding to protein (Bradford, 1976). 

For the assay, 5-10 µl protein solution were added to 1 ml Bradford reagent and incubated at 

23 °C for 20 min. A calibration curve with 0-12 µg BSA was always prepared in parallel. The 

protein concentration was analyzed at 595 nm with a spectrophotometer (Varian Inc., Paolo 

Alto, CA, USA). The absorbance of the solution to be analyzed should be in the range of the 

calibration curve. Otherwise, the protein solution had to be diluted. The linear regression of the 

values from the calibration curve was used to determine the concentration of the protein 

solution. The analysis was always performed in triplicates. 
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Determination of the protein content at 280 nm 

Protein concentrations could also be determined as absorbance at 280 nm with a NanoDrop 

2000c (Thermo Scientific, Wilmington, DE, USA), which is a fast and simple method that requires 

only a volume of 1.5 µl protein solution per measurement. Another advantage is that a large 

concentration range of 0.1-400 mg/ml can be directly measured without dilutions. With the 

molecular weight and the theoretical absorption coefficient which could be determined with 

ProtParam (Walker, 2005), the protein concentration could be reproducibly determined. 

2.4.2 Protein analysis by polyacrylamide gel electrophoresis 

Polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS-PAGE) is a widely used 

analytical method for separation of proteins according to their molecular weights (Laemmli, 

1970). The method was used to determine the expression level under different cultivation 

conditions or to analyze the purity of a protein solution at different steps of the purification. For 

the analysis of protein expression levels, in general 0.5/OD600 ml of the culture were harvested 

for 1 min at 14,000 g and resuspended in 100 µl 1x SDS sample buffer. For the analysis of purified 

proteins, 5-10 µg protein were diluted to 7.5 µl and supplemented with 2.5 µl of the 4x SDS 

sample buffer. The proteins were denatured at 95 °C for 3 min, centrifuged for 1 min and 10 µl 

of the samples were loaded on an SDS polyacrylamide gel. 

Proteins were electrophoretically separated in 10 % discontinuous gels under denaturing 

conditions in Tris/glycine buffer (25 mM Tris, 192 mM glycine, 0.1 % (w/v) SDS). The gels were 

prepared and run in systems from BioRad (Hercules, CA, USA). The mixture for six gels was as 

follows, whereby ammonium persulfate (APS) and Tetramethylethylenediamine (TEMED) were 

added last, as they trigger the polymerization of the gel in a radical reaction: 

 
Separating 
gel 

Stacking 
gel 

H2O 9.51 ml 4.47 ml 
1.5 M Tris-HCl pH 8.8, 0.4 % SDS 6 ml - 
0.5 M Tris-HCl pH 6.8, 0.4 % SDS - 1.88 ml 
30 % (w/v) acylamide/bis-acrylamide (37.5:1) (Roth, Carlsruhe) 8.1 ml 1.05 ml 
25 % (w/v) APS 96 µl 30 µl 
TEMED 24 µl 7.5 µl 

Total volume ~ 24 ml ~ 7.5 ml 
Volume per gel ~ 3.7 ml ~ 1 ml 

 

4x SDS sample buffer 
200 mM Tris-HCl pH 6.8, 400 mM 1,4-dithiothreitol (DTT), 8 % (w/v) 
SDS, 0.4 % (w/v) bromophenol blue, 40 % (v/v) glycerol 

 

The gels could be stored at 4 °C in wet paper towels for up to 2 weeks. If the sample pockets 

were prepared with a 15 well-comb, a sample volume of up to 20 µl could be loaded per well. 

To determine the size of the separated proteins, a protein marker (Roti-Mark Standard, Roth, 
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Karlsruhe, Germany) was loaded in parallel. A current of 30 mA per gel was applied in the 

electrophoresis chamber (power supply E838, Consort, Turnhout, Belgium) for 45-60 min until 

the bromophenol blue front reached the bottom of the gel. 

After separation, the proteins in the gel were stained with a blue Commassie Brilliant Blue dye 

which can visualize microgram amounts of protein (Meyer and Lamberts, 1965). Proteins are 

stained rather unspecifically, since the dye interacts with basic and aromatic side chains of 

amino acids. The gels were carefully removed from the glass plates and stained in Coomassie 

Brilliant blue stain for 60 min and subsequently destained in an aqueous solution containing 

40 % (v/v) ethanol and 10 % (v/v) acetic acid until the blue protein bands stand out from the 

transparent background. 

Commassie Brilliant Blue stain 
0.2 % (w/v) Brilliant Blue R250, 40% (v/v) ethanol, 
10 % (v/v) acetic acid 

2.4.3 Kinetic measurements 

Absorbance at 234 nm 

The LOX activity could be determined as absorbance increase at 234 nm with a Cary 100 Bio 

spectrophotometer (Varian, Agilent Technologies, Santa Clara, CA, USA) (Graff et al., 1990). This 

technique, however, detects only the formation of conjugated double bonds, since they absorb 

at this wavelength. Bis-allylic lipoxygenation products cannot be detected due to the lack of 

conjugated double bonds. Fatty acid substrates were diluted to 5-150 µM in 200 mM sodium 

borate buffer pH 9 and preheated to 30 °C. The reaction was started by addition of 3-15 µg 

enzyme to 1 ml substrate solution. The turnover number kcat was calculated from the slope of 

the reaction and the enzyme concentration as follows: 

                        
dc

E
sk

enzyme

cat





234
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E   = change of extinction at 234 nm per second 

enzymec   = enzyme concentration in the assay in M 

234   = molar extinction coefficient at 234 nm = 2.5·104 M-1 cm-1 

d  = length of the cuvette in cm 

Oxygen electrode 

To determine the total lipoxygenation activity including the formation of bis-allylic 

hyroperoxides, the consumption of oxygen was measured as a function of time with an oxygen 

electrode (Oxygraph Plus System, Hansatech Instruments, Norfolk, UK). First, the electrode was 

calibrated from the maximum oxygen concentration at 30 °C in water to 0 nmol/ml oxygen which 

was established with sodium dithionite. Similar to the photometric assay, the substrates were 

diluted to different concentrations in 200 mM sodium borate buffer pH 9 and the reaction was 
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started by addition of 3-15 µg enzyme to 1 ml preheated (30 °C) substrate solution. Since 1 mol 

O2 is consumed per mol of hydroperoxy product, the turnover number can be calculated as 

follows: 

                        
enzyme

oxygen

cat
c

c
sk


1  

oxygenc  = change of oxygen concentration (µM O2/s) 

enzymec   = enzyme concentration in the assay in µM 

Determination of the inhibitory constant KI 

To determine the inhibitory effect of tetraethylene glycol monooctyl ether (C8E4), CspLOX2 was 

incubated with 100 µM of linoleic acid and different amounts of C8E4 in 200 mM sodium borate 

buffer. The inhibitory constant KI of C8E4 was determined as follows: 
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v  = reaction rate 

restv  = remaining reaction rate 

Iv  = initial reaction rate without inhibitor 

IK  = inhibitory constant 

Ic  = concentration of inhibitor 

2.4.4 Analysis of the metal content by inductively coupled plasma atomic emission 

spectroscopy 

For the determination of the cofactor occupancy, inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) was applied. This technique can detect small amounts of trace metals 

with detection limits up to 2 µg/l. The inductively coupled plasma is used to generate excited 

ions and atoms that emit electromagnetic radiation at wavelengths which are characteristic for 

specific elements. This electromagnetic radiation can be detected. The intensity of the emitted 

radiation is indicative of a particular element in the sample. As the method is very sensitive and 

shows only few interferences with different chemicals, it is suitable for measuring the metal 

content of enzymes. 

To avoid metal contaminations, protein samples were purified by size exclusion chromatography 

with a buffer (50 mM Tris/HCl pH 8, 100 mM NaCl) treated with Chelex100 (BioRad, Hercules, 

CA, USA). This buffer was also used as blank and for dilution of the protein samples to 5-25 µM 

in a final volume of 3 ml. The samples were measured at an Optima 5500 DV (Perkin Elmer 

Precisely) by Uta Nüsse-Hahne and Dr. Dietrich Hertel from the Department of Plant Ecology and 
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Ecosystem Research (University of Göttingen, Germany). The measurement was performed in 

triplicates with relative standard deviations of in general less than 5 %. 

2.4.5 Electron paramagnetic resonance 

Electron paramagnetic resonance (EPR) spectroscopy is based on the interaction of 

electromagnetic radiation with magnetic moments which are induced by the spin of the 

electrons. The method utilizes microwave radiation to excite unpaired electrons in the presence 

of a static magnetic field. It is therefore limited to paramagnetic substances, such as radicals or 

certain transition metals and is a suitable technique to analyze the metal cofactor and its 

oxidation states in LOXs. 

Continuous wave EPR spectra were recorded on a Bruker Elexsys E500 CW-EPR spectrometer at 

9.4 GHz (X-band) continuous wave equipped with a standard Bruker X-band ER4119-SHQE cavity 

and a liquid helium cryostat (Oxford Instruments, Abington, UK). The experiments were 

conducted by Dr. Müge Kasanmaschef (Electron Paramagnetic Resonance Spectroscopy Group, 

Max Planck Institute for Biophysical Chemistry, Göttingen, Germany). CspLOX2 and linoleic acid 

were mixed to final concentrations of 30 µM enzyme and 700 µM substrate, respectively. For 

the preparation of other samples, CspLOX2 and HPODE were mixed to a final concentration of 

30 µM enzyme and 70 µM HPODE, respectively. The reactions were allowed to proceed at room 

temperature for 1 min and were subsequently manually freeze-quenched in liquid nitrogen. The 

parameters for all recorded EPR spectra were as follows: T = 10 K, microwave power = 1 mW, 

conversion time = 80 ms, modulation amplitude = 5 G, modulation frequency = 100 kHz, 40 min, 

signal averaging. 

2.5 Analysis of CspLOX2 products 

2.5.1 Extraction of hydroperoxy products 

For the analysis of lipoxygenation products, the formed hydroperoxides had to be extracted 

from an aqueous solution in preparation for subsequent chromatographic analysis. For 

individual analysis of products from single reactions, 1 ml of 100 µM linoleic acid in 200 mM 

sodium borate buffer pH 9 was converted with 15 µg of enzyme. Since the unusual 11-

hydroperoxide from linoleic acid is only transiently formed by CspLOX2, the reaction was usually 

monitored with a spectrophotometer at 234 nm and stopped after the first reaction phase by 

transferring 500 µl of the reaction mix to 500 µl of diethylether in a 2 ml reaction tube. After 

brief but thorough mixing, the reaction tubes were placed on ice. When the phases were 

separated, the upper organic phase was transferred to a new reaction vial and the solvent was 

evaporated under a nitrogen stream. The remaining lipid film was resuspended in a suitable 

solvent for HPLC analysis on the same day. To obtain reproducible results, it was important that 

all steps were done quickly. For the preparation of larger amounts of 11-HPODE, 1 mg linoleic 
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acid was converted with 15 µg CspLOX2 at 25 °C for 8 min. For some experiments, the 

hydroperoxides had to be reduced to the hydroxides. In that case, sodium borohydride was 

added to the sample after the reaction. After incubation for 2 min at 23 °C, the fatty acid 

derivatives were extracted with diethylether. 

2.5.2 High-performance liquid chromatography analysis of lipoxygenation products 

High-performance liquid chromatography (HPLC) is a method to separate and analyze different 

lipid species in a mixture. Different types of stationary and mobile phases are used to achieve 

the separation of analytes, while a pump transports the sample and solvent through the column. 

As interactions with the column depend on physicochemical properties of the analytes, they will 

elute after different retention times. An installed diode array detector (DAD) records UV/Vis 

spectra during elution. Information about the spectrum and retention time together with the 

area of the peak allows an identification and quantification of the analytes. Absorption at 

234 nm was recorded for detection of conjugated double bonds during all chromatographic 

steps, while absorbance at 202 nm was used for detection of the fatty acid substrate and bis-

allylic products. For identification of the compounds, authentic standards were run in parallel.  

Reversed phase HPLC 

11-HPODE could be separated from conjugated hydroperoxides and the fatty acid substrate by 

reversed-phase (RP)-HPLC using a Nucleosil 120-5 C18 column (250 x 2.1 mm, 5 µm particle size, 

Macherey-Nagel, Düren, Germany). This chromatographic method uses a hydrophobic 

stationary phase which results in a stronger adsorption of hydrophobic molecules to the column. 

Hence, more hydrophilic molecules elute first. 

The extracted lipids were dissolved in 100 µl of the RP-HPLC solvent A. The samples were 

transferred to HPLC vials and 80 µl were injected for analysis. Separation was performed with a 

solvent system of solvent A, acetonitrile/water/acetic acid (50:50:0.05, v/v/v) and solvent B, 

acetonitrile/acetic acid (100:0.05, v/v) using the following gradient as described (Andreou et al., 

2010): 

0 min 20 % B 80 % A Flow rate: 0.18 ml/min 
10 min 20 % B 80 % A Flow rate: 0.18 ml/min 
15 min 100 % B 0 % A Flow rate: 0.18 ml/min 
17 min 100 % B 0 % A Flow rate: 0.36 ml/min 
25 min 100 % B 0 % A Flow rate: 0.36 ml/min 
27 min 20 % B 80 % A Flow rate: 0.36 ml/min 
30 min 20 % B 80 % A Flow rate: 0.36 ml/min 

Radio RP-HPLC 

In addition to the DAD detector, a scintillation detector was used for the detection of the 

radiation emitted from isotope labeled compounds. [1-C14]-linoleic acid was used as substrate 

for the enzymatic conversion with LOXs. The generated products were separated by RP-HPLC 
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and detected with a DAD and a scintillation detector. From the ratio of the UV absorbance at 

202 nm (11-HPODE) or 234 nm (9- and 13 HPODE) and the radio signal, relative scaling factors 

were determined (Supplemental Figure 2). The ratio was determined for six HPLC runs with 

different concentrations. The scaling factors (SF) were obtained from the slope (m) of the linear 

regression curve as follows (exemplified for 9-HPODE): 
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These scaling factors were later used for a quantification of HPODEs without [1-C14]-labeled 

substrate by multiplying these factors with the determined peak areas determined at 202 nm 

and 234 nm, respectively. 

RP-HPLC-MS 

The bis-allylic product could also be analyzed and quantified by RP-HPLC coupled to mass 

spectrometry (MS) for detection of the analytes. The method was based on (Brodhun et al., 

2009). Separation was achieved on a EC250/2 Nucleodur 100–5 C18 column (250 x 2.1 mm, 5 µm 

particle size, Macherey-Nagel, Düren, Germany) with a solvent system of solvent A, 

acetonitrile/water/acetic acid (40:60:0.1, v/v/v) and solvent B, acetonitrile/acetic acid (100:0.1, 

v/v) with the following elution gradient: 

0 min 20 % B 80 % A Flow rate: 0.2 ml/min 
10 min 20 % B 80 % A Flow rate: 0.2 ml/min 
30 min 100 % B 0 % A Flow rate: 0.2 ml/min 
35 min 100 % B 0 % A Flow rate: 0.3 ml/min 
40 min 100 % B 0 % A Flow rate: 0.3 ml/min 

44.5 min 20 % B 80 % A Flow rate: 0.3 ml/min 
45 min 20 % B 80 % A Flow rate: 0.2 ml/min 

    
The eluting substances were analyzed by ion trap mass spectrometry (Thermo Finnigan LCQ ion 

trap mass spectrometer, San Jose, CA, USA). Negatively charged ions were generated by electron 

spray ionization. The capillary voltage was 27 kV and the capillary temperature was 300 °C. For 

tandem MS analysis, the collision energy was 1 V. 

Straight phase HPLC 

Positional isomers of hydro(pero)xy fatty acid were separated by straight phase (SP)-HPLC on a 

Zorbax Rx-SIL column (150 × 2.1 mm, 5 μm particle size, Agilent Technologies, Santa Clara, CA, 

USA) as described (Andreou et al., 2010). This method separates analytes based on their affinity 

for a stationary phase with a polar surface. The compounds are eluted with a solvent system of 

n-hexane/2-propanol/acetic acid (100:1:0.05, v/v/v) at a flow rate of 0.2 ml/min. 
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Chiral phase HPLC 

Enantiomers of the conjugated hydroxy fatty acids (9-HODE and 13-HODE) could be analyzed by 

chiral phase (CP)-HPLC using a Chiralcel OD-H column (150 × 2.1 mm, 5 μm particle size, Daicel, 

VWR, Radnor, PA, USA) with a solvent system of n-hexane/2-propanol/acetic acid (100:5:0.05, 

v/v/v) at a flow rate of 0.1 ml/min (Andreou et al., 2010). 

Analysis of stereochemistry of 11-HPODE 

For the CP-HPLC analysis of the bis-allylic 11-HPODE according to (Andreou et al., 2010), the 

products had to be derivatized to the hydroxy octadecadienoic acid methyl esters (HODE-Me). 

Therefore sodium borohydride was added to 1 ml of the reaction mixture to reduce the fatty 

acid hydroperoxides to hydroxides. Diethylether was added for extraction of all hydrophobic 

analytes and the extract was dried under a nitrogen stream. Fatty acid hydroxides were 

subsequently methylated by addition of 400 µl methanol and 6 µl diazomethane (Figure 14). 

 

Figure 14. Derivatization of hydroperoxides to hydroxides and their methyl esters. 

 

After 30 min, the reaction was stopped with 2.5 µl 1:10 (v/v) acetic acid. The solvent was 

evaporated under a stream of nitrogen and 11-HODE-Me was separated from the conjugated 

products by SP-HPLC. 11-HODE-Me was collected, dried and subjected to CP-HPLC analysis. A 

separation of 11-HODE-Me enantiomers was achieved at a flow rate of 0.1 ml/min in a solvent 

system of n-hexane/2-propanol/acetic acid (100:0.3:0.05, v/v/v). 11S- and 11R-HODE-Me eluted 

after around 70-90 min from the column. 

2.5.3 Fragmentation analysis by UHPLC-ESI-QTOF-MS/MS  

For fragmentation studies, the samples were analysed by Ultra High Performance Liquid 

Chromatography (UHPLC, 1290 Infinity, Agilent Technologies, Santa Clara, CA, USA) coupled with 

a 6540 UHD Accurate-Mass Quatupole Time-of-Flight (QTOF) LC-MS instrument with Agilent 

Dual Jet Stream Technology as electrospray ion source (ESI, Agilent Technologies, Santa Clara, 
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CA, USA) by Dr. Kirstin Feußner (Department for Plant Biochemistry, University of Göttingen, 

Germany). For LC separation, an ACQUITY UPLC® HSS T3 column (2.1 x 100 mm, 1.8 µm particle 

size, Waters Corporation, Milford, USA) was used at 40 °C and a flow rate of 0.5 ml/min. The 

following gradient program was performed with a solvent system of A, water/formic acid 

(100:0.1, v/v) and B, acetonitrile/formic acid (100:0.1, v/v). 

    
0 min 99 % A 1 % B  

0.5 min 80 % A 20 % B  
3 min 0 % A 100 % B  
8 min 0 % A 100 % B  

10 min 0 % A 100 % B  
10.1 min 99 % A 1 % B  

14 min 80 % A 1 % B  
    

The QTOF MS instrument was operated in the positive or the negative ionization mode with a 

detection frequency of 2 GHz and a mass range of m/z 50-1700. The source conditions were as 

following: gas temperature: 250 °C; drying gas flow: 8 l/min; nebulizer pressure: 35 psi; sheath 

gas temperature: 300 °C; sheath gas flow: 8 l/min; VCap voltage: 3.0 kV; nozzle voltage: 200 V; 

fragmentor voltage: 120 V. For MS/MS fragmentation experiments the precursor ions of 9-

HODE, 11-HODE as well as 13-HODE ([M-H]- 295.2267) were fragmented by a collision cell energy 

of 28 eV. The methyl esters of 11R- and 11S-HODE were analyzed in the positive ionization mode. 

They were detected as [M-H2O+H]+ 293.2477 and fragmented by a collision cell energy of 15 eV. 

The UHPLC QTOF MS system was operated under Mass Hunter B05.01 (Agilent Technologies, 

Santa Clara, CA, USA). Data were acquired by Mass Hunter Workstation Acquisition software 

B.05.01 and analyzed by Mass Hunter Qualitative Analysis B.06.00. 

2.6 Analysis of liposome binding ability 

2.6.1 Liposome preparation 

Liposomes are small spherical vesicles that consist of a lipid bilayer surrounding an aqueous 

solution. They are thus similar to biological membranes. For the preparation of these vesicles, 

glass tubes and the extruder were carefully rinsed with pure undenatured ethanol before use. 

The phospholipid for the liposome preparation, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 

(Sigma-Aldrich, Munich, Germany), was dissolved in chloroform to a concentration of 1 mg/ml 

as described by Bigay and Antonny, 2005. The solvent was evaporated under a stream of 

nitrogen above the transition temperature at 55 °C in a water bath. As a result, only a very thin 

lipid layer remained on the surface of the glass tube. Remnants of the solvent were removed by 

lyophilization at -20 °C overnight. The thin lipid layer was dissolved in sodium phosphate buffer 

(100 mM Na2HPO4/NaH2PO4, pH 7) to a lipid concentration of 10 mM. The solution was 

repeatedly heated to 60 °C and vigorously mixed. Subsequently, three cycles of freezing at -80 °C 

and heating to 60 °C followed. Finally, the liposomes were prepared with an extruder (Avanti 
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Polar Lipids, Alabaster, AL, USA). The extruder was preheated to 60 °C and assembled according 

to the manufacturer’s instructions. The liposomes were passed 41 times through the 

polycarbonate membrane with the extruder placed on a heating plate at 60 °C. The odd number 

of passages ensured that lipids which never passed through the membrane are excluded from 

the final liposome solution. 

2.6.2 Flotation analysis 

The ability of proteins to bind to liposomes can be tested in a so-called flotation experiment 

(Bigay and Antonny, 2005). For this assay, 50 µl of a protein solution with a concentration of 

1 mg/ml was mixed with 100 µl of liposomes. After an incubation of 90 min at room temperature 

to allow binding to the vesicles, 100 µl of a 75 % (w/v) sucrose stock solution (in 100 mM 

Na2HPO4/NaH2PO4, pH 7) was added to the mixture to yield a final sucrose concentration of 

30 % (w/v). The samples were filled into 2 ml ultracentrifugation vials. Subsequently, 200 µl of a 

25 % (w/v) sucrose solution (in 100 mM Na2HPO4/NaH2PO4 pH 7) were carefully layered onto 

the samples. Finally, 50 µl of 100 mM Na2HPO4/NaH2PO4 pH 7 were filled on top. The samples 

were then centrifuged at 210,000 g in a TLS 55 rotor (Beckman Coulter, Brea, CA, USA) for 

90 min. During this ultracentrifugation, the liposomes floated up due to a lower density 

compared to the sucrose solution and moved to the top fraction with all proteins bound to them. 

After centrifugation, the fractions were carefully separated with a Hamilton syringe from the top 

to the bottom fraction (top = 100 µl, middle = 150 µl, bottom = 250 µl). Proteins were 

precipitated by addition of 1/4 volume of ice cold 30 (w/v) trichloroacetic acid and overnight 

incubation on ice. Samples were centrifuged at 4 °C for 30 min at 20,000 g and the protein pellet 

was delipidated with acetone and finally washed in 100 mM Na2HPO4/NaH2PO4 pH 7. The 

samples were resuspended in 30 µl 1x SDS sample buffer (see Chapter 2.4.2) and 7 µl thereof 

were loaded on a gel for SDS-PAGE analysis. 

2.7 Protein crystallography 

To obtain X-ray structures of proteins, protein crystals have to be grown first. Crystal screens 

were prepared in hanging drop vapor diffusion crystallization plates (EasyXtal 15-Well Tool, 

Qiagen, Venlo, Netherlands or VDX Plate, Hampton Research, Aliso Viejo, CA, USA) with CspLOX2 

purified by IMAC and SEC. Protein concentrations of 3.5-5 mg/ml in 25 mM Tris-HCl pH 8, 50 mM 

NaCl resulted in best crystals. To prevent overnucleation, the protein was centrifuged at 

14,000 g for 30 min at 4 °C prior to pipetting the crystallization screens. Best crystals were 

obtained when reservoir solutions containing around 12.5 % PEG 4000, 0-8 % glycerol, 600 mM 

NaCl and 0.1 M MES/imidazole pH 6.1-6.8 were used. In general, about 200-300 µl were used as 

reservoir and 1-2 µl of the protein was mixed with equal amounts of reservoir to prepare the 

hanging drops. The crystallization plates were sealed (in case of VDX Plates with vacuum grease) 

and incubated at 20 °C. Crystals usually appeared within 24 h and grew to a size of 0.10 x 0.03 x 

0.03 mm within 3-7 days. Crystals were cryoprotected by transferring them for a few seconds to 
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20 % PEG4000, 17 % glycerol, 600 mM NaCl, 0.1 M MES/imidazole pH 6.25 or 15 % PEG 4000, 

20 % glycerol, 600 mM NaCl, 0.1 M MES/imidazole pH 6.25. The crystals were quickly cooled in 

liquid nitrogen. 

For anaerobic crystallization in the laboratory of Prof. Dr. Marcia Newcomer (Department of 

Biological Sciences, Louisiana State University, Baton Rouge, USA), all buffers and solutions were 

transferred to an anaerobic chamber and allowed to equilibrate for at least 24 h. The anaerobic 

chamber was filled with a mixture of nitrogen and hydrogen gas (97 % N2 and 3 % H2, 

respectively). A catalyzer that transforms oxygen and hydrogen to water always kept the oxygen 

concentration close to 0 ppm. The protein was purified at ambient oxygen levels and transferred 

to the anaerobic chamber in small aliquots of up to 50 µl on an ice pack to keep it cold until 

pipetting. Crystallization screens were prepared inside the chamber. When crystals were grown 

to a proper size in the anaerobic atmosphere, liquid nitrogen was brought into the chamber. 

Oxygen levels rose temporarily to 20-40 ppm but then stabilized at 0 ppm oxygen again. The 

crystallization wells were not opened before the oxygen reached 0 ppm. Crystals were mounted 

on a loop and quickly plunged and kept the liquid nitrogen, before taking them out of the 

anaerobic chamber. 

2.7.1 Manipulation of protein crystals 

Soaking and cocrystallization 

In order to study the reaction mechanism of an enzyme, it is a common technique to soak 

crystals with substrates, substrate-analogs, products or inhibitors. Soaking solutions were based 

on the reservoir or cryoprotectant solution and contained 0.1-2 mM of the respective substrate 

or substrate-analog. Crystals were transferred to the soaking solution and incubated for 3-

180 min. If necessary, crystals were cryoprotected and then transferred to liquid nitrogen. 

As an alternative, it is sometimes possible to cocrystallize the enzyme with the substrate. The 

protein was either pre-mixed with the substrate and then combined with the reservoir solution 

or the substrate was added to the reservoir before mixing it with the protein. Usually, a molar 

ratio of 1:1 to 100:1 of substrate to protein was used. To improve the solubility of the 

hydrophobic substrates, ethanol was in some cases added to a final concentration of 1-5 % (v/v). 

Xenon derivatization 

Xenon derivatization can be used to identify oxygen channels in protein structures (Luna et al., 

2008). Due to similar properties, xenon may reside in the cavities where gases like dioxygen may 

bind. The experiments were performed with the help of Prof. Dr. Newcomer. CspLOX2 crystals 

were transferred into the single crystal xenon chamber (Hampton Research, Aliso Viejo, CA, USA) 

coated with reservoir solution to prevent crystal dehydration. A xenon pressure of 75-110 Psi 

was applied for 5 min. After a slow pressure release during 30 s, crystals were quickly frozen in 

liquid nitrogen. 
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2.7.2 Data collection and structure determination 

The quality of crystals could be tested at 100 K on the microfocus rotating anode MicroMax-007 

(Rigaku, Tokyo, Japan) equipped with a MAR345 image plate detector (Marresearch GmbH, 

Norderstedt, Germany). For higher resolution datasets, crystals were measured at synchrotron 

beam lines (Desy, Hamburg, Germany; European Synchrotron Radiation Facility (ESRF), 

Grenoble, France; Advanced Photon Source (APS), Chicago, USA) by Dr. Piotr Neumann 

(Department of Molecular Structural Biology, University of Göttingen, Germany) or Dr. David 

Neau (Department of Chemistry and Chemical Biology, Cornell University, Argonne, USA). 

Diffraction data were indexed and integrated with the XDS program (Kabsch, 2010). The wild 

type (wt) structure of CspLOX2 was used as template for Molecular Replacement using the 

Phaser program (McCoy et al., 2007). The model was further manually improved in Coot (Emsley 

et al., 2010) and refined with Phenix (Adams et al., 2010). Prior to use in structural refinement, 

randomly selected 5 % of the reflections were set aside for the calculation of Rfree as a quality 

monitor (Brünger, 1993). 

2.8 Molecular dynamics and discrete Fourier transform simulations 

Theoretical calculations were carried out by Martin Werner and Prof. Dr. Ricardo Mata (Institute 

of Physical Chemistry, University of Göttingen, Germany) in order to evaluate the role of steric 

shielding. The protein chain A in the asymmetric unit of the CspLOX2 crystal structure was used 

for the simulations and a water box was inserted in 8 Å distance to the periodic cell limit. The 

charge was neutralized with 11 Na+ ions. Subsequently, 2000 steps followed for the minimization 

of the hydrogen atoms and 3000 steps for the optimization of all atoms. The Amber ff10 force 

field was used throughout. The parameters for the substrate radical were chosen according to 

the ones from Furse et al., 2006. After a heat-up phase of 50 ps to 300 K and an equilibration 

phase of 50 ps at this temperature, the production phase of the simulation followed. 

For the determination of activation barriers, oxygen was narrowed in 0.1 Å steps to the model 

system (2,5-heptadienyl radical) in relaxed surface scans using B3LYP-D3/def2-TZVP. The 

structure was optimized after each step, while leaving the oxygen-carbon distance and both 

dihedral angles around the middle position unchanged. One angle was always kept at 180°, the 

other one was varied from 150° to 210°. The potentials were calculated for each 10° step. 
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3. Results 
As LOX products can have different and even opposing regulatory functions in mammals and 

plants depending on the enzyme specificity, a lot of effort has been made to investigate how the 

regio- and stereoselectivity of the oxygenation is controlled on a molecular level. Since human 

and plant enzymes are sometimes more difficult to express or show a reduced stability, soluble 

bacterial enzymes which are structurally very similar might be good models to address this 

research question. In previous studies, two functional LOXs, namely CspLOX1 and CspLOX2, were 

identified in the diazotrophic cyanobacterium Cyanothece PCC 8801. X-ray crystal structures of 

both enzymes have recently been solved and revealed some unusual features of the overall 

domain structure. In the first part of this section, these unusual structural characteristics and 

their putative functions will be analyzed in comparison to other LOXs with special focus on the 

N-terminal domain. The second and major part of this section will focus on CspLOX2 and its 

unusual ability to form bis-allylic hydroperoxides. Although this reaction was also reported for 

LOXs with manganese as catalytic metal, CspLOX2 is up to now the only bis-allylic LOX with a 

solved crystal structure and therefore provides detailed information about the active site 

architecture. As knowledge about this unusual specificity may also help to understand how the 

regio- and stereospecificity is controlled by LOXs in general, different questions were addressed 

in this study, including: What is the functional difference between the manganese and iron 

cofactor in LOXs? What kind of mutations around the putative substrate channel have the 

greatest impact on enzyme specificity and activity? How may the substrate be bound in the 

active site and which models may explain the specificity of CspLOX2? The following sections will 

shed light on these aspects. 

3.1 Cyanothece sp. expresses two LOXs with conserved catalytic domains 

but unusual N-terminal domains 

3.1.1 Sequence similarity of CspLOX1 to other LOXs is very low 

As cyanobacteria are assumed to be precursors of chloroplasts according to the endosymbiotic 

theory (Mereschkowsky, 1905), cyanobacterial LOXs were supposed to be good models for 

plastidic LOXs. But unexpectedly, sequence analysis of CspLOX1 and CspLOX2 (GenBank 

accession numbers WP_012595715.1 and WP_012596348.1, respectively) revealed that both 

LOXs from Cyanothece sp. are only distantly related to plastidic LOXs from plants on a sequence 

level (Figure 15). While CspLOX2 phylogenetically groups with other bacterial LOXs which share 

a common ancestor with animal LOXs, CspLOX1 was even placed as outgroup, indicating that it 

is not closely related to any of the here selected LOXs. The low sequence identity of less than 

12 % with other characterized LOXs was probably the reason why CspLOX1 was initially not 

identified as LOX in the genome of Cyanothece sp. by blast search, but only CspLOX2. 
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Figure 15. Phylogenetic tree of LOXs from different kingdoms of life. The organisms are indicated as well as their major 
specificities, variations of the N-terminal domain (ext., extension; prot., protein; ins., insertion) and variations of the 
metal coordinating residues (term., terminal). The tree was constructed with the program Geneious using the 
ClustalW algorithm. The proteins mentioned in the tree refer to the corresponding accession numbers in the 
GenBank: A. thaliana LOX1 (9S) (NP_175900.1), A. thaliana LOX2 (13S) (NP_566875.1), A. thaliana LOX3 (13S) 
(NP_564021.1), A. thaliana LOX4 (13S) (NP_177396.1), A. thaliana LOX5 (9S) (NP_188879.2), A. thaliana LOX6 (13S) 
(NP_176923.1), B. thailandensis (13S) (ABC36974), Cyanothece sp. LOX1 (9R) (WP_012595715.1), Cyanothece sp. 
LOX2 (11R) (WP_012596348.1), F. oxysporum LOX (13S) (EXK38530), F. oxysporum Mn-LOX (FOXB_09004), 
G. fructosovora LOX (11R) (AAY98506.1), G. graminis Mn-LOX (13R) (AAK81882.1), G. max LOX1 (13S) 
(NP_001236153.1), G. max LOX2 (9/13S) (NP_001237685.1), G. max LOX3 (9/13S) (CAA30016), G. max LOX4 (13S) 
(BAA03101), H. sapiens LOX2 (15S) (AAB61706.1), H. sapiens LOX (5S) (NP_000689.1), H. sapiens LOX (12R) 
(NP_001130.1), H. sapiens LOX (12S) (NP_000688.2), H. sapiens LOX (15S) (NP_001131.3), M. salvinii Mn-LOX (9S) 
(CAD61974.1), N. punctiforme LOX (9R) (WP_010994078.1), N. punctiforme LOX1 (13S) (WP_012412744.1), N. 
punctiforme LOX2 (13S) (WP_012407347.1), O. cuniculus (15S) (NP_001139620.1), O. sativa LOX2 (13S) 
(NP_001067011.1), O. sativa LOX (13S) (EEC72668), P. aeruginosa LOX (15S) (WP_023436288.1), P. homomalla LOX 
(8R) (AAC47743), P. patens LOX1 (13S) (XP_001784705.1), P. patens LOX2 (13S) (ABF66648), P. patens LOX3 (13S) 
(XP_001785004.1), P. patens LOX4 (13S) (ABF66650.1), P. patens LOX5 (13S) (ABF66651.1), P. patens LOX6 (13S) 
(ABF66652.1), P. patens LOX7 (13S) (ABF66653.1), S. tuberosum LOX (9S) (NP_001275357.1), S. tuberosum LOX (13S) 
(NP_001274843.1), S. tuberosum LOX2 (13S) (NP_001275115.1). 
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More intense search, however, also identified CspLOX1 as putative LOX which was then 

characterized as functional enzyme with linoleate 9R-LOX activity by Dr. Alexandra Andreou 

(Newie et al., 2015). 

3.1.2 The catalytic domains of CspLOX1 and CspLOX2 resemble other LOXs 

CspLOX1 has recently been crystallized by Dr. Andreou (Newie et al., 2015), while CspLOX2 

crystals were obtained in own work during previous studies. Both structures were solved by Dr. 

Neumann and refined to 2.8 Å (CspLOX1) and 1.8 Å (CspLOX2). These two models allowed a 

structural characterization and comparison with other LOX enzymes. 

Even though the sequence similarity is rather low, both LOXs from Cyanothece sp. PCC8801 

share the conserved LOX fold of the catalytic domain that is common to all LOX structures 

published so far (Figure 16, in gray). All long helices of the cylinder shaped domain are found at 

similar positions as in other LOXs except for the first helix of the catalytic domain which 

structurally corresponds to an extended loop region in CspLOX1 (Figure 18 and Figure 21B). 

Some peripheral parts of the catalytic domain have a slightly higher structural variability as well. 

A region that is for example comprised of six β-strands in CspLOX1 consists of short helices in 

other LOXs (Figure 16, dashed blue circle). 

 

Figure 16. Comparison of the domain structure of different LOXs. The α-helical catalytic domain which is present in 
all LOXs is shown in grey, the β-barrel in red and the long helical insertion/extension in black. PDB codes are given in 
brackets. The dashed blue circle highlights a region that corresponds to six β-strands in CspLOX1 and two short helices 
in other LOXs. 

 

 
Figure 17. Alignment of the metal coordinating residues of different LOXs. The residues involved in the coordination 
of the catalytic iron are highlighted in blue. Numbers indicate the positions of the respective residues in Cyanothece 
sp. LOX1 (CspLOX1) and Cyanothece sp. LOX2 (CspLOX2). GenBank accession numbers are as indicated for Figure 1. A 
larger alignment including more sequences is shown in Supplemental Figure 4. 
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The catalytic iron of both Cyanothece sp. LOXs is coordinated by three histidines, one asparagine 

and the carboxy group of the C-terminal isoleucine. These metal coordinating residues are highly 

conserved in most characterized LOXs from bacteria to plants (Figure 17), while in some 

mammalian LOXs, a fourth histidine or a serine occupies the position of the asparagine 

(Supplemental Figure 4). When LOXs from different organisms are superimposed, the root-

mean-square deviations (rmsd) of the atomic positions of the Cα atoms can be determined. The 

low sequence similarity of CspLOX1 with other enzymes of this family is also reflected in a 

relatively low structural similarity to soybean LOX1, human 15S-LOX and coral 8R-LOX as 

indicated by large rmsd values of about 2.5 Å for 350-450 Cα-atoms (Table 6). CspLOX2, on the 

contrary, is more similar to the same enzymes with rmsd values of less than 2 Å for 450-550 Cα-

atoms. 

Table 6. Structural comparison of CspLOX1 and CspLOX2 with other LOXs from soybean, human and the coral P. 
homomalla. Shown are the rmsd values in Å with the number of aligned Cα-atoms of the amino acids in brackets. 
These values were obtained by secondary structure matching in Coot. The second value given in percentage shows 
the sequence identity of the two compared LOXs. Primary sequences were aligned with the ClustalW algorithm using 
Geneious. 
 

 CspLOX1 CspLOX2 Soybean LOX1 
Human 

15S-LOX2 
Coral 

8R-LOX 

CspLOX1  
1.91 Å (368)/ 

9.46 % 
2.60 Å (392)/ 

10.81 % 
2.53 Å (415)/ 

11.6 % 
2.50 Å (368)/ 

9.17 % 

CspLOX2 
1.91 Å (368)/ 

9.46 % 
 

1.81 Å (469)/ 
17.32 % 

1.68 Å (499)/ 
19.79 % 

1.59 Å (514)/ 
22.92 % 

Soybean 
LOX1 

2.60 Å (392)/ 
10.81 % 

1.81 Å (469)/ 
17.32 % 

 
2.11 Å (574)/ 

17.09 % 
1.91 Å (558)/ 

16.47 % 

Human 
15S-LOX2 

2.53 Å (415)/ 
11.6 % 

1.68 Å (499)/ 
19.79 % 

2.11 Å (574)/ 
17.09 % 

 
1.37 Å (607)/ 

28.57 % 

Coral 
8R-LOX 

2.50 Å (368)/ 
9.17 % 

1.59 Å (514)/ 
22.92 % 

1.91 Å (558)/ 
16.47 % 

1.37 Å (607)/ 
28.57 % 

 

 

3.1.3 The N-terminal domains of LOXs from Cyanothece sp. PCC8801 exhibit unusual 

features 

The most interesting structural difference of CspLOX1 and CspLOX2 compared to other LOXs is 

found within the N-terminal domain. Classical LOXs like soybean 13S-LOX1 or human 15S-LOX2 

consist of two domains, with a β-barrel domain at the N-terminus and the α-helical catalytic 

domain at the C-terminus. CspLOX2, on the contrary, lacks the β-barrel domain completely and 

is therefore a so-called mini-LOX (Andreou et al., 2010). Some other bacterial LOXs lack this 

domain as well, like the ones from N. puntiforme (Koeduka et al., 2007) and B. thailandensis (An 

et al., 2015). Others exist as fusion proteins with a catalase-like domain. Removal of the catalase-

like domain also resulted in active mini-LOX enzymes (Lang et al., 2008; Zhang et al., 2012; Zheng 

et al., 2008). Some bacterial LOXs have a helical insertion instead of the β-barrel domain like the 

P. aeruginosa 15S-LOX (Garreta et al., 2013) (Figure 16). CspLOX1 is special regarding the 
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architecture of the N-terminal domain. It represents the first LOX that contains both, a β-barrel 

domain and additionally an α-helical extension at the N-terminus (Figure 18). 

Comparison of this domain with those of other LOXs revealed that the topology of the 

antiparallel β-strands is in general very similar to those of other LOXs. Only one pair of β-strands 

is considerably elongated in CspLOX1 and points away from the core of the β-sandwich (Figure 

18C). Due to these elongated strands, both layers of the sandwich form a cleft that interacts 

with the catalytic domain. In addition to the extended antiparallel β-strands, the orientation of 

this domain relative to the cylinder shaped catalytic domain is different in the CspLOX1 crystal 

structure compared to other LOXs. While both domains are arranged almost parallel in human 

15S-LOX2 or soybean 13S-LOX1 (Figure 18A and B), the barrel is rotated by more than 90° in 

CspLOX1 (Figure 18C). Some parts of the β-barrel domain interact with the catalytic domain and 

structurally replace the helix α1 found in other LOXs (Figure 19A). 

 

Figure 18. Comparison of the β-barrel domain of CspLOX1 with those of other LOXs. The overall arrangement of this 
domain is similar in different LOXs (A and B, rainbow colored from blue at the N-terminus to red at the C-terminus). 
Only two antiparallel β-strands are remarkably longer in CspLOX1 (C). Moreover, the first helix of the catalytic domain 
(black α1) is corresponding to an extended linker in CspLOX1. The orientation of the β-barrel domain (indicated by an 
arrow) relative to the catalytic domain is different in CspLOX1 compared to other LOXs. The catalytic iron is shown as 
orange sphere and the N-terminal α-helical extension of CspLOX1 is shown in pink. 
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Figure 19. Interactions within CspLOX1 crystals. (A) Parts of the β-barrel domain structurally replace the covering 
function of the helix α1 (in blue) found in other LOXs. The part of the β-barrel in CspLOX1 replacing this covering helix 
is shown in red (opaque). (B) Crystal contacts between neighboring molecules in CspLOX1 crystals related by one 2-
fold axis. Amino acids involved in crystal contacts are shown as sticks and a neighboring molecule in the crystal lattice 
is shown as transparent cartoon. The iron is represented as orange sphere. Contacts were analyzed using the CCP4 
suite (Winn et al., 2011). 

 

The α-helical extension of CspLOX1 is found N-terminal of the β-barrel domain. This 40 amino 

acid extension consists of two amphipathic α-helices that are connected by a short two amino 

acid linker. In the crystal structure, these N-terminal helices are in contact with a long helix α3 

of the catalytic domain comprising the residues 189 to 214. Six hydrogen bonds and two salt 

bridges are formed between this helix and α-helical extension and an area of 875 Å2 is buried at 

the interface which corresponds to 23 % of the total area of the helical extension (Figure 19B 

and Figure 20). The hydrophobic side of the helix is exposed to the surface and consequently 

needs to interact with a hydrophobic counterpart which is the α-helical extension of a 

neighboring molecule. At this interface hydrophobic interactions and four hydrogen bonds are 

found and an area of 790 Å2 is buried (Figure 19B). Interestingly, the entrance to the substrate 

binding channel is surrounded by mainly positively charged residues (Figure 20, blue), which 

could provide a favorable environment for the negatively charged carboxyl group of the fatty 

acid. 
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Figure 20. Surface potential map of CspLOX1. The map was generated with the APBS program (Baker et al., 2001). 
The electrostatic surface potential of CspLOX1, colored from red (-7 kT/e) to blue (7 kT/e), reveals basic patches 
around the entrance to the substrate binding channel. 

3.1.4 The α-helical extension of CspLOX1 mediates binding to liposomes 

The β-barrel domain of LOXs has been discussed to be involved in membrane binding and may 

thus be important for substrate acquisition from the membrane. It was therefore interesting to 

test whether the ß-barrel of CspLOX1 can fulfill this function as well. Since it seemed possible 

that either the amphipathic α-helical extension or the β-barrel domain or both mediate 

membrane binding of CspLOX1, truncated CspLOX1 versions were generated. The helical 

extension was cut off after Glu43 to produce a truncated version that contains the catalytic 

domain and the β-barrel domain. Another truncated version, which starts at Glu180, contains 

only the catalytic domain (Figure 21B and Figure 22). The protein versions were heterologously 

expressed in E. coli, purified and tested for their catalytic activity and their membrane binding 

ability. While the catalytic activity even increased after truncation of the α-helical extension, the 

enzyme was inactive when additionally the β-barrel domain was removed (Figure 21A). The 

inactivity of the catalytic domain might be a result of the truncated linker region between the β-

barrel and the catalytic domain. As the linker was cut rather in the middle of the loop, a large 

portion of it was removed by the truncation (Figure 21B). This linker, however, seems to cover 

parts of the active site. Similar loops over this area of the catalytic domain are also found in 

other LOXs such as sLOX1 or 15-LOX. Here, the loop is formed by amino acids of the catalytic 

domain found C-terminal of the helix α1 (Figure 18). 
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Figure 21. Analysis of the catalytic activities of the truncated CspLOX1 versions. (A) Relative catalytic activities 
compared to wt CspLOX1 (full-length) are shown, whereby the wt activity equals 100 %. Activities were measured 
with different substrate concentrations as increase at 234 nm with a spectrophotometer. Values were plotted using 
Origin to determine the kinetic constants according to the Michealis-Menten equation. (B) Scheme of the loop 
structure between the domains that were removed in the truncated versions. The boxes on top indicate different 
domains with linkers shown as lines in between. Amino acid positions are numbered. The structure below shows the 
second linker formed by amino acids 160-188 between the β-barrel domain and the catalytic domain with the site of 
truncation. As shown, a large part of the linker (red) was removed in CspLOX1 truncated (180-688). This part, however, 
forms a loop covering parts of the active site. The catalytic iron is shown as orange sphere, the putative substrate 
binding channel is shown in blue. 

 

The membrane binding ability of the truncated versions of the enzyme was tested in a liposome 

binding assay. Liposomes consisting of the phospholipid 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine resemble biological membranes as they consist of a lipid bilayer that surrounds 

an aqueous solution. In the assay, liposomes were incubated with the full-length or truncated 

versions of CspLOX1 (Figure 22). During a centrifugation step in a sucrose gradient, the 

liposomes float up with all proteins bound to them and will thus be found in the top fraction (T), 

while proteins with no affinity to liposomes will remain at the bottom (B). In a control 

experiment, only buffer instead of liposomes was incubated with the proteins (Figure 22, right 

lanes). SDS-PAGE analysis of individual fractions revealed that only the full-length version of 

CspLOX1 binds to the liposomes while binding is tremendously decreased in both truncated 

versions (Figure 22A vs. B and C). These results suggest that the N-terminal helical extension is 

necessary for an efficient membrane binding, while a clear contribution of the β-barrel domain 

could not be observed. CspLOX2, which lacks the N-terminal domains completely, has as 

expected no affinity for liposomes. 
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Figure 22. Liposome binding assay of the truncated versions of CspLOX1. For this experiment, the N-terminal part of 
CspLOX1 was truncated after the N-terminal α-helix while retaining the C2-like domain (B) or after the C2-like domain, 
resulting in only the catalytic domain (C). These versions were compared to full-length CspLOX1 (A) and CspLOX2 (D). 
Liposomes were prepared with 10 mM 1,2-dipalmitoyl-sn-glycero-3-phosphocholine in 100 mM sodium phosphate 
buffer pH 7 and incubated with 50 µg of protein. During centrifugation in a sucrose gradient (250 µl 30 % sucrose, 
200 µl 25 % sucrose and 50 µl 0 % sucrose), the proteins that have bound to liposomes will float up from the bottom 
of the tube (B) to the middle (M) and to the top fraction (T). Proteins in these three fractions were precipitated and 
analyzed by SDS-PAGE. As a negative control, proteins were incubated with only buffer instead of liposomes (right 
lanes).  
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3.2 CspLOX2 produces the instable 11-HPODE as an intermediate 

Differences between the LOXs from Cyanothece sp. and most other LOXs could not only be found 

in the structure, but also in the oxygenation specificity of the enzymes. While almost all 

characterized plant and animal LOXs catalyze the lipoxygenation with high S-specificity of the 

products, CspLOX1 and CspLOX2 form mainly products in an R-configuration: The main product 

of CspLOX1 is 9R-HPODE (Newie et al., 2015), while the main product of CspLOX2 is 11R-HPODE 

(Andreou et al., 2010). Although this is relatively rare, such R-specific LOXs have also been found 

in other organisms (Boutaud and Brash, 1999; Brodhun et al., 2013; Lang et al., 2008; Lõhelaid 

et al., 2008; Zhang et al., 2012). The most noticeable anomaly of the CspLOX2 specificity is, 

however, the ability to form bis-allylic hydroperoxides. No other iron-containing LOX was 

identified so far that produces bis-allylic products in significant amounts. The following section 

will focus on the formation and isomerization of this unusual product by CspLOX2. 

3.2.1 Optimized protocol required for reproducible 11-HPODE determination 

Although the formation of 11-HPODE has been reported for CspLOX2 (Andreou et al., 2010), it 

was initially difficult to isolate and analyze the rare oxylipin with high reproducibility. To 

overcome these problems and to establish a reliable and reproducible protocol for 11-HPODE 

analysis, the reaction, extraction and HPLC-analysis of 11-HPODE was optimized. During this 

optimization process, the following parameters were adjusted: reaction time, enzyme and 

substrate concentration, temperature of the reaction and extraction procedure. 

The most challenging drawback of 11-HPODE is its instability. While 9- and 13-HPODE are rather 

stable after extraction, 11-HPODE was found be degraded over time, even when it was stored 

at -80 °C in methanol or acetonitrile (Figure 23). 

 

 

Figure 23. Instability of 11-HPODE. 11-HPODE was enzymatically produced with CspLOX2 and purified by RP-HPLC. 
The product was dried in a stream of nitrogen, resuspended in methanol and stored at -80 °C. The remaining 11-
HPODE was again analyzed by RP-HPLC directly after purification (left panel), after 1 day storage (middle panel) and 
after 5 day storage at -80 °C (right panel). 
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Initial experiments suggested that the pH would control the oxygenation specificity, since no 11-

HPODE was detected when the reaction was performed at pH values lower than 9 (Figure 24A). 

Comparison of different conditions, however, revealed that acidification during extraction 

destroyed the bis-allylic product and was responsible for the lack of 11-HPODE with reaction 

buffers of lower pH values. Acidification of the reaction is generally used to improve the 

extraction of the protonated form of the carboxyl group which is more hydrophobic and hence 

less soluble in the aqueous phase. But since the extraction efficiency was not significantly 

affected without addition of acetic acid, acidification was from then on omitted. As a result, 

similar products were found in assays at pH 7 and 9.5 (Figure 24B). 

 

Figure 24. Acid lability of 11-HPODE. (A) 15 µg of CspLOX2 were incubated with 100 µM linoleic acid substrate at room 
temperature in 200 mM sodium borate buffer ranging from pH 8 to pH 11. Products were reduced with sodium 
borohydride and acidified with 100 µl acetic acid. After extraction, products were analyzed by RP-HPLC-MS. (B) The 
experiment was repeated without acidification and products formed at pH 7 and pH 9.5 were analyzed with the same 
method. 

 

The optimization finally indicated that best results were obtained when the reaction was set up 

with 15 µg CspLOX2 in 1 ml 200 mM sodium borate buffer pH 9 and 100 µM linoleic acid at 30 °C 

for 6 min. To stop the reaction, it was mixed with diethyether and placed on ice. After quick 

extraction, the products had to be analyzed on the same day by SP-HPLC. These established 

conditions were a prerequisite for the reliable analysis of enzyme variants with specifically 

exchanged amino acids. 

3.2.2 11-HPODE is only transiently formed 

Reactions of LOXs are usually monitored at 234 nm with a spectrophotometer to determine the 

catalytic activity, as the formation of conjugated double bonds can be observed at this 

wavelength. In comparison to other LOXs, two characteristics distinguish the reaction of 

CspLOX2 from most other LOXs. First of all, CspLOX2 exhibits a long kinetic lag phase that is 

observed as delay before the reaction starts. Secondly, the reaction comprises two linear phases 

with a first fast reaction rate and a second slower reaction rate (Figure 25A). On the contrary, 

LOXs from other organisms like sLOX1, CsLBLOX or FoxOX have remarkably shorter lag phases 
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and only one linear reaction phase (Figure 25B). Only CspLOX1, the isozyme from Cyanothece 

sp., has a comparably long lag phase as CspLOX2 under the applied conditions. 

Two reasons for the transition from the first to the second reaction phase seemed conceivable: 

Either the substrate is consumed at this point or the accumulating products could have an 

inhibitory effect on the reaction. To test these alternatives, the same amount of linoleic acid 

substrate that was present at the beginning of the reaction was added when the second reaction 

phase was reached. This resulted in a restart of a steep increase at 234 nm similar to the initial 

one, suggesting that the transition to the second phase is caused by a depletion of substrate 

(Figure 25C). 

 

Figure 25. Individual phases of the CspLOX2 reaction. The LOX activity assay was performed in 200 mM sodium borate 
buffer pH 9 containing 100 µM linoleic acid and started by adding enzyme. (A) The CspLOX2 reaction shows three 
distinct phases at 234 nm. (B) These phases are not present in other LOX reactions. Different quantities of enzyme, 
purified by affinity chromatography, were used to achieve an increase in the same range. (C) Further addition of the 
same amount of substrate during the second phase restarts the fast first phase of the CspLOX2 reaction. (D) Relative 
amounts of the [1-14C]-labeled linoleic acid substrate and hydroperoxy products were determined during the course 
of the CspLOX2 reaction. Samples were taken after different points of time. They were rapidly extracted and analyzed 
by radio RP-HPLC. The graph shows the progression of relative amounts. The values presented here are the mean 
values of 2 independent experiments. The data were interpolated by a B-spline function using Origin. 

  



Results 
 

 

54 

It seemed likely that the unusual characteristics of the CspLOX2 progression curve at 234 nm are 

related to the formation of the bis-allylic product. On the one hand, the long lag phase could be 

a result of a predominant 11-HPODE formation at the beginning, since this product does almost 

not absorb at this wavelength (Figure 26). On the other hand, the second slower reaction could 

result from the isomerization of 11-HPODE to the conjugated hydroperoxides. In order to 

investigate these options, the ratio of bis-allylic and conjugated HPODEs was determined at 

different points of the reaction. The reaction was performed with [1-14C]-labeled linoleic acid 

and samples were taken after different incubation times and the relative amounts of remaining 

linoleic acid substrate, formed 11-HPODE and conjugated HPODEs were analyzed by RP-HPLC. 

The resulting curves (Figure 25D) suggest that the substrate is depleted after 5 min. This 

coincides with a peak of 11-HPODE which reaches its highest concentration after about 5 min 

and is then slowly declining again. The amount of conjugated 9- and 13-HPODE, which cannot 

be separated by this RP-HPLC method, resembles the progression curve observed at 234 nm 

(Figure 25A): they are first increasing rapidly and then slowly. These results strongly suggest that 

a mixture of HPODEs is formed in a fast reaction until the substrate is used up and that the 

formed 11-HPODE is subsequently isomerized to conjugated products explaining the second 

slower reaction rate observed at 234 nm. 

 

Figure 26. Absorption spectra of 9-, 11- and 13-HPODE. The absorption maxima of of 9- and 13-HPODE (234 nm) are 
indicated. 

3.2.3 Activation of CspLOX2 with HPODEs removes the lag phase 

As 11-HPODE does not absorb at 234 nm (Figure 26), the lag phase could also be attributed to 

an early formation of this bis-allylic product. For sLOX1 it was shown that the lag phase is a result 

of inactive enzyme in the as-isolated state, which contains Fe(II) in the active site. Upon addition 

of reaction product, i.e. HPODEs, the iron cofactor is oxidized to its active Fe(III) state to initiate 

the reaction (Schilstra et al., 1992; Schilstra et al., 1993). To test, whether inactive iron is also 

the reason for the long lag phase of CspLOX2, a small amount of reaction product was added to 

the assay. Indeed, addition of 1 µM HPODE was enough to directly initiate the reaction without 

delay (Figure 27). These results suggest that the reason for the observed lag phase is the same 

as in other LOXs: the activation of the catalytic iron from Fe(II) to Fe(III) by hydroperoxides. 

Although the lag phase is longer compared to the reactions of other LOXs (Figure 25B), it is 

apparently not related to 11-HPODE formation. Therefore, similar results should be obtained if 
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the consumption of oxygen is monitored using an oxygen electrode. With this method, the 

oxygen insertion at all possible positions is detected. As expected, the addition of HPODEs also 

shortened the lag phase of CspLOX2 here (Figure 27B). It should be noted that the progression 

curve observed with the oxygen electrode exhibits only one reaction phase. This is in line with 

the assumption that the second reaction rate observed at 234 nm accounts for the 

isomerization, since this would not consume further oxygen. 

 

Figure 27. Activation of the CspLOX2 reaction by addition of HPODEs. (A) Freshly purified CspLOX2 was incubated with 
100 µM linoleic acid and the reaction was monitored at 234 nm (not activated). If 1 µM reaction product, i.e. HPODEs, 
was added to the assay, the reaction starts directly without lag phase (activated). (B) The experiment was repeated 
using an oxygen electrode to monitor the decrease of oxygen. This resulted in the same effect. 

3.2.4 Kinetics of the isomerization reaction exclude model of reaction sequence 

Another interesting question was if the CspLOX2 reaction proceeds as a sequence (Figure 29A). 

In this case, all linoleic acid substrate would first be converted to the 11-HPODE intermediate 

which would then be isomerized to the conjugated HPODEs. Therefore, the kinetics of the 

isomerization reaction were determined and compared to the kinetics observed with linoleic 

acid. For the analysis of the isomerization, 11-HPODE was enzymatically produced with CspLOX2 

and purified by RP-HPLC. The concentrations of produced 11-HPODE solution was determined 

by converting small aliquots completely with CspLOX2 and calculating the amount of produced 

conjugated HPODEs. Different concentrations of 11-HPODE were then converted with CspLOX2 

and the increase in absorbance at 234 nm was monitored (Figure 28A). The results were fitted 

to the Michealis-Menten equation and a turnover number kcat of 0.58 s-1 and a Michaelis-Menten 

constant KM of 4 µM 11-HPODE were determined for the isomerization reaction. In comparison, 

the first fast reaction observed with linoleic acid proceeds at a 10-fold higher rate (5.5 s-1). The 

kcat of 0.50 s-1 determined for the second reaction rate, however, resembles the one of the 

isomerization reaction (Figure 28B). This is in line with the results shown in Figure 25D. It strongly 

suggests that the second reaction rate observed at 234 nm indeed represents the isomerization 

reaction. Furthermore, it can be concluded that the CspLOX2 reaction cannot proceed as a 

sequence in which all substrate is first converted to 11-HPODE, before it is isomerized. This 

model would be in conflict with the fast initial reaction rate. During this phase conjugated 
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hydroperoxides are formed at a 10-fold higher rate than the kcat of the isomerization (Figure 29A 

vs. B). 

 

Figure 28. Enzyme kinetics of the isomerization reaction. 11R-HPODE was enzymatically produced with CspLOX2 and 
purified by RP-HPLC. (A) 11-HPODE was incubated with CspLOX2. The formation of conjugated double bonds was 
monitored at 234 nm. The progression curve shows only one phase and the reaction starts immediately without lag 
phase. (B) Michaelis-Menten kinetics of the isomerization reaction in comparison to the first and second reaction rate 
of the CspLOX2 reaction with linoleic acid. Different amounts of linoleic acid and 11-HPODE were used and the activity 
determined from the increase at 234 nm was plotted against the substrate concentration. 

 

 

Figure 29. Model of the reaction steps catalyzed by CspLOX2. Two options seemed possible: (A) The reaction proceeds 
as a sequence. Here, linoleic acid (LA) would first be converted to 11-HPODE as an obligatory intermediate before it 
is isomerized to the conjugated 9- and 13-hydroperoxides. (B) During the peroxidation phase, a mixture of HPODEs is 
formed, and only the portion of 11-HPODE is subsequently isomerized to the conjugated products. Our results are 
clearly in favor of model B. 
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3.2.5 11-HPODE is the major product of the first reaction phase 

A possibility to separately analyze the 11-HPODE formation is to compare the reaction rates 

determined using the oxygen electrode with the reaction rates determined at 234 nm using a 

spectrophotometer. While the oxygen electrode detects the insertion of oxygen at all positions 

of the substrate, the spectrophotometer detects only the formation of conjugated HPODEs at 

234 nm. The rate difference of both methods should therefore account for the 11-HPODE 

formation. For CspLOX2, a kcat of 28.5 s-1 was determined with the oxygen electrode and a kcat of 

5.5 s-1 at 234 nm with the spectrophotometer (Table 7). The rate of 11-HPODE formation should 

therefore be 23 s-1. Consequently, about 80 % of the initial reaction rate account for the 11-

HPODE formation and 20 % for the formation of conjugated HPODEs. This is in line with the ratio 

determined with a full conversion of linoleic acid. The reaction was followed at 234 nm until the 

plateau was reached (Figure 30A). At this point all linoleic acid substrate will be ultimately 

converted to 9- and 13-HPODE. It thus marks the end point (100 %) of the reaction. As shown in 

Figure 30A, the transition of the first to the second reaction phase occurs at about 20 %. This 

ratio is also supported by the product composition obtained with [1-14C]-labeled linoleic acid at 

the end of the first reaction phase. Here, a ratio of 75:25 of 11-HPODE to conjugated HPODEs 

was determined (Figure 30B) which is in good agreement with both other experiments. 

Table 7. Kinetics measured using the spectrophotometer and the oxygen electrode. The turnover numbers kcat 
determined from the oxygen decrease and increase in absorbance at 234 nm are compared. Using the oxygen 
electrode, the formation of 9-, 11- and 13-HPODE can be detected, while only the formation of 9- and 13-HPODE is 
detected at 234 nm. The difference of both measurements should thus reflect the velocity of 11-HPODE formation. 

 kcat (s-1) relative rate (%) 

oxygen electrode (all HPODEs) 28.5 ± 0.7 100 

absorption at 234 nm (only 9- and 13-HPODE) 5.5 ± 0.3 19.3 

difference (11-HPODE) 23 80.7 

 

Figure 30. Ratio of 11-HPODE to conjugated products at the end of the first reaction phase. (A) CspLOX2 was incubated 
with 100 µM linoleic acid and the reaction was monitored until almost no increase in absorbance at 234 nm was 
detected anymore. The end point of the reaction reflects almost a complete conversion to conjugated HPODEs from 
linoleic acid and was set to 100 %. (B) Products formed from [1-14C]-labeled linoleic acid were analyzed after the first 
reaction phase with CspLOX2. Products were rapidly extracted after the first reaction phase and analyzed by RP-HPLC 
equipped with a radio-detector. The chart shows the mean values and standard deviation of three independent 
experiments. 
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3.2.6 Some other LOXs can also isomerize 11-HPODE to conjugated HPODEs 

Since 11-HPODE is a rather unstable product and intense optimization of the extraction process 

was required to obtain reliable results (Chapter 3.2.1), it might be possible that other iron-

containing LOXs can produce 11-HPODE under these optimized conditions as well. To test this, 

different LOXs from plants (sLOX1, CsLbLOX), cyanobacteria (CspLOX1) and fungi (FoxLOX) were 

tested for their ability to produce 11-HPODE from linoleic acid. But even under these optimized 

conditions none of the tested enzymes produced 11-HPODE (data not shown). Furthermore, it 

was tested whether these LOXs can isomerize 11-HPODE to the conjugated products. And 

indeed two of the four tested enzymes, FoxLOX and CspLOX1, were able to isomerize the 

purified 11-HPODE to conjugated products. This could be observed as increase in absorbance at 

234 nm (Figure 31A). Further analysis of the products revealed that the isomerization products 

had the same positional specificity as the peroxidation products from linoleic acid. The 13-LOX 

FoxLOX (Brodhun et al., 2013) produced primarily 13-HPODE, while the 9-LOX CspLOX1 (Newie 

et al., 2015) produced almost exclusively 9-HPODE (Figure 31B). The products of the 11-HPODE 

isomerization catalyzed by CspLOX2 are also the same as observed after 2 h with linoleic acid. 

 

Figure 31. Isomerization of 11-HPODE with different LOXs. (A) 11-HPODE was produced with CspLOX2, purified by RP-
HPLC and incubated with 600 U of different LOXs. Reactions with CspLOX2, CspLOX1 and FoxLOX resulted in a slight 
increase at 234 nm, whereas CsLbLOX and sLOX1 showed virtually no increase. (B) The reaction products were 
extracted after 15 min and analyzed by SP-HPLC. The remaining 11-HPODE was quantified at 202 nm and 9- and 13-
HPODE at 234 nm. The scaling factors determined with [1-14C]-labeled compounds (Supplemental Figure 2) were 
included in the quantification. As a negative control, only buffer was incubated with 11-HPODE (w/o enzyme).  
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3.3 EPR and ICP-AES studies reveal that CspLOX2 is only active with iron 

Since most LOXs that produce bis-allylic hydroperoxides contain manganese instead of iron in 

the active site, it was interesting to study the role of the catalytic metal in the active site in more 

detail. For an initial characterization of the CspLOX2 metal cofactor, EPR spectra were recorded 

at 9.4 GHz by Dr. Müge Kasanmascheff (EPR Spectroscopy Group, MPI for Biophysical Chemistry, 

Göttingen). The as-isolated state of the enzyme was compared with the activated state upon 

addition of HPODEs and during reaction with linoleic acid. As expected, the characteristic iron 

signal of iron-containing LOXs (Gaffney et al., 1993; Slappendel et al., 1981) could be identified 

(Figure 32A, upper part). In the as-isolated state, the signal was characteristic for Fe(II) which is 

EPR silent at this frequency, whereas a typical Fe(III) signal appeared in the activated state. 

Interestingly, the spectrum additionally revealed a sharp manganese six line signal that 

disappeared when HPODE or linoleic acid was added (Figure 32A, upper part). It thus seemed 

possible that also manganese can fulfill a catalytic function in CspLOX2 or is even responsible for 

the amount of 11-HPODE that is produced, as similar manganese signals have been reported for 

MnLOXs (Oliw et al., 2011; Su et al., 2000; Wennman et al., 2015). 

3.3.1 The iron cofactor of CspLOX2 can be substituted by manganese 

To assess whether iron or manganese or both metals are functional in the active site of CspLOX2, 

it was desirable to produce CspLOX2 variants that contain either manganese or iron in the active 

site. Initial trials to extract the catalytic iron with chelators like phenanthrolin were not 

successful. Another possibility to substitute the catalytic metal is to adjust the expression 

parameters by only including the desired metal in the medium, while excluding other transition 

metals. Finally, different CspLOX2 versions could be obtained by protein expression in minimal 

auto-induction medium that was supplemented with either manganese or iron. During the 

purification process, transition metals were excluded from buffers as far as possible. To 

elucidate whether the metal cofactor could indeed be exchanged, the purified proteins were 

subjected to ICP-AES. These measurements were carried out by Uta Nüsse-Hahne (Department 

of Plant Ecology and Ecosystems Research, University of Göttingen) and revealed that Fe-

CspLOX2 contains 97 mol % Fe and only 1 mol % Mn, whereas Mn-CspLOX2 contains 62 mol % 

Mn and only 2 mol % Fe (Table 8). 

 
Table 8. Metal content and catalytic activity of Mn- and Fe-CspLOX2. Different CspLOX2 versions were expressed in 
PA-5052 minimal medium containing either iron or manganese to produce Fe-CspLOX2 and Mn-CspLOX2, 
respectively, or in complex medium with a metal mix containing both manganese and iron (CspLOX2(mix)). The metal 
content of the CspLOX2 variants determined by ICP-AES is indicated as a molar percentage of metal per enzyme. The 
kcat was determined using the oxygen electrode. 

 Fe-CspLOX2 Mn-CspLOX2 
CspLOX2 

(mix) 

Fe occupancy (mol %) 96.6 2.1 58.4 

Mn occupancy (mol %) 1.3 61.8 18.1 

kcat (s-1) 35.3 ± 3.1 1.9 ± 0.6 28.5 ± 0.7 
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Figure 32. Comparison of the 9.4 GHz CW-EPR spectra of metal-substituted CspLOX2 versions. Enzymes were 
expressed in a complex auto-induction medium (CspLOX2 (mix)) or in a defined minimal auto-induction medium 
supplemented either with iron (Fe-CspLOX2) or manganese (Mn-CspLOX2). (A) Spectra of different versions were 
recorded before and after activation with HPODE and during reaction with linoleic acid. The EPR spectrum of the 
buffer control is also shown. The iron impurity at g’ = 4.3 and the signal caused by the glass impurity are shown with 
an asterisk. (B) In a control experiment, similar spectra as with Mn-CspLOX2 were obtained with MnCl2 only. 
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Both versions were further tested for their catalytic function using the oxygen electrode. 

Interestingly, the activity of the iron-containing version of CspLOX2 (Fe-CspLOX2) was increased 

by about 20 % compared to the enzyme expressed in complex auto-induction medium (CspLOX2 

(mix)), whereas the manganese-containing version (Mn-CspLOX2) was almost inactive (Table 8). 

These results strongly suggest that CspLOX2 is only active with iron but not with manganese in 

the active site. The low amount of iron found in Mn-CspLOX2 might explain the residual activity 

of this variant. 

Fe-CspLOX2 and Mn-CspLOX2 were also analyzed using EPR spectroscopy by Dr. Kasanmascheff. 

Now, upon activation with HPODE only the typical iron signal at gxyz ≈ 6.0, 5.8 and 2.0 was 

detected for Fe-CspLOX2. However, when the substrate linoleic acid was added instead of 

HPODEs, this signal could not be observed after one minute of incubation, which is also the case 

for the iron signal observed with CspLOX2(mix). As the catalytic reaction is probably completed 

in this time scale, it is not unexpected that the enzyme harbors Fe(II) in the active site which is 

EPR silent at 9.4 GHz. A small amount of iron signal observed at g’ = 4.3 was present in all 

samples and was therefore attributed to contaminating iron. In contrast, Mn-CspLOX2 showed 

only the typical Mn(II) six lines EPR signal in a region close to g = 2. When HPODE or linoleic acid 

was added, this signal was remarkably reduced, suggesting that Mn(II) is oxidized to Mn(III) 

which is EPR silent. Although these results would support a catalytic function of manganese, the 

same spectra were recorded with MnCl2 only (Figure 32B). The EPR spectra obtained with Fe-

CspLOX2 and Mn-CspLOX2 support the ICP-AES data: Fe-CspLOX2 contains almost exclusively 

iron and Mn-CspLOX2 contains almost exclusively manganese. 

3.3.2 The coordination of manganese in the active site is identical to that of iron 

To confirm that manganese is indeed bound in the active site and that the protein integrity was 

not affected, Mn-CspLOX2 from the same purification batch used for the ICP-AES and EPR 

measurements was crystallized. Crystals of similar size as for wt CspLOX2 were obtained. Crystals 

diffracted to 2.0 Å and were isomorphous with crystals of CspLOX2 expressed in complex 

medium. X-ray structures determined with the help of Dr. Neumann revealed that a metal atom 

could be detected in the characterized binding site (Figure 28A). The occupancy of iron or 

manganese in the active site was virtually full with 94 %. In comparison, the wt enzyme had an 

occupancy of 95 % iron or manganese. Due to the minimal difference between iron and 

manganese in the atomic structure (manganese has 25 electrons and iron 26 electrons), both 

metals cannot be distinguished with the obtained X-ray diffraction data. The presence of iron or 

manganese in the active site with virtually full occupancy together with the ICP-AES (Table 8) 

and EPR (Figure 32) data point towards an integration of manganese into the active site in Mn-

CspLOX2. 
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Comparison of the coordination sphere geometries of Mn-CspLOX2 with Fe-CspLOX2 revealed 

that they are virtually identical (Figure 33). Iron and manganese are octahedrally coordinated by 

His247, His262, His 449, Asn453 and Ile569. The sixth position of the ligand sphere is occupied 

by a water or hydroxide in both structures. 

 

Figure 33. Coordination sphere of (A) Mn-CspLOX in comparison to (B) Fe-MnLOX. The 2mFo-DFc electron density 
maps are contoured at 2.8 σ for MnCspLOX2 and 4 σ for Fe-CspLOX2, respectively. (C) Superimposition of both 
coordination spheres reveals a virtually identical geometry. Mn-CspLOX2 is shown in light green and Fe-CspLOX2 in 
dark green. The catalytic metal is shown as orange (iron) or purple (manganese) sphere and the coordinated water or 
hydroxide as small red sphere. 
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3.4 The active site clamp controls the oxygenation specificity 

Since the formation of 11-HPODE is not restricted to LOXs with manganese as metal cofactor, it 

was likely that structural features of CspLOX2 are responsible for the unusual specificity. The 

crystal structure of CspLOX2 represents the first of a LOX with bis-allylic products. Additionally, 

the portion of 11-HPODE that is produced by CspLOX2 (75 % of all products, Figure 30) is the 

highest found for a LOX so far. For these two reasons, CspLOX2 is an ideal candidate to study the 

structural basis of this unusual specificity for bis-allylic products. 

The crystal structure of CspLOX2 was consequently inspected in more detail. Although this LOX 

represents a mini-LOX that lacks the N-terminal β-barrel domain, the catalytic domain strongly 

resembles the classical LOX domain of other enzymes. And even the boot-shaped substrate 

binding channel is similar to that of other LOXs like the P. aeruginosa 15-LOX (PDB code 4G32), 

the porcine leucocyte 12-LOX (PDB code 3RDE) or the P. homomalla 8R-LOX (PDB code 4QWT) 

(Figure 36). As these enzymes are unable to form the bis-allylic product in significant amounts, 

the differences of the CspLOX2 structure are probably more subtle. As major intra- or inter-

domain movements seemed unlikely to explain this reaction, the focus of this study was on the 

active site where the reaction takes place. 

3.4.1 Residues in the core of the active site are important for the CspLOX2 specificity 

In the course of this study, more than 20 active site variants of CspLOX2 were constructed. The 

amino acid substitutions were specifically generated at the entrance and bottom of the putative 

substrate binding channel, but also at the base of the pocket which is close to the catalytic iron 

(Figure 34A). Mutations at the entrance of the pocket were mainly inserted to analyze 

interactions of the carboxyl head group of the fatty acid with positively charged amino acids, 

whereas mutations at the bottom of the pocket were inserted to identify what effect the depth 

of the substrate binding in the active site has on the enzyme specificity. The mutations close to 

the catalytic iron should help to elucidate how the specificity of the enzyme can be controlled 

by amino acids around the pentadiene, for example by steric shielding or adjustment of a 

potential oxygen channel. The generated CspLOX2 variants were purified and analyzed in 

comparison to the wt enzyme. But due to the observed fluctuations of 11-HPODE depending on 

the experimental conditions, initial experiments could not be compared with experiments 

conducted later on with the optimized reaction and extraction protocol (Chapter 3.2.1). 

Therefore, 18 CspLOX2 variants were purified in parallel and analyzed in comparison to wt 

CspLOX2. The comparability of all analyzed variants was thus as high as possible to identify the 

most interesting candidates with the strongest changes in specificity. 
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Figure 34. Comparison of 18 different CspLOX2 variants. (A) Parts of the CspLOX2 active site channel where the 
mutations were inserted. (B) The activities of all variants were measured as increase at 234 nm, reflecting only the 
formation of conjugated double bonds or as oxygen consumption with an oxygen electrode under saturated 
concentrations of linoleic acid (100 µM) in 200 µM sodium borate buffer pH 9. (C) The product composition produced 
by the enzyme variants was evaluated by HPLC analysis. The scaling factor obtained with [1-C14]-linoleic acid was 
included in the quantification, as different products have different absorption coefficients (Supplemental Figure 2). 
Shown are the mean values of 3 independent experiments with standard deviations for the column below. The 
pictograms indicate the kind of mutation. Either the specific residue was exchanged for a smaller, bulkier or more 
hydrophobic residue. The letters A, B1, B2 and C indicate the relative position of the amino acid exchange in the active 
site channel according to the depicted model (A). 
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All these CspLOX2 variants were purified by gravity flow IMAC and analyzed for their activity at 

234 nm with a spectrophotometer and with an oxygen electrode (Figure 34B). As mentioned 

before, only conjugated products are detected at 234 nm (Figure 26) and the oxygen 

consumption is therefore a more reliable indicator for the overall activity, including the 

formation of the bis-allylic product. In addition to the activity, the positional specificity was 

determined by HPLC analysis according to the established protocol. The reaction time was 

adjusted to the reaction velocity of the individual variant and stopped when the first reaction 

phase came to an end as judged at 234 nm. 

The results are summarized in Figure 34. The product specificities were organized from mainly 

9-HPODE formation (left) to mainly 13-HPODE formation (right) (Figure 34C) and the respective 

activities of these variants were allocated (Figure 34B). Furthermore, the position of the 

mutation in the active site is shown (Figure 34A). The mutation close to the exit of the channel 

were categorized with the letter “A”, mutations close to the catalytic iron with “B”, whereby B1 

denotes mutations “above” the iron and B2 “below” the iron, and “C” indicates mutations 

inserted at the bottom of the substrate binding pocket. Additionally, the type of mutation is 

indicated. These types of single amino acid substitutions include an exchange for a bulkier amino 

acid, for a smaller amino acid or for a more hydrophobic amino acid (Figure 34C, dots and stars). 

As CspLOX2 wt produces almost equal amounts of 9- and 13-HPODE, it is located in the middle 

of the range from 9- to 13-HPODE specificity (Figure 34C). In this experiment, the slightest 

changes in the product composition occurred, when mutations were inserted near the entrance 

or the bottom of the substrate channel. More dramatic changes were induced when amino acids 

were exchanged for smaller amino acids close to the active site (denoted with the letter “B” and 

small dots), suggesting that the direct environment of the active site plays an important role for 

the positional specificity of the oxygen insertion on linoleic acid. But even more interesting, 

mutations “above” the iron (B1) correlate with a shift towards 9-lipoxygenation and mutations 

“below” the iron (B2) with a shift towards 13-lipoxygenation. Those variants with the most 

remarkable changes towards 9- or 13-HPODE also exhibited a decreased level of 11-HPODE 

compared to the wt enzyme. The lowest relative amount of 11-HPODE was detected for the 

Leu304Val variant. Exchange for alanine could not further decrease the amount of 11-HPODE 

and exchange for phenylalanine did not result in an increased amount of 11-HPODE (Figure 34C). 

The size of this residue alone can thus not explain the 11-HPODE formation. Crystal structures 

of the Leu304Val and Leu304Phe variant which were determined with the help of Dr. Neumann 

confirmed that the protein structures were only affected at the site of mutation while leaving 

the rest of the enzyme unchanged (Figure 35). The respective leucine residue is located opposite 

the catalytic iron in the kink of the substrate binding channel and is highly conserved in LOXs, 

suggesting an essential role for catalysis. As all LOXs require a leucine at this position, it is not 

intuitive, how this residue might control the formation of 11-HPODE. Nevertheless, it may 

control the size and form of the active site depending on the distance to the iron which is 
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influenced by the distance of the arched helix (Figure 37A, in raspberry). Such slight distance 

changes might also be evoked by the Leu304Val substitution. 

 

 

Figure 35. Structures of the Leu304Val (B) and Leu304Phe (C) variants in comparison to the CspLOX2 wt structure (A). 
Only the exchanged amino acid is affected by the mutation. The rest of the protein remains unchanged. The 2mFo-
DFc electron density maps are contoured at +1.5 σ and the omit maps, shown in green (mFo-DFc, excluding the residue 
at position 304), are contoured at +4 σ. The catalytic iron is shown as orange sphere and the coordinated water as 
small red sphere. 
 

Therefore, the distance of the Cγ-atom of this conserved leucine to the active site iron was 

determined in different LOX structures available in the PDB. For most LOXs, the distance ranged 

from 9 – 9.9 Å. In CspLOX2, however, this distance was only 8.3 Å (Figure 36). An even shorter 

distance was found in CspLOX1, although here, the active site pocket is expanded to the side, 

thus providing more space in another direction. 

Those amino acids identified as most influential were analyzed in the crystal structure in more 

detail (Figure 37). These residues, including Ile296, Ala300, Leu304, Leu502 and Leu506, form 

together with Leu258 a tight pocket around the active site where the pentadiene has to be 

positioned for catalysis (Figure 37B). Due to their location around the core of the active site, 

these residues were named “active site clamp”. Three of these residues (Ile296, Ala300 and 

Leu304) are contributed by the so-called arched helix (Figure 37A, in raspberry), while the other 

three residues (Leu258, Leu502 and Leu506) are part of other surrounding helices. 



Results 
 

 

67 

 
Figure 36. Diameter of putative active channels of six different LOXs. The channels were calculated with the Caver 2.0 
plugin in PyMOL and are shown as gray surface (transparent) or in blue for CspLOX2. As a measure for the space at 
the kink region of the channel, the distance between iron (orange sphere) and Cγ atom of the conserved leucine on 
the opposite side of the channel (Leu304 in CspLOX2, black sticks) is shown. For a better orientation, the position of 
the arachidonic acid substrate soaked into the P. homomalla 8R-LOX is shown as black line with the double bonds of 
the reacting pentadiene system in dark red. The position was estimated from superimposition of the enzymes. PDB 
codes for the respective crystal structures are given in brackets. 

 
Figure 37. Location of the active site clamp in Cyanothece sp. (A) For a better orientation, the overall structure of 
CspLOX2 is shown with the arched helix in dark red and the helix α2 in black. The active site channel, visualized with 
the Caver 2.0 plugin for PyMOL is shown in blue and the catalytic iron as orange sphere. (B) In a zoomed-in 
perspective, the six residues forming the tight clamp around the active site are shown as sticks and the iron 
coordinating residues as lines. 
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3.4.2 The residues of the active site clamp not only influence the positional 

specificity, but also the stereospecificity of the products 

After having identified crucial residues around the active site that influence the positional 

specificity of the enzyme, it was highly interesting to get an idea of the underlying mechanism. 

Therefore, the stereochemistry of the hydroperoxy products produced by the active site clamp 

variants was determined as well. In addition to the mutations that were analyzed before, the 

Leu258Val variant was included. 

Interestingly, not only the positional specificity could be changed by the mutations, but also the 

stereospecificity (Figure 38B). While Leu502Val and Leu304Val mainly produced the S-

enantiomer of 13-HPODE, Leu506Val switched the stereospecificity of 13-HPODE to 80 % R. A 

similar observation was made for the enzyme variants that produced remarkably higher 

amounts of 9-HPODE. While Ala300Gly produced 9R-HPODE as major product with an even 

higher stereospecificity than the wildtype enzyme, the Ile296Ala variant produced 

predominantly the S-entantiomer of 9-HPODE. In contrast to the conjugated 9- and 13-HPODE 

products, 11-HPODE was always formed in the same R-configuration. In general, the 

stereochemistry of only one product was inverted by the Ile296Ala and Leu506Val exchange. 

The formation of other products was almost not influenced by the mutations, suggesting that a 

local factor rather than a reversed orientation of the substrate is responsible for the altered 

product composition. 

In order to understand which interactions the identified residues might have with the reacting 

pentadiene of the fatty acid substrate, the structure of the coral 8R-LOX with the bound 

arachidonic acid substrate (PDB code 4QWT) was used as model (Neau et al., 2014). The amino 

acid chain C of the four chains in the asymmetric unit that contains the substrate was 

superimposed with CspLOX2. As shown in Figure 38A, the substrate is nicely located in the 

channel of CspLOX2 with the reacting pentadiene positioned within the active site clamp. This 

reacting pentadiene is C8-C12 in arachidonic acid and corresponds to C9-C13 on linoleic acid. 

The amino acids Ile296 and Ala300 seem to fix the carbon atom that would correspond to C9 on 

linoleic acid, while the leucines 258, 304, 502 and 506 surround the carbon atom corresponding 

to C13. More interestingly, Ile296 faces the side of C9 from which oxygen would need to attack 

to form the S-enantiomer while Ala300 faces the side of C9 for formation of the R-enantiomer 

(Figure 38A). These results support the hypothesis that steric shielding of the amino acid 

environment controls the oxygenation specificity. Around C13, the correlation between the site 

of mutation and stereospecificity change is less obvious. Nevertheless, Leu502 and Leu304 are 

rather facing the side for 13S-HPODE formation and Leu506 the side for 13R-HPODE formation 

(Figure 38A). Despite its proximity to C13, the Leu258Val exchange had only minor effects on 

the product composition, with only a slight decrease in 11-HPODE, but almost no effects on 9- 

and 13-HPODE. 
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Figure 38. Mutations of the active site clamp affect the regio- and stereospecificity of CspLOX2. (A) The conformation 
of the arachidonic acid substrate which was crystallized in complex with the coral 8R-LOX (grey sticks) fits quite well 
into the predicted channel of CspLOX2 which is shown from the entrance part (right) and from the bottom part (left). 
The double bonds that belong to the reacting pentadiene are shown in dark red. The residues shown in blue belong 
to the active site clamp with Leu258, Leu304, Leu502 and Leu506 closer to the n+2 position which corresponds to C13 
of linoleic acid and Ala300 and Ile296 closer to the n-2 position (C9 of linoleic acid). (B) The residues shown in (A) were 
exchanged for smaller residues and the product distribution was analyzed by SP-HPLC as described for Figure 34. In 
addition to the distribution of the positional isomers 9-HPODE, 11-HPODE and 13-HPODE, the chirality of each product 
was determined by CP-HPLC and is given in percent for each product. The relative activities shown on top were 
determined by measuring the consumption of oxygen. The experiments were carried out in triplicates. 
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3.5 Attempts to obtain a structure of an enzyme substrate complex failed 

In order to understand the conceptual basis of the oxygenation specificity, it was desirable to 

obtain a structure of CspLOX2 in complex with a substrate. Although the structure of 8R-LOX 

with arachidonate provides a good model, it might be possible that the pentadiene of the 

substrate adopts a slightly twisted conformation in the CspLOX2 active site which could be the 

key to explain the 11-HPODE formation in CspLOX2, for example by radical localization. 

3.5.1 Docking 

Since crystallization of the LOX substrate complex can be very difficult due to the hydrophobic 

nature of the fatty acid substrate, docking was tried first using the program AutoDock Vina (Trott 

and Olson, 2010) in order to obtain good approximations. The search space was selected just big 

enough to comprise the complete substrate binding channel. This space should be large enough 

for substrates with 18 carbons like linoleic acid. During the docking trials, best results were 

obtained when 2-5 amino acids were defined as flexible residues while the rest of the protein 

was kept ridged. The selected flexible residues included Arg57, Asp58, Leu258, Gln303 and 

Leu304. Of these residues, Arg57 might be involved in the interaction with the carboxyl group 

of the fatty acid. Like Asp58 and Gln303, it is positioned at the entrance of the substrate channel. 

The obtained docking results were finally evaluated in comparison to the conformation of the 

crystallized substrate obtained in complex with coral 8R-LOX (Neau et al., 2014) (Figure 39). In 

contrast to arachidonic acid soaked into crystals of this enzyme, the reacting pentadiene was 

predicted in a 180° flipped position in CspLOX2. Instead of the pro-S hydrogen which is oriented 

towards the iron in 8R-LOX, the pro-R hydrogen is oriented towards the iron in CspLOX2 in most 

docking solutions (Figure 39A). These results are in conflict with biochemical data showing that 

the pro-S hydrogen is abstracted from the bis-allylic methylene group in CspLOX2 (Andreou et 

al., 2010). It is thus unintuitive how the pro-S hydrogen should be abstracted from C11, while 

being oriented away from the iron cofactor (Figure 39B). In addition, the results of the 

mutational analysis cannot be explained with the obtained substrate models, suggesting that 

the docking results should not be overestimated. Instead, direct determination strategies for a 

crystal structure of an enzyme-substrate complex were considered. 
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Figure 39. Best docking results of CspLOX2 with linoleic acid. (A) Shown are individual results obtained using AutoDock 
Vina (Trott and Olson, 2010) with 2-5 amino acids defined as flexible residues. The predicted linoleic acid 
conformation is shown in dark red with the double bonds of the pentadiene moiety shown in light pink. The catalytic 
iron is depicted as orange sphere with the coordinating residues shown as lines. For comparison, the arachidonic acid 
substrate crystallized in complex with the coral 8R-LOX is shown in black with the double bonds of the reacting 
pentadiene in grey. The calculated binding affinities in kcal/mol are given for each linoleic acid conformation. 
(B) Depending on the conformation of the pentadiene, either the pro-S hydrogen (11S) or the pro-R hydrogen (11R) 
is oriented towards the iron. The prochiralities of the most important positions of linoleic acid are indicated. 

3.5.2 Crystallization with substrate analogs 

Cocrystallization or soaking with real substrates often fails as substrates are converted by the 

enzymatic activity. The product usually exhibits a lower affinity for the active site and finally 

leaves the enzyme. These reasons probably also explain why no electron density of a substrate 

was observed in CspLOX2 in initial cocrystallization and soaking trials. To slow down the reaction, 

soaking was also tried at 4 °C for shorter times and with higher substrate concentrations, but 

still no substrate was found in the crystal structure. To circumvent this problem completely, 

substrate analogs that cannot be converted by LOXs were chosen as ligands. 

Fatty acids that cannot be converted as they have only one double bond and therefore no 

pentadiene system are for instance oleic acid and vaccenic acid. Of the two, vaccenic acid was 

also found as ligand in the P. aeruginosa 15-LOX (Garreta et al., 2013). Both fatty acids have 

18 carbon atoms and thus the same length as linoleic acid (Table 9). These substrate analogs are 

thus suitable compounds to study the potential interaction of the carboxyl head group with 
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amino acids of CspLOX2 as well as the overall substrate positioning. Nevertheless, no electron 

density could be detected for these compounds. 

Another problem is that fatty acids have only a low solubility in aqueous solutions due to their 

nonpolar character. It might thus be difficult to reach a sufficiently high concentration of the 

ligand in order to obtain a complex with the enzyme. Therefore, compounds with a higher 

solubility might be beneficial. The substrate analog tetraethylene glycol monooctyl ether (C8E4) 

which was successfully found in the active site of the human 15-LOX (Kobe et al., 2014) appeared 

to be a suitable substrate analog. In the human 15-LOX (PDB code 4NRE), it was found accidently 

in the active site after an additive screening (Kobe et al., 2014). The detergent occupies the 

active site with the more polar tetraethylenglycol part of the molecule bound deep in the active 

site and the octyl chain closer to the entrance of the binding channel. The detergent has also 

been shown to be an inhibitor for the human 15-LOX (Kobe et al., 2014). Before starting the 

crystallization of CspLOX2 with C8E4, the detergent was thus tested for its inhibitory effect on 

the CspLOX2 reaction. Although the compound had only a slight inhibitory effect on wt CspLOX2, 

it was a potent inhibitor for the Leu304Phe variant (Figure 40). The inhibitory constant KI of C8E4 

was 580 µM for this variant. At this concentration, the reaction rate with 100 µM linoleic acid 

decreased by a half. The cocrystallization was hence not only tried with the wt enzyme, but also 

with the Leu304Phe variant. Nevertheless, none of the trials resulted in sufficient electron 

density in the active site that could correspond to the inhibitor. 

 

 

Figure 40. Inhibition of CspLOX2 wt and Leu304Phe with tetraethylene glycol gonooctyl ether (C8E4). Enzymes were 
purified by IMAC and incubated with 100 µM linoleic acid in the presence of varying C8E4 concentrations. The 
enzymatic activity was determined at 234 nm using a spectrophotometer and plotted against the C8E4 concentration. 
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The most interesting information for our studies would be the position of the reacting 

pentadiene in the CspLOX2 active site to elucidate which function the active site clamp may fulfill 

and whether the pentadiene adopts a twisted conformation. Consequently, it would be best to 

use substrates which contain a pentadiene system, but are no functional substrates. Fluorinated 

linoleic acid which contains two fluorine atoms at C11 instead of hydrogens would be a perfect 

candidate, but is not yet available. Thus, the special activity of CspLOX2 was applied to produce 

an alternative substrate analog. While 11-HPODE still serves as substrate, even though it is 

converted at a much slower speed (Figure 28B), its hydroxide derivative 11-HODE (Table 9) is no 

substrate, as incubation of 11-HODE with CspLOX2 did not lead to an increase in absorbance at 

234 nm (data not shown). At the same time, 11-HODE has enough similarity with the substrate 

and even contains the two double bonds found in the pentadiene system. Nevertheless, soaking 

with this substrate analog was again not successful. 

3.5.1 Substitution of the catalytic metal 

An alternative strategy to obtain an enzyme substrate complex is to use an inactive variant that 

is structurally almost indistinguishable from the wt enzyme. As shown before, a manganese-

substituted CspLOX2 variant could be obtained that was virtually inactive (Chapter 3.3.1). This 

variant was a perfect candidate for soaking with linoleic acid or arachidonic acid. Although well-

diffracting crystals could be obtained with Mn-CspLOX2, which confirmed the structural integrity 

of the substituted variant (Figure 33), no electron density that could correspond to linoleic acid 

or arachidonic acid was found in the active site. 

3.5.1 Anaerobic crystallization 

The crystal structure of the coral 8R-LOX with bound arachidonic acid was recently obtained by 

anaerobic crystallization and soaking with arachidonic acid (Neau et al., 2014). In a last trial, 

CspLOX2 was hence crystallized under anaerobic conditions in the laboratory of Prof. Dr. Marcia 

Newcomer (Department of Biological Sciences, Louisiana State University, Baton Rouge, USA). 

The principle of this experiment is that one of the substrates, in this case oxygen, is omitted from 

the crystallization conditions. The fatty acid substrate will thus bind in the active site of the LOX 

but not react. Crystals appeared after 2-5 days and were soaked with arachidonic acid and 

linoleic acid under anaerobic conditions for different timescales ranging from a few minutes to 

20 h. Moreover, crystals were also obtained by cocrystallization with up to 1 mM linoleic acid or 

arachidonic acid. However, again none of the 16 crystals that were tested showed sufficient 

electron density in the active site that could belong to a substrate molecule (Table 9). Instead, 

the structures resembled the holo-enzyme of CspLOX2 obtained at ambient oxygen levels. 
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3.6 Mimicking the CspLOX2 active site induces 11-HPODE in another LOX 

A possibility to get a better idea of the factors involved in oxygen insertion at C11 of linoleic acid 

is to change a classical LOX which does not produce 11-HPODE, but only conjugated 

hydroperoxides, into a LOX that forms bis-allylic products. For this gain of function approach 

CspLOX1 was chosen, as this enzyme originates from the same organism, produces only 9R-

HPODE from linoleic acid with a very high specificity, a crystal structure is available (Newie et al., 

2015) and the diameter of the channel defined by the distance of the catalytic iron to the 

conserved leucine is comparably small (Figure 36). 

3.6.1 Exchange of two amino acids in CspLOX1 is sufficient for 11-HPODE formation 

To identify which mutations might be necessary in CspLOX1 to induce 11-HPODE formation, the 

amino acids of the CspLOX2 active site clamp were compared with the respective residues of 

CspLOX1 (Table 10). Of these residues, Ile296, Leu304 and Leu506 of CspLOX2 are conserved 

and correspond to Ile397, Leu405 and Leu621 in CspLOX1. On the other hand, Leu258, Ala300 

and Leu502 of CspLOX2, are occupied by Tyr360, Gly401 and Ile617 in CspLOX1, respectively. 

These residues were hence exchanged. In addition to these three residues, Phe413 which seems 

to block the bottom of the channel was replaced by the respective alanine residue found in 

CspLOX2 (Figure 41). 

Table 10. Comparison of active site clamp residues in CspLOX1 and CspLOX2. Residues differing in both enzymes are 
printed in bold. In addition to the active site clamp residues, Phe413 was exchanged. The oxygenation specificity on 
linoleic acid that is associated with the individual residues of CspLOX2 is marked with an asterisk. 

 

 

Figure 41. Active site clamp residues of CspLOX1. The residues of the active site clamp are shown as sticks, the putative 
substrate binding channel in light blue, the iron coordinating residues as lines and the catalytic iron as orange sphere.  
 

 9S* 9R*  13S* 13R*   Main product 

CspLOX2 Ile296 Ala300 Leu304 Leu502 Leu506 Leu258 Ala311 11R 

CspLOX1 Ile397 Gly401 Leu405 Ile617 Leu621 Tyr360 Phe413 9R 
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Figure 42. Activity and oxygenation specificity of CspLOX1 variants containing amino acid substitutions in active site. 
(A) The variants were purified by IMAC and their purity was confirmed by SDS-PAGE. (B) The relative activity of the 
variants was determined at 234 nm with a spectrophotometer. (C) The positional specificity of oxygen insertion is 
shown as relative amount of 9-, 11- and 13-HPODE as determined by SP-HPLC. The scaling factors (Supplemental 
Figure 2) were used for the quantification at 202 nm (11-HPODE) and 234 nm (9- and 13-HPODE). 
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The protein variants were purified by IMAC and analyzed by SDS-PAGE for their purity (Figure 

42A). Subsequently, the protein variants were tested for their catalytic activities with linoleic 

acid. The variants with single amino acid substitutions retained only about 2-28 % of the wt 

activity, with Tyr360Leu causing the most severe decrease in activity. Combination of Tyr360Leu 

with other exchanges resulted in a complete loss of catalytic activity (Figure 42B). CspLOX1 

variants exhibiting at least 2 % of wt activity were tested for their product specificity with linoleic 

acid. While only minor changes in the product composition could be observed when Tyr360 or 

Ile617 were exchanged, the Phe413Ala variant lost its specificity and produced almost equal 

amounts of 9-HPODE and 13-HPODE (Figure 42C). 

The most interesting effect exhibited the Gly401Ala variant. The positional specificity of this 

variant was changed from 9-lipoxygenation to mainly 13-lipoxygenation. But even more 

surprising, the variant indeed produced a compound that coelutes with 11-HPODE (Figure 43). 

Furthermore, the amount of this compound could even be increased when the Gly401Ala 

exchange was combined with Ile617Leu. The identity of the peak was confirmed to be 11-HPODE 

by comparison of the UV-spectrum and LC-MS analyses of the hydroxyl derivative of the 

compound by Dr. Kirstin Feußner (Figure 44). These results show that it is indeed possible to 

induce 11-HPODE formation in a 9R-LOX like CspLOX1 by only one or two amino acid exchanges. 

Interestingly, Gly401 is assumed to be close to C9 on linoleic acid, whereas Ile617 is probably 

closer to C13 (Table 10). Consequently, both residues may limit the oxygen access to C9 and C13, 

thereby leaving only the bis-allylic position for oxygen insertion. Together with the results from 

CspLOX2, a tight and narrow substrate binding channel seems to support 11-HPODE formation, 

while a wider channel results in the formation of only conjugated hydroperoxides. 

 

Figure 43. Two amino acid substitutions in CspLOX1 induce 11-HPODE production. Chromatograms of the SP-HPLC 
analyses of products formed by CspLOX2, CspLOX1 and the Gly401Ile as well as the 617Leu/Gly401Ala variant of 
CspLOX1 are shown. While CspLOX1 only produces 9-HPODE, the Ile617Leu/Gly401Ala variant produces significant 
amounts of the bis-allylic 11-HPODE that is characteristic for CspLOX2. The peak corresponding to 11-HPODE is 
highlighted with an asterisk. The other peaks eluting at around 10 min and 15 min correspond to 13 HPODE and 9-
HPODE, respectively. 
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Figure 44. Confirmation of the 11-HPODE species produced by the Gly401Ala/Ile617Leu variant of CspLOX1. 11-
HPODE produced by CspLOX2 and the CspLOX1 variant were reduced to hydroxides, purified by HPLC and subjected 
to UHPLC-QTOF MS. (A) The total ion chromatogram (TIC) is shown for both samples analyzed in the negative 
ionization mode and (B) the corresponding extracted ion chromatogram (EIC) at m/z 295.2267. (C) The high resolution 
mass spectrum (resolution < 2ppm) for the first peak eluting at 7.14 min corresponds to 11-HODE, while (D) the mass 
spectrum for the peak eluting at 7.35 min corresponds to 9- and 13-HODE. The exact mass information of the MS/MS 
fragments was used for deducing the elemental composition. (E) Fragmentation pattern of 11-HODE and the resulting 
m/z signals. 
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Since Gly401 occupies the residue that is also known as Gly/Ala switch (Coffa and Brash, 2004), 

the stereospecificity of 13-HPODE formed by the Gly401Ala variant was also determined for this 

variant. In line with the accepted model, the exchange of this residue switched the specificity 

from 9R with glycine at this position to mainly 13S-HPODE with alanine at this position (Figure 

45). Since the main focus of this approach was to induce 11-HPODE formation in CspLOX1, the 

stereospecificites of the products produced by other CspLOX1 variants were not determined. 

 

Figure 45. Products formed from linoleic acid by the Gly401Ala variant compared to CspLOX1 wt. 15 µg of the purified 
enzyme was incubated with 50 µg of substrate. The hydroperoxy products were reduced to hydroxides and analyzed 
by SP-HPLC. Insets show the distribution of R and S enantiomers of 9-HODE and 13-HODE, respectively.  
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3.7 The putative oxygen channel of 8R-LOX is also present in CspLOX2 

In addition to steric shielding, it seemed possible that a specific oxygen channel may deliver 

oxygen directly to C11 on linoleic acid. In the coral 8R-LOX, a channel was found that most likely 

transports oxygen to the active site (Neau et al., 2014). This channel is connected to the active 

site close to the Gly/Ala switch (Gly427 in 8R-LOX) and was also identified in the structures of 

human 15-LOX-2 and porcine 12-LOX (Figure 46). The position of this putative oxygen channel is 

favorable for an antarafacial relationship of hydrogen abstraction and oxygen insertion. The 

hydrogen would be abstracted by the iron on one side of the channel, while the oxygen is 

delivered to the opposite side. In the 8R-LOX structure crystallized in complex with arachidonic 

acid, the channel is located close to the double bond between the central carbon of the 

pentadiene system and the n-2 position, which correspond to the region between C9 to C11 on 

linoleic acid. 

 

Figure 46. Proposed oxygen channels in LOXs. Channels were visualized using the program Caver. The substrate 
binding channels are shown in dark blue, and the putative oxygen channel in light blue. The position of the arched 
helix is shown in dark red. The junction of both channels is surrounded by three invariant leucines (Leu385, 390, 431 
in 8R-LOX) and the residue of the Gly/Ala switch (Gly427 in 8R-LOX). This channel is also found in CspLOX2. Here, 
Leu263 (yellow) corresponds to the residue located at the putative oxygen channel. 
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Using the plugin Caver for PyMOL, tunnels were also visualized in CspLOX2. In addition to the 

supposed substrate binding channel, a second channel was predicted at the same position as 

the putative oxygen channel in 8R-LOX (Figure 46). This channel is surrounded by the amino acid 

residues Leu258, Leu263, Ala300 and Leu304 at the connection to the substrate binding channel. 

Of these residues, Leu258, Ala300 and Leu304 belong to the identified active site clamp 

described before (Chapter 3.4.2). Leu263 is slightly more distant from the active site and lines 

the putative oxygen channel with its side chain. Therefore, it could be possible to block this 

potential oxygen channel by increasing the size of this side chain. The enzyme variant Leu263Trp 

could thus provide valuable information about the existence of this oxygen channel and was 

tested for its catalytic activity and oxygenation specificity. 

The mutation caused only a slight shift towards 13-HPODE and a reduction of enzymatic activity 

compared to the wt (Figure 47A). If this decline in activity is, however, attributed to a reduced 

oxygen accessibility remains unclear. To get an idea if the oxygen access is influenced by the 

mutation, the kinetic constants with limiting oxygen concentrations under fatty acid saturation 

were determined. The idea was that KM values sometimes indicate how well a substrate can bind 

to the active site of the enzyme. 

 

Figure 47. Oxygenation specificity and kinetics of CspLOX2 and its Leu263Trp variant for different oxygen 
concentrations. (A) The product composition formed by the enzyme variants was evaluated by HPLC analysis. The 
scaling factor was included in the quantification (Supplemental Figure 2). Shown are the mean values of 3 
independent experiments with standard deviations for the column below. (B) Purified enzymes were incubated with 
150 µM linoleic acid in an oxygen electrode. Different oxygen concentrations were adjusted by flushing the substrate 
solution with N2 before adding the enzyme. The data were fitted to the Michaelis-Menten equation to determine kcat 
and KM. 
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Therefore, different oxygen concentrations were adjusted inside the oxygen electrode. To 

decrease the oxygen concentration, the buffer was flushed with nitrogen gas, to increase the 

oxygen concentration, the buffer was vigorously mixed with air. The kcat value of the Leu263Trp 

variant was about 50 % of the wt activity (5.2 s-1 compared to 11.6 s-1). Furthermore, a KM value 

of 245 ± 109 µM O2 for the wt enzyme and 201 ± 88 µM O2 for the Leu263Trp variant were 

determined by fitting of the measured values to the Michaelis-Menten equation (Figure 47). 

The differences of the KM values between wt and Leu263Trp variant are not significant. It should 

also be noted that the oxygen concentration at 30 °C is saturated at approximately 230 µM 

oxygen under a standard pressure of 101.1 kPa (Murray and Riley, 1969), indicating that only 

about the half maximal velocity of both wt and Leu263Trp variant were reached at saturated 

oxygen levels. Therefore, an oxygen transport function of this channel cannot be deduced from 

these results. 

3.7.1 Xenon derivatization of CspLOX2 was not successful 

A more direct possibility to study the paths of oxygen in enzymes is by xenon derivatization of 

protein crystals. This gas resembles dioxygen in size and chemical properties and has sufficient 

electrons to be visualized in electron density maps. In other proteins, including copper amine 

oxidase (Pirrat et al., 2008), laccase (Kallio et al., 2011) or cytochrome ba 3 oxidase (Luna et al., 

2012), sites of oxygen binding in the active site could be successfully identified. Therefore, 

crystals of CspLOX2 were prepared and derivatized in a pressurization cell. Different conditions 

were tested in the xenon chamber (pressure, incubation time, velocity of pressure release). 

Although crystals seemed to retain their shape and integrity after 100 Psi of xenon for 5 min 

with a slow pressure release during 30 s, crystals did not diffract well when tested later at a 

synchrotron beam source. Therefore, it was not possible to identify oxygen channels in CspLOX2 

with this method and experimental conditions. 
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3.8 No suitable hydrogen atom donors are found in the CspLOX2 active site 

One mechanistic model to explain the oxygenation specificity of LOXs focuses on the last step of 

the catalytic cycle. During this step, the peroxyl radical is trapped by a hydrogen atom, thereby 

preventing the reversible off reaction (β-fragmentation) (Schneider et al., 2007). The CspLOX2 

active site was hence analyzed for residues that might be good hydrogen atom donors. Such 

hydrogen atom donors may for example include tyrosine (van Overveld et al., 2000), tryptophan 

(Li et al., 1991) or cysteine (Giles et al., 2003) side chains. To estimate the location of relevant 

residues relative to the reacting pentadiene, the substrate crystallized in 8R-LOX was again 

chosen as model (Neau et al., 2014) (Figure 48 and Figure 49). 

In the environment of the active site, i.e. within a 10 Å radius around the pentadiene, no 

tryptophan and only one cysteine residue was found. The side chain of Cys507 is however 

located in a 10.1 Å distance from the middle position of the reacting pentadiene group. 

Additionally, it is facing the pro-S side of the bis-allylic carbon. The 11R-peroxyl radical which 

leads to 11R-HPODE formation is, however, located on the opposite site of the linoleic acid 

molecule. A catalytic function of this cysteine residue thus seemed unlikely. 

 

Figure 48. Position of Cys507 relative to the substrate binding channel. The arachidonate ligand of 8R-LOX (Neau et 
al., 2014) was used to estimate the position of the pentadiene in the active site. Only one cysteine residue was 
identified in a 10 Å radius around the middle position of this pentadiene. Nevertheless, the thiol group of Cys507 
(green) is located rather far away from this pentadiene and faces the pro-S side of the bis-allylic position. 

 

Tyrosines were neither in an optimal position to trap peroxyl radicals on the substrate (Figure 

49A). They are too far away and their side chains are not oriented towards the substrate. But if 

Tyr310 would adopt an alternative conformation during catalysis, it might get close enough to 

trap the bis-allylic hydroperoxide. To test this hypothesis, Tyr310 was replaced by isoleucine or 

phenylalanine. These mutations had only a very little effect on the activity and specificity of the 

enzyme (Figure 49B), suggesting that peroxyl trapping by Tyr310 plays no role for the formation 

of 11-HPODE. 
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Figure 49. Influence of Tyr310 on the oxygenation specificity. (A) The side chain of Tyr310 is oriented away from the 
pentadiene system but might move during catalysis. Other tyrosines in proximity of the active site are shown as green 
sticks. The arachidonate ligand of the 8R-LOX is shown as black sticks with the double bonds of the reacting 
pentadiene in gray. The catalytic iron is shown as orange sphere. (B) The oxygenation specificity and catalytic activity 
was not affected by the Tyr310Ile or Tyr310Phe exchange. The peroxidation products of linoleic acid were subjected 
to SP-HPLC analysis. The scaling factor was used for the quantification. Shown are the mean values of 3 independent 
experiments with standard deviations for the column below. Additionally, the relative catalytic activities indicated 
above the columns were determined using the oxygen electrode. 
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3.9 Computational approach supports role of steric shielding for 11-HPODE 

formation 

Due to the confined space in the CspLOX2 active site, it seemed possible that the pentadiene 

has to adopt a slightly twisted conformation that would result in an increased spin density on 

C11 and thus in a preferred oxygen insertion at this position. To get an insight if this hypothesis 

plays indeed a role, a computational analysis was carried out by Martin Werner and Prof. Dr. 

Ricardo Mata (Institute of Physical Chemistry, University of Göttingen, Germany). The singly 

occupied molecular orbital (SOMO) spin densities were determined for different dihedral angles 

ϕ (Figure 50A and C). This reflects the likelihood of the radical to be found at one of the positions 

C9, C11 or C13 on linoleic acid. Although a torsion of the otherwise planar pentadiene system of 

up to 30° resulted in a slight shift of SOMO spin density (Figure 50C), the product compositions 

of CspLOX2 variants cannot exclusively be explained with a localization of spin density. 

Furthermore, the spin density distribution would suggest that even in a planar system, the 

reaction would preferentially occur at the middle position, since this is the position with the 

highest spin density. It is known from free radical chemistry that this is not the case (Yin and 

Porter, 2005). 

 

Figure 50. Spin density distribution and activation barrier on C9, C11 and C13 of linoleic acid in dependence of the 
dihedral angle ϕ. (A) A 2,5-heptadiene system was used as model system resembling carbon atoms 8-14 on linoleic 
acid. The dihedral angle ϕ is indicated as well as the oxygen molecule (red). (B) When oxygen is inserted, an activation 
barrier has to be overcome. (C) The SOMO spin density is shown for different angles ϕ. C9, C11 and C13 correspond 
to the three positions indicated in panel A. (D) Oxygen was narrowed to the 2,5-heptadiene system in relaxed surface 
scans using B3LYP-D3/def2-TZVP and the activation energy was determined for different angles ϕ. 
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Therefore, Martin Werner further analyzed the reactivity at the positions C9, C11 and C13 of 

linoleic acid. The radical formed in 2,5-heptadiene was chosen as model system and oxygen was 

narrowed in relaxed surface scans using B3LYP-D3/def2-TZVP (Figure 50B). During oxygen 

addition, an activation barrier (ΔEa, Figure 50B) has to be overcome. These activation barriers 

were determined for the different angles as shown in Figure 50D. When the system is planar at 

a dihedral angle of 180°, no reaction will occur on C11 due to a high activation barrier. In 

contrast, when the dihedral angle is increased to 200°, this reaction path becomes competitive 

to C9 and C13 (Figure 50C). 

While this model can explain how the activation barrier on C11 can be lowered to allow oxygen 

addition at the bis-allylic position, the observed product distribution for the CspLOX2 variants 

cannot be explained. Therefore, the idea that the distribution might be a result of steric shielding 

was addressed through a theoretical approach using MD simulations by our collaboration 

partners. To assess which role steric shielding might play, the environment of the linoleic acid 

substrate in the CspLOX2 active site was analyzed in a number of simulations and snapshots. For 

this analysis, an equalization plane was defined in the pentadiene system (Figure 51A). From all 

three carbon atoms that are involved (C9, C11 and C13), a normal (Figure 51A, white dotted axis) 

is projected to the antarafacial side (towards 9R, 11R, 13S) of the linoleic acid molecule and a 

point is found in 3 Å distance from the plane. If there is no atom closer than 2.2 Å to this point 

(Figure 51A, brown transparent spheres), the carbon site is fully accessible. On the other hand, 

if any atom is closer than 1.8 Å to this point, the site is fully shielded. For distances in between, 

an exponential function describes the decline in reactivity of the carbon site. That means if one 

atom gets too close to the carbon site (Figure 51A, red atoms), the position is defined as less 

reactive. In the example shown in Figure 51A, C9 and C13 are thus considered to be less reactive 

and oxygen is rather inserted at C11. Evaluation of a number of simulations and snap shots 

results in a relative distribution of reactive sites. These distributions were analyzed for the wt 

enzyme as well as for all variants on the antarafacial side, comprising Leu258Val, Ala300Gly, 

Leu304Val and Leu502Val. As the activation barrier is in general higher on C11 (Figure 50D), the 

relative amount of reactions on C11 was lowered by 10 % and distributed equally to C9 and C13. 

A clear correlation of these simulated reactive sites with the experimentally obtained product 

distributions could be observed (Figure 51B), supporting the hypothesis that steric shielding 

plays indeed an important role for controlling the oxygenation specificity. 

Notably, the four analyzed protein variants carry mutations on same side as the proposed 

oxygen channel and opposite the iron (facing 9R, 11R, 13S) (Figure 51C), which is the intuitive 

side for oxygen insertion and was thus selected for this analysis (Figure 51A). This model is, 

however, unable to explain how the stereospecificity could be inverted in some other variants 

carrying mutations on the same side as the iron (facing 9S, 11S, 13R) like Ile296Ala or Leu506Val 

(Figure 51C). 
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Figure 51. Simulation of reactive positions on the linoleic acid substrate. (A) The model of linoleic acid (blue) in the 
active site of CspLOX2 was used for the simulations. Analyzed were positions 9, 11 and 13 on the opposite side of the 
iron (towards 9R, 11R, 13S). A plane is constructed in the pentadiene system and normals on this plane through C9, 
C11 and C13 are shown as dashed white lines. In a distance of 3 Å a point is defined. The reactivity of the carbon site 
is higher if the space around this point (brown transparent spheres) is free. In this model, C9 and C13 would be less 
reactive as the red atoms get too close. (B) From several simulations and snapshots obtained with CspLOX2 wt, 
Leu258Ala, Ala300Gly, Leu304Val and Leu502Val, a distribution of reactive sites on 9R, 11R and 13S was determined 
(sim.). This distribution correlates with the experimentally observed distribution of the respective HPODEs (exp.) 
formed by each of the variants. (C) For this analysis, only mutations on the antarafacial side of the substrate (residues 
shown in blue) were considered. Iron is shown as orange sphere, the substrate binding channel of CspLOX2 in gray 
and the substrate crystallized in complex with 8R-LOX as grey sticks with the double bonds of the reacting pentadiene 
in dark red. The numbering corresponds to the pentadiene of linoleic acid.  
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4. Discussion 
In this study, two LOXs from Cyanothece PCC8801 were structurally and functionally 

characterized. Both enzymes, CspLOX1 and CspLOX2, revealed interesting features to study the 

domains required for membrane binding and the molecular basis of the oxygenation specificity. 

While the structure of the catalytic domain is highly conserved, different domains are found at 

the N-terminus of LOXs. This structural diversity of the N-terminal domain and its potential 

function for substrate acquisition will be discussed in the first part of this section. Furthermore, 

the major aim of this study was to identify factors that are involved in the formation of the bis-

allylic product by CspLOX2. As CspLOX2 produces the highest relative amount of 11-HPODE from 

linoleic acid observed so far, the enzyme represented an ideal candidate for studying the 

underlying mechanism of this specificity. Of all possible factors, special focus was on the role of 

the metal cofactor, oxygen accessibility, selective peroxyl radical trapping and torsion of the 

pentadiene. To which extend these aspects contribute to the CspLOX2 specificity will be 

discussed here. Furthermore, it will be evaluated whether these findings may also apply to 

MnLOXs and even to classical LOXs that do not produce bis-allylic products. 

4.1 The N-termimal helices of CspLOX1 may be involved in substrate 

acquisition from membranes 

So far, only few bacterial LOXs have been characterized including several from cyanobacteria 

and one from P. aeruginosa (Andreou et al., 2008; Garreta et al., 2013; Hansen et al., 2013; Lang 

et al., 2008; Senger et al., 2005; Zheng et al., 2008). Of these, only the enzyme from P. 

aeruginosa has been crystallized (Garreta et al., 2013). Thus, the two structures from 

cyanobacterial enzymes described here considerably extend the knowledge about bacterial 

LOXs and help understand the structural diversity of LOXs. While classical LOXs consist of a 

conserved two domain structure with a β-barrel domain at the N-terminus and an α-helical LOX 

domain at the C-terminus, both LOXs from Cyanothece sp. revealed unusual characteristics 

within the N-terminal domain (Figure 16). While CspLOX2 lacks the β-barrel domain completely, 

CspLOX1 contains not only the β-barrel domain, but in addition an α-helical extension. So-called 

mini-LOXs like CspLOX2 consisting only of the catalytic domain are not unusual among bacterial 

LOXs (An et al., 2015; Koeduka et al., 2007). The fact that the β-barrel domain is dispensable for 

LOX catalysis was also found by truncation of classical two-domain LOXs that retained their 

catalytic activity (Di Venere et al., 2003; Maccarrone et al., 2001; Walther et al., 2002; Walther 

et al., 2011). Other bacterial and coral LOXs were found to express fusion proteins that contain 

a second domain with an additional catalytic activity at the N-terminus. The cyanobacterium 

Acaryochloris marina for instance expresses a fusion protein with a catalase-like domain at the 

N-terminus (Gao et al., 2010) and also the corals P. homomalla and G. fruticosa carry a 

hemoprotein at the N-terminus with allene oxide synthase activity (Boutaud and Brash, 1999; 

Lõhelaid et al., 2008). In addition, bacterial LOXs can also harbor additional α-helices instead of 
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a β-barrel domain as observed in the crystal structure of the P. aeruginosa LOX (Garreta et al., 

2013). The N-terminal domain of CspLOX1, however, contains a β-barrel domain as found in 

classical LOXs and in addition the α-helical extension reminiscent of the helical insertion found 

in the P. aeruginosa LOX (Figure 16). Although a β-barrel domain is present in CspLOX1, it 

exhibits one remarkably elongated β-sheet and an altered orientation compared to other LOXs 

(Chapter 3.1.3). This could reflect a structural flexibility which was also observed by small angle 

X-ray scattering experiments for the rabbit 15-LOX. Here, the movement of the β-barrel relative 

to the catalytic domain resulted in a similar conformation (Hammel et al., 2004). It would be 

conceivable that the β-barrel of CspLOX1 has a rotational flexibility similar to the one of the 

rabbit 15-LOX, but that another conformation has been conserved in the crystal structure. 

Alternatively, the interaction of the helical extension and the β-barrel domain with the catalytic 

domain might also restrict the structural flexibility. 

The additional α-helical extension is fused to the N-terminus of the β-barrel domain by a short 

linker region. The two amphipathic helices interact via mainly polar contacts with a long helix of 

the catalytic domain, while covering the exposed hydrophobic side with hydrophobic residues 

of the same helices contributed by a neighboring molecule in the crystal lattice. It is likely, that 

the hydrophobic side of the amphipathic helices serves another function in solution, for example 

binding to membranes. Flotation experiments with liposomes consisting of phosphatidylcholine 

suggested that the helical extension is crucial for membrane binding since truncation of this 

domain substantially impaired binding to the vesicles (Figure 22). The β-barrel domain alone was 

not sufficient to fulfill this function. 

Membrane binding has so far been mainly attributed to the β-barrel domain. Three tryptophans 

that have been shown to be crucial for membrane binding in 5-LOX (Kulkarni et al., 2002) are 

not conserved in CspLOX1. Moreover, the membrane binding function of the β-barrel domain is 

assumed to be mediated by Ca2+ which binds to sites within loop regions of the β-barrel domain 

and interacts with the membrane, as typical for C2 domains (Oldham et al., 2005; Tatulian et al., 

1998). Although it seems unlikely, it cannot be ruled out from the experimental conditions that 

the β-barrel domain of CspLOX1 contributes to membrane binding under high Ca2+ 

concentrations. Studies on the rabbit 15-LOX also showed that truncation of the β-barrel domain 

impaired the membrane binding capacity, but did not abolish it completely, which was proposed 

to be related to hydrophobic residues of the catalytic domain that function in membrane binding 

(Walther et al., 2002). However, truncation of covering domains might also expose the 

hydrophobic core of the enzyme which may result in an artificial binding to membranes. 



Discussion 
 

 

90 

 

Figure 52. Model of membrane binding and substrate acquisition in different LOXs. The catalytic domains of the 
enzymes are shown in gray, the β-barrel domain in red, the helical insertion/extension in black and the iron as orange 
sphere. The substrates and substrate analogs bound to the active site are shown as pink sticks. The entrance to the 
substrate binding channel is indicated by a pink arrow. Binding via the helical insertion/extension or the β-barrel 
domain would orient the entrance to the substrate binding channel towards the membrane which is shown as 
schematic bilayer. 
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As the β-barrel domain of CspLOX1 could not significantly contribute to the membrane binding 

ability of the enzyme, it is likely that only the amphipathic helices mediate this function. 

Amphipathic helices that function in membrane binding have also been found in other proteins, 

like the yeast mitochondrial protein TIM44 which binds with two amphipathic helices to the 

periphery of mitochondrial membranes (Cui et al., 2011). It is also possible that the long helical 

insertion in the P. aeruginosa LOX mediates membrane binding. These helices, which also have 

an amphipathic character, even interact with the phospholipid bound to the active site of this 

enzyme (Garreta et al., 2013). As phospholipids present the major building block of most 

biomembranes, this may also suggest how substrates are directly acquired from the membrane. 

Interestingly, the entrance to the substrate binding channel would be oriented towards the 

membrane if the helices of the P. aeruginosa LOX or CspLOX1 mediate membrane binding 

(Figure 52). This orientation towards the membrane would also be achieved when enzymes bind 

to the membrane via the β-barrel. Recently, it was also reported that the P. aeruginosa LOX 

directly acts on membranes and induces hemolysis in red blood cells (Banthiya et al., 2015). As 

no further hormones or signaling molecules like jasmonic acid, leucotrienes or resolvines were 

found in cyanobacteria and other prokaryotes, it seems likely that one of the first function of 

LOXs was directly on membranes, thereby altering the membrane composition and chemical 

properties, rather than producing signaling molecules. 

Later in evolution, more versatile pathways might have evolved that require a cascade of 

different enzymes, like allene oxide synthase, hydroperoxide lyase or divinyl ether synthase in 

plants (Andreou et al., 2009) and prostaglandin synthase, thromboxane synthase or leukotriene 

hydrolase in animals (Kühn et al., 2015; Shimizu, 2009). These pathways which also may require 

a liberation of free fatty acids by phospholipases from the membrane then produce a diversity 

of biomediators that transfer a signal from one cell to the other. These pathways are probably 

not necessary in single cell organisms like prokaryotes. It is nonetheless fascinating, why only a 

very low amount of approximately 0.5 % of all sequenced bacterial genomes (13,000) contain 

LOX genes, while the vast majority does not (Horn et al., 2015). Few bacteria seem to have an 

advantage from the LOX genes since they remain in their genomes and are further evolved. In 

other bacteria they are disrupted, suggesting that they could not fulfill a useful function. Despite 

some hints about the function of the P. aeruginosa LOX, almost nothing is known about the 

biological role of LOXs in other bacteria. It would thus be interesting to understand which 

physiological role these enzymes might have in cyanobacteria. Since a number of LOX genes 

were found in nitrogen fixing cyanobacteria as well as nitrifying bacteria, and since LOXs may 

also act as nitrogen storage protein in soybean (Grimes et al., 1993; Tranbarger et al., 1991), a 

possible role in the nitrogen metabolism has been suggested (Koeduka et al., 2007). Direct 

evidence for this hypothesis has, however, never been reported. And though a direct role in 

membrane modification is a likely function of bacterial LOXs, this might not be true for all of 

them. The mini-LOX CspLOX2 for example did not bind to liposomes in the flotation experiment 

(Figure 22), suggesting that it does not act directly on membranes. 
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As CspLOX1 exhibits only a very low sequence homology to other LOXs, it was placed as outgroup 

in a phylogenetic tree. Such outgroups allow to define a root of the tree and thus a better 

reconstruction of evolutionary relationships (Graham et al., 2002). From the obtained 

phylogenetic tree, several characteristics of a common LOX ancestor can be concluded: First of 

all, it probably consisted of a β-barrel domain and an α-helical domain as these two domains can 

be found in CspLOX1 as well as in human, coral and plant LOXs (Figure 15). The mini-LOXs found 

among bacterial enzymes probably emerged from a loss of the N-terminal domain. In other 

cases, a second catalytic domain with another activity like allene oxide synthase was fused to 

the N-terminus of the catalytic domain (Boutaud and Brash, 1999; Lõhelaid et al., 2008) or long 

additional helices as found in CspLOX1 or the 15-LOX from P. aeruginosa (Garreta et al., 2013) 

became part of the structure and may now function in membrane binding. It is therefore 

obvious, that the N-terminal domains are dispensable for LOX catalysis but probably have 

auxiliary functions. 

Furthermore, ancient LOXs probably contained iron in the active site that was coordinated by 

three histidines, an asparagine and a C-terminal isoleucine. In case of some fungal enzymes, 

manganese was employed as catalytic metal which might be an adaptation to the low availability 

of iron in some natural environments or as protection to oxidative stress (Anjem et al., 2009; 

Imlay, 2008; Sobota and Imlay, 2011). This has also been suggested for other enzymes that are 

known to contain either manganese or iron as catalytic metal, such as superoxide dismutase 

(SOD) (Lah et al., 1995) or ribonucleotide reductases (Martin and Imlay, 2011). Some of the 

MnLOXs also contain valine instead of isoleucine at the N-terminus. In some mammalian 

enzymes, a fourth histidine or a serine is found at this position (Figure 15 and Supplemental 

Figure 4). These alterations probably developed later in evolution. 

Regarding the reaction of LOXs, it is likely that the substrate initially bound into the active site 

in a tail-first orientation, resulting in 13S- and 9R-hydroperoxides from linoleic acid and 11R- and 

15S-hydroperoxides from arachidonic acid. Both specificities are interchangeable by a single 

amino acid exchange of the Gly/Ala switch which is also conserved in such a phylogenetically 

distant enzyme like CspLOX1. The reversed orientation that was found in some plant and 

mammalian enzymes (Egmond et al., 1972; Hornung et al., 1999; Schwarz et al., 1998) probably 

emerged later in evolution. This is most likely also true for the unusual bis-allylic specificity of 

CspLOX2 and MnLOXs. 
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4.2 Although 11-HPODE is formed and isomerized in a very similar way in 

MnLOXs and CspLOX2, the catalytic metal is not interchangeable 

The unusual specificity for bis-allylic products was so far only shown for fungal MnLOXs and the 

iron-containing CspLOX2. But while the reaction of the 13-MnLOX from the fungus G. graminis 

has been studied in great detail, the formation and isomerization of 11-HPODE by CspLOX2 left 

open questions. One of the major questions was if 11-HPODE is required as intermediate and 9- 

and 13-HPODE are only formed by isomerization or if a mixture of HPODEs is formed and thereof 

only 11-HPODE is subsequently isomerized to the conjugated hydroperoxides (Figure 29). It was 

also important to understand in which time frames the peroxidation of linoleic acid and 

isomerization of 11-HPODE to the conjugated hydroperoxides occur. Knowledge about the 

individual steps and their products is a prerequisite to analyze suitable CspLOX2 variants which 

may reveal the underlying mechanisms of 11-HPODE formation. It also allows to identify 

parallels and differences of the CspLOX2 reaction with those of MnLOXs. 

Analysis of the CspLOX2 reaction revealed that during a rather long lag phase the inactive Fe(II) 

in the metal binding site of CspLOX2 is converted to the active Fe(III) form, as suggested by EPR 

and kinetic analyses (Figure 27 and Figure 32). This oxidation of the iron cofactor, which has also 

been reported for sLOX1, is probably catalyzed by HPODEs which are the reaction products of 

the LOX reaction (Haining and Axelrod, 1958; Schilstra et al., 1992). A certain small amount of 

HPODE is probably always present in the assay, as free fatty acids can also be converted to the 

respective hydroperoxides by autoxidation (Figure 2). The activation process will then proceed 

exponentially in a chain reaction, as active LOX molecules produce more HPODE, thereby 

activating other LOX molecules. It should be noted that the kinetics of the enzyme activation 

may vary in different LOXs, depending for example on HPODE binding. This aspect was not 

addressed in this study, but might explain the different lengths of lag phases observed in 

different enzymes (Figure 25). 

After activation, a mixture of 9-, 11- and 13-HPODE is produced by CspLOX2 simultaneously as 

shown by HPLC analysis (Figure 30). This model is further supported by kinetic data, since the 

isomerization of 11-HPODE to the conjugated HPODEs is too slow to explain the fast initial 

reaction rate (Table 7). When the substrate is used up, the first peroxidation reaction is finished 

and the remaining portion of 11-HPODE is subsequently isomerized to the conjugated products 

at a slower rate (Figure 25D). This transition from the peroxidation reaction to the isomerization 

reaction is reflected as kink in the progression curve obtained at 234 nm (Figure 53). These 

reaction phases are summarized in Figure 53. 
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Figure 53. Explanation for the three reaction phases of CspLOX2. The lag phase is caused by the activation from Fe(II) 
to Fe(III). During the first reaction phase, linoleic acid (LA) is converted to a mixture of 9-, 11- and 13-HPODE and 
during the second reaction phase, 11-HPODE is isomerized to 9- and 13-HPODE at a slower rate. 

 

Knowing that a mixture of 9-, 11- and 13-HPODE is formed during the first peroxidation reaction 

is important for the analysis of CspLOX2 variants. Determination of 11-HPODE formation should 

always be carried out after the peroxidation phase in order to obtain reproducible results. 

Furthermore, the results suggest that positions 9, 11, and 13 on linoleic acid are competing for 

oxygen insertion. The specificity of CspLOX2 is rather low compared to other LOXs which 

sometimes have specificities of more than 95 % for a single regio- and stereospecific product 

like CspLOX1 that produces almost exclusively 9R-HPODE (Newie et al., 2015). 

As kinetic and spectroscopic data are available for the 13-MnLOX of G. graminis (Hamberg et al., 

1998; Oliw et al., 2004; Su et al., 2000), both types of enzymes with bis-allylic products and 

different metal cofactors can be compared. Relevant reaction features and kinetics of the 

individual phases are summarized in Table 11. 

Despite the known facts that CspLOX2 contains iron instead of manganese and inserts oxygen in 

an antarafacial instead of a suprafacial way, interesting similarities could be identified. Most 

importantly, 11-HPODE is not required as intermediate, but instead a mixture of different 

HPODEs is formed during the first reaction phase. During the second phase, 11-HPODE is then 

isomerized to conjugated HPODEs (Hamberg et al., 1998) (Figure 53). The velocity of the 
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peroxidation phase is similar in both enzymes, with 26 s-1 for MnLOX and 28 s-1 for CspLOX2. The 

fact that a biphasic reaction at 234 nm was observed with CspLOX2 but not with 13R-MnLOX is 

probably due to different kinetics of the 11-HPODE formation and isomerization. While CspLOX2 

forms 11-HPODE at a ~40-fold higher rate than isomerizing it to the conjugated HPODEs (23 s-1 

vs. 0.6 s-1), MnLOX forms 11-HPODE at a slower rate than isomerizing it (7 s-1 vs. 9 s-1) (Table 11). 

Consequently, the intermediate can accumulate in the CspLOX2 reaction, while it is surprising 

that it can be detected in the MnLOX reaction at all. The high rate of 11-HPODE formation is also 

reflected in the product composition after the first reaction phase. While 13R-MnLOX produces 

only up to 20-30 % of the bis-allylic product in addition to 70-80 % 13-HPODE (Su et al., 2000), 

the bis-allylic 11-HPODE represents with ~75 % of all products clearly the major product of the 

CspLOX2 peroxidation reaction. 

Table 11. Comparison of reaction characteristics and kinetics of 13R-MnLOX and CspLOX2. 

 CspLOX2 13R-MnLOX 

Abstracted hydrogen Pro-S (Andreou et al., 2010) Pro-S (Hamberg et al., 1998) 

Side of oxygen insertion 
relative to hydrogen 

abstraction 

Antarafacial (Andreou et al., 
2010) 

Suprafacial (Hamberg et al., 
1998) 

Ratio of bis-allylic to 
conjugated products from 

linoleic acid during 
peroxidation phase 

~75:25 29:71 (Su et al., 2000) 

kcat of peroxidation rate 28.5 26 (Su et al., 2000) 

kcat of 11-HPODE formation 
from linoleic acid 

23 7 (Su et al., 2000) 

kcat of 11-HPODE 
isomerization to conjugated 

products 
0.6 9 (Su et al., 2000) 

11-HPODE isomerization has 
a kinetic lag phase 

no 
yes (Oliw et al., 2004; Su et 

al., 2000) 

Number of reaction phases 
with linoleic acid visible at 

234 nm 
2 

only 1 (Hamberg et al., 1998; 
Su et al., 2000) 

Parallel formation of bis-
allylic and conjugated 

HPODEs 
yes 

yes (Hamberg et al., 1998; Su 
et al., 2000) 

Active site metal Iron: Fe(II) and Fe(III) 
Manganese: Mn(II) and 
Mn(III) (Su et al., 2000) 

 

As the formation of bis-allylic products by other iron-containing LOXs may have been overseen 

due to suboptimal extraction conditions and the instability of the product (Figure 23 and Figure 

24), four different iron-containing LOXs from plants (sLOX1, CsLbLOX), bacteria (CspLOX1) and 

fungi (FoxLOX) were tested for their ability to form 11-HPODE from linoleic acid. But even under 

optimized conditions, none of the tested enzymes produced the bis-allylic product, suggesting 

that 11-HPODE formation is indeed an unusual phenomenon that is limited to few iron-
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containing LOXs. Nevertheless, two of the four tested enzymes, CspLOX1 and FoxLOX, were able 

to isomerize 11-HPODE to conjugated HPODEs (Figure 31). The obtained product distributions 

are in line with the products obtained with linoleic acid. The 9-LOX CspLOX1 (Newie et al., 2015) 

produces mainly 9-HPODE and the 13-LOX FoxLOX (Brodhun et al., 2013) produces mainly 13-

HPODE from 11-HPODE. These results suggest that the isomerization reaction has high similarity 

to the peroxidation reaction and supports the hypothesis that the isomerization occurs via 

deoxygenation and subsequent reoxygenation (Hamberg et al., 1998) (Figure 54). Linoleic acid 

and 11-HPODE probably bind to the active site in a very similar way and thus oxygen is directed 

to the same position after deoxygenation of 11-HPODE. 

 
Figure 54. Mechanism proposed for the peroxidation and isomerization of PUFAs by CspLOX2 and MnLOXs. After 
abstraction of the hydrogen atom from the middle position, oxygen can either be inserted at the middle position to 
form the bis-allylic hydroperoxide or at the end position to form a conjugated hydroperoxide. Isomerization of the 
bis-allylic hydroperoxide probably occurs via deoxygenation and formation of the carbon centered radical (Hamberg 
et al., 1998). 

 

Since the most obvious difference between CspLOX2 and MnLOXs is the metal species in the 

active site, the role of the cofactor was also analyzed. Initial EPR experiments with CspLOX2 

suggested that in addition to iron, also manganese might be present in the active site. It thus 

seemed possible that CspLOX2 contains a portion of manganese that might be responsible for 

the 11-HPODE formation. The oxygenation specificity at the bis-allylic carbon could thus be 

related to the manganese cofactor. Therefore, CspLOX2 variants containing either manganese 

or iron as catalytic metal were generated by expression in minimal medium. Kinetic analyses 

showed that only Fe-CspLOX2 catalyzed the dioxygen insertion into linoleic acid (Table 8). The 

negligible activity of Mn-CspLOX2 is most likely caused by a residual amount of iron in the active 

site (2 mol %, Table 8). It is apparent, that only iron but not manganese can function as catalytic 

metal in CspLOX2. These results confirm that 11-HPODE can indeed be formed by an iron-

containing enzyme and that the manganese cofactor is not the important key for 11-HPODE 

formation. 

So far, it was assumed that iron and manganese cofactors function very similarly in LOXs. Both 

metals are coordinated by three histidines, an asparagine and a carboxy group of the C-terminal 
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valine or isoleucine (Supplemental Figure 4). The results obtained in this study also show that 

the expression conditions have an influence on the metal in the active site. In the crystal 

structure of Mn-CspLOX2, a full occupancy of the metal cofactor was found in the active site 

(Figure 33). This suggests that manganese is not only unspecifically bound to the surface but 

indeed integrated into the iron-binding site with the same octahedral coordination as the iron 

cofactor.  

It is also known from other enzymes that Mn(II) and Fe(II) prefer similar coordination spheres 

which makes it difficult for the enzyme to distinguish between both metals based on the 

structure alone. But since the midpoint potentials of Mn(II)/Mn(III) and Fe(II)/Fe(III) of the 

hexaaquo ions are quite different with 1.5 and 0.8 V, respectively, the redox chemistry of both 

metals is not interchangeable (Cotruvo Jr and Stubbe, 2012; Dean, 1985). In SODs, similar but 

not identical active sites are necessary to adjust the redox potentials to allow both, the reduction 

and oxidation of O2
• – (Borgstahl et al., 2000; Cotruvo Jr and Stubbe, 2012; Lah et al., 1995). This 

might also be the case for MnLOXs and FeLOXs. Interestingly, the oxidation of Mn(II) to Mn(III) 

was also observed in the CspLOX2 active site and even if Mn-CspLOX2 is unable to form the 

hydroperoxide product (Figure 32). However, while iron is converted from Fe(II) to Fe(III) in the 

presence of HPODE, it will finally react back to Fe(II) after one minute with linoleic acid (Figure 

32). In contrast to this, Mn(II) is converted to Mn(III) with HPODE, but also with linoleic acid. It 

might therefore be possible, that due to the different redox properties of manganese and iron, 

manganese cannot complete the full reaction cycle. 

Structural data of MnLOXs will be finally required to elucidate why Mn-CspLOX2 is inactive while 

fungal MnLOXs catalyze the same reaction with catalytically active manganese in a presumably 

identical coordination sphere. Furthermore, it will be interesting if MnLOXs are catalytically 

functional with iron in the active site. It should also be noted that our data suggest that the host 

organism and expression conditions have a crucial influence on the metal incorporation. As all 

MnLOXs were expressed in P. pastoris instead of E. coli as most other characterized LOXs (Cristea 

et al., 2005; Su and Oliw, 1998; Wennman and Oliw, 2013; Wennman et al., 2015), the question 

arises whether the catalytic metal found in heterologously expressed LOXs is identical with the 

one in the original host organism or whether only the expression system determines the type of 

metal that is incorporated. It has also been shown in other studies that overexpressed proteins 

are sometimes isolated with an incorrect metal center (mismetallation) (Maret, 2010). And it 

has also been suggested for other enzymes that the metal availability rather than a structural 

preference discriminates between iron and manganese (Cotruvo Jr and Stubbe, 2012). It was for 

instance shown by Waldron and coworkers that E. coli favors the incorporation of iron into the 

MnSOD of Bacillus anthracis (Tu et al., 2012). The expression of MnLOX in P. pastoris might 

therefore also be necessary to ensure the correct metallation of MnLOX. Other manganese-

containing enzymes like a peroxidase have also been successfully expressed in this P. pastoris 

(Gu et al., 2003). 
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4.3 The most important factors for 11-HPODE formation in CspLOX2 may 

include distortion of the pentadiene and steric hindrance at C9 and C13 

Kinetic and spectroscopic analyses suggested that the type of metal cofactor is not responsible 

for 11-HPODE formation and instead steric factors of the amino acid environment are probably 

crucial for this specificity. CspLOX2 appeared to be an ideal candidate to study the molecular 

basis of this reaction. A structure with a well-defined substrate binding channel is available and 

it is the LOX with the highest amount of bis-allylic product known so far. 

Although the synthesis of 11-HPODE is an unusual phenomenon and only few LOXs are able to 

form this product, there are some interesting aspects about this reaction. On the one hand, the 

insertion of oxygen at the bis-allylic carbon atom is thermodynamically not favorable and this 

product is in general not formed by autoxidation (Chan and Levett, 1977; Porter, 1990). It is 

therefore interesting, how the enzyme can lower the activation barrier for the oxygen insertion 

at C11 of linoleic acid. On the other hand, the principles that direct dioxygen to the bis-allylic 

position may also be applicable to explain how the specificity for only one of the four conjugated 

products on one pentadiene system is achieved by classical LOXs. 

A comparison of the effects resulting from many mutations along the CspLOX2 substrate binding 

channel led to the conclusion that especially those amino acids located in the core of the 

CspLOX2 active site play a decisive role in directing dioxygen to different positions on the linoleic 

acid substrate (Figure 34). Interestingly, the control of LOX specificity has mainly been 

considered to be determined by the bottom of the active site channel. In one model, the depth 

of the active site is regulated by two residues residing at the bottom of the pocket (Sloane et al., 

1991). Depending on the size of these residues, different pentadiene systems can be exposed to 

the reactive iron (Figure 10). In addition to the depth of the substrate binding, the orientation 

of the substrate was also discussed to be determined by amino acid residues located at the 

bottom of the channel. Positively charged residues, especially a conserved arginine, have been 

associated with a reversed substrate orientation due to interactions with the negatively charged 

carboxyl head group (Hornung et al., 1999). The results of the present study suggest that more 

attention should be paid to the direct environment of the reacting pentadiene moiety in the 

active site. Exchanging residues in this area resulted in significant changes of the product 

composition. The specificity of individual CspLOX2 variants could be directed to all four possible 

conjugated products of linoleic acid: 9S-, 9R-, 13S- and 13R-HPODE. So far, a major function has 

only been attributed to the so-called Gly/Ala switch in the active site (Coffa and Brash, 2004). A 

glycine at this position is related to R-specific LOXs while a bulkier alanine at this position is in 

general related to S-specific lipoxygenation. This Gly/Ala switch is also part of the identified 

crucial residues in CspLOX2. 

To elucidate which role the exchanged amino acids might play, four different hypotheses were 

considered (Figure 55) which are based on the concepts proposed for the general oxygenation 
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specificity of LOX and COX enzymes (Schneider et al., 2007). Since insertion of oxygen at the bis-

allylic position of the substrate represents simply an “unusual” oxygenation specificity on the 

pentadiene system, the models might also be useful to identify a molecular basis of the 11-

HPODE formation. 

The first model explains the altered specificity by torsion of the pentadienyl radical (Figure 55A). 

The idea is that a reaction at C11 becomes feasible upon slight torsions of the dihedral angle ϕ. 

In that case, the pentadiene system would not be in plane anymore and the delocalization of 

the radical would be limited. The radical would thus preferentially stay at the middle position of 

the pentadiene. 

In the second model, the final reduction step of the peroxyl radical to the hydroperoxide is the 

important factor (Figure 55B). Since the formed peroxyl radical can undergo quick β-

fragmentation at the bis-allylic position (Figure 12), oxygen insertion is in principle reversible. 

The peroxyl radical on C11 could, however, be trapped by an appropriate hydrogen atom donor 

in the direct amino acid environment to form the more stable hydroperoxide, thereby 

preventing β-fragmentation (Pratt et al., 2003). 

In the third model, an oxygen channel plays a decisive role (Figure 55C). This channel would 

transport molecular oxygen from the surface of the protein directly to the active site. If the 

oxygen channel enters the substrate binding channel directly at C11 of linoleic acid, oxygen may 

be preferentially inserted here. 

 

Figure 55. Four models to explain the oxygenation specificity on C11 of linoleic acid. The models are based on the 
ideas for the LOX and COX specificity as published by Schneider et al. (Schneider et al., 2007). 
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In the last model, steric shielding might be important to direct dioxygen to C11 (Figure 55D). 

Amino acids located close to C9 and C13 on linoleic acid restrict the space at these positions 

during LOX catalysis. Consequently, no oxygen can reside here and no space is available to form 

the bulky hydroperoxide at these positions. Therefore, the reaction would specifically occur on 

C11 where more space is available. 

4.3.1 Radical localization 

The residues involved in the most pivotal changes of the product composition form a tight 

clamp-like structure around the CspLOX2 active site. Of this active site clamp, Leu304 plays a 

special role. Exchanging this residue for a smaller valine resulted in the lowest amount of 11-

HPODE product among the analyzed CspLOX2 variants. This leucine residue is located opposite 

of the iron and thus restricts the channel diameter directly at the catalytic iron (Figure 36). 

Leu304 is highly conserved among all LOXs, demonstrating its crucial role for LOX catalysis. 

Nevertheless, the diameter of the active site channel between iron and this leucine residue 

varies in different LOXs, suggesting a slightly different location of the arched helix that 

contributes this residue (Figure 37). Leu304 might apply a certain strain on the linoleic acid 

substrate in the tight and kinked channel of CspLOX2, thereby inducing slight torsions of the 

dihedral angle in the pentadiene system. This would be required to achieve a radical localization 

as illustrated in Figure 55A. Since no structure of a CspLOX2 substrate complex could be 

obtained, the effect of torsions in the dihedral angle was evaluated by means of theoretical 

chemistry. Although slight shifts of the spin densities were obtained depending on the dihedral 

angle, these shifts were not sufficient to explain the experimentally observed product 

distributions (Figure 38 and Figure 50C). 

But even more interesting than the localization of the radical is the question if the activation 

barrier at C11 can be lowered by torsion of the pentadiene system. In comparison to 9-HPODE 

and 13-HPODE, 11-HPODE is in general not observed as autoxidation product of linoleic acid 

(Chan and Levett, 1977; Frankel et al., 1977; Porter, 1990). This implies that the activation barrier 

of this product is much higher at this position compared to C9 and C13. Although the spin density 

is slightly higher at C11 which generally indicates that oxygen is preferentially added here (Figure 

50), the Gibbs free energy of oxygen addition favors the end position of the pentadiene, as ΔG0 

is more negative for the end positions (-1.9 kcal mol-1) compared to the central position  

(+3.7 kcal mol-1) (Wright et al., 2009). This phenomenon was explained by the energy gain due 

to the formation of conjugated double bonds in case of oxygen addition to the end position of 

the pentadienyl radical, while the conjugated system of the delocalized radical is lost by addition 

of oxygen to the middle position (Wright et al., 2009). 

The theoretical calculations of the present study further showed that the Gibbs free energy for 

the oxygen insertion can be substantially lowered at the middle position of the pentadienyl 

radical by slight torsions of only 20° (Figure 50D). In this case, the overlap of the π-orbitals in the 
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conjugated system might be lowered and thus the effect of conjugation is decreased compared 

to a planar system. These results suggest that torsions of only a few degrees might also be 

necessary for the CspLOX2 reaction on C11 of linoleic acid. It is most likely a prerequisite to make 

the oxygen insertion at C11 competitive to C9 and C13. It would be possible that the tight and 

kinked channel together with Leu304 positioned in the kink apply a force onto the pentadiene 

moiety, thereby evoking this torsion. 

Notably, this position was also exchanged in 13R-MnLOX. Here, Leu336 (Leu304 in CspLOX2) was 

exchanged for valine, alanine, glycine and phenylalanine (Wennman et al., 2012). However, it is 

difficult to compare the results with CspLOX2, since only the relative amount of 9-HPODE and 

13-HPODE produced by these variants was determined, but not the amount of 11-HPODE. 

Furthermore, the Leu336Val variant retained about 48 % of the wt activity, but the Leu336Ala 

and Leu336Gly variant were almost inactive with only <0.2 % of the wt activity. The most 

pronounced effect on the specificity of the enzyme was nevertheless identified for the 

Leu336Ala variant which formed 13-HPODE and 9-HPODE in a ratio of 39 % and 61 %, 

respectively, whereas the wt produces almost exclusively 13-HPODE (Wennman et al., 2012). As 

no information about 11-HPODE produced by these variants has been provided, the function of 

Leu336 in 13R-MnLOX for the formation of the bis-allylic product remains unknown. 

4.3.2 Selective peroxyl radical trapping 

Studies on fatty acid autoxidation have shown that conjugated hydroperoxides of mainly trans, 

trans diene geometry are produced in oxidation reactions without any antioxidants (Porter and 

Wujek, 1984). If millimolar concentrations of phenolic antioxidants are present, for instance α-

tocopherol, cis, trans hydroperoxides are the major products. In autoxidation reactions of 

methyl linoleate in the presence of ~0.1 M α-tocopherol, the bis-allylic 11-hydroperoxide was 

also identified as product (Brash, 2000; Tallman et al., 2001). It was suggested that one principle 

to understand the product distribution of linoleic acid oxidations is the reversibility of the 

dioxygen addition to pentadienyl radicals. In these autoxidation reactions, the loss of oxygen 

from peroxyl radicals (β-fragmentation) competes with hydrogen atom trapping of these peroxyl 

radical by α-tocopherol (Pratt et al., 2003). It should be noted, that the β-fragmentation occurs 

at a much higher rate at the middle position (2.4x106 s-1) (Tallman et al., 2001) compared to the 

end positions of the pentadiene 27 s-1 (Porter and Wujek, 1984). Therefore, peroxyl radical 

trapping might be especially important for the bis-allylic product. 

These considerations were transferred to the CspLOX2 reaction. Since the presence of high 

concentrations of antioxidants leads to 11-HPODE formation in solution, it is conceivable that 

suitable hydrogen atom donors in the environment of the C11 peroxyl intermediate could trap 

the product at this position and prevent β-fragmentation. Amino acid side chains that could 

potentially function as antioxidants by donating hydrogen atoms include tyrosine, tryptophan 

or cysteine (Giles et al., 2003; Li et al., 1991; van Overveld et al., 2000). However, none of these 
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amino acids was found in the suitable position within the CspLOX active site. Only the side chain 

of Tyr310 was found in a 10 Å radius around the pentadiene system. As no tyrosyl radical was 

detected by EPR spectroscopy and the exchange of this residue for isoleucine and phenylalanine 

had no effect on the 11-HPODE formation, a potential catalytic function of Tyr310 was 

disfavored. Furthermore, such tyrosine radicals would be very reactive themselves and probably 

lead to a damage of the enzyme. The question how the peroxyl radical is scavenged in the last 

step of the LOX reaction cycle is still a matter of discussion. Formally, it would be consistent with 

the reaction cycle if the hydrogen atom that was initially abstracted by the ferric iron is 

transferred back to the peroxyl radical in order to complete the reaction cycle (Tomchick et al., 

2001). This, however, implies that the fatty acid has to be rearranged after oxygen insertion. As 

oxygen is in general inserted at the n+2 or n-2 position relative to the hydrogen abstraction in 

an antarafacial way, the fatty acid peroxidyl radical needs to turn 180° and align the peroxyl 

group to the H2O coordinated by the ferric iron (Figure 56). Although this appears inconvenient, 

no other path has been identified so far that could explain how the peroxyl radical is finally 

trapped. 

 

Figure 56. Reduction of the peroxyl radical is assumed to be mediated by the iron coordinated water (Tomchick et al., 
2001). For this process, the substrate would need to turn and align with the iron cofactor to bring the peroxyl radical 
in proximity to the hydrogen atom. 

4.3.3 Oxygen channel 

Another possibility to direct molecular oxygen to the middle position of the pentadienyl radical 

would be an oxygen channel that guides the gas molecules from the surface of the enzyme to 

the active site, thereby increasing the local concentration of molecular oxygen. The existence of 

such an oxygen channel has been postulated for different LOX enzymes based on crystal 

structures and mutational studies (Knapp et al., 2001; Kühn et al., 2005; Minor et al., 1996). The 

recently published structure of the 8R-LOX in complex with arachidonate also revealed a channel 

that connects the surface of the protein with the substrate binding channel (Figure 46). 

Assuming that this channel indeed functions as oxygen channel, molecular oxygen would directly 

be transported to the middle of the reacting pentadiene system of the substrate opposite of the 

iron. The location of such a channel is therefore in line with the antarafacial relationship of 

hydrogen abstraction and oxygen insertion. This putative oxygen channel which was also found 

in the structure of porcine 12-LOX and the human 15-LOX-2 (Neau et al., 2014) was also 

identified in the structure of CspLOX2 (Figure 46). As xenon derivatization experiments as well 

as mutational studies did not lead to a direct evidence for the existence of this oxygen channel 
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(Figure 47), the function of this tunnel remains hypothetical. It should, however, be noted that 

this channel would have the capacity to increase oxygen concentrations specifically in the 

environment of the pro-R side of C11 and could thus contribute to the 11R-HPODE formation by 

CspLOX2. 

4.3.4 Steric shielding 

The tight substrate binding channel of CspLOX2 that is surrounded by mainly leucine residues 

led to the assumption that steric shielding is an important factor to explain the CspLOX2 

specificity, which was supported by mutagenesis studies. Decreasing the size of amino acid 

residues around C9 of the substrate increased the formation of 9-HPODE, while 13-HPODE 

formation was increased by reducing the size of amino acids around C13. More space at one of 

the potential reactive sites (9S, 9R, 13S and 13R) shifted the product ratio towards this particular 

product. At C9, the correlation between the S- and R-enantiomer and the site of mutation seems 

clear, with Ile296 being located on the S-side and Ala300 being located on the R-side. Around 

C13, a similar correlation could be observed, although it is less obvious. Leu304 and Leu502 are 

rather facing the R-side and Leu506 the S-side of C13 (Figure 38). As no crystal structure of the 

CspLOX2 substrate complex could be obtained, these conclusions are only based on the 

arachidonic acid structure crystallized in complex with 8R-LOX. 

In order to get a better understanding of the role of steric hindrance for 11-HPODE formation, a 

LOX with only conjugated products was converted into a LOX with bis-allylic products by 

mimicking the tight active site channel of CspLOX2. CspLOX1 was an ideal candidate for this gain 

of function approach as a crystal structure of the enzyme is available, the enzyme is the isozyme 

from Cyanothece sp. PCC8801 and it produces only the conjugated 9R-hydroperoxide (Newie et 

al., 2015). The exchange of one to two active site amino acids probably close to C9 and C13 of 

linoleic acid for slightly bulkier amino acids was sufficient to induce 11-HPODE formation (Figure 

43). These results support the hypothesis that limited space around C9 and C13 may limit oxygen 

insertion to C11 as only reactive site. 

The role of steric hindrance in 11-HPODE formation was further supported by simulations, in 

which only accessible sites on the substrate were regarded as reactive (Figure 51). Whenever 

another atom, for example from amino acid side chains was getting to close to 9R, 11R or 13S, 

the position was defined as unreactive. The distribution of reactive sites obtained from many 

simulations and snapshots exhibited a nice correlation with the experimentally observed 

product distributions of the CspLOX2 variants with amino acid substitutions on the antarafacial 

side of the substrate (Leu258Val, Ala300Gly, Leu304Val, Leu502Val) (Figure 51B). However, this 

model cannot yet explain the change of stereospecificity observed for the Ile296Ala and 

Leu506Val variants. On the one hand it might be possible that due to the increased space oxygen 

would migrate to the backside of the substrate where oxygen is inserted in a suprafacial way 

(Figure 57A). On the other hand, one half of the pentadiene system could adopt another 



Discussion 
 

 

104 

conformation by rotation around the axis of the fatty acid since more space is available (Figure 

57B). 

 

Figure 57. Two models may explain oxygen access to 13R of linoleic acid. (A) The first option is that oxygen does not 
attack from the opposite site of the iron, but rather migrates to the backside of the pentadiene to insert oxygen in a 
suprafacial way. (B) Another option is that the pentadiene is twisted in a way that the side for 13R-HPODE formation 
is exposed to the front. The same models may explain how oxygen is inserted to form 9S-HPODE. 

 

Taken together, these results suggest that the reacting pentadiene system of the substrate 

needs to be slightly distorted to make an oxygen insertion at C11 of linoleic acid favorable. This 

might be induced by Leu304 being located in the kink of the channel and is probably the 

prerequisite to explain the reaction at the bis-allylic position. Additionally, a putative oxygen 

channel was identified that might deliver dioxygen precisely to the site of 11R-HPODE formation. 

Direct evidence for the function of this channel in oxygen transport is, however, missing. Steric 

shielding was identified as most promising factor to inhibit oxygen insertion at C9 and C13 of 

linoleic acid, while leaving the site for 11R-HPODE formation accessible for dioxygen. 

4.4 The concepts may also apply to MnLOXs and classical LOXs with only 

conjugated products 

It is now interesting to evaluate whether the mechanisms that regulate the oxygenation 

specificity of CspLOX2 are also applicable to the formation of the bis-allylic product by MnLOXs. 

Similarities in the reaction mechanism were found like the two individual reactions of fatty acid 

peroxidation and 11-HPODE isomerization (Table 11) which may point to a similar molecular 

strategy. As no structural data of a MnLOX is available so far, the effect of steric shielding is 

rather vague. Nevertheless, some information was obtained by mutational studies within the 

13R-MnLOX active site. It was suggested that Phe337 (Ile 305 in CspLOX2) sterically shields the 

13R-side of linoleic which may explain the formation of 13S-HPODE in a suprafacial reaction 

(Wennman et al., 2012). Here, molecular oxygen probably also needs to move to the opposite 

side of the substrate to insert dioxygen at the suprafacial side where the iron is located. This 

would be in favor of model A shown in Figure 57. Steric shielding might thus also be one of the 

most important factors to explain the 11-HPODE formation by MnLOXs. Since MnLOXs abstract 

the pro-S hydrogen on C11 and directly insert oxygen at the same position to form 11S-HPODE, 

peroxyl radical trapping by the close Fe(II)-H2O may play an additional role. Furthermore, the 

pentadiene of the linoleic acid substrate modeled into the predicted 3D model of 13R-MnLOX 
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also exhibited a slightly twisted conformation (Wennman et al., 2012). Although such 

predictions are only rough approximations, this may suggest that torsions of the pentadiene are 

necessary to allow oxygen insertion at C11 of linoleic acid which is in line with the results of the 

present study. 

Moreover, the molecular principles of the CspLOX2 reaction may even apply to classical LOXs 

with only conjugated products to explain the high stereo- and regiospecificity of the oxygen 

insertion within one pentadiene system. If enough space is available in the active site, for 

example by a larger distance of the conserved leucine (Leu304 in CspLOX2) to the catalytic iron 

(Figure 36), a planar pentadienyl radical will be favored due to the energy gain from a 

conjugation effect over all five carbon atoms. As the energy barrier is higher at the middle 

position (Figure 50D) compared to the end positions of the pentadienyl radical in a planar 

system, oxygen insertion will be strongly favored at C9 or C13. This might be the reason why 11-

HPODE is generally not observed as LOX product. Additionally, the putative oxygen channel 

identified in CspLOX2 seems to be conserved in many animal and coral LOX structures and might 

thus explain the antarafacial relationship of hydrogen abstraction and oxygen insertion (Neau et 

al., 2014). 

The effect of steric shielding probably also plays a major role in classical LOXs. The Gly/Ala switch 

was already found as one of the major determinants in proximity to the reacting pentadiene. 

Controlling the oxygen insertion to 9R and 13S of linoleic acid was also associated with steric 

hindrance at C9 (Coffa and Brash, 2004; Neau et al., 2014). But also other studies have discussed 

steric shielding as mechanism to explain the specificity of the LOX reaction. Leu546 and Leu754 

of soybean LOX1, which correspond to Leu304 and Leu506 in CspLOX2 respectively, have been 

proposed to be involved in steric shielding as well (Knapp et al., 2001; Knapp and Klinman, 2003). 

Leu597 (Leu506 in CspLOX2) has also been exchanged for smaller amino acids in the rabbit 15-

LOX and resulted in higher amounts of the 15R-hydroperoxide which corresponds to the 13R-

hydroperoxide of linoleic acid (Suardíaz et al., 2013; Suardíaz et al., 2014). These observations 

parallel the effect of the Leu506Val substitution in CspLOX2 and were also explained with steric 

shielding (Saura et al., 2014; Suardíaz et al., 2013; Suardíaz et al., 2014). Therefore, it is feasible 

that steric shielding is also one of the major mechanisms to direct the oxygen insertion within 

one reacting pentadiene system in other LOXs, including plant and mammalian enzymes. 

Models that explain the selection of a certain pentadiene moiety by the depth of the substrate 

binding channel and the side of oxygen insertion with the orientation of the substrate (tail-first 

or reversed) have been well established. In these models, not only the oxygen insertion, but also 

the position of hydrogen abstraction is affected (Figure 10). The results of this study now 

complement these models by explaining how oxygen can be delivered to different positions on 

the pentadienyl radical without changing the targeted pentadiene system nor reversing the 

substrate orientation and thereby leaving the site of hydrogen abstraction unaffected. The here 

presented data suggest that in addition to the known Gly/Ala switch, other residues around the 
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active site probably shield particular reactive sites from molecular oxygen, thereby achieving 

selective oxygen insertion on another position. It would now be highly interesting to elucidate if 

the steric shielding by the active site clamp plays indeed a major role in all LOXs. 

4.5 Outlook 

In this study, no structure of a CspLOX2 substrate complex could be obtained. Such a crystal 

structure would, however, be essential to support the hypothesis that the pentadiene system 

needs to be slightly twisted to allow oxygen insertion at the bis-allylic position. Extensive trials 

performed within this work showed that using CspLOX2 for this approach is very challenging. A 

possible reason why the substrate did not bind in the active site during crystallization or soaking 

might be the difference between the optimal pH for the CspLOX2 reaction (pH 9-9.5) and the pH 

of the crystallization conditions (pH 6-6.5). In 8R-LOX, both pH values were closer together 

(optimal pH 7.5 and pH 8 for crystallization). It might therefore be worth to try crystallization of 

an enzyme substrate complex with another LOX that forms bis-allylic products. Another option 

is to increase the 11-HPODE formation by 8R-LOX in a similar approach as performed in this 

study with CspLOX1 (Chapter 3.6). 8R-LOX seems to be more suitable for obtaining crystals of 

enzyme substrate complexes. The structure of the variant in complex with substrate could 

subsequently be compared with the already existing structure of 8R-LOX with arachidonate. 

Furthermore, for evaluating the role of steric shielding in LOXs in general, the effect of the active 

site clamp mutations could also be investigated in other LOX enzymes. In combination with 

biochemical data of the product specificity, the effect of steric shielding could be analyzed using 

the computational approach developed by Martin Werner and Prof. Dr. Ricardo Mata. So far, 

the inversion of the stereochemistry cannot yet be explained with the existing models. Further 

theoretical and experimental studies might be necessary to understand how the 

stereochemistry of 9R-HPODE and 13S-HPODE can be inverted by single point mutations. 

To evaluate if torsions of the pentadiene might indeed lead to a localization of the radical on 

C11 of linoleic acid, time-resolved EPR spectra could be recorded (Schneider et al., 2007; 

Schreiner and Berndt, 1974). However, for the reaction of COX-2, which also forms a pentadienyl 

radical, a localized radical could not be found (Tsai et al., 2002). The problem with LOXs is that 

they are usually too fast with a kcat of up to 300 s-1 for soybean LOX1. The CspLOX2 reaction, 

however, proceeds at a rate that is about 10 times slower. It might thus be worth to use CspLOX2 

for these measurements instead. 

Also the role of the cofactor left some open questions. It would be interesting to elucidate, 

whether MnLOXs can also be substituted by iron and if they would still be active. At the same 

time, a crystal structure of manganese LOX could reveal the detailed coordination geometry of 

this cofactor and special features of the active site which may explain why these enzymes are 

active with manganese while CspLOX2 is not.  



Summary 
 

 

107 

5. Summary 
Lipoxygenases (LOXs) are non-heme iron- or manganese-containing dioxygenases that initiate 

the biosynthesis of vital lipid mediators in mammals and plants. They catalyze the regio- and 

stereospecific peroxidation of polyunsaturated fatty acids containing at least one cis,cis-1,4-

pentadiene system. In previous studies, two iron-containing LOX isozymes, CspLOX1 and 

CspLOX2, have been identified in Cyanothece sp. and their crystal structures have been solved. 

In this study, both enzymes were characterized in detail to elucidate the relationship between 

protein structure and function. Most interesting were thereby the N-terminal α-helical 

extension of CspLOX1 which is not present in other LOXs and the unusual oxygenation specificity 

of CspLOX2. 

Besides the catalytic LOX domain and an N-terminal β-barrel domain found in eukaryotic LOXs, 

CspLOX1 harbors an additional α-helical extension at the N-terminus with unknown function. 

The β-barrel domain has generally been proposed to mediate a membrane binding function. 

However, the here described liposome binding studies with truncated CspLOX1 versions 

revealed that only the α-helical extension but not the β-barrel is crucial for binding of CspLOX1 

to the vesicles. This domain might thus present a new membrane targeting domain that could 

be involved in direct substrate acquisition from membranes. 

Furthermore, CspLOX2 represented an ideal model to study the dioxygen insertion at the middle 

position of the pentadiene that leads to the formation of bis-allylic hydroperoxides: A crystal 

structure of CspLOX2 is available and chromatographic and kinetic analyses of this study showed 

that CspLOX2 is the enzyme with the highest relative amount of the bis-allylic product observed 

so far. This unusual product had previously only been reported for manganese-containing LOXs, 

while iron-containing LOXs generally insert oxygen only at the ends of the pentadiene system. 

What role the type of metal cofactor plays for the LOX reaction was not understood. Therefore, 

a manganese-substituted version of CspLOX2 (Mn-CspLOX2) was generated in this study by 

expression of the enzyme in minimal medium. Despite a virtually identical coordination 

geometry of manganese in the metal binding site, Mn-CspLOX2 was inactive, indicating that iron 

and manganese cofactors are not interchangeable in LOXs. 

Since manganese as metal cofactor is not required for the formation of bis-allylic products, 

structural factors were considered to explain this oxygenation specificity. CspLOX2 exhibits a 

substrate binding channel with a smaller diameter than other LOXs. Increasing the space in the 

active site by exchanging Leu304 for valine decreased the relative amount of the bis-allylic 11-

hydroperoxy octadecadienoic acid (HPODE) formation from linoleic acid substantially. 

Substitution of other amino acids in the core of the active site by smaller residues shifted the 

major products of linoleic acid to either 9R-, 9S-, 13R- or 13S-HPODE, depending on the amino 

acid position. Furthermore, in a gain of function approach, the active site of CspLOX1 was 

constricted by two point mutations to mimic the CspLOX2 active site. This in turn induced 11-

HPODE formation in CspLOX1. These results suggest that steric shielding plays an important role 

in the formation of the bis-allylic product which was also supported by a computational 

approach. Additionally, the confined active site may induce a torsion of the pentadiene system, 

thereby increasing the reactivity at C11. Steric shielding is probably also one of the most 

important factors to explain the oxygenation specificity of other LOXs. It is therefore likely that 

amino acids in the core of the active site play a more important role for controlling the 

oxygenation specificity than previously assumed. 
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7. List of abbreviations 
According to the IUPAC-IUB Commission, the three-letter code was used for amino acids. 

6xHis-Tag Hexahistidine Tag 

C8E4 Tetraethylen glycol monooctyl ether 

COX Cyclooxygenase 

DAD Diode array detector 

DFT Discrete Fourier transform 

DNA Deoxyribonucleic acid 

dNTP Deoxyribonucleoside triphosphate 

DTT 1,4-Dithiothreitol 

EDTA Ethylendiaminetetraacetic acid 

EIC Extracted ion chromatogram 

EPR Electron paramagnetic resonance 

g gravity 

H(P)ETE Hydro(per)oxy eiscosatetraenoic acid 

H(P)ODE Hydro(per)oxy octadecadienoic acid 

ICP-AES Inductively coupled plasma atomic emission spectroscopy 

IMAC Immobilized metal ion chromatography 

kb Kilo base pairs 

kcat Turnover number 

kDa Kilo Dalton 

KM Michaelis-Menten constant 

LOX lipoxygenase 

MD Molecular dynamics 

MES 2-(N-Morpholino)ethansulfonsäure 

MS Mass spectrometry 

OD600 Optical density at 600 nm 

PDB Protein Data Bank 

PEG Polyethylen glycol 

pKa Acid siddociation constant 

PLAT Polycystin-1, Lipoxygenase, Alpha-Toxin 

ppm Parts per million 

PRC Polymerase chain reaction 

PUFA Polyunsaturated fatty acid 

rmsd Root mean square deviations 

RNA Ribonucleic acid 

RP-/SP-/CP-HPLC Reversed phase-/straight phase-/chiral phase-high performance liquid 

chromatography 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEC Size exclusion chromatography 

SOD Superoxide dismutase 

SOMO Singly occupied molecular orbital 
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sp. species 

TAE Tris-acetate-EDTA 

TEMED Tetramethylethylenediamine 

TIC Total ion chromatogram 

UHPLC-MS Ultra-high performance liquid chromatography coupled to mass spectrometry 

UV Ultra violet (light) 

v/v Volume per volume 

vis Visible light 

w/o without 

w/v Weight per voliume 

wt Wild type 
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8. Supplements 

 

Supplemental Figure 1. Stereospecificity of the bis-allylic product from linoleic acid. The HPODEs formed by CspLOX2 
wt and its variant Leu506Val were reduced to hydroxides and derivatized to their methyl esters (HODE-Me). (A) The 
11R-HODE-Me standard as well as the HODE-Me of the CspLOX2 wt and its Leu506Val variant were separated by CP-
HPLC at a flow rate of 0.3 ml/min. A small peak eluting before the 11R-HODE-Me was suspected to be the S-
enantiomer of the compound, since both compounds show a very similar UV-vis spectrum (B). To confirm the identity 
of 11S-HODE-Me, the 11R-HODE-Me peaks of the standard and CspLOX2 wt as well as the putative 11S-HODE-Me 
peak were purified by CP-HPLC and subjected to high resolution LC MS/MS. The extracted ion chromatograms for the 
ion [M-H2O+H]+ at m/z = 293.2477 (C) and the high resolution mass spectra (mass resolution < 2ppm) of these samples 
were compared. As retention time (C) and mass spectra (D) are identical, both compounds are probably 11-HODE-Me 
and only differ in their stereochemstry.  
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Supplemental Figure 2. Ratio of radio vs. absorbance signal of different HPODEs. Different amounts of reaction 
product were subjected to radio-RP-HPLC analysis. The resulting peak areas of the absorbance at 202 nm (11-HPODE) 
or 234 nm (9- or 13-HPODE) were plotted against the peak area of the radio signal of the same peak. From the slopes 
of the linear regression curves the following scaling factors for the individual HPODEs were determined: 0.791 for 9-
HPODE, 1.566 for 11-HPODE and 0.644 for 13-HPODE. 
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Supplemental Figure 3. Sequence alignments of the active site clamp residues identified in CspLOX2 with other LOXs 
that were also used for the phylogenetic tree in Figure 15. See this figure legend for respective accession numbers. 
The crucial amino acids of the active site are highlighted in blue. The orange box frames the LOXs that can form bis-
allylic products in significant amounts. 
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Supplemental Figure 4. Sequence alignment of the metal ligands in different LOXs that were also used for the 
phylogenetic tree in Figure 15. See this figure legend for respective accession numbers. 
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Supplemental Table 1. List of all plant LOX structures deposited in the PDB. Four different enzymes are found from 
soybean: soybean LOX1, LOX2, LOXB and LOXD (plus their derivatives). 
 

Code Year of 

release 

First author Organism/Enzyme Resolution 

(Å) 

Title 

2SBL 1995 Amzel Soybean LOX-1 2.6 THE THREE-DIMENSIONAL STRUCTURE 
OF AN ARACHIDONIC ACID 15-
LIPOXYGENASE 

1YGE 1997 Minor Soybean LOX-1 1.4 LIPOXYGENASE-1 (SOYBEAN) AT 100K  

4WHA 2014 Scouras Soybean LOX-1 1.7 Lipoxygenase-1 (soybean) 
L546A/L754A mutant  

1F8N 2001 Tomchick Soybean LOX-1 1.4 LIPOXYGENASE-1 (SOYBEAN) AT 100K, 
NEW REFINEMENT  

3BNB 2008 Tomchick Soybean LOX-1 1.45 Lipoxygenase-1 (Soybean) I553L 
Mutant  

3BNC 2008 Tomchick Soybean LOX-1 1.65 Lipoxygenase-1 (Soybean) I553G 
Mutant  

3BND 2008 Tomchick Soybean LOX-1 1.6 Lipoxygenase-1 (Soybean), I553V 
Mutant  

3BNE 2008 Tomchick Soybean LOX-1 1.4 Lipoxygenase-1 (Soybean) I553A 
Mutant  

1Y4K 2005 Chruszcz Soybean LOX-1 1.95 Lipoxygenase-1 (Soybean) at 100K, 
N694G Mutant  

1FGM 2001 Tomchick Soybean LOX-1 1.9 LIPOXYGENASE-1 (SOYBEAN) AT 100K, 
N694H MUTANT 

1FGO 2001 Tomchick Soybean LOX-1 1.62 LIPOXYGENASE-1 (SOYBEAN) AT 100K, 
Q495A MUTANT 

1FGQ 2001 Tomchick Soybean LOX-1 1.85 LIPOXYGENASE-1 (SOYBEAN) AT 100K, 
Q495E MUTANT 

1FGR 2001 Tomchick Soybean LOX-1 1.6 LIPOXYGENASE-1 (SOYBEAN) AT 100K, 
Q697E MUTANT  

3PZW 2011 Chruszcz Soybean LOX-1 1.4 Soybean lipoxygenase-1 - re-
refinement  

4WHA 2014 Scouras Soybean LOX-1 1.7 Lipoxygenase-1 (soybean) 
L546A/L754A mutant  

4WFO 2015 Carr Soybean LOX-1 1.14 manganese-substituted soybean 
lipoxygenase-1  

5EEO 2015 Mikami Soybean LOX-1 2.1 soybean lipoxygenase(L1)-T756R  

1HU9 2003 Zhou Soybean LOX-3 2.2 LIPOXYGENASE-3 (SOYBEAN) COMPLEX 
WITH 4-HYDROPEROXY-2-METHOXY-
PHENOL  

1LNH 1997 Skrzypczak-

Jankun 

Soybean LOX-3 2.6 LIPOXYGENASE-3(SOYBEAN) NON-
HEME FE(II) METALLOPROTEIN  

1JNQ 2003 Zhou Soybean LOX-3 2.1 LIPOXYGENASE-3 (SOYBEAN) COMPLEX 
WITH EPIGALLOCATHECHIN (EGC)  

1RRL 2004 Borbulevych Soybean LOX-3 2.09 Soybean Lipoxygenase (LOX-3) at 93K 
at 2.0 A resolution  

1RRH 2004 Borbulevych Soybean LOX-3 2.00 Soybean Lipoxygenase (LOX-3) at 
ambient temperatures at 2.0 A 
resolution  

 
  

http://www.rcsb.org/pdb/explore/explore.do?structureId=2SBL
http://www.rcsb.org/pdb/explore/explore.do?structureId=2SBL
http://www.rcsb.org/pdb/explore/explore.do?structureId=2SBL
http://www.rcsb.org/pdb/explore/explore.do?structureId=1YGE
http://www.rcsb.org/pdb/explore/explore.do?structureId=4WHA
http://www.rcsb.org/pdb/explore/explore.do?structureId=4WHA
http://www.rcsb.org/pdb/explore/explore.do?structureId=1F8N
http://www.rcsb.org/pdb/explore/explore.do?structureId=1F8N
http://www.rcsb.org/pdb/explore/explore.do?structureId=3BNB
http://www.rcsb.org/pdb/explore/explore.do?structureId=3BNB
http://www.rcsb.org/pdb/explore/explore.do?structureId=3BNC
http://www.rcsb.org/pdb/explore/explore.do?structureId=3BNC
http://www.rcsb.org/pdb/explore/explore.do?structureId=3BND
http://www.rcsb.org/pdb/explore/explore.do?structureId=3BND
http://www.rcsb.org/pdb/explore/explore.do?structureId=3BNE
http://www.rcsb.org/pdb/explore/explore.do?structureId=3BNE
http://www.rcsb.org/pdb/explore/explore.do?structureId=1Y4K
http://www.rcsb.org/pdb/explore/explore.do?structureId=1Y4K
http://www.rcsb.org/pdb/explore/explore.do?structureId=1FGM
http://www.rcsb.org/pdb/explore/explore.do?structureId=1FGM
http://www.rcsb.org/pdb/explore/explore.do?structureId=1FGO
http://www.rcsb.org/pdb/explore/explore.do?structureId=1FGO
http://www.rcsb.org/pdb/explore/explore.do?structureId=1FGQ
http://www.rcsb.org/pdb/explore/explore.do?structureId=1FGQ
http://www.rcsb.org/pdb/explore/explore.do?structureId=1FGR
http://www.rcsb.org/pdb/explore/explore.do?structureId=1FGR
http://www.rcsb.org/pdb/explore/explore.do?structureId=3PZW
http://www.rcsb.org/pdb/explore/explore.do?structureId=3PZW
http://www.rcsb.org/pdb/explore/explore.do?structureId=4WHA
http://www.rcsb.org/pdb/explore/explore.do?structureId=4WHA
http://www.rcsb.org/pdb/explore/explore.do?structureId=4WFO
http://www.rcsb.org/pdb/explore/explore.do?structureId=4WFO
http://www.rcsb.org/pdb/explore/explore.do?structureId=5EEO
http://www.rcsb.org/pdb/explore/explore.do?structureId=1HU9
http://www.rcsb.org/pdb/explore/explore.do?structureId=1HU9
http://www.rcsb.org/pdb/explore/explore.do?structureId=1HU9
http://www.rcsb.org/pdb/explore/explore.do?structureId=1LNH
http://www.rcsb.org/pdb/explore/explore.do?structureId=1LNH
http://www.rcsb.org/pdb/explore/explore.do?structureId=1JNQ
http://www.rcsb.org/pdb/explore/explore.do?structureId=1JNQ
http://www.rcsb.org/pdb/explore/explore.do?structureId=1RRL
http://www.rcsb.org/pdb/explore/explore.do?structureId=1RRL
http://www.rcsb.org/pdb/explore/explore.do?structureId=1RRH
http://www.rcsb.org/pdb/explore/explore.do?structureId=1RRH
http://www.rcsb.org/pdb/explore/explore.do?structureId=1RRH
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Supplemental Table 2. List of all bacterial LOX structures deposited in the PDB. Only the Pseudomonas LOX has been 
crystalized in different forms. 
 

Code Year of 
release 

First author Organism/Enzyme Resolution 
(Å) 

Title 

4G32 2013 Carpena Pseudomonas 
aeruginosa LOX 

1.75 Crystal Structure of a Phospholipid-
Lipoxygenase Complex from 
Pseudomonas aeruginosa at 1.75A 
(P21212)  

4G33 2013 Carpena Pseudomonas  
aeruginosa LOX 

2.0 Crystal Structure of a Phospholipid-
Lipoxygenase Complex from 
Pseudomonas aeruginosa at 2.0 A 
(C2221)  

4RPE 2015 Carpena Pseudomonas 
aeruginosa LOX 

1.6 Crystal Structure of Variant G186E 
from Pseudomonas Aeruginosa 
Lipoxygenase 2 at 1.60A (C2)  

 

Supplemental Table 3. List of all coral LOX structures deposited in the PDB. Structures of the Plexaura homomalla 8R-
LOX and Germesia fruticosa 11R-LOX are available. 
 

Code Year of 
release 

First author Organism/Enzyme Resolution 
(Å) 

Title 

4QWT 2014 Neau Plexaura 
homomalla 
8R-LOX 

2.0 Anaerobic crystal structure of 
delta413-417:GS LOX in complex with 
arachidonate   

2FNQ 2006 Oldham Plexaura 
homomalla 
8R-LOX 

3.2 Insights from the X-ray crystal 
structure of coral 8R-lipoxygenase: 
calcium activation via A C2-like domain 
and a structural basis of product 
chirality  

3FG3 2009 Neau Plexaura 
homomalla 
8R-LOX 

1.9 Crystal structure of Delta413-417:GS 
I805W LOX  

3FG4 2009 Neau Plexaura 
homomalla 
8R-LOX 

2.31 Crystal structure of Delta413-417:GS 
I805A LOX  

3VF1 2012 Eek Germesia  
fruticose  
11R-LOX 

2.47 Structure of a calcium-dependent 11R-
lipoxygenase suggests a mechanism 
for Ca-regulation  

 

  

http://www.rcsb.org/pdb/explore/explore.do?structureId=4G32
http://www.rcsb.org/pdb/explore/explore.do?structureId=4G32
http://www.rcsb.org/pdb/explore/explore.do?structureId=4G32
http://www.rcsb.org/pdb/explore/explore.do?structureId=4G32
http://www.rcsb.org/pdb/explore/explore.do?structureId=4G33
http://www.rcsb.org/pdb/explore/explore.do?structureId=4G33
http://www.rcsb.org/pdb/explore/explore.do?structureId=4G33
http://www.rcsb.org/pdb/explore/explore.do?structureId=4G33
http://www.rcsb.org/pdb/explore/explore.do?structureId=4RPE
http://www.rcsb.org/pdb/explore/explore.do?structureId=4RPE
http://www.rcsb.org/pdb/explore/explore.do?structureId=4RPE
http://www.rcsb.org/pdb/explore/explore.do?structureId=4QWT
http://www.rcsb.org/pdb/explore/explore.do?structureId=4QWT
http://www.rcsb.org/pdb/explore/explore.do?structureId=4QWT
http://www.rcsb.org/pdb/explore/explore.do?structureId=2FNQ
http://www.rcsb.org/pdb/explore/explore.do?structureId=2FNQ
http://www.rcsb.org/pdb/explore/explore.do?structureId=2FNQ
http://www.rcsb.org/pdb/explore/explore.do?structureId=2FNQ
http://www.rcsb.org/pdb/explore/explore.do?structureId=2FNQ
http://www.rcsb.org/pdb/explore/explore.do?structureId=3FG3
http://www.rcsb.org/pdb/explore/explore.do?structureId=3FG3
http://www.rcsb.org/pdb/explore/explore.do?structureId=3FG4
http://www.rcsb.org/pdb/explore/explore.do?structureId=3FG4
http://www.rcsb.org/pdb/explore/explore.do?structureId=3VF1
http://www.rcsb.org/pdb/explore/explore.do?structureId=3VF1
http://www.rcsb.org/pdb/explore/explore.do?structureId=3VF1
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Supplemental Table 4. List of all mammalian LOX structures deposited in the PDB. Structures of rabbit 15-LOX, porcine 
12-LOX, human 12-LOX, human 15-LOX2 and human 5-LOX are available (five different enzymes). 
 

Code Year of 
release 

First author Organism/Enzyme Resolution 
(Å) 

Title 

2P0M 2007 Choi Rabbit 15S-LOX 2.4 Revised structure of rabbit 
reticulocyte 15S-lipoxygenase  

1LOX 1998 Gillmor Rabbit 15S-LOX 2.4 RABBIT RETICULOCYTE 15-
LIPOXYGENASE 

3RDE 2012 Funk Porcine 12-LOX 1.89 Crystal structure of the catalytic 
domain of porcine leukocyte 12-
lipoxygenase  

3D3L 2008 Tresaugues Human 12S-LOX 2.6 The 2.6 A crystal structure of the 
lipoxygenase domain of human 
arachidonate 12-lipoxygenase, 12S-
type (CASP Target)  

4NRE 2014 Kobe Human 15-LOX2 2.63 The structure of human 15-
lipoxygenase-2 with a substrate mimic  

3V98 2012 Gilbert Human 5-LOX 2.07 S663D Stable-5-LOX 

3V92 2012 Gilbert Human 5-LOX 2.74 S663A Stable-5-LOX  

3V99 2012 Gilbert Human 5-LOX 2.25 S663D Stable-5-LOX in complex with 
Arachidonic Acid  

3O8Y 2011 Newcomer Human 5-LOX 2.39 Stable-5-Lipoxygenase  

 

 

  

http://www.rcsb.org/pdb/explore/explore.do?structureId=2P0M
http://www.rcsb.org/pdb/explore/explore.do?structureId=2P0M
http://www.rcsb.org/pdb/explore/explore.do?structureId=1LOX
http://www.rcsb.org/pdb/explore/explore.do?structureId=1LOX
http://www.rcsb.org/pdb/explore/explore.do?structureId=3RDE
http://www.rcsb.org/pdb/explore/explore.do?structureId=3RDE
http://www.rcsb.org/pdb/explore/explore.do?structureId=3RDE
http://www.rcsb.org/pdb/explore/explore.do?structureId=3D3L
http://www.rcsb.org/pdb/explore/explore.do?structureId=3D3L
http://www.rcsb.org/pdb/explore/explore.do?structureId=3D3L
http://www.rcsb.org/pdb/explore/explore.do?structureId=3D3L
http://www.rcsb.org/pdb/explore/explore.do?structureId=4NRE
http://www.rcsb.org/pdb/explore/explore.do?structureId=4NRE
http://www.rcsb.org/pdb/explore/explore.do?structureId=3V98
http://www.rcsb.org/pdb/explore/explore.do?structureId=3V92
http://www.rcsb.org/pdb/explore/explore.do?structureId=3V99
http://www.rcsb.org/pdb/explore/explore.do?structureId=3V99
http://www.rcsb.org/pdb/explore/explore.do?structureId=3O8Y
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Supplemental Table 5. Data collection and refinement statistics for Mn-CspLOX2, the Leu304Val and the Leu304Phe 
variant. 

 Mn-CspLOX2 Leu304Val Leu304Phe 

Synchrotron beamline DESY (Hamburg) ESRF (Grenoble) ESRF (Grenoble) 
Resolution range (Å) 50.00 - 2.00 

(2.10  - 2.00) 
50.00 - 2.60 
(2.70 - 2.60) 

50.00 – 2.04 
(2.14-2.04) 

Space group P 21 21 21 P 21 21 21 P 21 21 21 
Unit cell (Å,°) 54.42 165.59 167.35 

90.00 90.00 90.00 
54.42 165.59 167.35 
90.00 90.00 90.00 

54.42 165.59 167.35 
90.00 90.00 90.00 

Total number of reflections 446260 (58819) 243217 (26059) 495166 (67823) 
Unique reflections 102444 (13765) 47945 (5028) 98279 (12956) 
Multiplicity 4.3 (4.3) 5.1 (5.2) 5.0 (5.2) 
Completeness (%) 99.3 (99.2) 99.6 (99.5) 99.8 (99.9) 
Mean I/sigma(I) 14.96 (1.74) 18.52 (2.76) 19.14 (2.80) 
Wilson B-factor (Å2) 39.89 67.00 44.67 
R-merge (%) 7.0 (79.1) 5.5 (67.2) 4.7 (56.5) 
CC1/2 99.9 (72.1) 99.9 (83.0) 99.9 (82.0) 

Resolution range 46.28 - 2.00 
(2.02 – 2.00) 

46.35 – 2.60 
(2.66-2.60) 

46.34 – 2.04 
(2.06-2.03)  

R-work 0.1941 (0.2789) 0.2157 (0.3153) 0.1873 (0.2606) 
R-free 0.2239 (0.3564) 0.2546 (0.3694) 0.2163 (0.2826) 
Number of non-hydrogen atoms 10210 9176 9919 
macromolecules 9120 9118 9126 
ligands 2 2 2 
water 1090 58 793 
Protein residues 1138 1138 1138 
RMS (bonds) 0.006 0.006 0.009 
RMS (angles) 1.088 1.301 1.292 
Ramachandran favored (%) 94.89 93.75 95.6 
Ramachandran outliers (%) 1.41 1.41 1.06 
Clashscore 6.14 6.08 6.08 
Average B-factor 39.6 71.4 49.0 

 
Statistics for the highest-resolution shell are shown in parentheses. 
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Supplemental Table 6. Primers used in this study. Forward primers are indicated with ‘fwd’, the reverse primers with 
‘rev’. The sequence of the primers is always shown in 5’ – 3’ direction. 

 
Construct Primer Primer sequence 

CspLOX2 

Arg57Phe 

Arg57Phe_fwd GAAATACTTGATTGAATTCGATAAGGGATTAGTGTCCCTAATTG 

Arg57Phe_rev CACTAATCCCTTATCGAATTCAATCAAGTATTTCAATGAAAAC 

CspLOX2 

Gly60Leu 

Gly60Leu_fwd GATTGAGCGAGATAAGCTTTTAGTGTCCCTAATTGCCAATACC 

Gly60Leu_rev CAATTAGGGACACTAAAAGCTTATCTCGCTCAATCAAGTATTTC 

CspLOX2 

Leu258Val 

Leu258Val_fwd GATGGGTTCGTGCTACGTGGCTAATTGCTTCGTGACAATTG 

Leu258Val_rev CGAAGCAATTAGCCACGTAGCACGAACCCATCTGATCTTAG 

CspLOX2 

Leu263Trp 

Leu263Trp_fwd CTTAGCACGAACCCATTGGATCTTAGAACCTTTTGTGCTGGC 

Leu263Trp_rev CAAAAGGTTCTAAGATCCAATGGGTTCGTGCTAAGTGGCTAATTG 

CspLOX2 

Ile296Ala 

Ile296Ala_fwd CCAATTTACCTTGGCCGCTAATGAACTGGCACGAGAACAG 

Ile296Ala_rev GTGCCAGTTCATTAGCGGCCAAGGTAAATTGGAAATGGGG 

CspLOX2 

Ala300Gly 

Ala300Gly_fwd CCTTGGCCATTAATGAGCTCGGACGAGAACAGTTGATCAGTGC 

Ala300Gly_rev CAACTGTTCTCGTCCGAGCTCATTAATGGCCAAGGTAAATTGG 

CspLOX2 

Leu304Ala 

Leu304Ala_fwd CTGGCACGAGAACAGGCGATCAGTGCCGGAGGTTATGCCGATG 

Leu304Ala_rev CCTCCGGCACTGATCGCCTGTTCTCGTGCCAGTTCATTAATG 

CspLOX2 

Leu304Phe 

Leu304Phe_fwd CTGGCACGAGAACAGTTTATCAGTGCCGGAGGTTATGCCGATG 

Leu304Phe_rev CCTCCGGCACTGATAAACTGTTCTCGTGCCAGTTCATTAATG 

CspLOX2 

Leu304Val 

Leu304Val_fwd CTGGCACGAGAACAGGTGATCAGTGCCGGAGGTTATGCCGATG 

Leu304Val_rev CCTCCGGCACTGATCACCTGTTCTCGTGCCAGTTCATTAATG 

CspLOX2 

Ile305Phe 

Ile305Phe_fwd GAACTGGCACGAGAACAGCTGTTCAGTGCCGGAGGTTATGCCG 

Ile305Phe_rev CCTCCGGCACTGAACAGCTGTTCTCGTGCCAGTTCATTAATGG 

CspLOX2 

Tyr310Ile 

Tyr310Ile_fwd GATCAGTGCCGGAGGTATTGCCGATGATCTGCTCGCTGGAAC 

Tyr310Ile_rev GAGCAGATCATCGGCAATACCTCCGGCACTGATCAACTGTTC 

CspLOX2 

Tyr310Phe 

Tyr310Phe_fwd GATCAGTGCCGGAGGTTTTGCCGATGATCTGCTCGCTGGAAC 

Tyr310Phe_rev GAGCAGATCATCGGCAAAACCTCCGGCACTGATCAACTGTTC 

CspLOX2 

Ala311Phe 

Ala311Phe_fwd CAGTGCCGGAGGTTATTTCGATGATCTGCTCGCTGGAACCC 

Ala311Phe_rev GCGAGCAGATCATCGAAATAACCTCCGGCACTGATCAACTG 

CspLOX2 

Leu315Met 

Leu315Met_fwd GCCGATGATCTGATGGCCGGCACCCTTGAAGCCTCTATCGCTG 

Leu315Met_fwd GAGGCTTCAAGGGTGCCGGCCATCAGATCATCGGCATAACCTC 

CspLOX2 

Leu315Phe 

Leu315Phe_fwd GCCGATGATCTGTTCGCCGGCACCCTTGAAGCCTCTATCGCTG 

Leu315Phe_rev GAGGCTTCAAGGGTGCCGGCGAACAGATCATCGGCATAACCTC 

CspLOX2 

Leu315Val 

Leu315Val_fwd GCCGATGATCTGGTCGCCGGCACCCTTGAAGCCTCTATCGCTG 

Leu315Val_rev GAGGCTTCAAGGGTGCCGGCGACCAGATCATCGGCATAACCTCC 

CspLOX2 

Leu502Val 

Leu502Val_fwd GCAAGGCAACTGGAGGTGATGAGAACGCTGTGTGTTTTC 

Leu502Val_rev CACAGCGTTCTCATCACCTCCAGTTGCCTTGCTGCCAACTT 

CspLOX2 

Leu506Val 

Leu506Val_fwd GGAGTTGATGAGAACGGTGTGTGTTTTCTATCCCAATCG 

Leu506Val_rev GATAGAAAACACACACCGTTCTCATCAACTCCAGTTGCC 

CspLOX1 

Gly401Ala 

Gly401Ala _fwd ATATTAATCGCCGTGCAGATGATTTACTGGTAGAACCG 

Gly401Ala_rev CCAGTAAATCATCTGCACGGCGATTAATATTAATAATG 

CspLOX1 

Tyr310Leu 

Tyr310Leu_fwd GAAGCGATCGAGCATCTAGCTAAGGCTCATGTGCAGATGG 

Tyr310Leu_rev CACATGAGCCTTAGCTAGATGCTCGATCGCTTCTCCGTCAAA 

CspLOX1 

Phe413Ala 

Phe413Ala_fwd CCGAACCTTGGCTTAGCTGTGACTAACGGTCCGTTAAC 

Phe413Ala_rev ACCGTTAGTCACAGCTAAGCCAAGGTTCGGTTCTACCAG 

CspLOX1 

Ile617Leu 

Ile617Leu_fwd CCAATCAGGTTTATCTCTTCAGTGTCTTAAATGGC 

Ile617Leu_rev AGACACTGAAGAGATAAACCTGATTGGTTGCTTCTATG 

CspLOX1 

truncated 

44-668/180-668 

CspLOX1_Ile668_rev CAAGCTTCTAAATATTAATTAAAGTGCG 

CspLOX1_Glu180_fwd CCGGATCCGAAGAAACCCCCGATGATTAC 

CspLOX1_Ala44_fwd CCGGATCCGCTATCACCAAACCCATCG 
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