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Abstract		

Much	research	has	been	done	in	the	last	decades	to	decipher	how	the	brain	controls	

grasping	movements.	The	anterior	intraparietal	area	(AIP),	the	hand	area	of	the	ventral	

premotor	cortex	(F5),	and	the	hand	area	of	the	primary	motor	cortex	(M1)	have	been	

identified	as	essential	cortical	areas	for	the	control	of	hand	shape.	However,	much	less	is	

known	about	how	neurons	from	these	areas	code	another	essential	parameter	of	grasping	

actions,	grasp	force.	Especially,	the	role	of	the	higher	order	areas	F5	and	AIP	in	this	process	

remains	elusive.	This	study	aims	to	address	the	lack	of	knowledge	about	the	neural	coding	

of	grasp	force	planning	and	control	in	these	areas.		

	

To	achieve	this,	we	trained	two	macaque	monkeys	(Macaca	mulatta)	on	a	delayed	grasping	

task	with	two	grip	types	(whole-hand	grip	or	precision	grip)	and	three	different	levels	of	

force	(0-12	N).	While	the	monkeys	performed	the	task,	we	recorded	the	activity	of	single-	

and	multi-units	from	AIP,	F5,	and	M1.	We	calculated	the	percentage	of	grip	type	and	force	

tuned	units	(cluster-based	permutation	test)	and	calculated	the	amount	of	variance	

explained	by	grip	type	and	force	for	the	population	of	units	of	each	brain	area	(demixed	

principal	component	analysis).	

	

We	show	here,	for	the	first	time,	the	modulation	of	single	AIP	neurons	to	grasp	force.	

Furthermore,	we	confirm	and	extend	previous	findings	that	showed	such	neural	

modulation	in	F5	and	M1.	Surprisingly,	the	percentages	of	units	responding	to	grasp	force	

control	in	AIP	and	F5	were	not	much	less	than	M1	and	similar	to	the	amount	of	units	

responding	to	grip	type.	In	F5,	the	amount	of	variance	explained	by	grasp	force	was	almost	
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as	high	as	that	explained	by	grip	type.	In	AIP	and	M1,	grip	type	clearly	explained	more	

variance	than	grasp	force,	but	also	in	these	areas,	the	amount	of	variance	explained	by	

force	was	sufficient	to	reliably	decode	the	force	conditions.	We	also	found	strong	neural	

modulation	to	grasp	force	conditions	before	movement	onset	in	F5,	which	possibly	

represents	a	role	of	this	area	for	grasp	force	planning.	In	AIP,	grasp	force	planning	activity	

was	found	only	in	one	of	both	monkeys,	and	as	expected,	not	in	M1	(checked	only	in	one	

animal).	Lastly,	we	found	that,	although	force	tuning	was	influenced	by	grip	type	in	some	

units,	only	a	small	fraction	of	the	population	variance	in	each	area	contained	mixed	

selectivity	for	grip	type	and	force.	Information	about	grasp	force	could	therefore	be	

extracted	separately	from	grip	type.	

	

These	findings	suggest	an	important	role	of	AIP	and	F5	in	grasp	force	control	in	addition	to	

M1.	F5	is	likely	also	involved	in	planning	grasp	force,	while	the	role	of	AIP	and	M1	are	likely	

smaller	in	this	process.	Finally,	since	grip	type	and	force	information	could	be	extracted	

separately,	these	results	show	that	grasp	force	is	possibly	coded	independently	from	hand	

shape	in	the	cortical	grasping	network.				
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Zusammenfassung	(summary	in	German)	

Thanks	to	Benjamin	Dann	for	helping	with	the	translation.	

In	den	letzte	Jahrzehnten	wurde	viel	daran	geforscht	zu	entschlüsseln	wie	das	Gehirn	

Greifbewegungen	koordiniert.	Das	anteriore	intraparietale	Areal	(AIP),	das	Hand	Areal	des	

ventralen	premotorischen	Kortex	(F5),	und	das	Hand	Areal	des	primären	motorischen	

Kortex	(M1)	wurden	als	essentielle	kortikale	Arealen	für	die	Kontrolle	der	Hand	

identifiziert.	Nichtsdestotrotz	ist	deutlich	weniger	darüber	bekannt	wie	die	Neuronen	

dieser	Areale	einen	weiteren	essentielle	Parameter	von	Greifbewegungen	kodieren:	

Greifkraft.	Insbesondere	die	Rolle	der	tertiären,	kortikalen	Areale	AIP	und	F5	in	diesen	

Prozess	ist	bisher	unklar.	Die	hier	durchgeführte	Studie	befasst	sich	mit	der	Wissenslücke	

über	die	neuronale	Kodierung	von	Greifkraft	Planung	und	Steuerung	in	diesen	Arealen.	

	

Um	dies	zu	erreichen,	haben	wir	zwei	Makaken	(Macaca	mulatta)	trainiert	eine	verzögerte	

Greifaufgabe	auszuführen	mit	zwei	Grifftypen	(ein	Griff	mit	der	ganzen	Hand	oder	ein	

Präzisionsgriff)	und	mit	drei	verschiedene	Kraftniveaus	(0-12	N).	Während	die	Affen	die	

Aufgabe	ausführten,	haben	wir	die	Aktivität	von	“single-units“	(einzelnen	Neuronen)	und	

“multi-units“	(Gruppen	von	mehreren	Neuronen)	in	den	Arealen	AIP,	F5	und	M1	

aufgenommen.	Wir	berechneten	den	Prozentsatz	von	Grifftyp	modulierten	und	Griffkraft	

modulierten	“units“	(cluster-based	permutation	test)	und	berechneten	wie	viel	Varianz	in	

der	Population	von	“units“	durch	Grifftyp	und	Kraft	erklärbar	ist,	separat	für	jedes	Gehirn	

Areal	mit	einer	modernen	Dimensionalitätsreduktionsanalyse	(demixed	principal	

component	analysis).	
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Wir	zeigen	hier	zum	ersten	Mal	die	Modulation	von	einzelnen	AIP	Neuronen	durch	

Greifkraft.	Weiterhin	bestätigen	und	erweitern	wir	hier	vorherige	Ergebnisse,	welche	

solche	neuronale	Modulationen	bereits	in	F5	und	M1	gezeigt	haben.	Überaschenderweise	

war	der	Prozentsatz	von	“units“	welche	durch	Griffkraft	moduliert	werden,	in	AIP	und	F5	

nicht	wesentlich	kleiner	als	in	M1	und	ähnlich	zu	dem	Prozentsatz	an	Grifftyp	modulierte	

Neuronen.	Der	Anteil	an	erklärte	Varianz	in	F5	durch	Greifkraft	war	nahezu	so	groß,	wie	

der	Anteil	erklärt	durch	Grifftyp.	In	AIP	und	M1	war	klar	mehr	Varianz	durch	Grifftyp	

erklärt	als	durch	Kraft,	aber	der	Anteil	an	erklärte	Varianz	beider	Arealen	war	ausreichend,	

um	zuverlässig	Kraftbedingung	zu	dekodieren.	Wir	fanden	ebenfalls	eine	starke	neuronale	

Modulation	für	Griffkraftbedingungen	vor	der	Bewegungsinitiierung	in	F5,	was	

wahrscheinlich	eine	Rolle	dieses	Areals	in	der	Greifkraftplanung	repräsentiert.	In	AIP	war	

Greifkraftplanungsaktivität	nur	in	einen	der	beiden	Affen	vorhanden	und	wie	erwartet	

nicht	präsent	in	M1	(gemessen	nur	in	einen	Affen).	Letztendlich,	obwohl	

Greifkraftmodulation	in	einigen	Fällen	durch	Grifftypmodulation	beeinflusst	war,	war	nur	

ein	kleiner	Anteil	der	Populationsvarianz,	in	den	jeweiligen	Arealen,	durch	interaktive	

Modulation	erklärt.	Information	über	Greifkraft	können	somit	folglich	separat	vom	Grifftyp	

extrahiert	werden.		

	

Diese	Ergebnisse	legen	eine	wichtige	Rolle	von	AIP	und	F5	bei	der	Greifkraftkontrolle,	

neben	M1,	nah.	F5	ist	mit	hoher	Wahrscheinlichkeit	auch	bei	der	Planung	von	Greifkraft	

involviert,	während	die	Rolle	von	AIP	und	M1	geringer	ist	in	diesem	Prozess.	Letztendlich,	

da	Grifftyp-	und	Kraftinformation	separat	extrahierbar	sind,	zeigen	diese	Ergebnisse,	dass	

Greifkraft	vermutlich	unabhängig	von	Grifftyp,	im	kortikalen	Greifnetzwerk	kodiert	ist.		 	
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Samenvatting	(summary	in	Dutch)	

In	de	laatste	decennia	is	er	veel	onderzoek	gedaan	om	te	interpreteren	hoe	de	hersenen	

grijpbewegingen	besturen.	Het	anterieure	intra	pariëtale	gebied	(AIP),	het	handgebied	van	

de	ventrale	premotorische	schors	(F5)	en	het	handgebied	van	de	primaire	motorische	

schors	(M1)	zijn	geïdentificeerd	als	essentiële	gebieden	van	de	hersenschors	die	de	vorm	

van	de	hand	besturen.	Maar	er	is	veel	minder	bekend	over	hoe	de	hersenen	een	andere	

parameter	van	grijpbewegingen	bestuurt:	grijpkracht.	Vooral	de	rol	in	dit	proces	van	AIP	

en	F5,	gebieden	van	hogere	orde,	is	nog	nagenoeg	onbekend.	Deze	studie	richt	zich	op	het	

gebrek	aan	kennis	over	de	neurale	codering	van	het	plannen	en	besturen	van	grijpkracht.	

	

Om	dit	te	bereiken,	hebben	we	twee	makaken	(Macaca	mulatta)	getraind	om	een	

vertraagde	grijptaak	uit	te	voeren	met	twee	grepen	van	de	hand	(een	grip	met	de	hele	hand	

of	een	precisie	grip)	en	met	drie	verschillende	krachtniveaus	(0-12	N).	Terwijl	de	apen	de	

taak	uitvoerden,	maten	we	de	activiteit	van	single-units	(individuele	neuronen)	en	multi-

units	(collectie	van	enkele	neuronen)	in	de	gebieden	AIP,	F5	en	M1.	We	berekenden	het	

percentage	van	units	die	hun	activiteit	moduleerden	op	basis	van	grip	vorm	of	kracht	met	

een	moderne	statistieke	test	(cluster-based	permutation	test)	en	we	berekenden	de	

hoeveelheid	variantie	die	werd	verklaard	door	de	grip	vorm	en	kracht	door	de	populatie	

van	units	van	elk	hersengebied	met	een	moderne	dimensie	vermindering	techniek	

(demixed	principal	component	analysis).	

	

We	laten	hier	voor	het	eerst	zien	dat	individuele	neuronen	van	AIP	hun	activiteit	

moduleren	op	basis	van	grijpkracht.	Verder	bevestigen	we	dat	neuronen	van	F5	en	M1	
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dergelijke	modulaties	vertonen	en	breiden	we	de	kennis	hierover	uit.	Verassend	genoeg	

was	het	percentage	units	dat	reageert	op	het	besturen	van	grijpkracht	in	AIP	en	F5	niet	veel	

lager	dan	in	M1	en	ongeveer	gelijk	aan	de	hoeveelheid	units	dat	reageert	op	grip	vorm.	De	

hoeveelheid	variantie	die	werd	verklaard	door	grijpkracht	in	F5	was	bijna	net	zo	hoog	als	

wat	werd	verklaard	door	grip	vorm.	In	AIP	en	M1	verklaarde	grip	vorm	duidelijk	meer	

variantie	dan	grijpkracht,	maar	ook	in	deze	gebieden	was	de	hoeveelheid	variantie	dat	

grijpkracht	verklaarde	hoog	genoeg	om	de	kracht	conditie	te	decoderen.	We	vonden	ook	

een	sterke	neurale	modulatie	voor	grijpkracht	condities	in	F5	voordat	de	arm	bewoog,	wat	

mogelijk	een	rol	voor	dit	gebied	representeert	in	het	plannen	van	grijpkracht.	In	AIP	was	

activiteit	voor	het	plannen	van	grijpkracht	alleen	in	één	van	beide	apen	gevonden	en	zoals	

verwacht	was	het	niet	gevonden	in	M1	(onderzocht	in	één	aap).	Tenslotte	vonden	we	dat,	

hoewel	modulatie	voor	kracht	werd	beïnvloedt	door	grip	vorm	in	sommige	eenheden,	

slechts	een	kleine	fractie	van	de	variantie	van	de	neurale	populatie	van	elk	hersengebied	

een	gemixte	selectiviteit	voor	grip	vorm	en	kracht	had.	Informatie	over	grijpkracht	kon	

daarom	onafhankelijk	van	grip	vorm	worden	geëxtraheerd.				

	

Deze	bevindingen	suggereren	een	belangrijke	rol	voor	AIP	en	F5	in	het	besturen	van	

grijpkracht,	samen	met	M1.	F5	is	waarschijnlijk	ook	betrokken	met	het	plannen	van	

grijpkracht,	terwijl	AIP	en	M1	waarschijnlijk	een	kleinere	rol	hebben	in	dit	proces.	

Tenslotte,	omdat	informatie	over	grip	vorm	en	grijpkracht	onafhankelijk	konden	worden	

geëxtraheerd,	laten	deze	resultaten	zien	dat	grijpkracht	vermoedelijk	onafhankelijk	van	

hand	vorm	is	gecodeerd	in	het	grijpnetwerk	van	de	hersenschors.	 	
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1.	Introduction		 	 	 	

	

This	chapter	introduces	the	importance	of	the	hand,	how	it	originated	and	how	it	shaped	

the	evolution	of	the	brain.		I	describe	the	most	important	cortical	brain	areas	for	hand	

control	and	what	aspects	of	grasping	movements	they	encode.	I	then	explain	what	

knowledge	about	grasping	is	still	lacking	and	what	the	motivation	for	this	study	was.	

	

I	describe:	

-	How	the	hand	originated	and	how	both	hand	and	brain	evolved	in	primates	(chapter	1.1.)	

-	How	vision	is	used	to	guide	grasping	movements	(chapter	1.2.)	

-	Which	cortical	areas	are	involved	in	controlling	grasping	movements	(chapter	1.3.)	

-	How	these	cortical	areas	code	force	(chapter	1.4.)	

-	The	motivation	for	this	study	(chapter	1.5)	

-	An	overview	of	the	experiment	(chapter	1.6)	
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1.1.	The	evolution	of	hand	and	brain	

	

1.1.1.	Origin	of	the	hand	

One	of	the	foremost	characteristics	of	our	species,	Homo	sapiens,	is	that	we	stand	upright	

and	use	our	hands	to	manipulate	complex	objects.	It	is	not	just	due	to	our	great	intellect	

and	language	that	civilizations	eventually	emerged,	our	hands	were	just	as	essential.	Our	

brains	are	greatly	devoted	to	the	control	of	our	hands	and	this	allows	us	to	shape	our	hands	

in	many	different	ways	and	carefully	control	the	force	we	apply	on	objects.	But	how	did	this	

evolve?	

	

Many	mammals,	such	as	rodents	and	cats,	use	their	front	paws	for	grasping	food,	but	they	

cannot	hold	firmly	to	objects	without	using	nails	or	both	paws	simultaneously.	Grasping	

became	more	advanced	about	60	million	years	ago,	when	a	group	of	mammals,	closely	

related	to	rodents,	started	living	most	of	their	lives	in	trees.	Their	front	paws	evolved	

longer	fingers	with	skin	ridges	and	a	mobile	thumb	that	allowed	them	to	grasp	tree	

branches	much	more	effectively	(Rose,	1994).		

	

These	mammals	were	the	ancestors	of	the	mammalian	order	Primates	to	which	lemurs,	

tarsiers,	monkeys	and	apes,	including	humans,	belong.	All	primates	have	hands	that	are	

suitable	for	grasping,	but	only	monkeys	and	apes	have	a	fully	opposable	thumb,	meaning	

that	the	thumb	can	touch	the	tips	of	all	four	fingers	on	the	same	hand,	resulting	in	a	much	

wider	range	of	grip	types.	Having	a	variety	of	grip	types	allows	these	animals	to	effectively	

grab	a	great	variety	of	objects	and	to	carefully	control	how	much	force	is	applied	on	the	
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object.	This	is	not	just	useful	in	arboreal	environments.	Monkeys	and	apes	can	quickly	grab	

food	to	eat	later	in	a	save	place,	groom	group	members,	build	nests,	and	even	use	tools.	

	

Dexterous	hand	movements	became	more	advanced	in	the	human	lineage,	which	even	gave	

the	oldest	known	human	species,	Homo	habilis	(handy	man),	its	name.	It	is	unclear	what	

the	exact	evolutionary	pressure	was,	that	made	human	hands	much	more	dexterous	than	

hands	of	other	apes,	but	there	is	a	general	agreement	that	this	is	somehow	linked	to	tool	

use	(Marzke	and	Marzke,	2000;	Young,	2003).	

	

1.1.2.	The	brain	behind	the	hand	

Hand	anatomy	strongly	affects	the	dexterity	of	the	hand,	but	it	is	equally	important	to	have	

a	complex	neural	network	that	can	control	these	dexterous	and	voluntary	movements.	The	

brains	of	mammals	are	likely	one	of	the	most	complex	neural	networks	that	can	be	found	in	

the	animal	kingdom,	as	they	have	on	average	the	largest	brains	compared	to	their	body	

size,	about	ten	times	larger	than	that	of	reptiles	of	similar	body	size	(Northcutt,	2002).	

	

A	key	feature	of	mammalian	brains	is	the	large	neocortex,	which	allows	the	animals	to	

better	process	incoming	sensory	information	and	to	better	control	their	movements.	

Different	areas	of	the	neocortex	started	specializing	in	different	functions	over	the	course	

of	evolution,	with	movement	controlling	areas	on	the	anterior	side	and	sensory	

information	processing	areas	on	the	posterior	side.		
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After	the	discovery	in	1870	that	electrical	stimulation	of	the	frontal	lobe	of	mammals	evoke	

muscle	activations	on	the	opposite	side	of	the	body,	this	technique	has	been	extensively	

used	to	understand	the	organization	of	the	neocortex	(Fritsch	and	Hitzig,	1870).	They	

found	that	lowest	intensities	were	required	to	elicit	movements	in	the	contralateral	

precentral	gyrus	(Brodmann’s	area	4),	which	is	now	called	the	primary	motor	cortex	(M1),	

but	also	the	anterior	region,	which	is	now	called	the	premotor	cortex	(PMC),	evoked	

movements.	In	M1	and	PMC	of	most	modern	mammals	there	exists	a	mosaic	organization	

of	which	movements	are	evoked	by	electrical	stimulation	and	this	organization	crudely	

represents	the	arrangement	of	different	body	parts	(Kaas	and	Stepniewska,	2016).	

	

Within	primates,	the	neocortex	became	not	only	larger,	but	also	more	specialized.	By	

electrically	stimulating	the	cortex	of	monkeys	and	humans,	researchers	observed	that	a	

crude	motor	map	could	be	found	in	the	PMC	and	M1	of	primates	that	represent	muscle	

activations	from	different	body	parts.	They	also	found	that	the	hand	and	face,	which	are	

often	involved	in	tasks	that	require	great	precision,	have	disproportionally	large	

representations	(Penfield	and	Rasmussen,	1950).	A	caudal	portion	of	primate	M1	contains	

neurons	that	project	directly	from	the	cortex	to	motor	neurons	in	the	spinal	cord	that	

innervate	shoulder,	elbow,	and	finger	muscles,	possibly	to	coordinate	very	precise	

movements	(Rathelot	and	Strick,	2009).	This	area	of	M1	was	only	found	in	higher	primates	

and	was	dubbed	“new”	M1.	

	

The	initial	idea	was	that	every	muscle	was	simply	represented	in	a	specific	location	of	the	

motor	cortex,	but	more	precise	microstimulation	experiments	later	proved	this	idea	wrong,	
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as	the	same	muscle	could	be	activated	by	stimulating	different	sites	of	the	cortex,	and	

retrograde	transneural	transport	of	rabies	virus	from	single	muscles	showed	a	widespread	

representation	of	these	muscles	in	the	neocortex	(Rathelot	and	Strick,	2006).		

	

It	was	later	proposed	that	the	cortical	organization	represents	a	map	of	muscle	synergies	

that	generate	different	movement	types	(Rathelot	and	Strick,	2006;	Kaas	and	Stepniewska,	

2016).	By	electrically	stimulating	different	parts	of	the	PMC	and	M1	of	galagos,	owl	

monkeys,	squirrel	monkeys,	and	macaque	monkeys,	stereotypical	movements	can	be	

evoked	that	some	have	suggested	to	resemble	reaching,	grasping,	or	defending	actions	

(Graziano	et	al.,	2002;	2005;	Stepniewska	et	al.,	2014).	Even	though	movements	evoked	by	

high-current	stimulations	could	possibly	also	be	spasms	that	happen	to	look	like	natural	

behaviors,	these	results	emphasize	a	cortical	layout	of	specific	muscle	groups	and	that	this	

is	similar	in	multiple	primate	species.	This	organization	of	the	PMC	and	M1	possibly	

increased	the	effectiveness	of	certain	common	movements.	However,	to	optimize	these	

movements	for	different	situations,	they	should	be	modifiable	based	on	incoming	sensory	

information.		

	

The	close	vicinity	of	M1	to	the	somatosensory	cortex	suggests	that	haptic	and	

proprioceptive	information	is	used	to	execute	movements	accurately.	Indeed,	inactivating	

the	somatosensory	cortex	results	in	awkward	movements	(Brochier	et	al.,	1999).	However,	

for	grasping	movements,	animals	need	to	rely	on	auditory	and	visual	information	to	locate	

an	object	at	a	distance.	I	will	focus	here	on	how	visual	information	is	integrated	by	the	

brain,	as	this	is	the	primary	modality	used	by	diurnal	primates.	
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1.2.	Visual	guidance	of	grasping	

	

1.2.1.	Visual	information	pathways	

Visual	information	travels	from	the	eyes,	through	the	lateral	geniculate	nucleus,	to	the	

occipital	lobe	in	mammals.	At	every	step,	the	visual	information	is	being	processed	to	

extract	behaviorally	relevant	information.	Already	in	the	retina,	basic	visual	information	is	

processed	due	to	the	organization	of	ganglion	cells	to	increase	contrast	perception.	But	

most	complex	processing	of	information	in	mammals	occurs	in	the	neocortex.		

	

Several	occipital	cortical	areas	are	specialized	in	processing	visual	information	such	as	

object	orientation	and	color	(Hubel	and	Wiesel,	1968).	The	first	cortical	area	where	visual	

information	arrives	is	the	primary	visual	cortex	(V1).	From	here,	neurons	project	to	many	

different	parts	of	the	brain	and	create	a	hierarchy	of	visual	processing	(Felleman	and	Van	

Essen,	1991).	Of	the	different	visual	pathways,	two	pathways	are	particularly	well	

described,	one	that	travels	from	V1,	via	visual	areas	V2	and	V4	to	the	inferotemporal	cortex	

(ventral	stream)	and	one	that	travels	via	V3	and	the	middle	temporal	area	(MT)	to	the	

posterior	parietal	cortex	(dorsal	stream),	see	Figure	1.		

	

These	two	streams	were	originally	identified	by	Ungerleider	and	Mishkin	in	the	macaque	

monkey	(Ungerleider	and	Mishkin,	1982),	and	they	proposed	that	different	aspects	of	

visual	stimuli	are	processed	in	these	streams.	The	ventral	stream	was	proposed	to	involve	
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object	recognition	and	the	dorsal	stream	processes	object	location	in	visual	space.	Neural	

responses	in	visual	areas	support	this	view,	since	neurons	in	V4	to	object	form	(Desimone	

and	Schein,	1987),	and	some	neurons	in	the	inferotemporal	cortex	respond	only	to	very	

specific	types	of	complex	stimuli	like	faces	(Freiwald	and	Tsao,	2010).	On	the	other	hand,	

neurons	in	MT	do	not	respond	strongly	to	object	shape,	but	respond	strongly	to	objects	

moving	in	visual	space	(Dubner	and	Zeki,	1971;	Newsome	et	al.,	1988;	Britten	et	al.,	1992).	

Furthermore,	when	shape	encoding	responses	of	neurons	in	the	lateral	intraparietal	cortex	

(LIP),	a	high-level	dorsal	area,	were	directly	compared	to	those	in	the	anterior	

inferotemporal	cortex	(AIT),	a	high-level	ventral	area,	the	latter	group	was	significantly	

more	shape	selective	(Lehky	and	Sereno,	2007).	

	

	

Figure	1.	Schematic	localization	of	visual	pathways	in	the	macaque	monkey	brain.		

Incoming	visual	information	travels	from	V1	to	V2,	from	where	it	either	travels	along	the	ventral	pathway	
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(red	arrows)	to	the	temporal	lobe,	or	along	the	dorsal	pathway	(blue	arrows)	to	the	parietal	lobe.	Labeled	

areas	of	the	ventral	pathway	are:	area	V4,	the	posterior	inferior	temporal	cortex	(PIT),	and	the	anterior	

inferotemporal	cortex	(AIT).	Labeled	areas	of	the	dorsal	pathway	are:	the	middle	temporal	area	(MT),	the	

lateral	intraparietal	cortex	(LIP),	and	area	7a.		Labeled	with	green	text	are	the	sulci:	principal	sulcus	(PS),	

arcuate	sulcus	(AS),	central	sulcus	(CS),	intraparietal	sulcus	(IPS),	lateral	sulcus	(LaS),	superior	temporal	

sulcus	(STS),	anterior	middle	temporal	sulcus	(AMTS),	posterior	middle	temporal	sulcus	(PMTS),	inferior	

occipital	sulcus	(IOS),	lunate	sulcus	(LuS).	The	label	for	LIP	is	placed	next	to	the	IPS,	although	LIP	is	actually	

located	on	the	lateral	bank	of	this	sulcus	and	not	visible	from	a	surface	view.	Similarly,	the	label	for	MT	is	

placed	next	to	the	STS,	although	MT	is	actually	located	in	the	posterior	fundus	of	the	STS	and	not	visible	from	

a	surface	view.	(Figure	adopted	from	Lehky	and	Sereno,	2007).		

	

However,	it	was	later	proposed	by	Goodale	and	Milner	(Goodale	and	Milner,	1992)	that	it	is	

not	so	much	the	type	of	visual	information	processed	in	these	two	streams	that	defines	

them,	but	it	is	the	way	in	which	this	information	is	used.	Information	in	the	ventral	stream	

is	used	to	form	long-term	perceptual	representations	to	identify	objects,	while	the	dorsal	

stream	information	is	used	for	actions	such	as	saccades,	reaching	and	grasping.	How	these	

two	streams	affect	a	subject’s	behavior	becomes	most	apparent	when	only	one	of	these	

streams	is	damaged.		

	

In	a	study	of	Goodale	and	colleagues	(Goodale	et	al.,	1994),	two	patients	were	described,	

one	patient	(DF)	had	bilateral	damage	in	the	ventrolateral	occipital	region,	and	another	

patient	(RV)	had	bilateral	lesions	of	the	occipitoparietal	cortex.	Both	patients	were	exposed	

to	a	shape	discrimination	task	and	to	a	grasping	task.	As	predicted	by	their	hypothesis,	

patient	DF	had	no	problems	with	grasping	and	lifting	various	kinds	of	objects,	but	was	
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unable	to	visually	discriminate	object	differences.	Conversely,	patient	RV	had	no	difficulty	

with	discriminating	one	object	from	another,	but	was	unable	to	use	visual	information	to	

place	her	fingers	correctly	on	the	circumference	of	irregularly	shaped	objects	when	asked	

to	pick	them	up,	a	symptom	known	as	‘visual	apraxia’.	

	

Activation	patterns	measured	with	functional	magnetic	resonance	imaging	(fMRI)	are	in	

line	with	these	findings.	One	study	compared	fMRI	activation	patterns	while	human	

subjects	observed	intact	or	scrambled	2D	object	images	and	when	subjects	grasped	or	

touched	the	object	image	(Culham	et	al.,	2003).	They	found	that	a	ventral	stream	area	was	

significantly	more	active	when	viewing	intact	instead	of	scrambled	objects,	with	no	

different	activations	when	objects	were	grasped	(grasping	trials)	or	only	touched	(reaching	

trials).	Dorsal	stream	areas	located	in	the	posterior	parietal	cortex	(PPC)	conversely	

showed	a	different	activation	pattern	in	grasping	trials	than	in	the	reaching	trials	and	did	

not	respond	differently	to	an	intact	or	scrambled	2D	object	image.	These	lesion	and	fMRI	

results	strongly	suggest	that	ventral	stream	areas	are	involved	in	object	recognition,	while	

dorsal	stream	areas	within	the	PPC	are	essential	for	using	visual	information	to	grasp	

objects.		

	

1.2.2	The	posterior	parietal	cortex	

I	have	now	described	the	integration	of	visual	information	in	the	PPC,	and	how	this	is	

relevant	for	performing	accurate	actions.	In	addition	to	visual	information,	this	part	of	the	

cortex	also	receives	strong	input	from	somatosensory	cortices	(Cavada	and	Goldman-Rakic,	

1989a).	All	this	information	is	then	integrated	to	be	send	to	the	motor	cortices	in	the	
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frontal	lobe	to	influence	upcoming	movements	(Cavada	and	Goldman-Rakic,	1989b).	The	

motor	cortices	also	send	information	like	a	copy	of	a	motor	plan,	also	called	efference	copy	

(Ford	et	al.,	2012),	back	to	the	PPC	to	compare	the	planned	movement	to	the	executed	

movement	for	fine	tuning.	

	

In	the	brain	of	mammals	closely	related	to	primates,	like	rodents	and	tree	shrews,	the	PPC	

is	only	a	narrow	strip	of	cortex	between	the	somatosensory	and	visual	cortex,	extending	

ventrally	to	the	auditory	cortex	(Kaas	and	Stepniewska,	2016),	but	in	primates	this	area	

extended	over	the	course	of	evolution	to	take	up	a	larger	proportion	of	the	brain,	as	can	

been	seen	in	Figure	1.	Like	in	motor	and	somatosensory	cortex,	there	is	an	overall	

somatotopy	in	the	PPC,	with	the	medial	part	representing	the	lower	body	and	the	lateral	

part	representing	the	upper	body	in	monkeys	(Seelke	et	al.,	2012)	and	humans	(Huang	et	

al.,	2012).	By	applying	long	trains	of	electrical	stimulation	at	specific	areas	of	the	PPC	in	

galagos	and	new	world	monkeys	(Stepniewska	et	al.,	2014)	stereotypical	movements	can	

be	evoked	that	seem	related	to	behaviors	like	feeding,	defending,	or	grasping,	and	were	

almost	identical	to	responses	evoked	by	stimulating	specific	areas	of	M1	and	PMC	in	these	

monkeys	(Stepniewska	et	al.,	2014)	or	in	macaques	(Graziano	et	al.,	2002;	2005).	What	

kind	of	movement	was	evoked	depended	very	much	on	the	exact	location	of	stimulation	in	

PPC,	PMC,	or	M1,	which	was	called	the	domain	of	that	movement	(e.g.	grasping	domain	or	

reaching	domain).		

	

To	emphasize	the	connection	between	the	domains	of	different	brain	areas	and	to	show	the	

hierarchy	of	movement	processes,	Stepniewska	and	colleagues	investigated	the	responses	
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to	electrical	stimulation	after	inactivating	specific	domains	(Stepniewska	et	al.,	2014).	

Inactivating	a	specific	domain	in	M1	greatly	reduced	or	abolished	movements	evoked	by	

stimulating	the	matching	domain	in	PMC	or	PPC,	while	movements	of	nonmatching	

domains	were	mostly	unaffected.	Conversely,	inactivating	a	domain	in	PMC	or	PPC,	did	not	

affect	movements	evoked	from	stimulating	the	matching	domain	in	M1.	However,	the	

inactivation	of	PMC	did	suppress	or	alter	movements	evoked	by	stimulating	the	matching	

domain	in	PPC.	These	results	strongly	suggest	a	hierarchy	for	specific	movements,	with	M1	

being	closest	to	movement	execution,	followed	first	by	PMC	and	then	by	PPC	(Kaas	and	

Stepniewska,	2016).		

	

Besides	the	integration	of	sensory	information	and	the	coordination	of	movements,	it	is	

also	believed	that	the	PPC	is	involved	in	making	decisions	about	which	actions	to	make.	

Originally	it	was	believed	that	motor	plans	were	generated	after	the	decision	was	taken	to	

perform	a	particular	action,	but	it	is	now	suggested	that	motor	control	and	decision	making	

are	part	of	the	same	process	(Cisek,	2012;	Wolpert	and	Landy,	2012).	Instead	of	only	

planning	upcoming	movements,	it	has	been	shown	that	areas	in	the	PPC	plan	several	

movement	plans	in	parallel	(Klaes	et	al.,	2011),	integrate	information	about	the	reward	that	

is	linked	to	a	particular	action	(Sugrue	et	al.,	2004),	and	code	information	about	which	

action	is	selected	(Platt	and	Glimcher,	1999;	Scherberger	and	Andersen,	2007;	Pesaran	et	

al.,	2008;	Cui	and	Andersen,	2011;	for	review,	see	McCoy	and	Platt,	2005;	Andersen	and	Cui,	

2009).	Furthermore,	it	is	even	possible	to	influence	the	decisions	of	monkeys	by	electrically	

stimulating	the	parietal	area	LIP	(Hanks	et	al.,	2011).	Many	of	these	findings	were	also	

observed	in	areas	of	the	PMC	that	have	strong	connections	to	parietal	areas	(Cisek	and	
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Kalaska,	2005;	Pardo-Vazquez	et	al.,	2008;	Pesaran	et	al.,	2008;	Kennerley	et	al.,	2009;	So	

and	Stuphorn,	2010;	Pardo-Vazquez	et	al.,	2011).	This	emphasizes	the	complex	role	of	the	

PPC	and	PMC	in	the	control	of	movement.		

	

For	the	purpose	of	this	thesis,	I	will	now	describe	the	area	of	the	PPC	particularly	devoted	

to	grasping	movements.	This	will	be	followed	by	descriptions	of	the	areas	in	the	PMC	and	

M1	that	are	also	part	of	the	cortical	grasping	network.	

	

1.3.	Cortical	grasping	network	

	

1.3.1.	The	anterior	intraparietal	area	

Observations	of	rhesus	monkeys	with	lesions	in	the	PPC	revealed	that	they	had	an	impaired	

grip	formation	and	hand	orientation	(Haaxma	and	Kuypers,	1975).	This	suggested	the	

existence	of	a	grasp	related	area	in	the	PPC,	which	was	later	identified	in	macaque	monkeys	

by	Taira	and	colleagues	(Taira	et	al.,	1990).	They	found	a	class	of	neurons	in	the	posterior	

bank	of	the	intraparietal	sulcus	(Figure	2D)	specifically	related	to	hand	movements.	This	

area	was	later	called	the	anterior	intraparietal	area	(AIP).	

	

Many	studies	have	later	confirmed	the	findings	that	AIP	neurons	are	strongly	modulated	by	

grip	type	and	have	extended	this	knowledge	by	finding	that	these	neurons	modulate	their	

activity	already	while	planning	the	movement	(Baumann	et	al.,	2009;	Lehmann	and	

Scherberger,	2013),	and	that	these	modulations	can	be	used	to	predict	upcoming	grasping	
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movements	(Townsend	et	al.,	2011;	Menz	et	al.,	2015;	Schaffelhofer	et	al.,	2015).	

Furthermore,	reaction	time	in	a	reach	and	grasp	task	could	be	predicted	from	AIP	activity	

(Michaels	et	al.,	2015).	

		

The	functional	role	of	this	area	is	probably	best	shown	by	studying	the	effect	of	inactivating	

this	area.	Gallese	and	colleagues	found	that	after	inactivating	area	AIP	with	the	GABA-

agonist	muscimol,	monkeys	had	trouble	preshaping	the	hand	to	fit	to	an	object	(Gallese	et	

al.,	1994).	The	monkeys	could	still	grasp	the	object	successfully	by	exploring	the	object	

with	touch,	but	were	unable	to	use	visual	information	to	preshape	the	hand.		

	

Many	other	studies	confirmed	the	high	importance	of	visual	information	for	AIP	neurons	

(for	review,	see	(Rizzolatti	and	Luppino,	2001;	Janssen	and	Scherberger,	2015).	Already	in	

the	study	of	Taira	and	colleagues	it	was	described	that	the	majority	of	hand-movement	

related	neurons	showed	greater	changes	in	activity	when	the	monkeys	grasped	in	a	lighted	

room	than	in	a	dark	room	(Taira	et	al.,	1990).	Most	importantly,	many	of	these	neurons	

showed	a	selective	activation	based	on	the	configuration	and	orientation	of	the	object	to	be	

manipulated,	which	was	also	confirmed	in	later	studies	(Sakata	et	al.,	1995;	Baumann	et	al.,	

2009;	Chen	et	al.,	2009;	Schaffelhofer	et	al.,	2015).	Additional	visual	responses	have	been	

found	in	AIP	as	well,	such	as	a	selectivity	for	the	location	of	a	target	in	visual	space	

(Lehmann	and	Scherberger,	2013;	2015)	and	a	for	binocular	disparity	(Srivastava	et	al.,	

2009).	All	these	findings	have	given	strong	support	to	the	idea	of	the	important	role	of	AIP	

in	visually	guiding	grasping	movements.	
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Human	homologues	of	AIP	have	also	been	identified.	Binkofski	and	colleagues	described	

that	patients	with	lesions	in	the	anterior	bank	of	the	intraparietal	sulcus	have	selective	

deficits	in	the	coordination	of	finger	movements,	while	reaching	is	much	less	disturbed	

(Binkofski	et	al.,	1998).	Furthermore,	patients	with	parietal	lesions	but	intact	AIP,	showed	

normal	grasping	movements.	This	human	AIP	also	showed	specific	fMRI	activation	when	

subjects	were	asked	to	make	grasping	movements	in	the	MRI	scanner	(Binkofski	et	al.,	

1998;	Culham	et	al.,	2003),	or	when	a	subject	imagined	grasping	movements	(Aflalo	et	al.,	

2015).	

	

As	described	in	the	previous	chapter,	areas	in	the	PPC	are	believed	to	be	higher	order	

processing	areas	that	receive	sensory	information	and	communicate	with	frontal	areas	to	

execute	accurate	and	effective	movements.	Area	AIP	fits	well	within	this	view.	I	described	

in	this	chapter	how	it	integrates	many	different	types	of	grasp-relevant	visual	information	

and	from	anatomical	evidence	we	know	that	it	has	many	connections	to	the	premotor	

cortex	(Luppino	et	al.,	1999).	
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Figure	2.	Macaque	fronto-parietal	network.	

Different	views	of	the	monkey’s	brain	with	the	main	cortico-cortical	connections	linking	different	parietal	and	

frontal	areas.	The	color	code	distinguishes	different	areas	according	to	the	cytoarchitectonic	parcellation	of	

Brodmann.	(A)	Mesial	view	of	the	right	hemisphere.	(B)	Lateral	view	of	the	left	hemisphere.	In	(C)	part	of	the	

parietal	and	occipital	lobe	have	been	“removed”	to	show	the	areas	located	in	the	medial	bank	of	the	

intraparietal	sulcus	(IPS)	and	in	the	rostral	bank	of	the	parieto-occipital	sulcus	(POS).	(D)	Opening	of	the	IPS	

to	show	the	location	of	the	areas	buried	in	its	medial	and	lateral	banks.	PS,	AS,	CS,	SF,	STS,	LS,	IOS	indicate	

principal,	arcuate,	central,	Sylvian,	superior	temporal,	lateral,	inferior-occipital	sulci.	(Figure	and	legend	

adopted	from	Ferraina	et	al.,	2009).		

	

1.3.2.	Area	F5	

One	of	the	foremost	areas	to	which	AIP	projects,	is	the	anterior	portion	of	the	ventral	

premotor	cortex,	called	F5	(Luppino	et	al.,	1999),	see	Figure	2B.	Even	before	properties	of	

AIP	neurons	were	described,	Rizzolatti	and	colleagues	showed	that	neurons	from	F5	

discharge	in	relation	to	actions	like	reaching,	grasping,	and	holding	(Rizzolatti	et	al.,	1988).	
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And,	like	AIP,	inactivation	of	this	area	with	muscimol	severely	impaired	the	ability	to	pre-

shape	the	hand	before	grasping	an	object	(Fogassi	et	al.,	2001).	

	

F5	neurons	respond	altogether	very	similar	to	those	in	AIP,	they	are	also	modulated	by	grip	

type	and	visual	properties	of	objects,	both	during	movement	and	during	planning	

(Rizzolatti	et	al.,	1988;	Rizzolatti	and	Luppino,	2001;	Fluet	et	al.,	2010;	Lehmann	and	

Scherberger,	2013;	Janssen	and	Scherberger,	2015;	Lehmann	and	Scherberger,	2015;	Menz	

et	al.,	2015;	Schaffelhofer	et	al.,	2015;	Vargas-Irwin	et	al.,	2015),	but	the	movement	related	

responses,	like	grip	type,	are	on	average	stronger	in	F5,	whereas	visual	stimuli,	like	object	

configurations,	are	stronger	in	AIP.	Also	reaction	time	for	grasping	movements	was	

predicted	better	from	F5	than	from	AIP	(Michaels	et	al.,	2015).	

	

The	stronger	relation	to	movement	execution	of	F5	compared	to	AIP	is	also	evident	in	its	

anatomical	connections	to	other	areas.	Unlike	AIP,	F5	projects	to	the	hand	field	of	M1,	the	

brainstem	and	spinal	cord	(Borra	et	al.,	2010).	It	is	therefore	possible	to	directly	influence	

hand	muscles,	although	it	is	believed	that	its	main	effect	on	hand	movements	is	via	M1,	on	

which	is	has	a	strong	facilitation	effect	(Shimazu	et	al.,	2004).	

	

1.3.3.	The	hand	area	of	M1	

As	mentioned	before,	the	primary	motor	cortex	is	believed	to	be	the	cortical	area	closest	to	

movement	execution,	and	the	hand	represents	a	relatively	large	portion	of	it.	Many	neurons	

of	the	hand	area	of	M1	project	directly	to	the	spinal	motoneuron	pools	(Muir	and	Lemon,	

1983)	and	are	part	of	the	corticospinal	tract,	also	called	pyramidal	tract,	named	for	the	
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medullary	pyramids	formed	by	the	fibers	of	this	projection.	Some	neurons	in	the	caudal	

portion	of	M1,	which	have	been	called	“new”	M1	(Rathelot	and	Strick,	2009),	even	make	

direct	monosynaptic	connections	with	motoneurons	(Cheney	and	Fetz,	1980;	Bennett	and	

Lemon,	1994;	Rathelot	and	Strick,	2006)	and	are	called	“cortico-motoneuronal	cells”.	

Lesions	of	the	pyramidal	tract	results	in	a	loss	of	speed	and	agility	in	several	movements	

and	in	a	loss	of	fractionation	which	is	especially	notable	in	hand	movements,	due	to	the	

disability	to	move	fingers	individually	(Lawrence	and	Kuypers,	1968).	

	

A	severe	effect	on	hand	movements	can	also	be	observed	after	inactivating	contralateral	

M1	(Kubota,	1996;	Schieber	and	Poliakov,	1998;	Brochier	et	al.,	1999),	which	is	much	

stronger	than	the	effect	of	deactivating	AIP	(Gallese	et	al.,	1994)	or	F5	(Fogassi	et	al.,	2001).	

Not	surprisingly,	many	neurons	in	M1	are	selective	for	grip	type	(Muir	and	Lemon,	1983;	

Mollazadeh	et	al.,	2011)	and	it	is	possible	to	predict	hand	movements	from	M1	neural	

activity	more	accurately	than	from	AIP	and	F5	(Carmena	et	al.,	2003;	Menz	et	al.,	2015;	

Schaffelhofer	et	al.,	2015).	However,	AIP	and	F5	activity	before	movement	was	a	better	

predictor	of	upcoming	movements	than	M1	activity	before	movement,	indicating	a	

relatively	smaller	role	of	M1	in	movement	planning.	

	

I	have	described	the	cortical	pathway	from	visual	information	to	executing	hand	

movements.	Three	cortical	areas	are	particularly	involved	in	controlling	hand	shape:	AIP,	

F5,	and	M1.	However,	another	essential	parameter	to	successfully	grasp	objects	is	the	

amount	of	force	applied	on	the	object.	We	will	now	describe	the	role	of	areas	AIP,	F5,	and	

M1	in	the	control	of	force.	
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1.4.	Force	coding	in	the	cortical	grasping	network	

	

1.4.1.	Force	coding	in	M1	

Because	they	project	directly	to	spinal	motoneurons,	pyramidal	tract	neurons	of	M1	were	

among	the	first	to	be	studied	to	investigate	the	relation	between	exerted	force	and	neural	

firing	rate.	Already	in	the	1960s,	Edward	Evarts	recorded	the	activity	of	these	neurons	

while	macaque	monkeys	made	flexion	and	extension	movements	with	the	wrist	under	

different	load	conditions	(Evarts,	1968).	He	found	that	the	discharge	rate	of	most	recorded	

pyramidal	tract	neurons	was	related	primarily	to	force	and	only	secondarily	to	the	

direction	and	amplitude	of	displacement.	This	was	also	the	case	when	only	cortico-

motoneuronal	cells	were	investigated	(Cheney	and	Fetz,	1980).		

	

Many	other	types	of	force	coding	in	M1	have	later	been	documented	in	different	

experimental	paradigms,	such	as	reach	tasks	(Georgopoulos	et	al.,	1992;	Taira	et	al.,	1996;	

Boline	and	Ashe,	2005;	Gupta	and	Ashe,	2009)	or	tongue-protrusion	tasks	(Arce-McShane	

et	al.,	2014).	However,	the	focus	here	will	be	on	studies	that	investigated	the	neural	coding	

of	grip	force.		

	

Among	the	first	researchers	to	study	the	relation	of	activity	of	M1	neurons	to	grip	force,	

were	Smith,	Hepp-Reymond	and	Wyss	(Smith	et	al.,	1975).	They	trained	macaque	monkeys	

to	compress	a	strain	gauge	between	the	thumb	and	forefinger,	a	so-called	precision	grip,	at	
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different	instructed	force	levels	from	1	to	2.5	N.	Spiking	activity	of	M1	neurons	was	

recorded	simultaneously	and	they	found	several	neurons	of	which	firing	rate	correlated	

linearly	with	exerted	force	or	with	the	rate	of	force	change	(i.e.	the	first	derivative	of	force).	

They	also	mentioned	that	the	change	in	discharge	frequency	coincided	or	occurred	after	

the	onset	of	EMG	activity.	

	

Hepp-Reymond	and	colleagues	continued	investigating	the	cortical	control	of	grip	force	in	a	

series	of	studies.	Some	notable	findings	were	that	the	earlier	described	linear	correlation	

between	static	grip	force	and	neural	firing	rate	is	strongest	in	the	small	range	of	0.1	to	1	N	

(Hepp-Reymond	et	al.,	1978)	and	that	tonic	discharges	during	the	hold	period	were	most	

common	(Hepp-Reymond	and	Diener,	1983).	They	also	demonstrated	similar	effects	when	

only	cortico-motoneuronal	cells	were	considered	(Maier	et	al.,	1993).	Furthermore,	they	

described	that	force	coding	depends	heavily	on	the	context.	When	monkeys	performed	a	

task	with	three	force	levels,	the	change	in	firing	rate	between	the	first	two	steps	was	

significantly	smaller	than	in	a	task	that	consisted	only	of	those	two	force	steps	(Hepp-

Reymond	et	al.,	1999).			

	

A	functional	relationship	between	M1	and	grip	force	was	observed	when	M1	was	

inactivated	by	a	muscimol	injection.	Similar	to	earlier	M1	inactivation	experiments	

(Lawrence	and	Kuypers,	1968;	Kubota,	1996;	Schieber	and	Poliakov,	1998)	Brochier	and	

colleagues	observed	that	M1	injections	produced	a	deficit	in	the	ability	to	perform	

individual	finger	movements	(Brochier	et	al.,	1999),	but	they	also	noticed	a	reduction	in	

peak	grip	forces	applied	to	an	object,	shortly	before	the	monkeys	lost	the	ability	to	perform	
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the	task.	Importantly,	this	was	not	observed	after	a	muscimol	injection	in	the	

somatosensory	cortex,	which	conversely	resulted	in	an	increase	in	peak	grip	forces,	likely	

due	to	a	reduction	in	cutaneous	feedback.	

	

Finally,	M1	signals	have	been	used	to	successfully	predict	grip	force	(Carmena	et	al.,	2003;	

Flint	et	al.,	2014;	Milekovic	et	al.,	2015;	Bataineh	et	al.,	2016),	providing	further	evidence	

that	these	signals	are	well	represented	in	this	brain	area.	

	

1.4.2.	Force	coding	in	F5		

Because	of	its	strong	representation	of	hand	movements	and	connections	to	M1,	the	

brainstem	and	spinal	cord	(Borra	et	al.,	2010),	F5	is	another	obvious	target	to	search	for	

grip	force	coding.		

	

In	addition	to	her	work	on	grip	force	coding	in	M1,	Hepp-Reymond	also	investigated	grip	

force	coding	properties	of	neurons	in	two	regions	of	the	ventral	premotor	cortex	(PMv)	

(Hepp-Reymond	et	al.,	1994).	Like	in	M1,	she	found	neurons	that	had	a	significant	

correlation	between	exerted	force	and	neural	firing	rate.	However,	she	did	describe	that	

the	percentage	of	force	coding	neurons	was	lower	in	the	premotor	cortex	than	in	M1.	When	

two	regions	of	PMv,	a	caudal	and	a	rostral	region,	were	compared,	the	rostral	region,	which	

roughly	corresponds	to	F5,	showed	the	highest	incidence	of	force	coding	neurons	and	

overall	more	similarity	in	responses	to	the	hand	field	of	M1.	Another	similarity	to	M1	was	

shown	in	one	of	her	other	studies,	namely	that	force	coding	in	the	premotor	cortex	is	also	

context-dependent	(Hepp-Reymond	et	al.,	1999).	
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Later	studies	have	not	always	been	successful	in	finding	force	coding	neurons	in	premotor	

cortex.	Boudreau	and	colleagues	did	not	find	a	correlation	between	the	activity	of	PMv	

neurons	and	exerted	grip	force,	but	also	mentioned	this	may	have	been	because	the	

monkeys	hardly	varied	grip	force	for	different	object	loads	(Boudreau	et	al.,	2001).	

Interestingly,	grip	force	did	vary	for	different	object	textures	and	an	effect	of	texture	on	

firing	rate	was	observed,	which	possibly	could	have	been	related	to	grip	force.	

	

Other	studies	have	looked	at	the	dorsal	premotor	cortex	for	grip	force	coding,	but	

consistently	found	low	percentages	of	neurons	coding	grip	force	(Hepp-Reymond	et	al.,	

1999;	Hendrix	et	al.,	2009)	and	lower	decoding	performances	than	M1	(Carmena	et	al.,	

2003;	Bataineh	et	al.,	2016).	Conversely,	when	grip	force	decoding	was	investigated	for	

PMv,	a	preliminary	report	found	predicting	performances	just	as	high	as	M1	(Bataineh	et	

al.,	2016).	

	

All	in	all,	it	can	be	said	that	grip	force	is	generally	quite	poorly	represented	in	premotor	

cortex,	but	PMv,	and	especially	its	rostral	portion	F5,	seems	to	be	an	exception	to	this,	as	it	

is	much	closer	to	M1	in	respect	to	grip	force.	

	

1.4.3.	Force	coding	in	AIP	

When	force-coding	neurons	are	not	as	common	in	the	premotor	cortex	as	in	M1,	they	are	

likely	even	less	common	in	the	parietal	cortex,	as	this	area	is	even	less	directly	involved	in	

controlling	movements.	
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Classical	work	from	Kalaska	and	colleagues	supports	this	view.	They	showed	that	neurons	

in	the	superior	parietal	lobule,	or	area	5	(Figure	2),	respond	to	movement	kinematics	in	a	

reaching	task,	but	are	only	weakly	affected	by	directional	loads,	contrary	to	M1	neurons	

(Kalaska	et	al.,	1990).	And	a	later	study	showed	that	area	5	neurons	were	more	strongly	

active	or	exclusively	active	in	a	reaching	task	than	in	a	isometric	task	(Hamel-Pâquet	et	al.,	

2006).	The	conclusion	from	these	findings	was	that	area	5	neurons	reflect	movement	

kinematics,	but	not	kinetics.	

	

However,	the	inferior	parietal	lobule,	or	area	7	(Figure	2),	was	not	addressed	in	this	study.	

Based	on	the	finding	that	parietal	patients	suffer	from	defective	control	of	the	direction	of	

reach	force	(Ferrari-Toniolo	et	al.,	2014),	the	responses	of	neurons	in	areas	PF	and	PFG	of	

the	macaque	inferior	parietal	lobule	to	directional	force	were	investigated.	The	researchers	

found	that	a	high	percentage	of	these	neurons	responded	to	isometric	force	output	and	that	

the	population	vector	predicted	the	force	output	better	than	cursor	position	(Ferrari-

Toniolo	et	al.,	2015).		

	

Since	area	AIP	borders	PF	(Figure	2),	it	is	likely	that	a	population	of	neurons	coding	force,	

most	likely	grip	force,	can	also	be	found	here.	Data	obtained	from	fMRI	experiments	point	

in	this	direction.	When	subjects	were	required	to	produce	grip	force	with	the	right	hand	on	

an	object,	several	motor,	premotor,	but	also	parietal	areas	showed	an	increased	activation	

in	the	left	or	both	hemispheres	(Ehrsson	et	al.,	2003;	Keisker	et	al.,	2010;	Neely	et	al.,	

2013).	Even	when	subjects	were	instructed	to	only	imagine	right-handed	grasping	with	a	
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certain	amount	of	force,	an	increased	activity	in	bilateral	premotor	and	inferior	parietal	

cortex	was	observed,	and	this	scaled	with	the	amount	of	imagined	force	in	the	right	

hemisphere	(Mizuguchi	et	al.,	2014).	The	right/ipsilateral	intraparietal	cortex	also	showed	

higher	activations	when	subjects	were	required	to	anticipate	and	coordinate	grip	force	

when	lifting	an	object	(Ehrsson	et	al.,	2003),	and	in	tasks	when	subjects	were	required	to	

statically	hold	a	fixed	force	level	instead	of	dynamically	squeezing	an	object	(Keisker	et	al.,	

2010;	Neely	et	al.,	2013).	Even	though	fMRI	activation	areas	are	rather	large,	it	is	quite	

likely	that	the	human	homologue	of	AIP	is	activated	by	these	grip	force	tasks	as	well.	This	

would	then	also	suggest	that	neurons	responding	the	grip	force	could	be	found	in	this	area.	

	

Probably	the	strongest	evidence	for	the	involvement	of	AIP	in	the	control	of	grip	force	

comes	from	an	experiment	that	used	transcranial	magnetic	stimulation	(TMS)	to	induce	a	

virtual	lesion	of	AIP	(Davare	et	al.,	2007).	They	found	that	after	inactivating	left-sided	AIP	

in	right-handed	individuals,	grip	force	scaling	was	selectively	impaired	for	both	hands.	

Interestingly,	inactivating	right-sided	AIP	had	no	effect	on	grip	force	and	to	induce	an	effect	

on	hand	shaping,	AIP	had	to	be	inactivated	bilaterally.	Furthermore,	they	describe	that	AIP	

needed	to	be	inactivated	270-220	ms	before	object	touch	to	impair	hand	shaping	and	170-

120	ms	before	object	touch	to	impair	grip	force	scaling.	These	findings	suggest	an	

important	role	of	AIP	in	the	control	of	grip	force	and	that	this	can	be	temporally	dissociated	

from	the	effect	on	hand	shaping.	
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1.5.	Motivation	for	this	study	

	

I	have	now	described	how	the	hand	emerged	over	the	course	of	primate	evolution	and	how	

the	brain	evolved	to	control	it	with	great	dexterity.	Three	cortical	areas	are	essential	for	

hand	control:	the	hand	area	of	the	primary	motor	cortex	(M1),	the	hand	area	of	the	ventral	

premotor	cortex	(F5),	and	the	anterior	intraparietal	area	(AIP).	Much	is	already	known	

about	how	these	areas	are	involved	in	shaping	the	hand.	However,	much	less	is	known	

about	how	these	areas	are	involved	in	controlling	grip	force,	another	essential	parameter	

for	successful	grasping	movements.	This	study	aims	to	increase	our	knowledge	about	the	

cortical	control	of	grasp	force.		

	

It	has	been	known	for	a	long	time	that	M1	and,	to	a	lesser	extent,	F5	neurons	code	grip	

force	(Smith	et	al.,	1975;	Hepp-Reymond	et	al.,	1994).	However,	to	our	knowledge,	no	study	

has	shown	these	properties	for	AIP	neurons.	This	is	not	a	trivial	knowledge	gap,	as	we	

know	that	AIP	is	an	essential	region	for	the	neural	control	of	grasping	(for	review,	see	

(Rizzolatti	and	Luppino,	2001;	Janssen	and	Scherberger,	2015).	Whole-brain	scanning	

techniques	have	consistently	found	an	increased	activation	of	AIP	and	surrounding	areas	

during	grip	force	control	(Ehrsson	et	al.,	2003;	Keisker	et	al.,	2010;	Neely	et	al.,	2013)	and	

inactivating	AIP	with	TMS	resulted	in	an	impairment	to	control	grip	force	(Davare	et	al.,	

2007).	The	first	question	we	will	address	in	this	study	is	therefore:	How	is	grasp	force	

coded	at	the	single	neuron	level	in	AIP?	
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It	has	also	not	been	investigated	in	great	detail	how	grasp	force	planning	is	represented	in	

neural	signals.	While	delayed	grasping	paradigms	have	frequently	been	used	to	disentangle	

the	influence	of	grip	type	planning	from	active	grasping	movements	on	neural	activity	

(Taira	et	al.,	1990;	Sakata	et	al.,	1995;	Baumann	et	al.,	2009;	Fluet	et	al.,	2010;	Vargas-Irwin	

et	al.,	2010;	Townsend	et	al.,	2011;	Fattori	et	al.,	2012;	Lehmann	and	Scherberger,	2013;	

2015;	Michaels	et	al.,	2015;	Schaffelhofer	et	al.,	2015),	only	few	have	used	this	paradigm	to	

investigate	grasp	force	planning	(Zaepffel	et	al.,	2013;	Milekovic	et	al.,	2015).	These	studies	

found	an	effect	of	a	grip	force	cue	on	EEG	activity	(Zaepffel	et	al.,	2013)	and	on	M1	LFP	

activity	(Milekovic	et	al.,	2015),	but	only	from	LFP	activity	the	force	level	could	be	

predicted	and	only	with	minor	accuracy	compared	to	grip	type	prediction.	The	effect	of	

grasp	force	planning	on	spiking	activity	remains	unclear.		

	

One	explanation	for	the	much	lower	predictability	of	grasp	force	is	that	it	relies	mostly	on	

haptic	feedback	and	is	therefore	not	planned	very	well	in	advance.	However,	an	experiment	

that	tested	force	control	with	a	myoelectric	hand	prosthesis	found	that	human	subjects	

relied	more	on	information	about	the	prosthesis	velocity	than	on	force	feedback,	indicating	

a	high	importance	of	planning	grasp	force	before	touching	an	object	(Ninu	et	al.,	2014).	The	

second	question	addressed	in	this	study	is	therefore:	How	is	grasp	force	planning	

represented	in	the	neural	spiking	activity	of	neurons	in	AIP,	F5,	and	M1?	

	

Even	though	we	know	that	grip	type	has	a	major	effect	on	the	neural	signal	in	areas	like	

AIP,	F5,	and	M1	(Rizzolatti	and	Luppino,	2001;	Janssen	and	Scherberger,	2015),	most	

studies	looking	at	grip	force	representation	only	did	this	for	one	grip	type,	usually	the	
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precision	grip	(Hepp-Reymond	et	al.,	1978;	Hepp-Reymond	and	Diener,	1983;	Maier	et	al.,	

1993;	Hepp-Reymond	et	al.,	1994;	1999;	Ehrsson	et	al.,	2003;	Davare	et	al.,	2007;	Neely	et	

al.,	2013).	An	interesting	question	is	whether	grip	type	and	force	coding	are	dependent	on	

each	other,	just	like	muscle	activations,	or	if	they	are	coded	independently	in	the	brain.	

Two	studies	speak	in	favor	for	the	latter	hypothesis.	First,	Davare	and	colleagues	found	that	

hand	shaping	and	grip	force	control	are	distorted	by	AIP	inactivation	at	different	time	

points	(Davare	et	al.,	2007).	Second,	Hendrix	and	colleagues	investigated	the	influence	of	

grasp	force	on	the	neural	activity	of	M1	and	dorsal	PMC	for	a	number	of	different	object	

shapes	and	found	no	interaction	between	grasp	force	and	grasp	dimension	(Hendrix	et	al.,	

2009).	However,	much	is	still	unknown	about	how	grip	type	and	force	coding	interact,	

which	leads	to	our	third	question:	What	is	the	relation	between	grip	type	and	force	

coding?	

	

1.6.	Overview	

	

To	answer	these	three	questions,	we	trained	two	macaque	monkeys	to	perform	a	delayed	

grasping	task	with	two	grip	types	and	three	force	levels.	While	the	monkeys	performed	the	

task,	we	recorded	the	neural	signals	in	AIP,	F5,	and	M1	with	floating	microelectrode	arrays.	

In	chapter	2	we	give	a	detailed	overview	of	the	methods	used	to	answer	these	questions.	In	

chapter	3	we	show	the	results	obtained	in	this	study	with	several	different	analyses.	

Finally,	in	chapter	4	we	will	summarize	the	results	and	discuss	the	meaning	of	these	

findings	in	the	current	literature.		
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The	terms	‘grip	force’	and	‘grasp	force’	are	used	interchangeably	when	I	refer	to	the	

literature	in	this	thesis.	However,	I	use	the	term	‘grasp	force’	when	I	refer	to	our	task	

design	to	emphasize	the	reach	and	grasp	action.	
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2.	Methods		 	 	

	

This	chapter	describes	the	methodological	procedures	that	were	undertaken	to	answer	the	

research	questions	presented	in	the	last	chapter.		

	

Here	I	describe:	

-	The	basic	procedures	of	the	animal	training	and	the	experimental	setup	(Chapter	2.1.)	

-	The	task	performed	by	the	monkeys	(Chapter	2.2.)	

-	The	design	of	the	force	sensing	handle	(Chapter	2.3.)	

-	The	surgery	and	implantation	of	the	micro-electrode	arrays	(Chapter	2.4.)	

-	The	neural	data	recording	and	spike	sorting	(Chapter	2.5.)	

-	The	behavioral,	analog,	and	neural	data	analysis	(Chapter	2.6.)	

	

Natalie	Nazarenus	and	Lukas	Schad	assisted	in	animal	training	and	recording.	Matthias	

Dörge	assisted	in	the	design	and	construction	of	the	force	sensing	handle.	Hansjörg	

Scherberger	performed	the	surgery	and	implantation.	Benjamin	Dann	and	Jonathan	

Michaels	assisted	in	the	neural	data	analysis.	
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2.1	Basic	procedures	

One	male	(Monkey	B)	and	one	female	(Monkey	S)	rhesus	macaque	(Macaca	mulatta,	13.5	

and	10.1	kg,	respectively)	were	used	in	this	study.	The	monkeys	were	purpose	bred	and	

held	in	an	enriched	environment	with	one	or	two	conspecific	companions.	Before	

experiments	started,	the	monkeys	were	habituated	to	move	from	their	cages	into	a	custom-

made	primate	chair	at	their	own	speed.	Great	care	was	taken	to	avoid	any	actions	that	

might	evoke	any	unnecessary	stress	in	the	animals.	Facial	expressions	and	behavior	were	

carefully	monitored	for	signs	of	stress.	All	animal	care	and	experiments	with	the	animals	

were	performed	in	accordance	with	German	and	European	law	and	in	agreement	with	the	

Guidelines	for	the	Care	and	Use	of	Mammals	in	Neuroscience	and	Behavioral	Research	

(National	Research	Council	(US),	2003)	as	well	as	with	the	NC3Rs	Guidelines	(Watson,	

2007).		

	

Both	monkeys	were	habituated	to	comfortably	sit	in	a	primate	chair	with	the	head	fixated.	

Before	starting	the	task	paradigm,	the	monkeys	were	placed	in	front	of	a	grasping	handle	at	

a	horizontal	distance	of	~26	cm	in	a	dark,	electrically	shielded	room.	One	or	two	capacitive	

sensors	(Model	EC3016NPAPL;	Carlo	Gavazzi)	located	at	the	level	of	the	monkey’s	mid-

torso	were	placed	in	front	of	monkey	B	and	S,	respectively,	and	served	as	handrest	buttons.	

Monkey	S	performed	the	task	with	her	right	hand	and	was	required	to	keep	her	left	hand	

on	the	handrest	button	for	the	entire	trial	duration.	Monkey	B	performed	the	task	with	his	

left	hand	and	his	right	arm	was	placed	in	a	long	tube,	preventing	it	from	interacting	with	

the	handle.	Visual	cues	were	projected	from	a	TFT	screen	(CTF846-A;	Screen	size:	8”	

digital;	Resolution	800x600;	Refresh	rate:	75Hz)	onto	the	center	of	the	handle	via	a	half	
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mirror.	The	TFT	screen	was	masked	so	that	direct	view	of	the	image	was	not	possible.	Eye	

movements	were	tracked	with	an	infrared	optical	eye	tracker	that	was	calibrated	at	the	

start	of	each	session.	Eye	tracking	and	the	behavioral	task	were	controlled	with	custom-

written	software	implemented	in	LabView	Realtime	(National	Instruments)	with	a	time	

resolution	of	1	ms.	Monkey	behavior	was	continuously	monitored	via	an	infrared	camera	

while	the	monkeys	performed	the	task.		

	

2.2	Task	paradigm	

The	monkeys	were	instructed	with	visual	cues	how	and	when	to	grasp	(Figure	3A).	A	trial	

was	initiated	by	placing	the	acting	hand	on	the	handrest	button	and	it	had	to	remain	here	

until	the	Go	signal	was	given.	A	red	dot	was	projected	in	the	same	location	as	the	grasping	

handle	and	functioned	as	eye	fixation	target.	The	monkeys	were	required	to	fixate	this	dot	

for	the	entire	trial	duration.	After	fixating	the	dot	for	the	first	400-500	ms	(Fixation	epoch),	

two	spotlights	illuminated	the	grasping	handle	for	800	ms	and	an	instruction	cue	was	

visible	on	the	left	or	right	side	of	the	fixation	dot	during	this	time	(Cue	epoch).	The	location	

of	this	cue	instructed	which	grip	type	had	to	be	made.	A	cue	on	the	left	side	instructed	a	

whole-hand	grip	(opposition	of	fingers	and	palm),	while	a	cue	on	the	right	side	instructed	a	

precision	grip	(opposition	of	index	fingers	and	thumb).	As	can	be	seen	in	Figure	3A,	the	cue	

consisted	of	a	green	disk	and	a	grey	bar	in	front.	Within	this	grey	bar,	the	height	of	a	white	

square	indicated	how	much	force	the	monkey	had	to	apply	when	executing	the	grasp.	

When	the	square	was	at	the	bottom	of	the	bar,	0-5	N	of	force	was	required	(Low	Force),	

when	this	was	one	level	higher,	5-9	N	of	force	was	required	(Medium	Force),	and	when	the	

white	square	was	in	the	middle	of	the	bar,	9-12	N	of	force	was	required	(High	Force).	The	
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same	force	values	were	used	for	Whole-hand-	and	Precision	grip	trials.	The	selected	force	

range	was	based	on	the	amount	of	force	the	monkeys	naturally	applied	to	the	handle	before	

being	trained	on	the	force	cues.	After	the	cue	epoch,	illumination	and	instruction	cues	were	

turned	off	and	the	monkeys	were	required	to	memorize	the	instruction	and	continue	

fixating	for	500-700	ms	(Memory	epoch).	At	the	end	of	the	Memory	epoch,	the	fixation	dot	

would	briefly	blink	to	indicate	that	movement	could	now	be	initiated	(Go	signal).	The	

monkey	would	now	reach	for	the	handle	and	the	moment	the	hand	left	the	handrest	button	

was	termed	Movement	initiation.	The	Touch	event	was	the	moment	the	hand	broke	the	

infrared	light	barrier	behind	the	handle,	in	case	of	a	whole-hand	grip,	or	when	the	thumb	

and	index	finger	touched	the	electronic	touch	sensors	on	the	side	of	the	handle,	in	case	of	a	

precision	grip.	After	Touch,	the	bar	with	the	force	cue	would	reappear	and	within	it,	a	red	

slider	bar	was	visible	that	moved	up	and	down	when	force	applied	on	the	handle	increased	

or	decreased,	respectively.	The	monkey	had	to	bring	the	top	of	the	red	slider	bar	within	the	

white	square	and	keep	it	there	for	one	second	(Hold	epoch).	When	this	was	done	correctly,	

the	monkey	was	rewarded	with	a	small	amount	of	water	or	fruit	juice.	The	moment	the	

valve	of	the	reward	system	opened	was	called	the	Reward	event.	To	signal	when	the	valve	

was	open,	a	high-pitched	beep	sound	was	played	during	this	time.	The	handle	was	only	

visible	during	the	cue	epoch,	hence	the	entire	grasp	and	hold	action	was	done	in	darkness.	
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Figure	3.	Task	paradigm	and	recording	locations.	

A.	Task	paradigm.	Each	rectangle	on	the	left	shows	the	image	visible	during	one	particular	epoch.	The	specific	

Cue	and	Hold	epochs	of	two	example	conditions	are	shown	on	the	right.	Arrows	in	the	Hold	epoch	indicate	to	

where	the	red	bar	has	to	move	in	order	to	complete	the	task	(arrows	were	not	presented	to	the	monkeys).	

The	two	pictures	on	the	top	show	monkey	S	performing	a	whole-hand	grip	and	a	precision	grip.	B.	Picture	of	

arrays	implanted	in	the	right	hemisphere	of	Monkey	B.	From	left	to	right:	arrays	implanted	in	AIP,	M1,	and	F5.	

C.	Picture	of	arrays	implanted	in	the	left	hemisphere	of	Monkey	S.	From	left	to	right:	arrays	implanted	in	F5	

and	AIP.	Orientation	cross:	P	–	Posterior,	A	–	Anterior,	L	–	Lateral,	M	–	Medial.	
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To	investigate	how	well	the	information	about	the	force	conditions	was	used	during	the	

Cue	epoch,	we	trained	monkey	B	on	a	variation	of	the	task	were	the	white	square	did	not	

reappear	in	the	Hold	epoch.	This	compelled	the	monkey	to	remember	the	force	condition	

from	the	Cue	epoch,	as	it	was	no	longer	able	to	simply	bring	the	red	slider	bar	to	the	white	

square	to	complete	the	trial.	

	

To	adequately	measure	grasp	force,	we	wanted	the	monkeys	to	generate	force	by	

contracting	the	hand	and	not	by	strongly	pushing	or	pulling	on	the	handle.	Monkey	S	was	

therefore	not	allowed	to	push	or	pull	with	more	than	11.5	N	in	any	condition	and	for	

monkey	B	this	was	11.5,	23,	and	34.5	N	in	the	Low,	Medium,	and	High	Force	condition,	

respectively.	In	this	case,	monkey	B	was	less	restrained	than	monkey	S,	because	he	had	

more	difficulty	with	learning	the	Medium	and	High	Force	conditions.	However,	by	the	time	

monkey	B	had	learned	the	task,	he	rarely	pushed	or	pulled	with	more	than	12	N	in	any	of	

the	conditions.		

	

The	task	consisted	of	two	grip	type	conditions	and	three	force	conditions,	resulting	in	six	

different	conditions:	Whole-hand	Low	Force	(WLF),	Whole-hand	Medium	Force	(WMF),	

Whole-hand	High	Force	(WHF),	Precision	Low	Force	(PLF),	Precision	Medium	Force	(PMF),	

and	Precision	High	Force	(PHF).	All	trials	were	pseudo	randomly	interleaved.	Trials	were	

initially	drawn	from	a	pool	of	30	trials,	containing	5	copies	of	the	six	conditions.	Successful	

trials	were	removed	and	the	pool	was	refilled	with	a	copy	of	each	of	the	six	conditions	

whenever	the	pool	contained	less	than	25	trials	(i.e.	the	pool	size	always	varied	between	25	

to	30	trials).	Unsuccessful	trials	stayed	in	the	pool	to	force	the	monkey	to	complete	each	
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condition	roughly	the	same	amount	of	time.	Hence,	when	one	condition	was	not	performed	

successfully	as	often	as	others,	it	would	appear	slightly	more	frequently,	but	the	monkeys	

could	never	know	with	full	certainty	which	condition	would	appear	in	the	next	trial.	

	

2.3	Force	sensing	handle	

In	order	to	measure	grip	type	and	force	simultaneously,	we	designed	a	new	grasping	

handle.	This	handle	was	similar	to	the	PVC	handle	used	in	previous	experiments	in	our	lab	

(Baumann	et	al.,	2009;	Fluet	et	al.,	2010;	Townsend	et	al.,	2011;	Lehmann	and	Scherberger,	

2013;	Michaels	et	al.,	2015);	an	infrared	(IR)	light	barrier	was	located	behind	the	handle	to	

detect	a	whole-hand	grip	and	two	touch	sensors	on	the	side	of	the	handle	could	detect	

precision	grips.	However,	unlike	the	PVC	handle,	this	handle	consisted	of	an	air-filled	

rubber	tube	(figure	4a)	connected	to	an	air	pressure	sensor	(figure	4b).	Furthermore,	

because	the	previously	used	force-sensitive	resistor	sensors	did	not	function	on	the	rubber	

tube,	electronic	touch	sensors	replaced	them.	The	air	pressure	in	the	tube	was	set	to	a	

value	between	190	and	210	kPa	before	an	experiment	started,	and	this	typically	did	not	

change	by	more	than	2	kPa	over	the	course	of	an	experiment.	The	air-filled	tube	was	

surrounded	by	two	convex	metal	plates,	covered	by	another	rubber	tube,	onto	which	the	

precision	grip	sensors	where	placed.	Within	the	air-filled	tube	was	a	solid	metal	bar.	This	

design	was	able	to	resist	the	rough	actions	of	the	monkey,	prevented	the	tube	from	greatly	

changing	shape	during	experiments,	and	the	rubber	prevented	the	precision	grip	sensors	

from	short-circuiting.	The	precision	grip	sensors	were	regularly	cleaned	to	not	lose	

sensitivity.	The	handle	was	mounted	on	an	S-shaped	force	sensor	(KD24s,	ME-Meßsysteme	

GmbH)	to	additionally	measure	push	and	pull	force.	
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Figure	4.	Force	sensing	handle.		

A.	Front	view	of	the	handle.	Whole-hand	grips	could	be	detected	when	the	IR	light	barrier	was	broken	and	

precision	grips	could	be	detected	when	thumb	and	index	finger	simultaneously	touched	the	sensors	on	both	
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sides	and	a	low	current	went	through	the	hand.	The	amount	of	force	applied	on	the	handle	was	measured	by	

measuring	the	change	in	air	pressure	in	the	rubber	tube.	B.		Top	view	of	the	box	behind	the	handle.	The	four	

plastic	air	tubes	are	connected	to	an	air	valve,	an	air	pressure	sensor,	an	air	pressure	display,	and	to	the	

grasping	handle.	Air	pressure	was	controlled	by	manually	pumping	air	in	the	tubes,	or	by	releasing	air	from	

the	valve	on	the	right	side.	The	air	pressure	sensor	located	on	the	top-right	measured	small	changes	in	air	

pressure	in	the	tubes	and	send	this	to	the	recording	system.	The	air	pressure	display	is	a	separate,	less	

accurate	air	pressure	sensor	with	a	display	that	was	only	used	to	roughly	know	the	amount	of	air	pressure	in	

the	tubes,	to	keep	this	similar	from	session	to	session.	A	pull	sensor	was	located	behind	the	grasping	handle	

on	the	left	side	to	record	and	control	the	amount	of	force	the	monkeys	applied	on	the	handle	by	pushing	or	

pulling.	

	

	

Changes	in	air	pressure	in	the	tube	resulted	in	voltage	changes	and	grip	force	was	

calculated	as	the	difference	(ΔVoltage)	between	voltage	(mV)	recorded	while	the	monkey	

touched	the	handle	and	voltage	recorded	in	the	fixation	period	just	before	the	handle	was	

touched.	In	order	to	estimate	with	how	much	force	(N)	the	handle	was	grasped,	the	change	

in	voltage	during	experiments	was	compared	to	the	voltage	change	when	a	fixed	amount	of	

force	(ranging	from	2-20	Newton)	was	applied	simultaneously	on	two	sides	of	the	handle.	

Push	force	(N)	was	measured	in	the	same	way,	except	that	the	force	was	now	applied	only	

on	the	front	side.	Pull	force	(N)	was	simply	negative	push	force.		

	

Figure	5	shows	recorded	ΔVoltage	after	applying	a	fixed	amount	of	force	on	the	handle.	We	

applied	several	linear	and	non-linear	fits	(Matlab	function:	cftool)	with	intercept	to	zero	on	

the	data.	It	can	be	seen	in	figure	5	that	a	linear	model	(black	line)	gave	a	good	fit	for	the	

grip	force	(R2=0.96)	and	push	force	(R2=0.93).	The	non-linear	power	model	gave	an	even	



 58 

better	fit	for	the	grip	force	(magenta	line,	R2=0.99),	but	did	not	improve	for	the	push	force.	

For	calculating	the	grip	force,	we	therefore	used	the	following	formula:	

𝑦 = 4.3𝑥ˆ1.3 	

And	for	calculating	the	push	force,	we	used:	

𝑦 =  −43.4𝑥	

Where	𝑦	is	force	(N)	and	𝑥	is	ΔVoltage	(mV).	

	

	

Figure	5.	Force	calibration.	

The	x-axis	shows	the	amount	of	force	applied	on	the	handle	and	the	y-axis	shows	the	change	in	voltage	from	

baseline	(ΔVoltage)	measured	by	the	recording	system.	Every	grey	circle	shows	the	mean	value	of	the	

ΔVoltage	of	a	recording	sample	over	a	few	seconds,	with	standard	deviation.	The	black	line	shows	the	linear	
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fit	and	the	magenta	line	the	non-linear	fit.	The	formulas	on	the	top	of	the	figure	correspond	to	the	line	with	

the	same	color.	A.	Grip	force	calibration.	Grey	horizontal	dashed	lines	show	the	upper	and	lower	borders	of	

the	Low	Force	(0	–	40	Δmv),	Medium	Force	(40-80	Δmv),	and	High	Force	(80-120	Δmv)	condition.	B.	Same	as	

A,	but	for	push	force	calibration.	

	

	

This	method	gives	a	good	approximation	of	the	amount	of	force	applied	at	the	tip	of	the	

thumb	and	index	finger	during	a	precision	grip	and,	due	to	the	convex	plates	surrounding	

the	tube,	the	overall	force	applied	by	the	hand	during	a	whole-hand	grip.	Note	that	the	

different	force	conditions	were	based	on	linearly	increasing	ΔVoltage	(40,	80	and	120	mV;	

dashed	lines	in	figure	5).	Because	of	the	nonlinear	relationship	between	ΔVoltage	and	force,	

the	lower	force	conditions	had	a	slightly	wider	range	than	the	higher	force	conditions,	but	

this	was	not	considered	to	be	relevant	for	the	task	design.	

	

2.4	Surgery	and	implantation	

Surgery	and	implantation	procedures	have	been	described	before	(Townsend	et	al.,	2011;	

Michaels	et	al.,	2015).	Monkey	S	and	monkey	B	were	implanted	with	2	floating	

microelectrode	arrays	(FMAs;	MicroProbe	for	Life	Science)	in	area	F5	and	2	in	AIP	(Figure	

5).	Monkey	B	was	also	implanted	with	2	additional	FMAs	in	area	M1	(Figure	5B).	All	arrays	

were	implanted	in	the	hemisphere	contralateral	to	the	arm	used	in	the	experiment.	FMAs	

consisted	of	32	non-moveable	monopolar	platinum-iridium	electrodes	used	for	recordings,	

2	electrodes	served	as	grounds,	and	2	electrodes	served	as	references.	Impedances	of	

recording	electrodes	ranged	between	300	and	600	kΩ	at	1	kHz	before	implantation	and	in	
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vivo.	For	ground	and	reference	electrodes	this	ranged	between	5-200	kΩ.	Lengths	of	

electrodes	were	between	1.5	and	7.1	mm.	

	

Before	array	implantation,	a	head	post	(titanium	cylinder;	diameter,	18	mm)	was	

implanted	to	train	the	animals	to	do	the	task	while	head-fixated.	Array	implantations	

followed	when	the	animals	were	able	to	adequately	perform	the	task	in	this	way	and	were	

completely	recovered	from	this	initial	surgery.	

	

An	MRI	scan	was	done	to	locate	anatomical	landmarks	like	the	arcuate	and	intraparietal	

sulci	to	guide	the	later	array	implantation.	The	monkeys	were	sedated	(e.g.,	10	mg/kg	

ketamine	and	0.5	mg/kg	xylazine,	i.m.)	and	placed	in	the	scanner	(GE	Healthcare	1.5T	or	

Siemens	Trio	3T)	in	a	prone	position.	Analysis	of	T1-weighted	volumetric	images	of	the	

brain	and	skull	was	done	as	described	previously	(Baumann	et	al.,	2009).	The	arcuate	

sulcus	of	monkey	S	did	not	present	a	spur,	but	a	small	indentation	in	the	posterior	bank	of	

the	arcuate	sulcus,	about	2	mm	medial	to	the	knee,	was	revealed	in	the	MRI	image	and	

treated	as	a	spur.	FMAs	were	placed	lateral	to	that	mark.	

	

All	surgical	procedures	were	performed	in	sterile	conditions	while	the	monkeys	were	

anaesthetized	(e.g.,	induction	with	10	mg/kg	ketamine,	i.m.,	and	0.05	mg/kg	atropine,	s.c.,	

followed	by	intubation,	1–2%	isoflurane,	and	analgesia	with	0.01	mg/kg	buprenorphine).	

Heart	and	respiration	rate,	electrocardiogram,	oxygen	saturation,	and	body	temperature	

were	monitored	continuously.	Systemic	antibiotics	and	analgesics	were	administered	for	

several	days	after	each	surgery.	The	monkey	was	mildly	hyperventilated	to	prevent	brain	
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swelling	while	the	dura	was	open	(end-tidal	CO2,	~30	mmHg).	Mannitol	was	given	as	

necessary.	Training	continued	only	after	the	monkeys	were	fully	recovered	from	the	

surgery,	which	took	about	2	weeks.	

	

2.5	Neural	recordings	and	spike	sorting	

All	recordings	were	made	in	an	electrically	shielded	room.	Signals	from	the	implanted	

arrays	were	amplified	and	digitally	stored	using	a	128	channel	recording	system	

(Blackrock	Microsystems;	sampling	rate	30	kS/s;	0.3-7500Hz	hardware	filter).	Data	was	

first	filtered	with	a	median	filter	(window	length:	3.33ms)	and	the	result	was	subtracted	

from	the	raw	signal.	Afterwards,	the	signal	was	low-pass	filtered	with	a	non-causal	

Butterworth	filter	(5000	Hz;	4th	order).		

	

Because	the	number	of	electrodes	implanted	in	monkey	B	(192)	exceeded	the	number	of	

channels	of	the	recording	system,	four	different	combinations	of	arrays	were	recorded	that	

are	shown	in	table	1.	
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Table	1.	Four	different	recording	combinations	of	monkey	B’s	arrays.	Top	row	shows	the	areas	

represented	in	this	combination.	Lower	rows	show	from	which	arrays	neural	signals	were	recorded.	Black	

fields	visualize	which	arrays	were	not	used	in	that	combination.	

F5	and	AIP	 F5	and	M1	 M1	and	AIP	 F5,	M1	and	AIP	

F5	lateral	 F5	lateral	 F5	lateral	 F5	lateral	

F5	medial	 F5	medial	 F5	medial	 F5	medial	

M1	lateral	 M1	lateral	 M1	lateral	 M1	lateral	

M1	medial	 M1	medial	 M1	medial	 M1	medial	

AIP	lateral	 AIP	lateral	 AIP	lateral	 AIP	lateral	

AIP	medial	 AIP	medial	 AIP	medial	 AIP	medial	

	

	

Signals	were	recorded	from	all	128	channels	of	monkey	S,	but	58	of	those	channels	did	not	

show	any	neural	activity	on	any	of	the	recording	days,	were	considered	to	be	broken,	and	

not	processed	any	further.	The	total	number	of	channels	from	monkey	S	that	were	

processed	was	therefore	70.	More	than	half	of	the	channels	on	three	arrays	of	monkey	S	

were	broken	and	many	had	an	impedance	of	more	than	5	MΩ.	This	was	attributed	post-

mortem	to	a	damaged	cable,	caused	by	a	screw,	between	the	electrode	array	and	the	

connecter	plug	on	the	head	post,	due	to	a	non-optimal	design	by	the	manufacturer.		

	

To	eliminate	noise	(e.g.	movement	noise)	from	the	recorded	signal,	common	components	

present	on	all	channels	of	each	array	were	identified	and	removed	with	principal	

component	analysis	(PCA)	artifact	cancellation	(as	described	in	Musial	et	al.,	2002).	To	
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ensure	that	no	individual	channels	were	eliminated,	PCA	dimensions	with	any	coefficient	

greater	than	0.36	(with	respect	to	normalized	data)	were	retained.		

	

Spike	waveforms	were	extracted	and	sorted	with	a	modified	version	of	the	offline	spike	

sorter	Wave_clus	(Quiroga	et	al.,	2004;	Kraskov	et	al.,	2009;	Michaels	et	al.,	2015).	The	

Wave_clus	toolbox	first	selects	a	combination	of	features	of	detected	waveforms	by	

calculating	the	wavelet	transform,	PCA	and	the	original	waveforms,	selected	by	the	degree	

of	normality	estimated	by	the	Lillifors	test.		Second,	based	on	the	selected	features,	

superparamagnetic	clustering	was	applied,	resulting	in	different	cluster	configurations	

called	‘temperatures’.	Low	temperatures	were	best	in	separating	broad	waveforms,	while	

high	temperatures	were	best	in	separating	narrow	waveforms.	We	inspected	the	templates	

of	the	clusters	at	different	levels	of	temperature,	going	from	low	to	high	temperature	and	

selected	templates	that	resembled	known	extracellular	responses	most	closely.	We	then	

matched	these	templates	with	the	unassigned	waveforms,	using	an	LDA	(linear	

discriminant	analysis)	classifier	in	the	toolbox.		

	

After	the	semiautomatic	sorting	process,	redetection	of	the	average	waveforms	(templates)	

was	done	in	order	to	detect	overlaid	waveforms	(Gozani	and	Miller,	1994).	The	filtered	

signals	were	then	convolved	with	the	average	templates,	from	high	to	low	amplitude,	to	

improve	spike	detection.	To	discriminate	the	waveform	of	the	template	from	other	

waveforms,	an	LDA	classifier,	trained	on	the	originally	found	waveforms,	was	used.	After	

identifying	the	preferred	waveforms,	the	shift-corrected	template	was	obtained	by	up	and	

down	sampling	and	was	subtracted	from	the	filtered	signal	of	the	corresponding	channel	to	
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reduce	artifacts	for	detection	of	the	next	template.	This	procedure	allowed	a	detection	of	

templates	up	to	an	overlap	of	0.2	ms.	After	this	process,	waveforms	were	again	visually	

inspected	and	similar	looking	waveforms	on	the	same	channel	were	fused	together.	

	

To	determine	if	units	should	be	classified	as	single-	or	multi-units,	the	waveform	shape	and	

inter-spike	interval	distribution	of	each	was	evaluated.	A	unit	was	only	classified	as	single-

unit	when	it	met	the	following	five	criteria:	1.	Waveform	shapes	resembled	known	

extracellular	responses;	2.	Waveform	clusters	clearly	separated	in	the	projection	of	the	first	

17	features	detected	by	Wave_clus;	3.	Detected	spike	waveforms	homogeneously	spread	

around	the	mean	waveform;	4.	The	inter-spike	interval	histogram	did	not	show	a	Poisson-

like	distribution;	5.	Inter-spike	intervals	less	than	2	ms	were	rare	or	absent.	If	a	unit	did	not	

meet	the	first	criteria	or	had	an	extremely	low	number	of	waveforms	(typically	fewer	than	

1000),	it	was	classified	as	noise	and	not	further	analyzed.	If	most,	but	not	all	criteria	were	

met,	it	was	classified	as	an	ambiguous	unit.	All	other	cases	were	classified	as	multi-units.	

This	classification	was	only	used	for	selecting	example	units	and	for	creating	the	‘best-

channel	set’	(see	below).	In	all	other	analyzes,	single-,	ambiguous-	and	multi-units	are	

treated	equally.		

	

2.6	Data	analysis	

All	data	was	analyzed	with	custom	written	software	in	Matlab	(MathWorks).	
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2.6.1	Behavioral	data	analysis		

In	order	to	measure	how	well	the	monkeys	were	willing	and	able	to	perform	the	task,	we	

calculated	two	different	measures	of	performance:	1.	Percentage	of	successful	trials	

initiated	after	Cue	epoch	onset;	2.	Percentage	of	successful	trials	initiated	after	Go	signal.	

The	first	measure	provides	an	indicator	of	the	condition	preference,	while	the	second	

measure	indicates	how	well	the	monkeys	were	able	to	perform	the	task.	

	

Only	successful	trials	were	used	in	further	analysis.	The	start	and	end	time	of	each	epoch	

was	recorded,	as	well	as	events	initiated	by	the	monkey	(Movement	initiation	and	Touch).	

Reaction	time	(RT)	was	calculated	as	the	time	between	Go	and	Movement	initiation.	

Movement	time	(MT)	was	the	time	between	Movement	initiation	and	Touch.	Gripping	time	

(GT)	was	the	time	between	Touch	and	Reward.	RT,	MT,	and	GT	are	also	referred	to	as	

response	times.		

	

In	order	to	have	more	homogenous	results,	trials	with	very	long	response	times	and	cases	

where	the	monkey	touched	the	sensors	more	than	once	were	excluded	from	the	analysis.		

Exclusion	thresholds	were	the	same	for	every	session	and	were	based	on	visually	

inspecting	response	time	distributions	of	several	sessions	of	both	monkeys.	The	following	

trials	were	excluded:	RT	>	0.5	s,	MT	>	0.35	s,	and	GT	>	2.5	s.	In	total,	961	out	of	6669	trials	

(14%)	and	190	out	of	2205	trials	(9%)	were	removed	from	the	datasets	of	monkey	B	and	S,	

respectively.	
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2.6.2	Grip	force	and	electromyography	analysis	

We	recorded	grip	force	in	all	sessions	of	monkey	B	and	recorded	surface	electromyography	

(EMG)	signals	in	2	sessions.	Grip	force	was	not	recorded	in	data	sets	of	monkey	S	used	in	

this	study,	but	was	recorded	in	a	later	session	(session	S130717)	as	a	comparison.	Grip	

force	was	smoothed	with	a	Gaussian	kernel	(σ=	10	ms,	binsize=	2.5σ)	to	reduce	noise.	EMG	

signals	were	band-pass	filtered	(25-250	Hz,	6th	order	Butterworth),	rectified,	smoothed	

(Gaussian,	σ=	10	ms,	binsize=	2.5σ),	and	normalized	to	the	activity	during	the	Fixation	

epoch.	EMG	activity	was	recorded	from	the	ventral	lower	arm,	dorsal	lower	arm,	ventral	

upper	arm,	and	dorsal	upper	arm	where	the	activity	most	likely	originated	primarily	from	

the	flexor	digitorum	superficialis	(FDS)	muscle,	extensor	digitorum	communis	(EDC)	muscle,	

biceps	brachii	muscle,	and	triceps	brachii	muscle,	respectively.			

	

2.6.3	Peri-stimulus	time	histograms	(PSTHs)	

Spike	trains	were	stored	with	1	ms	resolution,	smoothed	(Gaussian,	σ=	50	ms,	binsize=	

±2σ)	and	aligned	around	Cue	epoch	onset	(400	ms	before	and	1300	ms	after),	Touch	(500	

ms	before	and	500	ms	after),	and	Reward	(1000	ms	before	and	200	ms	after).	These	three	

PSTHs	were	concatenated	and	part	of	the	neural	activity	before	Reward	was	interpolated	

when	it	overlapped	with	the	period	after	Touch.	For	example,	when	gripping	time	was	

exactly	the	Hold	duration	(as	in	most	Low	Force	trials),	the	first	500	ms	of	the	Reward	

alignment	would	completely	overlap	with	the	500	ms	after	the	Touch	alignment.	The	linear	

interpolation	therefore	went	from	the	end	of	the	period	after	Touch	(mean	activity	from	

490	–	500	ms	after	Touch)	until	time	point	𝑦	(mean	activity	from	0	–	10	ms	after	time	point	

𝑦)	before	Reward.	Time	point	𝑦	(ms)	was	calculated	as	follows:	



 67 

	

𝑦 = 𝐺𝑇! − 𝑇!"#$%"&"'(%) +  𝑇!"#$%&'()!		

	

Where		𝑇!"#$%&'()! is	time	after	Touch	(500	ms	in	this	task),	𝑇!"#$%"&"'(%) 	is	time	before	

reward	(1000	ms	in	this	task)	and	𝐺𝑇! 	is	the	median	gripping	time	(ms)	of	condition	c	(e.g.	

Precision	Medium	Force).	To	simplify,	the	formula	can	be	written	for	this	task	as:	

	

𝑦 = 𝐺𝑇! − 500	

	

For	example,	when	𝐺𝑇! 	was	1320	ms,	activity	was	interpolated	from	500	ms	after	Touch	

until	820	ms	before	Reward.	𝐺𝑇! 	was	always	at	least	1000	ms	long	since	this	was	the	Hold	

time	in	this	task.	Therefore,	𝑦	was	always	at	least	500	ms.	When	𝑦	was	larger	than	1000	ms,	

no	interpolation	was	done.	This	concatenated	PSTH	was	used	in	further	analysis.	The	part	

of	the	PSTH	that	was	interpolated	was	not	shown	in	the	figures	of	the	example	units,	but	

was	used	in	the	following	analyzes.	

	

2.6.4	Cluster-based	permutation	test	

In	order	to	calculate	a	statistical	difference	in	firing	rate	between	conditions	at	every	time	

point	and	adequately	deal	with	the	multiple	comparison	problem,	we	used	the	cluster-

based	permutation	test	(Maris	and	Oostenveld,	2007).	In	short,	we	applied	a	two-way	

ANOVA	in	10	ms	steps	along	the	PSTH	and	classified	every	time	bin	with	p<	0.01	together	

with	consecutive	time	bins	with	p<	0.01	as	one	cluster.	This	threshold	of	p<	0.01	is	an	



 68 

arbitrary	value	to	select	the	clusters	and	is	not	the	final	testing	statistic.	These	clusters	

were	classified	separately	for	the	p-values	of	the	grip	type	main	effect,	force	main	effect,	

and	interaction	effect	for	the	real	data	and	for	1000	‘shuffled’	data	sets.	Each	shuffled	data	

set	was	created	by	randomly	rearranging	the	condition	labels	of	trials	of	the	real	data.	The	

summed	F-value	was	then	calculated	for	every	cluster.	In	each	shuffled	data	set,	the	cluster	

with	the	highest	summed	F-value	was	selected	to	create	a	distribution	of	F-values	(null	

distribution).	This	distribution	was	then	compared	to	the	summed	F-values	of	each	cluster	

in	the	real	data,	which	was	classified	as	significant	when	its	summed	F-value	was	higher	

than	at	least	99%	of	the	F-values	from	the	null	distribution	(i.e.	α-level=	0.01).	An	α-level	of	

0.01	instead	of	the	standard	0.05	was	used	to	decrease	the	false	positive	rate	to	better	

emphasize	the	main	effect.	Because	this	method	assumes	that	data	from	one	time	point	

depends	on	data	from	neighboring	time	points,	it	is	important	to	not	have	huge	time	gaps	

between	different	alignments.	We	therefore	used	the	interpolated	data	(from	1000	ms	

before	Reward	till	500	ms	before	Reward)	to	compute	the	clusters,	but	points	indicating	

significance	at	these	time	points	were	not	displayed	in	any	of	the	figures	because	this	

significance	is	artificial.		

	

2.6.5.	Medium	force	modulation	index	

We	calculated	the	relative	modulation	to	the	medium	force	condition	compared	to	the	low-	

and	high	force	condition	to	visualize	which	condition	is	more	similar	in	firing	rate.	We	

calculated	this	for	every	force	tuned	unit	at	every	time	point.	We	used	the	following	

equation:	
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𝑦 =
𝑓!"#$%& − 𝑓!"#
𝑓!"#! − 𝑓!"#

	

	

Where	y	is	the	normalized	firing	rate	(arbitrary	units)	for	the	medium	force	condition,	

fMedium	is	the	firing	rate	(Hz)	for	the	medium	force	condition,	fLow	is	the	firing	rate	(Hz)	for	

the	low	force	condition,	and	fHigh	is	the	firing	rate	(Hz)	for	the	high	force	condition.	This	is	

calculated	for	every	time	point,	for	all	units	that	are	force	tuned	at	that	time.	The	median,	

first,	and	third	quartile	of	the	y	value	of	all	units	is	subsequently	calculated	to	visualize	the	

population	response.	

	

2.6.6.	Demixed	principal	component	analysis		

To	get	an	overview	of	common	patterns	in	PSTHs	that	explain	most	of	the	variance	among	

all	units,	one	can	treat	the	response	of	a	single	unit	as	one	dimension	and	then	apply	

dimensionality	reduction	on	the	population	data.	Principal	component	analysis	(PCA)	is	a	

common	technique	to	reduce	a	high-dimensional	dataset	to	only	a	few	components	that	

explain	most	of	the	variance.	This	technique	can	give	basic	insight	in	the	structure	of	the	

dataset	by	showing	components	that	explain	most	of	the	variance,	but	it	does	not	explain	

the	contribution	of	individual	conditions	to	the	variance.	Since	neurons	show	a	mixed	

selectivity	to	task	conditions,	it	is	important	to	‘demix’	this	selectivity	to	understand	the	

influence	of	task	conditions	on	neural	variance.		

To	do	this,	we	applied	a	novel	dimensionality	reduction	technique	called	demixed	principal	

component	analysis	(dPCA)	(Kobak	et	al.,	2016)	on	the	data,	using	freely	available	code:	

http://github.com/machenslab/dPCA.	Like	standard	principal	component	analysis,	
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dPCA	extracts	the	components	of	a	high-dimensional	dataset	that	describe	most	of	the	

variance,	and	calculates	how	much	variance	is	explained	by	each	component.	However,	

unlike	standard	PCA,	dPCA	uses	information	about	the	task	conditions	(i.e.	grip	type,	force,	

or	interaction)	to	calculate	the	percentage	of	variance	explained	by	each	task	condition	or	

by	changes	over	time	(condition-independent).	By	not	restricting	the	components	to	be	

orthogonal	to	each	other,	it	then	creates	components	that	are	primarily	affected	by	a	

certain	task	condition.	Additionally,	this	toolbox	uses	a	linear	classifier	(stratified	Monte	

Carlo	leave-group-out	cross-validation)	to	reveal	at	which	time	points	the	condition	can	be	

reliably	decoded	from	an	individual	component.		

Like	for	the	cluster-based	permutation	test	calculation,	the	PSTH	described	above	was	first	

down-sampled	by	a	factor	of	10.	The	following	parameters	were	used	in	the	toolbox:	the	

first	30	components	were	calculated,	the	number	of	repetitions	used	for	optimal	lambda	

calculation	was	10,	the	number	of	iterations	used	for	cross-validation	was	100,	and	the	

number	of	shuffles	used	to	compute	the	Monte	Carlo	distribution	of	classification	

accuracies	expected	by	chance	was	100	(as	was	done	in	Kobak	et	al.,	2016).	The	time	

periods	when	actual	classification	accuracy	exceeded	all	100	shuffled	decoding	accuracies	

in	at	least	10	consecutive	time	bins	were	marked	with	colored	lines	on	top	of	the	figures	

showing	the	dPCA	components.	

	

2.6.7	Best-channel	set	

One	of	the	challenges	of	analyzing	multi-electrode	array	data,	is	how	to	treat	neural	data	

from	different	sessions.	Unlike	acute	recordings,	there	is	a	likely	chance	to	record	from	the	



 71 

same	neuron	in	different	sessions	(Dickey	et	al.,	2009).	However,	due	to	constant	

restructuring	of	the	neural	network,	fluctuations	in	spike	and	noise	amplitude,	

encapsulation	of	the	electrodes,	corrosion	of	the	electrode	tips,	and	micro-motions	of	the	

electrodes	(Lee	et	al.,	2005;	Barrese	et	al.,	2013;	2016),	recordings	can	vary	quite	

extensively	from	day	to	day.	Because	of	this	variation	in	the	recordings,	any	measurable	

characteristic	of	a	unit,	such	as	waveform	shape	or	spiking	frequency,	can	be	different	in	

the	next	session,	making	it	very	difficult	to	objectively	classify	a	unit	as	being	the	same	as	

or	different	than	a	unit	recorded	on	the	same	channel	in	another	session.		

	

It	is	therefore	common	to	simply	perform	all	analyzes	on	individual	sessions	and	then	

average	the	result	over	all	sessions.	This	works	quite	well	when	plenty	of	units	were	

recorded	per	array	and	recordings	did	not	vary	much	from	session	to	session.	However,	

this	method	could	potentially	bias	your	results	since	it	gives	more	weight	to	stable	units	

that	were	recorded	in	many	sessions	and	to	units	that	were	recorded	in	sessions	when	the	

total	number	of	recorded	units	was	low.	A	simpler	method	that	is	much	less	affected	by	the	

number	of	units	recorded	in	individual	sessions	is	to	pool	all	units	together	in	one	dataset.	

But	this	method	will	still	be	biased	by	the	more	stable	units	that	are	present	in	multiple	

different	sessions.	

	

To	effectively	deal	with	these	issues,	we	created	the	‘best-channel	set’.	This	is	a	dataset	that	

consists	of	neural	data	from	multiple	sessions,	but	data	from	every	electrode/channel	is	

represented	only	once.		For	each	channel	in	each	session	(recording)	we	counted	the	

number	of	single-,	ambiguous-	and	multi-units.	We	compared	the	number	of	unit	types	per	
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recordings	from	the	same	channel	and	selected	the	session	that	had	the	best	set	of	units	for	

that	channel,	which	meant	a	high	amount	of	single-units,	multi-units	or	spikes.		

	

In	detail,	of	the	recordings	from	the	same	channel,	the	recordings	were	selected	that	had:	1.	

The	highest	number	of	single-units;	2.	The	highest	number	of	ambiguous-units;	3.	The	

highest	number	of	multi-units;	4.	The	highest	amount	of	spikes	recorded	from	all	single-

units;	5.	The	highest	amount	of	spikes	recorded	from	all	ambiguous-units;	6.	The	highest	

amount	of	spikes	recorded	from	all	units.	At	every	step,	the	recordings	were	discarded	that	

did	not	have	the	highest	amount,	until	there	was	only	one	recording	left	(i.e.	the	single-unit	

count	was	the	most	important	and	the	amount	of	spikes	per	units	was	only	calculated	when	

multiple	sessions	had	the	same	number	of	the	same	unit	types	on	that	channel).	In	the	end,	

the	best-channel	set	consisted	of	70	or	192	channels	(for	monkey	S	and	B,	respectively)	

that	were	taken	from	different	sessions.		

	

It	is	important	to	note	that	unit	classification	was	purely	based	on	waveform	and	inter-

spike	interval	characteristics	and	not	on	task-responses,	to	not	artificially	increase	the	

proportion	of	task-selective	units.		The	best-channel	sets	had	a	much	higher	number	of	

units	than	individual	data	sets,	making	it	more	suitable	for	population	analyses.	All	

population	analyses	were	therefore	performed	on	the	best-channel	sets	of	monkey	B	and	

monkey	S.		
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3.	Results		 	 	

	

This	chapter	presents	the	results	obtained	from	the	analyses	described	in	the	previous	

chapter.	First	the	results	are	shown	that	describe	the	behavior	of	the	monkeys	whilst	they	

performed	the	experimental	task.	Then	the	neural	responses	of	the	recorded	single-	and	

multi-units	are	described	by	analyzing	the	differences	in	firing	rate.	Finally,	the	

characteristics	of	each	investigated	brain	area	are	described	after	applying	dimensionality	

reduction.		

	

I	present:	

-	The	performance	of	both	monkeys	in	the	delayed	grasping	task	(Chapter	3.1.)	

-	Reaction	time,	movement	time,	and	gripping	time	(Chapter	3.2.)	

-	Force	profiles	while	the	monkeys	performed	the	task	(Chapter	3.3.)	

-	How	muscle	activity	changed	over	the	course	of	a	trial,	measured	with	electromyography	

(Chapter	3.4.)	

-	Details	about	the	recording	sessions	(Chapter	3.5.)	

-	Responses	of	example	single	neurons	to	the	task	(Chapter	3.6.)	

-	Task	tuning	of	the	population	of	units	recorded	from	each	area	(Chapter	3.7.)	

-	Results	obtained	with	dimensionality	reduction	(Chapter	3.8.)	 	
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3.1.	Task	performance	

Both	monkeys	successfully	learned	the	task.	Figure	6	shows	that	more	than	90%	of	the	

trials	where	movement	was	initiated	after	the	Go	signal	(Movement	trials)	were	correct.	

Performance	was	much	lower	when	all	trials	were	considered,	because	both	monkeys	

would	often	break	eye	fixation	during	the	Cue	epoch	when	a	condition	appeared	they	liked	

less	than	other	conditions.	Furthermore,	since	a	new	trial	would	start	automatically	as	long	

as	the	hand	remained	on	the	handrest	button,	many	trials	resulted	in	an	error	when	the	

monkey	was	not	moving	the	hands,	but	was	constantly	moving	the	eyes.	We	therefore	

believe	that	performance	based	on	movement	trials	represented	the	monkey’s	capability	to	

perform	the	task	whereas	performance	based	on	all	trials	merely	represented	the	

monkey’s	motivation	to	perform	a	particular	condition.	High	force	trials	were	on	average	

less	preferred	by	both	monkeys.	Monkey	B	had	a	preference	for	whole-hand	grip	trials,	

while	monkey	S	had	a	preference	for	precision	grip	trials.	
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Figure	6.	Task	performance.		

Percentage	of	correct	trials	of	monkey	B	(brown)	and	monkey	S	(khaki)	in	each	of	the	six	task	conditions.	The	

total	height	of	the	bar	indicates	the	monkey’s	performance	in	the	fraction	of	trials	when	movement	was	

initiated	after	the	Go	signal.	The	darker	colored	bars	show	the	performance	when	all	trials	are	considered.	

	

	

3.2.	Response	times	

We	calculated	how	fast	the	monkeys	responded	to	the	Go	signal	(reaction	time),	how	fast	

they	moved	from	the	handrest	to	the	handle	(movement	time),	and	how	long	the	monkeys	

were	holding	the	handle	until	they	obtained	their	reward	(gripping	time).	Average	reaction	

time	(RT),	movement	time	(MT)	and	gripping	time	(GT)	for	the	selected	trials	are	shown	in	

Figure	7.	Selected	trials	have	a	bit	lower	average	response	times	than	the	raw	data,	since	

trials	with	very	long	response	times	(RT	>	0.5	s,	MT	>	0.35	s,	and	GT	>	2.5	s)	were	removed	

from	the	dataset	(14%	of	trials	from	monkey	B	and	9%	of	trials	from	monkey	S).	The	

average	reaction	time	of	analyzed	trials	was	268±69	ms	(mean±SD)	for	monkey	B	and	

257±72	ms	for	monkey	S.	Movement	times	differed	between	grip	types	in	monkey	S,	with	

an	average	movement	time	of	121±14	ms	for	whole-hand	grips	and	192±43	ms	for	

precision	grips.	For	monkey	B	the	movement	times	were	longer	than	the	movement	times	

of	monkey	S	and	very	similar	for	whole-hand	grips	(216±32	ms)	and	precision	grips	

(220±42	ms).	Gripping	times	were	similar	between	monkeys,	but	depended	greatly	on	the	

task	condition,	and	especially	on	the	force	level.	For	monkey	B,	average	gripping	times	

were	1113±230	ms,	1467±295	ms,	and	1555±381	ms	for	whole-hand	low	force	(WLF),	

whole-hand	medium	force	(WMF),	and	whole-hand	high	force	(WHF)	conditions	and	
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1085±215	ms,	1561±329	ms,	and	1718±360	ms	for	precision	low	force	(PLF),	precision	

medium	force	(PMF),	and	precision	high	force	(PHF)	conditions,	respectively.	For	monkey	

S,	these	times	were	1011±14	ms,	1403±304	ms,	1622±318	ms	for	WLF,	WMF,	and	WHF	

conditions	and	1151±312	ms,	1385±251	ms,	1539±332	ms	for	PLF,	PMF,	and	PHF	

conditions,	respectively.	Minimum	gripping	time	was	equal	to	Hold	time	(1000	ms).	Most	

low	force	trials	had	a	gripping	time	of	exactly	1	second,	since	the	amount	of	force	applied	

on	the	handle	was	always	between	0	and	5	N	at	the	moment	of	Touch.		

	

	

Figure	7.	Response	times.		

A.	Average	reaction	times	of	monkey	B	(brown)	and	monkey	S	(khaki)	in	each	condition.	Error	bars	indicate	

standard	deviation.	B.	Same	for	movement	times.	C.	Same	for	gripping	times.	

	

	

3.3.	Force	profiles	

How	force	was	applied	in	the	different	conditions	is	shown	in	Figure	8	and	10.	It	can	be	

seen	that	most	low	force	condition	trials	followed	the	same	pattern;	grip	force	rose	quickly	

to	about	2-4	N,	stayed	there	for	at	least	1200	ms	and	then	dropped	to	baseline.	Only	in	a	

few	cases	in	this	condition	was	the	initial	amount	of	applied	force	above	5	N	and	then	
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dropped	down,	which	is	best	visible	in	Figure	8B.	This	initial	overshoot	was	much	more	

common	for	the	medium-	and	high	force	conditions	and	especially	for	the	whole-hand	

medium	force	condition	of	monkey	B	as	can	clearly	be	seen	in	Figure	8B	and	D.		

	

	

Figure	8.	Force	profile	of	session	B150113.	

Amount	of	force	applied	over	time	is	shown	for	low	force	(red),	medium	force	(green),	and	high	force	(blue)	

conditions	for	individual	trials	(thin	transparent	lines)	and	the	average	per	condition	(thick	line)	of	session	

B150113	(monkey	B).	Dashed	horizontal	lines	show	the	boundaries	of	the	different	force	conditions	

corresponding	to	5,	9,	and	12	N,	as	can	be	seen	on	the	right	side	of	the	figure.	A	and	B	show	the	force	profiles	

for	the	whole-hand	grips.	C	and	D	show	the	force	profiles	for	precision	grips.	A	and	C	show	the	amount	of	grip	

force	between	1000	ms	before	and	3000	ms	after	Touch.	The	number	of	trials	per	condition	is	shown	on	the	

left.	A	grey	dotted	line	about	200	ms	before	Touch	shows	the	median	movement	onset.	Small	artifacts	due	to	

voltage	distortions	are	visible	shortly	after	median	movement	onset	(recorded	voltage	increased	slightly	due	

to	release	of	the	handrest	buttons)	and	shortly	after	precision	grip	Touch	(recorded	voltage	dropped	slightly	
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due	to	touching	the	precision	grip	sensors).	B	and	D	show	the	same	data	as	in	A	and	C,	but	aligned	at	Reward,	

from	3000	ms	before	to	1000	ms	after	this	alignment.	

	

	

We	can	see	in	Figure	8A	and	8C	that	the	force	profiles	of	the	low	force	conditions	diverge	

quickly	after	Touch	from	the	two	other	conditions,	while	medium-	and	high	force	

conditions	typically	started	to	diverge	about	200	ms	after	Touch.	In	Figure	8	we	even	see	

that	the	average	amount	of	force	applied	in	the	WMF	condition	is	close	to	the	upper	border	

of	this	condition	(9	N)	and	then	drops	down.	A	possible	explanation	for	this	behavior	could	

be	that	monkey	B	did	not	fully	use	the	information	presented	in	the	Cue	epoch	and	waited	

for	the	reappearance	of	the	force	target	(white	square	indicating	the	force	condition;	Figure	

3A)	to	decide	between	the	medium-	or	high	force	condition.		

	

To	test	whether	information	from	the	Cue	epoch	was	used,	we	measured	if	the	differences	

between	the	force	conditions	were	significant	in	the	first	100	ms	after	Touch,	i.e.	when	

visual	information	from	the	reappearing	force	target	could	not	yet	influence	the	amount	of	

force	applied.	We	found	in	general	a	strong	and	significant	difference	between	the	force	

conditions	(ANOVA,	p<0.01),	but	not	between	medium-	and	high	force	for	the	whole-hand	

grip	(Tukey-Kramer	test,	p=	0.77)	or	precision	grip	(Tukey-Kramer	test,	p=	0.99).	Similar	

p-values	were	found	in	other	sessions,	even	when	the	average	amount	of	force	applied	was	

different.	This	suggests	that	monkey	B	used	the	information	of	the	Cue	epoch	to	plan	how	

much	force	to	apply,	but	possibly	did	not	distinguish	between	the	medium-	and	high	force	

conditions	until	it	saw	the	force	target	reappearing.	
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To	investigate	this	further,	we	trained	the	monkey	on	a	variation	of	the	task	where	the	

force	target	did	not	reappear	after	Touch.	Figure	9	shows	the	force	profiles	of	the	different	

conditions	for	this	task	and	it	can	clearly	be	seen	that	monkey	B	first	stayed	within	the	

medium	force	range	and	increased	to	the	high	force	range	after	more	than	one	second	had	

passed	without	reward.	Since	this	is	a	less	efficient	way	to	complete	the	task	than	by	

remembering	the	cues,	we	can	conclude	that	monkey	B	did	not	distinguish	between	the	

medium-	and	high	force	conditions	in	the	Cue	epoch.	

	

	

Figure	9.	Force	profiles	of	session	B150513	(variation	of	the	behavioral	task)	

Same	as	Figure	8,	but	for	a	session	where	the	force	target	did	not	reappear	in	the	Hold	epoch.	
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Monkey	S	appeared	to	have	a	similar	strategy	at	first	glance.	It	can	be	seen	in	Figure	10A	

and	C	that	the	grip	force	rarely	came	within	the	high	force	range	before	150	ms	after	Touch,	

and	the	force	increase	is	even	slowed	down	for	PHF	trials	(Figure	10C),	which	could	

indicate	that	the	monkey	waited	for	visual	feedback	before	deciding	between	medium-	or	

high	force.	Like	monkey	B,	there	was	no	significant	difference	in	the	first	100	ms	after	

Touch	between	WMF	and	WHF	applied	grip	force	(Tukey-Kramer	test,	p=	0.19).	However,	

unlike	monkey	B,	a	significant	difference	in	applied	force	was	observed	between	PMF	and	

PHF	trials	(Tukey-Kramer	test,	p<	0.01),	which	makes	it	very	likely	that	monkey	S	

distinguished	between	PMF	and	PHF	cues	in	the	Cue	epoch.	Because	of	these	findings,	and	

because	monkey	S	was	not	trained	on	the	variation	of	the	task	without	target	

reappearance,	it	is	hard	to	say	how	much	this	monkey	distinguished	between	the	medium-	

and	high	force	cues	during	the	Cue	epoch.	However,	it	was	clear	that	the	early	response	in	

low	force	trials	was	always	much	more	different	from	the	other	two	force	conditions,	than	

the	differences	between	medium-	and	high	force	trials,	suggesting	that	monkey	S,	like	

monkey	B,	also	distinguished	between	the	low	force	condition	and	the	medium-	and	high	

force	conditions	combined.	
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Figure	10.	Force	profiles	of	session	S130717.	

Same	as	Figure	8,	but	for	a	session	of	monkey	S.	This	session	was	recorded	after	the	sessions	from	which	the	

neural	signals	were	recorded.	

	

	

3.4.	Electromyography	

In	order	to	check	that	the	animals	were	not	initiating	movements	before	the	Go	signal	and	

to	be	able	to	relate	neural	activity	to	muscle	activity	in	future	analyses,	we	also	recorded	

surface	electromyography	(EMG)	signals	on	the	moving	arm	of	monkey	B	while	he	

performed	the	task.	Normalized	EMG	amplitude	changes	are	shown	for	the	flexor	digitorum	

superficialis	(FDS),	the	extensor	digitorum	communis	(EDC),	the	biceps	and	the	triceps	in	

Figures	11A,	B,	C,	and	D,	respectively.	
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Figure	11.	EMG	signals	of	session	B150219.		

Average	normalized	EMG	amplitudes	of	session	B150219	(monkey	B)	are	shown	for	low	force	(red),	medium	

force	(green),	and	high	force	(blue)	conditions	for	the	whole-hand	grip	(upper	panels	of	subplots)	and	

precision	grip	(lower	panels	of	subplots).	Shaded	area	around	the	lines	represents	the	standard	error	of	the	
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mean.	The	signal	is	aligned	at	Cue	On/Off,	Touch,	and	Reward.	These	events	are	marked	with	vertical,	black,	

dashed	lines	and	their	names	are	written	on	the	x-axis	of	the	lower	panels.	The	vertical,	grey,	dotted	line	

indicates	the	median	movement	onset.	As	is	shown	in	bold	text	on	top	of	each	subplot,	EMG	signals	were	

recorded	from	FDS	(A),	EDC	(B),	Biceps	(C),	and	Triceps	(D)	muscle.	Text	below	the	name	of	the	muscle,	

between	the	dashed	lines,	indicates	the	epoch	names.	Colored	lines	on	top	of	each	subplot	shows	the	time	

intervals	with	significant	difference	in	firing	rate	between	grip	type	(cyan)	or	force	(magenta)	conditions,	or	

when	there	was	a	significant	interaction	(gold)	between	grip	type	and	force	conditions	(cluster-based	

permutation	test,	p<	0.01).	Scale:	500	ms.	

	

	

Different	muscle	activation	patterns	can	be	seen	for	the	different	grip	types,	but	also	for	the	

different	force	conditions.	EMG	activity	started	to	increase	at	around	400	ms	before	Touch	

and	started	to	differ	between	the	two	grip	types	shortly	after	that.	Peak	activity	occurred	

shortly	before	Touch	in	all	muscles	(with	the	exception	of	biceps	activity	in	WMF	and	WHF	

conditions,	Figure	11B)	and	then	dropped	to	different	levels,	based	on	the	task	condition.	

As	can	be	seen	by	the	tuning	significances,	EMG	activity	typically	started	to	differ	between	

the	conditions	around	movement	onset	(Figure	11D)	or	shortly	afterwards	(Figure	11A	and	

C).		

	

Notable	is	the	significant	grip	type	tuning	(cluster-based	permutation	test,	p<0.01)	in	

Figure	11B	before	movement	onset,	in	the	Memory	epoch.	This	indicates	that	the	EDC	

muscle	is	activated	slightly	different	for	the	two	grip	types	while	the	monkey	is	waiting	for	

the	Go	signal.	In	the	other	session	(B150225)	with	EMG	data	this	was	also	observed	and	the	

EDC	activity	was	even	significantly	different	between	force	conditions	in	the	Memory	

epoch.	This	early	force	tuning	was	probably	only	observed	in	the	latter	session	because	the	
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EDC	signals	were	recorded	very	clearly	on	that	day	(peak	magnitude	exceeded	30).	

Nevertheless,	the	differences	between	the	conditions	are	so	small	compared	to	the	changes	

during	movement	that	they	are	unlikely	to	have	a	major	effect	on	the	neural	data.	

	

We	observed	that	early	force	tuning	was	always	caused	by	the	low	force	condition	being	

different	from	the	other	two	conditions	and	that,	like	the	force	profiles	of	monkey	B	(Figure	

8),	medium-	and	high	force	conditions	did	not	differ	in	EMG	activity	until	at	least	150	ms	

after	Touch.	This	observation	fits	with	our	earlier	hypothesis	that	monkey	B	waited	for	the	

reappearance	of	the	force	target	before	deciding	between	the	medium-	and	the	high	force	

condition.	

	

3.5.	Session	details	

We	recorded	neural	data	over	5	months	in	monkey	B	and	over	2	months	in	monkey	S.	We	

selected	11	sessions	of	monkey	B	and	5	session	of	monkey	S	that	had	a	high	number	of	

successful	trials	and	a	high	performance	for	every	condition.	Table	2	gives	an	overview	of	

the	sessions	selected	for	neural	analysis.	We	analyzed	more	sessions	of	monkey	B	than	of	

monkey	S	because	we	recorded	additional	sessions	with	M1	data	and	because	monkey	B	

had	fewer	F5	and	AIP	units	in	individual	sessions	than	monkey	S.	Even	though	a	substantial	

number	of	trials	were	excluded	from	each	session	due	to	long	response	times,	every	

session	still	had	at	least	340	successful	trials.	Note	that	Table	2	does	not	include	sessions	

B150513	and	S130717	from	which	force	profiles	were	extracted	(Figures	9	and	10,	

respectively),	but	no	neural	data	was	analyzed.	
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Table	2.	Session	details.	

Number	of	successful	trials,	excluded	trials,	and	recorded	units	in	AIP,	F5,	and	M1	in	every	session	used	in	

this	study.	When	no	units	were	recorded	from	the	respective	area	in	that	session,	it	is	labeled	as	NR	(Not	

Recorded).	In	session	B150219	we	recorded	with	only	one	electrode	array	from	F5	and	one	from	M1,	hence	

the	number	of	units	is	lower	in	these	areas.	The	number	of	successful	trials	(2nd	column)	did	not	include	the	

excluded	trials	(3rd	column).	First	letter	of	the	session	name	indicates	the	monkey	(B	or	S)	and	the	following	

six	numbers	indicate	the	recording	date.	

Session	

name	

Successful	

trials	

Excluded	

trials	

AIP	units	 F5	units	 M1	units	

B141021	 591	 138	 33	 45	 NR	

B141024	 400	 124	 31	 37	 NR	

B141028	 344	 87	 30	 46	 NR	

B141030	 581	 95	 29	 NR	 53	

B141104	 498	 99	 NR	 43	 44	

B141111	 495	 33	 21	 39	 NR	

B141120	 590	 77	 27	 NR	 58	

B141202	 776	 128	 41	 68	 NR	

B150113	 484	 63	 27	 50	 NR	

B150219	 447	 63	 30	 26	 36	

B150225	 502	 54	 22	 42	 NR	

S130612	 356	 34	 60	 62	 NR	

S130619	 419	 52	 78	 62	 NR	

S130620	 360	 35	 67	 67	 NR	

S130626	 495	 31	 50	 48	 NR	

S130704	 385	 38	 80	 77	 NR	
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To	best	analyze	a	large	number	of	units	from	different	areas,	but	without	creating	biased	

results,	we	created	the	best-channel	set.	This	dataset	contained	a	much	higher	number	of	

single-,	ambiguous-,	and	multi-units	than	individual	sessions,	as	can	be	seen	in	table	3.	This	

dataset	was	used	for	all	population	analyses.	
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Table	3.	Number	of	single-,	ambiguous-,	and	multi-units	units	per	average	session	and	in	the	best-

channel	set.		

Only	sessions	with	data	from	two	arrays	per	brain	area	were	used	to	calculate	the	average	number	of	units	in	

that	brain	area.	When	no	units	were	recorded	from	the	respective	area	in	that	session,	it	is	labeled	as	NR	(Not	

Recorded).	

AIP	 Monkey	B,	
average	
session	

Monkey	B,	
best-channel	
set	

Monkey	S,	
average	
session	

Monkey	S,	
best-channel	
set	

Single-units	 11.2	 47	 24.0	 56	
Ambiguous-
units	

3.1	 10	 6.2	 11	

Multi-units	 14.8	 34	 36.8	 45	
Total		 29.1	 91	 67.0	 112	
F5	 Monkey	B,	

average	
session	

Monkey	B,	
best-channel	
set	

Monkey	S,	
average	
session	

Monkey	S,	
best-channel	
set	

Single-units	 14.9	 62	 29.6	 57	
Ambiguous-
units	

4.0	 9	 5.6	 7	

Multi-units	 27.4	 55	 28.0	 29	
Total		 46.3	 126	 63.2	 93	
M1	 Monkey	B,	

average	
session	

Monkey	B,	
best-channel	
set	

Monkey	S,	
average	
session	

Monkey	S,	
best-channel	
set	

Single-units	 18.0	 40	 NR	 NR	
Ambiguous-
units	

3.0	 8	 NR	 NR	

Multi-units	 30.7	 39	 NR	 NR	
Total		 51.7	 87	 NR	 NR	
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3.6.	Single	neuron	responses	

A	great	variety	of	single	neuron	responses	were	found	in	every	area.	Figure	12	shows	four	

example	peristimulus	time	histograms	(PSTHs)	of	such	responses	from	F5	and	AIP	of	

monkey	S	(Figure	12A	and	B)	and	M1	and	AIP	of	monkey	B	(Figure	12C	and	D).	These	

examples	show	that	significant	differences	in	firing	rate	(cluster-based	permutation	test,	p<	

0.01)	between	grip	types	(grip	tuning)	and	force	conditions	(force	tuning)	could	appear	at	

different	moments	in	the	task	and	that	both	tuning	responses	were	present	in	every	brain	

area.	Although	firing	rate	differences	between	conditions	were	highest	in	the	Grasp	and	

Hold	epochs,	significant	tuning	effects	were	often	present	in	the	Cue	and	Memory	epochs,	

as	can	be	seen	in	Figure	12A,	B,	and	C.	These	neural	responses	have	some	resemblance	with	

the	EMG	responses	(Figure	11),	especially	the	M1	neuron	(Figure	12C),	but	the	modulation	

before	movement	is	much	clearer	and	the	low	force	condition	often	showed	the	highest	

activity	(Figure	12B,	C,	and	D),	in	contrast	to	EMG	activity.	Note	that	tuning	responses	could	

sometimes	appear	due	to	minute	time	differences	in	response	onsets,	as	can	be	seen	in	

Figure	12C,	where	the	strong	response	to	movement	onset	happened	slightly	sooner	in	the	

low	force	conditions.	

	

Firing	rates	in	medium-	and	high	force	conditions	were	usually	much	more	similar	to	each	

other	than	to	the	firing	rate	in	the	low	force	condition	(Figure	12A)	and	they	were	often	

identical	to	each	other	before	the	Hold	epoch,	especially	in	monkey	B	(Figure	12D	and	C).	

These	findings	are	similar	to	what	was	observed	in	the	force	profiles	(Figures	8	and	10)	

and	in	the	EMG	signals	(Figure	11).		

	



 89 

There	was	great	variety	in	which	grip	type	or	force	condition	evoked	the	highest	firing	rate	

(preferred	condition)	and	this	could	change	over	the	course	of	a	trial,	as	can	be	seen	in	

Figure	12B	for	grip	force,	and	in	Figure	12C	for	grip	type.	In	most	cases,	the	highest	firing	

rate	was	found	either	for	low-	or	high	force.	Medium	force	firing	rate	was	usually	between	

the	other	two	force	conditions.	Whenever	the	medium	force	condition	evoked	the	highest	

firing	rate	(dark	magenta	tuning	line),	it	was	usually	only	slightly	higher	than	the	low	

(Figure	12D)	or	high	force	condition	(Figure	12A	and	C),	with	the	latter	case	being	

observed	more	often	in	the	visually	inspected	PSTHs	(data	not	shown).	

	

Significant	interaction	effects	were	common	as	well.	This	meant	that	force	tuning	was	

affected	by	grip	type	in	a	certain	way.	There	are	three	main	cases	that	evoked	interaction	

tuning:	grip	force	tuning	was	only	present	in	one	grip	type	(case	1),	the	same	force	

conditions	evoked	highest	and	lowest	firing	rate,	but	they	differed	in	magnitude	between	

grip	types	(case	2),	or	the	opposite	force	condition	evoked	highest	firing	rate	in	the	other	

grip	type	(case	3).	Cases	1	and	2	are	usually	hard	to	distinguish,	but	case	3	can	easily	be	

found	where	interaction,	but	not	force	tuning,	was	significant.	All	three	cases	can	be	

observed	in	Figure	12.		

	

One	could	also	argue	that	grip	type	tuning	depended	on	force	tuning,	but	because	hand	

shape	did	not	appear	to	change	significantly	when	more	force	was	applied,	we	do	not	

discuss	this	case.	
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Figure	12.	Examples	of	single	neuron	responses.	

Convolved	average	firing	rates	of	single	neurons	over	time	for	low	force	(red),	medium	force	(green),	and	

high	force	(blue)	conditions	for	whole-hand	grip	(upper	panels	of	subplots)	and	precision	grip	(lower	panels	



 91 

of	subplots)	trials.	Shaded	areas	around	the	average	firing	rate	curves	represent	standard	error	of	the	mean.	

The	neural	response	is	aligned	at	Cue	On/Off,	Touch,	and	Reward.	These	events	are	marked	with	vertical,	

black,	dashed	lines	and	their	names	are	written	on	the	x-axis	of	the	lower	panels.	The	vertical,	grey,	dotted	

line	indicates	the	median	movement	onset.	Bold	text	on	top	of	each	subplot	indicates	from	which	brain	area	

this	neuron	was	recorded.	Small	text	on	the	top	left	of	each	subplot	shows	the	name	of	the	unit.	Text	on	top	of	

each	subplot,	between	dashed	lines,	indicates	the	epoch	names.	Colored	lines	on	top	of	each	subplot	(tuning	

lines)	indicate	time	intervals	with	significant	difference	in	firing	rate	between	grip	types	(cyan),	force	

(magenta	and	black),	or	with	significant	interaction	(gold)	between	grip	type	and	force	(cluster-based	

permutation	test,	p<	0.01).	Dark	cyan	lines	indicate	higher	firing	rate	for	whole-hand	grips	than	precision	

grips	at	these	time	intervals;	light	cyan	lines	indicate	the	opposite.	Light	magenta	lines	indicate	the	highest	

firing	rate	for	low	force	trials,	dark	magenta	lines	for	medium	force	trials,	and	black	lines	for	high	force	trials.	

Scale:	500	ms.	A.	Example	neuron	recorded	in	F5	of	session	S130619	(monkey	S),	B.	Example	neuron	

recorded	in	AIP	of	session	S130619	(monkey	S),	C.	Example	neuron	recorded	in	M1	of	session	B141030	

(monkey	B).	D.	Example	neuron	recorded	in	AIP	of	session	B141030	(monkey	B).	

	

	

3.7.	Population	tuning		

To	investigate	the	common	force	tuning	patterns	in	the	neural	population	of	the	

investigated	brain	areas,	we	plotted	the	time	intervals	with	significant	force	tuning	of	the	

units	in	the	best-channel	set,	sorted	by	their	tuning	onset	(Figure	13-16).	

	

3.7.1.	AIP	tuning	responses	

The	first	notable	finding	is	that	many	AIP	units	were	tuned	for	force	at	some	point	during	

the	task	(Figure	13).	In	monkey	S,	these	tuning	responses	of	AIP	units	started	already	in	the	

Cue	epoch	and	Memory	epoch	(Figure	13B).	But	in	monkey	B	only	very	few	AIP	units	
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showed	force	tuning	in	the	Cue	epoch	and	hardly	any	responded	in	the	Memory	epoch	

(Figure	13A).	Force	tuning	in	AIP	was	strongest	for	both	monkeys	after	Touch.	Figures	13C	

and	D	show	the	percentages	of	AIP	units	tuned	for	any	of	the	task	parameters	at	any	time	

point.	Even	though	monkey	B	had	a	much	lower	percentage	of	force	tuned	units	during	the	

Cue	epoch	(<5%)	than	monkey	S	(~20%),	both	monkeys	had	between	20	and	30%	of	AIP	

units	that	were	tuned	for	force	during	the	Hold	epoch.	

	

Grip	type	tuning	was	much	higher	than	force	tuning	in	AIP,	reaching	values	of	about	50%	

around	Touch	(Figures	13C	and	D).	Only	in	the	last	500	ms	of	the	Hold	epoch,	percentages	

of	force	tuning	were	similar	to	that	of	grip	type	tuning,	especially	in	monkey	S	(Figure	13D).	

Furthermore,	rises	in	percentages	of	units	tuned	for	grip	type	after	Cue	onset	also	preceded	

that	of	force	tuning	in	both	animals.		
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Figure	13.	Population	tuning	in	AIP.	

X-axis,	alignments,	epochs,	and	scale	are	the	same	as	in	figure	12.	A.	Force	tuning	lines	of	the	AIP	best-channel	

set	of	monkey	B.	Every	magenta	or	black	horizontal	line	represents	time	intervals	when	an	AIP	unit	was	

tuned	for	force.	Light	magenta	lines	indicate	the	highest	firing	rate	for	low	force	trials,	dark	magenta	lines	for	

medium	force	trials,	and	black	lines	for	high	force	trials.	Force	tuning	lines	are	sorted	by	tuning	onset,	in	

ascending	order.	The	total	number	of	units	in	this	dataset	is	shown	on	top	of	the	figure	between	brackets	in	

bold	letters.	B.	Same	as	A,	but	for	monkey	S.	C.	Percentage	of	units	tuned	for	grip	type	(cyan),	force	(magenta),	

or	interaction	(gold)	at	particular	time	intervals	for	monkey	B’s	AIP	best-channel	set.	D.	Same	as	C,	but	for	

monkey	S.	
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Interaction	tuning	showed	a	similar	pattern	as	force	tuning,	but	did	not	rise	as	strongly	

after	Touch.	As	described	above,	interaction	tuning	could	coincide	with	force	tuning,	

indicating	that	grip	force	tuning	was	only	present	in	one	grip	type	(case	1)	or	that	force	

tuning	differed	in	magnitude	between	grip	types	(case	2),	but	when	it	did	not	coincide	with	

grip	type	tuning,	force	tuning	was	reversed	in	the	other	grip	type	(case	3).	To	investigate	if	

the	interaction	component	was	dominated	by	one	of	these	cases,	we	created	the	same	

figure	with	force	and	interaction	tuning	plus	its	combination	Figure	14.	

	

	

Figure	14.	Force	and	interaction	tuning	in	AIP.	
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X-axis,	alignments,	epochs,	and	scale	are	the	same	as	in	figure	12	and	13.	A.	Lines	show	the	time	intervals	

when	a	unit	was	tuned	for	only	force	(magenta),	only	interaction	(gold),	or	both	(dark	red).	Lines	are	sorted	

by	interaction	tuning	onset,	in	ascending	order.	B.	Same	as	A,	but	for	monkey	S.	C.	Percentage	of	units	tuned	

for	only	force	(magenta),	only	interaction	(gold),	or	both	(dark	red)	at	particular	time	intervals	for	monkey	

B’s	AIP	best-channel	set.	Note	that	adding	the	percentages	of	the	dark	red	lines	to	the	magenta	or	golden	line,	

results	into	having	the	same	magenta	or	golden	line	in	Figure	13B,	respectively.	D.	Same	as	C,	but	for	monkey	

S.	

	

	

We	can	see	in	Figure	14	that	only	in	the	middle	of	the	Hold	epoch	there	is	clearly	a	higher	

percentage	of	units	that	are	tuned	for	interaction	and	force	simultaneously	than	for	

interaction	alone,	suggesting	that	case	1	and	2	are	more	common	in	this	period,	but	all	

cases	contribute	to	the	interaction	effect.	Only-interaction	tuning	stayed	at	a	similar	level		

throughout	the	trial	and	did	not	rise	during	Hold.	Areas	F5	and	M1	showed	similar	patterns	

for	interaction	tuning	(data	not	shown).	These	findings	demonstrate	that	only	a	minority	of	

units	had	reversed	force	tuning	for	the	other	grip	type	during	the	Hold	epoch.	The	rise	in	

interaction	tuning	observed	in	Figure	13	during	Hold	was	interaction	together	with	force	

tuning,	hence	there	was	no	increase	in	reversed	force	tuning	during	this	period.	In	

conclusion,	most	units	coding	force,	did	this	in	the	same	way	for	whole-hand	grip	and	

precision	grip.	

	

3.7.2.	F5	tuning	responses	

Similar	tuning	responses	as	in	AIP	(Figure	13)	were	observed	in	F5	(Figure	15),	but	higher	

percentages	of	units	where	tuned	for	force	in	this	area.	This	was	especially	noticable	in	the	
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Cue	and	Memory	epochs	of	monkey	B	(Figure	13C	and	15C).	Also,	we	can	see	a	rise	in	force	

tuning	percentages	in	the	middle	of	the	Memory	epoch,	at	the	same	time	grip	tuning	

percentages	are	rising,	while	this	was	not	simultaneous	in	AIP.	F5	responses	in	monkey	B	

were	similar	to	monkey	S,	only	monkey	S	had	higher	percentages	of	force	tuning,	especially	

in	the	Cue	and	Memory	epoch.	Grip	type	tuning	is	similar	in	AIP	and	F5	until	Touch,	but	

dropped	more	sharply	in	F5	than	in	AIP.	For	most	of	the	Hold	epoch,	force	tuning	

percentages	were	higher	than	grip	tuning	percentages	in	F5,	unlike	in	AIP.	Interaction	

tuning	in	F5	followed	the	same	pattern	as	in	AIP.	Altoghether,	it	seems	that	force	is	coded	

stronger	in	F5	than	in	AIP,	even	though	this	was	not	the	case	for	grip	type	in	this	

experiment.	The	stronger	response	to	force	before	movement	onset	potentially	reflects	a	

bigger	role	for	F5	in	force	planning.	
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Figure	15.	Population	tuning	in	F5.	

Same	as	Figure	13,	but	for	the	F5	best-channel	set	of	monkey	B	and	S.	

	

	

3.7.3.	M1	tuning	responses	

M1	units	were	only	recorded	from	monkey	B	and	their	responses	are	shown	in	Figure	16.	

As	expected,	many	units	in	M1	were	tuned	for	grip	type	and	force,	especially	during	

movement.	However,	even	though	the	percentage	of	grip	type	tuned	units	was	much	higher	

in	M1	than	in	F5	and	AIP,	the	percentage	of	force	tuned	units	was	roughly	the	same	as	in	F5	

and	only	slightly	higher	than	AIP.	The	force	tuning	percentages	during	Cue	were	lower	than	
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F5	and	monkey	S’	AIP.	Force	tuning	during	Memory	was	neglectible,	like	in	Monkey	B’s	AIP.	

However,	the	rise	in	force	tuning	percentages	occurred	sooner	in	M1	than	in	AIP,	and	

similar	to	F5.	Like	in	AIP	and	F5,	interaction	tuning	followed	a	similar	pattern	like	force	

tuning,	but	in	M1	interaction	increased	to	a	higher	level	in	the	Hold	epoch	than	in	AIP	and	

F5.	This	shows	a	higher	influence	of	grip	type	on	force	tuning	of	M1	units	during	

movement.	

	

	

Figure	16.	Population	tuning	in	M1.	

Same	as	Figure	13,	but	for	the	M1	best-channel	set	of	monkey	B.	

	

	

3.7.4.	Preferred	force	condition	

Highest	firing	rate	was	usually	evoked	by	the	low-	or	high	force	condition.	Periods	where	

medium	force	evoked	the	highest	firing	rate	were	usually	preceded	or	followed	by	periods	

when	high	force	evoked	the	highest	firing	rate,	indicating	that	both	conditions	evoked	

roughly	the	same	firing	rate,	as	can	be	seen	in	the	example	PSTH	in	Figure	12A.	To	visualize	
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the	similarity	between	the	responses	to	the	medium-	and	high	force	condition,	we	show	the	

median	firing	rate	for	the	medium	force	condition	of	all	significantly	force	tuned	units	at	a	

particular	time	point,	normalized	by	the	firing	rate	for	the	low-	and	high	force	(see	

methods)	in	Figure	17.	We	can	see	in	each	panel	of	this	figure	that	the	median	values	are,	

especially	before	Touch,	much	closer	to	1	than	to	0,	indicating	that	the	firing	rate	for	the	

medium	force	condition	is	much	more	similar	to	the	firing	rate	for	the	high	force	condition	

as	compared	to	the	low	force	condition,	in	each	investigated	brain	area.	Furthermore,	the	

median	values	were	rarely	higher	than	1	and	never	below	0,	which	indicates	that,	in	the	

majority	of	cases,	the	firing	rate	for	the	medium	force	was	between	the	firing	rate	for	the	

low-	and	high	force	condition.	
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Figure	17.	Medium	force	modulation	index.	

Firing	rate	for	the	medium	force	condition	of	significantly	tuned	units	at	a	particular	time	point,	normalized	

by	the	activity	for	the	low-	and	high	force	conditions.	A	value	of	0	means	the	firing	rate	is	the	same	as	in	the	
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low	force	condition	(red	line),	a	value	of	1	means	the	firing	rate	is	the	same	as	in	the	high	force	condition	

(blue	line),	and	a	value	of	0.5	means	it	is	exactly	between	low-	and	high	force	(horizontal	dotted	line).	Green	

dots	indicate	the	median	value	of	all	units	significantly	tuned	for	force	at	that	time	point.	The	vertical	green	

lines	range	from	first	till	third	quartile;	transparency	indicates	the	number	of	force	tuned	units	(more	

transparent	for	fewer	units).	A.	AIP	best	channel	set	of	monkey	B.	B.	AIP	best	channel	set	of	monkey	S.	C.	F5	

best	channel	set	of	monkey	B.	D.	F5	best	channel	set	of	monkey	S.	E.	M1	best	channel	set	of	monkey	B.		

	

	

It	seems	to	be	more	common	that	low	force	evoked	the	highest	firing	rate	early	in	the	Cue	

epoch,	as	can	be	seen	in	Figure	13B	and	15B.	On	the	other	hand,	around	movement	onset	it	

is	more	common	that	high	force	evoked	the	highest	firing	rate,	which	can	be	seen	clearest	

in	Figure	15B.	To	gain	an	overview	of	which	condition	was	more	often	preferred	(i.e.	which	

condition	evoked	the	highest	firing	rate)	by	the	recorded	units,	we	show	the	percentages	of	

tuned	units	that	preferred	the	low	force	condition	or	either	the	medium-	or	high	force	

condition	in	Figure	18.	Medium	force	is	grouped	together	with	high	force,	because	in	the	

few	cases	that	firing	rate	in	this	condition	was	higher	than	it	was	in	the	high	force	

condition,	it	was	usually	only	slightly	higher	(Figure	17).	We	can	see	in	Figure	18	that	both	

conditions	are	preferred	equally	often	in	AIP	and	M1	of	monkey	B	(Figure	18A	and	E,	

respectively),	but	low	force	is	preferred	more	often	before	movement	onset	and	less	often	

after	movement	onset	in	AIP	and	F5	of	monkey	S	and	F5	of	monkey	B	(Figure	18B,	D,	and	C,	

respectively).	

	

The	exact	mechanisms	for	these	patterns	are	unclear.	It	could	be	that	activation	patterns	

around	movement	onset	are	linked	to	the	increasing	activity	of	neurons	in	the	corticospinal	
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tract	to	increase	muscle	activity	more	in	high	force	conditions	(Figure	11-R9).	However,	we	

would	then	expect	that	especially	in	M1	the	high	force	conditions	evoke	a	higher	firing	rate,	

which	was	not	observed	(Figure	18E).	Higher	activity	in	low	force	conditions	in	the	Cue	

epoch	likely	has	to	do	with	the	conceptual	understanding	of	this	condition,	and	perhaps	

higher	activity	is	linked	to	the	higher	motivation	the	monkeys	had	for	performing	this	

condition	(Figure	6).		
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Figure	18.	Percentage	of	preferred	conditions.	

Lines	indicate	the	percentage	of	force	tuned	units	that	prefer	the	low	force	condition	(magenta)	or	either	the	

medium	or	high	force	condition	(black).	A.	AIP	best	channel	set	of	monkey	B.	B.	AIP	best	channel	set	of	
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monkey	S.	C.	F5	best	channel	set	of	monkey	B.	D.	F5	best	channel	set	of	monkey	S.	E.	M1	best	channel	set	of	

monkey	B.		

	

	

3.7.5.	Comparing	best-channel	set	to	average	tuning	

All	population	results	are	based	on	the	best-channel	set	to	make	sure	that	units	recorded	

over	multiple	sessions	cannot	bias	the	results.	However,	since	it	is	common	to	present	the	

neural	population	response	in	electrophysiological	studies	by	averaging	the	percentage	of	

tuned	units	of	every	session,	it	is	interesting	to	see	how	average	tuning	compares	to	results	

from	the	best-channel	set.	In	Figure	19	we	show	average	tuning	percentages	for	the	

sessions	used	in	this	study.	When	we	compare	panels	of	Figure	19	to	corresponding	panels	

of	figures	13,	15,	and	16	(e.g.	Figure	19A	and	Figure	13C),	we	can	see	that	the	results	are	

almost	identical.	We	can	conclude	from	this	that	the	results	from	the	best-channel	set	

correspond	very	well	to	the	average	response	of	individual	sessions.	
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Figure	19.	Average	tuning	over	sessions.	

Percentages	of	units	tuned	for	grip	type	(cyan),	force	(magenta),	and	interaction	(gold)	averaged	over	

sessions.	Shaded	areas	represent	standard	error	of	the	mean.	A.	Average	tuning	of	the	10	sessions	when	AIP	
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was	recorded	from	monkey	B.	Similar	to	Figure	13C.	B.	Average	tuning	of	the	5	sessions	when	AIP	was	

recorded	from	monkey	S.	Similar	to	Figure	13D.	C.	Average	tuning	of	the	9	sessions	when	F5	was	recorded	

from	monkey	B.	Similar	to	Figure	15C.	D.	Average	tuning	of	the	5	sessions	when	F5	was	recorded	from	

monkey	S.	Similar	to	Figure	15D.	E.	Average	tuning	of	the	4	sessions	when	M1	was	recorded	from	monkey	B.	

Similar	to	Figure	16B.	

	

	

3.8.	Dimensionality	reduction	

Tuning	patterns	in	the	different	brain	areas,	as	descried	above,	give	a	summary	of	how	

individual	units	responded	to	task	parameters,	but	ignore	the	complex	responses	over	the	

course	of	a	trial	that	are	visible	in	individual	PSTHs	(Figure	12).	Furthermore,	it	also	does	

not	tell	us	how	a	significant	difference	in	firing	rate	between	conditions	relates	to	the	total	

change	in	firing	rate	over	the	course	of	a	trial.	For	example,	the	neurons	in	Figure	12A	and	

C	both	show	significant	force	tuning	before	Movement	onset,	but	for	the	F5	neuron	(Figure	

12A)	this	accounts	for	a	much	greater	amount	of	the	total	variance	than	for	the	M1	neuron	

(Figure	12C).	To	get	an	overview	of	common	responses	in	the	different	areas	and	to	

calculate	how	much	of	the	variance	is	influenced	by	the	task	conditions,	we	applied	a	novel	

dimensionality	reduction	technique	called	demixed	principal	component	analysis	(dPCA)	

on	the	data	(Kobak	et	al.,	2016).	Like	standard	principal	component	analysis	(PCA),	this	

method	extracts	the	components	that	explain	most	of	the	variance	and	calculates	how	

much	variance	is	explained	by	every	component.		It	also	uses	information	about	task	

conditions	to	calculate	how	much	variance	can	be	attributed	to	one	of	the	conditions.	With	
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a	linear	classifier	(stratified	Monte	Carlo	leave-group-out	cross-validation)	it	then	

calculates,	for	every	time	point,	if	conditions	can	be	decoded	from	individual	components.	
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Figure	20.	Demixed	principal	component	analysis	of	AIP	in	monkey	B.	

A.	Normalized	firing	rate	over	time	of	the	first	three	demixed	components	of	which	variance	is	mainly	

attributable	to	condition-independent	factors	(top	row),	grasp	force	(second	row),	grip	type	(third	row),	or	

grip	type	and	force	interaction	(fourth	row).	The	red	lines	represent	the	firing	rate	in	the	low	force	condition,	

the	green	lines	the	medium	force	condition,	and	the	blue	lines	the	high	force	condition.	Lines	are	solid	for	

whole-hand	trials	and	dashed	for	precision	grip	trials.	A	horizontal	solid	line	on	top	of	the	components	(2nd	

row,	magenta	line;	3rd	row,	cyan	line;	4th	row,	golden	line)	shows	the	time	periods	when	the	respective	task	

parameter	can	be	reliably	decoded	(classification	accuracy	exceeded	all	100	shuffled	accuracies	in	at	least	10	

consecutive	time	bins).	Task	events	Cue	onset,	Cue	offset,	Touch,	and	Reward	are	marked	as	vertical,	grey,	

solid	lines.	The	vertical,	grey,	dotted	line	indicates	the	median	movement	onset.	A	timescale	of	500	ms	is	

visible	in	the	top	and	bottom	plot	of	the	first	column.	B.	Total	amount	of	variance	explained	for	the	number	of	

components	used	in	the	analysis	for	PCA	(black)	and	dPCA	(red).	C.	Barplot	shows	the	amount	of	variance	

explained	by	the	first	10	components.	Colors	show	the	proportion	of	variance	explained	by	condition-

independent	factors	(grey),	grip	force	(magenta),	grip	type	(cyan),	and	interaction	(gold).	D.	Upper-right	

triangle	shows	dot	products	between	all	pairs	of	the	30	demixed	principal	axes,	yellow	asterisks	indicate	

when	pairs	are	significantly	and	robustly	non-orthogonal	(Kendall	correlation,	p<	0.001).	Bottom-left	triangle	

shows	correlations	between	all	pairs	of	the	30	demixed	principal	components.	

	

3.8.1.	Demixed	components	and	explained	variance	in	AIP	

Figure	20A	shows	11	of	these	demixed	components	from	the	AIP	best-channel	set	of	

monkey	B.	The	first	and	largest	component,	explaining	37.0%	of	neural	variance,	shows	an	

increase	in	firing	rate	that	starts	at	movement	onset	and	continues	until	after	Reward.	

Component	2	shows	an	increase	in	firing	rate	shortly	before	median	movement	onset,	

peaking	around	Touch	and	then	dropping	again	during	the	Hold	epoch.	The	third	

component	is	strongly	affected	by	grip	type.	A	thick	cyan	line	on	top	of	the	plot	of	

component	3	shows	that	grip	type	could	be	reliably	decoded	at	several	points	in	a	trial.	
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First,	there	is	a	relatively	small,	but	decodable,	difference	in	firing	rate	shortly	after	Cue	

offset,	lasting	about	250	ms.	Then	shortly	before	median	movement	onset,	these	firing	rates	

diverge	again	for	the	grip	type	and	this	can	be	decoded	for	the	remainder	of	the	trial.	These	

first	three	components	show	that	already	68.2%	of	the	neural	variance	in	AIP	of	monkey	B	

can	be	explained	by:	1.	steady	increase	during	Hold,	2.	phasic	response	around	Touch,	3.	

phasic-tonic	response	to	grip	type	during	movement.	

	

Two	other	grip	type	dominant	components	are	shown	in	Figure	20.	These	components	

explain	much	less	of	the	variance	than	component	3,	but	also	in	these	components	could	

grip	type	be	reliably	decoded	during	the	Hold	epoch	and,	additionally,	during	most	of	the	

Cue	and	Memory	epoch.	

	

The	largest	component	that	is	mainly	influenced	by	the	force	conditions	is	component	6.	

This	component	shows	a	divergence	of	the	force	conditions	directly	after	Touch,	continuing	

until	the	end	of	the	trial.	As	was	observed	in	the	example	unit	of	Figure	12D,	low	force	

diverged	first	from	the	other	two	force	conditions,	and	the	medium-	and	high	force	

conditions	diverged	later.	Similar	patterns	were	observed	in	component	13	and	20,	

although	force	was	not	decodable	for	the	entire	Hold	epoch	in	these	components.	Note	that	

force	could	not	be	decoded	before	Touch	from	any	of	these	components.	

	

A	few	small	components	were	influenced	by	both	grip	type	and	force	in	a	way	that	could	

not	be	disentangled	(interaction).	Two	of	these	components	are	shown	in	Figure	20,	they	
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show	that	firing	rate	during	the	Hold	epoch	was	similar	for	some	conditions	that	differed	

both	in	grip	type	and	force.	

		

How	much	each	of	the	four	factors	(grip	type,	force,	interaction,	and	condition-

independent)	contributed	to	the	variance	in	the	30	extracted	components,	is	shown	in	the	

pie	chart	of	Figure	20C	(only	the	first	10	components	are	shown	in	the	bar	plots).	The	

highest	contributor	to	the	variance	is	condition-independent,	responsible	for	75%	of	the	

variance.	This	is	not	a	surprising	finding	as	this	was	already	found	in	many	other	in	vivo	

electrophysiological	experiments	(Kobak	et	al.,	2016),	but	is	nevertheless	important	to	

note,	while	it	is	often	ignored	in	other	methods,	such	as	tuning	analyses.	The	second	

highest	contributor	is	grip	type,	responsible	for	18%	of	the	variance.	Force	is	a	much	

smaller	contributor,	but	still	explains	5%	of	the	variance.	Interaction	is	the	smallest	

contributor,	explaining	only	2%	of	the	variance.	Because	variance	explained	by	interaction	

is	much	smaller	than	what	is	explained	by	grip	type	or	force,	we	can	conclude	that	most	of	

the	grip	type	and	force	information	in	monkey	B’s	AIP	can	be	extracted	separately.	

	

Figure	20B	shows	that	dPCA	explains	almost	as	much	variance	as	PCA,	indicating	that	little	

information	is	lost	with	this	method.	Figure	20D	shows	in	the	upper-right	triangle	that,	

even	though	dPCA	does	not	enforce	orthogonality	between	the	components,	only	one	pair	

(marked	with	a	yellow	asterisk)	was	significantly	non-orthogonal.	The	bottom-left	triangle	

in	Figure	20D	shows	the	correlations	between	pairs	of	demixed	components,	most	of	them	

are	close	to	zero.	
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Though	similar	to	monkey	B,	some	different	observations	were	made	in	AIP	of	monkey	S	

(Figure	21).	Most	importantly,	grip	type	is	represented	much	stronger	in	this	dataset,	

explaining	30%	of	the	component’s	variance,	and	components	2,	7	and	9	show	that	this	

could	already	be	decoded	early	in	the	Cue	epoch.	Furthermore,	force	conditions	could	be	

decoded	in	the	Cue	and	Memory	epoch	(most	clear	in	component	11),	which	was	not	found	

in	monkey	B.			

	

The	condition-independent	components	described	for	monkey	B	are	also	found	in	monkey	

S,	only	now	the	phasic	response	to	Touch	is	a	larger	component	than	the	steady	increase	

during	Hold.	Component	2,	the	largest	grip	type	component,	looks	quite	different	from	the	

grip	type	components	found	in	monkey	B,	but	component	9	of	monkey	S	bears	some	

similarity	with	component	8	of	monkey	B.	Force	component	6	of	monkey	S	is	also	similar	to	

component	6	of	monkey	B,	only	component	11	of	monkey	S	clearly	stands	out	with	Cue	and	

Memory	force	effects.	In	Figure	21D	we	can	see	more	pairs	that	are	significantly	non-

orthogonal	than	in	Figure	20D.	However,	the	great	majority	of	pairs	were	still	close	to	

orthogonal.	
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Figure	21.	Demixed	principal	component	analysis	of	AIP	in	monkey	S.	

Same	as	Figure	20,	but	for	the	AIP	best-channel	set	of	monkey	S.	

	

	

3.8.2.	Demixed	components	and	explained	variance	in	F5	

We	saw	that	the	tuning	patterns	of	F5	(Figure	15)	hold	some	similarities	with	AIP	(Figure	

13),	especially	with	AIP	of	monkey	S.	We	can	make	a	similar	observation	when	we	compare	

the	components	revealed	by	dPCA	of	F5	(Figures	22	and	23)	and	AIP	(Figures	20	and	21).	

However,	there	are	two	important	differences	to	note.	First,	there	is	a	strong	coding	of	

force	in	the	Cue	and	Memory	epoch,	as	is	clearly	visible	in	component	6	of	Figure	22	and	

component	15	of	Figure	23.	Second,	even	though	the	total	percentage	of	variance	in	the	

components	contributable	to	force	is	similar	to	AIP,	the	variance	contributed	by	grip	type	is	

much	lower	in	F5.	This	does	not	automatically	mean	that	AIP	contains	more	information	

about	grip	type,	but	it	means	that	the	amount	of	variance	contributing	to	force	in	relation	to	

grip	type	is	higher	in	F5.	
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Figure	22.	Demixed	principal	component	analysis	of	F5	in	monkey	B.	

Same	as	Figure	20,	but	for	the	F5	best-channel	set	of	monkey	B.	
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Figure	23.	Demixed	principal	component	analysis	of	F5	in	monkey	S.	

Same	as	Figure	20,	but	for	the	F5	best-channel	set	of	monkey	S.		

	

3.8.3.	Demixed	components	and	explained	variance	in	M1	

When	we	look	at	Figure	24,	the	first	thing	to	notice	is	the	low	amount	of	variance	explained	

by	the	force	conditions.	This	may	seem	somewhat	counter-intuitive,	since	M1	is	known	to	

strongly	encode	grip	force	signals	(Smith	et	al.,	1975;	Hepp-Reymond	et	al.,	1978;	Hepp-

Reymond	and	Diener,	1983;	Muir	and	Lemon,	1983;	Maier	et	al.,	1993;	Hepp-Reymond	et	

al.,	1999;	Carmena	et	al.,	2003;	Hendrix	et	al.,	2009;	Milekovic	et	al.,	2015).	However,	as	

mentioned	before,	a	low	percentage	of	the	total	variance	does	not	automatically	mean	a	

low	amount	of	information	compared	to	the	other	areas,	as	it	may	be	that	M1	variance	is	of	

a	higher	magnitude	than	what	is	found	in	F5	and	AIP.	Nevertheless,	it	does	mean	that	force	

variance	is	low	compared	to	the	condition-independent	variance	and	grip	type	variance.	

	

The	components	revealed	by	dPCA	in	M1	show	similar	patterns	as	in	AIP	and	F5,	but	with	

much	weaker	decoding	results	before	movement	onset.	This	matches	well	with	the	view	of	

AIP	and	F5	being	more	involved	with	movement	planning	and	M1	being	more	involved	

with	movement	output.		
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Figure	24.	Demixed	principal	component	analysis	of	M1	in	monkey	B.	

Same	as	Figure	20,	but	for	the	M1	best-channel	set	of	monkey	B.	

	

	

3.8.4.	Response	of	demixed	components	to	medium-	and	high	force	

In	all	dPCA	component	figures	(20-24)	we	see	that	medium	force	firing	rate	is	more	similar	

to	high	force	firing	rate	and	that	they	typically	do	not	diverge	until	about	200	ms	after	

Touch.	This	is	in	line	with	the	force	profiles	(Figures	8-10),	EMG	signals	(Figure	11),	

example	neuron’s	PSTHs	(Figure	12),	and	the	medium	force	modulation	index	(Figure	17).	
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4.	Discussion	 	

	 	 	

This	chapter	will	summarize	the	findings	of	the	previous	chapter	and	compare	them	to	

what	has	been	found	in	the	literature.	I	will	address	concerns	that	readers	might	have	and	

argue	how	our	findings	contribute	to	the	existing	literature.	

	

In	this	chapter,	I:	

-	Summarize	our	major	findings	(Chapter	4.1.)	

-	Compare	the	neural	coding	of	grasp	force	in	M1	to	the	literature	(Chapter	4.2.)	

-	Describe	new	findings	about	how	F5	codes	grasp	force	control	and	planning	(Chapter	4.3.)	

-	Describe	the	neural	coding	of	grasp	force	control	in	AIP	and	discuss	its	potential	role	

grasp	force	planning	(Chapter	4.4.)	

-	Discuss	how	grasp	force	coding	relates	to	grip	type	(Chapter	4.5.)	

-	Bring	up	alternative	explanations	for	what	grasp	force	coding	might	represent	(Chapter	

4.6.)	

-	Describe	some	unique	aspects	of	our	study	(Chapter	4.7.)	

-	Discuss	the	functional	role	of	AIP,	F5,	and	M1	in	the	control	of	grasp	force	(Chapter	4.8.)	

-	Conclude	the	relevance	of	our	findings	(Chapter	4.9.)	
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4.1.	Summary	

The	goal	of	this	study	was	to	investigate	how	macaque	brain	areas	AIP,	F5,	and	M1	are	

involved	in	the	planning	and	execution	of	grasp	force.	We	found	strong	coding	of	grasp	

force	in	units	of	all	three	areas,	thereby	showing	for	the	first	time	single	neuron	modulation	

to	grasp	force	in	area	AIP.	All	areas	had	strongest	force	modulation	during	grasp	execution	

and	holding.	Grasp	force	planning	activity	was	strongest	in	F5.	M1	units	showed	some	

response	to	the	force	cue,	but	hardly	any	force	modulation	in	the	consecutive	Memory	

epoch.	Force	planning	activity	in	AIP	differed	between	the	two	investigated	monkeys.	In	

monkey	S	it	was	about	as	strong	as	in	F5,	whereas	in	monkey	B	it	was	about	as	weak	as	in	

M1.	There	was	a	great	variety	among	units	which	condition	evoked	the	highest	firing	rate,	

the	only	notable	pattern	was	that	the	firing	rate	for	the	medium	force	condition	was	usually	

between	the	other	conditions	or	similar	to	the	high	force	condition.	Furthermore,	which	

condition	evoked	highest	firing	rate	often	changed	over	the	course	of	a	trial.	Grip	type	

tuning	was	stronger	than	grasp	force	tuning,	except	for	the	holding	epoch	of	F5.	Grip	type	

and	force	tuning	often	interacted,	but	only	in	a	minority	of	units	did	the	grip	type	affect	

which	force	condition	evoked	the	highest	firing	rate.	

	

By	using	demixed	principal	component	analysis	(dPCA),	we	found	that	grip	type	explained	

more	neural	variance	in	the	investigated	areas	than	grasp	force.	In	F5	these	values	were	

much	closer	to	each	other	than	in	the	other	areas,	suggesting	a	possibly	more	important	

role	for	F5	in	controlling	grasp	force.	We	also	found	that	force	signals	could	be	decoded	

from	all	three	brain	areas	during	grasp	execution	and	holding.	Grasp	force	decoding	before	

movement	onset	was	uncommon	in	demixed	principal	components	of	AIP	and	M1	of	



 125 

monkey	B,	but	common	in	AIP	of	monkey	S	and	in	F5	of	both	monkeys.	Altogether,	this	

study	showed	that	F5	encodes	grasp	force	planning	strongest	among	the	three	investigated	

areas.	Grasp	force	planning	in	M1	is	quite	weak	and	for	AIP	this	remains	unclear	due	to	

inconsistency	between	animals.	

	

4.2.	Grasp	force	coding	in	M1	

We	found	that	the	percentages	of	units	coding	grasp	force	in	M1	reached	40%	during	the	

Hold	epoch.	This	confirms	that	many	M1	units	code	grasp	force,	as	has	been	shown	

repeatedly	in	the	last	decades	(Smith	et	al.,	1975;	Hepp-Reymond	et	al.,	1978;	Hepp-

Reymond	and	Diener,	1983;	Maier	et	al.,	1993;	Hepp-Reymond	et	al.,	1999).	We	also	found	

some	units	that	modulated	their	firing	rate	in	relation	to	the	force	cue	presented,	and	with	

dPCA	we	found	one	principal	component	where	grasp	force	could	be	decoded	from	a	

fraction	of	the	Cue	epoch	and	not	during	the	Memory	epoch.	On	the	other	hand,	grasp	force	

was	reliably	decoded	from	the	Hold	epoch	in	all	force	components.	These	findings	

correspond	well	to	a	study	which	showed	that	grip	force	can	be	decoded	from	M1	LFP	

activity	during	movement	and,	to	a	minor	extent,	also	during	planning	(Milekovic	et	al.,	

2015).	

	

dPCA	also	revealed	that	the	amount	of	variance	explained	by	grasp	force	was	3%.	This	may	

seem	like	a	low	number,	but	is	actually	within	the	range	of	how	much	variance	a	task	

condition	explains	in	in	vivo	neurophysiological	studies	(Kobak	et	al.,	2016).	However,	it	is	

low	compared	to	variance	explained	by	grip	type	(19%).	This	difference	corresponds	to	the	

higher	percentage	of	grip	type	tuned	units	found	in	M1.	Most	of	the	variance	was	explained	
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by	condition-independent	components	(76%).	As	can	be	seen	in	Figure	24A,	the	three	

largest	condition-independent	components	had	peak	firing	rate	around	movement	onset,	

suggesting	a	high	contribution	of	the	reaching	movement	on	activity	of	the	hand	field	of	

M1.		

	

The	much	lower	contribution	of	M1	variance	to	grasp	force	than	to	hand	shape	or	reaching	

movements	may	seem	in	conflict	with	the	idea	that	M1	activity	is	more	concerned	with	

muscle	output	than	with	changes	in	kinematics	(Evarts,	1968;	Cheney	and	Fetz,	1980;	

Hamel-Pâquet	et	al.,	2006).	However,	it	is	important	to	note	that	muscle	activity	is	affected	

much	more	by	the	reaching	movement	and	grip	type	than	by	the	force	conditions,	as	can	be	

seen	in	the	EMG	signals	(Figure	11).	It	is	also	interesting	to	note	that	demixed	component	1	

in	Figure	24A,	which	explains	33.3%	of	the	variance	in	M1,	looks	very	similar	to	the	EMG	

responses.		

	

Although	the	M1	results	of	this	study	do	not	add	much	new	information	to	the	existing	

literature	about	grasp	force	by	themselves,	it	is	useful	to	compare	the	percentages	of	tuned	

units	and	explained	variance	from	this	well	investigated	area	to	that	of	the	less	studied	

areas	F5	and	AIP.		

	

4.3.	Grasp	force	coding	in	F5	

It	was	already	shown	in	the	1990s	that	neurons	of	the	ventral	premotor	cortex	code	grip	

force	(Hepp-Reymond	et	al.,	1994),	but	it	was	also	said	that	percentages	of	force	tuned	

neurons	were	lower	in	PMv	than	in	M1.	Our	results	do	not	fully	agree	with	this,	since	we	
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found	that,	like	M1,	about	40%	of	units	in	F5	are	tuned	for	force	in	the	Hold	epoch.	Before	

movement	onset,	we	even	observed	higher	percentages	of	force	tuned	units	in	F5	(10-30%)	

than	in	M1	(<10%).	However,	these	differences	could	well	be	due	to	different	task	designs.	

In	the	study	of	Hepp-Reymond	and	colleagues,	monkeys	already	held	the	force	transducer	

at	the	start	of	a	trial,	so	there	was	no	reaching	component.	This	paradigm	is	likely	most	

similar	to	the	later	part	of	the	Hold	epoch	in	our	task	design.	Indeed,	when	we	look	at	the	

last	500	ms	before	reward	onset	(Figure	15	and	16),	the	percentage	of	force	tuned	units	is	

about	10%	lower	in	F5	than	in	M1.	This	could	mean	that	F5	is	the	major	area	to	plan	grasp	

force	and	apply	the	right	amount,	but	when	this	is	achieved,	M1	becomes	predominant	to	

control	static	force.	More	research	is	required	to	test	this	hypothesis.		

	

We	were	able	to	predict	the	grasp	force	condition	in	both	monkeys	from	the	firing	rate	of	

F5	units	before	movement	onset,	which	was	not	possible	from	M1	activity.	Even	though	we	

did	not	explicitly	test	decoding	performances	in	this	study,	and	therefore	cannot	say	which	

area	would	be	better	in	predicting	grasp	force	during	movement	execution,	it	is	likely	that	

both	of	these	areas	are	suitable	targets	for	decoding	grasp	force,	as	was	also	found	in	a	pilot	

study	for	predicting	maximum	applied	grip	force	(Bataineh	et	al.,	2016).	

	

Interestingly,	the	percentage	of	variance	explained	by	the	force	conditions	was	much	

higher	in	F5	(8%	and	9%	for	monkey	B	and	S,	respectively)	than	in	M1	(3%	for	monkey	B),	

while	the	grip	type	variance	was	lower	(11%	in	monkey	B’s	F5)	or	similar	(19%	in	monkey	

S’	F5)	to	M1	(19%).	Even	though	this	does	not	reveal	which	brain	area	holds	more	
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information	about	grasp	force,	it	shows	that	F5	is	affected	more	by	grasp	force	conditions	

than	M1	relative	to	how	both	areas	are	affected	by	grip	type.		

	

4.4.	Grasp	force	coding	in	AIP	

4.4.1.	Grasp	force	control	

We	have	shown,	to	our	knowledge	for	the	first	time,	single	neuron	coding	for	grasp	force	in	

AIP.	Even	though	the	two	animals	showed	different	amounts	of	grasp	force	coding	in	the	

period	before	movement	onset,	a	similar	proportion	of	units	was	modulated	by	grasp	force	

during	movement.		

	

This	finding	contradicts	the	idea	that	the	parietal	cortex	strictly	codes	kinematics	and	not	

kinetics	(Kalaska	et	al.,	1990;	Hamel-Pâquet	et	al.,	2006),	but	is	in	line	with	other	studies	

that	have	shown	force	modulation	in	the	parietal	cortex	(Ehrsson	et	al.,	2003;	Keisker	et	al.,	

2010;	Neely	et	al.,	2013;	Ferrari-Toniolo	et	al.,	2015).	Although	finding	some	force	

modulation	in	AIP	is	probably	not	surprising,	we	found	that	20-30%	of	the	recorded	units	

was	tuned	for	force	in	the	Hold	epoch	(Figure	13).	In	comparison	to	the	percentage	of	force	

tuned	units	M1	(40%)	this	is	lower,	but	still	substantial.	

	

Another	interesting	comparison	is	with	grip	type	tuning.	Ever	since	Taira	and	colleagues	

identified	grasp-related	properties	of	AIP	neurons	(Taira	et	al.,	1990),	grip	type	and	object	

shape	have	been	the	main	features	encoded	in	AIP	(for	review,	see	Rizzolatti	and	Luppino,	

2001;	Janssen	and	Scherberger,	2015).	Nevertheless,	we	found	that	the	proportion	of	AIP	
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units	modulated	by	force	conditions	during	Hold	was	only	slightly	lower	than	those	

modulated	by	grip	type	(30-50%),	indicating	that	grasp	force	is	strongly	encoded	in	AIP.	

	

We	found	that	5%	and	7%	of	the	variance	was	explained	by	the	force	conditions	in	the	AIP	

units	of	monkey	B	and	S,	respectively.	These	values	are	similar	to	what	was	found	M1	and	

F5,	but	much	lower	than	what	is	explained	by	grip	type	(18%	in	monkey	B	and	30%,	in	

monkey	S).	We	can	conclude	from	this	that	the	force	conditions	explain	a	significant	

amount	of	the	neural	variance,	but	that	grip	type	conditions	are	clearly	encoded	stronger	in	

AIP.		

	

4.4.1.	Grasp	force	planning	

The	role	of	AIP	in	the	planning	of	grasp	force	remains	unclear.	In	monkey	B	we	found	very	

low	percentages	of	AIP	units	tuned	for	grasp	force	and	we	were	not	able	to	decode	grasp	

force	before	movement	onset,	very	similar	to	what	was	found	in	M1.	Conversely,	AIP	units	

recorded	from	monkey	S	showed	high	percentages	of	units	tuned	for	grasp	force	in	the	Cue	

and	Memory	epoch	and	the	force	conditions	could	be	predicted	from	these	epochs,	very	

similar	to	F5.	

	

Several	factors	could	be	responsible	for	these	differences.	First	of	all,	it	is	possible	that	

recordings	were	not	made	from	exactly	the	same	location.	Anatomical	studies	have	

identified	AIP	as	a	very	small	sector	(5-6	mm)	in	the	lateral	bank	of	the	anterior	

intraparietal	sulcus	(Lewis	and	Van	Essen,	2000),	and	since	the	floating	microelectrode	

arrays	(FMAs;	MicroProbe	for	Life	Science)	used	in	this	study	are	4	mm	in	length,	some	
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electrodes	will	record	activity	just	outside	of	area	AIP.	Small	variations	in	array	placement	

could	therefore	affect	the	results.	However,	this	would	probably	only	slightly	change	the	

proportions	of	types	of	units	found	and	not	create	the	big	differences	as	observed	here.		

	

Another,	more	likely	influence	can	be	the	hemisphere	from	which	we	recorded,	since	we	

recorded	signals	from	monkey	B’s	right	hemisphere	and	monkey	S’	left	hemisphere.	

Interestingly,	several	studies	have	described	a	difference	between	left-	and	right-sided	AIP	

in	right-handed	humans.	Only	right-sided	AIP	activity	scaled	with	imagined	grip	force	

(Mizuguchi	et	al.,	2014),	increased	when	subjects	were	to	coordinate	gripping	and	lifting	

(Ehrsson	et	al.,	2003),	and	was	higher	during	static	grips	than	during	dynamic	grips	

(Keisker	et	al.,	2010;	Neely	et	al.,	2013).	This	suggests	that	right-sided	AIP	is	more	involved	

in	static	force	control	than	left-sided	AIP.	However,	grip	force	scaling	could	only	be	

impaired	by	inactivating	left-sided	AIP	in	the	period	before	an	object	is	grasped,	but	not	by	

inactivating	right-sided	AIP,	independent	of	the	hand	used	by	the	subjects	(Davare	et	al.,	

2007).	This	suggests	that	left-sided	AIP	is	more	involved	in	planning	grasp	force.	

	

If	these	hemispheric	differences	also	exist	in	monkeys,	it	could	explain	why	AIP	of	monkey	

B	(right	hemisphere)	had	weak	planning	activity,	whereas	AIP	of	monkey	S	(left	

hemisphere)	had	strong	planning	activity.	Bilateral	recordings	from	the	same	animal	would	

be	needed	to	test	for	differences	between	right-	and	left-sided	AIP	in	grasp	force	planning.		

	

A	third	possibility	for	the	differences	is	that	the	animals	used	a	different	strategy	to	solve	

the	task.	We	observed	in	the	force	profiles	of	monkey	B	(Figure	8	and	9)	that	he	did	not	
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plan	differently	for	the	medium-	or	high	force	condition.	Monkey	S	seemed	to	behave	

similarly	(Figure	10),	but	we	found	a	significant	difference	in	the	amount	of	force	applied	in	

the	first	100	ms	after	Touch	between	the	PMF	and	PHF	conditions.	This	suggests	that	

monkey	S	understood	the	cues	better,	which	could	correspond	to	AIP	showing	more	

planning	activity.	However,	what	speaks	against	this,	is	that	monkey	B	did	clearly	

distinguish	between	the	low	and	other	force	conditions,	just	as	well	as	monkey	S	did.	

Furthermore,	grasp	force	planning	activity	was	clearly	present	in	area	F5	of	monkey	B.	The	

percentage	of	force	tuned	units	was	slightly	lower	in	F5	for	monkey	B	than	for	monkey	S	

and	this	small	difference	could	be	related	to	the	different	behavior,	but	the	small	behavioral	

differences	are	unlikely	the	cause	for	the	large	differences	between	the	AIP	responses	of	

both	monkeys.	

	

4.5.	The	relation	between	grip	type	and	force	

An	interesting	aspect	of	our	study	is	that	we	investigated	the	neural	response	to	grasp	force	

for	two	different	grip	types.	The	neural	responses	to	these	grip	types	are	similar	to	what	

has	been	described	in	previous	studies	(Rizzolatti	et	al.,	1988;	Taira	et	al.,	1990;	Baumann	

et	al.,	2009;	Fluet	et	al.,	2010;	Townsend	et	al.,	2011;	Lehmann	and	Scherberger,	2013;	

Lehmann	and	Scherberger,	2015;	Menz	et	al.,	2015;	Schaffelhofer	et	al.,	2015;	Vargas-Irwin	

et	al.,	2015;	for	review,	see	Rizzolatti	and	Luppino,	2001;	Janssen	and	Scherberger,	2015;),	

suggesting	a	general	finding.	But	how	do	grip	type	and	force	interact?	
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4.5.1.	Interaction		

We	discussed	already	how	percentages	of	force	tuned	units	or	variance	explained	by	force	

compare	to	the	similar	measures	for	grip	type.	But	we	have	also	seen	that	there	is	often	an	

interaction	between	these	two	parameters.	In	figures	13-16	we	can	see	that	when	there	is	

force	tuning	there	is	also	a	smaller	percentage	of	interaction	tuning.	In	Figure	14	we	

showed	that	interaction	tuning	often	coincided	with	force	tuning,	which	meant	that	there	

was	a	different	response	to	the	force	conditions	for	each	grip	type,	but	force	coding	was	not	

reversed	for	the	grip	types.	In	this	case,	grip	type	and	force	tuning	information	can	be	

extracted	independently.	In	other	cases,	it	occurred	that	force	tuning	was	reversed	for	the	

other	grip	type	and	this	was	best	identified	by	the	moments	the	grip	force	and	interaction	

tuning	did	not	coincide,	as	can	be	seen	in	figures	12A	and	12D.	In	such	cases,	the	

modulation	to	force	conditions	is	obscured	by	the	effect	of	grip	type	and	information	about	

the	force	condition	cannot	be	extracted	separately	from	grip	type	information.	We	can	see	

in	figures	20-24	that	this	was	the	case	for	2-3%	of	the	variance	(variance	explained	by	

interaction).	

	

Interaction	between	grip	type	and	force	can	have	different	meanings.	1)	It	could,	for	

example,	be	related	to	different	muscles	that	are	activated	for	the	two	grip	types,	like	we	

can	see	in	the	EMG	signals	(Figure	11).	This	might	well	explain	the	high	percentage	of	

interaction	tuned	units	during	Hold	in	M1,	as	we	know	that	many	M1	neurons	fire	in	close	

relation	to	muscle	activity	(Evarts,	1968;	Cheney	and	Fetz,	1980).	But	also	pre-movement	

activity,	as	we	observed	mainly	in	F5,	could	be	related	to	a	motor	plan	of	the	upcoming	

muscle	activations.	
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2)	It	could	also	be	representing	effort	or	motivation,	since	we	know	that	decision	variables	

are	represented	in	parietal	and	frontal	areas	(for	review,	see	McCoy	and	Platt,	2005;	

Andersen	and	Cui,	2009).	We	can	see	in	Figure	6	that,	although	both	monkeys	had	little	

difficulty	performing	the	task,	there	was	a	great	difference	in	motivation	among	conditions	

and	there	was	an	interaction	between	grip	type	and	force.	Monkey	B	had	a	similar	

motivation	for	all	whole-hand	grip	conditions,	but	force	affected	the	motivation	for	

precision	grip	conditions.	For	monkey	S	this	was	exactly	the	opposite,	as	force	affected	the	

motivation	for	whole-hand	grip	conditions.	A	motivation	coding	neuron	would	therefore	

show	a	response	to	force	only	for	one	grip	type,	which	would	result	in	significant	

interaction	tuning.		

	

3)	A	third	possibility	is	that	an	interaction	response	is	related	to	reaction	time,	as	it	has	

been	shown	recently	that	reaction	time	in	a	reach	and	grasp	task	can	be	predicted	from	

activity	in	AIP	and	F5	(Michaels	et	al.,	2015).	Figure	7	shows	that	reaction	time	depended	

on	both	grip	type	and	force,	with	an	interaction	between	the	two	parameters.	This	coupling	

could	potentially	also	affect	the	spiking	activity	of	AIP	and	F5	in	the	period	leading	up	to	

movement.	

	

The	observed	interaction	responses	are	probably	caused	by	a	combination	of	several	

factors,	including	the	three	possibilities	just	described.	These	responses	illustrate	the	

complexity	of	how	activity	of	multi-	and	single	units	in	the	cortex	relate	to	grasping	

movements.	However,	it	is	important	to	note	that	in	only	a	small	percentage	of	variance	the	
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information	for	grip	type	and	force	could	not	be	extracted	separately,	as	also	found	in	a	

similar	study	of	dorsal	PMC	and	M1	(Hendrix	et	al.,	2009).	

	

4.5.2.	Influence	of	grip	types	on	tuning	percentages	

An	important	question	to	ask	in	relation	to	our	results	is:	does	using	two	grip	types	

increase	the	amount	of	force	tuned	units	found?	As	we	discussed	before,	there	are	cases	

when	force	tuning	was	only	present	in	one	grip	type	(case	1)	and	cases	when	force	tuning	

was	present	in	both	grip	types,	but	in	reversed	order	(case	3).	If	the	first	case	is	more	

dominant,	using	multiple	grip	types	would	result	in	finding	higher	percentages	of	force	

tuned	units,	while	it	would	result	in	lower	percentages	when	case	3	was	more	dominant.	In	

Figure	14	we	can	see	that	interaction	tuning	occurred	together	with	force	tuning	(case	1:	

force	tuning	is	present	for	only	one	grip	type	or	case	2:	force	tuning	is	more	dominant	in	

one	grip	type)	and	without	force	tuning	(case	3:	force	tuning	is	reversed	in	the	other	grip	

type)	in	roughly	equal	amounts.	Only	during	Hold	in	Figure	14A	and	C	do	we	see	a	

simultaneous	increase	in	interaction	and	force	tuning	(case	1	or	case	2).	We	can	conclude	

from	this	that	there	is	no	clear	trend	to	which	category	most	recorded	units	belong.	We	

therefore	predict	that	the	percentage	of	force	tuned	units	would	be	very	similar	to	what	is	

shown	here,	if	this	study	was	performed	with	one	or	more	than	two	grip	types.	
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4.5.3.	Temporal	difference	between	grip	type	and	force	coding	

We	found	a	temporal	difference	between	the	onset	of	grip	type,	force,	and	interaction	

tuning	(figures	13-16).	Grip	type	tuning	appeared	soon	after	cue	onset,	while	force	tuning	

lagged	behind,	and	interaction	tuning	lagged	farther	behind.		

	

An	obvious	explanation	for	the	earlier	rise	in	grip	type	tuning	is	how	the	two	parameters	

were	cued.	Grip	type	was	indicated	by	the	location	of	the	cue,	while	force	was	indicated	by	

the	height	of	a	square	within	this	cue	(Figure	3),	therefore	the	monkey	must	first	be	aware	

of	the	location	of	the	cue,	before	it	can	direct	its	attention	to	the	height	of	the	square.		

	

However,	there	is	reason	to	believe	that	even	when	we	used	different	kinds	of	cues,	we	

would	have	observed	the	same	pattern.	When	grip	type	and	force	cues	were	not	presented	

simultaneously,	it	was	found	that	grip	type	could	be	decoded	quite	accurately	from	the	

delay	period	before	force	information	was	given,	while	force	decoding	was	much	worse	

when	grip	type	information	was	not	yet	given	(Milekovic	et	al.,	2015).	This	possibly	could	

have	been	because	force	could	not	be	planned	well	in	advance	when	grip	type	was	not	yet	

known.			

	

The	later	rise	in	interaction	tuning	in	the	Cue	epoch	suggests	that	grip	type	and	force	

information	are	first	identified	separately,	before	information	is	combined	to	create	a	

mixed	representation.	
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In	area	AIP	(Figure	13)	we	can	also	observe	an	earlier	rise	in	grip	type	tuning	percentages	

than	force	tuning	percentages	around	movement	onset.	This	is	interesting	since	it	has	been	

shown	in	humans	that	hand	shaping	is	affected	by	virtually	lesioning	AIP	270-220	ms	

before	object	contact,	while	grip	force	scaling	is	affected	by	inducing	the	inactivation	170-

120	ms	before	object	contact	(Davare	et	al.,	2007).	It	is	therefore	possible	that	a	relation	

exists	between	the	temporal	order	when	tuning	for	a	certain	parameter	increases	and	the	

optimal	timing	of	virtual	lesions	for	having	a	behavioral	effect	on	this	parameter.	

	

4.6.	Other	explanations	for	observed	responses	

We	are	aware	that	neural	modulation	to	particular	task	parameters	can	always	be	

influenced	by	confounding	factors.	We	discuss	here	the	influence	of	muscle	activity	before	

the	Go	signal	and	that	of	sensory	stimuli.	

	

4.6.1.	Muscle	activity	before	Go	signal	

Like	other	studies	using	a	delayed	grasping	paradigm	(Taira	et	al.,	1990;	Baumann	et	al.,	

2009;	Fluet	et	al.,	2010;	Townsend	et	al.,	2011;	Lehmann	and	Scherberger,	2013;	Lehmann	

and	Scherberger,	2015;	Menz	et	al.,	2015;	Schaffelhofer	et	al.,	2015;	Vargas-Irwin	et	al.,	

2015;	for	review,	see	Rizzolatti	and	Luppino,	2001;	Janssen	and	Scherberger,	2015;),	we	

trained	the	monkeys	to	withhold	movement,	and	we	did	not	observe	any	overt	arm	

movements	before	the	Go	signal	was	given.	We	therefore	assume	that	pre-movement	

neural	modulation	is	related	to	movement	planning.	However,	in	Figure	11B	we	see	a	

significant	difference	in	EDC	muscle	activity	between	grip	types	in	the	period	before	



 137 

movement	onset.	On	one	day	(session	B150225)	we	even	noticed	a	significant	difference	

between	force	conditions	before	Movement	initiation	(i.e.	when	the	hand	left	the	handrest	

button).	Could	the	pre-movement	neural	modulation	therefore	potentially	be	related	to	

EDC	muscle	activation?		

	

Although	we	cannot	rule	out	this	possibility,	we	do	have	to	be	aware	that	the	differences	in	

muscle	activity	between	the	conditions	before	movement	onset	are	much	smaller	than	after	

movement	onset,	which	was	much	less	the	case	for	the	neural	responses	(Figure	12A	and	

B).	Furthermore,	the	response	to	force	conditions	was	only	observed	in	session	B150225,	

which	had	very	clear	EDC	signals	compared	to	other	muscle	recordings,	indicating	that	this	

was	not	a	general	finding.	We	therefore	argue	that	it	is	more	likely	that	pre-movement	

neural	modulation	is	related	to	planning	an	upcoming	movement	than	to	the	small	

modulation	of	activity	in	the	EDC	muscle,	that	was	significant	for	grasp	force	in	only	one	

session.	

	

4.6.2.	Visual	and	haptic	representation	

Because	our	cues	about	the	force	conditions	were	given	visually	and	because	F5	and	

especially	AIP	are	known	to	be	highly	responsive	to	visual	information	(Janssen	and	

Scherberger,	2015),	one	could	argue	that	the	pre-movement	neural	modulation	we	

observed	merely	reflects	a	response	to	a	visual	stimulus	and	not	to	the	monkey’s	

movement	plan.	If	this	were	the	case,	we	would	expect	that	the	differences	in	modulation	

between	the	low-	and	medium	force	conditions	is	of	the	same	magnitude	as	the	difference	

between	medium-	and	high	force.	However,	this	was	clearly	not	the	case.	Pre-movement	
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neural	responses	to	the	medium	force	of	both	monkeys,	and	especially	of	monkey	B,	were	

almost	identical	to	the	high	force	condition	and	often	quite	different	from	low	force.	As	we	

argued	before,	since	the	behavioral	data	suggests	that	monkey	B	did	not	distinguish	

between	the	medium-	and	high	force	cues	in	the	Cue	epoch,	these	findings	likely	reflect	the	

monkey’s	task	understanding.	

	

What	is	harder	to	argue	against,	is	that	the	neural	modulation	observed	after	Touch	is	

reflecting	the	visual	feedback	we	provided	or	haptic	feedback	from	the	grip,	since	the	

posterior	parietal	cortex	also	receives	strong	input	from	somatosensory	cortices	(Cavada	

and	Goldman-Rakic,	1989b).	Although	any	modulation	that	already	started	before	or	

around	Touch	is	likely	related	to	movement	representation,	some	modulation	observed	in	

the	Hold	epoch	could	be	influenced	by	sensory	feedback	(i.e.	visual	or	haptic).	

	

Motor	and	premotor	areas	are	known	to	be	strongly	involved	in	planning	and	executing	

movements,	making	it	therefore	more	likely	that	the	responses	to	the	different	force	

conditions	are	related	to	driving	grasp	force.	The	parietal	cortex,	on	the	other	hand,	is	

believed	to	be	an	important	control	center	that	integrates	sensory	information	and	

efference	copies.	It	is	therefore	very	likely	that	sensory	feedback	responses	will	also	be	

found	in	this	area.		

	

Nevertheless,	a	recent	study	has	shown	that	more	PF/PFG	neurons	were	tuned	when	

monkeys	used	an	isometric	tool	to	bring	a	cursor	to	a	target	on	a	screen,	than	when	animals	

only	observed	the	cursor	moving	to	the	target	(Ferrari-Toniolo	et	al.,	2015).	Furthermore,	
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when	the	monkeys	were	exposed	to	a	new	condition	that	required	more	force	to	move	the	

cursor	for	the	same	distance,	the	neural	firing	rate	of	many	parietal	neurons	changed	

according	to	the	increased	amount	of	applied	force,	even	though	cursor	movements	were	

identical	to	the	previous	condition.	Future	analyses	can	hopefully	dissociate	what	

percentage	of	neural	modulation	drives	the	applied	force,	and	what	percentage	provides	

feedback	about	the	amount	of	applied	force.	

	

4.7.	Unique	aspects	of	our	study	

To	better	understand	the	significance	of	our	findings,	we	address	here	the	unique	aspects	

of	our	task	design	and	behavior	of	the	monkeys.	

	

4.7.1.	The	force	range	

We	based	our	force	range	of	0-12	N	on	the	amount	of	force	with	which	the	monkeys	

grasped	the	handle	during	training.	Previous	studies	investigating	the	neural	coding	of	

grasp	force	in	macaque	monkeys	usually	did	not	look	at	forces	higher	than	3	N	(Smith	et	al.,	

1975;	Hepp-Reymond	et	al.,	1978;	Hepp-Reymond	and	Diener,	1983;	Muir	and	Lemon,	

1983;	Maier	et	al.,	1993;	Bennett	and	Lemon,	1994;	Hepp-Reymond	et	al.,	1994;	Brochier	et	

al.,	1999;	Hepp-Reymond	et	al.,	1999;	Boudreau	et	al.,	2001).	This	is	remarkable	since	our	

monkeys	applied	around	2-4	N	in	the	low	force	condition,	i.e.	when	they	only	needed	to	

touch	the	handle	and	did	not	need	to	apply	any	more	force.		
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It	is	possible	that	our	monkeys	applied	more	force	because	of	their	training	history	or	

because	they	simply	were	stronger.	Indeed,	our	monkeys	were	relatively	heavy	rhesus	

macaques	(10.1	and	13.5	kg)	and	many	of	the	former	studies	used	the	much	lighter	long-

tailed	macaques	(Macaca	fascicularis)	in	their	experiments	(Smith	et	al.,	1975;	Hepp-

Reymond	et	al.,	1978;	Hepp-Reymond	and	Diener,	1983;	Hepp-Reymond	et	al.,	1994;	

Brochier	et	al.,	1999;	Hepp-Reymond	et	al.,	1999;	Boudreau	et	al.,	2001).	However,	even	

when	monkeys	of	2.5-3.5	kg	were	free	to	choose	their	precision	grip	force	to	lift	a	resistive	

force	of	0.3,	0.6,	or	1.0	N,	they	typically	applied	more	than	2	N	for	all	resistive	forces	

(Boudreau	et	al.,	2001).	This	suggests	that	values	from	0	to	1	N,	which	has	been	suggested	

as	the	best	range	to	find	correlations	between	force	and	neural	activity	(Hepp-Reymond	et	

al.,	1978),	is	actually	below	the	normal	precision	grip	force	of	macaque	monkeys.	One	could	

therefore	argue	that	in	these	previous	studies	monkeys	were	trained	to	apply	their	natural	

grip	force	or	less,	while	we	trained	monkeys	to	apply	their	natural	grip	force	or	more.	

	

Although	we	know	that	neural	modulations	adapt	to	the	range	of	a	force	task	(Hepp-

Reymond	et	al.,	1999),	there	is	reason	to	believe	that	investigating	a	high	force	range	

provides	different	results	than	a	low	force	range.	The	blood	oxygen	level-dependent	

(BOLD)	signal	that	is	measured	with	fMRI	is	known	to	increase	in	extent	and	magnitude	

when	subjects	apply	more	force	(Thickbroom	et	al.,	1998)	and	therefore	most	fMRI	studies	

require	subjects	to	apply	at	least	15%	of	their	maximal	voluntary	contraction	(Keisker	et	

al.,	2010;	Neely	et	al.,	2013).	This	increased	activity	of	grasp-related	brain	areas	could	

therefore	change	the	percentages	of	tuned	units	observed	in	our	study.	
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4.7.2.	Medium-	and	high	force	representation	

By	analyzing	the	amount	of	applied	force	in	the	first	100	ms	after	Touch,	we	observed	that	

monkey	B	did	not	distinguish	between	the	medium-	and	high	force	cue	in	the	Cue	epoch,	

but	did	distinguish	the	low	force	from	the	other	conditions.	Also,	when	monkey	B	was	

trained	on	a	task	where	the	force	condition	was	no	longer	presented	again	in	the	hold	

phase,	he	simply	stayed	for	1	second	in	the	medium	force	range	before	moving	to	the	high	

force	range	in	high	force	trials.	Monkey	S	likely	did	make	a	distinction	between	the	

medium-	and	high	force	cues,	but	still	responded	very	similar	to	these	conditions	in	the	

first	100	ms	of	the	Hold	epoch,	which	was	not	the	case	for	low	force	trials.	

	

Even	though	the	initial	training	goal	was	to	teach	the	monkeys	to	understand	the	cues	from	

the	Cue	epoch,	it	is	interesting	to	see	how	this	apparent	task	understanding	influenced	the	

results.	In	the	PSTHs	of	the	example	neurons	of	Figure	12	we	see	that	the	neural	signal	for	

medium-	and	high	force	trials	are	almost	identical	until	a	few	hundred	milliseconds	after	

Touch.	Only	neurons	of	Monkey	S	(Figure	12A	and	B)	show	some	minor	difference	between	

medium-	and	high	force	before	this	point.	These	observations	were	true	for	all	PSTHs	

analyzed,	which	included	nearly	all	units	used	in	this	study	(data	not	shown),	and	for	dPCA	

components	(figures	20-24).	Although	we	cannot	rule	out	other	causes	for	these	patterns,	

we	argue	that	they	are	mainly	a	reflection	of	the	monkey’s	task	understanding.	

	

4.8.	Functional	role	of	AIP,	F5,	and	M1	in	grasp	force	control	

Knowing	that	neurons	in	areas	AIP,	F5,	and	M1	modulate	activity	in	relation	to	grasp	force	

conditions	is	important	for	understanding	how	the	brain	plans	and	controls	grasping	
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movements.	However,	these	results	by	themselves	do	not	prove	an	involvement	of	these	

areas	in	the	planning	and	control	of	grasp	force.	As	just	mentioned,	other	factors,	like	visual	

or	haptic	feedback,	could	partly	also	explain	the	observed	task-related	modulation.	

	

A	common	method	to	test	a	functional	relation	between	a	trait	and	a	brain	area	is	by	

inactivating	that	area	and	testing	the	behavioral	effects.	By	doing	so,	a	strong	consensus	

has	arisen	that	areas	AIP,	F5,	and	M1	are	involved	in	the	formation	of	hand	shapes	(Gallese	

et	al.,	1994;	Kubota,	1996;	Schieber	and	Poliakov,	1998;	Brochier	et	al.,	1999;	Fogassi	et	al.,	

2001).	Since	grasp	force	is	unequivocally	linked	to	hand	shape,	the	amount	of	force	applied	

onto	an	object	will	therefore	automatically	be	affected	by	a	lesion	that	affects	hand	shaping,	

but	this	does	not	proof	that	the	inactivated	area	is	really	involved	in	the	planning	and	

control	of	grasp	force.	Another	difficulty	with	showing	the	effect	of	a	lesion	on	grasp	force	

is	that	monkeys	rapidly	stop	performing	a	grasping	task	when	they	experience	a	lack	of	

hand	control	and	muscle	weakness.	It	is	unclear	if	the	motivation	to	grasp	is	lost	due	to	the	

inability	to	correctly	shape	the	hand	or	to	produce	enough	grasp	force.	Although	it	has	been	

shown	that	a	monkey	was	no	longer	able	to	maintain	a	grip	for	2	seconds	after	M1	

inactivation,	while	it	was	still	able	to	correctly	place	the	thumb	and	index	finger	on	a	

manipulandum,	no	significant	decrease	in	stationary	grip	force	was	measured	in	the	

successful	trials	performed	after	muscimol	injection	in	M1	(Brochier	et	al.,	1999).		

	

Stronger	evidence	for	the	involvement	of	cortical	areas	in	grasp	force	planning	and	control,	

independent	from	hand	shape,	comes	from	a	study	that	used	transcranial	magnetic	

stimulation	to	induce	virtual	lesions	(Davare	et	al.,	2007).	The	researchers	were	able	to	
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show	that	by	inactivating	AIP	for	a	specific	time	frame,	grip	force	scaling	could	be	

disturbed,	while	hand	shaping	was	unaffected.	These	results	suggest	that	grasp	force	

planning	occurs	in	AIP	independent	from	grip	type	planning.	Even	though	this	temporal	

dissociation	of	grip	type	and	force	planning	may	be	unique	for	AIP,	it	is	possible	that	

parallel	processing	of	these	two	parameters	could	also	occur	in	F5	and	M1,	although	this	

may	be	very	hard	to	disentangle.	Altogether	we	can	conclude	that	the	neural	modulations	

we	observed	are	likely	related	to	the	functional	control	of	grasp	force,	but	more	research	is	

necessary	to	clearly	dissociate	this	from	controlling	hand	shape.	

	

4.9.	Conclusion	

We	have	shown	in	this	thesis	a	strong	representation	of	grasp	force	control	in	macaque	

areas	AIP,	F5,	and	M1,	as	well	as	grasp	force	planning	representation	in	F5	of	both	monkeys	

and	in	AIP	of	one	monkey.	These	findings	are	in	agreement	with	previous	studies	that	

showed	a	neural	representation	of	grasp	force	control	in	M1	(Smith	et	al.,	1975;	Hepp-

Reymond	et	al.,	1978;	Hepp-Reymond	and	Diener,	1983;	Maier	et	al.,	1993;	Hepp-Reymond	

et	al.,	1999)	and	F5	(Hepp-Reymond	et	al.,	1994).	Modulation	of	single	AIP	neurons	to	

grasp	force	match	well	with	studies	that	showed	an	increased	activation	of	this	area	with	

fMRI	during	grasp	force	control	(Ehrsson	et	al.,	2003;	Keisker	et	al.,	2010;	Neely	et	al.,	

2013)	and	grip	force	scaling	impairment	after	inactivating	AIP	(Davare	et	al.,	2007).	

	

In	agreement	with	previous	studies	we	found	that	grip	type	was	strongly	coded	in	these	

areas	(Rizzolatti	et	al.,	1988;	Taira	et	al.,	1990;	Baumann	et	al.,	2009;	Fluet	et	al.,	2010;	

Townsend	et	al.,	2011;	Lehmann	and	Scherberger,	2013;	Lehmann	and	Scherberger,	2015;	
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Menz	et	al.,	2015;	Schaffelhofer	et	al.,	2015;	Vargas-Irwin	et	al.,	2015;	for	review,	see	

Rizzolatti	and	Luppino,	2001;	Janssen	and	Scherberger,	2015;).	Grip	type	explained	a	

higher	percentage	of	the	variance	than	grasp	force,	but	grasp	force	was	nevertheless	a	

major	contributor	to	the	neural	variance,	especially	in	F5.	We	found	that	grip	type	and	

force	coding	often	interact,	but	for	the	most	part,	information	about	these	two	features	can	

be	extracted	separately.	

	

Because	lesions	of	AIP,	F5,	and	M1	are	known	to	affect	both	hand	shaping	and	grasp	force	

(Gallese	et	al.,	1994;	Kubota,	1996;	Schieber	and	Poliakov,	1998;	Brochier	et	al.,	1999;	

Fogassi	et	al.,	2001),	we	argue	that	our	findings	reflect	a	functional	relationship	between	

the	observed	neural	modulations	and	grasp	force	control.	
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Systems/Circuits

Predicting Reaction Time from the Neural State Space of the
Premotor and Parietal Grasping Network

X Jonathan A. Michaels,1 Benjamin Dann,1 Rijk W. Intveld,1 and X Hansjörg Scherberger1,2

1German Primate Center, D-37077 Göttingen, Germany, and 2Faculty of Biology, Georg August University Göttingen, D-37073 Göttingen, Germany

Neural networks of the brain involved in the planning and execution of grasping movements are not fully understood. The network
formed by macaque anterior intraparietal area (AIP) and hand area (F5) of the ventral premotor cortex is implicated strongly in the
generation of grasping movements. However, the differential role of each area in this frontoparietal network is unclear. We recorded
spiking activity from many electrodes in parallel in AIP and F5 while three macaque monkeys (Macaca mulatta) performed a delayed
grasping task. By analyzing neural population activity during action preparation, we found that state space analysis of simultaneously
recorded units is significantly more predictive of subsequent reaction times (RTs) than traditional methods. Furthermore, because we
observed a wide variety of individual unit characteristics, we developed the sign-corrected average rate (SCAR) method of neural
population averaging. The SCAR method was able to explain at least as much variance in RT overall as state space methods. Overall, F5
activity predicted RT (18% variance explained) significantly better than AIP (6%). The SCAR methods provides a straightforward
interpretation of population activity, although other state space methods could provide richer descriptions of population dynamics.
Together, these results lend support to the differential role of the parietal and frontal cortices in preparation for grasping, suggesting that
variability in preparatory activity in F5 has a more potent effect on trial-to-trial RT variability than AIP.

Key words: grasping; nonhuman primate; parietal; premotor; single unit recording

Introduction
In the sport of fencing, rapid actions are required on the millisec-
ond scale. Small rotations of the wrist can make the difference
between a hit and a complete miss. The response of athletes to
various attacks is highly variable, despite the rigorously trained
nature of their skill set. What are the factors that contribute to the
variability of such complex actions? It is known that voluntary
movements are prepared before they are executed (Kutas and

Donchin, 1974; Wise, 1985; Ghez et al., 1997). A benefit of longer
preparation is a reduction in reaction times (RTs), which is the
time between a go signal and the initiation of a movement
(Rosenbaum, 1980; Riehle and Requin, 1989). Nevertheless, RT
varies even for similar amounts of preparation.

The ideal design for studying motor preparation is the de-
layed reaching task, in which a movement must be planned
and withheld for a certain time. Studies have shown that pop-
ulation activity of neurons in the dorsal premotor cortex
(PMd) of the primate brain, recorded either sequentially
(Riehle and Requin, 1993) or in parallel (Churchland et al.,
2006c; Afshar et al., 2011; Churchland, 2015), can explain a
large portion of the variability in reach RT and reach velocity
(Churchland et al., 2006a,b). Similar results have been ob-
tained using sequential recordings in the parietal reach region
(Snyder et al., 2006) and lateral intraparietal area (Janssen and
Shadlen, 2005). However, a comparative study of the fronto-
parietal network has not been undertaken.
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Significance Statement

Grasping movements are planned before they are executed, but how is the preparatory activity in a population of neurons related
to the subsequent reaction time (RT)? A population analysis of the activity of many neurons recorded in parallel in macaque
premotor (F5) and parietal (AIP) cortices during a delayed grasping task revealed that preparatory activity in F5 could explain a
threefold larger fraction of variability in trial-to-trial RT than AIP. These striking differences lend additional support to a differ-
ential role of the parietal and premotor cortices in grasp movement preparation, suggesting that F5 has a more direct influence on
trial-to-trial variability and movement timing, whereas AIP might be more closely linked to overall movement intentions.
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To analyze RT variability, an understanding of preparatory
activity is vital. A number of models have been proposed to ex-
plain how preparation of movement is undertaken. Initial mod-
els related the preparatory activity of single neurons to behavior
by suggesting that subpopulations of neurons may hold activity
near a movement threshold that is crossed to initiate movement
(Riehle and Requin, 1993; Hanes and Schall, 1996; Erlhagen and
Schöner, 2002), whereas more recent models use a state space
framework of population activity. In the latter framework, the
firing of each neuron represents a dimension in a high-
dimensional space of all neurons. Hence, the firing of all neurons
at a particular time represents a single point in the state space,
de-emphasizing the importance of tuning properties of individ-
ual neurons (Fetz, 1992). The “optimal subspace” hypothesis
posits that a preparatory state is achieved during planning and
that deviations from this state may delay movement (Churchland
et al., 2006c; Churchland and Shenoy, 2007a). The “initial con-
dition hypothesis” augmented this view by further stating that
trial-to-trial fluctuations in the neural trajectory are correlated
with RT (Afshar et al., 2011).

To elucidate the role of the frontoparietal network in prepa-
ration, the established hand grasping circuit (Luppino et al.,
1999) consisting of the hand area (F5) of the ventral premotor
cortex (PMv) and the anterior intraparietal area (AIP) were in-
vestigated using a delayed grasping task. Neural activity in these
areas is modulated strongly by visual object properties (Murata et
al., 1997, 2000), extrinsic goals (Kakei et al., 2001), performed
grip types (Baumann et al., 2009; Fluet et al., 2010), and prepara-
tory activity in these areas can be used to decode the visual prop-
erties of objects and complex hand shapes required to grasp a
diverse range of objects (Carpaneto et al., 2011; Townsend et al.,
2011; Schaffelhofer et al., 2015).

In the current study, we analyzed population activity in a de-
layed grasping task with multiple grip types to evaluate how pop-
ulation activity of simultaneously recorded units in F5 and AIP
might inform subsequent behavior. Preparatory activity in F5
could explain up to 18% of the variability in trial-to-trial RT, a
significant finding, whereas AIP could explain only up to 6%. By
demonstrating a significant advantage of F5 over AIP in RT pre-
diction, our results support the concept that the encoding of RT is
represented primarily in the frontal and not the parietal lobe, at
least when grasping in the dark.

Materials and Methods
Basic procedures. Neural activity was recorded simultaneously from area
F5 and area AIP in one male and two female rhesus macaque monkeys
(Macaca mulatta, animals B, S, and Z; body weight, 11.2, 9.7, and 7.0 kg,
respectively). Animal care and all experimental procedures were con-
ducted in accordance with German and European law and were in
agreement with the Guidelines for the Care and Use of Mammals in Neu-
roscience and Behavioral Research (National Research Council, 2003).

Basic experimental methods have been described previously
(Townsend et al., 2011; Schaffelhofer et al., 2015). We trained animals to
perform a delayed grasping task. They were seated in a primate chair and
trained to grasp a handle with the left hand (animals B and Z) or the right
hand (animal S; Fig. 1D). This handle was placed in front of the monkey
at chest level and in the vertical position at a distance of �26 cm, i.e., the
monkeys had to reach a distance of 26 cm to grasp the handle. The handle
could be grasped either with a power grip (opposition of fingers and
palm) or precision grip (opposition of index finger and thumb; Fig. 1E).
Two clearly visible recessions on either side of the handle contained
touch sensors that detected thumb and forefinger contact during preci-
sion grips, whereas power grips were detected using an infrared light
barrier inside the handle aperture. The monkey was instructed which
grip type to make by means of two colored LED-like light dots projected

from a thin-film transistor (TFT) screen (CTF846-A; screen size, 8
inches, digital; resolution, 800 � 600; refresh rate, 75 Hz) onto the center
of the handle via a half mirror positioned between the animal’s eyes and
the target. A mask preventing a direct view of the image was placed in
front of the TFT screen and two spotlights placed on either side could
illuminate the handle. Apart from these light sources, the experimental
room was completely dark. In addition, one or two capacitive touch
sensors (model EC3016NPAPL; Carlo Gavazzi) were placed at the level of
the animals’ midtorso and functioned as hand-rest buttons. The non-
acting arm of animals B and Z were placed in a long tube, preventing it
from interacting with the handle. Monkey S was trained to keep its non-
acting hand on an additional hand-rest button.

Eye movements were measured using an infrared optical eye tracker
(model AA-ETL-200; ISCAN) via a heat mirror directly in front of the
monkey’s head. To adjust the gain and offset, red calibration dots were
shown at different locations at the beginning of each session for 25 trials
that the animal fixated for at least 2 s.

Eye tracking and the behavioral task were controlled by custom-
written software implemented in LabView Realtime (National Instru-
ments) with a time resolution of 1 ms. An infrared camera was used to
monitor behavior continuously throughout the entire experiment.

Behavioral paradigm. Animals B and S performed Task 1 (Fig. 1E),
whereas animal Z performed Task 2 (Fig. 1F ). The following is an expla-
nation of the trial course of Task 1. Trials started after the monkey placed
the acting hand on the resting position and fixated a red dot (fixation
period). The animal was required to keep the acting hand, or both hands
(animal S), completely still on the resting position until after the go cue.
After 400 –700 ms, two flashlights illuminated the handle for 300 ms,
followed by 600 ms of additional fixation. In the cue period, a second
light dot was then shown next to the red one to instruct the monkey about
the grip type for this trial (grip cue). Either a green or white dot appeared
for 300 ms, indicating a power or a precision grip, respectively. After that,
the monkey had to memorize the instruction for a variable memory
period. This memory period lasted for 0 –1300 ms (i.e., the go cue could
appear simultaneously with the grip cue), in discrete memory period bins
of 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, or 1300 ms, which
were pseudorandomly sampled with an equal number of trials from each
condition. Regardless of memory period length, the grip cue was always
shown for 300 ms. Switching off the fixation light then cued the monkey
to reach and grasp the target (movement period) to receive a liquid
reward. Animals were required to hold the appropriate grip for 300 ms.
Additionally, catch trials were interleaved randomly (�8% of trials), in
which a go cue was never shown and the animal only received a reward if
it maintained fixation and the hands on the hand rests for 2000 ms after
the grip cue. All trials were interleaved randomly and in total darkness.

The differences between Task 1 and Task 2 are as follows. In Task 2, there
was only one fixation period that lasted for 600–1000 ms. In Task 2, the
illumination of the handle took place at the time of grip cue. In the instructed
version of Task 2, the grip cues were identical to Task 1. In the free-choice
version, both a green and white dot appeared simultaneously, indicating that
the monkey was free to choose between the two grip types. This was followed
by a memory period lasting 400–600 ms, and then either the green or white
dot reappeared for 300 ms in 50% of all free-choice trials, which turned the
free-choice task into a delayed-instructed task and was followed by a second
memory period (duration, 400–600 ms). In all other trials (instructed or free
choice), only the red fixation dot was shown during the second cue period,
making it impossible to distinguish the first and second memory periods.
The hold period in Task 2 was 200 ms as opposed to 300 ms in Task 1.
Importantly, during free-choice trials, the reward was reduced every time the
monkey repeatedly chose the same grip type.

Surgical procedures and imaging. After completion of behavioral train-
ing, each animal received an MRI scan to locate anatomical landmarks
for subsequent chronic implantation of microelectrode arrays. Each
monkey was sedated (e.g., 10 mg/kg ketamine and 0.5 mg/kg xylazine,
i.m.) and placed in the scanner (GE Healthcare 1.5T or Siemens Trio 3T)
in a prone position. T1-weighted volumetric images of the brain and
skull were obtained as described previously (Baumann et al., 2009). We
measured the stereotaxic location of the arcuate and intraparietal sulci to
guide placement of the electrode arrays.
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Chronic electrode implantation. An initial surgery was performed to
implant a head post (titanium cylinder; diameter, 18 mm). After recovery
from this procedure and subsequent training of the task in the head-fixed
condition, each animal was implanted with floating microelectrode ar-
rays (FMAs; MicroProbes for Life Science) in a separate procedure. An-
imal S was implanted with 32 electrode FMAs and received two arrays in
each area (Fig. 1B). The arcuate sulcus of animal S did not present a spur,
but in the MRI a small indentation was visible in the posterior bank, �2
mm medial to the knee, which we treated as the spur. We placed both
anterior FMAs lateral to that mark. Animals B and Z were implanted with
six electrode arrays in the right hemisphere, each with 32 electrodes (Fig.
1 A, C). Two such arrays were implanted in area F5, two in area AIP, and
two in the primary motor cortex (M1). FMAs consisted of nonmoveable
monopolar platinum–iridium electrodes with initial impedances rang-
ing from 300 to 600 k� at 1 kHz measured before implantation. Post-
implantation measurements in the first months after implantation
confirmed these values in vivo. Lengths of electrodes were 1.5–7.1 mm.

All surgical procedures were performed under sterile conditions and
general anesthesia (e.g., induction with 10 mg/kg ketamine, i.m., and
0.05 mg/kg atropine, s.c., followed by intubation, 1–2% isoflurane,

and analgesia with 0.01 mg/kg buprenorphene, s.c.). Heart and respira-
tion rates, electrocardiogram, oxygen saturation, and body temperature
were monitored continuously, and systemic antibiotics and analgesics
were administered for several days after each surgery. To prevent brain
swelling while the dura was open, the animal was hyperventilated mildly
(end-tidal CO2, �30 mmHg), and mannitol was kept at hand. Animals
were allowed to recover fully (�2 weeks) before behavioral training or
recording experiments commenced.

Neural recordings and spike sorting. Signals from the implanted arrays
were amplified and stored digitally using a 128 channel recording system
(sampling rate, 30 kS/s; 0.6 –7500 Hz hardware filter; Cerebus; Blackrock
Microsystems). Data were first filtered using a median filter (window
length, 3 ms), and the result was subtracted from the raw signal. After-
ward, the signal was low-pass filtered with a causal Butterworth filter
(5000 Hz; fourth order). To eliminate movement noise (i.e., common
component induced by reference and ground), principal component
analysis (PCA) artifact cancellation was applied for all electrodes of each
array (as described by Musial et al., 2002). To ensure that no individual
channels were eliminated, PCA dimensions with any coefficient �0.36
(with respect to normalized data) were retained. Spike waveforms were

A

B C

D

E F

Figure 1. FMA implantation and task design. A–C, Array locations for animals B, S, and Z, respectively. Two arrays were placed in F5 on the bank of the arcuate sulcus (AS). Two additional arrays
were placed in AIP toward the lateral end of the intraparietal sulcus (IPS). In animals B and Z, two more arrays were placed on the bank of the central sulcus (CS). The cross shows medial (M), lateral
(L), anterior (A), and posterior (P) directions. Note that animal S was implanted in the left hemisphere and animals B and Z in the right hemisphere. D, Sketch of an animal in the experimental setup.
The cues were presented on a monitor projected onto a mirror, making the light dots appear superimposed onto the grasping handle. E, Delayed grasping task with two grip types (Task 1). An
example of each grip type can be seen during the movement epoch (top, power grip; bottom, precision grip). The handle was rotated to a supine orientation for demonstration purposes only. F,
Delayed grasping task with two grip types and three decision conditions (Task 2). Free-choice trials were presented twice as often as each of the other conditions. Delayed-instructed trials contained
a second grip cue turning a free-choice trial into a delayed-instructed trial. Trials were presented in a pseudorandom order.
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extracted and semiautomatically sorted using a modified version of the
offline spike sorter Wave_clus (Quiroga et al., 2004; Kraskov et al., 2009).

Unit isolation was evaluated using four criteria: (1) the absence of
short (1–2 ms) intervals in the interspike interval histogram for single
units, (2) the degree of homogeneity of the detected spike waveforms, (3)
the separation of waveform clusters in the projection of the first 17 fea-
tures detected by Wave_clus, and (4) the uniqueness of the shape of the
interspike interval distribution.

After the semiautomatic sorting process, redetection of the average
waveforms (templates) was done to detect overlaid waveforms (Gozani
and Miller, 1994). Filtered signals were convolved with the templates
starting with the biggest waveform. Independently for each template,
redetection and resorting was run automatically using a linear classifier
function (MATLAB function classify). After the identification of the tar-
get template, the shift-corrected template (achieved by up and down
sampling) was subtracted from the filtered signal of the corresponding
channel to reduce artifacts for detection of the next template. This pro-
cedure allowed a detection of templates up to an overlap of 0.2 ms. As a
control, unit isolation was evaluated again as described previously to
determine the final classification of all units into single units or multi-
units. In case of ambiguity, a unit was not classified as single. Stationarity
of firing rate was checked for all units, and, in case the firing rate was not
stable over the entire recording period (�30% change in firing rate be-
tween the first 10 min and the last 10 min of recording), the unit was
excluded from additional analyses (�3% of all single units).

Data preprocessing. In all datasets trials with outlying RTs, �700 ms in
Task 1 and �500 ms in Task 2 and �200 ms in either task were excluded.
In animals B and S, these trials comprised �1% of the data and �3% in
animal Z. Clearly, all animals were careful to wait for the appropriate go
cue and did not act preemptively. We used this conservative check on
outlier RTs to safely exclude the possibility that animals were acting in
anticipation of the go cue.

Crucially, for all analyses of Task 1, trials with memory periods �500 ms
were excluded from analysis. These short memory period trials were re-
moved to ensure that animals had sufficient time to fully plan the movement
before acting. Such an exclusion criteria was not used in Task 2, because the
animal never had �700 ms to plan (delayed-instructed condition) and was
trained for many months to acquire this timing scheme.

All recorded units (single unit and multiunit) were used in our main
analyses. After spike sorting, spike events were binned in overlapping 100
ms windows and sampled every millisecond to produce a continuous
firing rate signal (1 kHz). This means that firing rates at the time of the go
cue considered spikes occurring 50 ms before to 50 ms after the go cue.
Because it is unlikely that (sensory) responses to the go cue would be
represented in AIP or F5 already at 50 ms after presentation, we believe
this binning does not bias the predictive power of RTs. In fact, our con-
clusions do not change when using a binning that does not extend be-
yond the go cue (data not shown).

Dimensionality reduction. Dimensionality reduction was performed
for the purposes of visualization only. All quantitative analyses relied on
the full dimensionality of the data. Gaussian-process factor analysis
(GPFA) was performed on the neural data from cue presentation to
movement onset (Yu et al., 2009). This method performs smoothing of
spike trains and dimensionality reduction simultaneously within a com-
mon probabilistic framework. It assumes that the activity of each unit is
a linear function (plus noise) of a low-dimensional neural state whose
evolution in time is well described by a Gaussian process. This methods
allows for better visualization on the single-trial level than other pub-
lished methods (Yu et al., 2009). The data were reduced to 12 dimensions
(the optimal number of latent dimensions in the data as determined by
cross-validation) using 20 ms nonoverlapping spike bins to produce the
trajectories in Figure 3A. In this reduction, the three displayed dimen-
sions explain 63% of the total variance. In this figure, a rotation of the
first three latent dimensions is shown (equivalent to a linear combination
of the three dimensions explaining the most variance overall).

Similarly, neural trajectories in Figure 9 were generated by performing
PCA on the peristimulus time histograms of all units for each grasp
condition separately. All individual trials were then transformed into the
two principal components explaining the most variance and binned into

slow, medium, and fast RTs. All trials were aligned to the go cue and
plotted from 350 ms before to 280 ms after the go cue.

Projection methods. As can be seen in Figure 3A, trials of the same
condition tend to follow a stereotypical trajectory through neural space.
Following the study by Afshar et al. (2011), we reasoned that the farther
the neural state had advanced along the mean neural path at the time of
the go cue would be predictive of subsequent performance. To test this
hypothesis, we projected neural activity of individual trials at the go cue
on the mean neural trajectory of similar trials (excluding the tested trial
of the same condition). The projection is denoted in Figure 3B with the
symbol �. The vector formed between the mean firing rate at the go cue
and the firing rate at the go cue of an individual trial is projected onto the
vector between the mean firing at go and the mean firing at go � some �t.
The data were tested empirically to determine the optimal �t values over
all datasets. Selected �t values ranged from 300 ms before to 300 ms after
the go cue.

Additionally, as depicted in Figure 3D, the instantaneous velocity of
the neural data, [tgo 	 (tgo 	 20)], in the high-dimensional neural space
of individual trials was projected onto the mean neural trajectory. Similar
to the projection method, the velocity projection method hypothesized
that trials in which the neural space is changing in the direction of the
mean trajectory will have shorter RTs. Importantly, trials were segregated
into 100 –200 ms bins based on the length of the memory period to
minimize the effect of memory period length on neural position, i.e., the
mean trajectory used as a reference for each trial was calculated solely on
other trials within the same memory period bin.

Euclidian distance method. The Euclidian distance method was per-
formed also equivalently to the study by Afshar et al. (2011). Single-trial
RT was correlated with the Euclidian distance between the high-
dimensional firing rate at the go cue on the single trial and the mean
high-dimensional firing rate of all other trials of the same condition at
some time offset, �t, as depicted in Figure 3C.

The optimal subspace method, as originally reported by Churchland et
al. (2006c), was also performed. It is equivalent to the Euclidian distance
method with a time offset of �t 
 0 ms. Both of these methods are based
on the hypothesis that trials in which firing rates are close to the mean
rates observed for similar trials have shorter RTs.

Average rate method. The average rate (AR) method is based on the
simple hypothesis that trials during which particular units have higher
firing rates will be associated with shorter RTs. This method posits that
neural activity increases during preparation and crosses a movement
threshold to initiate a movement, also known as the rise-to-threshold
hypothesis (Erlhagen and Schöner, 2002). Under the assumptions of this
method, higher preparatory activity would always be associated with
shorter RTs. Four implementations of this method were tested initially.
The trial-by-trial RT was correlated with the following: (1) the signed
difference between firing rate at go cue and at cue onset (i.e., an approx-
imation of baseline firing), averaged across all units; (2) the same method
but using the unsigned difference (absolute value); (3) the average firing
rate at the go cue across all units; and (4) the average firing rate at the go
cue across all units for their preferred grip type only. The third version,
which does not rely on baseline firing rate or unit preferences, was the
best performing (data not shown) and was therefore the one used for
additional analysis. For clarity, we opted to name our implementation of
the rise-to-threshold hypothesis as the AR method.

Sign-corrected average rate method. As hypothesized by the AR method,
if units that increase their activity (relative to the mean) during move-
ment preparation are associated with trials having short RTs, then they
are negatively correlated with RT. However, if the activity of some units
were in fact reduced (relative to the mean) for trials with short RT, this
would result in a positive correlation. If many of each of these types exists
in the same population, which is averaged to produce an RT prediction,
these two inverted populations would be in conflict and cancel out each
other, thereby causing poor RT prediction.

To overcome this obstacle, we introduced the sign-corrected average
rate (SCAR) method. It is identical to the simple AR method as described
in the previous section; however, the signal of all units was first multi-
plied with a sign-correction vector. That is, units that were correlated
positively with RT were inverted to produce a negative correlation. To
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decide which units were to receive a negative value in the sign-correction
vector, (1) the firing rates at the go cue of individual units were cor-
related with RT (twofold cross-validated) over all conditions. (2)
Units received a 	1 value in the sign-correction vector if they pos-
sessed on average (over all conditions) an r value �0. All other units
received a value of 1 in the correction vector. This method preserves
the absolute magnitude of the mean firing rate across trials because no
normalization is performed. A number of inversion criteria were test-
ed; however, we found that it was sufficient to invert only units with a
positive r value (data not shown). It is important to note that units
were not tested separately for each condition (grip type/decision con-
dition), i.e., a unit that was inverted for a precision grip would also be
inverted during a power grip. Testing on each condition separately
would have increased RT prediction further.

RT correlations. When correlating single-trial neural metrics, i.e., the
previously described methods excluding the AR and SCAR methods,
with RT, we did not include the neural data from that trial in the calcu-
lation of the mean neural trajectory used for that prediction, as in the
study by Afshar et al. (2011). The predicted and observed RTs were then
correlated with each other. This technique, termed leave-one-out cross-
validation, ensured that predictions of the RT of each trial were not based
on movement activity from that trial.

Whenever average RT variance explained was calculated across an
average of datasets, each average was weighted by the number of trials in
each dataset.

Partial RT correlations. In our tasks, memory period length was corre-
lated highly with RT (Fig. 2). To disentangle the relationship of memory
period length to RT and the relationship of our neural prediction metrics
on RT, partial correlation, which bares much similarity to multiple re-
gression, was performed (Cramér, 1946). Partial correlation is a method
for determining the correlation between two variables while controlling
for one or more other variables. The partial correlation between two
variables, while controlling for a single other variable, is described by

�NB�M �
rNB � rNMrMB

�1 � rNM
2 �1 � rMB

2
,

where � is the partial correlation of a neural prediction metric (N ) with
RT (B), while controlling for the effect of the length of the memory
period (M ). rXY is the standard Pearson’s correlation between vectors X
and Y.

Cross-validation. The results of all methods were twofold cross-
validated. All trials of each dataset were first randomly segregated into
two sets of equal size and methods performed separately on each set.
Furthermore, the SCAR method required the preevaluation of prepara-
tory correlations with RT to determine which units should have their

firing rates inverted. To avoid false-positive results, SCAR was first
trained on a training set of trials and always tested on trials that were not
used for training. All analyses were twofold cross-validated by flipping
the role of both sets. Segregating the data into more than two cross-
validation folds would severely reduce the number of test trials in each
condition and therefore the reliability of prediction.

Multiple linear regression. To determine whether a combination of the
tested methods could improve the amount of variance explained in RT, a
number of regressions was performed. Multiple regression was per-
formed using the leave-one-out technique, in which regressing on all
other trials generated the prediction for each trial, and this process was
repeated for each individual trial. First, the same model as described by
Afshar et al. (2011) was used, which consisted of the projection method
on both the pre-go and post-go cue axes, as well as the velocity projection
method on both the pre-go and post-go cue axes. Alternatively, a number
of simpler combinations were tested, although most are not presented
here because they yielded poor results.

To test whether or not a multivariate model could explain significantly
more variance than a simpler model, the F test was used. The F test is
ideally suited to compare models (regressions) that use nested predictors,
that is, models that use a subset of predictors of a more complex model.
However, because we wanted to compare models over a number of con-
ditions (each with varying degrees of freedom), we had to generate a
nonstandard F distribution for testing. Therefore, the F statistic compar-
ing each pair of models was calculated separately and then summed.
Additionally, because each cross-validation fold contained different tri-
als, each fold was considered as a separate condition for a total of four
conditions in Task 1 (two behavioral, two folds) and 12 conditions (six
behavioral, two folds) in Task 2. To generate a testing distribution the
probability density functions (pdfs) of each corresponding F statistic
were convolved with each other to form a new distribution. We then
calculated the likelihood of observing the calculated sum of F statistics
and from there derived the p value.

To extend this test over all datasets and reach general conclusions, the
sum of F statistics was summed across all conditions and datasets and
tested on an F distribution of convolved pdfs over all conditions and
datasets.

Chance-level calculation. Many individual correlations were computed
in the current study. To ensure that all relevant methods were truly
identifying relationships between neural data and RT, all correlations
were tested against a chance distribution. For each method and condi-
tion, chance distributions were generated by correlating the prediction of
each method with a corresponding vector of randomly shuffled RTs
(1000 repetitions). We could then calculate the probability of observing
the empirical R 2 given our shuffled distributions and use this as a p value.

A B C

Figure 2. Scatter plots of RT versus memory period length. A–C, The RT of animals B, S, and Z, respectively, as a function of memory period length for all task conditions and datasets. The solid
line represents the mean, and error bars indicate SEM within nonoverlapping 50 ms bins.
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In the case in which a significance calculation was required over multiple
conditions and datasets, the generated chance distributions were con-
volved with each other to form a new distribution, precisely as with the F
statistic for testing multiple linear regression. The p value for significance
was fixed at 0.01.

For the SCAR method, an additional control was performed. The
SCAR method involved the inversion of the firing rates of some units. To
ensure that this inversion did not artificially produce our results, the
following control was performed. A random sample of units of the same
size as in the real data was inverted and the method performed as normal
(1000 repetitions, permutation test). The resulting chance-level distribu-
tions could be tested against the empirical results as was done for the
other chance-level calculations.

Variance selection. All recorded units were included in the main anal-
yses. To determine whether one could select a subset of units that would
perform equally or better than the entire population, a variance selection
was performed. The units with higher variances in spike count (at the go
cue) across trials were preferentially included first. In addition, a random
unit selection was performed alongside the first analysis with the same
number of units per test. The random selection of units was performed
1000 times per percentage value. Data were interpolated to the range of
0 –100% to facilitate averaging between datasets.

Significance testing was performed by summing the R 2 over all data-
sets and testing the likelihood of obtaining this value against the distri-
bution of convolved pdfs over all datasets as generated by the random
unit selection, precisely as was done with the F statistic for testing mul-
tiple linear regression. The significance level was set at 0.05 and Bonfer-
roni’s corrected for the number of percentages tested (100).

Bayesian information criterion. The Bayesian information criterion
(BIC) is a well known model selection criterion (McQuarrie and Tsai,
1998). It is described by the following:

BIC � � 2lnL̂ � plnN,

where L̂ is the posterior likelihood of the data given the best-fit model,
p is the number of parameters used to generate the model, and N is the
number of observations used. A smaller BIC is associated with a better
explanatory model. BICs were calculated for single conditions and
averaged either over conditions or over conditions and datasets.

Results
Behavior
All three animals performed the task successfully. After initiating
trials to the point of obtaining task information, i.e., receiving a
grip cue, animals B, S, and Z successfully completed those trials
96, 98, and 95% of the time, respectively. Catch trials in which the
animal was required to withhold movement were included in
Task 1. Animals B and S completed these catch trials successfully
95 and 98% of the time, respectively. Figure 2 plots the RTs of all
animals as a function of memory period length. The memory
period in Task 1 lasted 0 –1300 ms, whereas the memory period in
Task 2 was relatively longer (a minimum of 1400 ms in the in-
structed condition including the grip cue) to facilitate a second
cue period in the delayed-instructed condition. RTs were reduced
during longer memory periods, consistent with the established
hypothesis that motor preparation improves over time (Rosen-
baum, 1980; Riehle and Requin, 1989). The exception to this was
the 1300 ms memory condition in Task 1, in which RT slightly
increased, likely because of the expectation of a catch trial, which
appeared periodically and lasted 2000 ms. For animals B, S, and Z,
the correlation coefficients over all datasets between memory pe-
riod length and RT were 	0.55, 	0.57, and 	0.33, respectively.
Similar experiments have shown that saturation of RT, i.e., the
minimum length of memory period after which RT does not
significantly improve, is at least 100 –200 ms (Churchland et al.,
2006c) in a reaching task. In Task 1, we observed RT saturation,
but we did not observe this in Task 2.

In contrast, there was no significant correlation between
memory period length and movement time, which is the time
between the hand leaving the hand-rest button and making con-
tact with the handle, indicating that animals only initiated a
movement when the movement was fully prepared. The only
exceptions are the movement times of animal B, which were
slightly longer in the 1300 ms memory period condition than in
shorter memory periods, potentially an effect of decreased atten-
tion for long memory periods. For all animals, the hands re-
mained completely stationary on the hand-rest buttons before
the go cue. The experiments from which these data were collected
were originally designed to assess hypotheses that are not pre-
sented here and will be addressed elsewhere.

Neural recordings
The analyzed datasets include a collection of 18 recording ses-
sions, six from each animal. In animal B, an average � SD of 63 �
17 and 28 � 18 units were recorded in F5 and AIP, respectively, as
well as in animal S (mean � SD, 132 � 15 and 131 � 26) and
animal Z (85 � 18 and 81 � 24). An average of 483 trials per
dataset met the inclusion criteria, as described in Materials and
Methods. This corresponded to an average of 77 trials per condi-
tion and cross-validation fold overall. In animals S and Z, there
was no significant difference between the two brain regions in the
number of units recorded per dataset (p 
 1 and p 
 0.56, Wi-
lcoxon’s signed-rank test). However, in animal B, significantly
more units were obtained in area F5 (p 
 0.03), which may have
affected the quality of RT decoding in area AIP. The majority of
units obtained in all animals were identified as multiunits (52%
in animal B, 60% in animal S, 70% in animal Z). All recorded
single units and multiunits were included in additional analyses.

Although the response characteristics of each individual unit
are not analyzed here in detail, it is worth noting that the overall
tuning characteristics of units in F5 and AIP were very similar
regardless of the task design used (Task 1 or 2). Furthermore,
both tasks were able to elicit strong grip type tuning in both F5
and AIP. An average of 32% of recorded units were significantly
tuned for grip type during the late memory period in F5, whereas
26% were tuned in AIP (p � 0.05, two-sample t test), which did
not differ between areas (p 
 0.09, Kruskal–Wallis ANOVA),
although differences were seen between animals (p 
 0.002,
Kruskal–Wallis ANOVA), with animal B showing slightly less
tuning overall (24% in F5 and 18% in AIP). This finding is par-
ticularly robust when considering that there are no visual cues
present in the memory period, and, therefore, grip type tuning
tends to reach a minimum during this epoch.

Low-dimensional visualization of single-trial trajectories
To visualize how neural data evolves on single trials, a low-
dimensional representation of the full neural space of both brain
areas combined is shown in Figure 3A for an exemplar dataset
(instructed precision grip, dataset Z120829). Dimensionality re-
duction was performed using GPFA, as described in Materials
and Methods. Single trials tended to evolve from cue onset to a
preparation state and further to a movement state after the go
cue. Conversely, it did not appear that variability between trials
decreased in a systematic way when comparing the size of the
confidence ellipses at cue onset, go cue, and movement onset. To
determine whether the trajectory of an individual trial could be
related to RT, three methods were formulated, as depicted in
Figure 3B–D. These three methods, the projection method, Eu-
clidean distance method, and velocity projection method, are
presented here virtually identical to how they were performed by
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Afshar et al. (2011) and are described in detail in Materials and
Methods. Although GPFA aids the visualization of single trials, in
the following section, these RT prediction methods are tested in
the high-dimensional state space of all recorded units.

Finding optimal reference points for trajectory-based
methods
As can be seen in Figure 3B–D, each of the three high-
dimensional state space methods relies on a reference time point,
or �t, on the mean trajectory. To find the optimal reference
point, the time domain from 500 ms before to 500 ms after the go
cue was tested. For purpose of determining optimal �t values,
this time window was further limited to �300 ms, because refer-
ence points become more unreliable between conditions and da-
tasets at large offsets. Each method was performed with this range
of �t values, and the predictions correlated with RT, as seen in
Figure 4. The mean of all conditions is shown with a thick trace,
and the used offsets before and after the go cue are marked
with open circles (limited within �300 ms). Inset histograms
show all individual correlation coefficients [datasets (6) �
conditions (2– 6) � cross-validation folds (2)] before squar-
ing and averaging and for each animal separately. The darker
bars indicate correlations that are statistically significant ( p �
0.05, Pearson’s correlation). The results from animals B and Z
are very similar and use identical offsets, whereas the results of
animal S differed significantly.

As seen in Figure 4A, the projection method using references
both before and after the go cue have correlation distributions
with nonzero median in F5: one distribution is shifted to the
negative and one to the positive. This finding is consistent with
our hypothesis, because trials that are farther along a mean tra-
jectory going forward in time should lead to shorter RTs and
therefore an overall negative correlation between our neural pre-
dictor and RT. In AIP the projection method also performed

significantly, although the resulting R 2 is much lower than in F5
(Fig. 4B). Based on this analysis, the best positive and negative �t
values, which were then used in all subsequent analysis, were
	290 and 60 ms in F5 for animals B and Z and 	170 and 260 ms
for animal S. In AIP, values of 	210 and 200 ms were used for
animals B and Z, and values of 	40 and 60 ms were used for
animal S.

The Euclidian distance method performed similarly to the
projection method but explained overall less variance in RT (Fig.
4C,D). In both F5 and AIP, reference points generally produced
correlation histograms that were shifted significantly from zero.
In most cases the pre-go distribution was shifted to the negative
direction and the post-go to the positive direction, again consis-
tent with the hypothesis that trials that are closer to the state of the
network after the go cue will have shorter RTs, with the notable
exception of animal B on the pre-go axis, a point that is returned
to later. Additionally, when using a time offset of 0 ms, identical
to the so-called optimal subspace method (Churchland et al.,
2006c), the correlation distribution tended to be only marginally
significantly shifted from zero in F5 and AIP. Despite this, the
optimal subspace method was not used in additional analyses,
because the Euclidean distance method outperformed it in every
case. Based on this analysis, the �t values that were used in addi-
tional analysis were 	300 and 170 ms in F5 for animals B and Z
and 	270 and 270 ms for animal S. In AIP, values of 	90 and 300
ms were used for animals B and Z and values of 	100 and 300 ms
for animal S.

The velocity projection method performed poorly overall, ac-
counting for �1% of the variance in RT (Fig. 4E,F). Only rarely
do reference points in F5 or AIP have correlation distributions
significantly shifted from zero. Furthermore, accounting for the
effect of memory period length on RT using partial correlation
completely eliminates this effect (data not shown). Therefore, for
most of our additional analyses, the velocity projection method

A B

C

D

Figure 3. Neural data and RT prediction methods visualized as low-dimensional trajectories. A, Neural data of both areas of an exemplar condition reduced to a low-dimensional representation
of the trial course (determined by GPFA). Thick trace represents the mean of trials for one condition (instructed precision grip, dataset Z120829). Thin gray traces represent 10 random single trials.
Shaded ellipses (90% confidence) represent the state of all selected single trials at the start of each epoch. B–D, High-dimensional RT prediction methods in a two-dimensional illustration. Thick red
and green traces represents the mean of trials. Thin gray trace represents a single exemplar trial. � denotes the component used to predict RT for the projection method (B), Euclidean distance
method (C), and velocity projection method (D).
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was excluded. It should be noted that trials were segregated into
bins based on memory period length, as described in Materials
and Methods. However, when all trials are pooled together, the
resulting predictions of RT are still nonsignificant (data not
shown).

Population firing rate-based methods
In addition to our high-dimensional trajectory-based methods,
we also tested simpler methods based on averaging the activity of
all units around the go cue. Such methods still depend on simul-
taneously recorded units, because they require an estimation of
the population neural state for each trial. The first method we
tested is the AR at go, which is our implementation of the rise-
to-threshold hypothesis, as described by Afshar et al. (2011). The
correlation histograms obtained by the AR method are shown in
Figure 4, G for F5 and I for AIP. The median of the correlation
distribution is significantly shifted negatively in two of the three
animals in F5 (Wilcoxon’s signed-rank test), suggesting that
higher firing rates around the go cue led to shorter RTs. However,
in AIP, the distribution was only shifted for one of the three
animals. However, in all cases in which a significant shift was
present, this shift was in the negative direction, suggesting that
higher firing rate tended to be related to shorter RTs.

The AR method relies on averaging. Therefore, if some units
in the population are correlated negatively with RT whereas oth-
ers are correlated positively, these effects could cancel out at the
population level. To deal with this issue, we first correlated the
firing rate at the go cue of each unit with RT on a set of training
trials. Then, as described in Materials and Methods, on a set of
testing trials we inverted the firing rates of units that had a posi-
tive correlation in the pretesting (twofold cross-validated).
Briefly, the process consists of multiplying the firing of all units by
a sign-correction vector (see Materials and Methods). This new
method was termed the SCAR method. The correlation histo-
grams of the SCAR method are shown in Figure 4, H and J, for F5
and AIP, respectively. In both areas the median of the correlation
distribution was shifted strongly into the negative domain (three
of three animals in both areas, Wilcoxon’s signed-rank test). Over
all datasets, the average number of units whose activity was in-
verted was 38% in F5 and 42% in AIP, a large portion of the total
unit count. The number of units inverted was less for animal S, in
which the performance of the AR method was already consider-
ably high.

Pooling of multiunits and single units does not bias
RT prediction
To ensure that the previous results were not attributable to the
sole contribution of either multiunits or single units, we repeated
the analysis using only multiunits or single units. Results are
presented as a performance ratio of average fraction of RT vari-

ance explained using only single units or multiunits versus the
pool of all units (where 1 represents identical performance). In
F5, when including only single units, the pre-go and post-go
projection methods produced ratios of 0.81 and 0.84, respec-
tively. In AIP, the pre-go and post-go projection methods pro-
duced ratios of 0.76 and 0.91, respectively. The pre-go and
post-go Euclidean distance methods produced ratios of 0.65 and
0.95 for F5 and 0.72 and 0.81 for AIP single units.

When including only multiunits, in F5, the pre-go and
post-go projection methods produced ratios of 0.64 and 0.69 in
F5 and 0.77 and 0.69 in AIP. The Euclidean distance methods
produced ratios of 0.87 and 0.87 in F5 and 1.13 and 0.59 in AIP.

The same analysis was done for the population-based meth-
ods (AR and SCAR). The AR method had performance ratios of
0.74 and 0.79 when using single units only in F5 and AIP, respec-
tively, whereas multiunit only performance was 1.25 and 1.07.
The SCAR method had performance ratios of 0.76 and 0.87 when
using single units only in F5 and AIP, respectively, whereas mul-
tiunit only performance was 0.66 and 0.63.

In almost every case, including only multiunits or single units
in the analysis reduced the overall performance. Using only single
units caused a performance reduction of 9 –36%. Similarly, using
multiunits caused a reduction of 13– 41%, with the exception of
the Euclidean distance method (before go cue) in AIP and the AR
method in both areas, which increased slightly. Overall, the pre-
diction of RT cannot be explained based solely on the contribu-
tion of either single units or multiunits. However, the AR method
seems to perform best using multiunits, suggesting that com-
pounding single-unit responses stabilizes the performance of this
method.

Neural activity predicts trial-by-trial RT
Together, the results of all methods based on optimal �t selection
are shown in Figure 5. The mean R 2 is plotted for all 18 datasets in
both F5 and AIP. Open bars mark methods that did not perform
above chance level, as described in Materials and Methods. The
average R 2 over all methods is significantly higher in F5 than AIP
(p � 0.001, Kruskal–Wallis ANOVA), suggesting that the popu-
lation activity in F5 better encodes the variability in grasping
plans. However, it is important to note that the current tasks
include a large reaching component, which is also represented
strongly in F5 and AIP (Lehmann and Scherberger, 2013), al-
though more so in AIP. Therefore, some similarities between the
behavioral and neural results of the current study and previous
reaching studies are expected.

Not all methods achieved the same level of performance over-
all (p � 0.001, Kruskal–Wallis ANOVA). The best method on
average, SCAR, was able to explain 18% of the variance in RT in
F5 and 6% in AIP. The SCAR method and the projection (before
go cue) method performed best in F5 for animals B and Z, ex-
plaining 18 and 16% of the variance in RT, respectively. In animal
S, this pattern differed in F5, because the best performing meth-
ods were SCAR and Euclidean distance (after go cue), explaining
17 and 13% of variance in RT, respectively. The mean RT predic-
tion for each animal is summarized in Figure 6A. There was no
effect of grip type (p 
 0.69, Kruskal–Wallis ANOVA) in all
animals, suggesting that RT could be predicted equally well re-
gardless of grip. Additionally, there was no effect of cross-
validation fold (p 
 0.93, Kruskal–Wallis ANOVA), confirming
that segregating the data into training and testing trials did not
introduce inconsistencies into the results.

As described previously, Task 2 contained different task types
(instructed, free choice, and delayed instructed). There was a

4

Figure 4. Determination of the optimal reference time (�t) relative to go cue on the mean
trajectory. A, B, Results of the projection method in areas F5 and AIP, respectively. C, D, Results
of the Euclidean distance method in areas F5 and AIP, respectively. E, F, Results of the velocity
projection method in areas F5 and AIP, respectively. Thick traces are the mean of all conditions
and datasets of each animal, thin traces are the SEM, and white circles are the optimal �t used
in all subsequent analysis. Insets in A–F show histograms of correlation coefficients between
each neural predictor and RT over all conditions (2– 6), datasets (6), and cross-validation folds
(2). Black bars denote correlations with a p value �0.05. Arrows show the median together
with the p value of significant difference from zero (Wilcoxon’s signed-rank test). G, H, Corre-
lation coefficient histograms of the AR at go method and the SCAR method, respectively, in F5.
I, J, Same as G and H, but for neural data from AIP.
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significant effect of task type on RT prediction (p � 0.001,
Kruskal–Wallis ANOVA) over all methods, although the effect
size was very small (effect size, � 2 
 0.018). The worst perform-
ing decision condition was the delayed-instructed condition, in
which a second cue was presented later in the memory period.
This small, but significant, effect on RT prediction is likely attrib-
utable to the disruptive effect of a second cue close to the end of
the memory period. Interestingly, there was no difference in RT
prediction between the instructed condition and the free-choice
condition (p 
 0.80, Wilcoxon’s rank-sum test), suggesting that
the way in which a motor plan is selected does not affect the
relationship between preparatory activity and RT.

To summarize the number of individual correlations that
have significant p values (p � 0.05; equivalent to the black bars in
the histograms of Fig. 4), the total fraction of significant correla-
tions is plotted in Figure 6C. In F5, between 21 and 96% of the
correlations were significant for each method, whereas this range
was between 4 and 67% in AIP, therefore confirming the overall
better predictability of RT in F5.

Given the success of the SCAR method, an interesting ques-
tion arises. If it is effective to predict RT by calculating a weighted
mean of all units, in which the weights are either exactly 	1 or 1,
would performance improve if weights were not restricted in any
way? This idea can be tested directly by using linear regression to

A

B

Figure 5. Average fraction of RT variance explained for all methods and datasets (averaged across conditions and cross-validation folds). A, Average fraction explained by F5 data. B, Average
fraction for AIP. Note the clear advantage of area F5 over AIP. Chance-level calculation is based on shuffling neural data with respect to RTs repeatedly. The observed R 2 values are then compared
against the shuffled distributions to assess significance. Significant results are illustrated as solid bars, whereas the open bars show results that can be explained by chance ( p � 0.01).
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Figure 6. Comparison of prediction performance and fraction of significant full/partial correlations between predictors and RT over all task conditions, datasets, and brain areas. A, Average
fraction of RT variance explained by correlation. B, Average fraction of RT variance explained by partial correlation. Significant results are illustrated as solid bars, whereas the open bars show results
that can be explained by chance ( p � 0.01). C, Fraction of conditions with significant correlations ( p � 0.05). D, Fraction of conditions with significant partial correlations ( p � 0.05).
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fit a set of weights to all units (MATLAB function regress). The
results of this analysis, when cross-validated identically to the
main analysis (twofold), show that a linear regression over all
individual units can explain 3.9% of variance in RT in F5 and
2.2% in AIP, with a significant advantage of F5 over AIP (p �
0.001, Kruskal–Wallis ANOVA). However, this performance is
only one-quarter of the projection or SCAR methods overall.
Because the number of available units frequently outnumbers the
number of available trials, coefficients cannot be ideally identi-
fied. For this reason, the regression often excluded up to 15% of
the units in each dataset by assigning them a coefficient of zero.

To deal with the small number of trials available, it is also
possible to use stepwise linear regression to add or remove units
based on how their inclusion affects the model (MATLAB func-
tion stepwisefit). To produce an optimal solution, the model was
initialized with only a constant term and units were subsequently
added if they significantly improved the model (F statistic, p �
0.05). The results of this analysis show that a stepwise linear re-
gression over all individual units can explain 12.1% of variance in
RT in F5 and 3.4% in AIP, with a significant advantage of F5 over
AIP (p � 0.001, Kruskal–Wallis ANOVA). However, in this anal-
ysis, between 77 and 97% of units were excluded from the model
to produce an optimal fit. Together, the linear regression results
are consistent with previous analyses showing an advantage of F5
over AIP and are similar to the results obtained by selecting units
by variance over trials (see Fig. 8). However, their usefulness is
limited, at least in datasets with a restricted number of trials.

Removing the effect of the memory period does not eliminate
RT prediction
The length of the memory period was strongly negatively corre-
lated with RT in all tasks and animals (Fig. 2). To ensure that a
straightforward encoding of the memory period in the firing rates
of individual units was not responsible for our findings, all meth-
ods were retested using partial correlation. As described in Ma-
terials and Methods, partial correlation allows for the correlation
of two variables while controlling for the linear effects of one or
more additional variables. Here we controlled for the effect of
memory period length on RT. Figure 6B shows the mean R 2 over
all datasets while controlling for the effect of memory period
length. Partial correlation reduces the performance of all meth-
ods, but almost all methods remain above chance level in F5. In
AIP, all methods are reduced to chance level in at least one ani-
mal, with the exception of the SCAR method. The largest reduc-
tion in performance caused by partial correlation was 66% over
all methods in animal B, suggesting a strong reliance on the mem-
ory period length and consistent with the unexpected direction of
the shift in the correlation coefficient distribution of animal B in
Figure 4C. The smallest reduction in performance was 25% in
animal Z. In AIP, results of each animal were never reduced by
�38%. For comparison, the mean R 2 using the standard corre-
lation metric is shown in Figure 6A. Similarly, the number of
significant correlations was reduced when using partial correla-
tion as illustrated in Figure 6D.

Anterior AIP outperforms posterior AIP
A number of recent studies have highlighted that the anterior (aAIP)
and posterior (pAIP) subdivisions of AIP differentially encode visual
task parameters (Baumann et al., 2009; Romero and Janssen, 2014)
and differ drastically in their effective connectivity (Premereur et al.,
2015). Because it is not well understood how these two areas differ in
their contribution to preparatory activity for grasping, we further
segregated our units into aAIP and pAIP corresponding to the ante-

rior and posterior implanted arrays, respectively, and repeated the
main analyses.

Unlike the comparison between F5 and AIP, the number of
units recorded on each array within AIP differed significantly for
all animals (p � 0.05, Wilcoxon’s signed-rank test). Therefore,
for each dataset, units were discarded randomly from the larger
set until an equal number of units were present from each subarea
(stratification).

If the same RT prediction methods used in the main analysis
are applied to subdivisions of AIP, there is a small, but significant,
advantage of aAIP over pAIP (p 
 0.021, Kruskal–Wallis
ANOVA). Most of this advantage comes from the projection
(pre-go) method, with an average R 2 of 0.031 in aAIP and 0.019
in pAIP (p � 0.01, Wilcoxon’s signed-rank test). In agreement
with the main results, there was no significant difference in RT
prediction between grip conditions or cross-validation folds (p 

0.36 and p 
 0.86, Kruskal–Wallis ANOVA). These findings are
in line with the emerging view that a gradient of visual to motor
processing exists between pAIP and aAIP.

Multiple regression does not improve RT prediction
By combining multiple prediction methods in a multiple regres-
sion, it is possible to capitalize on the potential orthogonality
between different predictors. To test whether a multiple regres-
sion could increase overall prediction of RT, we first replicated
the regression described by Afshar et al. (2011), which consists of
a regression of the pre-go and post-go cue versions of the projec-
tion and the velocity projection methods. Because the velocity
projection method performed poorly in our analysis, it was not
expected for this regression to significantly improve RT predic-
tion. In fact, this four-factor multiple regression only out-
performed simpler unimodal and bimodal regressions consisting
of subsets of these factors in 16.7% of all datasets in F5 and 11.1%
in AIP (F test). Furthermore, this regression never achieved a
lower BIC score than more parsimonious regressions in any da-
taset or brain area, suggesting that combining these four factors
in a regression is not justified in our dataset.

A number of other regressions were tested, but in no case were
�50% of datasets in F5 and 16.7% of datasets in AIP able to signifi-
cantly outperform simpler regressions (F test). Furthermore, none
of these multiple factor regressions achieved a lower BIC in �11.1%
of datasets in F5 and in none of the datasets in AIP.

Because multiple regression performs best when individual
variables are independent, it would be unlikely to explain signif-
icantly more variance in RT if our predictors are highly corre-
lated. In fact, most methods are highly correlated with one
another in our dataset (minimum R 2 � 0.14), with the exception
of the velocity projection method (R 2 � 0.03), which performed
poorly in the main analysis.

No alternative reference point can outperform SCAR
The SCAR method relies on first correlating the firing rate of each
unit with RT and then inverting based on the resulting correla-
tion coefficient. Because this method relies on cross-validation, it
would be preferable to perform a method that does not rely on
previous information. To ensure that this alternative was not
possible, a control was performed. The mean firing rate at mul-
tiple time points (up to 2 s) before the go cue was subtracted from
the firing rate of each single trial, and the absolute value of the
resulting signal was taken. Subsequently, the firing rate on each
trial was averaged over units and correlated with RT. This
method has the effect of inverting the activity of each unit relative
to the mean firing rate at some previous time point. In no case
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was such a method able to explain more or equal variance in RT
than the SCAR method, suggesting that there exists no trivial
alternative to pretesting each individual unit with respect to mea-
sured RT. The same was true if grip cue-aligned activity was used
for reference.

Consistency of the sign-correction vector during movement
Because the SCAR method relies on previous information of the
relationship between firing rate and RT, we wondered whether
the learned sign-correction vector, which is used to invert the
activity of positively-correlated units, revealed a natural align-
ment of firing rates across time or whether it simply fit the data
well at the time of the go cue. To test this, we used the sign-
correction vectors determined in the main analysis to repeat the
SCAR method using neural activity not just from the go cue but
also at variable time points from 500 ms before to 800 ms after the
go cue. The results of this analysis are depicted in Figure 7. As can
be seen in Figure 7C for animal S in F5, maximal RT prediction is
achieved shortly before median movement onset (R 2 
 0.56). If
neural activities of many units peak shortly before movement
onset, then the SCAR method should perform best at this time.
Such a result would suggest that trials on which activity drifted
toward the firing rate observed at movement onset were more
likely to be trials with a short RT, in line with the rise-to-threshold
hypothesis (Erlhagen and Schöner, 2002).

However, as can be seen in Figure 7A, the results of animals B
and Z differed significantly in F5. In this case, the peak RT pre-
diction occurs precisely around the time of go cue. In contrast to
the results of animal S, a peak at the go cue suggests that, although
our sign correction was able to properly align the firing of each
unit at the go cue, it does not necessarily represent a consistent
pattern in the firing of the underlying units.

In AIP, peak RT prediction was achieved in all animals shortly
before median movement onset, i.e., a higher (sign-corrected)

firing rate on single trials tended to lead to shorter RTs. Maximal
RT prediction before movement onset can be explained by the
idea that activity either rises during the memory period to achieve
peak activity during the movement or that activity is decreased
during the memory period to reach a minimum during move-
ment. This result in AIP is consistent with a study showing sig-
nificant RT prediction from activity in AIP shortly before
movement onset (Verhoef et al., 2015).

Variance selection allows high performance with a subset
of units
Because all recorded units were included in the previous analysis,
we were curious whether a subset of units could be selected that
performed equally well or better than the entire population. To
test this, a variance selection of units was performed. Units were
discarded from the analysis in order of increasing variance in
spike count (at the go cue) across trials. This way, units with
higher variances were preferentially included. For the two best
performing methods, SCAR and projection (before go cue), the
variance selection performed significantly better than chance
(p � 0.05, Bonferroni’s corrected) in F5 for all animals (Fig.
8A,C). In AIP, only variance selection using the SCAR method
outperformed chance (Fig. 8B,D).

In all cases, selecting units by variance did not improve
maximal performance, as expected. In fact, when comparing per-
formance using all units to a smaller subset in F5, using a
variance-selected subset of only 32 or 18% of recorded units, for
the SCAR and projection (before go cue) methods, respectively,
suffered only a 5% decrease in performance. For the SCAR
method, it was only necessary to use a subset of 23% of the avail-
able units in F5 to attain 95% of maximal performance. Together,
these results suggest that, when units are selected by variance at
the go cue, only relatively small subsets of the recorded units are
required to attain virtually maximal performance. More impor-

A B

C D

Figure 7. Stability of the sign-correction vector determined at the go cue by the SCAR method. RT prediction is calculated using sign-corrected neural activity around each time point. A, B, SCAR
method as a function of time for animals B and Z in areas F5 (A) and AIP (B). C, D, SCAR method as a function of time for animal S in areas F5 (C) and AIP (D). Dashed lines indicate the go cue and the
median movement onset (Move). Note the difference in peak RT prediction in F5 between animals B and Z and animal S.
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tantly, including all units in the population does not appear to
add noise to these methods, because maximal performance is
achieved when including all units, suggesting that they properly
describe the relationship between preparatory activity and RT at
the population or network level.

Variability of RT axis from day to day and animal to animal
When considering each dataset separately, it became clear that
the day-to-day variability in RT prediction for each method is
relatively high (Fig. 5). To elucidate how neural trajectories,
which are presumably very similar over sessions, could explain
very different amounts of variance in RT, we visualized a few
individual sessions using PCA. This second dimensionality re-
duction method was introduced, in addition to the GPFA used in
Figure 2A, to visualize average trajectories as opposed to single
trials. In contrast to GPFA, which applies many different and
sometimes large smoothing kernels, PCA allows more direct con-
trol over the amount of smoothing over time. In Figure 9, the first
two principal components of individual conditions of individual
recording sessions are shown. The mean trajectory over all trials
is depicted along with the mean trajectory of trials binned into
slow, medium, and fast RT trials. In every subplot, a visualization
of the projection (after go cue) method is presented from the
data. In this visualization, the position of single trials along the
dashed projection axis would determine our measurement for

how far along the mean neural trajectory this trial is. The subse-
quent length of the projection of each single trial onto this axis
would then be used to predict RT. In Figure 9A, trajectories of a
power grip condition are shown from dataset B140509. It appears
that the fast and slow RT trials are located distantly to each other
along the projection axis, suggesting that this axis would be valu-
able in explaining trial-to-trial RT variability. This was in fact the
case, because the projection (after go cue) method was able to
explain 27% of the variance in RT in the main analysis of this
dataset. However, note that the position of the fastest RT trials is
less far along the mean trajectory than slow trials, directly con-
tradicting the predictions of our hypothesis. As we noted in Fig-
ure 6B, much of the RT prediction obtained in animal B was
eliminated by controlling for the effect of memory period length.
Based on the trajectory in Figure 9A, it seems that trials with
longer memory periods tended to continue along the projection
axis instead of lingering near the mean trajectory. Because longer
memory periods led to slower RTs for the most extreme memory
period lengths (1300 ms), trials that have progressed farther
along the mean indicated slower RT trials.

Plotted in Figure 9B is the mean trajectory of the precision grip
on the very next dataset (B140515). The mean trajectory for this
condition is very similar to that of Figure 9A. However, the ori-
entation of the projection axis is approximately orthogonal to
that of an axis running through the slow and fast RT trials, sug-

A B

C D

Figure 8. Selection of units by firing rate variance at the go cue for the two best performing methods in animals B and Z. A, B, Variance selection of units versus random selection using the SCAR
method in F5 (A) and AIP (B). C, D, Variance selection of units versus random selection using the projection (before go cue) method in F5 (C) and AIP (D). Horizontal black bars on top represent unit
percentages in which the variance selection performed significantly better than random selection ( p 
 0.05, Bonferroni’s corrected, permutation test).
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gesting that this axis would explain only a small amount of vari-
ability in trial-to-trial RT. The projection (after go cue) method
performed at chance level for this dataset, only explaining 3% of
the variance in RT. Therefore, it seems plausible that, even when
trajectories are similar, it is possible for RT variance to be rotated
relative to the mean trajectory, suggesting that the mean trajec-
tory may not always be an ideal reference. In this case, the Euclid-
ean distance (after go cue) method performed significantly better
because trials with shorter RT were located closer to the move-
ment onset state in the state space.

The trajectory in Figure 9C shows a precision grip from
dataset S1209013. It seems to differ substantially from the
other trajectories. In this case, there is no clear progression of
the preparatory trajectory near the go cue, and there is also no
abrupt change in the directionality of the trajectory after the
go cue. Therefore, it is not surprising that both projection
methods performed quite poorly on this dataset. Only by se-
lecting a �t for the projection (after go cue) method that was
quite large (210 ms) could improve RT prediction. In this case,
the projection (after go cue) and Euclidean distance (after go
cue) methods performed similarly, which is not surprising
because projection and distance become mathematically sim-
ilar for large �t values.

Figure 9D represents an ideal trajectory of a power grip
from dataset Z120921. In this case, trials that are farther along
the projection axis correspond to trials with shorter RTs, in
line with the predictions of the projection method.

Discussion
Using simultaneous neural recordings from three animals, we
have shown that preparatory activity in both premotor and
parietal cortices is correlated with trial-to-trial variability in
RT. However, the activity in F5 is far more predictive of RT
than in AIP. Although the length of the memory period facil-
itated RT predictability, our findings cannot be explained
purely based on this relationship. The use of a state space
framework, made possible by the parallel recording of many
units, represents a major step forward in understanding the
relationship between preparatory activity and behavioral
parameters.

Trial-to-trial RT prediction
Although response characteristics and tuning properties of AIP and
F5 neurons can be very similar (Baumann et al., 2009; Fluet et al.,
2010), we have shown that their trial-to-trial relationship with RT
differs greatly (Fig. 5). The current result is not trivial, because F5 and

A B

C D

Figure 9. Low-dimensional representation (PCA) of neural state space illustrating day-to-day and animal-to-animal variability. Trajectories are plotted in the two principal components of area
F5 explaining the most variance. A, Trajectory of a power grip from dataset B140509 in which RT is most variable along the projection axis. B, Trajectory of a precision grip from dataset B140515 in
which RT is most variable orthogonal to the projection axis. C, Trajectory of a precision grip from dataset S120913 in which RT is most variable on the shared distance and projection axis. D, Trajectory
of a power grip from dataset Z120921 in which RT is most variable along the projection axis.
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AIP are densely and reciprocally connected (Luppino et al., 1999;
Borra et al., 2008). However, the level of RT predictability found in
the preparatory activity of AIP units is consistent with previous stud-
ies in nearby areas (Janssen and Shadlen, 2005; Snyder et al., 2006).

Together, the relative advantage of F5 over AIP is not altogether
surprising given the fact that F5, which has projections to the spinal
cord (He et al., 1993; Borra et al., 2010) and a facilitation effect on M1
(Shimazu et al., 2004), must naturally be involved in the transition
between preparation and movement execution.

Comparing prediction methods
High performance of the projection method, matched only by the
SCAR method, is consistent with the “initial conditions” hypoth-
esis formulated by Afshar et al. (2011) from activity in PMd. Even
after controlling for the effect of memory period length, the pro-
jection method still performs above chance level; however, the
SCAR method can outperform the projection method, especially
in Task 1. SCAR offers an alternative explanation for the relation-
ship between single-unit firing and RT. In this framework, most
individual units have a consistent relationship with RT, i.e.,
higher or lower firing rates before the go cue are associated with
shorter RT. Controlling for the sign of this relationship was able
to increase RT prediction up to four times and follows well from
the observation that the preparatory activity in PMd is both pos-
itively and negatively correlated with RT (Riehle and Requin,
1993), as in F5.

Could subpopulations of these units explain prediction of RT?
If this were the case, we would expect units that fire more during
the delay would continue to rise during the movement. In two of
three animals, the SCAR method peaked in RT prediction at the
go cue, suggesting that this sign correction was a local property
and not a consistent property of each unit (Fig. 7A,C). Indeed,
activity is often higher in the delay period than during the move-
ment (Crammond and Kalaska, 2000), suggesting that the rela-
tionship between firing during preparation and movement is
complex (Churchland and Shenoy, 2007b).

Interestingly, maximal performance is always achieved for the
projection and SCAR methods when including all recorded units
and not a variance-selected subset in F5 (Fig. 8), supporting the
conclusion that both methods accurately describe population-
level features and are not simply dominated by specific subpopu-
lations of units.

Previously, the best performing method was a multiple regres-
sion of projection and velocity projection components (Afshar et
al., 2011). We did not find significant performance of the velocity
projection method or any multiple regression. When examining
our neural trajectories, it seems that in many cases the speed of
change in neural signal remained high or even increased during
the memory period, especially in Task 1 (our unpublished data).
This may represent an interesting quality of F5 activity that differs
from activity in PMd. Such memory-related activity could mask
relationships between trial-to-trial neural velocity and RT, espe-
cially after factoring in the length of the memory period.

Differences between PMv and PMd
To our knowledge, the preparatory activity recorded in F5 in our
study explains more trial-to-trial variance in RT than any other
published study. However, the results obtained in nearby PMd
are quantitatively comparable (Afshar et al., 2011). A number of
studies have systematically contrasted PMv and PMd (for review,
see Hoshi and Tanji, 2007). It may be that F5 is more involved in
the specific timing and execution of reaching movements than
PMd, as evidenced by chemical inactivation (Kurata and Hoff-

man, 1994). Nevertheless, both PMv and PMd are essential for
grasping movements (Raos et al., 2004, 2006). Electrical micro-
stimulation in PMd during preparation (Churchland and She-
noy, 2007a), and potentially F5 (Gerits et al., 2012), delays
movement onset.

Although PMd and PMv are part of relatively distinct parieto-
frontal networks, they both have an important effect on behav-
ioral timing. Additionally, both PMd and PMv project to similar
locations within M1 and lack a clear hierarchy (Dum and Strick,
2005), suggesting that their roles are complementary and not
sequential.

Limitations
To rule out premature muscle contractions as an explanation for
RT prediction obtained during a delay, electromyographic re-
cording of relevant muscles has been used in the past (Church-
land et al., 2006c; Afshar et al., 2011). Such recordings were not
undertaken in the current study; however, we do not believe that
premature muscle contractions are a likely cause of the RT pre-
diction observed here for three reasons. First, the hands of all
animals remained completely still on the hand rest buttons until
after the go cue had been given, as confirmed by infrared moni-
toring. Second, the RTs of all animals were well above 200 ms in at
least 97% of trials, suggesting that they appropriately awaited the
go cue. Third, animals successfully withheld movement during
the catch trials, suggesting that they were properly awaiting the go
signal.

Although the primary interest of the current study was grasp-
ing actions, all movements included a large reaching component
as well. It remains a possibility that the relative advantage of F5
over AIP could in part be attributable to a larger role of F5 in
reaching than AIP. However, previous studies dissociating reach-
ing and grasping have shown that PMv is greatly involved in the
representation of grasping without a reach component (Hepp-
Reymond et al., 1994) and is potentially even less involved in
reach encoding than AIP (Lehmann and Scherberger, 2013).
Therefore, finding higher RT prediction accuracy in F5 rather
suggests a larger influence of the grasping component in the neu-
ral signal.

Implications for models of motor preparation
It is clear that the most dominant factor in the neural trajectories
of animal B is the length of the memory period itself (Fig. 9A),
which seems to act counter to the notion of an optimal subspace,
because trials do not congregate within an area of low variability.
It has been shown that variability is decreased by external stimuli,
which was observed in PMd (Churchland et al., 2006c) and a
number of other cortical areas (Churchland et al., 2010). If F5
neurons were multiplexing many factors in addition to a motor
plan such as anticipation of the go cue, similar to hazard rate
(Janssen and Shadlen, 2005), or variability in attention over lon-
ger periods of time, trial-to-trial variability might be increased at
go cue. Furthermore, encoding of the length of the memory pe-
riod clearly increased RT predictability in F5 and AIP, as evi-
denced by the decrease in predictability when using partial
correlation. Additional work is needed to determine the extent to
which F5 and AIP encode cue anticipation or attention-related
factors.

Alternatively, it could be that the subspace required to suc-
cessfully complete the grasping movement is sufficiently large to
allow trajectories to lie in a relatively wide space. The absence of a
static prepare-and-hold state is consistent with the augmented
view of the initial conditions hypothesis posited by Ames et al.
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(2014), who showed that the memory state is bypassed in PMd
when time to prepare an action is lacking. In this view, the sub-
space required to successfully complete an action, i.e., with no
penalty in movement generation, but a possible penalty in RT,
could be quite broad. However, it is clear that F5 firing rates do
not necessarily congregate in a specific part of the state space
given enough time, as would be predicted by an attractor model
of preparatory dynamics. The interesting question of determin-
ing whether such a prepare-and-hold state is necessary in F5 or
AIP, along with whether the observed preparatory processes set
the initial conditions of a dynamical system, as they do in PMd
and M1 (Churchland et al., 2012; for review, see Shenoy et al.,
2013), are left to future works.

Recently, the ability to record activity from many neurons
simultaneously has opened up new possibilities in the investiga-
tion of the motor and premotor cortices (for review, see Church-
land et al., 2007). The current study explores the relationship
between preparatory activity in large populations of neurons and
subsequent behavior, shedding light on the differential role of
parietal and frontal cortices in this process.
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Raos V, Umiltá MA, Gallese V, Fogassi L (2004) Functional properties of
grasping-related neurons in the dorsal premotor area F2 of the macaque
monkey. J Neurophysiol 92:1990 –2002. CrossRef Medline
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